Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

THE VIRTUAL-TIME DATA-PARALLEL MACHINE

Shioupyn Shen January 1992
CSD-920001

UNIVERSITY OF CALIFORNIA

Los Angeles

The Virtual-Time

Data-Parallel Machine

A dissertation submitted in partial satisfaction
of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Shioupyn Shen

1991

© Copyright by
Shioupyn Shen
1991

The dissertation of Shioupyn Shen is approved.

Kirby Baker

Christopher Anderson

Milos Ercegovac

Jack Carlyle

Leonard Kleinrock, Committee Chair

University of California, Los Angeles

1991

i

To my family,
for providing me with the love, support and freedom

to indulge me in pursuing my best.

iii

TABLE OF CONTENTS

Introduction,
1.1 High Performance Computers
1.2 The Parallel Processing Challenge
13 Related Work
1.3.1 The Connection Machine
1.3.2 Virtual Time
1.4 The Virtual-Time Data-Parallel Machine
1.5 Asynchronous SIMD
1.5.1 Assumptions
1.5.2 Performance Measures
16 Summary
Characteristics of Asynchronous SIMD
2.1 Introduction.
2.2 Distribution of Processors in Virtual-Time
2.3 The Number of Processorsat GVT
24 Conclusions e
Hardware Support for Asynchronous Execution
3.1 Imtroduction.,
32 Memory History
3.2.1 Algorithm for Incremental Backup
3.2.2 Hardware for Incremental Backup
3.3 The Size of the Memory History
34 Conclusions i i e
Performance Analysis of the Progress Rate
4.1 Introduction. e
4.2 The Non-Persistent Model
4.3 The Cold-Start Model
44 TheRoll-Back Model.
4.5 The Infinite-Processor Model
46 Conclusions e e e e
Extensions of the Virtual-Time Data-Parallel Machine
5.1 Imtroduction. v i i i e e
5.2 Execution Time Distribution

iv

5.3 The Number of Remote Operands 85

5.4 Location of Remote Operands 88
5.0 Data Dependency Distance 89
5.6 The Probability of No-Operation 91
5.7 The Two-Phase Write Algorithm 96
98 Load Balancing,, 99
5.9 Global Virtual-Time Algorithm, 101
5.10 Interconnection Networks 102
5.11 Conclusions, 103
6 Conclusions and Future Research 104
6.1 Architecture Simulator, 105
6.2 Prototype 107
6.3 Programming Environment 108
64 Final Remarks 109
References. 110

1.1
1.2
1.3
1.4
1.5
1.6
1.7

1.8

21
2.2
2.3

24

2.5
2.6

2.7

3.1
3.2
3.3

3.4

4.1

42
43
4.4
45
46

4.7
4.8

LIST OF FIGURES

The Architecture of the Connection Machine.
Concepts of Virtual Time — No False Alarms.
The Task Graph Representation of Data Dependencies.
‘The Task Graph of Asynchronous Execution of SIMD Programs.
Speed-Up and Efficiency of Synchronous Execution.
Speed-Up and Efficiency of Asynchronous Execution.

Efficiencies of the SIMD Machines — Asynchronous vs. Syn-
chronous.

A Snapshot of a Task Graph in Execution..
Another Snapshot of the Task Graph.

%be Distribution of Processors in Both Real-Time and Virtual-
ime. . . e e

The Distribution of Processors in Relative Virtual-Time in Steady
State (Simulation). L .,

The Number of Processors at GVT.

The State-Transition-Rate Diagram of the Number of Processors
at GVT. . . . e

Examples for the Incremental Backup Algorithm.
The Hardware Support for Incremental Backup.

The State-Transition-Rate Diagram of Relative Virtual-Time for
the Decoupled Model.

Maximum Efficiency Loss Due to the Limited Size of Memory
History. o e

The State-Transition-Rate Diagram of Relative Virtual-Time for
the Non-Persistent Model.

The Distribution of Processors (Non-Persistent Model).

The Distribution of Processors (Simulation vs. Non-Persistent

Model for N=1024).
The Expected Number of Processors at GVT in Cold-Start. . . .
The State Transition in Virtual-Time for the Cold-Start Model. .

The State-Transition-Rate Diagram of Relative Virtual-Time for
the Roll-Back Model.

The Distribution of Processors(Roll-Back Model with K = 24).
The Distribution of Processors (Roll-Back Model with K = 16).

vi

6

4.9 The State-Transition in Relative Virtual-Time for the Infinite-
Processor Model.

4.10 Efficiency of the System for the Infinite-Processor Model. .
4.11 Summary of the Performance Analysis of the Progress Rate. . . .

5.1 The Family of r-Stage Erlangian Distributions.

5.2 Efficiencies of the SIMD Machines for the Generalized Execution
Time — Asynchronous vs. Synchronous.

5.3 The Efficiency Gain for the Generalized Execution Time — Asyn-
chronous over Synchronous.

84

86

5.4 Efficiency of the Machine for Various Numbers of Ancestors (N=1024).

87

5.5 The Efficiency Gain for Few Ancestors over Infinitely-Many An-
cestors (N=1024).

5.6 The Efficiency of the VT-DP Machine for Various Access Pat-
terns of the Remote Operand.

5.7 Data Dependency Distance of Remote Operands.

5.8 Efficiencies of the SIMD Machines for Various Data Dependency
Distances — Asynchronous vs. Synchronous.

5.9 The Efficiency Gain for Various Data Dependency Distances —
Asynchronous over Synchronous.

92

5.10 Implementation of Conditional Instructions in SIMD Architectures. 94

5.11 Efficiencies of the SIMD Machines in Handling the No-Operations
— Asynchronous vs. Synchronous.

5.12 The Efficiency Gain in Handling the No-Operations — Asyn-
chronous over Synchronous.

5.13 The Tree-Reduction Operation.

5.14 Efficiency Gain vs. Data-Dependency Distance and Probability
of No-Operation (N=1024).

5.15 Load Balancing for a Sequence of Tree-Reduction Operations. . .

6.1 The Execution Time of a Program When the Number of Proces-
sors Scales-Up with the Problem Size.

vii

97
100

ACKNOWLEDGMENTS

Many people played a part in this dissertation. I would like to express my

appreciation to all of them.

First and foremost is Professor Leonard Kleinrock. His immeasurable en-
couragement and knowledgeable guidance have been of tremendous value both
academically and personally. His overwhelming charm makes him the ultimate

model for me to follow. It is really a pleasure to be his advisee.

Many thanks to Jack Carlyle, Milos Ercegovac, Christopher Anderson, and
Kirby Baker for serving on my committee. Their patience and suggestions have
been indispensable to the completion of this dissertation. I also own my thanks
to David Jefferson, Rajive Bagrodia, and Eliezer Gafni for their lectures, which

provided the background and sparked the key ideas in my research.

This research has been supported by the Advanced Research Projects Agency
of the Department of Defense under contract MDA 903-87-C0663, Parallel Sys-
tems Laboratory. The PSL is a wonderful place to do research. I offer my
sincere thanks to former classmates Willard Korfhage, Farid Mehovic, Joy Lin,
and current classmates Chris Ferguson, Bob Felderman, Simon Horng, and
Jonathan Lu for making the environment stimulating and productive. To Bob
especially, I owe a great deal. He is always there to help me. Special thanks to
Lily Chien for handling everything in this research group.

To Waishan Wu, I dedicate this dissertation. Her love and understanding
made the past four years of my life happy and productive. Finally, I want to

thank my parents for providing me the best environment to pursue my dream.

viii

VITA

1962 Born, Taipei, Taiwan, Republic of China
1985 B. 8., Electrical Engineering
National Taiwan University
1985-1986 Research Assistant under the Wisconsin Alumni Research
Foundation, University of Wisconsin, Madison
1986 M. 8., Electrical Engineering
University of Wisconsin, Madison
1987 M. S., Computer Science
University of Wisconsin, Madison
1988-1991 Graduate Student Researcher under the Parallel Systems Lab-

oratory contract, University of California, Los Angeles

PUBLICATIONS

Shioupyn Shen, “Dispersive Pulse Propagation in a Multiple-Resonance Medium”,
Master Thesis, University of Wisconsin, Madison, December 1986.

Kurt E. Oughstun and Shioupyn Shen, “Velocity of Energy Transport for a
Time-Harmonic Field in a Multiple-Resonance Lorentz Medium”, Journal of
the Optical Society of America B, vol. 5, no. 11, pp. 2395-2398, November
1988.

Shioupyn Shen and Kurt E. Oughstun, “Dispersive Pulse Propagation in a
Double-Resonance Lorentz Medium”, Journal of the Optical Society of America
B, vol. 6, no. 5, pp. 948-963, May 1989.

ABSTRACT OF THE DISSERTATION

The Virtual-Time
Data-Parallel Machine

by

Shioupyn Shen
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1991
Professor Leonard Kleinrock, Chair

We propose the “Virtual-Time Data-Parallel Machine” to execute SIMD (Single

Instruction Multiple Data) programs asynchronously.

First, we illustrate how asynchronous execution is more efficient than syn-
chronous execution. The inefliciency of synchronous execution of SIMD pro-
grams comes from unnecessary blocking. Processors that finish the current in-
struction early are blocked until all processors finish executing this instruction,
even though the operands they need in order to execute the next instruction
may be available. The Virtual-Time Data-Parallel Machine lets a processor
execute the next instruction as soon as its operands are ready. We show, for
a simple model, that asynchronous execution outperforms synchronous execu-
tion roughly by a factor of (In N), where N is the number of processors in the

system.

Second, we explore how to execute SIMD programs asynchronously without
violating the SIMD semantics. The new problem introduced by asynchronous
execution is that processors are not allowed to overwrite their variables because
the previous values may be needed by other processors. “No overwrite” can be

solved by keeping a memory history that stores the previous values of variables

in every processor. For the memory history, we design cost-effective hardware
support which implements incremental backup for the main memory so that

previous values can be retrieved on demand.

Third, we analyze the performance of this Virtual-Time Data-Parallel Ma-
chine under some simple assumptions. The performance measure is the average
progress rate (r) of instruction execution. Several models are developed to give
an upper bound, a lower bound, and an approximation to r, and as well as the

limiting value of r for a large number of processors.

Fourth, we generalize these simple assumptions and then evaluate the per-
formance by simulation. We also address some directions to further improve the
efficiency of asynchronous execution. In all these cases we find, as in the sim-
ple model, that asynchronous execution is superior to synchronous execution.
In summary, the Virtual-Time Data-Parallel Machine effectively converts the
SIMD computation from (synchronous) control-low to (asynchronous) data-

flow.

Finally, an architecture simulator and an assembler are developed. Statistics
of running a real program on the simulator are collected which support the argu-
ment that for computation intensive data-parallel programs, the Virtual-Time

Data-Parallel Machine can achieve LINEAR SPEED-UP for a large number of

Processors.

CHAPTER 1

Introduction

1.1 High Performance Computers

Human beings will always find ways to utilize more and more computing power.
More computing power is mandatory to solve more complicated problems with
better accuracy, to simulate more complex systems with better confidence, to
move background computations to real-time interactive computing and most
importantly, to open the door to the previously unsolvable. High performance
computers have become the vital enabling force in many areas of science and en-
gineering research, for example, in climate modeling, fluid turbulence, quantum
chromodynamics, VLSI design, superconductor modeling, structure biology, vi-
sion and cognition. The future of these fields is highly correlated to the progress
of high performance computers. The absolute processing power of high perfor-
mance computers is of such strategic value that the cost-effectiveness of high

performance computers is not merely judged in terms of $/MIPS,

For the past twenty years, solid state technology has been much more suc-
cessful in reducing the cost of VLSI chips than in increasing the peak speed
of ECL circuits. Ewven though the priceless strategic value of high perfor-
mance computers still exists, it does not pertain to supercomputers any longer.

Twenty years ago, when the microprocessor first came out, supercomputers

were about one thousand times faster and ten thousand times more expen-
sive than microprocessor-based personal computers. Now, supercomputers are
only ten times faster but still one thousand times more expensive than RISC
microprocessor-based workstations!. The strategic value of classic supercom-
puters is fading away slowly but definitely. The rising star for next generation
supercomputing is parallel processing. The key to high performance is the high

degree of parallelism instead of the high speed of a single processor.

1.2 The Parallel Processing Challenge

Parallel processing is by no means a new concept. It is simply not yet in the

main stream of the computer industry.

During the 1960s, architecture design was already pretty mature. Machines
such as the CDC 6600 [Tho61], the IBM 360/91 [Tom67] and the CRAY-1
[Rus78] were so beautifully designed that their achievements overshadowed the
research in computer architectures for the next twenty years. The research
emphasis in the 1970s and early 80s was in some sense to find the optimal subset
of the supercomputer approaches that was best fitted to the VLSI technology
at that time. As VLSI technology advances, more and more transistors can be
put into a single chip and new architectures are invented to utilize these extra
transistors. Many “new” architectures were derived from re-discovering the old
ideas of the early 1960s. Technological advancements have made approaches
which were expensive and peculiar in the past affordable and popular now.

Those who knew how to take advantage of the new technology the best took

1The latest RISC workstation from HP is rated at over 70 mips for under ten thousand
dollars.

the easy ride of the new technology on old architectures in developing faster
and fancier uniprocessor systems. On the other hand, research on new parallel
architectures was stunted because pioneering research was not making much

money for its sponsors.

The parallel processing challenge in the past was how to compete with the
easy ride on established architectures. Parallel processing lost the war as ev-
eryone predicted. In fact, parallel processing is destined to failure as long as
the easy ride continues. This will not end for a while because current state-of-
the-art VLSI microprocessors haven’t yet caught up with the complexity of the
supercomputers of the 1960s2. When we can implement a classic supercomputer
on a single VLSI chip, the easy ride will be over because choosing the optimal

subset is no longer interesting if we can have the whole thing.

As the chip density keeps on increasing, soon there will be more transistors in
a single chip than uniprocessor architectures can use effectively. What should be
done next? Anyone who wants to take the lead in high performance computing
in the future has to prepare a solution and pursue it when the time is right.
Everybody knows that parallel processing is fhe right direction in which to
go because it is a direct way to make use of a large number of transistors.
However, as mentioned at the beginning of this section, parallel processing is
by no means a new idea. The problems of parallel processing in the past will
still be problems in the future. Even though the major competitor Aof parallel
processing, i.e., the use of modern VLSI technologies on ancient uniprocessor
architectures, is weakening, parallel processing is not yet strong enough in itself.

Parallel processing did not attract sufficient attention when other approaches

®There are approximately one million transistors in the Intel 80486 but there were two
million transistors in the CRAY-1.

were more profitable. As it is now becoming clear that parallel processing
is inevitable in the near future, we find that more federal funding is becoming
available, and that more computer scientists are devoting themselves to parallel
processing.

The challenge of parallel processing is how to express and utilize the par-
allelism effectively; that is, how to write parallel programs easily and how to
implement parallel hardware efficiently. These two problems prevailed in the
past and there were no satisfactory solutions. Recently, we have seen some
partial solutions. The Connection Machine [Hil85] and Virtual Time [Jef85] are
two of the most promising approaches. The Connection Machine provided a
simple and efficient way to develop parallel programs. Virtual Time provided
a transparent and effective way to improve hardware efficiency. They will be
described in detail in the next section. In short, for the grand challenge of
parallel processing, both the Connection Machine and Virtual Time are only
partial solutions, and their merits are complementary. We choose to use the
concept of Virtual Time to improve the efficiency of the Connection Machine,

and thus combine the merits of both of these partial solutions.

1.3 Related Work

The concepts of the Virtual-Time Data-Parallel Machine are mainly derived
from “The Connection Machine” [Hil85] and “Virtual Time” [Jef85]. In the
next two sub-sections, we give a brief description of the Connection Machine

and of Virtual Time.

1.3.1 The Connection Machine

Figure 1.1 shows the architecture of the Connection Machine. The characteris-

tics of the architecture of the Connection Machine are as follows:

SIMD: A front-end broadcasts the instruction stream to all processing ele-
ments. All processors execute the same instruction stream on their own

data.

Distributed Memory: Memory is distributed to the processing elements.
Every processor has its own local memory and can access remote memory

on the other processors through an interconnection network.

Massively Parallel: The number of processors is very large, and usually ap-
proaching the intrinsic parallelism of the problem being solved. The po-

tential speed-up of the machine is therefore very large.

Programmable Connections: The interconnection network is a hypercube
with embedded 2-D and 3-D grids. The logical interconnection can be
programmed dynamically to support the communication between arbi-
trarily selected processors such that the fixed physical wiring scheme is

invisible for the software.

The Connection Machine was proposed by Daniel Hillis as an alternative
to the von Neumann architecture {Hil85). In a large von Neumann computer,
almost all the transistors are in the memory section of the machine, and only a
few of those memory locations are accessed at any given time. A well designed
von Neumann computer keeps the silicon devoted to the processor pretty busy,

but the rest of the silicon devoted to the memory sits idle most of the time,

Front-End

4 N

[Pl‘ OCeSSOIj

l Memory]
o S/

Instruction Stream

PE,

Processor

Processor
Memory

Interconnection Network
(Mesh + Hypercube)

Figure 1.1: The Architecture of the Connection Machine.

which results in a vast wasted resource. The solution to this problem is to
break the boundary between the processor and memory by distributing pro-
cessing power closer to the memory so that the utilization of the silicon area is
more balanced. As a consequence, the Connection Machine consists of a large
number of tiny processor—-memory pairs?®; its architecture is thus named “Mas-
sively Parallel”, reflecting the characteristic of having a very large number of
processors. Compared to a von Neumann computer with the same number of
transistors, the Connection Machine spends more transistors on the processor
so that it has greater raw aggregate computing power. Moreover, the memory-
processor bandwidth of the Connection Machine is also larger because many
memory locations can be accessed concurrently by the large number of pro-
cessors. Another important issue of this parallel architecture is the choice of
SIMD (single instruction multiple data) vs. MIMD (multiple instruction mul-
tiple data). The Connection Machine chose SIMD based on the argument that
for well-structured problems with regular patterns of control, SIMD machines
have the edge, because more of the hardware is devoted to operations on data
instead of control. The Connection Machine’s interconnection network in fact
has two distinct parts. The general-purpose network is a hypercube, which is
used for communications among arbitrarily selected processors. The hypercube
topology is chosen to maintain a low maximum distance between processors
with a reasonable cost. The special-purpose network is a mesh network, which
is embedded in the hypercube!. The mesh network is especially designed for

those applications that mainly fetch data from immediate neighbors.

3For example, the CM-2 has 64K tiny bit-serial processors.
4The links of a mesh network are a subset of that of a hypercube.

SIMD machines have been available for more than twenty years, but none
has been as successful as the Connection Machine. One of the most significant
pioneering works on SIMD architectures was the ILLIAC IV [Bar68] [Kuc68]
[Bou72] developed at the University of Illinois. Two comparable approaches
to the Connection Machine are the Distributed Array Processor (DAP) [Fla77]
[Par90] developed by Active Memory Technology and the Massively Parallel
Processor (MPP) [Bat80] [Pot85] developed by Goodyear Aerospace Corpora-
tion. A competitor of the Connection Machine is the MasPar MP series®, but
MasPar only competes on the basis of price instead of on pioneering research.
Refer to {Mar91] for more up-to-date research in massively parallel computing,
and [Kuc77] [Hay82] [Hor90] for general surveys of highly parallel architectures

and SIMD supercomputers.

The data-parallel computational model [Chr83] [Baw84] [Hil86] [Ble90] of
the Connection Machine distinguishes the Connection Machine from other SIMD
machines, and accounts for its big success. The revolutionary data-parallel
computational model makes good use of as many processors as the intrinsic
parallelism of the problem being solved. For well-structured large problems,
the intrinsic parallelism is usually on the order of ten thousand to one million,
or even more. A Connection Machine with tens of thousands of processors has
no difficulty utilizing them in such well-structured large problem. This is in
contrast to other kinds of parallel machines, which have a hard time dealing

with as few as one hundred processors.

Let us now give some examples of data-parallel programming. In all of these

examples, elements of big arrays are distributed among the processor-memory

5MasPar Computer Corporation, 743 N. Mary Avenue, Sunnyvale, CA 94086.

cells, e.g., the i-th element of an array is stored on the i-th processor-memory

cell.

Example a)

for all i, x[i] = y[i] + z[i];

Every processor fetches operands from its local memory and stores the
result of the operation in its local memory. The whole operation is exe-
cuted inside each processor-memory cell. Since there is no data exchange
through the interconnection network, the execution time of this instruc-
tion is quite deterministic. Suppose there are N processor-memory cells,
there are N computations and up to 2N memory references executed
in parallel. The aggregate throughput and memory bandwidth of the
Connection Machine is much larger than traditional von Neumann super-

computers with the same number of transistors.

Example b)

for all i, x[i] = y[i-1] + z([i+1];

Every processor needs one operand each from its left and right neigh-
bors. The requested data goes through the special mesh interconnection
network, and the execution time of this instruction is somewhat non-
deterministic. There are on the order of N operations executed concur-

rently.

Example ¢)

for all i, x[i] = y[z[il];

Every processor needs one remote operand, and the location of the remote
operand is random. The requested data goes through the general hyper-
cube interconnection network, and the execution time of this instruction

is rather random. Nevertheless, there is still a large amount of parallelism.
Example d)
for all i, if (is_even(i)) x[i] = x[i] + x[i+1];

Processors execute the instruction conditionally. Only the processors sat-
isfying the condition execute the instruction. If few processors meet the

condition, then the utilization of the system can be dreadfully low.

There are other paradigms for data-parallel programming. The purpose of
these examples is to illustrate the flavor instead of the details of the data-parallel

computational model.

Data-parallelism makes it worthwhile to go through the trouble of parallel
programming. A speed-up of tens of thousands is very appealing. Currently,
data-parallelism is probably the only feasible approach for teraflop machines
by the end of the decade. In addition, data-parallelism is extremely easy to
program. The SIMD semantics of the data-parallel computational model make
it simple and effective to develop massively parallel programs. The SIMD ma-
chine eliminates the problem of explicit synchronization, and alleviates the cost

of global synchronization as well.

This section has given a concise introduction to the massively parallel ar-
chitecture and data-parallel programming of the Connection Machine. More

information about the Connection Machine can be obtained from Thinking

10

Machines Corporation®.

1.3.2 Virtual Time

The concept of Virtual Time [Jef85] originates from research in parallel discrete
event simulation. Correct implementations of discrete event simulation must
satisfy the causality constraint. The causality constraint says that if event A
has an earlier simulation time than event B, then event A must be executed
before event B because the execution of event A may change the environment
of event B. A direct implementation of discrete event simulation is to sort all
outstanding events in the order of increasing simulation time and execute them
in sequence. There are many approaches to parallelize discrete event simulation.
For simulating continuous-time systems, time-stepped simulation can be used
by simulating the system at fixed time intervals [Pea79]. However, this kind of

simulation is not typically “discrete” because the simulation time is continuous.

Conservative parallel discrete event simulations are based on the pioneering
works of K. Mani Chandy, Jayadev Misra and R. E. Bryant [Bry77] [Cha79]
[Cha81] [Mis86}, and numerous follow-up work which enhances the basic al-
gorithm [Bai88] [Fuj89a] [Gro88] [Gro89] [Lub89] [Nic84] [Nic88] [Su89]. Con-
servative methods concurrently execute those events whose environments will
definitely not change. It is difficult in general to make sure that the environ-
ment of an event will not change, even though we know that the environment
is very unlikely to change.

The optimistic approach takes advantage of “likelihood” instead of “cer-

tainty”. The Time Warp synchronization mechanism, based on the Virtual

8Thinking Machines Corporation, 245 First Street, Cambridge, Massachusetts 02142-1214

11

Time paradigm, is the most well-known optimistic protocol [Jef85]. Here, vir-
tual time is a synonym for simulation time. Optimistic methods concurrently
execute those events whose environments are very unlikely to be changed by
assuming that the environments will not change, and then undo the execution

for those (hopefully few) events for which the assumptions have been violated.

Figure 1.2 shows the key concept of Virtual Time. In the task graph, nodes
correspond to events and links correspond to causality constraints. In this
example, the environment of event X may depend on events A, B ,D, E and G
(i.e., the ancestors of event X). However, not all ancestors actually modify the
environment of event X. After all ancestors are finished, we find out that only
events B and D change the environment of event X. These ancestors are called
“relevant” ancestors and the rest of the ancestors (i.e., events A, E and G)
are called “irrelevant” ancestors. The execution of an event cannot proceed
until all its relevant ancestors are finished. In the conservative approach, the
execution of event X has to wait until ail the ancestors of event X are finished.
This constraint can be relaxed to the less strict condition that all the ancestors
of event X either are finished or give consent to event X that they will not
modify the environment of event X. The performance of this approach is not
satisfactory because of the extra waiting for the irrelevant ancestors either to
finish or to give consent. Waiting for an irrelevant ancestor (e.g., event X
waits for event A) is called a “false alarm” because the waiting turns out to
be unnecessary. The optimal approach is to wait for the relevant ancestors
only, but the optimal approach is not realizable because whether an ancestor is
relevant or not is often unknown in advance. The optimistic approach suggests

not to wait for any non-local ancestors’.

"In parallel discrete event simulation, events are distributed among processors. Local an-

12

Virtual Time

Events

Causality
Constraints

. relevant ancestor

@ irrelevant ancestor

O not an ancestor

(1) Conservative Approach:
Treat all ancestors as relevant ones.

(2) Optimistic Approach:

Treat all ancestors as irrelevant ones.

(1) (2)
False Alarm Vs,
Unnecessary Roll-Back

Blocking

Figure 1.2: Concepts of Virtual Time — No False Alarms.

13

The performance of this approach is good but the result of executing an
event without waiting for its relevant ancestors is wrong because the environ-
ment of the event is incorrect (i.e., not up-to-date). Not waiting for a relevant
ancestor (e.g., event X does not wait for event B) is called a “miss” because the
execution is incorrect. In order to get a correct result, a miss has to be handled
properly by roll-back. Since we cannot tolerate any miss, a miss, once it is

identified, must be rolled-back to the point before the execution of the miss.

State-saving is necessary for roll-back to be possible. The major overhead of
roll-back is on the periodic state-saving rather than the roll-back itself. When
roll-back actually happens, it does not take much time for the context switch
in order to restore the previous state. What is lost during a roll-back is the
(false) gain in progress of the optimistic approach. Indeed, after the roll-back,
the processor state is equivalent to having been blocked there in the first place.
Thus, rolling-back does not cause additional performance loss because other-
wise (i.e., for the conservative approach), the processor would have been blocked
and the performance would have been lost anyway. The performance loss of a
roll-back refers to the loss of the performance gain, ie., what is gained from
the optimistic approach is lost. The cost (i.e., the overhead and performance
loss) of rolling-back one miss is usually larger than the time wasted in waiting
for one false alarm. However, in many applications, there are usually few rel-
evant events {candidates for miss} but many irrelevant events (candidates for
false alarm). The optimistic approach is preferred when the cost of roll-back
is relatively low and the number of relevant events is relatively small. Refer
to [Fuj90] and [Mad91] for more up-to-date research in paralle] discrete event

simulation.

cestors are the ancestors which happens to be on the same processor.

14

The implementation details of the Time Warp synchronization mechanism
are not discussed here. Instead, a high level abstraction of Virtual Time is
presented in this section. The strategy of Virtual Time is that by saving the
current state, processors are always free to go ahead instead of being blocked
frequently. In general, if a processor is blocked for some reason that can be
solved by state-saving, then it may be worthwhile to spend some extra memory

space on state-saving in exchange for the unblocking of the processor.

1.4 The Virtual-Time Data-Parallel Machine

The difficulties of parallel processing are two-fold. The first problem is that
the computational model is hard to use (i.e., it is hard to develop programs on
parallel processing systems, and to port programs from one system to another),
and the second problem is that the hardware efficiency is poor for a large
number of processors. We propose the “Virtual-Time Data-Parallel Machine”
to solve these two problems at once. The Virtual-Time Data-Parallel Machine
is derived from the pioneering works of Daniel Hillis (The Connection Machine),

and David Jefferson (Virtual Time).

The Connection Machine introduced the data-parallel computational model.
The SIMD semantics of the data-parallel computational model make it easy® to
develop parallel programs and make it capable of expressing fine-grain paral-
lelism. Though the Connection Machine achieves significant speed-up for large
numbers of processors, hardware efficiency is poor because of the synchronous

execution, Virtual Time introduced the Time Warp synchronization mecha-

8Parallel programming is hard in general. However, my own experience, and that of others,
has shown that data-parallel computational model is much easier than other approaches.

15

nism for parallel discrete event simulation. The optimistic approach of Time
Warp synchronization mechanism eliminates unnecessary blocking, and there-
fore makes better use of the hardware. However, it is hard to generalize Virtual
Time to other parallel processing applications. Thus, we propose to use Time
Warp to execute data-parallel programs asynchronously in hopes of exploiting

more parallelism and obtaining better efficiency.

The inefficiency of synchronous execution of SIMD programs comes from
unnecessary blocking. Processors that finish the current instruction early are
blocked until all processors (i.e., the last one) finish this instruction, even though
the operands they need to execute the next instruction may be available. The
Virtual-Time Data-Parallel Machine lets a processor execute the next instruc-

tion as soon as the operands it needs are ready.

The key to the operation is to store a history of the values of each variable at
every point in time during the execution of the program. Then, every (address,
virtual-time) pair effectively represents a write-once variable. The (address,
virtual-time)-pairs of the operands of an instruction specify the essential data
dependencies of this instruction. The execution of the next instruction can
proceed independently of the executions of the current instructions on the other
processors as long as its own data dependencies are satisfied. This effectively
converts the computation from control-flow to data-flow. Data-flow execution

is favorable because it is less sensitive to long and unpredictable network delays.

The contribution of the Virtual-Time Data-Parallel Machine is to combine
of the merits of the Connection Machine and Virtual Time. The main idea is
the adoption of the Time Warp synchronization mechanism to execute SIMD

programs asynchronously. This improves the efficiency of the data-parallel ma-

16

chine, and at the same time, preserves its SIMD semantics.

1.5 Asynchronous SIMD

In this section, we illustrate how asynchronous execution of SIMD programs is

more efficient than synchronous execution of SIMD programs.

Figure 1.3 is an example task graph of a SIMD program. The nodes corre-
spond to tasks (i.e., instructions) and the links correspond to data dependencies.
The rows of tasks represent the fact that instructions are executed on all pro-
cessors in parallel. The columns of tasks and the vertical links represent the
fact that a processor must execute instructions in sequence. In this example,
there are four processors and each processor has three instructions to execute.
Note that each task takes one remote operand and, therefore, the number of
ancestors of each task is two. Figure 1.3.a shows the pure data dependencies of

the program, and ignores any artifacts due to the execution model.

When synchronous execution is enforced, it is equivalent to adding more
links to the task graph so that every task depends on all the tasks one row
above it. Figure 1.3.b shows the data dependencies of the program in the syn-
chronous execution model. Originally (Fig. 1.3.a), every task had two ancestors,
which means every instruction must wait for two processors. For synchronous
execution (Fig. 1.3.b}, every task has four ancestors, where four is the number
of processors in the system. That means every instruction must wait for all the

processors in the system to finish the previous instruction.

We know that adding links to the task graph degrades the performance of

the system, and removing links from the task graph improves the performance

17

Processor
0 1 2 3
0

Instruction

()
<

a) Data Dependency of the Program

2

b) Data Dependency of Synchronous Execution

Figure 1.3: The Task Graph Representation of Data Dependencies.

18

of the system. The goal of the Virtual-Time Data-Parallel Machine is to pro-
mote asynchronous execution of SIMD programs by removing the extra links
associated with synchronous execution and, at the same time, to preserve the
original data dependencies of the program. In summary, the synchronous exe-
cution of SIMD programs changes the task graph from Fig. 1.3.a to Fig. 1.3.b by
adding redundant links to enforce synchronous execution, and the asynchronous
execution of SIMD programs changes the task graph from Fig. 1.3.b back to
Fig. 1.3.a by removing those redundant links.

Figure 1.4 is a snapshot of an SIMD task graph during asynchronous exe-
cution of the program. Let us define some terminology. Virtual-time (vt) is
defined to be the sequence number of the instruction stream. The virtual-time
of a processor executing the i-th instruction is . For example, in Fig. 1.4, pro-
cessor 0 is at vt 0, processor 1 and 3 are at vt 1, and processor 2 is at vt 2.
For each processor, all the instructions prior to the current instruction are fin-
ished. We say that these tasks are in the finished state. All the instructions
after the current instruction are unreached, and we say that those tasks are in
the unreached state. The current tasks in execution can be either running or
blocked. If all the ancestors of a current task are in the finished state, then the
task is in the running state because all the operands needed by the instruction
are avatlable. If one or more ancestors is not in the finished state, then the task
is in the blocked state because some operands needed by the instruction are still
unavailable.

Let T be the execution time of a data-parallel program with N physical

processors, and let T} be the execution time of the same program with only one

T
physical processor. The speed-up of a system with N processors is T—l, which
N

19

Processor

Instruction
(Virtual-Time)

. Finished
O Unreached
@ Running
(All ancestors are in the Finished state)
Blocked

(At least one ancestor is not in the Finished state)

Speed-Up = E[Number of Running Processors]

Speed-Up
Total Number of Proccessors

Efficiency =

Figure 1.4: The Task Graph of Asynchronous Execution of SIMD Programs.

20

is equal to the expected number of processors in the running state, i.e.,

T;
Speed-Up 2 -T,l— = E[Number of Running Processors] (1.1)
N

The efficiency of the system is defined to be the probability that a processor is

in the running state, i.e.,

Efficiency £ Prob[a processor is running]

E[Number of Running Processors]
Total Number of Processors
Speed-Up
N

(1.2)

From Eq. (1.2), efficiency can be interpreted as the normalized speed-up. Let
the base execution time of instructions be the average time to finish an in-
struction given all of its operands are available. The average execution time of
instructions during the execution of the program will be larger than the base
execution time because of the extra waiting time for unavailable operands. The
progress rate (r) is defined to be the normalized rate of finishing instructions,
i.e., the average number of instructions finished per processor per base execution

time, i.e.,

4 1/Expected Execution Time

1.3
1/Base Execution Time (1-3)

Furthermore, we know that

(Expected Execution Time) * (Prob[Running]) = (Base Execution Time)
(1.4)
From Eq. 1.2 and 1.4, the progress rate is equivalent to the efficiency of the
system, i.e., |

Progress Rate = Efficiency (1.5)

21

We now can conduct some preliminary analyses and compare the perfor-

mance of asynchronous vs. synchronous execution.

1.5.1 Assumptions

The SIMD machine consists of N homogeneous processors, i.e., every processor
has the same processing power and executes the same instruction stream such
that the behavior of every processor is statistically equivalent. The following
are the assumptions we make throughout the dissertation in order to analyze

the performance of both asynchronous and synchronous execution.

1. The execution time of instructions is exponentially distributed. Without

loss of generality, let the mean execution time be 1.

2. The number of remote operands for each instruction is one, exactly. Every

instruction always needs one remote operand.

3. The location of remote operands is uniformly distributed among the pro-

cessors. Every processor is equally likely to hold the remote operand.

How realistic are these assumptions? They are not realistic at all. As for the
first assumption, we discern that in reality, the execution time of instructions is
more deterministic than memoryless. The result of more deterministic execution
time is better performance for both asynchronous and synchronous execution,
but synchronous execution benefits more, and hence the performance improve-
ment of asynchronous over synchronous execution is less. Refer to Sec. 5.2 for
more detail. As for the second assumption, the number of remote operands of

an assembly instruction ranges from 0 to 2 in general. In reality, the average

22

number of remote operands is less than one; often instructions only need lo-
cal variables. We observe the fact that the relation between the register and
memory is analogous to that between the local and remote operand. The reg-
ister (local operand) reference is faster and more frequent than the memory
(remote operand) reference, and the number of bits to address a register (local
operand) is fewer than that to address a memory location (remote operand).
Therefore, we can take the RISC® approach which uses explicit load/store in-
structions for remote access (one operand per instruction). For those instruc-
tions which load/store remote operands explicitly, there is one remote access;
for those instructions which deal with only local operands, there is no remote
access. From the RISC experience, confining each instruction to one or zero re-
mote access hardly degrades the performance. The explicit load/store approach
takes slightly more instructions, but this increase may be compensated for by a
more uniform instruction length. For a given execution time distribution, asyn-
chronous execution achieves better performance when there are fewer remote
operands, but it makes no difference for synchronous execution. However, fewer
remote references make the execution time more deterministic, which in turn
benefits synchronous execution, too. Refer to Sec. 5.3 for more detail. As for
the third assumption, the location of remote operands usually follows certain
fixed patterns instead of uniformly distributed among processors. When an in-
struction on a particular processor takes a long time to finish, the tasks which
are blocked directly or indirectly by this instruction form a data-dependency
tree which is rooted at this instruction. The pattern of the remote access deter-

mines how seriously processors are affected by the long execution time of this

SRISC architectures have explicit load/store instructions to move data between the register
file and the main memory (one word per instruction).

23

instruction. Fixed patterns usually reduce the effective branching factor of the
data dependency trecs, which is equivalent to reducing the expected number of

rernote operands. Refer to Sec. 5.4 for more detail.

In summary, these assumptions are by no means realistic, but they are sim-
ple enough to develop some insight on how asynchronous execution outperforms
synchronous execution. Moreover, these assumptions are generally more pes-
simistic than reality. The performance of asynchronous execution based on the
above assumptions is expected to be a lower bound on the actual performance,
but the same argument does not apply to the performance gain of asynchronous

over synchronous execution.

1.5.2 Performance Measures

Based on the assumptions in the previous section, we can calculate the per-
formance of asynchronous and synchronous execution of SIMD programs. Fig-
ure 1.5 shows the speed-up and efficiency of the synchronous execution of SIMD
programs from analysis [Fel90]. The efficiency of synchronous execution drops
as the number of processors increases. The gap between its speed-up and the
ideal linear speed-up also widens as the number of processors increases. It is
not the same for asynchronous execution. Figure 1.6 shows the speed-up and
efficiency of the asynchronous execution of SIMD programs from simulation.
The efficiency, as well as the gap between its speed-up and the ideal speed-
up, remains constant as the number of processors increases. It is obvious that

asynchronous execution outperforms synchronous execution.

From Eq. (1.2), we get

Speed-Up = (Total Number of Processors) * Efficiency (1.6)

24

Efficiency Speed-Up
10 9 —0— Efficiency (analysis) ”, 10 £
—®— Speed-Up (analysis) , -~
,
0.8 1 10
0.6 10°
0.4 103
0.2 1 Efficlency drops 10'
0.0 i § o i J iy | hd i | il 3 10 .
10°* 10° 10° 10° 10* 10°

Number of Processors

Figure 1.5: Speed-Up and Efficiency of Synchronous Execution.

Efficiency Speed-Up
1.0 —0O— Efficlency (simulation) ~110 *
—®— Speed-Up (simulation)
10 ¢
08 - Ideal Speed-Up
10 °
0.6 1
p10°
0.4 -
Efficlency remains constant r10
0.2 r . r r 10*
10° 10° 10° 10° 10¢ 10°

Number of Processors

Figure 1.6: Speed-Up and Efficiency of Asynchronous Execution.

25

When the number of processors is fixed, speed-up is proportional to efficiency.
Therefore, we will only discuss efficiency for the rest of the dissertation and we

can always calculate the speed-up from Eq. (1.6).

Now we compare the efficiency of asynchronous vs. synchronous execution.
Figure 1.7 puts together the efficiency curves of Fig. 1.5 and Fig. 1.6. The
efficiency difference between asynchronous and synchronous execution increases
as the number of processors increases. The efficiency gain of asynchronous over
synchronous execution is defined to be the ratio of the efficiency of asynchronous

execution and that of synchronous execution.

Efficiency Gain 2 Efﬁcifancy of Asynchronous Execuffion (1.7)
Efficiency of Synchronous Execution

From Fig. 1.8, we find that the efficiency gain increases as the number of pro-
cessors increases. Furthermore, Fig. 1.8 shows that the efficiency gain is in

proportion to the logarithm of the number of processors.

1.6 Summary

This dissertation provides detailed information about the Virtual-Time Data-
Paralle]l Machine. In Chapter 1 we have given a short introduction to the
Virtual-Time Data-Parallel Machine and related work. We have illustrated
‘how asynchronous execution is more efficient than synchronous execution. We
have also shown, for a simple model, that asynchronous execution outperforms
synchronous execution roughly by a factor of (log N), where N is the number
of processors.

In Chapter 2 we give an in-depth discussion of the features of asynchronous

execution of SIMD programs. We introduce GVT (global virtual-time), rvt

26

Y — e E g — ———— 8
==~ Ideal

1.0

0.8 -
Efficiency
0.6
0.4 1
“—®— Asynchronous (simulation)
0.2 1
00 —0— Synchronous (analysis)
“10° 10 10 10° 10* 10°

Number of Processors

Figure 1.7: Efficiencies of the SIMD Machines - Asynchronous vs. Synchronous.

Efficiency
Gain

10* 10} 10? 10° 10* 10°
Number of Processors

Figure 1.8: The Efficiency Gain — Asynchronous over Synchronous.

27

(relative virtual-time), and the processor histogram (the distribution of the
number of processors at virtual-time relative to GVT). We illustrate how GVT
governs the progress rate (r) of instruction execution. We also derive a simple
approximation for the progress rate as a function of the expected number of

processors at GVT.

In Chapter 3 we explore how to execute SIMD programs asynchronously
without violating SIMD semantics. The new problem introduced by asyn-
chronous execution is that a processor is not allowed to overwrite its variables
because the previous values may be needed later by the other processors. “No
overwrite” can be solved by keeping a memory history that stores the previous
values of the variables in every processor. A small memory history is sufficient
because the old values in the memory history are purged once it is no longer
possible to reference them. The algorithm for maintaining memory history is in-
cremental backup, which is a space-efficient algorithm. For the memory history,
we design cost-effective hardware support, which is a FIFO (First-In-First-Out)
priority cache. This FIFO priority cache implements the incremental backup
algorithm for the memory history so that pre.vious values can be retrieved on

demand.

In Chapter 4 we develop several models to analyze the performance of the
Virtual-Time Data-Parallel Machine. The performance measure is the progress
rate (r) of instruction execution. The “non-persistent” model giveé an upper
bound on r, the “cold-start” model gives a lower bound on r, the “roll-back”
model gives an approximation to r, and the “infinite-processor” model gives the

limiting value of r for a large number of processors.

In Chapter 5 we address some extensions of the Virtual-Time Data-Parallel

28

Machine. This allows us to generalize the basic assumptions which we make
throughout the dissertation. Performance evaluations based on the generalized
assumptions are obtained from simulation. Other directions to further improve
the performance of the machine are also discussed. With the extension, the
Virtual-Time Data-Parallel Machine effectively converts the SIMD computation
from control-flow to data-flow. Data-flow execution is favorable because it is

less sensitive to long and unpredictable network delays.

In Chapter 6 we give a concise conclusion and examine some directions for
future work in extending our understanding and verifying the usefulness of the
Virtual-Time Data-Parallel Machine. The concept of asynchronous execution
of SIMD programs is still in its infancy. This dissertation only examines the

tip of the iceberg,.

29

CHAPTER 2

Characteristics of Asynchronous SIMD

2.1 Introduction

The most important characteristic of the “Virtual-Time Data-Parallel Machine”
is the asynchronous execution of SIMD programs. The Virtual-Time Data-
Parallel Machine looks to the user exactly like a SIMD machine, and thus has
its ease of programming. However, it executes the instructions asynchronously,
and thus has the benefits of the faster execution of a MIMD machine, all at a cost
comparable to a SIMD machine. Therefore, the “Asynchronous SIMD Machine”
may be a more appropriate name. The purpose of this chapter is to let the
reader become familiar with the asynchronous SIMD approach, and understand
the interesting run-time behavior of the Asynchronous SIMD Machine. First,
we introduce the terminology, and then we derive some fundamental equations

that are widely used in the rest of the dissertation.

2.2 Distribution of Processors in Virtual-Time

In this section, we define global virtual-time (GVT), relative virtual-time (rvt),
the (time-dependent) histogram of virtual-time, and the (time-independent)
dispersion of relative virtual-time (the function which describes how processors

spread out in relative virtual-time).

30

Figure 2.1 is a snapshot of a SIMD task graph in execution. There are four
processors in the system, and each processor has the same stream of instruc-
tions to execute. Recall from Sec. 1.5 that the virtual-time of a processor is
the sequence number of the instruction in execution. Processor 0 is at vt 2,
processor 1 and 3 are both at vt 3, and processor 2 is at vt 4. Note that the
current instruction may be running or blocked. The global virtual-time (GVT)

of the system is defined to be the minimum virtual-time of all processors, i.e.,
Global Virtual-Time (GVT) & min {virtual-time} (2.1)
proc.

In this example, the GVT is 2. The relative virtual-time (rvt) of an instruction

is defined to be the difference between its virtual-time and the GVT, i.e.,
Relative Virtual-Time (rvt) £ virtual-time — GVT (2.2)

At this snapshot, the rvt of instruction 2 is 0, and the rvt of instruction 3 is 1,
etc. The rvt of a processor refers to the rvt of the current instruction in exe-
cution. The histogram of processors at a snapshot is defined to be the function
whose abscissa is the virtual-time and ordinate is the number of processors at

that virtual-time, i.e.,
histogram(3) £ Number of Processors at vt = i (2.3)

In other words, the histogram is the frequency count of the virtual-times of the
processors. In Fig. 2.1, there is one processor at vt 2, two processors at vt 3,

and one processor at vt 4. Therefore, we have

histogram(2] = 1
histogram[3] = 2

histogram[4] = 1

31

Processor

Instruction
(virtual-time)
rvt Histogram
GVT o 1
1 2
2 1
3 0

. Finished Instructions
@ Current Instructions

O Unreached Instructions

Figure 2.1: A Snapshot of a Task Graph in Execution.

32

The shape of the histogram represents the distribution of processors in virtual-
time during the asynchronous execution of SIMD programs. We can normalize
the abscissa of the histogram by shifting the origin to coincide with GVT.
Moreover, we scale down the ordinate of the histogram by N, where N is the
number of processors in the system. Thus, we define the dispersion function
whose abscissa is the rvt, and the ordinate is the probability that a processor

is at that rvt, ie.,
dispersion(z) 2 Probability that a Processor’s rvt = i (2.4)

In Fig. 2.1, there is one processor at rvt 0, two at rvt 1, and one at rvt 2.

Therefore, we have

dispersion[0] =

dispersion[l] =

] D |

dispersion[2] =

Note that GVT is a function of “real-time”. As the execution of the program
continues, the real-time increases, more instructions are finished, and the GVT
advances. Because the rvt of a processor is a function of GVT, it is in turn a

function of real-time as well.

Let the execution continue. Figure 2.2 shows another snapshot of the SIMD
task graph at a later time. Every processor has been executing its instructions
at its own pace (under the data dependency constraints, of course). A processor
at a small virtual-time (relative to the other processors) earlier may be at a large
virtual-time now. For example, processor 0 was at a smaller virtual-time than
processor 3 before, but processor 0 is at a larger virtual-time than processor 3

now. The GVT has moved from 2 to 4, and the histogram moves along with

33

l._~ Processor

Instruction
(virtual-time)

rvt Histogram

GVT 0 1
1 2
2 1
3 0

Figure 2.2: Another Snapshot of the Task Graph.

34

the GVT. A lot of things have changed during the execution of the program.
However, under the assumptions in Sec. 1.5.1, the dispersion function (the shape
of the histogram) does not change statistically when the number of processors
is large. The reason why the dispersion function does not change is as follows:
Let the random variable z; be the rvt of processor i. The collection of these
random variables can be thought of as a stochastic process. The dispersion
function corresponds to some ensemble average of the stochastic process. Since
we are only interested in the steady state behavior, the ensemble average of a
stationary stochastic process does not change over time. In other words, the
dispersion function does not change over real-time. In summary, the histogram
moves along the GVT while holding the same shape. It is just like a wave
moving across the ocean, with the wave being the shape of the histogram, and

the tide being the GVT.

Figure 2.3 shows the distribution of processors in both real-time and virtual-
time from simulation. The meaning of “Prob[Virtual-Time | Real-Time]” is
explained as follows: This conditional probability means taking a snapshot
at some real-time, and then finding the probability that the virtual-time of a
(tagged) processor has a particular value.

Number of Processors at vt i
Total Number of Processors

Probla processor is at vt | = (2.5)

The fact that in steady state, the dispersion function does not change sta-
tistically is very important in calculating the progress rate. For example, if the
GVT advances 8 instructions in 20 units of time, then on the average, every
processor has finished 8 instructions in 20 units of time. We can calculate the
progress rate simply by tracking the rate that GVT advances with respect to

real-time. In this example, the progress rate (r) is 1280 = 0.4, which is also the

35

Prob [Virtual-Time | Real-Time]

(from simulation)

Prob.
0.2

10

0.1

4 8 1

20
| / Real-Time
30
“”"'.”52_

2 16 20
Virtual-Time

Progress Rate (r) = A Global Virtual-Time
A Real-Time

Figure 2.3: The Distribution of Processors in Both Real-Time and Vir-

tual-Time.

36

Prob[rvt]
0.4 -

0 2 4 6 8 10 12
Relative Virtual-Time

Figure 2.4: The Distribution of Processors in Relative Virtual-Time in Steady

State (Simulation).

efficiency of the system.

The dispersion function is a function of the number of processors in the sys-
tem. Figure 2.4 shows the dispersion functions for various number of processors
from simulation. The basic bell shape of these dispersion functions does not
change over the number of processors. In other words, even though N may
change a lot, the relative position of processors with respect to each other is
kept the same for most of the processors. The execution time of an instruction
on a processor is mainly determined by the virtual-time difference of its two
ancestors (one is this processor itself and the other is the processor which holds

the remote operand of the instruction) because it determines whether and when

37

the remote operand will be available. If the environment of every instruction
does not change over the number of processors, then the performance of the
system must also be insensitive to the number of processors. As a consequence,
the progress rate r (i.e., the efficiency) of the system is rather independent of NV,

as we now show.

We also observe that the center of the dispersion function shifts right (i.e.,
in increasing rvt direction) in proportion to the logarithm of the number of
processors. Furthermore, most of the processors are concentrated around the
center of the dispersion function. As rvt increases, the dispersion function
drops to zero very fast once rvt passes the center. Figure 2.4 shows that the
probability of a processor being beyond rvt 12 is almost zero for up to 65536

Processors.

2.3 The Number of Processors at GVT

The easiest way to calculate the progress rate is to track the advance of GVT.
Processors at GVT are not blocked because their operands are definitely avail-
able. Figure 2.5 shows an example of the number of processors at GVT as
a function of real-time. The number of processors at GVT decreases when a
processor at GVT moves forward after the processor finishes the instruction at
GVT. The number of processors at GVT keeps on decreasing. When the last
processor at GVT finishes its instruction, it moves forward, and then, GVT
moves forward as well. All the processors originally at GVT + 1 before GVT
advances are at GVT right after GVT advances, which causes a jump in the

number of processors at GVT as shown in Fig. 2.5. The progress rate (r), i.e,,

38

No. of Proc.
at GVT
10 -

-
1 M
————————)
)
wy

Y

™)

[o
L 1 & A
IN
[]
(5]

GVT

.
>
=¥
<
5
2
3
—

o
-

L L} Ll 1

2 3 4 5
Real-Time

(=]
i

Figure 2.5: The Number of Processors at GVT.

the rate at which GVT advances, is the ratio of the base execution time' to the

average time interval between two consecutive GVT advances, i.e.,

_ Base Execution Time
~ E[Time Interval between Two Consecutive GVT Advances]

T (2.6)

For simplicity, let the base execution time be the unit of time. Let us now
derive the expected time interval between two consecutive GVT advances; then

the progress rate can be obtained from Eq. (2.6).

Let the random variable g be the number of processors at GVT right after

GVT advances, and g; £ Prob[g = i]. Figure 2.6 shows the state-transition-rate

diagram of the number of processors at GVT. In steady state, the rate at which

1 The base execution time is the average execution time of instructions given all the operands
are available, as defined in Sec. 1.5

39

Figure 2.6: The State-Transition-Rate Diagram of the Number of Processors at
GVT.

processors move out of GVT is the same as the number of processors at GVT.
When GVT advances, g¢; is the probability that there are i processors at the
new GVT. This is the same state-transition-rate diagram as in the parallel-
redundant fault-tolerant model described in [Tri82]. In this parallel-redundant
model, there are several independent copies of the same component installed
in the system. All the components are actively running but subject to failure
at a constant failure rate. As time goes by, some components may fail early
but the system will not fail as long as there is at least one component still
running. When all the components fail?, the system fails and the service crew
immediately repairs 7 faulty components with probability g;. The mean-time-

to-failure of this system is equivalent to the mean-time-to-move of GVT.

2The service crew does not do regular maintenance to replace faulty components when the
system is still running.

40

Let g be the state variable (i.e., the number of processors at GVT) of the
Markov chain, and ¢ 2 Problg = i]. To solve this chain, consider all the states
greater than or equal to 7 as a group. The flow balance equation at steady state
says that the rate that flows out of the group is equal to the rate that flows into
the group. Therefore, we have

o
q,-*i=q1*Zg_,- i>1 (2.7)
=i
We also have the conservation equation

iq" =1 (2.8)

i=1
Solving Eq. (2.7) and (2.8), we get
1

= 5 (2.9)
> _gi* H{j)
i=1
> 9
G = —= i>1 (2.10)
i* Zlgj * H(5)
=

where H(n) =) % is the well-known Harmonic function. Let G and @ be the
k=1

expected value of ¢ and ¢, respectively, ie.,

G_Q.E[g]=§:z'*g,- (2.11)
=1
and
Q £ Elg] =D i*q (2.12)
From Eq. (2.9), (2.10), (2.11), and (2.12), we have
Q= ooL (2.13)
2.9i* HG)

41

In order to simplify Eq. (2.9), (2.10) and (2.13), we must find an approximation

for the expression) g; * H(j).
=1

Figure 2.7 plots the Harmonic function H(n). We note that the Harmonic

5 -
4 4 curve
Hn) _ /,\'\
2 /
1 chord
14
or+—r-—vr——a—
0 5 10 15 20
n

Figure 2.7: The Harmonic Function H(n).

function is a very smooth curve. The difference between the curve and the

chord is small, and we can use the curve to approximate the chord. Therefore,

we have
Zg,-*H(i)zH(Zgi*i) = H(G) (2.14)
i=1 i=1
Substituting Eq. (2.14) into Eq. (2.9), (2.10) and (2.13), we have
N ot (2.15)
Q= H(G) .
2.9;

j=t

¢~ HO i>1 (2.16)

42

and -

G
e (2.17)

We know that the rate of GVT advance is simply ¢;. Therefore, we have

1
H(G)

r=q =

(2.18)

Furthermore, the Harmonic function is a convex (i.e., concave downward) curve.

Therefore, we have

ig- +H@) < H (_}Egi *i) = H(G) (2.19)

Following the same procedure of deriving Eq. (2.18), we have

1

r=q > —H(G’) (2.20)

As long as we have G, i.e., the expected number of processors at GVT right
after GVT advances, we can calculate the progress rate from Eq. (2.18). If we
only know @, the expected number of processors at GVT at a random time, we
have no closed-form solution for r. Fortunately, Table 2.3 gives us some hints
for a good approximation. Note that the prodﬁct of @ and r is close to 1 for

small G (say G < 10), ie.,

Q+r=1 for small G (2.21)
From Eq. (2.21), we have
1
TR) for small G (2.22)

The fact that G is small is verified by simulation. Simulation results under
the assumptions in Sec. 1.5.1 for a large number of processors show that G

is approximately 7, which is in the small number range and so validates the

43

1 1.000 1.000 1.000
2 0.667 1.333 0.889
3 0.545 1.636 0.893
4 0.480 1.920 0.922
) 0.438 2.190 0.959
6 0.408 2.449 1.000
7 0.386 2.700 1.041
8 0.368 2.943 1.083
9 0.3563 3.181 1.125
10 0.341 3.414 1.166

Table 2.1: Values of Q * r for Small G.

44

assumption of the approximation. The row G = 7 of Table 2.3 is highlighted,
and the approximation @ * r a2 1 is very accurate at G = 7. The reason why
we expect a small G is as follows: From Eq. (2.18), we know that r decreases
as G increases. The goal of the machine is to achieve constant efficiency when
the number of processors is large (i.e., linear speed-up). Since r is equal to the
efficiency, which is approaching a constant limit for a large number of processors
(see Fig. 1.7), G must be very insensitive to the number of processors. In
addition, for a good architecture the efficiency must not be small, and in other
words, G cannot be large. We have not yet proved that our architecture achieves
the “reasonably good” constant efficiency. Nevertheless, if it does (which is

demonstrated in Chapter 4), then G must be small and Eq. (2.22) is valid.

2.4 Conclusions

Because of the asynchronous execution, processors are distributed at different
virtual-times. The dynamic behavior of the asynchronous SIMD machine can
be found by examining the dispersion function and the number of processors
at GVT. The dispersion function describes how processors spread out in rvt,
which is a critical parameter for the hardware support (discussed in Chapter 3).
The number of processors at GVT tracks the advance of GVT, which in turn
determines the progress rate (r) of instruction execution. Equations (2.18),
(2.20), and (2.22), which we derived in this section, are widely used in Chap-
ter 4 to calculate the progress rate (r) of the system. With the foundation of
this section, we are now ready for more advanced topics on the asynchronous

execution of SIMD programs.

45

CHAPTER 3

Hardware Support for Asynchronous Execution

3.1 Introduction

A new problem introduced by the asynchronous model is that previous values
of a processor’s variables may be needed by another processor in the future.
During asynchronous execution, processors are allowed to advance at their own
pace (though subject to data-dependency constraints), and therefore, may be
spread out at different virtual-times. When a slower processor (i.e., a processor
with a smaller virtual-time) requests a remote operand from a faster processor
(i.e., a processor with a larger virtual-time), the requested value has actually
been generated in a previous instruction on the faster processor. The time of the
request is current to the slower processor but previous to the faster processor.
From the faster processor’s point of view, other processors may need to access
previous values of its variables. As a result, the faster processor has to save

those previous values.

Suppose a processor (the faster processor) currently at vt 10 wants to update
its local variable X, and later on, another processor (the slower processor) at
vt 7 needs to read the value of variable X on the faster processor. The faster
processor cannot simply overwrite the variable X with the new value now (i.e.,

at vt 10) because this processor has no idea whether or not previous values of

46

X will be requested by other slower processors later on. “Previous values are

possibly needed in the future” is the new problem of the asynchronous model.

In the asynchronous model, a memory request is a time-stamped request.
The time-stamp of a memory request is the virtual-time of the instruction which
issues the memory request. A remote memory request (i.e., request for the value
of another processor’s variable) is represented by the tuple “<sender, receiver,
address, virtual-time>”" where the sender, receiver, address, and virtual-time
are the processor-id of the sender, the processor-id of the receiver, the address
of the requested variable, and the virtual-time of the sender, respectively. At
the receiving processor, the “receiver” field is stripped off because it is no longer
useful. The “sender” field is not needed to pinpoint the requested value and
serves only as the return address for the reply message of the memory request.
Therefore, as far as the memory access is concerned, a memory request is rep-
resented by the “<address, virtual-time>"-pair. A local memory request (i.e.,
request for the value of a processor’s own variable) uses the current program
counter of this processor as the time-stamp of the memory request. The memory

system of a processor does not distinguish local and remote memory requests.

In the synchronous model, time-stamps on memory requests are not useful
becauée all processors are executing the same instruction and therefore, all
time-stamps are the same, which is equal to the program counter of the front-
end processor. For a time-stamped memory request, the concatenation of the
address and virtual-time can be treated as a long-form address of the memory
request. From this point of view, the interface between the processor and the
memory is the same for asynchronous and synchronous execution. The only

difference is that the address appears to be longer for asynchronous execution.

47

In general, a processor may receive requests from other processors at any
virtual-time greater than or equal to the global virtual-time (GVT), where GVT
is equal to the minimum program counter among all processors. According to
the definition of GVT, no processor will be executing instructions earlier than
GVT and no request will have a time-stamp less than GVT. If the time-stamp
of an incoming request is larger than the program counter of the processor, the
request is asking for a future value. The processor does not have the future
value now, but the processor will generate it later on. The request cannot be
granted now and the processor which issues the request will be blocked until the
requested value is available. If the time-stamp is equal to the program counter
of the processor, the request is asking for a current value, which is available now.
If the time-stamp is less than the program counter, the request is asking for a
previous value. Therefore, every processor has to maintain a memory history.
The memory history stores previous values of variables during the virtual-time
period from the current program counter back to the GVT. Anything before
the GVT will no longer be needed, and therefore can be purged. The memory
history must be able to provide previcus values of variables back to GVT on

demand.

For practical reasons, there is a physical limit on the size (i.e., the length) of
the memory history. By setting the size of the memory history to K, we mean
that if a processor goes so fast that its program counter is X instructions ahead
of the GVT (i.e., it is K instructions faster than the slowest processor), the fast
processor has to be temporarily suspended because it has used up all the space
in its memory history. As long as K is reasonably large, the probability that

a processor gets suspended because of insufficient memory history is tiny, and

48

the performance of the machine hardly degrades due to the limited size of the

memory history.

Memory history is a new feature in the memory system. It is so important
and it is so frequently used that it deserves special hardware support. The

hardware support should achieve the following goals:

Fast: Retrieving information from the memory history is as fast as an ordinary

memory reference.

Inexpensive: The cost of the hardware support in terms of the number of

transistors is small compared to the cost of the whole system.

Transparent: The memory history is transparent to main memory in the sense
that main memory still uses traditional random access memory without

any modification.

The reasons why these goals are necessary are as follows: Whenever we add
hardware support to a system to enhance its functionality, the extra hardware
may slow down the speed of some basic operétions, increase the cost of the
whole system, and require the redesign of the rest of the system in order to
incorporate the new hardware. We want the hardware support simply to in-
crease the functionality without slowing down any operation. We also want the
hardware support to be so inexpensive that the extra functionality costs little
compared to the whole system. Last, but not least, we want to maintain the
new system’s compatibility with the previous design. The purpose of hardware
support in general is to add an additional feature to the original design. Even
though adding more hardware may not cost much more to manufacture, re-

designing the rest of the system to incorporate the additional hardware may be

49

very expensive. We want to minimize the redesign due to the addition of the
hardware support. This may not be an important issue for a brand new design

but may be the most important issue in keeping a current design alive.

The hardware support we are looking for has to satisfy all three goals above

— fast, inexpensive, and transparent.

3.2 Memory History

Memory history can solve the “no overwrite” problem of asynchronous exe-
cution of SIMD programs. In this section, we discuss how to implement the

memory history cost-effectively.

A simple way to implement the memory history is full backup. Full backup
stores one copy of each variable of a processor at every virtual-time from the
GVT up to the program counter of the processor. On retrieving information,
the memory history takes the virtual-time of the request as the index to the
memory module at this virtual-time. With full backup, the memory history
does not slow down memory reference, but the drawback is the tremendous
cost. Full backup is prohibitively expensive to implement because it takes K

times the main memory to implement a memory history of size K.

An intelligent alternate solution to implement the memory history is incre-
mental backup. Incremental backup stores only the updates, i.e., the new values
of the updated variables, instead of complete copies of all variables. Since one
instruction modifies at most one variable, incremental backup only needs to
store K updates to implement a memory history of size K. From the X up-

dates and the main memory!, we can calculate previous values of any variable

1For incremental backup, data in the main memory are the outdated values of the variables.

50

up to K steps backward. It takes more work for incremental backup to retrieve
previous values, but it is extremely space-efficient. Therefore, we choose to

implement the memory history with incremental backup.

3.2.1 Algorithm for Incremental Backup

Figure 3.1 explains the algorithm for incremental backup. The update queue
of a processor stores all the updates from the GVT up to the program counter
of the processor. These updates are collectively called the outstanding updates.
Each update consists of three fields — address, virtual-time, and data. Every

memory request contains two fields — address and virtual-time.

A formal description of the algorithm is as follows: The virtual-time of a
memory request is compared with the program counter of the processor. If the
program counter is smaller, then the requested value is not available and the
sender of the request gets blocked. Otherwise the memory request is asking for
a previous or current value which is in the memory history. This value can be
obtained from the outstanding updates and the main memory. We conduct an
associative search for hits in the update queue, where a hit is any outstanding
update of the same variable at a virtual-time earlier than the virtual-time of
the request. If no hit can be found, then the variable has not been modified
since GVT and the value in main memory is the requested value. Otherwise,
there is at least one hit; the data in the latest hit is the requested value because

the latest update overwrites the earlier ones.

Let us illustrate the algorithm through examples. In the first example, the

Nevertheless, some of the outdated data are still up-to-date if they have not been modified since
then. The latest values are not stored in the main memory, and therefore, have to be calculated
on demand.

51

PC=9

Z @8 =90 Update Queue

X @ 7 = 14| <addr @ vt = data>

X Q@ 6 =12

Z @ 4 = 99

Y@ 3 =35

X @ 2 =10

GVT = 2 =t

X =3 Main Memory
xz, f g <addr = data>

Memory Reference Request:

22X@ T>: 12
<Y @ 10> : ?
2k @ 3>: 9

Figure 3.1: Examples for the Incremental Backup Algorithm.

92

memory request asks for variable X for the instruction at vt 7. According
to the SIMD semantics, what it really asks is the value of X at the end of
instruction 6. In this case, any update to X before vt 7 is allowed to change
the requested value. Therefore, the first step is to conduct an associative search
for the updates which match the address and have smaller virtual-times (i.e.,
hits). There are two hits in this example. The requested value is the data in
the latest hit because the latest update overwrites all previous updates. So, the
answer is 12 for the first example. In the second example, variable Y at vt 10
is requested. Because the program counter (pc) is less than 10, the processor
has no idea whether there will be any new update on Y before vt 10 or not.
Therefore, the answer to the request is “unknown” for the second example. An
unknown reply causes the processor which issues the request to be blocked. In
the last example, variable Z at vt 3 is requested. There is no hit in the update
queue, which means the value of variable Z has not been changed from the
GVT to vt 3. Therefore, the value in the main memory is the requested value.
So, the answer is 9 for the last example. These three examples cover all three

cases of the operation of the memory history.

3.2.2 Hardware for Incremental Backup

Figure 3.2 shows a hardware implementation of the incremental backup. In
the middle of Fig. 3.2, the four boxes represent the FIFO queue which stores
the outstanding updates. New updates come in from the top of the FIFO
queue. Every new update will have a larger virtual-time than the preceding
updates so that the virtual-time in the FIFO queue is monotonically increasing.

Old updates are purged from the bottom of the FIFO queue when the GVT

53

FIFO Priority Cache

VIRTUAL-TIME

ADDR B paTa Update
BUS BUS
|
Addr i
Virtual-Time :
Data E
' :
Addr !
Virtual-Time :
Data i
Y :
B Addr ;
Virtual-Tim :
Data E
! :
Addr !
Virtual-Time :
Data i
[
Garbage Collection Cache
Miss
A ATA CS

sus Bus Main Memory

Figure 3.2: The Hardware Support for Incremental Backup.

54

exceeds the virtual-time of the old updates. The data in the purged updates
are written to the main memory and these updates are then discarded. For
every memory request, if its virtual-time is larger than the program counter
of the processor, the requested value is not available. Otherwise, the FIFO
queue serves as a cache memory, which associatively searches for hits, where a
“hit” is an outstanding update with the same address and smaller virtual-time.
Therefore, the FIFO queue is in fact a FIFO cache. If there is more than one
hit, then the daisy-chain (i.e., the AND-gates on the right side of Fig. 3.2)
enforces the priority which selects? the latest hit. If there is no hit, it is called a
cache miss. A cache miss causes the memory request to be passed to the main

memory” because the requested value is stored in the main memory.

The characteristics of the hardware support are:

FIFO: FIFO queue to store the outstanding updates,
Cache: cache memory to search hits associatively, and

Priority: daisy chain to select the latest hit.

Therefore, we name the hardware support “FIFO priority cache”.

Past research on the efficient implementation of state-saving is mainly con-
cerned with the support of roll-back for optimistic distributed simulation. Richard
Fujimoto, et al have been actively working on special purpose hardware for Time
Warp [Fuj88], the design of Virtual Time Machine [Fuj89b], and the space-time
memory [Gho91]. Both the hardware and operating system support for roll-

back are equally applicable to the Virtual-Time Data-Parallel Machine.

2Selecting a hit means setting the output-enable (OE) bit of the hit to 1.
3The time-stamp of the memory request is stripped off when the memory request is passed

to the main memory.

55

3.3 The Size of the Memory History

The size of the memory history (K) is an important design parameter. When
K is too small, processors may get blocked frequently because of insufficient
memory history space. When K is too large, the efficiency improvement has
already reached the point of diminishing returns but the hardware overhead is
still increasing with K. Therefore, there exists an optimal value for the size of
the memory history. When the optimal size of the memory history is unknown
or hard to find, it is better to choose a larger memory history. The reasons are
as follows: First, the overhead of the memory history is very small in terms of
the number of transistors compared with the cost of the whole system. Even
if we were to choose twice the optimal size, the cost is still relatively small. In
general, there is no harm to have many inexpensive spare parts just in case.
Moreover, the effective size of the memory history is smaller than the actual size
because of the latency in calculating the GVT as explained below. The GVT
is never up-to-date because of the inevitable propagation delays in collecting
global information. However, an outdated GVT is still correct in the sense that
it does not cause any incorrect results to be generated. If there is a genie who
knows the current GVT, then the estimated GVT on every processor* would
always be less than that. The GVT lag of a processor is defined to be the
difference of the current GVT and the estimated GVT on this processor. The
GVT lag reduces the effective size of the memory history. It is better to leave
some safety room (i.e., a larger memory history) to compensate for the GVT lag.
In addition, the FIFO cache is an effective cache design itself, especially when

the cache size is small. Even though the values before GVT should be purged

‘Even though there is a unique current GVT, the estimated GVT on every processor car
be different.

56

to the main memory, it may still be better to store them in the memory history
because these recently® computed values are very likely to be needed in the
near future based on the likelihood of temporal locality [Smi82) in the memory
request sequence. If these values are kept in the memory history, reference to
them will generate hits instead of misses. The value of a hit is immediately
available in the cache while the value of a miss will not be available until going
through the prolonged main memory access. In summary, the side-effect of a
large memory history may well in itself justify the extra cost. Therefore, the
purpose of analyzing the size of the memory history is not to calculate the
optimal size. Instead, an upper bound on the memory history size is derived.
The upper bound tells us how large a memory history is sufficient to eliminate

the out-of-memory-history blocking.

Asynchronous execution allows processors to execute instructions at their
own pace. That is the reason why the distribution of the virtual-times of the
processors may spread out widely. However, because of the data-dependency
constraints, processors are brought closer to one another. Another reason to
bring processors close together in virtual-time is the limited size of the memory
history. When a processor runs so fast that it uses up all the space in its memory
history, it is suspended temporarily to allow the other processors to catch up.
This in turn brings processors close together. If the the data-dependency is
strong, very few processors will be able to run much faster than the others.
Almdst all the faster processors will be blocked because of the data-dependency
constraints before they can use up the space in their memory history. On the

other hand, if there is weak data-dependency, processors have a lot of freedom

5Even though the newly purged updates are older than those in the FIFO queue, they are
still recent from the point of view of temporal locality.

a7

1-r 1 1 1
OJOROoRY=1330
r r r r
Figure 3.3: The State-Transition-Rate Diagram of Relative Virtual-Time for
the Decoupled Model.

to go ahead and the faster processors are more likely to be blocked because of
the limited size of the memory history. Therefore, we introduce the “decoupled”
model, in which there is no data-dependency constraint at all. Every processor
is allowed to execute the next instruction as long as it is within K instructions
of the slowest processors, where K is the size of the memory history. This
model gives an upper-bound on the loss of performance due to the limited size

of memory history.

Figure 3.3 shows the state-transition-rate diagram of the relative virtual-
time of a (tagged) processor in steady state for the decoupled model. Recall
from Sec. 2.2 that the relative virtual-time of a processor is defined as the
difference between its virtual-time and the GVT. Processors at state K will be
blocked because of insufficient memory history. Processors at state 1 to K ~ 1
are free to go ahead so that the state transition rate from these states to their
subsequent states is 1°. GVT advances at the progress rate r in steady state,

and the advance of the GVT causes the relative virtual-time of every processor

8Recall the assumption in Sec. 1.5.1 that the execution time of instructions is exponentially
distributed with mean 1.

28

to decrease by one. Therefore, the state-transition-rate from one state back
to its preceding state is r for states 1 to K. State 0 (i.e., the processor is at
GVT) is special. When a processor at GVT finishes its instruction, its relative
virtual-time may not increase to 1 because it may be the only processor left at
GVT. When the last processor at GVT finishes its instruction, its virtual-time
advances and so does GVT. As a consequence, the relative virtual-time of this
processor is still 0. Therefore, the state-transition-rate from state 0 to state 1
isonly 1 —r.

Let the random variable p be the relative virtual-time of a (tagged) processor
in steady state, and p; = Prob[p = i]. Setting up the flow balance equations

from the state diagram, we have

4

po*{l—1) 1=1
pi*r—'“-'-'{ (31)

Di-1 1<i< K

\

From Eq. (2.22) in Sec. 2.3, we have
1 1

A —

Q=P0*N

where @ is the expected number of processors at GVT, and N is the total

for small Q (3.2)

number of processors in the system. If K is sufficiently large such that the
efficiency of the system is fairly good, then @ must be a small number, say less

than 10 (refer to Sec. 2.3). Rearranging Eq. (3.2), we have

1
S 3.3
Po rxN (3.3)
In addition, we also have the conservation equation
K
Yn=1 (3.4)
i=0

59

Solving Eq. (3.1), (3.3) and (3.4), we have
J rX i=0

(1=r)*rk— 1<i<K

1
o kaf 1

The performance loss due to the limited size of the memory history manifests

and

itself as the blocking probability at relative virtual-time K (ie., in state K).
From Eq. (3.5), we have
pk=1-71 (3.7)

Substituting Eq. (3.6) into Eq. (3.7), we have

/1
pr ~1— % ¥ (3.8)

which is the maximum performance loss due to the limited size of memory
history; see Fig. 3.4. When the number of processors (V) increases, we must
increase the size of the memory history (K) so that the performance loss (pg)
due to the limited size of the memory history is kept constant. From Eq. (3.8),

we find that K must increase as follows in order to maintain this constant loss
of Pk:
_ . logN
—log(1 — px)
The bold line in Fig. 3.4 corresponds to 30% performance loss. From Eq. (3.9),

1 (3.9)

we note that in order to keep a constant percentage of performance loss, the

size of the memory history should be on the order of (log V).

The decoupled-model gives an upper bound on the performance loss due to

insufficient memory history. Therefore, Eq. (3.9) gives an upper bound on the

60

(Size of Memory History)

64

N
(Number of Processors)

of Memory His-

Figure 3.4: Maximum Efficiency Loss Due to the Limited Size

tory.

61

choice of K (for given N and px). With data-dependency, a smaller value of K

will be sufficient to maintain the same out-of-memory-history blocking.

3.4 Conclusions

This section summarizes some important issues about the memory history. The
architecture of the hardware support is a FIFO priority cache, which implements
the incremental backup algorithm. Qutstanding updates are stored in a FIFO
queue and searched associatively for the latest hit. The garbage collection of the
updates is to purge to the main memory those updates whose virtual-times are
smaller than GVT. When a processor goes so fast that it runs out of memory
history space, it is blocked. The overhead of the memory history is about the
same as a K-word cache, where K is the size of the memory history. K should
be chosen in proportion to (log N), where N is the total number of processors

in the system.

The “FIFO Priority Cache” satisfies all the goals of the hardware support
— fast, inexpensive, and transparent. The cache memory will not slow down
the memory reference. On the contrary, the cache memory accelerates memory
references. The small cache does not cost too many transistors to implement
and is a relatively small increase to the total cost of the system. Furthermore,
the cache memory is transparent to the main memory and is compatible with
the rest of the system. There is no need to redesign any part of the system to

incorporate this hardware support.

62

CHAPTER 4

Performance Analysis of the Progress Rate

4.1 Introduction

The progress rate (r) is the most important performance measure of the Virtual-
Time Data-Parallel Machine. From Eq. (1.5), we know that the progress rate is
equivalent to the efficiency of the system, from Eq. (1.2), we can calculate the
speed-up of the system from the progress rate, and from Eqs. (2.18) and (2.22),
we can derive the expected number of processors at GVT from the progress
rate. In short, the progress rate is the key to exploring other aspects of the

Virtual-Time Data-Parallel Machine.

In this chapter, we evaluate the progress rate r for sufficiently large memory
history (e.g., K = 00). Because the exact model is hard to solve (the state-space
is too large), we develop several slightly modified models to analyze r. First,
we consider the “non-persistent” model and “cold-start” model, which give an
upper bound and lower bound on r, respectively. We then study the “roll-
back” model, which gives an approximation to r as a function of the number of
processors in the system. Finally, we evaluate the “nfinite-processor” model,

which gives the limiting value of r for an infinite number of processors.

Related research mainly addresses the performance analysis of the Time-

Warp synchronization mechanism for optimistic parallel discrete event simu-

63

lation [Fel90] [Fel91] [Gup91] [Nic91] [Sam85], and partial synchronization in
parallel processing systems [Cha91]. Our analysis is customized for the Virtual-
Time Data-Parallel Machine under the assumptions in Sec. 1.5.1. Nevertheless,
the techniques used in our approach can be extended to more general types of

synchronization in parallel computations.

4.2 The Non-Persistent Model

The non-persistent model gives an upper bound on the progress rate because the
way it handles unavailable remote operands is different from the real system. If
the remote operand of an instruction is not currently available, the correct exe-
cution of the instruction is to wait for this operand persistently until it becomes
available; therefore, we call the correct execution the “persistent” model. To do
this, in addition to the program counter of a processor, the state of the processor
must also contain the remote operand of the current instruction, which makes
the persistent model hard to analyze. On the other hand, it is assumed in the
non-persistent model that the processor will not wait for this remote operand
persistently. If the reply of the memory request for a remote operand says that
this remote operand is not available, then in the next cycle,the instruction will
randomly choose aﬁother remote operand, and send out a new memory request
immediately. This is certainly an incorrect implementation of the machine, but

it is a simple model to analyze.

From Sec. 2.2, we note that the relative virtual-time (rvt) of a processor has
a steady-state distribution. Therefore, we choose the rvt as the state variable

of a processor.

Let the random variable p be the rvt of a (tagged) processor and p; 2 Problp =1

64

Figure 4.1: The State-Transition-Rate Diagram of Relative Virtual-Time for

the Non-Persistent Model.

Figure 4.1 shows the state-transition-rate diagram of the rvt of the processor
in steady state for the non-persistent model. We assume the size of the mem-
ory history is infinite. The state transition rates between adjacent states are
similar to those in the decoupled model in Sec. 3.3. Global virtual-time (GVT)
advances at a rate r, and therefore, the state transition rate from one state to
its preceding state is r for all states except state 0. The advance of a processor
at GVT (i.e., state 0) will cause GVT to advance along with it simultaneously
if and only if it is the only processor in state 0. In this case, the rvt of that
processor remains unchanged because both the virtual-time of the processor
and the GVT advance together. In other words, these two transitions cancel
out each other as if, as far as the rvt is concerned, no transition has happened
at all. This phenomenon reduces the state transition rate from state 0 to state 1
to 1 — r, which is r less than the rate at which a processor at GVT finishes its

instruction!.

!The rate at which a processor at GVT finishes its instruction is 1 because its operands are
definitely available.

65

When the tagged processor is at state i where i > 1, its remote operand is
available only if the processor which holds the remote operand is at a state j
where j 2 i (l.e., that processor is currently ahead of the tagged processor).
The probability of the above condition is i Pj, and this is the state transition
rate from state i to state 1 + 1. Setting up :‘he flow balance equations, we have

r

po*(l1—r1) i=1
PixT = ¢ (4.1)

[+ 4]
Pi—l*ZPj 1> 1
\ 1

j=ic

From this equation, together with the conservation equation

=1 (4.2)
=0

and Eq. (3.3} in Sec. 3.3, which we repeat here,

1

rxN (43)

Do =

we can approximately solve the p;’s numerically. Figure 4.2 shows the distribu-

tion of processors in rvt for various value of IV in steady state.

This result for the non-persistent model is optimistic compared to that of the
persistent model (i.e., the correct model). This is because, in the non-persistent
model, a processor does not suffer from “the persistence of bad news”. The
persistence of bad news refers to the fact that when a bad situation happens,
it takes a longer time to clear the bad situation than the time for which a
good situation can last. The good news in executing an instruction is that the
remote operand of the instruction is immediately available. The processor can
execute the current instruction and proceed to the next instruction without

delay. Whether the remote operand for the next instruction will be available or

66

Prob[rvt]
03 T

0 4 8 12 16 20
Relative Virtual-Time

Figure 4.2: The Distribution of Processors (Non-Persistent Model).

Prob[rvt]
0.4 1
X Persistent Model (Simulation)
03 -
® Non-Persistent Model (Analysis)
0.2

0.1 4

0 4 8 12 16 20
Relative Virtual-Time

Figure 4.3: The Distribution of Processors (Simulation vs. Non-Persistent

Model for N = 1024).

67

not is not biased by the fact that the remote operand of the current instruction
is immediately available. That means the good news lasts only for the execution
time of one instruction. The bad news when executing an instruction is that
its remote operand is not available. In correct execution (i.e., the persistent
model), the processor is blocked until this remote operand becomes available.
Suppose the blocked processor is at rvt i and the blocking processor (i.c., the
processor which holds the remote operand) is at a rvt j < i. The difference
between i and j is always greater than or equal to one. That means bad news
usually lasts longer than the execution time of one instruction. In summary,

bad news is expected to last longer than good news.

In the non-persistent model, a processor does not suffer from the persistence
of bad news and therefore a better performance is achieved. Figure 4.3 compares
the dispersion function for the persistent model from simulation vs. our analysis
for the non-persistent model. Both of these curves from have the same basic bell
shape, with the one from the non-persistent model wider and flatter. In other
words, in the non-persistent model, data dependency constraints are weaker
and processors have more freedom to advance at their own pace. That also
explains why the performance of the non-persistent model serves as an upper

bound on the performance of the persistent model.

4.3 The Cold-Start Model

The cold-start model gives a lower bound on the progress rate. A lower bound
on the performance of the system is usually more important than an upper
bound because the lower bound guarantees the minimum quality of the system.

In contrast to the other models which deal with the steady-state behavior of the

68

system, the “cold-start” model emphasizes the behavior of the system at the
beginning of the program execution. What interests us most is the number of
processors at GV'T right after GVT advances. Let G; be the expected number
of processors at GVT right after GVT moves to 4, and let G be the limiting
value of the sequence, i.e., G = ’l_i’rglo G,. G corresponds to the steady state value
of the number of processors at GVT right after GVT advances. Figure 4.4

shows the the first few values of G; obtained from simulation where N = 256.

Initially, every processor is at vt 0 and the GVT is 0; thus, Go = N. When the

E[No. of Proc.
at GVT]
1000

100

10 j 3 j 4 95
(Simulation)
1 L) Ll L]
3 4 5
Global Virtual-Time

Figure 4.4: The Expected Number of Processors at GVT in Cold-Start.

program starts running, processors begin to spread out in rvt. As GVT ad-

vances, the expected number of processors at GVT is monotonically decreasing

69

and gradually reaches the steady state value G. Therefore, we have

‘Together with Eq. (2.20) in the parallel-redundant model, which we repeat here,

1
T2 — 4.5
we have
1 1 1
> = el > N
"SH() T HGx) " T HG)

1 1 1 1
> > > = 4.6
2 HG) 2| HGY |* HGo ~ HY) (49
Any of the terms “I:% for all ¢ can be used as a lower bound on r. For larger i,

the lower bound is tighter but harder to calculate. From Fig. 4.4, we see that
there is a big drop from Gy to G, but not as significant a difference between G,

and G2 and so on. Based on the above considerations, we choose to compute
1
H(G)

Now let us derive the value of Gy. Let the pid (processor-id) of a processor be

as a lower bound on r.

the reverse order of finishing instruction 0 (i.e., the first instruction). The first
processor to finish instruction 0 will have a pid equal to N, the second (N — 1),
etc. Let a tagged processor’s pid be i and the pid of the processor holding
its remote operand be j. If j > i, then the remote operand for instruction 1
will be available by the time processor ¢ (i.e., the processor with pid ¢) finishes
instruction 0. On the other hand, if j < 4, then processor i must wait for
processor j. For example, in Fig. 4.5, processor 6 is executing instruction 1
because processor 4 has finished instruction 0, but processor 4 cannot start

executing instruction 1 until processor 2 finishes executing instruction 0. In

70

-
-

W

Figure 4.5: The State Transition in Virtual-Time for the Cold-Start Model.

summary, processor ¢ will not start executing instruction 1 until processor z
finishes executing instruction 0, where z is the minimum value of 7 and 7. At
that time, there are still z — 1 processors executing instruction 0. Based on
the memoryless assumption in Sec. 1.5.1, the execution time for processor i to
finish instruction 1 is the same as the residual execution time for any processor
from processor 1 to x — 1 to finish instruction 0. When all the processors from
processor 1 to z — 1 finish instruction 0, the GVT moves to 1. If processor 3
has not finished instruction 1 by then, it will be at GVT again. The probability
of the above situation is %, which is the probability that the tagged processor
(i.e., processor i) takes the longest time to finish its instruction among the z
processors (processor i plus processors 1 to x — 1). Let m;; be the probability
that a processor stays at vt 1 when GVT moves to 1 given its pid is 7 and the

pid of the processor holding its remote operand is 7. From the above argument,

71

we have
1

B min(i, 7) 4.0

“Ti‘j

Gy, . .
The term ﬁ] is the probability that any single processor stays at vt 1 when

GVT moves to 1. Unconditioning Eq. (4.7) over ¢ and j, we have
Gl N N i
v = ; 3 e (4.8)

Substituting Eq. {(4.7) into Eq. (4.8), we have

1
Gl:NZ

(NxH(N)- N+ (N+1)H(N) - N)
= 2*(H(N)~1)+$

2+ (H{(N)-1) for large N (4.9)

Q

Substituting Eq. (4.9) into Eq. (4.6}, we have the lower bound on the

progress rate r.
r> L X 1
T H(2+«(H(N)—-1)) loglogN

This lower bound is inversely proportional to (loglog N). Though the lower

(4.10)

bound drops to 0 for extremely large N, this bound shows that asynchronous

1
execution is capable of improving the progress rate from g N (the progress

rate of synchronous execution [Fel90}) to at least Toglog V'
The cold-start model can be further generalized to the case in which every

instruction needs more than one remote operand. Let A be the number of an-

72

cestors of each instruction (i.e., every instruction needs A— 1 remote operands).

Then Eq. (4.7) becomes

1
Ty s — min(il, . ,’l:A) (411)
and Eq. (4.9) becomes
G, =
' N*‘l 1 z ,.2—1 mm(zl, yt4)

~ Ax (H(N) H(A-1)) for large N (4.12)

Finally, the lower bound on 7, i.e., Eq. (4.10), becomes

1

(4.13)

"2 HAX (B < HA=D)
4.4 The Roll-Back Model

The roll-back model gives an approximation to 7 because we cannot derive the
progress rate from the persistent model directly. Like the non-persistent model,
the roll-back model also handles the unavailable remote operands differently
from the persistent model. Whenever the remote operand of the instruction
of a processor is not available, the processor will not wait for it. Instead, the
proceésor makes a guess of the unavailable remote operand and then goes on to
execute the next instruction so that the processor never gets blocked. In order
to maintain correct execution, roll-back is mandatory when the guess is wrong.
When the remote operand becomes available, it is checked against the guess.
If the guess is wrong, the processor has to roll-back to the instruction where
the guess is made. We assume that the guess is always wrong but that there
is no roll-back overhead. Then, the net progress of this processor is the same

as if it had been blocked there in the first place when the remote operand is

73

(r*pj-1) from state; to statej, O<j<i

Figure 4.6: The State-Transition-Rate Diagram of Relative Virtual-Time for
the Roll-Back Model.

unavailable. We are not proposing to implement the machine according to the
roll-back model. We simply point it out that with respect to performance, the

roll-back model gives the same result as the persistent model.

Figure 4.6 shows the state-transition-rate diagram of the relative virtual-
time of a (tagged) processor in steady state for the roll-back model. In this
model, we assume the memory history has a limited size K. The state-transition-
rate diagram for the roll-back model is similar to that of the decoupled model.
The difference is the existence of extra roll-back transitions in the roll-back
model. Suppose that a processor (processor A) is at rvt ¢ and the processor
holding its remote operand (processor B) is at rvt j, where j < 7. When
processor B finishes its instruction at rvt j (and hence, moves to rvt 7 + 1),
processor A must be rolled-back to rvt j + 1. However, if processor B is later

rolled-back beyond rvt j + 1, then the intermediate roll-back of processor A

74

now is unnecessary because it will be rolled-back again later on. On average,
the probability that the execution of an instruction is not rolled-back is simply
the progress rate r. Therefore, a simple approximation for the roll-back rate
from state i to state j + 1 is r x p; for j < i. For this chain, we consider all
the states greater than or equal to i as a group. Setting up the flow balance
equations (the rate that flows out of the group is equal to the rate that flows

into the group in steady state), we have

prxr=po*x(1—r) (4.14)
and
K 1—2
pixr+ [D opi*r) x> pi=pia 1<i<K (4.15)
=t j=

Together with the conservation equation
K
Yp=1 (4.16)
i=0

and Eq. (3.3) in Sec. 3.3, which we repeat here,

- 1
pONr*N

(4.17)

we can solve r and the p;’s numerically. Figure 4.7 and Figure 4.8 show the
distributions of processors in rvt for K = 24 and K = 16, respectively. We note
that the curves in these two diagrams are almost identical in the region in which
the rvt is less than 12, where the magic number 12 is a sufficiently large size
for the memory history as shown in Fig. 2.4. A larger memory history does not
help to improve the progress rate because processors at large rvt will usually
be rolled-back anyway. If the roll-back overhead is very large, it is better to

suspend those processors which are too much ahead of the others.

75

Prob|rvt]
0.15

N=64

pbpEOPOEE

0 4 8 12 16 20 24
Relative Virtual-Time

Figure 4.7: The Distribution of Processors(Roll-Back Model with K = 24).

Prob|rvt]

0.15 - ® N=64
o N=256
& N=1024
0 N=409%
B N=16384

0.10 1 A N=65536

0.05 4

0.00 T r r 3

0 4 8 12 16 20 24

Relative Virtual-Time

Figure 4.8: The Distribution of Processors (Roll-Back Model with K = 16).

76

rvt

Figure 4.9: The State-Transition in Relative Virtual-Time for the Infi-

nite-Processor Model.

4.5 The Infinite-Processor Model

The infinite-processor model gives the limiting value of » for a large number
of processors in the system. This model combines the techniques developed in
the cold-start and roll-back models to derive the steady-state behavior of the
system. From the assumptions in Sec. 1.5.1, every instruction always needs one
remote operand and the location of the remote operand is uniformly distributed
among the processors. Conversely, the result of an instruction is expected to be
requested by one of the other processors. When a processor at rvt O finishes its
instruction, it advances to rvt 1 (suppose GVT does not advance), and at the
same time, it may cause other processors to roll-back to rvt 1. The expected
ﬁumber of rolled-back processors is 1 if the number of remote operands of every
instruction is 1.

Figure 4.9 shows the interesting state transitions in rvt between two consec-

utive advances of GVT. In steady state, the expected number of processors at

rvt 1 right before GVT advances? is equal to the expected number of processors

2 Assume that the advancing of the last processor at GVT and its corresponding roll-backs

77

at rvt O right after GVT advances.

Right before GVT advances, processors at rvt 1 are from one of the follow-

ing:
1. originally® at rvt 1, and still at rvt 1,
2. originally at rvt 0, advanced to rvt 1, and still at rvt 1, or

3. originally at rvt > 1, rolled-back to rvt 1, and still at rvt 1.

Let Ny and N, be the expected number of processors at rvt 0 and 1, respectively,
right after GVT advances. The probability of the first case is Rf;%-_l’ which is
the probability that this processor takes a longer time to finish its instruction
than do the Ny processors at rvt 0. The second and third cases are highly
related. When a processor moves from rvt 0 to rvt 1, it causes, on average,
one processor to roll-back from rvt > 1 to rvt 1. Because of this, we need
only consider the second case; the third case has the same behavior. Let i be
the reverse order of finishing the instruction at rvt 0 for the N; processors at
rvt 0. For processor i, the probability that it is still at rvt 1 (after it advances

to rvt 1) when all the ¢ — 1 processors at rvt 0 finish the instruction at rvt 0

.1
is —. Therefore, we have
%

N M 1
= 2 it 4.18
N+ 1 T ; ()

=1

No
In addition, we have the flow balance equation between rvt 0 and rvt 1.

(1—r)x Ny =7*N, (4.19)

happens before GVT advances,
3The time of reference is right after GVT advances.

78

From Eq. (2.18) in Sec. 2.3, we have

1
" HD)

Substituting Eq. (4.20) and (4.19) into Eq. (4.18), we have

H(N;) = 1)+ N,

(
Ny =
0 No+1

+ 2« H(Ng)
From Eq. (2.17), (2.18), and (2.22), we have

H(Np) = \/Fo for small Ny

Substituting Eq. (4.22) into Eq. (4.21), we can solve Ny and r.

Noz'?

and

r = (.386

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

The infinite-processor model can be further generalized to the case where

every instruction needs more than one remote operand. Let A be the number of

ancestors of each instruction, as defined in Sec. 4.3. Then Eq. (4.18) becomes

N M1
NO-N0+1+A*Z_'

=1 ¥

(4.25)

From Eq. (4.25), (4.19), and (4.20), we can solve r numerically. Figure 4.10

shows the efficiency of the system with an infinite number of processors.

4.6 Conclusions

Figure 4.11 shows the summary of the performance analysis of the progress

rate r. The upper bound on r from the non-persistent model is not tight.

79

0.5 1

0.4 -
Efficiency
03

"""" analysis

0.2 1 = simulation

0.1 1

0.0 b T L] 1
2 4 6 8 10

Number of Ancestors

Figure 4.10: Efficiency of the System for the Infinite-Processor Model.

However, the non-persistent model gives us a quick-and-dirty illustration of the
behavior of the Virtual-Time Data-Parallel Machine, e.g., constant efficiency
and the bell shape of the dispersion function. The lower bound on r from
the cold-start model is not tight, either. However, the cold-start model is still
very important simply because it gives a lower bound on the progress rate.
The lower bound serves as a proof that asynchronous execution is much more
efficient than synchronous execution for a large number of processors, even
though the lower bound drops to 0 when the number of processors increases
without bound. The roll-back model gives a moderately good approximation
to r. The approximation curve follows the simulation curve to within 10%

error. However, the approximation from the roll-back model does not have a

30

0.6

- - - " " Non-Persistent
0.5
Efficiency Simulation
0.4 2 0.386

Roll-Back

0.3 1
29 Cold-Start
\\
0.2 - -~
'll-‘ -
h"‘--...___ Synchronous

0.1 r—r—T—rrrrY y—————rrry T —r—r—r—rrrre

10" 10? 10° 10* 10°

Number of Processors

Figure 4.11: Summary of the Performance Analysis of the Progress Rate.

closed-form solution. The infinite-processor model gives an accurate estimate
(within 2% error) of the efficiency of a very large system. Since we know that
efficiency is a monotonically decreasing function of the number of processors
in the system, an accurate estimate for a large system serves as a good lower
bound for small systems as well. Though each of the four models has its own
deficiencies, together, they give a comprehensive coverage of the performance

analysis of the progress rate of the Virtual-Time Data-Parallel Machine.

Table 4.6 summarizes the models for the performance analysis of the Virtual-
Time Data-Parallel Machine. The models in the previous two chapters are also

included.

81

Model Name Closed Form Solves for
Parallel-Redundant Yes Mean-Time-to-Move of GVT
Decoupled Yes Size of Memory History
Non-Persistent No Upper Bound on r
Cold-Start Yes Lower Bound on r
Roll-Back No Approximation of r
Infinite-Processor Yes Ie,lj’fgo r

Table 4.1: Summary of the Models for Performance Analysis.

82

CHAPTER 5

Extensions of the Virtual-Time Data-Parallel

Machine

5.1 Introduction

In the following three sections, the basic assumptions that we made in Sec. 1.5.1
are generalized to more realistic cases. Based on these generalized assumptions,
we evaluate the efficiency of the Virtual-Time Data-Parallel Machine through
the use of simulation. The next four sections address the directions to further
improve the performance of the machine. By eliminating as much unnecessary
blocking as possible, the Virtual-Time Data-Parallel Machine effectively con-
verts the SIMD computation from control-flow to data-flow. The remaining
sections address some miscellaneous issues such as the GVT algorithm and the

interconnection network.

5.2 Execution Time Distribution

In Sec. 1.5.1, we made the assumption that the execution time of instructions is
exponentially distributed. We know that in general, the execution time is more
deterministic than this memoryless distribution. Therefore, we now choose a

family of distributions with an adjustable coefficient of variation from 0 to 1

83

as a generalization of the execution time distribution. The family of r-stage
Erlangian distributions (E,) is chosen for this generalization, which is shown

in Fig. 5.1 [Kle75]. The probability density function of the r-stage Erlangian

3.5 1

3.0 1

r-stage 2.5 -
Erlang(x)
2.0 -

1.5 1

1.0 4

Figure 5.1: The Family of r-Stage Erlangian Distributions.

distribution is

r(rz)" e
E, =— 5.1
,-(3:) (7‘ _ 1)' ()
and its coefficient of variation is 7_1;'-—, which ranges between 0 and 1. Moreover,

when r equals 1, the 1-stage Erlangian distribution is simply the exponential
distribution, and when r equals infinity, the co-stage Erlangian distribution is

deterministic.

From simulation, Fig. 5.2 shows the efficiency of asynchronous vs. syn-

chronous execution of SIMD programs as a function of the coefficient of varia-

84

tion based on the above generalization, and Fig. 5.3 shows the efficiency gain of
asynchronous over synchronous execution. From Fig. 5.2 and 5.3, we see that
this model of asynchronous execution always! outperforms synchronous exe-
cution regardless of the execution time distribution; the larger the coefficient
of variation, the greater the efficiency gain. Furthermore, the efficiency gain

increases as the number of processors increases.

5.3 The Number of Remote Operands

In Sec. 1.5.1, we made the assumption that there is exactly one remote operand
for each instruction. We know that in general, the expected number of remote
operands per instruction is less than 1 because most of the time, instructions
only need local variables. Note also, that in the instruction sets of most assem-
bly languages, the number of source operands of an instruction ranges from zero
to two. Therefore, the number of ancestors of each instruction ranges from one

to three?.

From simulation, Fig. 5.4 shows the machine efficiency (with 1024 proces-
sors) for various numbers of ancestors (denoted by A) per instruction, where the
synchronous execution corresponds to having N ancestors, and Fig. 5.5 shows
the efficiency gain of asynchronous over synchronous execution for this model.
From Fig. 5.4 and 5.5, we note that asynchronous execution (i.e., with few an-
cestors) again outperforms synchronous execution (i.e., with many ancestors).

The performance gain increases as the expected number of ancestors decreases

!However, for constant execution times, synchronous execution performs equally well as

asynchronous execution.
2The sequential sernantics of the language adds an (implicit) ancestor to each instruetion,
which is the preceding instruction on the same processor.

85

1.0 §

0.8 ===8-- ASYN,N=32
. —0— ASYN, N=1024
Efficiency ..~ ~&- ASYN,N=32768
0.6 N e
044 0 ANl T .
i tOt SYNGN=R2 e g T
0.2 —&— SYNC, N=1024
; — & SYNC, N=32768
0-0 v L] ¥ T v T
0.0 0.2 0.4 0.6 0.8 1.0

Coefficient of Variation

Figure 5.2: Efficiencies of the SIMD Machines for the Generalized Execution

Time - Asynchronous vs. Synchronous.

Efficiency
Gain

0.0 0.2 0.I4 0.6 0.8 1.0
CoefTicient of Variation

Figure 5.3: The Efficiency Gain for the Generalized Execution Time — Asyn-

chronous over Synchronous.

86

1.0

0.8 1

Efficiency

0.6 1

04 1

0.2 1

00

ASYN

SYNC

0.0

T T

0.4 0.6
CoefTicient of Variation

02

Figure 5.4: Efficiency of the Machine for Various Numbers of Ancestors

(N=1024).
10 4
8 -
Efficiency
Gain

6-

-

-

CoefTicient of Variation

Figure 5.5: The Efficiency Gain for Few Ancestors over Infinitely-Many Ances-

tors (N=1024).

87

or as the coefficient of variation of the execution time distribution increases.

5.4 Location of Remote Operands

In Sec. 1.5.1, we made the assumption that the location of the remote operands
is uniformly distributed among the processors, but in real cases, there are usu-
ally some fixed access patterns. Section 1.5.1 explained why the uniform dis-
tribution is a pessimistic assumption. From simulation, Fig. 5.6 shows the

efficiency of the machine for various access patterns. We see that the efficiency

0.55 1

0.50
Efficiency

0.45

0.40

0.35 L) T T T
1-D Torus 2-D Torus 3-D Torus Random

Access Pattern

Figure 5.6: The Efficiency of the VT-DP Machine for Various Access Patterns
of the Remote Operand.

of the random access pattern (i.e., uniform distribution among processors) is

88

worse than that of more regular access patterns. We also observe that the ef-
ficiency changes only slightly for different access patterns. Hence, the uniform

distribution assumption is reasonably valid.

5.5 Data Dependency Distance

The ancestors of an instruction are the processors from which the instruction
fetches its operands. According to the SIMD semantics, the operands of the
instruction at vt ¢ refer to the values of these variables on its ancestors at
the end of vt (i — 1). The data dependency distance between an instruction
and its operand is defined to be the difference between the virtual-time of the
instruction and the virtual-time at which the variable was last modified. The
sequential SIMD semantics do not address the data dependency distance, and

thus the data dependency distance is effectively one.

For example, Fig. 5.7.a shows the task graph of a SIMD program. A data
dependency link in Fig. 5.7.a means that this instruction depends on some
variable held by this ancestor one instruction earlier. When the granularity
of data dependency is in terms of processors, waiting for a (tagged) variable
on a processor at vt (3 — 1} is equivalent to waiting for the processor to finish
instruction (i—1). However, the value of the tagged variable at the end of vt (i~
1) may be untouched during the execution of instruction (¢ — 1). For example,
we see that the third instruction is independent of the second instruction. The
odds of the above situation are often high® because there are many variables
in one processor but usually only one of them is modified per instruction. In

this example, the tagged variable, X, is not modified by instruction (i — 1},

3We are trying to take advantage of the non-temporal-locality of memory reference.

89

Processor (j)

0 1 2 3

(i)
i-1 ())) Alj] = X[j-1]
i O B[j] = X[j+1]

a) Data Dependency in terms of 'Processors'
(i.e., 'some' variable in the processor)

Modify X at vt (i-2)

X is not modified here

— Data dependency
distance of X increases

O Fetch X at vt (i)

b) Data Dependency in terms of 'Variables'

Figure 5.7: Data Dependency Distance of Remote Operands.

90

and thus the value of this variable at the end of vt (i — 2) is the same as
that at the end of vt (i — 1). In other words, the data dependency distance
is increased by one. Figure 5.7.b shows the same task graph as Figure 5.7.a
when the granularity of data dependency is in terms of variables. Note that the
data dependency distance of the second instruction is one since its operand was
modified during the previous instruction, while the data dependency distance

of the third instruction is two since it was last modified two instruction ago.

The data dependency distance for a tagged variable at vt ¢ can be further
increased to d if it is last modified at vt (i — d). When the data dependence
distance is d, as long as the ancestor is less than d instruction behind, the re-
mote operand is available and the processor can execute the instruction without
waiting for the ancestor to catch up. The larger the data dependency distance,
the more likely it is that the remote operand of an instruction is available, and

hence, the less likely it is that the processor will be blocked.

From simulation, Fig. 5.8 shows the efficiency of asynchronous vs. syn-
chronous SIMD machines for various data dependency distances (actually, the
inverse of the data dependency distance), and Fig. 5.9 shows the efficiency gain
of asynchronous over synchronous execution. From Fig. 5.8 and 5.9, we see that
the efficiency can be improved up to 1 when the data dependency distance is
very large, and the efficiency gain is significant even when the data dependency

distance is small.

5.6 The Probability of No-Operation

One of the major deficiencies of synchronous execution is that it handles condi-

tional instructions poorly. Figure 5.10 shows the different ways of implementing

91

1.0

0.8 ---8-. ASYN, N=12
-------- ==k—- ASYN, N=32768
061 0 EOO el
---0--- SYNC,Ns22 e emwm Ttte-
0.4 1 —#— SYNC, N=1024
| = -A&=' SYNC, N=32768
= DO00O- Q- 0-=Q====-Q==-======= T P PR TET P ©
0.2
- = |
W - ———————————— A
0.0 L L) L] L] T 1
0.0 0.2 04 0.6 08 1.0

1/ Data Dependency Distance

Figure 5.8: Efficiencies of the SIMD Machines for Various Data Dependency

Distances — Asynchronous vs. Synchronous.

Efficiency
Gain

0.0 02 0.4 0.6 03 1.0
1/ Data Dependency Distance

Figure 5.9: The Efficiency Gain for Various Data Dependency Distances

Asynchronous over Synchronous.

92

the conditional instructions for synchronous and asynchronous execution. A no-
operation denotes a disabled instruction (i.e., the condition of the instruction is
false) for a particular processor. Synchronous execution (Fig. 5.10.a) ezecutes
the no-operations in the sense that a no-operation makes the processor wait
while the other processors execute the instruction. Asynchronous execution
(Fig. 5.10.b) skips the no-operation in the sense that a no-operation takes no

time to finish, which is equivalent to skipping the no-operation.

From simulation, Fig. 5.11 shows the efficiency of asynchronous vs. syn-
chronous execution as a function of the probability of no-operation for various
numbers of processors, and Fig. 5.12 shows the efficiency gain of asynchronous
over synchronous execution. From these figures, we note that the no-operations
are a major source of performance degradation because of idle processors. Syn-
chronous execution handles the no-operations poorly such that the efficiency
drops significantly percentage-wise, while asynchronous execution retains good
efficiency even though the probability of no-operation is high. The efficiency
gain increases dramatically as the probability of no-operation increases or as

the number of processors increases.

No-operations come from conditional instructions. If the condition is tight
(i.e., it does not hold for most of the processors), then the probability of no-
operation is high. Figure 5.13 shows a tree-reduction operation, which is a
popular primitive operation in data-parallel programming. In a tree-reduction,
the number of active processors is halved at each iteration until there is only
one left. For N processors, a tree-reduction takes log, N iterations to finish.
The average probability of no-operation is as high as 1 — _1 which is ap-

log, N’
proximately 94% for N = 65536.

93

(bit1, bit0)
©00 o1 @0 @)

RE @ ¢
if (bitl == 0) (® @)

if (bitl == 1) I‘\‘ /E
if (bit0 == 0) (ID/

o

a) 'Execute' No-Operation

/) Inherit Latest Data

/

No-Operation

if (bit0 == 1)

/

J/

%
©
©

4
<3

o J

b) 'Skip' No-Operation

_Qf/-

Figure 5.10: Implementation of Conditional Instructions in SIMD Architec-

tures.

94

0.5

Efficiency

Probability of No-Operation

Figure 5.11: Efficiencies of the SIMD Machines in Handling the No-Operations

- Asynchronous vs. Synchronous.

20 1

AN=32768
16 1 I’
Efficiency
Gain

12 1 N=1024

0.0 0.2 0.4 0.6 0.8 1.0
Probability of No-Operation

Figure 5.12: The Efficiency Gain in Handling the No-Operations - Asyn-
chronous over Synchronous.

95

ifid%2==0)
sum[id] += sumfid + 1]

fid%4==0)
sumfid] +=sum[id + 2]

if (id % 8 == 0)
sum{id]} += sum(id + 4]

Figure 5.13: The Tree-Reduction Operation.

Figure 5.14 shows the efficiency gain of asynchronous over synchronous ex-
ecution for N = 1024 when both the data-dependence distance and the proba-
bility of no-operation are considered. From Fig. 5.14, we see that asynchronous
execution easily outperforms synchronous execution by one order of magnitude
when both the data dependency distance and probability of no-operation are

large.

5.7 The Two-Phase Write Algorithm

We have seen that the sequential semantics of SIMD programs adds an implicit
ancestor to every instruction on every processor — the preceding instruction on

the same processor. However, we also observed that the result of an instruction

Efficiency
Gain 15

Distance of
Probability of 00 Data Dependency
No-Operation

Figure 5.14: Efficiency Gain vs. Data-Dependency Distance and Probability of
No-Operation (N=1024).

may not be used immediately by the next instruction.* If the current instruc-
tion is blocked (e.g., waiting for a remote operand), the execution of the next
instruction can proceed without waiting for the current instruction to finish.
Before the next instruction starts executing, the processor must schedule the
execution of the current instruction and invalidate the variables that may be
modified by the current instruction. Such a problem was addressed many years

ago by the Tomasulo algorithm [Tom67]. This algorithm solved the problem

1Refer to Sec. 5.5 for more details.

97

that the IBM 360/91 machine had due to long pipeline delays in its floating
point unit. It is one of the most sophisticated algorithms (even by today’s stan-
dards) to convert sequential computation into data-flow computation within a

small sliding window of instructions.

The main idea is to separate a write operation of a variable into two phases
— the logical write and the physical write. The logical write is executed first
before the content of the write operation is available: it invalidates the variable
and assigns a unique identifier to the content of the write operation. From then
on, all read requests to that variable (before the variable is overwritten) are
transformed to waiting for that identifier. The next instruction can proceed
after the logical write without waiting for the physical write. The physical
write is executed when the content of the variable becomes available; it is sent
to every processor waiting for the corresponding identifier. Once we adopt the
two-phase write, then head-of-the-line blocking, which enforces sequential exe-
cution, is eliminated; at the same time, the sequential semantics are preserved.
Thus we see that the techniques used to compensate for the long pipeline stages
of floating point arithmetic units in sequential machine may now be used to com-
pensate for the long (network) delays due to remote access in parallel processing

systems.

The two-phase write can be easily implemented in the memory history by
adding an extra busy bit to every outstanding update. A logical write sets the
busy bit to one, representing the fact that an update is taking place, and the
content is not available. A physical write resets the busy bit to zero, repre-
senting the fact that the data in this update is available. References to a busy

update receive the time-stamped address of the update (which serves as the

98

unique identifier), and then get blocked. When a physical write is executed, all

references to the matching identifier are unblocked.

With the two-phase write, the Virtual-Time Data-Parallel Machine converts
the SIMD computation from control-flow to data-flow (within a small sliding
window of neighboring instructions). Data-flow execution recovers more threads
of execution than control-flow [Pin85] [Pin86]; therefore increases the concur-
rency and improves the efficiency of the Virtual-Time Data-Parallel Machine.
Thus we see that we can enjoy the benefits of data-flow execution while avoiding

the current drawbacks of data-flow machines.

5.8 Load Balancing

There are some operations in data-parallel programming that put different loads
on different processors depending on the pid (processor-id) of the processor.
Take the tree-reduction as an example. For an N-processor system, the load on
processor 0 is (log, N}, while the load on processor 1 is zero. For tree-reduction,
the load of a processor is equal to the number of trailing zeros of the processor’s
pid. When we have many tree-reductions, we would prefer to balance the load
as fairly as possible across all processors such that the accumulated load of

every Processor is as even as possible.

Figure 5.15 shows the task graph of a data-parallel program consisting of
a sequence of tree-reductions both with and without load balancing. Without
load balancing (on the left-hand side), processor 0 has more work than the
others and we can hardly take advantage of the no-operations on the other
processors. With load balancing (on the right-hand side), the total amount

of work is the same for all processors in which case skipping the no-operation

99

Without Load Balancing With Load Balancing

00 01 10 11

Figure 5.15: Load Balancing for a Sequence of Tree-Reduction Operations.

100

improves the performance a lot. If the data dependency distance is large, the
longest path of Fig. 5.15 is no longer critical, that is, if the four segments of
tree reductions in this figure were independent of each other, then the left hand
side would still take 8 units of time whereas the right hand side takes 3 units
of time for the tree reductions. Thus we see that proper load balancing is
indispensable in order to make full use of the abundant no-operations and the

large data dependency distance of SIMD programs.

5.9 Global Virtual-Time Algorithm

The algorithm for calculating GVT is very complicated for Time Warp because
of roll-back [Bel90] [Dij80] [Cha82]. Since there is no roll-back in the Virtual-
Time Data-Parallel Machine, the GVT algorithm is so simple that it can be

easily implemented in hardware.

Recall that Global Virtual-Time is defined to be the minimum virtual-time
among all processors. Because min is an associative operation, minimum-
among-all can be divided into several phases. First, divide all into several
partitions, then take the minimum inside each partition, and last take the min-
imum across all partitions. We may furthermore apply the rule recursively if
desirable. Therefore, the GVT algorithm can be implemented by a combining
tree, where the root of every subtree combines the minimum virtual-times of all
its descendants. The GVT lag (defined in Sec. 3.3) is a function of the depth

and of the branching factor of the combining tree.

101

5.10 Interconnection Networks

Interconnection networks play a critical role in parallel processing. Without
proper design, they may become the performance and/or the economic bot-
tleneck of parallel systems. Alleviating the load of interconnection networks

improves the performance and (or) reduces the cost of the system.

In synchronous execution, the worst case of each instruction’s execution time
is important because processors which finish the instruction early must wait for
the last one to finish. The variation of execution time mostly comes from the
remote memory access instead of the computation inside the CPU. Therefore,
the worst case of network delay becomes a primary criterion in the design of
the interconnection network. In synchronous execution, the front-end processor
triggers all processing elements to start executing the same instruction at the
same time. If the instruction in execution needs a remote operand, then every
processor issues a remote request at the same time, which puts a huge load on
the interconnection network. On the other hand, if the instruction needs only
local variables, there is no load on the interconnection network at all during the
execution of this instruction. The interconnection network has either maximum
load or no load at all, which results in either bad performance or low utilization.
In summary, the emphasis in the design of the interconnection network for
synchronous execution is on the worst delay at maximum load, regardless of

the fact that the average delay or the average load may be much smaller.

In asynchronous execution, the average execution time is important. There-
fore, the network design emphasizes the average, instead of the worst, network
delay. Moreover asynchronous execution allows processors to execute different

instructions at the same time; some instructions may need remote operands.

102

but others may not. The dispersion in instruction execution can smooth out the
dramatic load fluctuation, such that the load of the interconnection network is

close to the average load among neighboring instructions much of the time.

Asynchronous execution reduces the requirement (in terms of network de-
lay) and the load of the interconnection network from the worst delay at the
maximum load to the average delay at the average load. With asynchronous
execution, we can consider more liberal medium access protocols on less ex-
pensive interconnection network topologies such as the ATM (asynchronous
transfer mode) protocol [Han89] [Min89] on the DQDB (distributed queue dual
bus) fiber optics network [New88| [IEEE89].

5.11 Conclusions

This chapter addressed some realistic issues of the Virtual-Time Data-Parallel
Machine. The simulation results based on the generalized assumptions in this
chapter are less elegant but more realistic, and thus more convincing than the
analytical results in the last chapter based on some simple assumptions. The
discussion in this chapter addresses the concern about the assumptions made in
comparing asynchronous and synchronous execution; it also serves as a bridge

from the abstract concept to the real implementation.

103

CHAPTER 6

Conclusions and Future Research

This dissertation has addressed the concept, characteristics, hardware support,
performance analysis, and extensions of the Virtual-Time Data-Parallel Ma-
chine. Quantitative discussions are based on some simple assumptions, but in
reality the results are expected to be application dependent. In Chapter 1, we
illustrated that asynchronous execution of SIMD programs outperforms syn-
chronous execution roughly by a factor of (InN) where N is the number of
processors in the system. In Chapter 2, we explained why the distribution
of processors in relative virtual-time is independent of real-time, and then we
showed, with the parallel-redundant model, how to derive the progress rate (r)
by tracking the movement of global virtual-time. Hardware support for asyn-
chronous execution was discussed in Chapter 3. A cost-effective FIFO priority
cache was proposed to implement the incremental backup algorithm for the
memory history, and an upper-bound on the size of the memory history was
derived from the decoupled model. Several models were developed in Chapter 4
to analyze the progress rate of the instruction execution. The non-persistent
model, the cold-start model, the roll-back model, and the infinite-processor
model gave an upper bound, a lower bound, an approximation, and the limit-
ing value of r, respectively. In Chapter 5 some extensions of the Virtual-Time

Data-Parallel Machine were discussed, in particular, our earlier assumptions

104

were relaxed and some miscellaneous issues were also addressed.

In summary, asynchronous execution outperforms synchronous execution
regardless of the assumptions.! With low-cost hardware support for the memory

history, it is quite reasonable to adopt asynchronous execution.

6.1 Architecture Simulator

An architecture simulator has been developed to verify the usefulness of the
Virtual-Time Data-Parallel Machine on real programs. In this simulator, the
assumptions regarding the program behavior in Sec. 1.5.1 (i.e., every instruction
has one remote operand and the location of the remote operand is uniformly
distributed among processors) are removed. Therefore, the performance as
measured from the simulator is more convincing than are the results from the
analysis. However, we still assume that the execution time of instructions is
exponentially distributed. In general, the execution time distribution is problem
and technology dependent. For simple and regular problems, the execution time
distribution tends to be more deterministic than memoryless. Furthermore,
the popular implementations of SIMD architectures are based on synchronous
execution, which ignores those technologies that reduce the average execution

time but increase the worst execution time (such as the cache memory).

From the simulator, we can demonstrate the scalability of the Virtual-Time
Data-Parallel Machine. The scalability of data-parallel machines is defined dif-
ferently from the traditional definition. The traditional definition of scalability
is with respect to the speed-up of running the same program on an increasing

number of processors. If the speed-up increases in proportion to the number

1 Except for some extreme cases, synchronous execution is as good as asynchronous execution.

105

of processors, then the system scales-up well. This definition is not directly
applicable to data-parallel machines where the number of processors is approx-
imately on the same order as the intrinsic parallelism of the program. We
cannot simply increase the number of processors alone because it breaks the
balance between the number of processors and the intrinsic parallelism. When
the number of processors is increased, the problem size must be increased pro-
portionally such that the intrinsic parallelism is also increased proportionally.
If the system scales-up well, then the execution time is almost constant; oth-
erwise, the execution time increases as the system scales-up. Figure 6.1 shows
the execution time required to solve a system of partial differential equations
(i.e., Laplace’s equation) for asynchronous vs. synchronous execution. This
diagram shows that asynchronous execution indeed scales-up well because the
execution time is almost constant, while the execution time for synchronous ex-
ecution increases as the system scales-up. The above example does not imply
that asynchronous execution is more efficient than synchronous execution in
solving PDEs because the execution time of instructions is very deterministic
for PDEs. This example illustrates that asynchronous execution is more general
than synchronous execution in the sense that asynchronous execution achieves
good efficiency even if the execution time is rather non-deterministic. Other
than PDEs, complicated and irregular applications (e.g., VLSI simulation) that
run poorly in synchronous execution may run efficiently in asynchronous exe-

cution.

106

500
K=1 (Synchronous Execution) " a
400 e -
Execution | T
Time PPt
300 1 e -
- o -
200 g -~
100 - K=16 (Asynchronous Execution)
— - ——
0 1 M | 2 e L 3 |
10 10 10 10*

Number of Processors

Figure 6.1: The Execution Time of a Program When the Number of Processors
Scales-Up with the Problem Size.

6.2 Prototype

A prototype of the Virtual-Time Data-Parallel Machine seems to be the most
obvious area for future work. This dissertation provided the analysis and sim-
ulation of the Virtual-Time Data-Parallel Machine, but building a prototype is
the most solid proof of a good idea. The guidelines for the prototype might be

as foHows:

1. Choose a scalable interconnection network with a low average network

delay for small fixed-size messages.

107

2. Add the hardware support for memory history (Sec. 3.2.2) to an existing
but obsolete? RISC micro-processor to reduce the design cost as well as

to make better utilization of the transistors.

3. Put as many processors as possible in one chip in today’s technology to

reduce the manufacturing cost.

A medium-size prototype with one thousand processors can be built within a

reasonable budget.

6.3 Programming Environment

An assembler has been developed for the simulator to execute data-parallel
programs written in assembly language. The assembler allows us to run var-
ious types of programs on the simulator, or to run the same program while
changing the parameters of the simulator. Though the assembler serves well
as a primitive programming environment for the simulator, a high level lan-
guage compiler is mandatory to develop real programs or benchmarks when
the prototype is built. A fancy compiler has become one of the most impor-
tant survival kits for modern architectures. Advanced compiler technology is
especially important for high performance computers where the effective use
of the processors is mainly based on compile-time optimizations. Additionally,
the design and standardization of high-level data-parallel languages is also im-
portant. With a well-designed standard data-parallel language as a baseline,

customization for a particular implementation is hidden inside the compiler.

2An obsolete processor usually consists of much fewer transistors than the latest one. In
terms of absolute processing power, the obsolete processor is inferior to the latest one, but in
terms of processing power per transistor at a fixed clock rate, the obsolete processor is usually
superior to the latest one.

108

Furthermore, a data-parallel language for multi-processor systems should work
well on single-processor systems as well. Thus, the investment in the standard
data-parallel language is protected across a broad range of architectures — from

single-processor to various multi-processor systems.

6.4 Final Remarks

We proposed some minimal modifications to the architecture of the Connection
Machine which converts the way it executes SIMD programs from synchronous
to asynchronous. We have provided a basic but strong foundation for the un-
derstanding of both why and how to improve the efficiency of SIMD programs
by allowing asynchronous execution. The investigation of the Virtual-Time
Data-Parallel Machine is still in its infancy. While this dissertation serves as a

starting point, there remains much work to be done.

109

[Bai88]

[Bar68]

[Bat80]

[Baw84]

[Bel90]

[Ble90]

[Bou72]

(Bry77]

[Cha79]

REFERENCES

W. L. Bain and D. S. Scott, “An Algorithm for Time Synchro-
nization in Distributed Event Simulation,” Proceedings of the SCS
Multiconference on Distributed Simulation, Vol. 19, No. 3, pp. 30-
33, July 1988.

G. H. Barnes, R. M. Brown, M. Kato, D. J. Kuck, D. L. Slotnick,
and R. A. Stokes, “The ILLIAC IV Computer,” IEEE Transactions
on Computers, Vol. 17, No. 2, pp. 746757, August 1968.

Kenneth E. Batcher, “Design of a Massively Paralle! Processor,”
IEEE Transactions on Computers, Vol. 29, No. 9, pp. 836-840,
September 1980.

Alan Bawden, A Programming Language for Massively Parallel
Computers, Master Thesis, Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts, 1984.

Steven Bellenot, “Global Virtual Time Algorithms,” Proceedings of
the SCS Multiconference on Distributed Simulation, Vol. 22, No. 1,
pp. 122-127, January 1990.

Guy E. Blelloch, Vector Models for Data-Paralle! Computing, The
MIT Press, Cambridge, Massachusetts, 1990.

W. J. Bouknight, Stewart A. Denenberg, David E. McIntyre, J. M.
Randall, Amed H. Sameh, and Daniel L. Slotnick, “The ILLIAC
IV System,” Proceedings of the IEEE, Vol. 60, No. 4, pp. 369-388,
April 1972.

R. E. Bryant, Simulation of Packet Communication Architecture
Computer Systems, Ph. D. Dissertation, Department of Electri-
cal Engineering and Computer Science, Massachusetts Institute of
Technology, Cambridge, Massachusetts, 1977.

K. Mani Chandy and Jayadev Misra, “Distributed Simulation: A
Case Study in Design and Verification of Distributed Programs,”
IEEE Transactions on Software Engineering, Vol. 5, No. &, pp. 440~
452, September 1979.

110

[Cha81]

[Cha82]

[Cha91]

[Chr83)

[Dij80]

[Fel90]

[Fel91]

(Fla77]

[Fuj88]

K. M. Chandy and J. Misra, “Asynchronous Distributed Simulation
via a Sequence of Parallel Computations,” Communications of the
ACM, Vol. 24, No. 11, pp. 198-205, November 1981.

K. M. Chandy and J. Misra, “Termination Detection of Diffu-
sion Computations in Communicating Sequential Processes,” ACM
Transactions on Programming Languages and Systems, Vol. 4, No. 1,
pp. 37-43, January 1982.

C. S. Chang and R. Nelson, “Bounds on the Speedup and Efficiency
of Partial Synchronization in Parallel Processing Systems,” Research
Report RC 16474, IBM Research Division, T. J. Watson Research
Center, Yorktown Heights, January 1991.

David P. Christman, Programming the Connection Machine, Mas-
ter Thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Cambridge, Mas-
sachusetts, 1983.

E. W. Dijkstra and C. S. Scholten, “Termination Detection for Diffu-
sion Computations,” Information Processing Letters, Vol. 11, No. 1,
pp. 14, August 1980.

Robert E. Felderman and Leonard Kleinrock, “An Upper Bound on
the Improvement of Asynchronous Versus Synchronous Distributed
Processing,” In Proceedings of the SCS Multiconference on Dis-
tributed Simulation, Vol. 22, No. 1, pp. 131-136, January 1990.

Robert E. Felderman, Performance Analysis of Distributed Pro-
cessing Synchronization Algorithms, Ph. D. Dissertation, Computer
Science Department, University of California, Los Angeles, 1991.

P. M. Flanders, D. J. Hunt, D. Parkinson, and S. F. Reddaway, “Effi-
cient High Speed Computing with the Distributed Array Processor,”
Symposium on High Speed Computer and Algorithm Organization,
University of Illinois, Academic Press, pp. 113-128, 1977.

Richard M. Fujimoto, Jya-Jang Tsai, and Ganesh Gopalakrishnan,
“Design and Performance of Special Purpose Hardware for Time
Warp,” Proceedings of the 15th International Symposium on Com-
puter Architecture, pp. 401-408, June 1988.

111

[Fuj89a)

[Fuj89b]

[Fujg0]

[Gho91]

[Gro88]

[Gro89]

[Gup91]

[Han89]

(Hay82]

[Hil85]

[Hil86]

Richard M. Fujimoto, “Performance Measurements of Distributed
Simulation Strategies,” Transactions of The Society for Computer
Simulation, Vol. 6, No. 2, pp. 83132, April 1989.

Richard M. Fujimoto, “The Virtual Time Machine,” International
Symposium on Parallel Algorithms and Architectures, pp. 199-208,
June 1989.

Richard M. Fujimoto, “Parallel Discrete Event Simulation,” Com-
munications of the ACM, Vol. 33, No. 10, pp. 30-53, October 1990.

Kaushik Ghosh and Richard M. Fujimoto, “Parallel Discrete Event
Simulation Using Space-Time Memory,” Proceedings of the 1991
International Conference on Parallel Processing, Vol. 2, pp. 201-208,
August 1991.

B. Groselj and C. Tropper, “The Time of Next Event Algorithm,”
Proceedings of the SCS Multiconference on Distributed Simulation,
Vol. 19, No. 3, pp. 25-29, July 1988.

B. Groselj and C. Tropper, “A Deadlock Resolution Scheme for
Distributed Simulation,” Proceedings of the SCS Multiconference
on Distributed Simulation, Vol. 21, No. 2, pp. 108-112, March 1989.

A. Gupta, L. F. Akyildiz, and R. M. Fujimoto, “Performance Analy-
sis of “Time Warp” With Homogeneous Processors and Exponential
Task Times,” Proceedings of the 1991 SIGMETRICS Conference,
Association for Computing Machinery, pp. 101-110, May 1991.

Rainer Handel, “Evolution of ISDN Towards Broadband ISDN."
IEEE Network, Vol. 3, No. 1, pp. 7-13, January 1989.

Leonard. S. Haynes, Richard L. Lau, Daniel P. Siewiorek, and
David W. Mizell, “A Survey of Highly Parallel Computing,” IEEE
Computer, Vol. 15, No. 1, pp. 9-24, January 1982.

W. Daniel Hillis, The Connection Machine, The MIT Press, Cam-
bridge, Massachusetts, 1985.

W. Daniel Hillis and Guy L. Steele, Jr., “Data Parallel Algorithms,”
Communications of the ACM, Vol. 29, No. 12, pp. 1170-1183, De-
cember 1986.

112

[Hor90]

[IEEES9)

[Jef85]

[Kle75]

[Kuc68]

[Kuc77]

[Lubg9]

[Mad91]

[Mar91]

[Min89]

[Mis86]

R. Michael Hord, Parallel Supercomputing in SIMD Architectures,
CRC Press, Inc., Boca Raton, Florida, 1990.

IEEE, Draft of Proposed IEEE Standard 802.6 — Distributed Queue
Dual Bus (DQDB) Metropolitan Area Network (MAN), IEEE, New
York, New York, 1989.

David R. Jefferson, “Virtual Time,” ACM Transactions on Pro-
gramming Languages and Systems, Vol. 7, No. 3, pp. 404425, July
1985.

Leonard Kleinrock, Queueing Systems, Volume I: Theory, John
Wiley & Sons, New York, New York, 1975.

D. J. Kuck, “ILLIAC IV Software and Application Programming,”
IEEE Transactions on Computers, Vol. 17, No. 2, pp. 758-769, Au-
gust 1968.

D. J. Kuck, “A Survey of Parallel Machine Organization and Pro-
gramming,” ACM Computing Surveys, Vol. 9, No. 1, pp. 29-59,
March 1977.

B. D. Lubachevsky, “Efficient Distributed Event-Driven Simulations
of Multiple-Loop Networks,” Communications of the ACM, Vol. 32,
No. 1, pp. 111-123, January 1989.

Vijay Madisetti, David Nicol, and Richard Fujimoto, editors, Pro-
ceedings of the SCS Multiconference on Advances in Parallel and
Distributed Simulation, Society for Computer Simulation, Vol. 23,
No. 1, January 1991.

M. Maresca and T. J. Fountain, editors, “Special Issue on Massively
Parallel Computers,” Proceedings of the IEEE, Vol. 79, No. 4, April
1991.

Steven E. Minzer, “Broadband ISDN and Asynchronous Transfer
Mode (ATM),” IEEE Communications Magazine, Vol. 27, No. 9,
pp- 17-24, September 1989.

Jayadev Misra, “Distributed Discrete-Event Simulation,” ACM
Computing Surveys, Vol. 18, No. 1, pp. 39-65, March 1986.

113

[New88]

[Nic84]

[Nic88]

[Nic91]

[Par90]

[PeaT9]

[Pin85]

[Pin86)

[Pot85]

[Rus78]

[Sam85]

[Smig2]

R. M. Newman, Z. L. Budrikis, and J. L. Hullett, “The QPSX
MAN,” IEEE Communications Magazine, Vol. 26, No. 4, pp. 20-28,
April 1988.

D. M. Nicol and P. F. Reynolds, Jr., “Problem Oriented Proto-
col Design,” Proceedings of 1984 Winter Simulation Conference,
pp. 471-474, December 1984.

D. M. Nicol, “Parallel Discrete-Event Simulation of FCFS Stochastic
Queueing Networks,” SIGPLAN Not., Vol. 23, No. 9, pp. 124-137,
September 1988.

David M. Nicol, “Parallel Self-Initiating Discrete-Event Simula-
tions,” Transactions on Modelling and Computer Simulation, Vol. 1,
No. 1, pp. 24-50, January 1991.

Dennis Parkinson and John Litt, editors, Massively Parallel Com-
puting with the DAP, The MIT Press, Cambridge, Massachusetts,
1990.

J. Kent Peacock, J. W. Wong, and Eric G. Manning, “Distributed
Simulation Using a Network of Processors,” Computer Networks,
Vol. 3, No. 1, pp. 44-56, February 1979.

Keshav Pingali and Arvind, “Efficient Demand-Driven Evaluation.
Part 1,7 ACM Transactions on Programming Languages and Sys-
tems, Vol. 7, No. 2, pp. 311-333, April 1985.

Keshav Pingali and Arvind, “Efficient Demand-Driven Evaluation.
Part 2, ACM Transactions on Programming Languages and Sys-
tems, Vol. 8, No. 1, pp. 109-139, January 1986.

J. L. Potter, editor, The Massively Parallel Processor, The MIT
Press, Cambridge, Massachusetts, 1985.

Richard M. Russell, “The CRAY-1 Computer System,” Communi-
cations of the ACM, Vol. 21, No. 1, pp. 63-72, January 1978.

Behrokh Samadi, Distributed Simulation: Algorithms and Perfor-
mance Analysis, Ph. D. Dissertation, Computer Science Depart-
ment, University of California, Los Angeles, 1985.

Alan Jay Smith, “Cache Memories,” ACM Computing Surveys,
Vol. 14, No. 3, pp. 473-530, September 1982.

114

[Su89)

[Thob1]

[Tom67)

[Tri82]

W. K. Su and C. L. Seitz, “Variants of the Chandy-Misra-Bryant
Distributed Discrete-Event Simulation Algorithm,” Proceedings of
the SCS Multiconference on Distributed Simulation, Vol. 21, No. 2,
pp. 38-43, March 1989.

James E. Thornton, “Parallel Operation in the Control Data 6600,”
Fall Joint Computers Conference, Vol. 26, pp. 33-40, 1961.

R. M. Tomasulo, “An Efficient Algorithm for Exploiting Multiple
Arithmetic Units,” IBM Journal, pp. 25-33, January 1967.

Kishor S. Trivedi, Probability & Statistics with Reliability, Queu-
ing, and Computer Science Applications, Prentice Hall, Englewood
Cliffs, New Jersey, 1982.

115

