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Abstract

In this paper, we present a graph based technology mapping algorithm, called DAG-Map,
for delay optimization in lookup-table based FPGA designs. OQOur algorithm carries out
technology mapping and delay optimization on the entirc Boolean network, instead of
decomposing the network into fanout-free trees and mapping each trece separately as in most
previous FPGA technology mapping algorithms. Moreover, as a preprocessing step of DAG-
Map, we introduce a general algerithm for transforming an arbitrary n-input network into a two-
input network with only O (1) factor increase in the network depth; previous transformation
procedures may result in an O (Iogn) factor increase in the network depth. Finally, we present a
graph matching based technique which performs area optimization without increasing the
network delay; this is used as a postprocessing step for DAG-Map. We implemented the DAG-
Map algorithm and tested it on the MCNC logic synthesis benchmarks. Compared with previous
FPGA technology mapping algorithms for delay optimization (Chorile-d and MIS-pga), DAG-
Map reduces both the network depth and the number of lookup-tables.

! Current address: Zycad Inc., 1380 Willow Road, Menlo Park, CA 94025,
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1. Introduction

The Field Programmable Gate Array (FPGA) is a relatively new technology which allows
the circuit designer 10 produce ASIC chips without going through the fabrication process. The
fast fast turn-around time and low manufacturing cost have led 1o increasing interest in FPGA
technology for system prototyping and low- or medium-volume production. An FPGA chip
usually consists of three components: programmable logic blocks, programmable
interconnections, and programmable I/O blocks. Current technology implements programmable
logic blocks using either K-input RAM/ROM lookup-tables (K-LUTs) [Xi89] or programmable
multiplexors [Ca86, Hs87, El89]. Programmable interconnections consist of one-dimensional
segmented channels [GrKE90] or two-dimensional routing grids with switch-matrices [Xi89,
BrRV90]. Programmable I/O blocks provide a user configurable interface between internal logic
blocks and 1/0 pads. The design process for FPGAs is similar to that for conventional gate arrays
or standard cells. Given a high-level design specification, the design process includes logic
synthesis, technology mapping, placement, and routing. However, the end result is not a set of
masks for fabrication, but rather a configuration matrix which sets the values of all the
programmable elements in a FPGA chip. In this paper, we study the technology mapping
problem for delay optimization of lookup-table based FPGAsS.

The technology mapping problem is to implement a synthesized Boolean network using
logic cells from a given cell family. Much work has been done on the technology mapping
problem for conventional gate array or standard cell designs [Gr86, Ka86, Ke87, De87, LiBK88].
In particular, it was shown that a Boolean network can be decomposed into a set of fanout-free
trees and that the technology mapping problem can be solved optimally for each tree
independently using a dynamic programming approach [Ke87]. However, these methods do not
apply immediately to the technology mapping problem for FPGAs since a K-LUT can implement
any one of 2% K-input logic gates, and consequently the equivalent cell family is too large to be
manipulated efficiently.

Recently, a number of technology mapping algorithms have been proposed for arca
optimization in lookup-table based FPGA designs. The MIS-pga program developed by Murgai
et al. [Mu90] first decomposes a given Boolean network into a feasible network using Roth-Karp
decomposition and kemel extraction so that the number of inputs at each node is bounded.
MIS-pga then enumerates all the possible realizations of each network node and solves the binate
covering problem to get a mapping solution using the least number of lookup-tables. In the
improved MIS-pga (new) [MuSB91b] more decomposition techniques are incorporated,
including bin-packing, cofactoring, and AND-OR decomposition. The covering problem is
solved more efficiently via certain preprocessing operations. The Chortle program and its
successor Chortle-crf, developed by Francis, Rose and Vranesic [FrRCS0, FrRV91a), decompose
a given Boolean network into a set of fanout-free trees and then carry out technology mapping on
each tree using the dynamic programming approach. Bin-packing heuristics are used in Chortle-
crf for gate-level decomposition, yielding significant improvement over its predecessor in the
quality of soluticns and the running time. The Xmap program developed by Karplus [Ka91a]
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transforms a given Boolean network into an if-then-else DAG representation and then goes
through a simple marking process to determine the final mapping. Another FPGA technology
mapping algorithm was proposed by Woo [Wo091], who introduces the notion of invisible edges
to denote the edges which do not appear in the resulting network after mapping. A given network
is first partitioned into subgraphs of reasonable size, and then an exhaustive procedure is used to
determine the invisible edges in each subgraph. In the meantime, several technology mapping
algorithms have also been proposed for multiplexor based FPGAs [Mu90, ErDe91, Ka91b]; some
of them use techniques similar to those used for lookup-table based FPGAs. The main objective
in all these FPGA technology mapping algorithms is to minimize the number of programmable
logic blocks in the mapping solution.

The emphasis of this paper is on dclay optimization in FPGA designs, since performance is
the main consideration in many applications that use FPGA technology. We set area
optimization as the secondary objective, i.e., we minimize the number of lookup-tables after we
have obtained a mapping solution with minimum delay.

Previous work on FPGA mapping for delay optimization consists of Chortle-d, developed
by Francis, Rose and Vranesic [FrRV91b, FrRV9%I1c], and an extension of MIS-pga, developed by
Murgai et al. [MuSB91a]. The basic approach used in Chortle-d is similar to that in Chorte-crf,
i.e., decompose the network into fanout-free trees and then use dynamic programming and bin-
packing heuristics to map each tree independently. However, the objective at each step in
Chortle-d is to minimize the depth of the node being processed. Their method indeed reduced the
depths of mapping solutions considerably (29% less compared to MIS-pga and 35% less
compared to Chortle-crf). However, the method has two drawbacks. First, it decomposes the
network into a set of fanout-free trees. Although it guarantees the optimal depth for each tree
(when the input limit of each lookup-table is no more than six), this prior decomposition usually
results in sub-optimal depth for the overall network. Second, Chortle-d uses many more lookup-
tables than are used by area optimization algorithms (MIS-pga and Chortle-crf).

The MIS-pga extension of [MuSB%la] contains two phases, mapping and
placement/routing. The mapping phase first computes a delay-optimized 2-input network, then
traverses the network from the primary inputs, collapsing the nodes in the longest paths into their
their fanouts to reduce the network depth. During this procedure various decomposition
techniques are used to dynamically resynthesize the network, so this method uses a reduced
number of look-up tables. The advantage of this approach is that it takes layout information into
consideration at the technology mapping stage. However, on average it yields larger network
depth than Chortle-d, especially for large networks, and requires much more computation time.

In this paper, we present a graph based technology mapping algorithm, called DAG-Map,
for delay optimization in lookup-table based FPGA design. Our algorithm carries out technology
mapping and delay optimization on the entire Boolean network, instead of decomposing it into
fanout-free trees as in Chortle-d. Our algorithm is optimal for trees for any K-LUTs while
Chortle-d is optimal for trees only when K is no more than six [FrRV91c]. Moreover, in a
preprocessing phase of DAG-Map, we introduce a general algorithm for transforming an arbitrary



n-node network into a two-input network with only O (1) factor increase in the network depth,
while the previous transformation procedure may result in O (logn) factor increase in the network
depth. Finally, we present a matching based technique for area optimization without increasing
the network delay, which are used as a postprocessing step for DAG-Map. We tested DAG-Map
on the set of MCNC logic synthesis benchmarks and compared it with the previous FPGA
mapping algorithms. Our experimental results show that on average, DAG-Map reduces both the
network delay and the number of lookup-tables when compared with either Chortle-d or the
mapping phase of MIS-pga delay optimization.

The remainder of this paper is organized as follows. Section 2 gives the precise problem
formulation. Section 3 describes our DAG-Map algorithm in detail. Experimental and
comparative results are presented in Section 4.

2. Problem Formulation

A Boolean network can be represented as a directed acyclic graph (DAG) where each node
represents a logic gate and therc is a directed edge (i, /) if the output of gate { is an input of gate
j. A primary input (PI) node has no incoming edge and a primary output (PO) node has no
outgoing edge. We use inpur(v) to denote the set of nodes which supply inputs to gate v. Given
a subgraph H of the Boolean network, input (H) denotes the set of distinct nodes which supply
inputs to the gates in H. For a node v in the network, a K-feasible cone at v, denoted C,, is a

subgraph consisting of v and predecessors? of v such that any path connecting a node in C, and v
lies entirely in C, and |input(C,)|< K. The level of a node v is the length of the longest path
from any PI node to v. The level of a PI node is zero. The depth of a network is the largest node
level in the network.

We assume that each programmable logic block in an FPGA is a K-input lookup-table (K-
LUT) that can implement any K-input Boolean function (this is true for the FPGA chips produced
by Xilinx and AT&T [Xi91, Hi91, Wo91] ). Thus, each K-LUT can implement any K-feasible
cone of a Boolean network. The technology mapping problem for K-LUT based FPGAS is then
to cover a given Boolean network with K-feasible cones3. A technology mapping solution S is a
DAG where each node is a K-feasible cone (equivalently, a K-LUT) and the edge (C,,, C,) exists
if u is in input (C,). Our goal is to compute a mapping solution that results in small circuit delay
and, secondarily, uses small chip area. The delay of a FPGA circuit is determined by two parts;
delay in K-LUTs and delay in the interconnection paths. Since layout information is not
available at this stage, we assume that each edge in the mapping solution § contributes a constant
delay. Hence, the circuit delay is determined by the depth of § since each K-LUT contributes a
constant delay (the access time) independent of the function it implements. Therefore, the main
objective of our algorithm is to determine a mapping solution § with depth as small as possible.

# wis a predecessor of v if there is a directed path from u 10 v.

3 Note that we do not require the covering 1o be disjoint since we allow nodes in the network to be replicated, if necessary, as
long as the resulting network is logically equivalent to the original one. In fact, our algorithm is capable of replicating nodes automati-
cally, when necessary, in order to achieve delay optimization. See Section 3.2 for more details.



Since routing resource requirements are not known during technology mapping, our secondary
objective is to minimize the number of K-LUTs in the technology mapping solution.

3. The DAG-Map Algorithm

Our DAG-Map algorithm consists of three major steps. The first step transforms an
arbitrary Boolean network into a two-input network. The second step maps the two-input
network into a K-LUT FPGA network with minimum delay. The third step performs area
optimization of the FPGA network without increasing the network delay. This section describes
these three steps in detail.

3.1. Transforming Arbitrary Networks into Two-Input Networks

As in [FrRV91a, FrRVY91b], we assume that each node in the given Boolean network is a
simple gate (i.e. AND, OR, NAND, or NOR gate).4 The first step of our algorithm is to transform
the given Boolean network of simple gates into a two-input network (i.e. each gate in the network
has at most two inputs). There are two reasons for carrying out such a transformation. First, we
want to limit the number of inputs of each gate to be no more than K so that we do not have to
decompose gates during technology mapping. Second, if we think of FPGA technology mapping
as a process of packing gates in a given network into K-LUTs, then, intuitively, smaller gates will
be more ¢asily packed, with less wasted space in each K-LUT.

A straightforward way to transform an n-node arbitrary network into a two-input network is
1o replace each m-input gate (m > 3) by a balanced binary tree’. Fig. 1(a) shows a 4-input gate v
{where the numbers beside the nodes indicate their levels) and Fig. 1({b) shows the result of
replacing it by a balanced binary tree, We see that the level of v increases from 7 to 8. In
general, such a straightforward transformation may increase the network depth by as much as an

v %ﬁ Y

(a) A four-input gats (b) Transformation (©) Transformation
(the ragnbers indicats node levels) wing baanced treo using our algoritim

Fig. 1. Transforming a multi-input network into a two-input network.

* If the network has complex gates, we can represent each complex gate in the sum-of-products form and then replace it with by
two levels of simple gates. In particular, we wse the iechnology decomposition command tech_decomp -o 1000 -a 1000 in
MIS [BrRS87], which realizes such a transformation.

¥ The gate 1ype of cach node in the binary tree is the same as the gate type of the original muliiple-input node. Such a transfor-
mation maintains logical equivalence as long as the gaie function is associative.



O (logn) factor as we will show later. However, if we replace v by the binary tree shown in Fig.
1(c), the level of v remains 7. Our goal is to replace each multiple-input node by a binary tree so
that the height of the resulting network is as small as possible.

Given an arbitrary Boolean network G, we transform G into a two-input network G’ as
follows. We process the nodes in G in topological order starting from the PI nodes. At each
multiple-input node v, we construct a binary tree T (v) rooted at v using an algorithm similar to
Huffman’s algorithm for constructing a prefix code of minimum average length [Hu52]. Writing
input(v) = {uy, U3, ..., iy}, note that nodes u,, U, ..., ii,, have already been processed by the
time we process v; their levels level’ (u;) (1 < i <m) in the new network G’ have been determined.
Intuitively, we want to combine nodes with smaller levels first when we construct the binary tree
T(v). Our algorithm is as follows.

Algorithm: decompose-multi-input-gate (DMIG)
let V =input(v)={u,, usz, ..., n};
while |V |> 2 do
let u; and u; be the two nodes of V with smallest levels;
introduce a new node x;
input (x) = {u, w;};
level (x) = max(level’(u;), level' (u;)) + 1;
V=V - {u, uhixh
end-while
Connect the only two nodes left in V to v as its inputs;
Return the binary tree T (v) rooted at v;
end-algorithm.

If we apply the DMIG algorithm to the example in Fig. 1(a), we indeed obtain the binary
tree shown in Fig. 1(c). An algorithm similar to DMIG was proposed by Wang [Wa89] for
timing-driven decomposition in the synthesis of multi-level Boolean network. We have proven
the following theoretical results showing that the DMIG algorithm increases network depth by at
most a constant factor. First, we have the following lemma.

Lemma Let V ={u,, u,, ..., u,} be the set of inputs of a mulii-input node v in the initial
network G. Then, after applying the DMIG algorithm we have

zleve!'(v) < i 2’””(“1}"'1
i=l

where level’(x) is the level of node x in the two-input network G’,

Proof It is easy to see that the DMIG algorithm will introduce m —2 new nodes in
processing v. (For any binary tree, the number of leaves equals the number of internal nodes
(including the root) plus one.) Let X; = {x; 1, x; 2,... X; m—;} be the set of nodes left in V afier the
DMIG algorithm introduces the i-th new node. Clearly, X¢ = fu,, u3, ..., 4,J. For convenience,
we define X1 ={v}. Without loss of generality, assume that
level'(x; 1) < level (x; ) < - -+ <level'(x; ,,_;). Then, the (i+1)-th new node has x; ; and x; ; as
its inputs, and its level is given by level’(x; ,) + 1. Therefore, we have
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3 plevel(x) __ Hlevel xia)tl _ Hlevel(xy) _mer'(x.-_,) +3 nlevel' (x)

xeX,-+1 IEXI-
= 2’“‘{(1.'.1) _ 2’""(‘-‘.1) + E kaf(x)
xeX;
Taking the sum of both sides of the last equation from { =0 to m — 2, we have

mE—Z E 21,,,,1'(;) ="'E_2 (2lev¢t'(x.;z) _ Zlevd' (I,;;)) +MZ—2 E level (x)
i=0xeX;, i=0 i=0xeX;

m-2
Subtracting ¥ ¥ 2%"'® from both sides, we get
i=lxeX;
2lzv¢f(v) = mE—2 (2““’ (x.2) _ 2’”‘—”' (Xu)) + E zlcuf(x)
i=0 xEXu
Note that
"'2‘:2 (2l ) _ pleveltedy _ "‘iz QIR _ el )y | level (e za) _ plevel @)
i=0 =0
Moreover, 2% %2 _ o' @) < for any 0< i <m—2 (since x;41,; is either the (i+1)-th new
node or a node in X; —{x;, x;2}; in either case we have level'(x;,; 1) 2 level'(x; 2)) and
plevel Cusa) _ *;—-2""“' ™, 1t follows that

olevel (v) < l,2ievei’(v) _ 219\"81'(10,0 + ¥ olevel'(x)
2 xeX,

Therefore,

2l¢vel'(v) <24 E 2!ev¢!'(x) _ 2’”‘”("0,1)) < Z 2lewzl"(x)+1 - i 218\'81'(“:')*'1 O

xeX,y xeXy i=1

From this lemma, we can show that the DMIG algorithm results in at most a constant factor
increase in network depth.

Theorem 1 For an arbitrary Boolean network G of simple gates(’. let G be the network
obtained by applying the DMIG algorithm to cach multi-input gate in topological order starting
from the PI nodes. Then

depth (G") <log2d-depth(G) + log/

where d is the maximum degree of fanout in G and [ is the number of PI nodes in G.

Proof Let H denote depth(G). Let L; denote the set of nodes {x |xe G, level (x) =i}.
(Note that level (x) is the level of node x in the initial network G.) Let A; denote the set of nodes

¢ Any complex gate in the network can be decomposed into a two-level AND-OR subneiwork so that the increase of network
depth is bounded by a factor of two,
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x in G such that level(x) i and x has at least a fanout y with level (y) > i. We shall prove by
induction that

E 2Iever(v) < (Zd)ll

ved, *)

Since Ay is the set of PI nodes in G, the inequality (*) holds for i =0. Suppose that the
inequality holds for i — 1, we want to show that it also holds for i. According to the definition of
A;, itis not difficult to see that

AicA A UL
Moreover, each node v in A; ~ A;_; has at most 4 — 1 fanouts in L;. According to the lemma, we
have

Z 2[evel'(v) < Z zlevel'(v) + E 2I¢vet"(v)
ve A, veA My A vel,

< Z Zlevcl’(v) +(d-1) E 21¢v¢f(v)+]. +d Z zlevel’(v)-e-l
veA L MA ve A MY A veA . — A

<2d Z zlcvel'(v)

vEA;

By induction hypothesis, we have

3, 290 < 2g-(2dY 1) = YT

ve A
It concludes that the inequality (*) holds for any 0 < i <H. Let w be node in G that achieves the
maximum level in G’, then all the inputs of w are in Ay_;. According to the lemma and the
inequality (*), we have

zlewl’(w) < Z 2[eve1'(v)+1 < Z 212vel'(v)+l < 2‘(2d)H_1 J< (Zd)Hd

VE input (w) ve Ay,
Therefore,

depth (G') = level’(w) < log[(2d)-1] <log2d-H +logl. 0

Similar analysis was carried out by Hoover, Klawe, and Pippenger when bounding the
maximum degree of fanout in a Boolean network [HoKP84]. Since in practice d is bounded by a
constant (fanout limit of any output), the depth of the two-input network G’ is increased by just a
small constant factor log2d away from depih(G).” For example, if d<4, the depth increase is
bounded by a factor of 3. Balanced binary tree based transformation may increase the depth of an
n-node network by as much as an O (logn) factor, even when d is bounded by a constant,
therefore resulting in depth much larger than that obtained by our algorithm, especially when

? Here we assume that depth(G) = Q(logl}, which is true for most networks in practice. This excludes the vnrealistic case
where log/ is the dominating term in the right-hand side of the inequakity in Theorem 1.
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depth(G) is large. Fig. 2 shows a pathological example for the balanced binary tree based
transformation. The initial network of size n is shown in Fig. 2(a), which is a fanout free circuit
of depth yn—T1 (assuming that the primary inputs are of level 0). The two-input network after the
balanced binary tree based transformation is shown in Fig. 2(b), which has depth
dgpr=" log (n—1)n—T, even with d=1 in this case. Fig. 2(c) shows the DMIG transformation
result, which has depth dpyye=" log (n—1)+vr—1-1. Clearly dpsyc is much smaller than dggy
when n is large.

The experimental results in Section 4 show that the 2-input networks obtained using our
transformation procedure lead to smaller network depths and better mapping solutions than those
obtained using the transformation procedure in MIS [BrRS87].

3.2. Technology Mapping for Delay Minimization

After we obtain a two-input Boolean network, we carry out technology mapping directly on
the entire network. We use a method similar to that of Lawler, Leviit, and Turner for module
clustering to minimize delay in digital networks [LaLT69]. Our algorithm consists of two phases.
We first label the network to determine the level of each node in the final mapping solution. We

f\/ n-1 FYEST A/ nl -1 afnd -1
—_—— p——— —m—

(b} Transformation using balanced binary tree:
{Y{ l[ dgpr = Slogn-DA 1

(c) Transformation using DMIG: dmﬂc = Elog(n-l) + A/ nl -1

{\v ’
Liogin

-llq(n 1)

Fig. 2. A pathological example for the balanced binary tree based transformation
{assume n = 22741 for some m).
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then generate the logically equivalent network of K-LUTs.

The first step assigns a label 4 (v) to each node v of the two-input network, with £ (v) equal
to the level of the K-LUT containing v in the final mapping solution. Clearly, we want & (v) 10 be
as small as possible in order to achieve delay minimization. We label the nodes in a topological
order starting from the PI nodes. The label of each PI node is zero. If node v is not a PI node, let
p be the maximum label of the nodes in input (v) (note that because of the topological ordering all
nodes in input (v) have already been labeled). We use N,(v) to denote the set of predecessors of v
with label p. Then, if input(N,(WW_{v})SK, we assign h(v)=p; otherwise, we assign
h(v)=p + 1. With this labeling, it is evident that Ny ,)(v) forms a K-feasible cone at v for each
node v in the network®,

The second phase of our algorithm is to generate K-LUTs in the mapping solution. Let L
represent the set of outputs which are to be implemented using K-LUTS. Initially, L contains all
the PO nodes. We process the nodes in L one by one. For each node v in L, we remove v from L
and generate a K-LUT V' to implement the function of gate v such that
input (V') = input (N ,y(v)). (Recall that N, (,)(v) forms a K-feasible cone at v.) Then, we update
the set L to be L\ input (v'). The second phase stops when L consists of only PI nodes in the
original network. It is clear that at the end of execution we get a network of K-LUTs which is
logically equivalent to the original network.

The algorithm can be summarized as follows,

algorithm: DAG-Map

/* phase 1: labeling the network */

for cach PI node v do
h(»)=0;

T =list of non-PI nodes in topological order;

while T is not empty do
remove the first node v from T;
let p =max{hu)|u € input(v) };
if | input (N, (v) U (v})|S K then h(v)=p
else A(v)=p+1;

end-while

/* phase 2 : generate K-LUTs */

L = list of PO nodes;

while L contains non-PI nodes do
remove anon-Plnode vfrom L, i.e. L =L — {v};
introduce a K-LUT v’ to implement the function of v such that

input (v') = input (N, ) (V));

L=L\input(y);

end-while

end-algorithm

¥ Note that v € Nyy(v) since v is a predecessor of itself.
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Fig. 3. A mapping example for the case K = 3.

The DAG-Map algorithm has several advantages:

{1) Tt works on the entire network without decomposing it into fanout-free trees; this usually
leads to better mapping solutions. For example, decomposing the two-input network shown
in Fig. 3(a) into into fanout-free trees (as shown in Fig. 3(b)) yields a two-level mapping
solution with three lookup-tables. However, the DAG-Map algorithm gives an one-level
mapping solution with two lookup-tables (as shown in Fig. 3(c)).

(2) The DAG-Map algorithm can replicate nodes, if necessary, to minimize the network delay
in the mapping solution. For the solution shown in Fig. 3(c), node u, is replicated to get an
one-level mapping solution. Note that if node u, is not replicated, the depth of the mapping
solution is at least two.

(3) The DAG-Map algorithm is optimal when the initial network is a tree.

Theorem 2 For any integer X, if the given Boolean network is a tree with fanin no more
than K at each node, the DAG-Map algorithm produces a minimum depth mapping solution for
K-LUT based FPGAs.

Proof It is easy to see that given a tree 7, if the fanin limit of each node is X, the DAG-
Map algorithm can successfully label all the nodes T. Moreover, for any node v in T, the label
h{v) is the level of LUT, in the mapping solution produced by DAG-Map, where LUT, is the K-
LUT containing v. We shall show that for any mapping solution M, the level of any node v
satisfies levely(LUT,) = h (v), where levely (LUT,) is the level of the K-LUT LUT, in M.

Assume toward a contradiction that M is a mapping solution such that levely, (LUT,) < h(v)
for some node v. Furthermore, let v be the node with the lowest level in T such that
levelyy(LUT,) < h{v). Then, for any predecessor w of v, we have levely(LUT,) 2 h(w). Let u be
the predecessor of v with the maximum label h(u)y=p. Since
levelyy(LUT,) 2 levelyy(LUT,) 2 h(u) = p, and A {v) < p + 1 according to the labeling procedure of
DAG-Map, we conclude that levely,(LUT,)=p and h(v)=p + 1. Note that levely(LUT,)=p
implies that C,2N,(v)\ (v}, and h(v)=p+1 implies that |input(N,(")\{v)|>K
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according to the labeling procedure in the algorithm, where C, is the K-feasible cone at v which
is contained in LUT, in M. However, since T is a tree, we have

linput (C,) |2 |input (N, (V) U (VD) |> K,
which contradicts the fact that C, is K-feasible. O

Recall that a similar result was shown for Chortle-d in [FTRV91b), but the Chortle-d result
holds only for K < 6 since the bin-packing heuristics are no longer optimal for K > 6.°

Although the DAG-Map algorithm is optimal for trees, it may not be optimal for general
networks. Fig. 4 shows an example where DAG-Map produces a three-level mapping solution
while there exists an optimal two-level mapping solution. It is interesting to point out, however,
that DAG-Map would be optimal if the mapping constraint for each programmable logic block is
monotone. As defined in [L.al.T69], a constraint X is monotone if a network H satisfying X
implies that any subgraph of H also satisfies X. For example, if we assume that the constraint for
cach programmable logic block is the number of gates it may cover in the original network, it
becomes a monotone constraint and the DAG-Map algorithm would produce an optimal mapping
solution. Unfortunately, limiting the number of distinct inputs of each programmable logic block
is not a monotone constraint. For example, in Fig. 5 the whole network has three distinct inputs,
but the subnetwork consisting of ¢, v and w has four distinct inputs. Although the optimality of
DAG-Map is not guaranteed for general networks, the experimental results in Section 4 show that

(=) Optimal mapping (b) Mapping by DAG-Map

Fig. 4. A pathological example for the DAG-Map algorithm.
{Assume K = 3. Numbers arc labels corresponding to node levels in mapping solution.)

% Note that Chortle-d does not require the fanin limit of each node in the tree to be no more than K, since it carries out node
decomposition during the bin-packing process.



-13-

Fig. 5. Constraint on number of inputs of LUT is not monotone (Assume K=3).

it produces very satisfactory mapping solutions with respect to delay optimization for all
benchmark circuits.

3.3. Area Optimization Without Increasing Delay

Since the main objective of the DAG-Map algorithm is optimization of the depth of the
mapping solution, minimizing the number of K-LUTs is not a consideration. For this reason, we
have developed two operations for area optimization which are used in post-processing steps after
we obtain a mapping solution of small depth. These operations reduce the number of K-LUTs in
the mapping solution without increasing the network depth. Note that in this sub-section, each
node in the network is a K-LUT instead of a simple gate as in the preceding sub-sections.

The first operation is called gate decomposition, which is inspired by the gate
decomposition concept used in Chortle-crf [FrRV91a). The basic idea is as follows. If node v is
a simple gate of multiple inputs in the mapping solution, for any two of its inputs «&; and u;, if u;
and u; are single fanout nodes, we can decompose v into two nodes v;; and v* such that v’ is of the
same type as v and v;; is of the same type as v in non-negated form, and input (v;) = {u;, u;} and
input (V') = input (v) ) {vij} — {w;, u;} (intvitively, u; and u; are fed into v; first and then v

ab cd efg ¢ abefg d

Fig. 6: Gate decomposition for arca optimization (assume X = 35).



replaces u; and u; as an input to v). Such a decomposition produces a logically equivalent
network because of the associativity of the simple functions. In this case, if
|input (u;) \y input (4;)|< K, then we can implement #;, u; and v;; using one K-LUT. The result
is that the number of K-LUTS is reduced by one and the decomposed node v has one fewer inputs
(which is beneficial to subsequent gate decomposition and predecessor packing). Figure 6
illusirates the gate decomposition operation, where the number of nodes, as well as the number of
fanins of node v (v after the operation), is reduced by one.

This method can be generalized 1o the case where the decomposed node v implements a
complex function. In this case we apply the Roth-Karp decomposition [RoKa62] to determine if
the node can be feasibly decomposed to v;; and V' as in the preceding paragraph. Given a Boolean
function F (X,¥), where X and Y are Boolean vectors, the Roth-Karp decomposition determines if
there is a pair of Boolean functions G and H such that F (X, Y)=G (H (X),Y), and generates such G
and H if they exist.!”. In our case, F is the function implemented by v, X =(u;,4;), and Y consists
of the remaining inputs of v. The details of the Roth-Karp decomposition can be found in
[RoKa62]. Although the Roth-Karp decomposition may run in exponential time in general, it
takes only constant time in our algorithm, since the number of fanins of a K-LUT is bounded by a
small constant K. If the Roth-Karp decomposition succeeds on a pair of inputs #; and «; of node
v, and |input (u;) \J input (u;) |< K, then the gate-decomposition operation is applicable. In this
case, we say u; and u; are mergeable and we call v the base of the merge.

Another post-processing operation for area optimization is called predecessor packing. The
concept behind this method is simple. For each node, examine all of its input nodes. If
linput (v) \ ) input (u;) | < K for some input node u;, and »; has only a single fanout, then v and u;
are merged into a single K-LUT. In this case we also say that node u; and v are mergeable, and
call v the base of the merge. This operation reduces the number of K-LUTs by one. Unlike the
gate decomposition method where the number of inputs 1o the current node v is reduced by one,
with this method the number of inputs is actually increased by |input (u;) — input (v) | Although it
is less conducive to subsequent gate-decomposition or predecessor packing, the number of
instances to which this operation applies is large. Fig. 7 shows an example of the predecessor
packing operation. In this example predecessor packing leads to a solution with the same depth
as the original network but one fewer K-LUT.

There are usually many pairs of mergeable nodes in a network, but not all of these merge
operations can be performed at the same time. We thus use a graph matching approach to avoid
merging nodes in arbitrary order; this achieves a globally good result. We consiruct an undirecied
graph G=(V,E), where the vertex set V represents the nodes of the K-LUT netwotk, and an edge
(vi, v;) is in the edge set E if and only if v; and v; are mergeable. Clearly a maximum cardinality
matching in G corresponds to a maximum set of merge operations that can be applied
simultaneously. Therefore we find a maximum maltching in & and apply the merge operations
corresponding to the matched edges. We then re-construct the graph G for the reduced network

1% This actually is a special case of Roth-Karp decomposition.
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Fig. 7. Predecessor packing for area optimization (assume that X' =35).

and repeat the above procedure until we are unable to construct a non-empty E. The experimental
results show that this matching based merge algorithm usually converges after only one or two
iterations. Since the maximum graph matching problem can be solved in O (n?) time [Ga76], our

area optimization procedure can be implemented efficiently.!!

Note that in the above discussion concerning these two operations we assume that each
node in a mergeable pair has only a single fanout, unless it is also the base of the merge for
predecessor packing. This is because the resulting K-LUT must have only one output. If a node u
in a mergeable pair is not the base of the merge and has multiple fanouts, the application of the
merge operation requires u to be replicated so that the copy involved in the merge operation is
fanout free. However unless every fanout node of u is a base of a merge operation that involves
u, we cannot reduce the number of nodes in the network, since there will always be a remaining
copy of u which is not merged to any of its fanout nodes.

We say a node u is removable if and only if for eack of its fanout nodes v;, ¢ither # and v,
arc mergeable via predecessor packing, or there is another fanin node of v;, say u;, such that 4 and
u; are mergeable via gate decomposition. Fig. 8 shows three different cases where node « can be
shown as a removable node. For a removable node u, each of its fanout nodes is a base of a
merge operation involving u, and & is removed if all these merge operations are applied
simultaneously. Therefore for a removable node i, we define a mergeable set of u, denoted as
R, to be a set of nodes involved in removing u. More precisely, R, contains « itself and exactly
one nodes for each fanout node v; of u, which is sclected in the following ways: (1) if v; is the
base of a predecessor packing operation involving u, then we can select v; as u;; or (2) if v; is the
base of a gate decomposition operation involving u, then we can select u; to be the node other
than u involved in this gate decomposition. Note that a removable node may have more than one
mergeable set. For example, in Fig. 8 node u has mergeable sets {u,u,u}.(u,vy,v2}, {u,u1,v2},
and {u,vq,u>)} (the last one is not shown in the figure). If u is fanout free, then a mergeable set of
u is a mergeable pair defined previously. Therefore, a mergeable pair is a special case of a

" We used a standard procedure for maximum cardinality matching in undirected graphs, writien by Ed Rothberg, that imple-
ments Gabows algorithm [Ga76]).
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mergeable set.

In order to reduce the number of K-LUTs as much as possible, we want 10 determine a
maximum collection of mergeable sets for which merge operations can be performed
independently. The graph matching based approach is also suitable in this case, but the graph has
to be a hypergraph [Be89] which allows edges of size larger than two. We construct a hypergraph
H=(V,§) for the K-LUT network, where the vertices in V represent the nodes of the netwoik, and
the hyperedges in § represent the mergeable sets. Note that H contains the simple graph G =(V,E),
which we constructed for merging fanout free nodes, as a subgraph. We will call the edges in E
the simple edges, and call the edges in S—E, each of which contains more than two vertices, the
non-simple edges. A matching in H is defined to be a set of disjoint edges in §. It is easily seen
that a a maximum matching in H yields the maximum number of K-LUTs in the network that can
be removed. However, the maximum matching problem in a hypergraph is NP-complete
[GaJo79]. Instead of solving this problem optimally, we compute an approximate solution using
the following algorithm. First, we construct the hypergraph H=(V,S) for the K-LUT network as
described above. Then, we identify the subgraph G=(V,E) of H, where E C § consists of all the
simple edges in H. Next, we find a maximum cardinality matching M, < E on G using Gabow’s
algorithm [Ga76]. This matching will be included in the approximate solution for hypeirgraph
matching. Let S, be the set of non-simple edges in H that are disjoint from the edges in M,. We
use an exhaustive search procedure to find a maximum matching M,, <S,, and retum M UM’ as
the approximate maximum matching solution in H.

5-LUT is-wr? gs-w:r]
L u
1 u I 5 |
5-LUT 5-LUT
v v
1 2

{a) Original network

{c) Multiple predecessor packing {d) Mixed type merging

Fig. 8. Merge operations on multi-fanout node (assume X = 5).
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In practice, |S,, | is quite small. For example, for all the benchmark circuits we used in our
experiments, |S,, | never exceeds 10. Therefore, M,,, can be computed efficiently.

It is obvious that this algorithm finds a maximal hypergraph matching.12 Although it may
not be a maximum matching, we have the following bound.

Theorem 3 Given a hypergraph H, let M* be a maximum matching of H, and M be the
matching computed using the above algorithm, then |M*|<2|M|.

Proof Let M=M,UM,,, where M, consists of all the simple edges in M and M,, consists
of all the non-simple edges of M. Let M*=M ,—M*, which is the set of simple edges that are in M
but not in M*, and M~=M*-M,. If M™ is not empty, M*UM™ is not a maiching since M* is a
maximum matching. But because M is also a matching, and M*cM,, we can always find a set
ScM™ such that M'=(M*UM™*)-S is a maximal matching. Note that M,cM’. The size of the
matching has decreased by |M*|—|M’|=|S|—|M*|. On the other hand, by adding a simple edge
to any matching, at most two edges need to be removed (o reain the matching property.
Therefore, |S|<2|M™*}, so |M*|—|M'|<|M*].

Since M, forms a maximum matching among all simple edges in H, M’ cannot contain
simple edges other than those in M;. So M'~M consists of a maximal matching of non-simple
edges which are disjoint from edges in M». According to the construction of M,, we have
|M'-Mq |<| M, |, which leads to | M’ |<|M].

Therefore, we have |M*|—|M|<|M*|. Note that |M™|<|M|, hence we can conclude that
|M*|<2|M|. O

For general hypergraphs, this bound is right. However for hypergraphs that contain only a
few non-simple edges, we can obtain a better bound. Notice that in the proof we have
IM*|—=|M||<|S|-|M?*|. Because M, is a maximum matching of simple edges, § may contain
no more than |M*| simple edges. Therefore, {S|—|M*| is no more than the number of non-
simple edges in S. Hence, we have

Corollary 1 If the number of non-simple edges in a hypergraph H is hA(H), and the
matching M obtained by the above algorithm contains k(H) non-simple edges, then
| M*|—| M| <h (H )k (H).

Proof It is clear that the number of non-simple edges in S is no more than A (H)~-k (H).
According to the above discussion in the last paragraph, |S|—|{M*|<h(H)-k(H) . From the
proof of Theorem 3 we have |M*|—|M’|=|§|—|M™* |, so |M*|-|M|<h(H)-k(H). O

For all the benchmark circuits we used in our experiments, we applied Corollary 1 and find
out that the error bound |M*|—|M]| is no more than 4.

12 A matching is maximal if there is no maiching that contains it as a proper subset. A maximal matching is not necessarily a
maximum matching.
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4. Experimental Results

We implemented the DAG-Map algorithm using the C language on Sun SPARC
workstations, We integrated our program as an extension of the MIS system so that we could
exploit input/output routines and other functions provided by MIS. DAG-Map was tested on a
large number of MCNC benchmark examples and results were compared with both those
produced by Chortle-d [FrRV91c], and those produced by the mapping phase of the MIS-pga
delay optimization algorithm [MuSB91a]). The specific experimental procedure was as follows.

We chose the size of the K-LUT was to be K =35, reflecting, e.g. the XC 3000 FPGA
family produced by Xilinx [Xi89]. For each benchmark example, we first minimized the inigial
network using a standard MIS script provided by Francis [Fr91]. Next, we applied the DMIG
algorithm to transform the network into a two-input network. We then used DAG-Map to map
into a 5-LUT network. Finally, the maiching based post-processing step was performed.

Table 1 shows the comparison of the results of our algorithm with those of the Chortle-d
algorithm (quoted from [FrRV9lc]) and those of the mapping phase of MIS-pga delay
optimization algorithm (quoted from [MuSB91a]). We only include those benchmarks for which

Technology Mapping for 5-LUT FPGAs
chortle-d MIS-pga (d) DAG-Map

LUTs | depth | time | LUTs | depth time LUTs | depth | time
Sxpl 26 3 0.1 21 2 35 22 3 1.1
9sym 63 5 0.2 7 3 152 60 5 23
Isymmi 59 5 0.1 7 3 9.9 55 5 25
499 382 6 1.8 199 8 588 68 4 12.2
C880 329 8 0.9 259 9 350 128 8 6.3
alu2 227 9 0.7 122 6 426 156 9 7.8
alud 500 10 03 155 11 154 272 10 16.5
apext 308 4 0.8 274 5 60.0 246 5 109
apex7 108 4 0.2 95 4 84 81 4 3.0
count 91 4 0.1 81 4 5.1 31 5 14
des 2086 6 9.2 1397 11 937.8 1423 5 91.2
duke2 241 4 04 164 6 164 177 4 49
misexl 19 2 0.1 17 2 1.7 16 2 0.7
rd84 61 4 0.2 13 3 9.8 46 4 2.5
rot 326 6 1.0 322 7 50.0 246 7 11.1
vgl 55 4 0.1 39 4 1.7 29 3 0.9
z4ml 25 3 0.1 10 2 2.1 5 2 0.3
total 4906 87 | 163 3182 90 | 12774 3062 85 | 175.6
comparison | +60% +2% - | +4% +6% - 1 1 -

Table 1. Comparison with Chortle-d and MIS-pga (delay optimization) programs.
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Comparison of 2-Input Network Transformation Methods .
Before Mappings After 5-LUT Mappings |

mis tech_decomp DMIG algo mis tech_decomp DMIG algo

gates depth gates | depth | gates depth gates | depth
Sxpl 88 9 88 9 22 3 22 3
Osym 201 16 201 13 65 5 60 5
Osymmi 199 17 199 13 61 5 55 5
C499 392 25 392 25 66 4 68 4
C880 347 37 347 35 131 8 128 8
alu2 371 36 in 31 159 10 156 9
alud 664 40 664 34 263 11 272 10
apexp 651 16 651 15 250 6 246 5
apex? 201 14 201 13 80 4 82 4
count 112 20 112 19 3 5 31 5
des 3049 19 | 3049 16 | 1461 6 | 1423 5
duke2 325 16 325 11 177 5 177 4
misexl 49 6 49 6 19 2 16 2
rd84 153 14 153 11 44 4 46 4
rot 539 27 539 21 256 7 246 7
vg2 72 15 72 10 29 4 29 3
4ml 27 10 27 10 5 2 5 2
total 7440 337 | 7440 292 | 3119 91 | 3062 85
comparison | +0% +15% 1 1| 2% +7% 1 1

Table 3, Comparison of two-input network transformation algorithms.

the test data from all the programs are available. The running time (sec.) of our algorithm
(including transformation, mapping, and post-processing) was recorded on a Sun SPARC IPC
(15.8 MIPS), while the running time of the other two algorithms is quoted from [MuSB91a],
whose authors used a DEC5500 machine (28 MIPS). Overall, the solutions of Chortle-d used
60% more lookup-tables and had 2% larger network depth, and the solutions of MIS-pga with
delay optimization used 4% more lookup-tables and had 6% larger network depth.' In all cases,
the running time of our algorithm is no more than 100 seconds.

In order to judge the effectiveness of our DMIG algorithm for transforming the initial
network into a two-input network, we compared it with the transformation procedure in MIS.
Both our DMIG algorithm and the MIS decomposition command tech decomp -a 2 -o
2 were applicd to the same initial networks'®. We also ran the DAG-Map algorithm on each set
of the resulting two-input networks. In Table 3, the first four columns compare the number of

13 If we compute the improvement for each circuit and take the average over all circuits, we found that the solutions of Chorle-d
used 99% more lookup-tables and had 5% larger network depth, and the solutions of MIS-pga with delay optimization used 19% more
lookup-tables and had 8% larger network depth.
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Effectiveness of Post-Processing Step
for Depth Minimized 5-Input Lookup Table Mappings
original after post-processing
LUTs depth LUTs depth

Sxpl 25 3 22 3
9sym 76 5 60 5
9symmi 68 5 55 5
C499 80 4 68 4
C880 137 8 128 8
alu2 169 9 156 9
alud 301 10 272 10
apex6 313 5 246 5
apex7 101 4 82 4
count 43 5 31 5
des 1674 5 1423 5
duke2 196 4 177 4
misexl 20 y. 16 2
rd84 51 4 46 4
rot 275 7 246 7
vg2 32 3 29 3
z4ml 5 2 5 2
total 3566 85 3062 85
comparison +16 % +0% 1 1

Table 2. Effect of the post-processing steps for area minimization.

gates and the depth of the two-input networks produced by the two algorithms, while the last four
columns compare the number of 5-LUTSs and the depth of the 5-LUT network after DAG-Map is
applied to the different two-input networks produced by the two algorithms. In all cases, the
DMIG procedure resulted in smaller or the same depths in both the two-input networks after
decomposition and the 5-LUT networks after mapping, and on average it used fewer lookup-
tables. (Since both algorithms decompose a network into a binary tree, the number of gates in the
resulting two-input networks is always the same.)

Finally, we also tested the ecffectiveness of the post-processing procedure for area
optimization used in our algorithm, and the results are shown in Table 2. The first two columns
show the statistics for the mapping solutions produced by DAG-Map without any post-
preprocessing for area optimization. The last two columns describe the same solutions after the
post-processing. The total number of lookup-tables is reduced by 16%.

14 Again, the initial networks were optimized using the MIS minimization script as in the preceding experiment, and in addition
to this we alsoused tech_decomp -a 1000 ~c 100Cto transform it into simple gate network.
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5. Conclusions

In this paper, we have presented a graph based technology mapping algorithm for delay
optimization in lookup-table based FPGA design. It carries out technology mapping and delay
optimization on the entire Boolean network. Our algorithm consists of three main steps:
transformation of an arbitrary network into a two-input network, technology mapping on the
entire two-input network for delay minimization, and area optimization in the mapping solution.
We have also presented several theoretical results which show the effectiveness of our algorithm.
The algorithm has been tested on a large set of benchmark examples and it gives satisfactory
results.
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