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ABSTRACT OF THE DISSERTATION

Perceptually Grounded Language Acquisition:
A Neural/Procedural Hybrid Model

by

Valeriy Iliev Nenov, Ph.D.
Doctor of Philosophy in Computer Science
University of California, Los Angcles, 1991
Professor Michael G. Dyer, Chair

Humans acquire natural languages such as English, Spanish or Japanese while immersed in an
environment rich with visual, auditory and other sensory stimuli. It has been hypothesized that the
meaning of words for some basic concepts such as shape, size, motion, and location of objects in
space are grounded in perceptual experiences, whereas more abstract conceptualizations are
constructed as metaphorical extensions of the primitive concepts of objects and events. This thesis
describes the current status of an on-going, large-scale research project called DETE" whose
objective is to explore how language semantics maps to sensory experiences -- a question known as
the "Symbol Grounding Problem". DETE is a modular (neur::l/procedural) hybrid system whose
design was inspired by the known structure/function of brain areas involved with vision, language
processing, attention, and memory. It was developed as a test bed for computer simulations in
language acquisition and is currently implemented in *LISP on the CM-2 Connection Machine, It
accepts three kinds of input: (1) Visual -- a continuous sequence of visual scenes showing the
behavior of simple 2D shaped objects in a square visual field: (2) Verbal -- occasional streams of
English sentences describing the visual scenes; (3) Motor -- sequences of motor commands which
instruct DETE to shift and/or resize its focus of attention (EYE), and to interact with objects by
moving a simple simulated effector (FINGER). The output of the system includes language
generation (word sequences), visual imagination, and simple motor performance (shift of visual
attention and/or movement of the FINGER). Currently, the input-processine modules are

" DETE (pronounced “dectee™) stands for child in Bulgarian -- the author’s native language
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procedural. These procedures form distributed representations of the visual and verbal inputs. The
visual inputs are represented as localized firing patterns over a set of feature maps, which encode
information concerning the shape, size, location, speed, and direction of motion of a few simple 2D
objects (e.g., circular or square “blobs”). The representations of the verbal inputs capture some of
the acoustical features of speech.

DETE’s ability to associate concurrent sequences of visual and verbal inputs is based on a novel
neural network architecture called the KATAMIC sequential associative memory. This neural
network model integrates learning with recognition, and with cue based recall of binary pattern
sequences. It has a number of highly desirable features including: (1) Extremely rapid learning:
Only a few exposures (on average 4 to 6) to a particular sequence are sufficient for learning. (2)
Flexible memory capacity: Multiple sequences can be stored in the network, with a
memory/processor ratio comparable to, if not better than 1hat of other neural net, PDP or
connectionist models. (3) Sequence completion: A short cue can retrieve the complete sequence.
(4) Sequence recognition: A built-in mechanism allows sequence recognition on a pattern-by-
pattern basis, which is used internally for switching from learning to performance mode. (5) Faulr
and noise tolerance: Missing elements (bits within patterns or whole patterns) within a reasonable
amount (30% of the number of 1-bits) can be tolerated. (6) /ntegrated processing: The model is
capable of concurrent learning, recognition, and recall of sequences, a significant improvement over

most previously proposed models that focus only on specific aspects of processing at a time, e.g.,
the PDP class of models.

In a number of computer simulations DETE has proven its ability to acquire meunings of words
in a basic lexicon for its task domain, comprehend simple syntactic constructs (word order,
morphological inflections), comprehend verbal descriptions of spatial and temporal relations
between objects, and answer questions. Currently DETE is being tested on subsets of English,
Spanish, and Japanese. These languages differ greatly in inflectional properties, word order,
syntactic structure, and in how they categorize or “carve up” perceptual reality.

In grounding its primitive symbols in sensory categories DETE differs from pure, autonomous,
top-down symbol systems in which the primitive symbols are merely arbitrary, undefined atomic
tokens. We believe that through computational modeling and simulations this research broadens the
bridge between the current understanding of higher cognitive processes -- lunguage, memory,

attention, and vision on the one hand, and their physical embodiment in the neural systems of the
human brain.
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PART |
An Overall View

Part one of this dissertation provides a general overview. First, it introduces the task handled by the
model -- Perceptually Grounded Language Acquisition (PGI.A). This task involves learning to
understand the meaning of relatively simple language constructs by association of simple visual
scenes (involving moving objects) with accompanying shon « ¢rbal descriptions of these scenes.
Following the task description I introduce the model, called DI 1E*, in general terms and outline its
implementation. DETE is a modular procedural / connection:~ system capable of performing the
PGLA task. A demonstration of the model in action is uscd in part I to illustrate some of its
capabilities. The motivation and goals of this research projcct are also discussed in the light of

related work on symbolic and neural network based systems for Natural Language Processing
(NLP).

" DETE stands for “child” in Bulgarian



1 INTRODUCTION

1.1 Task: Perceptually Grounded Language Acquisition

Imagine you are a child and you are about to start learning your FIRst LANguage, FIRLAN, in the
following way. You are placed in front of a Visual Screen with headphones on. You see objects
moving on the screen while you hear your teacher’s voice in the headphones. You are able to look
a1 different locations on the screen by moving your eyes. You can also zoom in and out by
accommodating your eyes so that you can see the whole screen or only a part of it in which one or
more objects appear. There are two icons on the screen (Figure 1.1): a FINGER which the teacher
or you can move around through a joystick, and an EYE -- your Visual Field (VF) shown as a
shaded circle. The VF has the same dual type of control. The location of the VF on the screen
represents the location at which you are looking. The diameter of the VF can vary and you can see
things only through this aperture -- your window to the world (Visual Screen).

Visual Field -- EYE (retina) FINGER

Visual Screen

Figure 1.1:  DETE’s Visual Screen

Two different examples showing the position of the EYE (VF) & the FINGER on the Visual
Screen (VS): (A) The FINGER is pushing a triangle which is within the VF. (B) The FINGER
's pushing a circle which is out of the VF. There is a small square within the Visual Screen.

Your instruction begins by looking at a series of simple objects and hearing short (one or few
words) descriptions of what you see. First, your teacher presents you with a number of circles with
variable diameters, colors and locations and you hear in the headphones: “FOO™ anytume a new
circle appears (Figure 1.2). You begin to hypothesize that FOO means “circle””.



\

FOO FOO FOO

(circle) (eircle) {circle)

Figure 1.2:  PGLA task 1: learning word meanings

In a sequence of visual frames you are shown circles with difterent diameters, colors” and
locations while you hear FOO. You begin to hypothesize that FOQ means “circle".

But then you see a triangle and hear “FOO” again, Then a square and again “FOQ”. Perhaps
FOO means something like “object” (Figure 1.3).

A
%

FOO FOO FOO

{abject) (object) (object)

Figure 1.3:  PGLA task 2: learning word meanings

You are shown a triangle and fater a square and in both cases you hear FOO. Perhaps
FOO means something like “object”.

The triangle begins to move up. You hear: “FOO BAZ”. “BAZ” could mean “moves”,
“moving”, or it could mean “up” or “moving up”. If you see several objects moving up and hear
always “BAZ” but never hear “BAZ” for moving objects in other directions, then it probably does
not mean “moving”. It probably means “moving up” (Figure 1.4).

BAZ

{moves-up)

" Different colors are indicated in all figures by different texture fill-in patterns.
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BAZ

(moves-up)

Figure 1.4:  PGLA task 3: learning word meanings

Three sequences of visual frames showing successive states of a triangle, a circle, and a
square. All of these objects are moving up.

If objects move in different directions when you hear, “BLITZ”, then it probably means

something like “moves” (Figure 1.5), but it could also reflect some characteristic of the speed of
motion, e.g., fast,

BLITZ BLITZ BLITZ

[moves) (moves) {moves)
Figure 1.5:  PGLA task 4: learning word meanings

Examples of objects moving in different directions. (The arrows do not appear on the
screen. They are an abbreviation for a sequence of images and indicate the direction of

motion,) You hear BLITZ as a description of each situation. BLITZ is interpreted as
"moves”.

Later, in a more advanced stage of your training vou are asked to describe what you see on the
screen by simply having (stationary or moving) objects pointed to by the FINGER on the screen, or

vig a verbal request. The above task is termed: Perceptually Grounded Language Acquisition
(PGLA) task.



A person (or system) capable of learning FIRLAN in the way described above must be able to
perform a number of cognitive operations. These operations fall into three categories: (1) Semantic
-- Operations that are semantic in nature include generalization/specialization, disambiguation,
handling of synonyms, reference, and modifiers. (2) Pragmatic -- Such operations include temporal
inference, attention, memory, action and their interactions. (3) Syntactic -- This category of
operations includes the handling of morphology, word order, conjuncts, relative clauses, ellipses,
and voice. Also, a system that can do the PGLA task must be able to learn a wide range of different
languages, with different syntax, semantics and pragmatics; not just one single language.

1.1.1 Semantics

By “semantics” here I mean extension of objects and composition of meanings into larger
conceptualizations.

» Generalization / specialization:

An essential characteristic of our language skill is the ability to generalize. There are different levels
of generalization. A prerequisite for generalization is the ability to associate names with objects.
Being able to use the same name for similar objects (e.g., “BOO” for all round objects) is a simple
type of generalization. Having seen different objects (e.g., balls, triangles, and squares) and having
learned their names, if later the same objects are referred to by one and the same name, e.g.,
“FOQ, then one should be able to infer that FOO is something like “object”. If a new but similar-
looking object is introduced, the system should then be able call it FOO. This is a higher level of
generalization. An example of possible generalizations (classifications) in the space of shapes is
given in Figure 1.6,

Specialization is the opposite of generalization. If there are several objects thu: belon g to the
same category (e.g., a square and a triangle which are both polygons), in order to distinguish
between the individual objects we need to know the individual names of the subcategories. Then, if
we have a square and a triangle and want to ask someone to point to the triangle, we do not have to
use a description such as “Point to the polygon that has three vertices™. Instead we can simply say “
Point to the triangle”.

When the given language does not provide individual names for the subcategories and we need
to distinguish between several instances of the same type, then we have 1o find the differences
between the secondary features (the primary features define the membership in the particular class),
and generate a composit verbal description. This is called specification. For instance, if there are
two balls (e.g., red and blue) and we want somebody to bring to us a specific one of them, then we
need to specify which one, e.g., “Bring the red ball”.

There is an important theoretical and practical issue here. Different languages carve up
differently the same reality that people perceive through their senses. For instance, English
distinguishes “crackers™ and “‘cookies”, while Spanish has only the word “galleta” which indicates
both crackers and cookies.



obtuse

acute

—  triangle ——
right

equitateral

>[7 BN

— polygon —
(rectilinear) ————— Sguare

rectangle

— quadrilateral -
trapezoid

OBJECT —; — parallelogram
(blob)

ellipse

L oval circle

stain
(spot)

o) 0

Figure 1.6:  Generalizations

Some examples of the levels of generalization within the space of simpie shapes. A
hierarchical categorical structure formed by the verbal label (name) of the categories is
presented to the left. Instances of objects belonging to the ditferent categories are
presented to the right. It is important to notice that this categerical “carving up” of the
various visually perceived shapes is characteristic of the English fanguage and is not
necessarily the same in other languages.

« Ambiguity (Homonyms):

Many natural languages, (¢.g., English, Spanish) often use one and the same word to refer to two
or more things. For instance, in English the word “pot” has at least two meanings: (1} pot =
cooking container (e.g., wash pot), (2) pot = marihuana (e.g., smoke pot). Word or phrase
ambiguity can be also found in the domain of simple-shaped objects moving in a visual screen. For
instance, the phrase “run over™” can mean: (1) moving along a trajectory that is above some object



(Figure 1.7: A), or (2) hitting an object and continuing in the same direction of motion after the hit
tFigure 1.7: B).

A B

"The bail runs over the square” "The ball runs over the square”

Figure 1.7:  Homonyms

The sentence “The ball runs over the square” has two different meanings.
+ Synonyms:

A common language task that children face early in life is the resolution of synonymous words. For
instance, a rabbit is often called “bunny” and “hare™; a turtle is also referred to as “tortoise”.
Children must learn that different words can refer to the same object. Examples of synonyms in
DETE’s task domain are the words that refer to an object with circular shape, e.g., “circle”, “ball”,
and “globe™ (Figure 1.8).

O O 1] O

"ball” "globe” “circle”
Figure 1.8:  Synonyms

In English one can use several synonymous words {o refer to the same object. For
instance, “circle”, "ball”, and “globe” can be used to name an object with a circular shape

* Temporal inference:

You hear “BOO GLITCH" and see a ball repelled off the screen wall. You have already infered that
"BOO™ means ball. Now vou guess “GLITCH” means “bounce”. In another situation you hear:
"BOO WOO GLITCH™ and the ball just moves toward the wall. A few moments later, when there

7



1s no FIRLAN verbal input, the ball bounces. Now you must figure out that “WQO” refers to a
future event like, for instance, the word “will”, as in “ball will bounce”.

» Reference:

You hear “FOO BAZ TI WOO GLITCH”. Assuming that you have learned the meanings of the
individual words (FOO “object” , BAZ “moves”, WOO “will”, GLITCH “bounce”) except the word
TI, can you figure out that T is something like the pronoun “it” and refers to FOO?

+ Modifiers:

You hear “GIB BOO” and see a large red ball. Knowing that “BOO” stands for ball, you figure out
that “GIB” means something like “large” or “red”. You must see several large balls that are
different colors before being able to factor color out and map GIB to size.

1.1.2  Pragmatics:

Pragmatics generally refers to the usage of language in social context. For example indexicals
(“you” vs “me"), talking about the task, e.g., statements (“This is a red ball.”) vs questions
(*Where is the red ball?”) vs commands (“Look at the red ball.™).

+ Attention, memory and interaction:

There are two objects on the screen and you hear “PUM FOO ZI BAZO ... LOO TI”, which, let us
assume, stands in English for “See the object that is moving ... pushit”. To accomplish such a
task requires that you already have learned the meanings of the individual words in terms of actions.
For instance “PUM” means that you should search the visual world for a “FOO” (object) “ZI” (that)
“BAZO” (moves) and if your search is successful, initiate the action “LOO” (push) on the object.
In order for such a complex sequence of behaviors to be performed you need to have the ability to
attend to different parts of the visual screen by moving your eyes and changing the size of your field
of view. You also should be able to maintain a mental image of the target of your search in some
type of a short-term memory until the task is completed.

+ Action;

Performing actions upon the environment is an essential tool for acquiring experiences. To be able
to perform actions such as pushing/pulling (dragging), hitting/blocking (stopping), or
bouncing/catching objects in the environment one needs an effector -- a finger or a hand or
something else. Another way of interacting with the environment is by means of selectively
choosing the type and quantity of information which reaches our senses. This is done by

controlling the state of our sensory organs (e.g., moving our eyes and focusing on different
objects).

+ Memory:

Memory is a critical prerequisite for a system to perform the PGLA task. Memory tasks include, for
instance, the retrieval of the visual representation of a particular object in response to a verbal input,
In other words, the ability to imagine a ball (i.e. bring to working memory the visual representation
of a ball) when the word “ball” is heard. Whenever a sequence of learned words is given, then
appropriate meaning of each word must be retrieved from memory.

* Sensitivity to temporal dvnamics of input:

The duration of various chunks in the verbal input and the pauses between them, together with the
position of stressed syllables in words (prosodic features) are critical for our comprehension. For
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instance, the letter string “importantunderstanding” could be interpreted as “important
understanding” or “import ant under standing”’.

» Ellipsis:

Ellipsis is a linguistic phenomenon which occurs in a stream of sentences when a particular partofa
given sentence (which can be considered to be a variation of the preceding sentence) is missing. If
the given sentence were to be by itself it would not make sense without this part. Ellipsis can occur
in a monolog or a dialogue. For instance: Question 1: “Where is the ball?” Answer 1; “In the
middle.” Question 2: “And the triangle?” (must be understood as “Where is the triangle?”).

1.1.3 Syntax

The syntactic aspect of language concerns its constituent structure, e.g., morphology of individual
words, word order, etc.

* Morphology:

Natural languages often use suffixes or prefixes attached to the stem of a word to eXpress new
meanings. Different languages adopt various methods of modification. In some languages like
Spanish, this is done by using suffixes, e.g., “pelota = ball”, “pelotoh = big ball”, “pelotita = small
ball”, “rapido = fast”, “muy rapido = very fast”, “‘rapidisimo = extremely fast”. An example of the
use of prefix in Spanish is: “bién = good” vs “rebién = very good”. Another Spanish example for
inflected verbs is: “they walked” vs “andaron” -- here the “they” is encoded as a suffix and not a
pronoun placed in front, as in English.

In the scenario set up above, if you hear “BOOL” and see a large ball after having learned that
“BOO” stands for ball, you might want to “hypothesize” that the suffix -L in “BOOL” means
“large™. In a similar situation, if you see a small ball and hear “BOOS”, and here you should be
able to infer that -§ stands for “small”. Then you should be able to generalize the suffix to other
words, e.g., “FOOS” means “small object”.

« Word order;

Word order varies between languages. For instance, in English we say “He did it” while a Spanish
speaker would say “Lo hizo” (it he did).

To be able to understand the meaning of sentences one needs to learn how the word order in a
sentence affects its meaning. For instance, “X on Y” is different from “Y on X” (Figure 1.9).

"ball on square” "square on ball"
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Figure 1.9:  Word order

Two sentences “ball on square” and "square on ball”, which contain the same three words,
have diferent meanings depending on the their word order.

» Conjuncts:

To construct complex sentences, natural languages use conjuncts (e.g., and, or, either, both, etc.).
For instance, in “The ball hit the square and the triangle.” both are hit, while in “The ball hit the
square and the triangle did not.” the “and” groups actions instead of objects.

+ Relative clauses

For instance, “The man hit the car” vs “The man (hit by the car) went to the hospital.” An example
from our setup is: “The ball hit the triangle” vs “The ball (hit by the triangle) went up”.

1.2 DETE: A Neural Architecture

DETE is a modular connectionist system designed to perform the task of Perceptually Grounded
Language Acquisition (PGLA). To perform this task DETE uses the interactions between several
subsystems: visual, verbal, motor, memory, and attentional. DETE’s perceptual/motor modules are
not intended to be neurally realistic models of the visual, the auditory, the attentional, or the motor
systems. Instead DETE contains functional substitutes of these systems which produce outputs in
which the information is encoded in a predefined, but distributed or guasi-distributed form.
However, parts of DETE, and specifically the memory modules, are more neurally realistic than
current parallel distributed processing (PDP) systems (McClelland et al., 1986). Our interest in
perception & motor control is only to the extent that they serve as input 1o, and output from, the
higher “cognitive” systems subserving language processing and acquisition,

As will be demonstrated in Chapter 11, DETE is able to perform several of the tasks described
in the previous section (1.1) including: (1) semantic: generalization, disambiguation (homonyms),
temporal inference (various verb tenses), and interpretation of modifiers; (2) pragmatic: attend to
and act on objects in the visual screen, and learn (memorize) the meanings of words, and (3)
syntactic: learn word order (simple syntactic rules), and morphological inflections of words.

1.2.1 Theoretical Issues

There are a number of theoretical issues which must be addressed in the process of constructing a
system capable of performing the PGLA task.

(1) Environment:

* What are the essential characteristics of the environment {visual and verbal) which will allow a
system, that is immersed in this environment, to develop language skills?

* Is there an optimal or preferred order of experiences needed for the learning of concepts, or
can the system selectively pick up what it needs from the input, effectively creating its own learning
protocol?

(2) Innate Structure:
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* What innate capacities (in terms of available neural structures with their connectivity and
function) are necessary for the emergence of complex behaviors such as language and perceptual
reasoning?

(3) Modifiable Structure:

* How do dynamically modifiable associations of visual and verbal inputs aid in the formation of
concepts and how are concepts represented in the system?

* How much and what can a system, that has such architecture and function, learn from its
experiences?

(4) Interaction of visual/verbal modalities:

*+ What specifically visual and/or verbal structures/processes and interactions are needed to
support vartous aspects (sub-tasks) of the PGLA task?

1.2.2 DETE in action

In its current implementation DETE is not an interactive system in the sense that a user cannot
simply sit in front of the visual screen and chat with DETE in real time. In practice, all of the
experiments were run in a batch mode and the external user control was simulated. In other words,
the training and testing sets were developed off-line and DETE was left to run them overnight.
Later, DETE’s performance was evaluated. However, if we imagine that the time-consuming
computations could be compressed in time, then one could observe the following sequence of
progressively more complex linguistic skills being acquired by DETE.

(1) DETE learns the meanings of words that name individual objects and their features, such as
“ball” and “red”. Its ability to generalize is tested on whether it can “imagine” a ball when it hears
the word “ball” or whether it can “verbalize” the word “ball” when it is shown a ball.

(2) Having learned the meanings of words such as “ball”, “triangle”, “circle”, DETE proceeds to
learn words that describe events in which such objects are involved. For example, DETE leamns the
meaning of the words “moves” and “stands”. Further, it learns about various types of motions

(such as “moves horizontally”, “moves vertically”, and “moves diagonally”). The motions become
y y g Y

more complex and start involving object interactions. As a result DETE learns the meanin g of the
word “bounces”.

(3) In the next stage of language skill development DETE starts putting words together into
short phrases. Here its ability 10 generalize is tested by forcin g it to imagine (in response to verbal
Inputs) objects with their visual features (like “red square”™) which it has never seen before. Also, in
the sume set of experiments DETE is asked to describe with a short noun phrase an object shown on
the screen (e.g., “small red ball”).

(4) The construction of longer word sequences requires that DETE learn simple syntactic rules
regarding word order. DETE’s ability to do that (based on the built-in Morphologic/Syntactic
Procedural Memory) is tested on a simple rule which states that in a noun phrase which is formed
by an adjective-for-size (adj2), an adjective-for-color (adjC) and a noun, the correct word order is:
ad)Z adjC noun (e.g., “large blue square™).

(3) An essential aspect of DETE’s language acquisition is its ability to interact with a user in the
form of questions and answers. To illustrate this aspect, in a series of experiments DETE is taught
to answer simple questions about objects and their features like: Q7. “What is the color of the small
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ball?” (while looking at a small ball) AI: “Red.” (Q2: “Whatis bigger?”’ (while looking at a small
wriangle and a large square) A2: “Square.” In the process DETE learns to compare objects with

respect to their size (e.g., bigger or smaller) and spatial relations (e.g., closer, farther, in-front,
behind).

(6) Understanding propositions about the temporal relations between events is an essential
linguistic ability which the majority of children acquire and bring to perfection by the time they reach
four years of age. One of the several possible linguistic expressions of such relations is provided
by the verb tense. Based on its unique neural architecture (which contains Temporal Memory
Planes allowing for explicit representation of time) DETE learns the meaning (as opposed to the
morphology) of a number of verb tenses including past, present, and future and their perfect forms
for a small set of verbs (e.g., hits, hit, has hit, will hit).

(7) Other linguistic skills on which DETE has been tested include the learning of homonyms and
the acquisition of selected grammatical features typical of different languages. For instance, DETE
can learn gender agreement like in Spanish “la pelota roja” vs “el cuadro rojo”.

1.2.3  Overview of implementation

Both the procedural and the neural part of the model are implemented in *Lisp (Thinking Machines
Corporation, 1988) -- a data-parallel extension of Common Lisp (Steele, 1984) used for
programming the CM-2 Connection Machine (Thinking Machines Corporation) (Hillis, 1985; Hillis
and Steele, 1986). The Connection Machine CM-2 is a massively parallel computer with up to
65,536 individual processors (the version in which DETE was developed has 16K processors).
Each processor contains 64K or 256K bits of local Random Access Memory (RAM) and a single-bit
processing unit. The processors run in a Single Instruction Multiple Data (SIMD) mode. The
communications between the processors are carried over an n -dimensional hypercube
interconnection scheme which permits highly efficient » -dimensional grid communications. The
system software provides a set of very efficient operations over “parallel variables” including SCAN
and SPREAD operations. For instance, if n*m processors are connected in a m x n 2-D grid, the
summation (product, max, etc.) of a parallel variable value in all processors on a row of the grid
(ie. to add together one value from each processor on a row of the grid and distribute the sum into
the rest of the processors on the same row) takes only O(log m) time. An important feature of the
CM-2 is that any subset of its processors can be turned off so that the instructions are only
performed by those processors that are currently active. Every 32 processors share a floating point
processing unit which allows a 32-bit number to be stored across 32 processors (i.e., one bit per
processor). These 32 processors can each access this 32-bit number as if it were stored in its own
memory. The CM-2 uses a serial computer such as a VAX, Symbolics Lisp Machine or SUN-4 as
a front-end machine. The front-end system is used to program the CM-2 using parallel extensions
to the familiar programming languages LISP, C and FORTRAN. For more details concerning
inplementation of DETE, see appendices.

1.3 Motivations and goals

This research was motivated by a set of beliefs about the relationship between language and
perception and the structure of systems capable of such cognitive functions.

1) Interdependency of language and perception: To understand how humans learn Jan guage we
have 10 study the phenomenon of language as part of the complex interactions which we have with
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the environment, including visual, auditory and motor. The idea that visual experiences play a
significant role in the formation of the semantics of natural languages has been independently
suggested by a number of linguists (Fauconnier, 1985; Jackendoff, 1983; Jackendoff, 1987;
Lakoff, 1987; Langacker, 1987). The inverse relation, namely that languages structure (categorize)
our perceptual experiences, has also been shown to exist (Talmy, 1983). It has been hypothesized
that more abstract concepts about objects, events, and relations can be developed from more
concrete, visually based ones through a process of analogy. While it is not clear yet what are the
neural mechanisms involved in analogical reasoning, at this stage of our knowledge we can
examine the possibility that basic language understanding is a result of interactions of high-level
visual and verbal (speech) representations through complex mechanisms of memory and attention.

2) Language and symbolic reasoning are emergent properties of a priori organized and
sufficiently complex nervous systems: Our human ability to reason symbolically is an emergent
property of a highly structured and enormously complex processing system - the nervous system
and more specifically the human brain. It is extremely unlikely that a complex cognitive system
capable of performing muitiple functions, including: recognition, recollection, learning, etc., could
be built via learning from an initially random network. Thus, a great deal of innate structure is
needed.

3) Cognitive systems acquire their knowledge and skills through learning: Humans acquire
almost all of their skills by learning through experience (while in contrast most of the computer
systems that exhibit some cognitive skills have been programmed to do so). Learning has definite
advantages as compared to being programmed. For instance, being in contact with the perception of
the physical world through sensory devices provides automatically information about all constraints
and relations that exist in this world. This eliminates the need to construct by hand a model of the
world -- an approach taken in most symbolic artificial intelligence (AI) systems. In other words, it is
more natural to let the system itself discover the physical constraints and self-organize accordingly,
instead of us (the programmers) having to (1) discover the relations in the physical world, (2) find a
reasonable representation for these relations, and (3) program these into a computer.

The goal of this research is to construct a system capable of learning 1o perform the PGLA task -
- in other words, a system that can associate temporally related visual and verbal inputs, generate
and manipulate internal representations of these inputs and initiate behaviors such as language
output and mechanical interactions with the external environment. The system is a hybrid,
composed of a number of functional modules, some of which are implemented as neural networks
and others as procedures (non-neural implementation). The neural network modules form the core
of the system -- i.e. the various types of memory. In these modules the information is stored in a
distributed (vs. localist) manner. The peripheral sensory devices and preprocessors are designed as
procedural modules. This choice of implementation is based on two factors: (1) The objective of
this research is not to model the visual, the auditory. or the attentional systems in detail. Our main
objective is to model, in a neurally realistic fasion, the memory mechanisms that underlie the
cognitive processing that supports language. (2) Constructing an operational cognitive system
exclusively out of neural modules is computationally very expensive and it was not practical in the
framework of this research.
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1.4 Background

1.4.1 Philosophy

Psychologists, linguists, cognitive scientists, neuroscientists and recently researchers in the field of
Artificial Intelligence (Al) have been proposing and verifying models of systems underlying
cognitive processes at various levels of detail. However, large gaps in knowledge are still present
today. The main one is the lack of adequate knowledge of the relation between the mind and its
abilities for language and thought as researched by philosophers, psychologists, and linguists, and
the brain underlying the mind and viewed with its enormous complexity (neuroanatomical,
biochemical and biophysical) by neuroscientists. In other words, there is still a missing bridge
between mind and brain. There are strong camps of researchers that maintain opposite views of the
relation between mind and brain. On the one hand, philosophers, psychologists, linguists, and
symbolic Al researchers claim that their assumptions (i.e. the physical symbol system hypothesis)
(Newell, 1980) are sufficient to explain the variety of human cognitive behavior, or at least language
and thought. However, even their best attempts so far have proven to work only on toy-problems
and are very fragile and unscalable when it comes to the explanation of human-level phenomena.
On the other hand, neuroscientists and some cognitive scientists tend to view the complexity of the
mind as an emergent behavior of the complex neural (connectionist) systems which underlie it.

Recent developments in neural nets research have provided strong support for such a view
(Smolensky, 1988).

The following sections provide brief descriptions of the symbolic and connectionist views and

an outline of the contribution which this thesis offers to the problem of finding the relation between
mind and brain.

The symbolic model

Theories of natural language processing (NLP) in Artificial Intelligence usually start with a set of
primitives. For example, Conceptual Dependency (Schank, 1972) theory contains: acts --
(PTRANS, ATRANS, ..); cases | slots | relations -- (ACTOR, ABOVE, INSIDE, R
causality -- (ENABLES, MOTIVATES, LEAD-TO, ...); modalities -- (TIME, DURATION,
...). Then these theories try to relate the meanings of words in terms of similar and varying
configurations of the primitive elements and in this fashion to represent more complex sentence
meanings. For example, the concept of “John went home by car” can be represented using the
formalism of the Conceptual Dependence Theory (Schank, 1972; Schank and Abelson, 1977) as a
PTRANS (physical transfer) from an unknown location to a new location -- home. Where the actor
of the PTRANS is John and the car is the instrument of this act.

The proponents of the symbolic approach (Fodor, 1975; Fodor, 1987; Newell, 1980; Fodor and
Pylyshyn. 1988) view the mind as a symbol system and the process of cognition as manipulation of
symbels. Symbols capture mental phenomena such as thoughts and beliefs. Traditionally, the
symbolic approach disregards the brain as the physical substrate that underlies the mind and
postulates that the mind can be described completely in symbolic terms. While the symbolic view of
mind is a useful formalism, we believe that it is only a formalism and it is not implemented in the
brain the same way, for instance, as symbols are implemented in a conventional computer (memory
locations with their addresses or values). A symbol system as defined by Harnad (Harnad, 1989) is:

(1) a set of arbitrary "physical fokens™ (scratches on paper, events in a digital computer, etc.) that are
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{2) manipulated on the basis of “explicit rules™ that are

(3) likewise physical tokens and strings of tokens. The rule-governed symbol-token maniputation is based
(4) purely on the shape of the symbol tokens (not their “meaning”), i.e., it is purely syniactic, and consists of
(5) “rulefully combining” and recombining symbol tokens, There are

{6) primitive atomic symbol tokens and

(7} composite symbol-token strings. The entire system and all its parts -- the atomic tokens, the composite tokens, the
syntactic manipulations (both actual and possible) and the rules -- are all

{8) "semantically interpretable:” The syntax can be systematically assigned a meaning (e.g., as standing for objects, as
describing states of affairs).”

The main thesis of the symbolic approach is that the symbolic level (by which the symbolists
mean the mental level) has its own functionality and is independent of the specific physical
realizations of the symbols. The concept of an autonomous symbolic level conforms to general
foundational principles in the theory of computation and applies to all the work being done in
symbolic Al. This is the branch of computer science that has so far been the most successful in
generating (hence explaining) intelligent behavior. For a good example of the power of the
symbolic approach, when applied to the understanding of natural language, see (Dyer, 1983).

The connectionist model

In parallel with the symbolic explanation of the mind, another approach exists, which has been at
times more (and at times less) attractive. This approach was pioneered by Rosenblatt (Rosenblatt,
1962} and is presently known as “connectionist”, “neural network”, “dynamical systems” or “PDP”
approach. It was almost forgotten for 15 years, mostly due to Minsky and Papert’s negativistic
prospect on the field (Minsky and Papert, 1969) and was recently re-born as a general theory of
cognition and behavior (McClelland et al., 1986). According to connectionism, cognition is not
symbol manipulation but processing of dynamic patterns of activity in a multilayered network of
nodes or units with weighted positive and negative interconnections. The patterns change according
to internal network constraints governing how the activations and connection strengths are adjusted
on the basis of new inputs (e.g., the “delta rule” and “back-propagation”) (McClelland et al., 1986).

The result is a systern that learns by experience, recognizes patterns, solves problems, and can even
exhibit motor skills.

Scope and limits of the two approaches

There is considerable overlap in the scope of the symbolic and connectionist approaches; however,
neither one has gone much beyond the stage of “toy” tasks toward life-size behavioral capacity.
More specifically, the symbolic approach seems to be better at formal and language-like tasks. Qur
linguistic capacities are the primary examples here, but many of the other skills we have (e.g.,
logical reasoning, mathematics, chess-plaving, perhaps even our higher-level perceptual and motor
skills) also seem 1o be svmbolic. However, there ate some major unaddressed and unresolved
1ssues in the symbolic area. These include: 1) What are the meanings of the primitive elements if
any? 2) Why is a given set of primitives more appropriate than another? 3) How are the primitive
elements themselves learned? These issues are part of a larger problem which has been the object of
extensive discussions recently, namely the issue of the nature of the symbols in a symbolic system.
The symbolic approach also suffers from a severe handicap, one that may be responsible for the
Imited nature of its success to date (especially in modeling human-scale capacities) as well as the ad
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hoc nature of the symbolic knowledge it attributes to the “mind” of the symbol system. This
handicap has been noticed in various forms since the advent of computing and one manifestation of
it is termed the “symbol grounding problem” (Harnad, 1987).

Connectionist systems, on the other hand, are better at sensory, motor and learning tasks.
However, they seem to be at a disadvantage in attempting to model higher cognitive functions
(Pinker and Prince, 1988). Nevertheless, no connectionist system so far has been able to achieve
the power of symbolic systems when it comes to handling language or thought (e.g., logical
reasoning, planning, etc.). There are at least three main reasons for the current impotence of the
connectionist approach.

1) Structure: Connectionism is still in its infancy. Connectionist models lack complex
structure comparable to the structural architecture of the human brain. It is my belief that the brain
circuitry (as described by neuroanatomists) is there with a purpose and that evolution has provided a
good (if not optimal) solution to the efficiency problem. Thus, one would expect that behavior
comparable to humans can be achieved with at least comparable complexity of the structures
underlying it (especially if we are not only interested in systems that exhibit only a small set of
behaviors but rather in systems having the large gamut displayed by humans).

2) Common language: There is no common language which can be used to map
appropriately the behavior of the neural systems (usnally described in mathematical and statistical
terms) to the behavior of symbolic systems. This is basically an issue of interpretability. It is
possible that such a scientific language will emerge gradually and in paralle! with the successful
charting of the range of behaviors observed in neural models and also due to the increasing interest
from both camps to find such a communication medium.

3) System Neuroscience: Many connectionists are not interested in building a modet of the
brain as a system (i.e. try to explain its behavior using knowledge of its intrinsic subsystems).
Instead, due to a lack or neglect of neuroscience knowled ge, they build models of the brain as data
(i.e. attempt to fit an explanation to the human’s intelligent behavior using that behavior as data that
needs to be fitted -- explained by a model), and any model that fits the data is acceptable for them.
While it is true that neuroscience knowledge may still be insufficient to construct a detailed model,
an advantageous approach will be to at least incorporate as much as it is known and therefore work
with a “grey-box’ model instead of a completely “black-box”.

1.4.2 Methodology

There are three approaches to modeling complex systems. (1) “Black box” modeling, (2)
Isomorphic modeling, and (3) “Grey box” modeling.

(1) "Black box™ model: -- A “black box” mode! of a system is based only on observations of the
system’s behavior in response to various inputs. This approach is also refered to as “functional” or
“top-down™ -- model the Input/Qutput behavior without regard to brain. In the terminology of
dynamical systems theory, such approach is called “modeling of data”. The main problem with this
approach is that, in disregarding completely the internal structure of the system, it does not provide
unique solutions, since there are many ways to fit a curve to a given set of data. Despite this
shortcoming, such models are often very helpful.

(2) Isomorphic modeling: -- The other extreme approach to system modeling is to take into
account all structural and functional details of the system. In other words, to construct an
isomorphic model of the system. This approach is also refered to as “structural” or “bottom-up” --
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copy known neurocircuitry and see what it can do, without incorporating top-down constraints from
the task/domain. Unfortunately, for complex systems such as the human brain, this approach is
impractical since relatively little is known about the detailed neurocircuitry within and among
various brain areas. Also, little is known about the neurochemistry underlying the generation,
modulation and communication of signals in the brain.

(3) “Grey box” modeling: -- An alternative approach, which lies between the two previously
mentioned, is to regard the system as a “grey box”, in other words to use not only the information
about the input/output behavior of the system but also whatever details of the structure and function
of the system are available to the extent that they can be incorporated in the model.

In DETE I have taken the third approach, motivated by the belief that complete understanding of
the phenomena of language and perception cannot be achieved without taking into account the neural
mechanisms that underlie such phenomena. I also believe that the temporal dynamics of the visual
and verbal processes is important for understanding cognitive processes. DETE is sensitive to the
duration of words (how long to say it), to pauses between words, and also to the temporal
dynamics of the visual input. In contrast, both symbolic and PDP models usually apply a fixed
amount of computation to each input before going onto the next input.

Any attempt to model the brain is constrained to its level of detail. Examples of such levels of
detail are: (1) the behavioral level (language, reasoning, perception, etc.), (2) the neural systems
level (visual, verbal, attentional, memory, and motor), (3) the cellular level (various types of
neurons and the circuits in which they are involved), (4) the subcellular level (various proteins,
receptors, membrane channels, neurotransmitters, etc.) (Sejnowski et al., 1988). Individual
modules in DETE are modeled at different levels of detail. For instance, the sensory devices of
DETE, which receive and preprocess the visual and verbal inputs, are modeled only at the
behavioral (functional) and neural systems levels. The modeling of the memory modules in DETE
is closer to the cellular level. Also, an attempt has been made to interpret some aspects of these
neural networks at the subcellular level (see section 13.5).

A number of simplifications have been made even for the modules in which significant attention
has been paid to the correctness of the functional and structoral details. A basic simplification in the
construction of our model is the discretization of the naturally analog (i.e. continuous) information
processes in the brain. Also, a number of major characteristics of the visual and verbal systerns are
disregarded in the model. Some of them are: (1) In the visual system -- the existence of two retinas
and two brain hemispheres, and thus, the ability for stereoscopic vision as well as the ability for
perception of textures. (2) In the verbal system -- the information which is normally conveyed by
the prosodic qualities of spoken language (e.g., stress, pitch, etc.) and which is missing in written
language (the type of input to be used in DETE). This simplification prohibits us from studying
such linguistic phenomena as prosody (which is important in early language acquisition).

1.5 Guide to the reader

The material covered in this dissertation is organized in four major parts. Each part consists of a
number of chapters. There are aliogether 14 chapters. Supporting data is given in 5 appendices.

112 figures and 23 tables have been used to illustrate important points and experimental results
throughout the thesis.

Purt one provides a general overview of the task and the system.
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Chapter 1 introduces the task of Perceptually Grounded Language Acquisition. This is followed
by a description of the model in general terms and an outline of its implementation. A
demonstration of the model in action is used to illustrate some of its major capabilities. The
motivation and goals of this research project are discussed in the latter part of the chapter in the light
of related work on symbolic and neural network based systems for Natural Language Processing,

Chapter 2 gives an overview of DETE. The structure of the system is presented as a block-
diagram and the architecture, function and information representation in each module are described
in general terms. The visual and verbal modalities of the environment in which DETE operates are
also described here,

Part two focuses on details of the architecture and functions of the major subsystems in DETE
including the visual, verbal, motor, selective attention, and memory modules. Examples of the
input/output behavior of each subsystem, the representations used and the mechanisms to construct
these representations are also presented.

Chapter 3 gives details of the structure and function of DETE’s visual system. The
representations of five basic visual features of an object (shape, size, color, location, and motion)
produced by visual feature extractors working in parallel on the visual input, are discussed and the
algorithms for these procedurally implemented modules are presented.

Chapter 4 describes the verbal subsystem in DETE. It gives details on the representation of the

verbal input (gra-phonemic representation), and presents the algorithms for the generation and
decoding of such representations.

Chapter 5 outlines the temporal relations (dynamics) between the visual and verbal modules of
DETE. A temporal hierarchy of processing in these subsystems is presented and supported by
evidence from electrophysiology and psychophysics. '

Chapter 6 focuses on the motor subsystem. It describes the choice of representations of the
state of DETE’s effectors -- the EYE and the FINGER. The variety of motions in which these
effectors can be involved are also discussed here.

Chapter 7 is concerned with the mechanism for selective attention. The components of this
neurally inspired (but procedurally implemented) system are described and the specific
representation of the selective attention in DETE is discussed.

Chapter 8 presents the basic memory mechanism used in DETE -- the KATAMIC sequential
associative memory. The results of a detailed numerical study of the dynamics of this memory
mechanism and its limitations are summarized here.

Chapter 9 focuses on the specific tvpes of memory in DETE. The choice of memory
mechanisms was inspired by numerous neuropsychological and physiological studies that have
characterized what memory types are necessary for supporting language and thought processes in
the brain. In the context of this chapter memory 1s defined as the physical traces left from
experiences in the brain and the mechanism for storing and retrieving of these traces (i.e. for
“converting” of some activity into a trace and vice versa). Each of the memory types is discussed
here in terms of its dynamics, including sensory modality, storage mechanism, capacity, recall and
recognition, consolidation and forgetting.
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Chapter 10 puts together the complete system of DETE. It provides details of the system
architecture, a qualitative and quantitative (numbers of neural elements used, etc.) description of the
individual modules and their connectivity patterns.

Part three provides an evaluation of the performance of the complete system.

Chapter 11 gives details of the various experiments performed with DETE to evaluate its ability
to perform the PGLA task. It begins with learning of single words for objects, their features and
various events in which these objects can be involved. Then DETE’s ability to generalize its
knowledge to new instances is tested. This is followed by a question answering session in which
DETE describes in one or a few words visual features of individual objects. DETE’s ability to learn
spatial and motion relations between two objects is tested next. Finally, this chapter describes how
DETE can acquire the meaning of various verb tenses including present, past, and future -- in their
simple and perfect forms.

Part four compares DETE with other models and provides neuropsychological and
neurobiological insights into the cognitive processes in humans.

Chapter 12 compares DETE along several functional dimensions to both classical symbolic
models for natural language processing (NLP) and connectionist models (localist and distributed).
A substantial part of this chapter is devoted to a comparison of the KATAMIC model to Kanerva’s
Sparse Distributed Memory (SDM) as well as to Elman’s Simple Recurrent Network (SRN) -- two
neural network models which are related to the KATAMIC model.

Chapter 13 provides a parallel between the various functional modules of DETE and various
brain structures which are known to be involved in the language and visual processing of the PGLA
task in humans. Possible brain counterparts of DETE’s perceptual, attentional, and memory
mechanisms are discussed. This chapter also makes an attempt to map the KATAMIC memory to
the cerebellar cortex in structural and functional terms. As a result, a novel theory of cerebellar

cortex is proposed and supported by substantial evidence from neurophysiology, neuroanatomy,
and neurochemistry.

Chapter 14 describes the current status of this research project and outlines a number of
possibilities for future extensions of the system. It also summarizes the whole project and discusses
its major contributions.

Appendix A provides details of DETE’s implementation on the CM-2 Connection Machine.
Some of the advantage of using the CM-2 and the *LISP programming language are pointed out
here. Also, provided is a summary of DETE’s code and the usage of the CM-2 memory.,

Appendix B gives examples of *LISP code for the basic modules of DETE including the Visual

Feature Extractors, the KATAMIC sequential associative memory, and the verbal pre- and post-
processing routines.

Appendix C contains code for selected experiments with the KATAMIC model and with DETE.
1/O examples of some of the experiments are also given here.

Appendix D gives details of the routines used for monitoring of the models behavior,

Appendix E discusses possible neural network implementations of some of DETE’s procedural
modules.
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2 SCOPE OF TASK AND OVERALL DETE ARCHITECTURE

This chapter presents an overview of DETE. The structure of the system is shown as a block-
diagram and the architecture, function and information representation in each module are described
in general terms. The visual and verbal modalities of the environment in which DETE operates are
also described here.

2.1 Input and Output Behavior

2.1.1 Input
DETE accepts three types of inputs -- visual, verbal and motor.

The visual input is composed of series of visual scenes (movie frames) containing blobs --
simple-shaped objects such as circles, triangles or squares. These visual scenes are projected on a
square visual screen of the size 64 by 64 pixels (i.e. a total of 4096 pixels). I will refer to this visual
set-up as the Visual Screen (VS). DETE looks at the VS through a circular aperture -- retina (EYE
or Visual Field) with a variable diameter. The center of the retina can be positioned anywhere on the
screen and the diameter can vary from a few pixels to covering the whole VS. The circular retina is

composed of neurons arranged in a square grid and each neuron corresponds to one pixel in the VS
(i.e. retinotopic mapping).

The verbal input is composed of occasional utterances containing descriptions of current, past or
future visual scenes (frame sequences), or questions demanding verbal responses (description of
scenes), Or requiring motor responses (manipulation of objects in the scene).

The motor input comes in the form of externally guided motions of DETE's motor devices -- an
EYE and a FINGER. Two simulated joysticks are used. The first one controls the position of the
EYE and the size of the retina by issuing commands such as: move_eye [from (x,, Vo) to
(x1,y1)] and zoom_retina [from d, to d;]. The second joystick controls the position of the
FINGER on the visual screen and the type of effect it has upon objects in the VF. Typical
commands for controlling the finger are: move_finger [from (x,,ys) to (x1,y:i)),
push_object [obiect A from (Rer¥o) to (x1,y101, hit object [ob*zct A at
(Xor¥e) ]

2.1.2 Tasks
The model is tested in three different ways:

1) Verbalization task: A visual scene is shown to DETE and it is asked to generate a verbal
description of the scene. For instance, DETE sees in the center of the Visual Screen a medium-sized
red circie and a small blue square above and to the right of the circle. DETE is asked the question
“What is this?” Depending on its prior learning and experiences in answering questions of this type
1t can produce several different answers (Figure 2.1). During the process of verbal answer
generation DETE’s attention (location of retina and its size) can follow different trajectories. During
Jearning, DETE’s attention may be controlled by the teacher; however, during performance, DETE’s
attention is under autonomous control. In the current implementation, the order in which attention is
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switched from one object to another is determined by the objects size. First, DETE attends to the
largest object on its retina, followed by the smaller in size, etc. This control is implemented
procedurally.

Visual Input

Varoal lnput "What do you see?"

retina
L]
L]
\
\
]

1

"Smalf blua square up right. Medium red circle in the center."
—* time

JA V@Tb‘:ﬁ Sulput

&

"Two objects. Medium red circle in the center. Small blue square up right."”

= time

Verunl Duipul

o2

Figure 2.1:  Tasks: Verbalization
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Schematic drawing of the sequence of events involved in the generation of two different
verbal descriplions of the same visual scene. A;: DETE's attention is focused first 1o the
square and then to the circle and as a result the following verbal response is produced
“Small blue square up right. Medium red circle in the center”. B: DETE focuses its
attention to both objects at the same time after which it shifts it to the larger object (the
circle) followed by the smaller (the square) and produces the following utterance “Two
objects. Medium red circle in the center. Small blue square up right”.

2) Imaging task: The user gives DETE a verbal input and observes the internal image (or
sequence of images) generated in its “mind’s eye” in response to this input. For instance, DETE
hears the sentence “Red triangle moves up, hits blue circle and bounces”. This verbal input causes a
sequence of “mental images™ to be generated in DETE’s “minds eye” (Figure 2.2).

Verdal lnpul "Red trlangle moves up, hits blue circle and bounces™

& &

"RED" "TRIANGLE" "MOVES" "Up"

——®= time

&)

"HITS" "BLUE" "CIRCLE" "and BOUNCES"

— time

Figure 2.2:  Tasks: Imaging
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Schematic drawing of the sequence of “menta! images” generated in DETE's “minds eye”
in response to the verbal input “Red triangle moves up, hits blue circle and bounces”. The
word "RED" induces the image of a blob {of the shape most commonly seen by DETE) with
red color. “TRIANGLE" specifies the shape (overrides the default shape). “MOVES"
activates the representation of motion (shown here schematically by an arrow) with its most
common (default) speed and direction (e.g., right). "UP” further specifies the direction of
motion (overrides the default motion). “HITS” induces the representation of another biob
located on the motion path of the triangle. The words “BLUE", “CIRCLE" further specify
this blob. *“BOUNCES" induces the representation of a bouncing event which is
characterized by an abrupt change of motion direction of an object when it contacts
another object (shown as the arrow pointing down).

3) Motion task: Generation of EYE and FINGER motions in response to verbal commands or
internal (joystick) signals. For instance, suppose there are three objects on the screen, a blue circle,
a red triangle and a red square. DETE hears “Push left the red square”. The sequence of actions
performed by DETE’s EYE and FINGER are shown schematically in Figure 2.3.

Vieus) (npul Sequence of EYE & FINGER motions

"PUSH" "LEFT" “the RED" "SQUARE"

Varba! Input "Push left the red square!”

Figure 2.3:  Tasks: Motor actions

The sequence of words causes the following 10 happen. The word "PUSH" focuses the
attention on the FINGER (it is ready to move from its default position -- iower left-hand
corner is the most common direction shown by the dimmed finger/hand icon, but does not
move until there is something to push}. Also, the visual attention initially encompasses all
objects. “LEFT" causes an adjustment in the motion direction of the FINGER (i.e.
overrides the default direction). "THE RED” reduces the focus of atiention 1o the two red
objects, the triangle and the square. "SQUARE” further focuses the attention. At this
stage the verbal input is complete and a single object is being attended to. Once the
object of the action is found the FINGER moves accordingly. This creates the necessary
and sufticient conditions for the event of pushing to take place.

2.2 Learning tasks and relation of learning to performance

DETE’s performance on specific tasks is not static -- it improves with experience and new more
complex tasks can be learned on the basis of simpler, previously learned tasks. For instance, DETE

does not know at first how to associate a word with an object, or how to follow a verbal command.
These abilities must be learned.
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In DETE there is not a fundamental separation between learning and performance (like in many
PDP models). Instead, learning and performance are often interleaved. Also, learning simpler
tasks helps DETE in learning more complicated tasks. For instance, As will be seen in Chapter 11,
after DETE has learned the meanings of the words “circle”, “square”, “triangle”, “red”, “green”,
“blue”, “small”, “medium”, and “large”, now it can further learn the correct word order in a noun
phrase containing words for objects and adjectives for color and size.

2,3 Architecture

DETE's architecture is shown as a block diagram in Figure 2.4. A list of the individual modules is
presented below. For a detailed description of their function and connectivity see Chapters 3, 9,

and 10,

.. ball hits the wall ...

r Word
Encoding
Mechanism Decoder
(WEM) (MCD)
~-§- . Selective Auention System Y
Focus of S Input
Attention phi el Segmentation
Master e Mechanism
(FAM) SR (ISM)
5. 2 !
g; 5 Visual
33 ] Feaiure
22 B Exiractors
| £ (VEFs) @)
p BEN ¢
Interlcaved STM & LTM
Temperal
] Varpal Metor Visual Memory
Hidden M;:'\:;y 32'::!?' Association Planes
Specch tioxicon & MSPM) wcw T:T&r)y {TPs)

Verbal Movon
Aruvily State Menta)
Dec oder Decoder Imagery
(VAD; (MSD}
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Figure 2.4:  Block diagram of DETE

Two separate icons are used to show how each of DETE's modules has been
implemented (procedurally or heurally).

2.3.1 Input devices

Information from the external world can enter DETE through three input devices (sensors): 1) retina

-- a visual input device, 2) Word Encoding Mechanism (WEM) -- a verbal input device, 3) Motor
Command Decoder (MCD) -- a motor input device,

1) The retina (EYE). DETE looks at its visual world through a circular aperture, a retina (upper
right corner of Figure 2.4). The size of this aperture is variable. It is usually smaller than the size
of the visual world to which DETE is exposed, but can vary from a minimal size of a few pixels to a
maximal size which is equal to the size of the visual world (Figure 2.5). The control over the size
of the retina is done externally by a teacher durin g learning.

.- Visual Field - EYE {retina)

-
-
-

e - - . Visual Screen

Shifting the retina

Zooming the retina

Figure 2.5:  Functions of DETE’s retina

Three scenes (visual frames) in which the retina has different positions and sizes.
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The location of the retina on the screen is also directed externally by a joystick which is
controlled by a teacher (Figure 2.6). In a natural setup this would correspond to a parent pointing
something out in the environment while at the same time giving a verbal clue like “Look here”.
Children have the innate ability to move their gaze to different locations. In DETE, for the sake of
simplicity, initially this action is performed by an external mechanism. In other words, initially the
teacher moves DETE’s retina and later DETE learns to move it on its own or in response to a verbal
command in FIRLAN. If there are no verbal instructions, DETE’s retina moves around from object
to object at random exploring the Visual Screen.

_. reting

Joystick command:
(moyo_to(x-n‘ yub) and zoom{gec)) N E

7

Verbal Input: —-

“Look at the centsr”

Novelty driven:

{n new object sppenrs in the ‘

VF and the EYE "focuses” on I

Figure 2.6:  Retinal control

DETE can move its retina from point A to point B in response to: (1) external command
provided by the teacher through the joystick, (2) verbal command given by the teacher,
€.g., “Look at the center”, (3) at random during the process of unsupervised exploration of
the environment.

Dy The Word Encoding Mechanism (WEM) is a procedural module, i.e. non-neural, (see
Appendix B.5) which takes a string of words (sentences) entered through a keyboard or read in
from a text file. It encodes the text in a sequence of binary patterns called gra-phonemes. There
is one gra-phoneme for each letter of the English alphabet. Each gra-phoneme is a five-step long
sequence of 64 bit binary patterns. In other words, a gra-phoneme has a spatial and a temporal
dimension (64 bits and 5 steps respectively). The five patterns forming a particular gra-phoneme
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are all the same while the patterns of different gra-phonemes differ. The representation is called gra-
phonemic because some of its features (e.g., the number of elements -- gra-phonemes) correspond
to the number of graphemes (letters) in the alphabet, whereas, other features encode phonemic
aspects of language. For instance, in each binary pattern representing a gra-phoneme there are a
number of 1 bits (the rest are 0) whose positions in the pattern in general encode frequency formant
positions in corresponding phonemes. Words are represented as sequences of gra-phonemes
separated by transition patterns. Sentences are represented as sequences of words separated by
longer transition patterns (randomly generated patterns of Os and 1s with 1-bit-density equal to the
1-bit-density of the gra-phonemes). The purpose of using a gra-phonemic representation of the
verbal input is to provide DETE with a distributed representation of the verbal input which has the
potential for encoding some prosodic features of speech. For instance, by having letter sequences,
DETE can learn something like an intonation pattern, e.g., “BIIIIG” means very big, “SMAAAL”
means very small.

3) The Motor Command Decoder (MCD). A procedural mechanism (upper middle of Figure
2.4) which allows the teacher to control the position of the retina on the screen and its diameter via a
joystick. It also allows the teacher to control the position of the FINGER on the screen. This
mechanism also conveys the state of the retina (i.e. location and aperture size) to the motor plane in
DETE.

2.3.2 Selective Attention System
The Selective Attention System (SAS) (middle of Figure 2.4) consists of two components:

1) Focus of Attention Master (FAM). The FAM contains a continuously running clock (an
internal oscillator) which produces a spike (action potential) once every 5 time steps. The phase of
this clock can be shifted back or forth. In other words, a given tick of the clock can be delayed by 1
1o 4 steps (i.e. the phase of the FAM is shifted back) or it can come 1 to 4 steps sooner (i.e. the
phase is shifted forward). After a phase shift, the clock continues to oscillate with the same
frequency but with its new phase. Each tick of the FAM is used to open a functional time window --
the Temporal Attentional Window (TAW) which is one step long. The TAW controls a number of
processes in the memory modules, including whether information should be stored in the short term
memory (STM) or not. Under this scheme, DETE cannot handle more than 4 distinct objects at
once on the retina (since there are only 4 possible delays of phase).

2) Input Segmentation Mechanism (ISM). The ISM is an array of neural elements of the size
64*64. It takes the input from the retina and segments out the individual objects while preserving
their topographical relations. At the output of the ISM each object is represented by a set of
oscillating neurons. All neurons activated by a given object oscillate in phase, while the oscillations
among different objects are out of phase. An object that is located in the middle of the retina is phase
locked with the FAM clock while the farther away from the center of the retina an object is, the more
it lags behind the FAM clock.

The SAS 1s implemented as a procedural module that takes three types of inputs: (1) Input from
the motor control decoder -- this input carries information about the position and size of the retina.
(2) Input from the retina itself -- this input carries information about the objects that appear on the
retina. (3) Input from the memory system -- this input drives the state (phase) of the Focus of
Attention Master. The function of the selective attention system is described in detail in section 7.2.
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2.3.3 Visual Feature Extractors

This subsystem, (middle right of Figure 2.4) consists of a set of five feature extraction modules.
The modules interact with the selective attention subsystem (that allows DETE to focus on one
object at a time) and extract (in parallel) the visual features of shape, size, color, location and motion
(represented as direction and speed). The outputs of these filters are further associated in the visual
parts of DETE’s memory. Detailed description of the visual feature extractors and the
representations of the visual input that they generate is given in Chapter 3.

2.3.4 Memories

The memory modules of DETE (see Figure 2.4) are described in detail in Chapters 8, 9, and 10.
All memory modules are implemented as neural networks based on a novel sequential associative
memory architecture (see Chapter 8). They include:

(1) Verbal Memory (VM). Contains memory traces of the verbal inputs.

(2) Visual Feature Memories (VFMs). Contain memory traces of the visual inputs.
(3) Motion memory (MM). Contains memory traces of motion trajectories.

The Visual and Verbal Memories are further subdivided into:

a) Short-term memory (STM) (a.k.a. primary or iconic memory). It is used as a small
capacity buffer for input information in all modalities. It is implemented in DETE as a type of
sequential associative memory.

b) Long-term memory (LTM). It contains traces of past experiences of DETE which can be
unique episodes or well rehearsed items (e.g., the LEXICON in middle of figure 2.4). Like the
STM it is also implemented as a related type of sequential associative memory. The LTM comes in
several varieties which are discussed in section 9.2, e.g., (a) Declarative Memory (DM) specialized
as Semantic Memory (SM) and Episodic Memory (EM); (b) Procedural Memory (PM). Both the
STM and the LTM are partitioned into Verbal and Visual memories.

¢) Temporal Memory (TM). This is a special purpose neural network which consists of a
set of Temporal Planes (a total of 8) and is used in the learnin g of a number of linguistic tasks such
as verb tenses understanding. It contains visual and verbal components as well as STM and LTM
components,

A block diagram of DETE’s memory architecture is shown in Figure 2.7. For simplicity, only
two out of the five Visual Feature Memories are shown, together with only two out of the eight
Temporal Memory Planes. The STM and LTM components of each Feature Memory are not
shown. The four motor memories are connected in a similar way and therefore they are not shown
on the figure. The connectivity patterns are drawn schematically.
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Block diagram of DETE's memory architecture. The abbrevlations in the figure refer to:
VF(EYE) -- Visual Field; VS -- Visual Screen; FAM -- Focus of Attention Master; ISM — Input
Segmentation Mechanism; WEM -- Word Encoding Mechanism: SFE(P,M) -- Shape
Feature Extractor (Plane, Memory}; CFE(P,M) -- Color Feature Extractor (Ptane, Memory);
LFE(P.M) -- Location Feature Extractor (Plane, Memory); MFE(P,M) -- Motion Feature
Extractor (Plane, Memory); ESE -- Eye State Extractor; ELM -- Eye Location Memory; EDM
-- Eye Diameter Memory; FSE -- Finger State Extractor; FLM -- Finger Location Memory;
FMM -- Finger Motion Memory; WTA -- Winner Take All mechanism; MSPM --
Morphologic/Syntactic Procedural Memory; VM -- Verbal Memory; TDB -- Transition
Detectors Bank; TDs --Transition Detectors; V&MM -- Visual & Motor Memories; VAD --
Verbal Activity Decoder; ME -- Mind's Eye; MC -- Moment Clock. Wires crossing each
other at straight angles do not make contacts. Thin wires indicate data lines. Thick wires
indicate control lines. Gray and black rectangles indicate peripheral {procedurally
implemented) modules. Wires labeled by (1) are fast connections between Temporal
Memory Planes. Slow connections are fabeled by (2). The direction of data and control
signal flow is indicated by arrows.

2.4 DETE’s Micro World

Human vision and language are enormously complex phenomena. This complexity is reflected on
the one hand in the variety of difficult visual and linguistic problems which the visual and verbal
systems have to solve and on the other hand in the complexity of the brain structures and functions
involved. While trying to remain realistic, for the purpose of this dissertation I have severely
reduced the scope of the problem space. The external world, and specifically its two modalities
(visual and verbal) which form DETE’s operational task/domain, have been reduced to the “Blobs
World” domain and the “FIRLAN language” task respectively.

2.4.1 The Blobs world

T

[ H Tl! L] IRE B J oLl
t

}
1

I
Il A
L

I

T




Figure 2.8:  The Blobs World

Examples of blobs on DETE's Visual Screen -- a square, a circular, and a triangular shape.
Note that the shapes are imperfect and noisy.

Instead of the complex world of visual scenes, DETE operates in the “Blobs World”. In this
world there are only simple objects of various shapes (blobs) moving on a simulated screen. I call
this the Blobs World since the shapes do not have 1o be perfect and because they do not have
internal structure -~ objects composed of parts are not allowed (e.g., trees, bicycles, stick figures).
DETE is designed to handle distorted or noisy shapes and also shapes that only resemble perfect
shapes. For some examples of blobs see Figure 2.8.

Despite the fact that such a world may seem to be limited, it is actually quite rich. The scope of
the possible verbal descriptions of the Blobs World is presented in Table 2.1.

[+ Single objects and their features
- size (e.g., small, medium, large, ...)
- shape (e.g., circle, triangle, same, similar, ...)
- location (e.g., up, left, right, lateral, close, below, ...)
- color (e.g., red, green, blue, ...)
- movement (e.g., moving, standstill, ...)
- direction (e.g., north, east, parallel, along, ...)
- speed (e.g., slow, fast, sluggish, ...)
- Spatial relationships between & within objects
- location (e.g., above, inside, between, ...)
- count {e.g., two, five, many, ...)
- order (e.g., first, second, next, last, ...)
+ Temporal relationships
- present (e.g., now,...)
- future (e.g., next, after, later, will, ...)
- past (e.g., before, long-ago, did, ...)
- modifiers (e.g., soon, immediately, just, ...)
+ Object actions and interactions
- size (e.g., shrinks, expands, ...)
- collisions (e.g., bounce, hit, stop, push, ...)
- containment (e.g., enter, exit, ...)
- relative movement (e.g., bypass, faster, slowest, ...)
* DETE / Teacher interactions
- questions (e.g., “where is the bali”, ...)
- commands (e.g., "push the red ball”, ...)

Table 2.1: Scope of the Blobs world

Words that stand for various features are given in parentheses. Only English words are
presented here. However, DETE is designed to learn any words and their syntax,

semantics and pragmatics for other natural languages (specifically Spanish and Japanese
in this dissertation).
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2.4.2 The verbal modality

The natural languages which we hear and speak invoke (in the case of hearing) or express (in the
case of speaking) “meanings” which are represented in our brains. These meanings are established
through long-term, repeated personal experiences and depend on a number of factors, among which
are the innate constraints of our perceptual systems. Since DETE is an artificial system, which
does not posses elaborate analogues of all human perceptual systems, it is logical to infer that the
language that it learns will depend mostly on its perceptual systems. As a result, the meanings of,
say, English words describing the Blobs World can be somewhat different than the meanings that
humans possess for the same words. To illustrate this and to avoid confusion regarding the
interpretation of word meaning by the reader, DETE is taught an artificial language called FIRLAN.
FIRLAN is based on a dictionary of English words. The actual purpose of using FIRLAN is to
demonstrate that jnjtially the utterances which we hear from our parents in our native language do
not mean anything to us and only later with experience do we learn to attribute meanings to them,

Any natural language has a number of manifestations. It can be spoken -- a phenomenon that
has various attributes (e.g., talking mouths, listening ears, sound waves in the air, systems for
speech generation and audition in the brain, also prosody, temporal dynamics, etc.). It can be
written -- a different phenomenon with its own attributes (e.g., writing or typing systems of the
brain/body, reading abilities and physical storage media -- papers, monitors, etc). DETE receives
its verbal input through a pseudo-auditory modality. In this modality words are represented as
simulated sound streams (i.e. gra-phoneme sequences).

The grammatical structure of the FIRLAN language is specified in Table 2.2. (An alternative to
a grammar is to use templates to specify the verbal input used.) FIRLAN’s grammar is a very
restricted subset of English grammar. Note that this grammar can generate some nonsensical
sentences (e.g., S=WH(when) VI(are) NP(Det(a) NP1(OBJ (circle) LOC(near))))). For this reason
all sentences generated were screened before they were used in DETE. That is, DETE is only given
meaningful sentences -- ones that correspond completely to its perceptual inputs.

S = NP|NP VP |WHVINP

NP = Det NP1 | Det NP1 and Det NP2

VP = VIPP|VT NP

NP1,NP2 = OBJ|COL OBJ|SiZ OBJ| OBJ LOC | OBJ MOT | COMB
PP = LOC NP | REL-SIZ NP

WH = When | Where | What | How

\ = is|are|was|were| will be

VT = touch | hit | bounce | enter | shrink | move

Det = althe

OBJ = circle | square | triangle

COL = white | red | orange | yellow | green |blue |purple |black
SiZ = small | medium | large

REL-SIZ = smaliler | larger | the smallest | the largest

LOC = in_center | above | below | left_of | right_of | tar | near
MOT = fast| slow | still | north | east | west | south
COMB = SIZCOL OBJ LOC

Table 2.2: A syntactic specification of FIRLAN
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S (Sentence); NP (Noun Phrase); VP (Verb Phrase); PP (Picture Phrase); WH {question
word); Vi (verb “auxiliary”); VT (verb “true”); Det (Determiner); OBJ (Object); COL (Color);
S81Z (Size); REL-SIZ (Relative Size); LOC (Location); MOT (Motion); COMB {Combination)

While humans (due to the great similarity in their visual systems) perceive the visual world
similarly, the different languages which they use “carve up” the visual reality in different ways. For

instance, while some languages use a single word or phrase for a given object or event (e.g..

pifiata) other languages have to construct a whole phrase to express the same concept and some
times only approximately (e.g., a party where children hit an object made of paper with candy
inside).

Even between individuals that speak the same language, their perception of the visual reality is
usually “carved up” differently depending on their experiences. For instance, a painter has a much
richer vocabulary where colors are concerned (e.g., he/she can probably name a variety of blue
colors like aqua marine, cielo blue, navy blue, etc.) than an auto mechanic who, on the other hand,
has a richer vocabulary with respect to auto parts.

Languages differ also not only in term of their lexicons but also in terms of grammars.

DETE, by virtue of its memory mechanisms, can learn different languages. To demonstrate this
ability, a second artificial language -- SECLAN (SECond LANguage) is introduced and used in
paralle] with FIRLAN. (See Table 2.3. for a specification of SECLAN.) At the current
implementation, FIRLAN and SECLAN differ mostly in terms of their lexicons. Some of the
lexical entries of these languages are the same while most are different. There are also some
differences in the grammatical structures.  For instance, the word order in the noun phrases
containing adjectives for location and motion are reveresed (bold in Tables 2.2 and 2.3).

Jrera—

S = NP |NPVP|[WHVINP

NP = Det NP1 | Det NP1 and Det NP2

VP = VIPP|VTNP

NP1,NP2 = OBJ|COL OBJ | SiZ OBJ | LOC OBJ | MOT OBJ | COMB
PP = LOC NP | REL-SIZE NP

WH = When | Where | What | How

VI = is|are|was|were| will be

VT = touch | hit | bounce | enter | shrink | ...

Det = a|the

OBJ = oval | edged

COL = warm_color | cold_color

SIZ = tiny | small { average | big | huge

REL-SIZ = smaller | bigger | the smallest | the biggest
LOC = in_middle | on_periphery

MOT = stationary | moves

COMB = SIZCOL OBJ LOC

Table 2.3: A syntactic specification of SECLAN

2.4.3 The motor modality

The motor modality in DETE is the most rudimentary portion of the system. As was mentioned
betore, DETE has only two effectors (articulators): a FINGER and an EYE. The states of the EYE
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and the FINGER change with time. The FINGER moves smoothly within the Visual Screen with
various speeds and directions while the EYE jumps from location to Jocation and changes its
diameter. The states of the effectors are continuously input to DETE’s Motor Command Decoder
(MCD) -- a procedural mechanism which generates a representation of these states in a set of motor
planes. The MCD consists of two mechanisms, a Finger State Extractor (FSE) and an Eye State
Extractor (ESE). The state of the FINGER is characterized by (1) its location in the Visual Screen,
(2) its motion (speed and direction), The Finger State Extractor (FSE) represents these two state
parameters in two separate state planes -- Finger Location Plane (FLP), and Finger Motion Plane
(FMP). The EYE State Extractor (ESE) also generates two state planes -- Eye Location Plane
(ELP), and EYE Diameter Plane (EDP) in which it represents the two state parameters of the EYE
(location and diameter).

Both the FINGER and the EYE have default states (i.e. states in which they reside while they
are not involved in any action). In its default state the EYE is centered in the middle of the Visual
Screen with maximal diameter (looks at the whole Visual Screen), while the default state of the
FINGER is stationary and positioned also in the middle of the Visual Screen.

The state planes of the effectors are passed as input to the motor memory (MM). The motor
memory associates trajectories (sequences of states) of the effectors with activity within the visual
and verbal memory modalities. The motor memory is composed of four parts -- one for each motor
plane. These memories are: Finger State Memory (FSM); Finger Motion Memory (FMM); Eye
Location Memory (ELM); Eye Diameter Memory (DM). The outputs of each part of the motor
memory are passed through a Winner Take All (WTA) mechanism (which ensures that only one
possible trajectory is produced) and through four Motor State Decoders (bottom of Figure 2.4)
which in turn provide internal motor inputs to the EYE and the FINGER.

2.4.4 Consistency of inputs

The most important characteristic of the external inputs to DETE is their consistency. In other
words, they obey a set of rules (e.g., physical laws within the visual modality and syntactic and
semantic rules within the verbal modality). This characteristic of the external (verbal and visual)
world is important if we want avoid creating a “schizophrenic” DETE.

1) Visual consistency. -~ If all objects in the Blobs World are elastic then if an object hits a wall
it should always bounce according 1o the laws of physics.

2) Verbal consistency. -- The language which DETE is taught has to be meaningful (i.e.
properly structured both syntactically and semantically).

3) Verbal & visual consistency. -- If DETE is focusing on a yellow ball we should call it
YELLOW during each learning trial, and not once RED, another time BLUE, etc., (unless of course
RED, BLUE and YELLOW are meant to be synonymous in FIRLAN).

2.5 DETE's World

2.5.1 internat World

While operating in the three modalities (visual, verbal, motor) of the external world as defined
above, DETE maintains it own internal world. Its behavior in this internal world model is
represented by the ability to have “mental imagery” and “hidden speech” (see very bottom of Figure
2.4y Menal imagery manifests itself as: (1) internal (mental) completion of noisy external-images;
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(2) scene segmentation into objects based on selective attention; (3) dynamic synthesis of mental
objects in the visual memory; (4) mental object manipulation in response to a verbal input. Hidden
speech is manifested as spontaneous (usually fragmentary) utterances produced during recognition
of external images or internal (mental) image manipulation.

The existence of mental imagery and hidden speech outputs allow the user to observe internal
aspects of DETE’s knowledge during intermediate stages of learning.

2.5.2 Physics of External World

To provide DETE with a visual field that contains a variety of moving objects, a simple simulator of
the visual world was developed (see Appendix B.3). This simulator generates blobs of various
shapes, colors, and sizes and allows their motion to be controlled in terms of direction and speed.
The blobs can bounce off the walls of the Visual Screen or off any other blob (or the FINGER) that
is placed on their path of motion. The bounces are elastic and obey the laws of solid-state physics.

2.6 Modes of operation

The system can be considered generally to work in three operational modes, which are not fully
independent. These are learning, testing, and free-association. Actually, in the behavior of children
there is often no clear-cut distinction among these three conceptually different modes. Children
often switch rapidly from one mode to another and often three modes are interleaved (e.g., free-

association can have a learning component and the same goes for testing). The same is true for
DETE.

(1) Learning mode -- consists of multiple pairings of visual scenes, verbal description of the
scenes, and interactions between DETE’s EYE & FINGER and the objects in the scene.

(2) Testing mode - the user feeds DETE verbal and/or visual and/or motor inputs and expects it
to produce a verbal, visual {(mental image) or motor response.

(3) Free-association mode -- the network generates mental images (in its mental imagery output or
“mund’s eye™) as a result of interactions between activity patterns in the various memories.

2.7 Learning in DETE

In DETE there are two modes of learning:

(1) Without a teacher (unsupervised) -- happens continuously as a result of association of the
extracted visual features in the visual association memory. This learning process is essential for
building the representation of the physical constraints in the visual input. That is, DETE learns the
physics of the world it is presented on its screen, as seen through its retina. For example, DETE
learns that objects bounce off each other. However, if objects behaved differently, DETE could
leirn a different kind of visual physics. For instance, if at the contact with a stationary object, a
moving object disappears, then DETE could learn the word “pierce” or “penetrate”.

(2) With a teacher (supervised) -- during visual, verbal and motor association. Supervised
Jeurning involves all three memories -- visual, verbal, and motor.
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PART Il
Modular structure of DETE

Part II focuses on the detailed structure of the individual modules of DETE. The representations of

visual, verbal and motor inputs are presented and the structure and function of the mechanisms that
produce these representations are described.



3 THE VISUAL SYSTEM

DETE’s visual system consists of a retina and five Visual Feature Extraction (VFE) modules.
These modules extract location, size, color, motion, and shape. The retina looks at part of the
Visual Screen and the retinal output is fed in parallel to the VFEs.

3.1  The retina (EYE)

DETE looks at its visual world through a circular aperture, a retina. The size of this aperture is
variable. Itis usually smaller than the size of the Visual Screen (64*64 pixels), and can vary from a
minimal size of 7 pixels in diameter (total area of 29 pixels) to a maximal size which is equal to the
size 64 pixels in diameter. Examples of the retina in different positions and with different diameter
are given in Figure 3.1. Several “pure” and “noisy” objects are also shown on the same figure.
The control over the size of the retina is provided externally by a teacher.

JIPTTITTTTITITIO
SEaRsEEEEAEESE
smallest-size of:
triangle,
square &
circle
§ T
AR
I
+
1 T I t
] + § 117 [
T HHHH t1p11
T 1
I | |
smallest-size medium-size large-size
retina retina retina
Figure 3.1:  DETE’s retinal structure
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The retina is shown in three difierent positions on the Visual Screen and with different
sizes (small, medium and large). Also, the smallest size triangle, square, and circle are
shown.

The function of the retina is to pass the continuous visual input which it gets directly from the
Visual Screen (unchanged) to the Input Segmentation Mechanism (ISM) of the Selective Attention
System. The retina passes one 8-bit word per pixel at each time cycle from the Visual Screen to the
ISM (Figure 3.2). Each 8-bit word encodes the color information for the corresponding pixel.
Pixels which are part of an object send their color values (encoded in the 8 bits). Pixels that are part
of the background are black (i.e. their color value is 0). The retina sends also another type of
information to the ISM, namely, the location of its center on the Visual Screen and the size of its
diameter.

black red

retina
{ ) {00110010}
\ i !

Figure 3.2:  Retinal output

Encoding of visual input to the retina. At each time cycle all pixels in the retina send in
paralle! to the 1SM (preserving the topology) an 8-bit word which encodes the color of the
pixel. The figure shows the values of these words for two pixels, one that belongs to a red
ball and the other to the retinal field (black). The rest of the visual field sends also 0s to the
ISM (i.e. it is black), however on the figure it is shown white for distinction from the retina.
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3.2 Visual feature extractors

The range of visual features accessible to DETE is determined by the Visual Feature Extractors
(VFEs). It is important to note that the visual feature extractors are not implemented as neural
networks. Each VFE is a simple algorithm (procedure) that takes the visual input from the retina
and computes (extracts) the information concerning the particular feature dimension. I have chosen
to use these algorithms instead of providing a special purpose neural network for each of the VFEs
since the neural network approach is more computationally expensive. Also, the focus of this
research is not on modeling the visual system in a neurally realistic fasion. The visual system in
DETE is used only to provide appropriate representations of the visnal features to the higher
assoclation areas. How these representations were initially generated is considered irrelevant to
further processing.

Each feature extractor generates a feature plane which represents the space of possible values of
the particular feature. All feature planes in DETE (i.e. Shape FP, Color FP, siZe FP, and Motion
FP) are non-topographic in nature except for the location feature plane (LFP) which is topographic.
Such non-topographic mapping leads to a reduction of the computational resources required. In
other words, not every point in the visual screen is represented in every plane and the topology is
not always preserved. However, this representational approach also substantially reduces the
representational ability of the system. Every image projected through the retina to the input of a
feature extractor generates a specific activity pattern at particular locations on a given feature plane.
Each feature of an object is represented by 4 contiguous active neurons on the space of the plane.
The main purpose for choosing more than one neuron to represent a single feature is that of
redundancy of coding. The specific number 4 was chosen for reasons of computational resource
availability and constraint by representational considerations. In each of the feature planes
individual features are represented by a set of active neurons. An active neuron is a neuron that
oscillates, i.e. it fires periodically (with output 1) and is silent the rest of the time (with output 0).

3.2.1 Shape Feature Extractor

The shape feature exwractor (SFE) is a procedural module designed to recognize different shapes by
selectively attending to one object at a time. The SFE recognizes simple shapes independently of
size, location and noise/distortion. The SFE produces a Shape Feature Plane (SFP) onto which all
shapes are mapped. To recognize individual shapes, the SFE uses a set of shape templates.
Currently this set contains three templates, a circle, a square and a triangle. These shapes were
chosen so that rotation is not needed for recognition. Each template has variable dimensions, i.e. it
can grow or shrink in size while preserving its shape. The image of each individual object
conveyed from the retina to the SFE is compared in parallel to each of the three templates in the
following manner. (1) Starting with a maximal size (covering the whole Visual Screen) each
template is fitted (in parallel) to the object, i.e. its size is decreased while at the same time its
position is adjusted until a tight fit between the template and the object is achieved. (2) For each of
the fitted templates Ti (where i is triangle, square or circle) a Shape Difference measure SD(Ti,0)

with respect to the object (O) is computed: SD(Ti,0) = % - 1. Where pix-Ti and pix-O are

respectively the number of pixels in the fitted template i and the number of pixels in the object. The
more similar an object is to a given template, the smaller the value of the shape difference measure.
(3) Using the SDs of the previous computations, the representation of the object’s shape is
generated in the SFP (see Appendix B.1.1 for code)
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The Shape Feature Plane is a square array of neurons with dimensions 16*16 pixels or a total of
256 pixels. All objects of the same shape are mapped to the same row of neurons on the SFP
(Figure 3.3). The mapping has been designed such that it provides to some extent “smooth”
transitions between shapes. For instance, triangular shapes are mapped onto the bottom few rows
of units with “pure” triangles (i.e. SD(Ttriangle,0O) = 0) mapped to row 5). Above them are
mapped rectangularly shaped objects with “pure” squares (i.e. SD(Tsquare,0) = 0) mapped onto
row 10). Both triangles and rectangles have vertices and that is why they were placed closer
together in the SFP. The circular shapes are mapped above the rectangular shapes (a circle can be
regarded as a square transformed by smoothing its edges) with “pure” circles mapped onto row 15,
Objects with shapes that do not fit perfectly against either of the templates are mapped onto the SFP
depending on the relations between their SDs with respect to the three templates. For details of the
mapping see Table 3.1,

==> rows 13,14
==> rows 11 1 2

S > T > C  ==> rows0,1,2
S > C > T ==> rows 3,4
C > S > T ==> TOWS 6,7
C > T > S ==> rows 8,9
T > S > C

T > C > S

Table 3.1: Mapping of shapes in the SFP

The symbol “>* is used to represent the level of similarity between shapes: squares (S),
triangles (T), and circles (C) are measured by means of SD {shape difterences) as defined
in the text. If an object’s SD measure with respect 1o the square template is bigger than that
measured with respect 1o the triangle template which in turn is bigger than the SD measure
with respect to the circle, then the object has a shape which is something simitar to a circle
and a triangle (e .g., a triangle with rounded edges) but not very simitar fo a square. The
shape of such an object is represented as activation in rows 0, 1, or 2 of the SFP
depending on the actual SD values (see row 1 of the table).

DETE does not have to actually recognize a square. Rather, it has to be able to discriminate
different shapes and place them into different categories. Then different perceptual categories can be
associated during learning with words in the verbal input. Theoretically, at least, the visual feature
extractors could be improved and would supply a large set of possible discriminations (and hence
verbal categorizations) of the input, which could then be verbally associated without changing the
rest of DETE’s architecture. This would allow a greater vocabulary to be learned, e.g., if DETE
could discriminate perceptually teardrop shape from a star shape then DETE could learn the
“meaning” of the words “tear” and “star” used to describe these shapes.

Each instance of a particular shape is represented as a localized activation pattern of 4 neurons in
a row. Again the choice of 4 neurons (instead of 1) is to provide some level of redundancy.
Redundancy in the encoding of features is necessary for two reasons. First, to ensure that if the
model 1s lesioned this will not affect the overall performance significantly. Second, since the
dynamics of the model, as it will be demonstrated further. is to some degree stochastic, the
redundancy of coding allows a feature to be present even if not the complete set of neurons (that are
supposed to represent this feature) is active at a time. The SFP has the capacity to represent up to 4
individual objects of a particular shape-range that appear simultaneously in the retinal field. All
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active neurons oscillate with a constant frequency. In other words, they fire once every 5 cycles
and are silent the rest of the time. Neurons that represent the same object fire in phase while the
oscillations of different objects are out of phase. As a result, at each time cycle the SFP represents
al most one object since only the neurons that represent one object fire in phase.

Shape Feature Plane FIRLAN SECLAN
circles 15 b circles
] ovals
squares 10 I. L : Squares
] polygons
riangles 3 7] triangles
0 ovals

Shape encodings in SFP

[ ] square#1 (polygon#1)
triangle#1 (polygon#2)

circie#1 (oval#1)

(oval#2)

screen

Figure 3.3: Shape Feature Plane (SFP)

Representations of three objects in the Shape Feature Plane: a circle, a sguare and an
oval. The active neurons corresponding to each individual shape are represented by
different levels of gray. The different grey levels represent the fact that the oscillatory
activities of the neurons representing difterent shapes have different phases.

3.2.2  Size Feature Extractor

The siZe Fearture Extractor (ZFE) in DETE is a procedural module which computes the absolute size
of each object on the retina. The size is measured in number of pixels covered by the object. The
sizes of the objects which DETE can recognize are in the range of 3 to 64 pixels in their longest
dimension. Figure 3.1 shows examples of three objects, one of each kind (i.e. a circle, a square
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and a triangle). Each of these objects has the smallest size which DETE can recognize. The size of
each object is mapped onto a siZe Feature Plane (ZFP). The ZFP is a square array of dimensions
16*16. The ZFE was designed to categorize the size of each object into one of 16 different size
groups. For instance, into size group 1 fall all objects of size 4 pixels to 256 pixels. All objects of
sizes from 257 to 512 fall into size group 2, etc. The spatial organization of the different size
groups in the ZFP is raster linear (Figure 3.4). There is one row of pixels in the ZFP for each size
group. This choice of representation of the various sizes above, i.e. smaller sizes at the bottom rows
of the ZFP changing gradually to larger sizes at the top rows, is important for the process of
reasoning about sizes (as will be illustrated in section 11.5.1). The size of each individual object is
represented as 4 contiguous active pixels (again to provide robustness) in the cotresponding group.
In other words, 4 objects belonging to the same size group can be represented simultaneously in the
ZFP. All objects that fall in the same size group are considered to have the same size (see Appendix
B.1.2 for code).

siZe Feature Plane FIRLAN SECLAN
] ] huge
A large big
NESS medium average
- . small
N small _
.1; g iz _ _ tlny
¥ \
16 *11 6 neurdns
siZe encodings in ZFP
E
| large#1 (huge#1)
R medium#1 (average#1)
small#1 (tiny#1)

screen

Figure 3.4: siZe Feature Plane (ZFP)
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Representation of three different sizes in the Size Feature Plane. FIRLAN refers to them
as "small”, “medium”, and “large”, while SECLAN is more precise and calls the small object
“tiny”. The active neurons corresponding to each individual size are again represented by
different levels of grey for each distinct phase.

While the mapping of the size of each object to the ZFP is done automatically by the ZFE, the
verbal input in FIRLAN or SECLAN can provide a “meta-classification” of the objects that DETE
attends to, in terms of their sizes. For instance, in FIRLAN all objects that fall into size groups 1 to
5 are called “small”, within size groups 6 to 11 -- “medium size”, and within size groups 12 to 16 --
“large”. SECLAN, however, is more precise and instead of using only three words for the various
sizes it supplies also “tiny” for objects with sizes in groups 1 and 2, and “huge” for objects in group
16 (see Figure 3.4).

3.2.3 Color Feature Extractor

The Color Feature Extractor (CFE) is a procedural module which does the following
transformations of the visual input coming through the retina:

(1) Transforms each contiguous blob of pixels (contiguous = pixels that are adjacent and/or
diagonal) that have the same color to a single active pixel with the same color located at the Center of
Gravity (CG) of the blob. This transformation reduces each color blob to a single color pixel
corresponding to that blob. Thus, DETE cannot currently recognize multi-colored objects. The
CFE is designed to recognize 16 different colors.

(2) Maps each color pixel representing the CG of a blob (without preserving the info about the
location of the CG) to 4 contiguous active pixels (redundancy of coding) in the Color Feature Plane
(CFP). These pixels are randomly located in one of the sixteen color-banks (a row of neurons in
the CFP). The mapping is such that neurons representing two different objects in the same color-
bank do not overlap. Therefore, DETE can recognize up to 4 individual objects of the same color
that appear simultaneously on the retina (see Appendix B.1.3 for code).

Encoding of the object’s color is done in the CFP, and is similar to the encoding in the size
feature plane. Here, instead of sizes as number of pixels, a rainbow of colors is encoded (Figure
3.5). Each of these colors is represented within one row of neurons (a color bank) in the CFP. In
all of the visual scenes presented to DETE the black color is used as a background, and objects may
be of any of the other available colors (only monochromatic objects).

Similarly, as in the cases of the SFP and ZFP, here the verbal input can also provide a “‘meta-
classification”, which is learned. FIRLAN, for instance, partitions the CFP into & areas
corresponding to the colors white, red, orange, yellow, green, blue, purple, and black, while as a
result of learning SECLAN, DETE divides all colors into enly warm_colors and cold_colors.

Figure 3.5: Color Feature Plane (CFP)

The colors of four different objects are mapped onto the in the Color Feature Plane.
FIRLAN calls these objects: “red”, “green”, "green” and “blue”, while SECLA™ calls them
“warm_color®, “warm_color”, “cold_color”, and “cold_color’. The active neurons
{corresponding to each individual color) are illustrated by different patterns of gray onthe
figure.
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3.2.4 Location Feature Extractor

The representation of object location in DETE is strai ghtforward. The location of each object on the
retina is represented by the position of its center of gravity (CG) in a Location Feature Plane (LFP).
The Location Feature Extractor (LFE) is a procedural module that calculates the CG of each object
which is in the retina with respect to a coordinate system connected to the retina, (i.e. in retinal
coordinates) (Figure 3.6). Then it calculates the absolute coordinates of the CG (i.e. its coordinates
with respect to the Visual Screen) by a vector addition of the retinal coordinates of the object and the
coordinates of the retina itself. The absolute location of the object is mapped onto the LFP with
each object represented by 4 active pixels (redundancy of coding) and the CG is the lower left-hand
pixel of these square pixels. The type of mapping is retinotopic, i.e. the topographic relation

between objects in the VF is preserved when their locations are mapped on the LFP (see Appendix
B.1.4 for code).

The verbal input can provide a meta-classification within this feature plane. For instance,
FIRLAN partitions the feature space into 25 areas using words such as “center”, “near”, “far”,
“above™, “below™, “left”, and “right” and phrases generated by combining these words (e.g., “far
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left”). SECLAN, however, partitions it only into 2 areas using words such as “middle” and
“periphery”.
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Figure 3.6:  Location Feature Plane (LFP)

Representation of three objects that appear simuitaneously on the retina in ditferent
locations. The active neurons corresponding to each individual location are again
Hlustrated by different levels of gray. The gray levels also represent the fact that the
oscillatory activities of the neurons representing the different sizes have different phases.

3.2.5 Motion Feature Extractor

DETE can analyze motion either with respect to the Visual Screen (I call this “absolute motion™), or
with respect to the retina -- the Visual Field (i.e. “relative motion”). The Motion Feature Extractor
(MFE) is implemented as a procedural module which takes input along two channels (see Appendix
B.1.5 for code). The first channel carries information about the motion (in terms of velocity and
direction) of the retina over the Visual Screen. The second channel carries information about the
motion of the objects that are within the Visual Field. The MEE maps the motion of each object
onto 2 Motion Feature Plane (MFP). To generate the motion representation of an object, the MFE
uses information from both channels. The output representation of motion on the MFP is with
respect to the Visual Screen (i.e. it is “absolute motion™).

The set-up described above allows for two extreme situations to occur if there is only one object
on the retina. First, the retina can be stationary while the object moves within the retinal boundaries.
Second, the retina can be tracking the object (i.e. they are both moving the same way). In this case
the retinal image of the object is stationary. In both cases, however, the representation that the MFE
forms on the MFP is the same.

The MFP is a square array of neurons with dimensions 16*16 (Figure 3.7). The motion of each
object (which is within the Visual Field) is represented in this plane by a vector O (Object motion,
1.e. the motion of the object with respect to the VS or “absolute motion™). O has origin in the center
of the MFP, with its direction corresponding to the direction of motion of the object, and its length
proportional to its velocity of movement. The Object motion is calculated at each time step as a
vector sum of the Retinal motion (R) (i.e. the motion of the object with respect to the retina) and the
Visual Field Motion (V) (i.e. the motion of the retina with respect to the VS). In other words, O =
R + V. Notice that for the purpose of calculating their motion, objects are regarded as points in
space (i.e. represented by their center of gravity -- CG) and rotation is disregarded. V is computed
by the MFE at each time step as a difference between the current and the previous position of the
center of the retina with respect to the VS. R is computed similarly as the difference between the

current and the previous position of the center of gravity of the object with respect to the retina --
VE.

The motion of an Object (0) is represented on the MFP by 4 simultaneously active (oscillating)
neurons which are clustered together and the phases of their oscillations are the same, i.e. their
oscillations are phase locked.

As aresult of the association of verbal descriptions of motion with the physical representation of
motion in the MFP, the possible motions within the mode] become effectively clustered, i.e. a given
language “carves up” the MFP into different categories or classes. FIRLAN, for instance, classifies
motions (in terms of their velocity), into three groups, using words such as: “still”, slow™, and
“fast™. In terms of direction of motion FIRLAN classifies motions by using the words North,
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East, West, and South and phrases such as North-East, North-West, South-East, and South-West.
SECLAN, on the other hand, only classifies all objects as “still” or “moving”.

It is important to note that the finer the classification, the smaller the number of objects that
DETE can represent in each individual category simultaneously.
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Figure 3.7:  Motion Feature Plane (MFP)

Simuitaneous representation of the motions of four different objects on the Motion
Feature Plane. According to FIRLAN, there are two “still” objects, one moving slowly west,
and another moving fast north-east. According to SECLAN, however, there are two “still”
objects and two “moving” objects. The active neurons corresponding to each individual
motion are again indicated by different levels of gray.

In summary, there are advantages and disadvantages associated with the use of maps. For
instance, a disadvantage is that within each map the representations are localist (4 contiguous pixels)
and are formed by heuristic procedures so only a finite number of feature values (e.g., shapes,
colors, etc.) can be represented. However, the total representation of an object is distributed across
5 feature maps, thus DETE can currently discriminate # of objects (= size# x shape#..), and the
number of concepts and events grows combinatorically.
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4 THE VERBAL SYSTEM

The verbal input to DETE is provided as text that can be typed in directly via a keyboard or read in
from a text file. A Text Encoder takes this input and encodes it into a sequence of gra-phonemes.
Gra-phonemes are the basic representational units of DETE’s verbal input. The name “gra-
phoneme” was chosen because each of these representational units has both orthographic and
phonemic features. There are 26 different gra-phonemes, one for each letter (grapheme) in the
English alphabet. That is why “gra” appears in the name. The one-to-one correspondence between
letters and gra-phonemes is what allows DETE to process textual input. However, the ability to
read text is acquired by children after they learn spoken language. I consider this fact to be of
significance and for this reason I designed DETE’s representation of the verbal input to contain also
some characteristics of spoken language. That is why “phonemic” appears in the name. A standard
representation for spoken language is the phonetic representation. Only 44 phonemes are needed to
code all words in the English language and 55 phonemes are sufficient to represent virtually all the
words in all spoken languages (Marslen-Wilson, 1980). DETE does not use a complete phonemic
representation but only a subset of 26 phonemes (i.e. the most frequently used phonemes
corresponding to letters of the English alphabet. This set is sufficient also in representing a subset
of Spanish, and Japanese textual input.)

Each gra-phoneme has a spatial and temporal structure. At each time step of DETE’s
mechanism, which is called a “B-cycle”, a gra-phoneme is represented as a binary pattern over a
bank of 64 verbal units. Each pattern has about 10% density (or 6 bits out of 64 are 1 while the
others are 0). Each pattern is clamped over the verbal units for $ B-cycles. This duration was
chosen to correspond roughly to 50 ms -- the minimal time period within which a phoneme can be
recognized by a human listener. This choice of duration is based on the observation that an average
English speaker pronounces about 3 words per second (i.e. 330 ms/word) (Altmann and Shillcock,
1986). (A skilled reader on the other hand can recognize more than 5 words per second (Rayner
and Pollatsek, 1987)). We can also assume that each word is composed on average of 7 phonemes

(t.e. 50 ms/phoneme) (Altmann and Shillcock, 1986). Each word is represented as a sequence of
gra-phonemes.

The choice of the binary patterns corresponding to the individual gra-phonemes is loosely based
on the acoustic representation of various speech sounds of English. Speech research has revealed
that specific aspects of the acoustic signal (acoustic cues) are relevant for the listener for perceiving
the sounds of speech. To illustrate how such findings have influenced our choice of representation,
I review briefly the acoustic correlates of English sounds. Vowels and consonants have different
acoustic cues. For vowels, the first acoustic cue is the frequency positions of the first three
formants. This cue is sufficient for most listeners to identify them. It is important to notice that the
formant frequency relations that specify the vowels of English are relational rather than absolute.
The mean values of the first three formants (F1, F2, and F3) of the vowels of American English are
shown in Figure 4.1. The second acoustic cue is the difference in vowel duration (¢f. Miller 1981,
for a review). Typical duration of English vowels is between 180 to 330 ms (Peterson and Lehiste,
1960). Examples of some vowels with different durations are: (a) short vowels, e.g., [I] as in hid
(180 1o 200 ms), (b) medium duration vowels, e.g., [u] as in who'd (240 to 260 ms), (c) long
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duration vowels, e.g., [#] as in had (330 ms). Many of the longer vowels in English are
diphthongized.
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Figure 4.1:  Formant frequencies of English vowels

Mean values of formant frequencies for adult males of vowels of American English
measured by Petersen and Barney (1952). (Reproduced with permission from Lieberman
and Blumstein,1988). '

The acoustic cues for consonants in English are more diverse than that for vowels. This is due
to the diversity of the ways in which consonants are produced, e.g., stop consonants, nasal
consonants, liquid consonants, glide consonants, and fricative . onsonants.

1) Stop [p t k b d g]. -- The basic acoustic cues for stop consonants are: (1) release burst
(generated after a rapid release of a complete closure of the vocl tract). Its duration is typically 5-15
ms; (2) rate and duration of formant transitions. Their duration is in the order of 20-40 ms. The
total duration of such consonants is between 25 and 55 ms. Figure 4.2. shows the formant
transitions and bursts for the syllables [ba da ga pa ta kal.

2) Nasal [mn ng]. -- The basic acoustic cue for nasal consonants is a nasal “murmur” -- a low
frequency sound (250 Hz) produced prior to release of oral closure. The average duration of nasal
consonants is similar to that of stop consonants.

50



3) Liquid [11] and glide [w y]. -- These consonants are characterized by their onset frequencies
and duration of their formant transitions (about 40 ms), If their duration is smaller than 30 ms they
are easily misinterpreted as stop consonants,

4) Fricative [f 8 s % 8 z 2]. -- The main acoustic cue for the fricative consonants is the presence
of aperiodic noise in their spectrum (Delattre et al., 1962) with a duration of 20 to 100 ms. The
overall amplitude of this noise and the distribution of the spectral peaks contribute to the perception
of different fricatives.
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g F,:z | —— | .
% -Fﬁ V Y o
B (bal [da] lgal
Time ——e
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 w

[pai [ta) {kal

Frequency —-e
a
N

Figure 4.2:  Formant transitions

Formant transitions and bursts for the syliables [ba da ga pa ta ka]. (Reproduced wilh
permission from Lieberman and Blumstein, 1988).

The frequency range / bit mapping in the gra-phonemic representation is shown in Table 4.1.
Each location (loc) in the verbal bank represents a sound frequency window of 40 Hz. For
instance, loc 1 is set to 1 when in the frequency spectrum of a given phoneme there is a formant
with an average frequency in the range of 270 to 310 Hz. To provide some robustness of
representation of each formant, the next closest loc to the particular formant frequency is also set to
1. This encoding scheme also ensures that the total 1-bit-density of each pattern representing a gra-
phoneme is about 10% (3 formants x 2 = 6 locations).

A rumeric representation of the 26 gra-phonemes in terms of the frequencies (in Hz) of the first
three formants (F1, F2, F3), and the corresponding bits set to 1 in the 64 bit long vector
corresponding to each gra-phoneme, are shown in Table 4.2. While the formant representation of
the vowels was straightforward, the choice of formants to represent the consonants is somewhat
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arbitrary. For instance, the formant frequencies of the stop consonants were chosen to be the initial
values of the formant transitions (see Figure 4.2),

loc Hz loc_ Hz loc Hz loc Hz loc Hz loc Hz loc Hz

1 270 11 670 21 1070 31 1470 41 18" 51 2270 61 2670
2 310 12 710 22 1110 32 1510 42 1916 52 2310 62 2710
3 350 13 750 23 1150 33 1550 43 1950 53 2350 63 2750
4 390 14 790 24 1190 34 1590 44 1990 54 2390 64 2790
5 430 15 830 25 1230 35 1630 45 2030 55 2430
6 470 16 870 26 1270 36 1670 46 2070 56 2470
7 510 17 910 27 1310 37 1710 47 2110 57 2510
8 550 18 950 28 1350 38 1750 48 2150 58 2550
9 590 19 99 29 1390 39 1790 49 2190 59 2590
10 630 20 1030 30 1430 40 1830 50 2230 60 2630
Table 4.1: Frequency range/loc mapping in the gra-phonemic representation
#gra-pho F1 F2____F3 _bit-1 _bit-2 bit-3
1 a 730 1090 2440 12 21 55
2 b 470 790 2030 6 14 45
3 ¢ 990 1570 2160 19 33 48
4 d 670 1670 2790 11 36 64
5 e 530 1840 2480 7 40 56
6 f 370 1280 2630 3 26 60
7 g 630 1750 2350 10 38 53
8 h 780 1440 2730 13 30 62
9 1 390 1990 2550 4 44 58
10 j 1000 1480 2350 19 31 53
11 'k 790 1790 2310 14 39 50
121 430 1090 2120 5 21 47
13 m 520 1280 2670 7 26 o1
14 n 600 1050 2550 9 20 58
15 o 570 840 2410 8 15 54
16 p 750 870 2030 13 16 46
17 q 920 1390 1930 17 29 42
18 r 960 1600 2270 18 34 51
19 s 760 1800 2040 13 39 45
200t 830 1710 2750 15 37 63
21 u 300 8§70 2240 2 16 50
22 v 550 1610 2550 8 34 58
23 w770 1120 2430 13 22 53
24 x 390 1050 2260 4 20 50
25y 680 1200 2560 11 24 58
26z 780 1690 2070 14 36 46

Table 4.2: Representations of the 26 gra-phonemes
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Formants frequencies and corresponding bits used in the representation of the 26 gra-
phonemes used in DETE.

In developing DETE’s gra-phonemic representation of the verbal input I have intentionally
compromised & purely acoustic representation in four ways:

1) Number of gra-phonemes. -- I have reduced the number of representational units -- gra-
phonemes from the number of phonemes (44) to the number of graphemes (26 in the English
alphabet). The reason for this choice was to be able to handle textual input. A shortcoming is that
for DETE the verbal input “sounds” as if it is read by a person who knows only one sound for each
letter of the alphabet and is using only this knowledge to string sound together while reading words.

2) Duration. -- Instead of using different durations of phonemes (vowels and consonants) as
revealed by acoustic research on speech, I have chosen to use a constant duration of 25 ms (5 B-
cycles in DETE) for both vowels and consonants. As a result, each letter is represented by a
sequence of 5 64-bit patterns, where each pattern is the same.

3) Formants. -- Instead of using the known dynamics of the formant changes for the individual
consonants I use stationary patterns.
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Figure 43:  Gra-phonemes
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Gra-phonemic representation of the letters of the English alphabet. To simplify the
drawing, each letter of the alphabet (shown in the right column) corresponds 1o one 64-bit
pattern. However, in the gra-phonemic representation, each gra-phoneme is encoded as
a sequence of 5 64-bit patterns which are all the same.

4) Segmentation. -- In spoken language people usually do not make significant pauses between
words. However, in the gra-phonemic representation, in order to make it easier for DETE to
recognize the word boundaries (which are apparent in a textual input) I have introduced pauses
between individual words. The duration of each pause is 5 time cycles (i.e. 5 64-bit patterns) and
during that period the input to the verbal units is 0. In other words, the segmentation of the verbal

input into words is provided externally. Figure 4.3 shows the gra-phonemic representation of the
letters of the English alphabet.

As aresult of this representational choice, words are not individual patterns, as they are usually
treated in localist connectionist representations, but they are time sequences with a fully distributed
representation in space (between the units of the verbal bank). An example of the gra-phonemic
representation of the sentence “ Red ball hits the left wall” is shown in Figure 4.4.

"Red ball hits the left wall"
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Figure 4.4:  Gra-phonemic enceding of a sentence
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Gra-phonemic representation of the sentence “ Red balt hits the left wall". For simplicity,
each gra-phoneme is shown as only one 64-bit pattern while in DETE it is composed by 5
such patterns.

For the range of experiments performed so far with DETE, the patterns representing the
individual gra-phonemes could have been chosen at random and DETE's performance would not
have suffered. While a simplification, the current gra-phonemic representation allows DETE to
process the internal structure of words (e.g., inflections on verbs and suffixes on adjectives).

The acoustically based representation of the gra-phonemes is designed to allow a set of more
sophisticated future experiments in which DETE can accept verbal input which contains prosodic
inflections.  Such inflections can be reflected in the “pitch” with which individual words are
pronounced. A pitch change in the verbal input is represented as a shift of the gra-phonemic
formants along the frequency scale. Prosodic inflections in the verbal input could be used by DETE
for instance, to make a distinction between an interrogative and declarative verbal input {e.g.,
“Where is the red ball?” vs “The wall where the red ball bounced.”)

4.1 Verbal input segmentation

To generate the gra-phonemic representation, a Word Encoding Mechanism (WEM) mechanism
(upper left of Figure 2.4) goes through each sentence letter-by-letter and word-by-word (see
Appendix B.5.1). Each letter is represented by the corresponding gra-phoneme. Words are
sequences of gra-phonemes. Spaces (pauses) between words and sentences are represented as 0
patterns. The output of the WEM mechanism is further passed to the verbal component of DETEs
memory which is called the “verbal bank”.

4.2 Verbal output

DETE generates verbal output in the form of text. Internally the verbal output is represented as a
stream of activity in the verbal bank. A Verbal Activity Decoder (VAD) (see Figure 2.4, and
Appendix B.5.2) monitors the activity of the verbal memory bank and converts it into a gra-
phonemic representation. This representation is further converted into a sequence of letters. To
generate the gra-phonemic representation, the output activity at the verbal bank must be matched
against all possible gra-phonemic representations durin g decoding. A simple solution to this pattern
matching or classification problem is to bit-multiply the output pattern with each of the 26 gra-
phonemic patterns {(in-parallel); then sum along the width (64 bits) of the vectors and take the
position of the maximum sum as an index into the alphabet, This procedure results in picking the
gra-phonemic representation of a letter which is most simitar to the output pattern. Thresholding of
the maximum_sum allows for the introduction of “silence™ between words. An example of the
generation of verbal output from a gra-phonemic representation is given in Figure 4.5.
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Figure 4.5:

Decoding gra-phonemes -- verbal output
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A pattern generated by the verbal memory bank is input to the VAD mechanism and is
“tested” for similarity against the set of all 26 gra-phonemic patterns. The results of the bit-
by-bit multiplication of the input pattern by each of the gra-phonemes are shown by two
ditferent shades of gray. The bits shaded light gray have value 0 while the bits shaded
dark gray have values of 1. The score for each gra-phoneme is computed as the sum of
the dark gray bits. The given pattern matches best (maximum score = 5) the “b" gra-

phoneme.
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5 TEMPORAL RELATIONS IN DETE

DETE’s operation is synchronized by a clock. The basic cycle of this clock is called a B-cycle. The
states of all neural elements in the system are updated synchronously at each B-cycle.

A major assumption in DETE is that the verbal and visual inputs come in time “chunks” of
different duration. A B-cycle is the shortest chunk which I will also call a level-O-chunk. A
sequence of level-O-chunks forms a level-1-chunk. Similarly, several level-1-chunks can be
grouped to form a level-2-chunk. The highest level of this temporal hierarchy in DETE is a level-3-
chunk which is a sequence of several level-2-chunks.

The choice of chunks at various levels is not arbitrary. The existence of a level-O-chunk
corresponds to the minimal period of firing of neurons in the cortex (about 10 msec). A level-1-
chunk corresponds to a phoneme in the verbal modality. I call this time duration a chunk since, in
general, the characteristic features of the signal (e.g., frequency power spectrum) within this period
remain unchanged, whereas the features of the signal in two different chunks are different. The
shortest phoneme (e.g., a consonant such as “t” or “b™) which humans can recognize is about 30 ms
(Poppel, 1988). A level-2-chunk in the verbal domain is a word, whereas in the visual domain this
is a gaze (i.e. the duration of an eye fixation at a point of the visual scene between two consecutive
saccades). A level-3-chunk in the verbal domain is a sentence. In the visual modality it
corresponds to a “‘gestalt”?

While T have not attempted to map, in a one-to-one manner, the temporal characteristics of
various processing stages in DETE to those observed in the human nervous system (i.e. DETE does
not operate in real time), an effort has been made to preserve the ratios of these time characteristics
between the visual, verbal, motor, attentional and memory modalities. The information about the
time relations in humans have been compiled from various sources. Most of these data comes from
psychophysical (reaction time) and evoked potential studies of the visual and auditory systems,
from psycholinguistics, and from cellular electrophysiology. Table 5.1. summarizes the
corresponding relations expressed in milliseconds or Hz in the human brain (left-hand side) and
compares them with the basic temporal relations within DETE (right-hand side of table).

The temporal ratio of the verbal and visual input in DETE (i.e. how long a word persists in the
input, as compared to the duration of a visual image) is set up such that it is close to the average
ratio observed in humans. For instance, in humans the rate of reading and talking is about 3 10 3
words per second while in order to experience a smooth visual perception, the visual refreshment
rate must be at least 25 frames per second. In other words. on average the ratio i1s 5 visual frames
per word. Preserving such temporal relationships in a model is important because comprehension
of language and visual images is a dynamic process and disumbiguation of sentence meaning has
dynamic nature. For instance, the utterance “Give me the can ... opener’ elicits different concepis
in our mind depending on how close “opener” comes after “can” in the utterance. If the two words
are uttered close to each other thev are understood as “the instrument for opentng cans”. However.
if there is a long pause between them, the first word “can” elicits the concept of container in our
minds. and the second word elicits a separate concept.
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Table 5.1: DETE’s temporal hierarchy

5.1 Chunking the input

A more detailed examination of the behavior: and neurophysiological underpinnings of this
segmentation hierarchy are presented below.

Psychophysical evidence suggests that the brain architecture imposes functional constraints for
storage and retrieval of sequences of events. These constraints determine how humans perceive
time. As it was pointed out by Pdppel (Péppel, 1988), human temporal experiences are
hierarchically organized. Five levels of temporal experiences (four according to Poppel) can be
distinguished on the basis of various experimental observations: (1) simultaneity/non-symultaneity
(synchrony/asynchrony), (2) succession; (3) word-gaze duration, (4) duration of the subjective
present (now), and (5) duration of an event (Péppel, 1989). The following is a short description of
each of these levels and how they fit in DETE.

5.1.1 Recognition of synchrony/asynchrony (level-0-chunks)

Experimental evidence has shown that objective asynchrony of two events is not sufficient for
subjective asynchrony (Poppel, 1988). The temporal characteristics of a subjective experience
depend on the sensory modality through which these experiences are made available to our
consciousness. For the auditory system, for instance, perception of asynchrony between two
auditory stimuli (e.g.. low and high pitch beeps of duration 1 msec each) is achieved only if the
temporal difference between them (i.e. the Inter Stimulus Interval -- ISI) is longer than 3-5 msec.
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In psychophysics, this time duration is known as the auditory fusion threshold. For the tactile
system the fusion threshold is approximately 10 msec and in the visual system about 20-30 msec
(sec Table 5.1). On the basis of lesion studies it has been suggested that mechanisms in the
peripheral nervous system (auditory, tactile, visual, etc.) are responsible for the existence of such
thresholds, and the differences in fusion thresholds are probably due to the different transduction
mechanisms in the different Systems.

In the present version of DETE | do not wish to make a finer distinction between the level-0
chunking within the verbal and visual modalities and therefore I have chosen the time interval of 10
MSEC to correspond to one B-cycle -- a level-0-chunk, Qur choice was based on the fact that the
average firing rate of neurons in the cortex, where all sensory pathways lead, is about 100 Hz (ie.
about one action potential every 10 msec) (Kandel and Schwartz, 1985). One B-cycle has been
chosen also to be the duration of the Temporal Attention Window (TAW) -- see section 7.1.

5.1.2  Recognition of temporal order (level-1-chunks)

Although the threshold for the perception of two auditory stimuli as asynchronous is 3 to 5 msec,
on average an inter-stimulus interval of about 30 to 50 msec is necessary for recognition of temporal
order (e.g., to be able to distin guish that the low pitch tone came first followed by the high pitch

tone). Itis a surprizing and important fact, that this temporal-order threshold is essentially the same

1-chunking. In other words, in humans, the physiological limit of the sequence processing rate (i.e,
how fast successive level-1-chunks, for instance, phonemes in an auditorily perceived word, can be
processed/recognized) is 20 to 30 Hz. This suggests that only one (or very similar) cerebral
mechanism(s) might be responsible for this phenomenon in the different sensory modalities. This
possible mechanism might be responsible for establishing a temporal framework which enables
inputs recorded by the various Sensory systems to be correlated and subjectively perceived as a
single event. Thus, the minimal time for a subjective discrimination of one level-1-chunk (an
information processin g step which I assume happens in the cortex) might be on the order of 30 to
50 msec. It 1s_ important, however, to clarify that the time for percgiving one event (from the
stimulus onset to the moment when this stimulus is recognized) is certainly more than 50 msec,
This is due 1o the fact that it takes time for the neural activation 1o travel and be processed along a
particular sensory pathway (e.g., visual or auditory) before it is recognized in the cortex. This time
may be on the order of 250 to 300 msec,

Consequently, in DETE I have chosen 5 B-cycles (corresponding to 50 ms) to be the length of a

gra-phoneme (see section 2.3.1). 5 B-cycles have been chosen also to be the refreshment rate of the
Visual Field.

5.1.3 Level-2-chunks (words)
Words in the auditory system and gazes in the visyal system. The duration of the input is about 300
msec and it takes about 300 msec on average 1o process it. In the domain of Event Related

Potentials (ERPs) this latency corresponds to a positivity labeled P3(P300) or Late Positive
Component (LPC),

5.1.4 Recognition of subjective NOW (level-3-chunks)

From personal experiences we know that events are not perceived in isolation but usually several
cvents are combined and perceived as (what psychologists call) gestalts. Evidently there is an
mtegrative mechanism in the brain thar is responsible for the gestalt formation (the subjective
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experience of NOW), and the time constant of this system can be used as a measure of the duration
of NOW. A number of experiments (Péppel, 1982), concerned with the temporal organization of
vision, suggest that the temporal limit of the mental availability of an experience (which is not forced
1o persist by external stimuli) is about 3 seconds. This 3-second segmentation of conscious
experiences fits with the average time duration of verbal utterances in spontaneous speech, and with
the average duration of spoken aloud verse lines. Also musical phrases have a temporal limit of
about 3 seconds.

Is evident that in order to achieve behaviors such as comprehension/generation of sentences
(which represent relations between concepts -- acts, events, etc.) DETE needs such an integrative
mechanism with its appropriate time-constant (refreshment period). For this purpose, the update
period of the Temporal Memory Planes (see sections 2.3.4 and 9.3) was chosen to be 300 B-cycles
(see Table 5.1). This period is called one “moment” . Notice that as a result of the chosen temporal
hierarchy, everything that DETE learns has a temporal component. For instance, when DETE
learns the meaning of the word “stands™ it really learns <stands for n-moments>. When it learns
“red” it really learns <red for n-moments>.

5.1.5 Recognition of duration

Our subjective experience of duration seems to be determined by the intensity of the mental
experiences (i.e. content, rate or load). The bigger the mental content within a given unit of time,
the longer the retrospective feeling of duration and vice versa. It seems that in humans some sort of
memory must be the prerequisite for such experience of duration, Experiences must be stored
cumulatively in this memory and should be accessible in terms of their duration. In general, such a
memory mechanism should be responsible for our ability to perceive events as past and also as
future. DETE contains a special neural network, the Temporal Memory Planes, which allow it to
“perceive” events as present, past or future and to handle such linguistic categories as verb tenses
(e.g., present, past, and future) (see section 11.7).

5.3 Other processing issues

There are a number of other issues regarding temporal processing in neural systems. The time
available for processing places strict constraints on the types of algorithms that could be
implemented in the cerebral cortex. For instance, it takes on average about half a second following
a presentation of an image on the retina until we can recognize an object in the image. Considering
the time taken for processing the information at any specific stage (e.g., 25-50 (100) msec for the
signal to reach the cortex, a few hundred msec (vague) required for the motor system to produce a
response) then the actual time left for visual processing is about 200-300 msec (Sejnowski, 1986).
Cooperative algorithms, for instance, that require extensive exchange of information (e.g., more
than 20 iterations -- like the requirements for back-prop (McClelland et al.,, 1986)) between local
neurons (numerous iterations within some svstem of recurrent collaterals) do not seem likely.

However, algorithms that take less then 20 iterations are quite plausible (cf. for example Wilson and
Bower, 1989).
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6 THE MOTOR SYSTEM

The motor system in DETE is very rudimentary. It consists of two motor effectors and a motor
memory. The motor effectors are: (1) a FINGER which is used to act upon the blobs in the visual
world, and (2) an EYE which can fixate at different locations of the visual screen and has a variable
diameter. The motor memory is used for learning motor sequences of the FINGER and the EYE.
The purpose of the motor system is twofold. First, to control the movement and diameter of the
EYE (and thus the location of the focus of attention) with respect to the visual screen. Second,
using the FINGER, to perform simple motor behaviors such as (a) push a blob in a given direction,
(b) drag a blob from one location to another, and (c) Deflect a moving blob. Figure 6.1 illustrates
these motor actions performed by the FINGER.

A} "Push the square”
o

4 I~
o ¢

B) "Drag the triangle”

s 2y &

C) "Deflect the ball"

Figure 6.1:  Motor interactions
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Selected visual frames illustrating ditferent interactions between DETE's FINGER and
objects in the Visual Screen: A) Push the square; B) Drag the triangle; C) Deflect the
circle.

DETE learns to perform motor sequences in response to a verbal command in the same way that
it learns to generate verbal sequences. Namely, motor sequences are learned by motor examples
associated with verbal inputs. For instance, DETE learns to move its EYE and/or FINGER from
one object to another by being initially taken along this path (forced to) by the teacher while at the
same time receiving the appropriate verbal command. To be able to learn such motor behaviors a
system must maintain a “map” of the environment and to perform a search for particular features
(objects) in the environment on demand. The motor map is maintained in a variation of the
sequential associative memory which is described in a later chapter in this thesis. The search-for-
feature strategy involves movements of the EYE which may be either random or memory driven and
can involve resizing of the focus of attention field.

6.1 Representation of effector states (proprioception)

The states of DETE’s two effectors, the FINGER and the EYE are represented in Effector State
Planes (ESP). These planes are generated by the Effector State Extractors -- procedurally
implemented modules. A relevant question regarding the choice of representations for objects is
why DETE’s effectors are represented in separate planes instead of being represented together with
the rest of the objects that appear in the visual field in the five visual feature planes. In humans the
position of their extremities (hands, legs, and even orientation of the eye-balls) in space is provided
primarily by proprioceptive signals carried by the somatosensory system and visual feedback is
used only during fine control. DETE does not possess a proprioceptive systemn (no muscle
receptors or Golgi tendon organs), instead it uses visual information. However, for the purpose of
compatibility with the human architecture, a decision was made in the desi gn of DETE to process
the visual information about effectors and objects in separate channels. Such a setup can be used as
a basis for extending DETE by providing it with proprioception (substituting for the visual
perception of its effectors).

6.1.1 Representation of FINGER State

The two state parameters of the FINGER (position and motion) are represented in two separate
planes -- the FINGER Position Plane (FPP), and the FINGER Motion Plane (FMP), The FPP
(Figure 6.2) is a topographic plane similar to the Location Feature Plane which is used to represent
the location of objects in the Visual Screen (see section 3.2.4). The procedure which generates the
FPP is the same as the procedure used to generate the LFP and therefore will not described here in
detail. The only functional difference is that the FPP maps the Visual Screen position of only one
object -- the FINGER, whereas the LFP maps the positions of all other objects -- blobs which are
not part of DETE. However, the FPP can potentially be be used to represent different effectors
(e.g., joints in an arm, multiple fingers, etc.).

The motion of the FINGER is represented in the FMP (Figure 6.3). Motion is represented
similarly to the representation of ohject motion in the Motion Feature Plane (see section 3.2.5).
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Figure 6.2:  FINGER Position Plane (FPP)

Schematic drawing of the FPP. Notice that the lexical items used in FIRLAN or SECLAN to

describe the location of an object in the LFP can also be used to describe the position of
the FINGER in the FPP,
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FINGER Motion Plane (FMP)

Representation of the FINGER motion (moving fast North-East) in the FINGER Motion
Plane. As shown in the figure, a variety of words and phrases in FIRLAN and SECLAN can

be used to describe the motion of the FINGER.
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6.1.2 Representation of EYE state

The two state parameters of the EYE are its location on the visual screen and its diameter. The
location of the EYE is represented similarly as the location of the FINGER in an EYE Location
Plane (ELP) and will not be discussed here in detail. The diameter is represented in the EYE
Diameter Plane (EDP). The EDP is a 64 bits long vector (Figure 6.4). Each value of the EYE’s
diameter is represented as a pair of four contiguous 1 bits. Four bits were chosen for redundancy of
representation and also to provide bit-density comparable to that in the other modalities.
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Figure 6.4:  EYE Diameter Plane (EDP)

The representation is “linear”, i.e. if the active bits are located at the beginning of the EDP
vector (a), the diameter is minimal while if they are located at the end of the vecior (c), the
EYE diameter is maximal. Positions of the active bits between the beginning and the end
of the EDP vector correspond to intermediate diameter sizes {b).

6.2 Types and ranges of effector motions

Due to their different purposes, the types of motions that DETE’s effectors can accomplish are
different and their range is limited. In general, however, they can be categorized as reflexive or
voluntary.

6.2.1 EYE motions

DETE’s EYE motions are of three general types: (1) externally controlicd motions -- guided
“mechanically” by the user, (2) visual stimulus controlled motions -- in response to stimult in the
visual scene, and (3) verbally controlled motions - in response to verbal inputs which have been
previously associated with externally controlled motions.

(1) Externally controlled motions. These motions of the EYE are controlled by the user via a
Jjoystick. Such motions are needed during the initial training period to move the retina over a
particular object on which the teacher wants DETE to focus its attention (i.e. externally guided
saccades) or 1o change the size of the EYE's diameter (i.e. externally guided EYE accommodations).

(2) Visual stimulus controlled motions. These motions, which can be either saccadic motions or
EYE accommodation, are reflexive in narure. Thev are performed in tandem when DETE is left on

11$ own 1o explore the Visual Screen, or when there are sudden changes in DETE’s Visual Field that
capture its attention.

(a) Saccades are simple linear (ballistic) motions of the EYE from an initial position o a
target position that is off the fovea (the center of the retina). (For discussion of the neurobiology of
saccadic motions see section 13.4). The saccadic motions of DETE’s EYE have the following
dynamics. Their duration is 10-3(0 msec¢ (1-5 B-cycles) depending on how far from its original
position the EYE is displaced. Each saccade is followed by a gaze -- a fixation of the EYE at a point



in the VS for 300 to 500 msec. These dynamics were chosen to roughly conform to those observed
in humans.

The algorithm of the reflexive saccadic motion is simple. All pixel values in the Visual Field are
examined in parallel for changes at each B-cycle. If one or few closely located pixels have changed
their values (which correspond to the appearance/disappearance of an object in the VF, or 10 a
motion of an object which is already in the VF), DETE does the following. First, it calculates the
center of gravity (CG) of this cluster. This is done within the duration of the one B-cycle. Second,
during the following 1-5 B-cycles the EYE is moved to its new position. If two or more clusters of
changed pixels appear simultaneously, then the one with the maximal intensity (number of changed
bits) is selected as a target of the saccadic motion and the rest are disregarded (this calculation is
done procedurally). During the duration of a saccade, any additional changes in the visual field are
disregarded -- DETE is not receptive.

(b) Accommodation is a reflexive change in the diameter of DETE’s EYE, which is an
analog of the eye accommodation reflex in humans. (For discussion of the neurobiological basis of
eye accommodation in humans see section 13.4) This type of motion is necessary since DETE
needs to focus on objects of various sizes or on whole scenes containing several spatially distributed
objects.

The accommodation algorithm is also very simple. The driving signal is provided by the siZe
Feature Plane (ZFP) which represents the size of an object or the cluster of the pixels that have
changed their values. Similarly to the algorithm for saccadic motion, in the accommodation
algorithm DETE first computes in parallel the diameter of the cluster of value-chan ged pixels. This
is done by finding the min and max of the grid addresses of the value-changed pixels on the X and
Y axis of the Visual Screen; subtraction of the min from the max for each axis, and assigning the
value of the diameter to the max of the result. Then the current radius of the EYE is changed to the
newly computed value.

(3) Verbally controlied motions --voluntary -- used in the performance of tasks such as “look
up”, “look left”, “find”, “zoom in”, “zoom out”. For instance the command “find the red ball”
initiates a search over the ohjects within the Visual Screen which is expressed in saccadic motion of
the EYE (VF) and zooming in and out -- accommodation. It results in DETE placing its EYE (and
respectively finger tip) over the object (if such an objects exists in the Visual Screen), or in quitting
after examining all objects (if the object is not in the VS).

6.2.2 FINGER motions

The FINGER is regarded (represented) as a solid object which can be moved via the joystick or
“voluntary” within the boundaries of the Visual Screen and can interact with the rest of the objects
(also solids) in the VS. The scope of possible FINGER-object interactions is very limited.
Presently it includes only: push, follow, and deflect. Each of these interactions can be characterized
by the initial and final stutes of the participating FINGER and object and a time interval during
which the states of the object and the FINGER change.

Similar to the control of the EYE, the control of all FINGER motions is either via the jovstick
(i.e. external) or voluntary (i.e. internal). The external control is used during training of DETE 1o
perform a particular motor task. The ability for voluntary control is acquired (learned) by giving
DETE simple verbal instructions in association with externally controlled motions of the FINGER.

The following verbal commands, (words or phrases) can be used to elicit the corresponding motor
actions by DETE's FINGER:



1) “PUSH (HIT) the ball to the center”. This command (which requires that DETE has
information about the location of the ball, the location of its FINGER, and the desired direction of
motion) causes DETE’s FINGER to initiate the movement of the object in the given direction, while
both the EYE and FINGER remain in place. Since this is an elastic hit, here we also worry about
the conservation of the velocity moment (mxv, m = #pixels).

2) “FOLLOW the ball”. In this situation the ball is moving on its own. The command causes
the EYE and the FINGER to move together with the ball.

3) “DEFLECT the ball”. This is similar to PUSH but the object is moving. Depending on what
are the initial locations of the ball and the FINGER, this command causes DETE’s FINGER to
interrupt the ball’s motion by positioning itself in front of and on the path of the moving ball.

Variations on these commands/behaviors are also possible. For instance modifiers of the
motions can be used {e.g., slow, fast, etc.).

6.3 Motor memory

To be able to perform the above-mentioned verbally-controlled motor behaviors, DETE needs to
initially learn the meaning of the verbal instructions. The motor system contains a sequential
associative memory which is used to learn and recall motor sequences. Part of this memory is used
to control of the EYE and the other part to control the FINGER. The motor system takes two types
of input: the position of the EYE on the screen and its diameter, and the position of the FINGER on
the screen and its motion. At first, for the purpose of simplicity, the retina and the finger are tied
together (i.e. wherever the finger points, that is where the retina is looking and vice versa).

The learning strategy which is adopted here is similar to the way parents teach their kids. For
instance, first the attention of a child is somehow attracted to a given object (in DETE this is done
externally through the jovstick by moving the EYE-FINGER to the right location) and during the
time when the child orients towards the object the parent issues the utterance “LOOK at the ball”
(during the act of moving the EYE-FINGER from its initial location to the ball) or simply “BALL”
(if the EYE is already on the ball). Of course, the same strategy is used while learning the meaning
of “ball”. From this it is evident that the motor behaviors have to be prerequisites for the language
behavior. In similar situations the user says “HIT the ball” while holding DETE"s EYE-FINGER
on the ball and pushing it. Similarly, by pairing verbal and motor events (while using the visual
capacity) DETE learns to actively interact with the blobs world.
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7  SELECTIVE ATTENTION IN DETE

At any moment, we deal only with a small fraction of information that we perceive from the
environment (visual, verbal, or through any other sensory modality). This faculty is attributed to
our attentional mechanisms. Attention is a mental process through which we avoid distraction by
irrelevant stimuli (external or internal) while seeking out and focusing on those stimuli that are
behaviorally or task-wise important. This process allows us to access information selectively and
sequentially. DETE has been provided with some functional capabilities that resemble those of
humans. The attentional mechanism used in DETE is described in this chapter.

7.1 Representation of attention in DETE

Chapter 3 discussed how visual information is represented in the individual visual feature planes
(VEPs). Each object on the retina is encoded by an assembly of synchronously oscillating units
(object-assembly) at the VFP level. Subgroups of neurons in each object-assembly represent
various object features. While the oscillations of the neurons within an object-assembly are phase-
locked (have the same phase angles), the oscillations between object-assemblies are phase shifted.
The phase shift is used to represent the segmentation of the visual input into objects in the temporal
domain. This scheme allows several objects to be represented simultaneously. In order to learn
about only gne of several objects, there is a need for a mechanism that will make this object
“special” for some time, i.e. focus attention on it. This mechanism is the Selective Attention
Mechanism (SAM).

In DETE, selective attention is represented as a short time-window (Temporal Attention
Window -- TAW) that opens and closes cyclically with the same frequency as that of the oscillating
neurons in the object-assembly (Figure 7.1). Any object assembly that has the same phase as the
TAW is considered to be “attended to™. All other objects are unattended. For example, in Figure
7.1., the TAW is open in phase with the phase of the circle within the retina. As a result, the circle
{rather than the square or riangle) is in the focus of attention. All of the circle attributes (color,
location, etc.) are also within the TAW -- i.e. have the same phase.

Notice that in the literatire on attention, a “visual attentional window” is commonly understood
as a small area of the visual field (i.e. its dimension is space rather than timme), This area can be in
the center of the retina (coinciding with the fovea) or out of it. In DETE, the TAW is in the temporal
domain.

What makes the open state of the TAW special is that it is only during this time that the short
term memory (STM) learns. The STM and the relation of its update to the TAW will be discussed
in Chapter 9. Here I will mention only that as a result of this interaction, objects that are attended to
leave stronger traces in the STM than those that are not. The bigger the phase gap between the
TAW and the oscillations that represent a particular object, the weaker the memory trace left by this
object in the STM.
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Figure 7.1:  Input Segmentation Mechanism (ISM)

Three objects (a circle, a triangle and a square) with different locations on the retina are
represented in the output of the ISM (see Figure 2.4). Shown are the oscillations of only
one neuron per object which is representative for the oscillations of the whole object-
assembly.

7.2 The Selective Attention Mechanism

The Selective Attention Mechanism (SAM) consists of two functional modules, the Input
Segmentation Module (ISM), and the Focus of Attention Master (FAM). A block diagram of the
Selective Attention Mechanism and its relation to the rest of DETE’s modules is presented in Figure
7.2. This figure shows a retinal input received by the ISM. It consists of three objects (a circle in
the center, a small triangle north-west of the center and close 10 it, and a square north-east of the
center at the periphery of the retina). The ISM represents each object as an assembly of oscillating
neurons with different phases between the assemblies and the same phase within the assemblies,
The oscillations are passed to all feature extractors (FEs) in parallel. The mapping between the ISM
and each of the FEs is topographic and one-to-one. Further, the individual FEs extract the relevant
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features from the input signal and pass the outputs (feature planes) to the corresponding parts of the
visual memory. Again the mapping is topographic. The FAM generates the Temporal Attention
Window (TAW) and conveys it to the visual memory. The phase of the TAW by default is the same
as the phase of the neurons oscillating in the center of the retina and can be controlied by the verbal
input. The TAW determines when the STM and LTM are updated.
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Schematic drawing of the SAM function. The ISM (shown on the bottom) segments out in
time the representations of the three objects and passes these representations in paraliel
to the five Feature Extractors (FEs: SFE, ZFE, LFE, MFE, and CFE). The FEs pass the
generated feature maps to the corresponding parts of the visual memory. The FAM
{shown up to the left) generates the TAW and conveys it to the visual memory (STM &
LTM). The two icons {shown in the bottom left corner) denote the type of implementation
of the individual modules (neural or procedural).

7.2.1 Input Segmentation Mechanism

The Input Segmentation Mechanism (ISM) performs initial segmentation of the visual input into
objects. Segmentation is represented in terms of phase differences. This module is located between
the retina and the visual feature extractors. Phase differences between the objects are created within
the ISM. Remember that DETE looks at a visual scene through the retina (a circular aperture with a
variable diameter, and center that can be targeted at any point of the Visual Screen). The
representation of an object is such that the further away from the center of the retina it is (while stil]
within the retinal field), the larger the phase shift. As emphasized in section 2.3.2, since the FAM
clock ticks once every 5 B-cycles, in DETE there are only 5 different phases in which object
representations can be. In other words, DETE can look at a maximum of 5 different objects
simultaneously. The ISM is a procedural module which takes retinal input and for each object in the
retina computes:

(1) The location of its Center of Gravity (CG) with respect to the center of the retina.

(2) A phase lag for each object such that, if the CG of the object coincides with the center of the
retina, then the phase lag is zero. If the CG is at the periphery of the retina, the phase lag is 180°
(1.e. delayed by 4 B-cycles after the TAW -- see Table 7.1). The magnitudes of the phase lags of

objects located between the center of the retina and the periphery are proportional to the distance
from the center.

(3) A representation for each object as an assembly of neurons oscillating in phase with the CG
of the object.

7.2.2 Focus of Attention Master

The Focus of Attention Master is the procedural mechanism that cenerates and controls the
Temporal Attention Window. The FAM contains an internal clock w hich generates continuous
oscillations. The frequency of the FAM is the same as that of the frequencies generated by the
ISM. Its phase is always locked to the phase of the object that is closer to the center of the retina
(the fovea). The FAM is connected 10 all memory modules, i.e. there is a connection from the FAM
to every neural element in each memory bank. A tick of the FAM happens once every Sth B-cvcles
and 1s one B-cycle long. Each tick opens a short temporal window (one B-cycle long). The
functional significance of this window is such that only in this time window can the memories learn.
In other words, only the neural activity in the STM during this temporal window leaves a trace in
the STM (the lrm of the STM is modified). The length in terms of B-cycles and the phase relation of
the TAW 1o the phases of the oscillating neural assembiies representing individual objects can be
changed. The phase relation can be controlled by the verbal input. An example of how this
happens is given in section 11.5.1. The fact that the phase of the TAW can be controlled verbally is
especially important when visual images are generated mentally as a result of a verbal input. The
fict that the Focus of Attention Master (FAM) is designed so that if there is not a visual input, the
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first word of any verbal input is synchronized with the TAW. In other words, the TAW opening
coincides with the first B-cycle of the first gra-phoneme.

There are various ways to construct an oscillating circuit which can serve as the FAM. One
example of such oscillator which has a neural flavor (a simple neural network composed of an
excitatory and an inhibitory elements connected in a feedback loop) is shown in Appendix E.

7.3 Control of selective attention

Once generated by the ISM, the phase differences that correspond to the different objects are
maintained for an amount of time called an attention span. In humans, the attention span is about
300 to 500 msec. This period corresponds behaviorally to the duration of visual saccades ***
CITATION EMPTY, OR MISSING CLOSURE ***(300 to 500 msec long fixation followed bya
fast eye movement 10 to 20 msec long) or the average duration of auditorily presented words (Table
5.1).

To focus attention on different objects in the Visual Field DETE first moves the center of the
retina to the object as a result of which the phase of the Focus of Attention Master changes. Itis
important to notice that DETE’s visual memory can maintain activation (representing various
objects) which is provided either through the visual input or is elicited through the verbal input.
Attention can be switched between such differentially generated object representations. This is done
by re-locking the phase of the FAM from the representation of one object to that of another. In
humans such switches of attention correspond to the ability to switch from perception to thinking
(mental imagery).

When an image of an object is elicited in the visual memory through a verbal input (e.g., “A
ball™), new visual features can be added to the visual representation of the object through the verbal
input. For instance, the verbal input “is red” elicits the representation of red color in the color bank
of the visual memory. The new feature is phase locked automatically to the existing neural-
assembly representing the ball and to the FAM respectively. If a new object is introduced through
the verbal input (e.g., “a square™) a new neural-assembly with a different phase is activated in the
corresponding parts of the visual feature memories (e.g., some of its neural elements are in the area
of the Shape Feature Memory which represents squares). The FAM is unlocked from the previous
target -- the ball (i.e. the TAW phase is shifted) and the incoming information about the new object
is automatically phase locked with this new phase of the TAW.
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8 BASIC MEMORY MECHANISMS

The ability to learn, recall, and recognize sequences is fundamental for any system that is designed
to handle dynamical tasks, e.g., language, vision, and motion. DETE’s sequence processing ability
is based on a unique, specially designed memory mechanism -- the KATAMIC* Sequential
Associative Memory. This memory mechanism is used (with minor modifications) in all of DETE’s
memory modules. The KATAMIC neural network is a sequential associative memory that can
rapidly learn multiple sequences of randomly generated or structured binary patterns, recognize
them and recall them (i.e. do sequence completion) in response to cues (short sub-sequences of
stored sequences). This section describes the architecture and dynamics of the KATAMIC model,
and presents the results of basic simulation experiments that test its functional characteristics. The
modifications introduced to the KATAMIC model which allow it to function as a Shot Term
Memory, or a Long Term Memory, or a Procedural Memory are described in detail in Chapter 9.
The neural plausibility of the KATAMIC model is discussed in Chapter 13.

8.1 Network architecture

The KATAMIC model is a synchronously updating sequence processing network. The update cycle
of this network will be called the BASIC-cycle (B-cycle for short). A block diagram of the
KATAMIC memory is presented in Figure 8.1. The model has three modules. (1) predictor --
contains a set of predicting devices, (2) recognizor -- contains a set of recognition devices, and (3)
input-gator -- contains a set of input-gating devices. At each B-cycle, the function of the predictor
s to get one pattern from the input sequence and to generate an output pattern which is a prediction
of the next pattern in the input sequence. The function of the recognizor is to compare the output
pattern with the next input pattern and to generate a contro} signal for the input-gator. This signal
reflects the quality of the prediction made by the predictor. The input-gator, in turn, decides which
pattern should be used during the next B-cycle as input to the predictor -- the next (external) input
pattern or the (internally generated) prediction. In other words, the input-garor sets the KATAMIC
memory in a “receptive” or “generative” mode. In the “receptive” mode the memory “listens” to the
input sequence, whereas in the “generative” mode it uses its knowledge of a particular sequence to
recall (generate) this sequence in response of an initial cue (the first few patterns of the sequence).

The functional units which constitute the individual modules of the KATAMIC memory are
called: predictrons, recognitrons, and bi-stable swirches (BSSs). Each of these three types of units
has different functional characteristics which are described in the following sections.

" Named after Katarinu and Michae! whose presence at the right place and time made this
model possible.
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Figure 8.1:  Block diagram of the KATAMIC model

A block-diagram of the KATAMIC model. The three basic components (predictor,
recognizor, and input-gator) are shown as rectangles. The data flow paths (for input and
output sequences) are shown as thin lines. The thick line shows the control signal
provided from the recognizor to the input-gator. This signal instructs the input-gator to

pass either the external signal -- “input sequence” or the internal sighal -- “output
sequence” to the predictor.

8.1.1 Predictron

The predictron (predicting neuron) is the basic neuron-like computing element of the KATAMIC
model. A specific name was chosen for this unit since it is functionally different and structurally
more complex than the classical McCulloch-Pitts neuron (McCulloch and Pitts, 1943) used in the
majority of the connectionist models. However, the predictron is significantly simpler than any real
neuron in the nervous system. Schematic drawings of a neuron (the basic processing element in the

nervous system), a predictron (the basic processing element in the KATAMIC model), and a
classical McCulloch-Pirts neuron are shown in Figure 8.2.

Let us first compare the predictron to a real neuron (e.g., a purkinje cell in the cerebellum). The
neuron and predictron ure both composed of soma, dendritic tree, and axon, whereas in the
McCulloch-Pitts neuron the notion of dendritic tree is irrelevant and the soma maps to the neural
element 1tself. However. while the dendritic tree of the neuron is composed of multiple branches,
the predictron’s dendritic tree has only a single branch. Also, both dendritic trees are composed of
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dendritic compartments (DCs). In the neuron’s dendritic tree, a compartment is defined as a
functionally identifiable unit (specifically, it can be a synaptic button, or a synaptic stalk, or a patch
of membrane, or the set of all channels of a particular type, or a part of the tree between two
branching points). In the predictron, a dendritic compartment (DCP) is a part of the dendrite
characterized by a its own set of parameters. Also, unlike real neurons, the dendritic tree of the
predictron consists only of one single branch.

Second, let us compare the predictron to the classical McCulloch-Pitts neuron. An important
difference between the predictron and a McCulloch-Pitts neuron is that in the predictron the dendritic
compartments are used to store several different types of memories and the position of the individual
compartments in the tree is of importance whereas in the classical neuron the synapses store only
one value -- a weight, and the positions of the synapses on the soma are irrelevant. Another
significant difference is that for its operation a predictron needs on the order of hundreds dendritic
compartments (similarly to real neurons) whereas a classical neuron can function with only a few
synaptic inputs (weights).

synapses non-modifiable
: synapses

[ _3RIRT]

oe e [+, < IXET]
[ 4R AR
[+ 53R H petiiz
DC11111
b1z ' DC1191
modifiable
DC14 pettt pcz synapsas
DC12 s (welghts)
dendritic tree e oC221 dendritic branch
De2 C21
soma .
pe2iz soma soma
DCen
axon
axon
axonal collaterals
D axonal collaterals
D
AN
realistic NEURON PREDICTRON McCullock Pitts
neuron

Figure 8.2:  Real & artificial neurons

Several of the dendritic compartments are labeled according to their locations in the tree
(e.g., DC212, DC111, etc.}. Synapses made by other neurons onto the dendrites are

shown as little circles. Different gray shadings of the circles are used to emphasize that the
synapses have different weights.
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Now let us consider the basic function of the predictron. At each B-cycle, a predictron takes
inputs (specifically: one direct input from a particular location of the input pattern, and multiple
indirect inputs from the rest of the bits forming the input pattern), changes its state, and generates an
output. The function of the predictron is to learn to predict successive direct inputs. The number of
predictrons in the model is P. Each predictron contains a soma (cell body) and a single dendritic
branch composed of several Dendritic Compartments (DCPs) (Figure 8.3). The number of DCPs
per predictron (DP) is the same for all predictrons. Having exactly the same number of DCPs in
each predictron is not a theoretical limitation. The model operates even if the number of DCPs is
only similar across predictrons. The choice of equality was based on implementational constraints.
Each DCP is characterized by 3 variables:

(1) a positive Long-Term Memory variable (p-/mm),
(2) a negative Long-Term Memory variable (n-Itm),
(3) a Short-Term Memory variable (stm).

Each of these variables is a real number between 0 and 1. The ltm variables are used to store
information about the spatial relations (how far apart within a pattern) and temporal relations (how
far apart along the time axis) of the active (i.e. ON or 1) bits in all sequences that were presented to
the memory since its naive state (i.e. before it has learned anything). The stm variable is used to
store information about the spatial and temporal relations only among the 1-bits of the most recently
seen patterns in a given sequence. The stm value has a specific dynamic characteristic -- it “flows”
towards the soma with a speed of one DCP per B-cycle. At the same time it decays with decay
constant Tt. This dynamic allows the s value to serve a dual purpose: (1) as an intracellular delay
line, a feature which is used durin g learning, and (2) as a “look one step ahead” mechanism which
is used for prediction generation. Another feature of the st in each DCP is that it is reset to its
initial value at the beginning of every new sequence presented to the network. The reset signal is

provided externally and reaches each DCP through branches of a wire called the Climbing Fiber
(CE).

The soma of the predictron is characterized by an activation value, AP(t). This value is
computed at each time cycle as the dot-product of two vectors -- the shifted-som, and the difference
of the p-/tm and n-/1m in the predictron’s dendritic branch. The state of the predictron at each time
cycle is either “fire = 1 or “silent = 0”. If the somatic activation is larger than a threshold value
©P, then the predictron fires, otherwise it is silent.

8.1.2 Recognitron

The recognitron (recognirion neuron ) is a bi-stable neural element. Its function is to recognize the
input sequence on a pattern-hv-partern basis. The number of recognitrons in the model is R. Like
the predictron, the recognitron is composed of a soma and a dendritic tree. The soma is
characterized by an activation value AT(1) and a threshold @F. There are two dendritic branches per
recognitron extending horizontally in both directions for some distance. These dendritic branches
are also composed of Dendritic Compartments (DCrs) and the total number of compartments per
recogniton is DT, In different modifications of the KATAMIC model this number can vary from 1
to P, depending on the choice of recognition criteria made by the designer. For instance, one
recognition criterion is “recognize on a predictron-by-predictron basis”, i.e. when each predictron
generates a correct prediction independently of the others. Such a situation may occur when the
information carried by cach bit in the input pattern is not related to the information carried by the
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neighboring bits. Another possible recognition criterion is “recognize on a global basis”, i.e. only

when all predictrons generated correct predictions.
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Figure 8.3:  Predictron
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The p-itm, and n-itm state variabies for each DCP are shown as small ellipses on the bottom
of each DCP. Their values can vary between 0 and 1. The stm state variables are shown as
vertical arrows from one DCP to another. The various thicknesses of the arrows indicate
different values of the stm. The arrows at the end of the climbing fiber (CF) branches and
the ascending fiber (AF) branches that make contacts with individual compartments,

represent non-modifiable synapses of weight 1. The small ellipses at

the contact points

between PFs and DCPs represent non-modifiable synapses with weights between 0 and

1. The darker the ellipse, the larger the synaptic weight.

The dynamics of the DCTs are different from those of the DCPs. Each
(1) external -- a bit from the input pattern, and (2) internal -- a bit

DCT receives two inputs,

generated by a corresponding

predictron (Figure 8.41. Each DCT computes a logical XOR of these inputs. The XOR function has
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simple neural network which can compute this function (see Appendix F).

At each B-cycle the results of the XOR computations are summed algebraically across the
recognitron’s DCTs to form the “somatic activation” AF(t) of the recognitron. The value of AX (1) is
in the range of 0 to DY. The somatic activation is further compared to the threshold of the

recognitron ©F and if it is larger, then the output value passed along the recognitron’s axon s 1,
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Figure 8.4:  Recognitron & Bi-stable switch (BSS)

The recognitron and the BSS form a circuit. The BSS serves as a gate that passes either
the gxternal input bit (coming along a Mossy Fiber -- MF) or the jolernal input bit (coming
along the predictron’s axon) to its output. The recognitron functions as the controller of
this gate. The control signal is passed to the BSS via a recognition fiber {(RF). The state of
the controller itself is a function of the similarity belween an extemal input pattern (coming
along MFs) and the internal input -- predicled pattern (coming via the predictrons’ axons).
The recognitron has a soma (R) and in the figure two dendritic branches, one to the left of
the soma which contains 2 dendritic compartments {DC's), and one to the right with only
one DC'. The arrows at the end of the fibers (solid lines that make contacts with individual
compartments}, represent non-modifiable synapses of weight 1. Fibers that only by-pass
the DC's without making synaptic contacts do not have arrows at the point of contact with
the DC's.

8.1.3 Bi-Stabie Switch

The model contains also a second type of Bi-Stable Switch (BSS) (Figure 8.4). There is one BSS
per prediciron. Each BSS gets three one-bit inputs and generates one output bit. Two of the inputs
are “data” inputs, one bit from the external input sequence, and the other from the output of the
corresponding predictron. The third input is a “control” bit which is the output of the correspondin g
recognitron coming along the RF. The function of a BSS is to select one of the two data inputs (i.e.
the external input or the internal input) and to copy it to the output line. The input selection is
controlled by the control bit from the recognitron. Effectively, the BSSs enable internal sequence
completion. For instance, after a particular sequence has been learned, the BSSs turn off the
external input and allow the outputs of the predictrons (i.e. the predictions made) to be used as
inputs at the next B-cycle. The output of a BSS is a wire (axon). Each BSS’s axon is partitioned
into an ascending fiber (AF) and a parallel fiber (PF). The AF contacts all DCPs of the
corresponding predictron via non-modifiable synapses with weights 1. The purpose of these
synapses is to pass unchanged the value of the input bit coming along the AF to the DCPs. At a
random location along the predictron’s dendrite, each AF bifurcates to produce a PF which extends
in the horizontal direction. The PF contacts the DCP of the corresponding predictron at the level of
the bifurcation. This DCP is called a “seed-DCP” (Figure 8.5). There is one seed-DCP per
predictron at a randomly selected location along its dendritic branch. (The KATAMIC mode! can
function also with more than one seed-DCPs per predictron.).

8.1.4 A small scale example

A small scale example of the KATAMIC architecture is presented in Figure 8.6. The number of
predictrons (P) in this network is four. The number of DCPs per predictron is six. The number of
recognitrons is R, and there is one recognitron per predictron (i.e. R = P = 4). The predictrons are
nterconnected via the parallel fibers. Each PF contacts the same-level DCPs of all predictrons via
non-modifiable weights (Figure 8.6). The purpose of this design is to distribute each bit of the
input pattern across all predictrons in the network. The values of the weights of the PF synapses are
set such that they decrease exponentially (decayv canstant Ts) with distance from the seed-DCP.

This design ensures that the further away two predictrons are in the network. the less they influence
each other.
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Figure 8.5:  Canonic circuit of the KATAMIC model

The basic circuit of the KATAMIC network consists of one predictron, one BSS and one
recognitron. A Parallel Fiber (PF) synapse on the seed-DCP is shown by a small dark oval.
The stm, n-ftm and p-/tm within each DCP are shown as colored bars. The height of the
bars relative to the height of the DCP indicate their values. The initial values of these
variables are: p-itm = 0.5 {medium-height red bars): n-/tm = 0.5 {medium-height blue bars)
stm=0.01 (tiny yellow bars).
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Figure 8.6:  The KATAMIC model

A small scale example of the compiete KATAMIC architecture. The network consists of
four predictrons {corresponding number of BSSs, and recognitrons). Each predictron has
six DCPs. Each recognitron has three DCs. Arrows at the contacting points between wires
(fibers) and compantments represent non-modifiable synapses of weight 1. The rest of the
arrows placed on wires are used to show the direction of signal flow.
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8.1.5 Parameters & their values In a complete system

For a description of the parameters and variables used in the model and their typical values see Table
8.1. The predictrons are indexed by i, and the DCPs are indexed by j.

symbol description typical values
parameters

P number of predictrons 64

DP number of DCPs per predictron 512

R number of recognitrons 64

Dr number of DC's per recognitron 7
Ts time constant for stm spatial decay -0.01
Tt time constant for stmtemporal decay -0.01

b stm update rate 5.0

c tms update (learning) rate 1.0

eP firing threshold of the predictrons 0

ef recognition threshold of the recognitrons 5

@P gating threshold of the BSS 1

variables

pij(t) positive tm  (p-itm) p]j(0)= 0.5 e (0,1)
nij(t) negative tm  (n-itm) nij(0)= 0.5 e (0,1)
Sij(t) stm S'J(O) =0.001 € (0,1)
Asij(t) stminjected As”(O)= 0.0 e (0,1)
sicj’(t) stm normalization factor si? (0) = 0.001

pﬁ-’(t) p-/tm normalization factor plc:(o) = 0.001

ni (1) n-/tm normalization factor n, (0) = 0.001

AP(1) Activation of predictron i e (0,1)
Ai(t) Activation of recognitron i e (0,0
AP (1) Activation of BSS i e (0,1)
I (t) Input to predictron i (= Output from BSS;) e (0,1)
O?(t) Output of predictron i e (0,1)
Of(t) Output of recognitron i e (0,1)

Table 8.1:
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8.2 Network dynamics

8.2.1 The KATAMIC algorithm

During each B-cycle the model goes through one complete pass of the KATAMIC algorithm, This
algorithm consists of the following 9 steps:

1. Get input:

Patterns of the input sequence are presented to the network in an orderly fashion -- one pattern per
B-cycle. An input pattern I(t) is passed to the predictrons (one bit per predictron -- L(1). Each

input bit reaches one BSS via the corresponding Mossy Fiber (MF) (Figure 8.6). After passing
through the BSS each input bit is sent along an Ascending Fiber (AF) to the dendritic tree of the
corresponding predictron. The connections made by the AF synapses are used to convey the value
of the input (0 or 1) to the DCPs of the predictron. This infor mation is used by the DCPs during
learning.

2. Inject stm to DCPs:
The synaptic connections made by the PFs are used to “inject” stm (qu(t)) into the corresponding
DCPs. The injected stm in a particular dendritic compartment i~ used to update the value of the som

in this compartment. At the seed dendritic compartment (sved-DCP) of each predictron which
receives input 1 (Ii(t) = 1) the value of the injected stm is 1. In viher words:

Vie(1,P)Aje(1,.DP) suchthat {1 =1A d..=1) set As()=1 (8.1)
1 ij §j

where: 1 is the i-th predictron; j 18 the j-th level DCP, Agj(O) =0, dij is the matrix of DCPs of all

predictrons. For all seed-DCPs dij = 1, whereas for all non-secd-DCPs dij =0.

In all DCPs of the neighboring predictrons that are at the sime level as the seed-DCP of a given
predictron, the values of the injected stms are equal to the synaptic weights made by the PF to these
DCPs. Notice that the values of the PF synaptic wei ghts are se1 such that they decay exponentially
with a decay constant Ts. In other words:

vje(1,DP) such that Ay (O =1 set A:h-(t)=e|i'io|TS (8.2)

where: ig is the subset of predictrons which receive input 1 at B-cycle t.
3. Update stm at each DCP:

The increment of the som value at each DCP carries informution about the spatial relationships
between the 1-bits in the input patterns. The further apart space-wise two 1-bits are, the smaller the

value of the injected som. The stm value in each DCP is updated using the injected-stm Aﬁj(t) and
the value of the szm art the previous B-cycle sij(t—l) as inputs to a sigmoidal update function (8.3).

This update function was chosen because it is monotonic and saturates. Also, if the value of the
injected s is zero, the current value of the szm remains the same as the previous value.
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S O{S%(t) §j (1) - b Ag; (t)} (8.3)

where: o(x) = —1-—x ; b is the stm-update rate which determines the effect of the injected stmin a
1 +e

. . s o, . o .
given DCP on the previous stm value in this compartment; Sij(t) 1s a stm normalization factor which

1s chosen such that:
IF A §J (t) =0 THEN Slj(t) = Sij(t-l)

. 0 1 1
i DS = - 84
This is ensured when: (1) 56D In (Sij(t_l) 1 ) (8.4)

4. Learning (Modify Itm):

Learning in the KATAMIC model means changing (i.e. updaiing) of the p-{tm or the n-{rm in each
DCP as a result of the current value of the s#m in this DCP and a number of conditions. The basic
idea is to “imprint” the momentary pattern of the szm (over the DCPs) onto the pattern of one of the
ltms. The p-ltm or the n-ltm of each predictron (but not both) is updated at each B-cycle using a
two-stage update rule:

* Stage 1: (Learning condition); Predictrons Jearn only when their expectations (i.e. the prediction

which they have generated) fail. In other words, it is not necessary for a system to over-learn a task
if it already can perform the task correctly. This learning condition was proposcd by Rosenblatt in
his Perceptron model (Rosenblatt, 1958) and was used by Rescorla and Wagner (Rescorla and
Wagner, 1972) as the basis of their learning model. The siatus of the recognition process is

reflected in the activation value of each recognitron (0 -- correct prediction, 1 -- i1, rrect prediction)
and is conveyed to the DCPs of each predictron via the collaterals of the Recocnition Fibers (RFs).
Each predictron (and respectively each DCP) uses the provided recognition - .l to evaluate the
learning condition. If the prediction is correct (recognition signal = 0), then - - icarning happens

and stage 2 is bypassed. If, on the other hand, the prediction is incorrect then, depending on the
type of prediction failure, the second stage of the learnin g rule is executed:

In the KATAMIC model there are only two possible ways for a prediction mude by a predictron
to fail:

(1) wrong-O-prediction occurs when the corresponding input bit from the currently processed
input pattern is 1 and the prediction made by the predictron at the end of the previous B-cycle is 0.

(2) wrong-1-prediction occurs when corresponding input bit from the currently processed input
pattern is O and the prediction made by the predictron at the end of the previous B-cycle is 1.

The particular type of prediction failure is mediated in each DCP via two wires:
(1) The RF signals the fact that a prediction has failed (value = 1)
(2) The AF signals O or 1 which specifies which kind of prediction failure has occured.

* Stage 2; (Modification function): If the learning condition is met, and IF:

* wrong-0-prediction: Then the p-/om value in each DCP of this predictron are modified
(learning occurs) as follows:
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vieWPaje(LDP)  IF {10 = Iya (0D = 0)]
THEN set py;(0) = o p(0 py;(i-1) - ¢ 5550 (8.5)

where: ¢ is the learning rate (i.e. loms update rate) and pg(t) is the p-/tm normalization factor which
is chosen such that:
IF SI_](t) =0 THEN plj(t) = pl‘](t-l)

) (s} 1 1
This is ensured when: P =———In{——— -1 (8.6)
Y| pij (t-1) (pij (t-1) )

* wrong-1-prediction: Then the n-/rm value in each DCP of this predictron are modified as
follows:

Vie(1,P)aje(1,DP)  IF {@o = 0ya (%1 = 1y}
THEN set nlj(t) = 0[]]8({) nij(l I) ~-C Sl_](t)] (8.7)

o, . — .
where: nij(t) 1 the n-lrm normalization factor which is chosen «uch that:

i

- .0 1 1
This is ensured when: nij(t) ___—nij(['l) In (___nij(['l) -1 ) (8.8)
5. Itm resource maintenance -- Sforgetting:

The purpose of this Step 1s to assure that the total amount of p-ltm per predictron (and
correspondingly that of n-itm ) is kept constant at each B-cycle. This is necessan «ince we do not
want the amount of /mm to reach a saturation point after the memory has learned s .. 14l sequences.
The mechanism has two side effects: (1) It allows the KATAMIC memory to learn sequences only
from positive examples. Each sequence (a positive example) is used effectivel\' as a weak negative
forgetting mechanism provided below. (2) It gives the memory the ability to forget previously
learned sequences which are rarely used. The application of this mechanism results in weakening of
the traces which old and rarely seen sequences left in the /o,

The resource maintenance / forgetting mechanism functions in the following way, The sequence
which is being processed is encoded within the dendritic trees of the predictrons as a set of stm
vectors (one per predictron). Each of these sin vectors is used in the update of the p-ltm or the p-
{rm depending on the type of prediction failure (see the previous step of the algorithm). The toral
amount of p-/nm and n-lrm values for each predictron i are respectively (DCP x pij(O)) and (DCP

n]-J-(_O‘)). The maintenance of resources involves p-ltm and n-ltm redistribution among the

dendritic compartments of each predictron. Intuitively speaking, the increase of /m in the few
dendritic compartments where there is a big amount of st is compensated by a decrease of /rm in
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the rest of the compartments of the predictron where there is a relatively low amount of sm. The
actual resource redistribution is done in the following manner.

Vie (1,P) compute ;{j(o = pij(:)g;ﬂ@ (8.92)
3P0
k=1

Vie (1,P) compute ni'j(t) = nij(t)-]’;'pﬂ"-ER (8.9b)

znik(t)

k=1
where:

p-itmpp is a constant which specifies the total amount of positi+ e long-term memory per predictron
(p-ltmpp = DP x pij(O)), and

n-lrmpp 1s a constant which specifies the total amount of negative long-term memory per predictron
(n-ftmpp = DP x nij(O))

6. Temporal encoding:

This processing step produces an encoding of the temporal vider of the 1-bits in the successive
patterns by constructing a temporal history of the successive 1-bit inputs to a given predictron which
is reflected in the stm pattern in the dendritic branch of each predictron. This is accomplished by
shifting the value of the stm in each DCP to the next dendriic compartmcnt towards the soma
(replacing the previous stm value) and decaying it with a temporal time constant Tt. Ina predictron,

the later in time a 1-bit input arrives with respect to the previous 1-bit input, the smaller is the st
trace left by the previous input.

550 = ;510 Tt (8.10)
The boundary condition is: for j = 0 set oD =0or §0(t) = 8;pp(V) (used currently).

7. Predict next input:

At each B-cycle predictrons use the relation between the Irms and the szm in their DCPs to make
predictions about the next pattern in the sequence. A prediction is gencrated by comparing the
shifted (one DCP towards the soma) pattern of the som values distributed in the DCPs of a predictron
to the patterns of the p-ltm & n-ltm. For instance, if the sim pattern is more similar to the p-/tm than
to the n-/rm, then the predictron fires, otherwise it is silent. In a given predictron, the comparative

similarity of the p-lzm or the n-ltm dendritic distribution to the sem distribution is learned through
experience,

The output pattern O(t) of the network at each time cycle is actually a prediction of the input
vector I(t+1) at the next time cvcle. O(t) is generated as follows:

(1) Calculate the somatic activation as the dot-product of the stm and the per DCP difference of
the [tms (p & n) for each of the predictrons. The result of this calculation shows whether the shifted
st pattern is more similar to the p-/om pattern or to the n-fim pattern.
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(2) Make the decision to fire the predictron (1-prediction) or not (O-prediction) by comparing its
activation to the threshold GP,

DP
Yie (1,P) compute AP() = Es{j(t)(p{j(t) : ni'j(t)) (8.1)
j=1

> ©P THEN set Oli)(t) = 1 (predictron fires)
IF AP > (8.12)
< ®P THEN set O : (1) = 0 (predictron silent)

8. Attempt sequence recognition:

At this step of the algorithm each recognitron computes its sumatic activation as the sum of the
results of an XOR function (FXOR) applied to the two inputs of each DCT, the next “external” input

(Iexti(t+1)) coming along the corresponding MF, and “internal” input 0?(0 -- the output of the
predictron at this B-cycle (8.13).

Dr
Vie (1,R) compute Air(t)=ZFXOR(Iexti_k(t+1) A O};_th)) 8.13)
k=1

The recognition mechanism is designed such that the decision about which input (external or
internal) should be passed to each individual predictron at tinie t+1 does not depend only on the
correctness of the prediction made by the predictron itself. It also depends on how good are the
predictions which are made by the immediate neighbors of each predictron. The acceptable degree
of performance of the neighbors is reflected in the magnitude of the recognitron’s threshold -- a
value which can be set by the user (8.14).

>®T THEN set Ori(t) = 1 (recognitron fires)
IF A () . (8.14)
< ®' THEN set O j(t) = O (recognitron silent)

The purpose of this design was to provide some flexibility for the process of recognition. The
design also allows the system to operate (if set accordingly by the user) in two extreme modes of
operation:

(1) Local recognition -~ This is a case when the decision about which input (internal or external)
should be used by a predictron depends only on its own performance at the previous cycle. In this
extreme situation each recognitron needs to have only one dendritic compartment (DCr),

(2) Global recognition -- This is a case when, unless all predictrons in the network have made
correct predictions (i.e. a whole pattern in the sequence has been recognized bit by bit), none of the
predictrons is allowed to use an internal input at the next time step. In this extreme situation we
need as many DCTs per recognitron as there are predictrons. Actually, since the decision for all
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predictrons is the same, the System can operate with only one recognitron connected to all BSSs
which has DCr= P,

In general, however, the system will operate in between these two extreme cases. As a result
the learning in individual predictrons will depend on the quulity of predictions made in a small
neighborhood around each predictron -- a measure provided by the recognitron.

9. Generate next input:

The input pattern for the next B-cycle (I(t+1)) is generated by the BSSs -- one bit per BSS. As was
described above, each BSS takes 3 inputs, 2 “data” inputs (one “external” Iextj(t+1) which comes
along the MF, and one “internal” Iintj(t+1) which is provided by the axon of the corresponding

predictron -- the 0?(1)), and a “control” input from the corresponding recognitron Oir(t). All of

these inputs take values 0 or 1. The BSS functions as a guiing device which passes either the
external or the internal input to the Ascending Fiber. It hu- un activation value A? (t) which is

updated (8.15) at each B-cycle by the control signal from the cuiresponding recognitron Oir(t). The
activation decays with a decay constant Th,

Vie (LP) compue AT = (AP1)+ 0y e T (8.15)

At each B-cycle the activation is compared 1o a threshold ©P and if the activation is larger, then

the BSS passes the external input along the AFs whereas if 11 is smaller -- the internal input is
passed through the gate (8.16).

<©®b THEN set I(t+1) = lintj(1- 1)

8.16
> ®b THEN set I(t+1) = Textj(1+1) (8.16)

Vie (LIR) IF A}’(t){

Intuitively speaking, the dynamics of the BSSs were chosen such that they allow the network to
start using internal inputs (predictions) as soon as the predictions become correct. Such inputs are
being used as long as the predictions which they produce keep being correct. Notice that if the
predictions are correct, it is irrelevant which inputs are used -- internal or extern.!. since they are the
same.) However, the important feature which the BSSs provide is that if internal inputs are in use,
the network does not switch back to using external inputs as soon as the predictions which the
internal inputs generate become wrong (for whatever reason). Instead, the model keeps using
internal inputs for a few more B-cycles. In other words, it keeps “singing its own song” despite the
fact that it is false. The duration of the transition stage from using internal inputs to switching back
to the use of external inputs depends on the decay constant Tb of the BSSs. Setting the value of Th
high establishes a network that is not very responsive to the external input and has the tendency to
“sing its own song”, whereas setting this value low results in o network that is “‘eager” to adapt its
performance to the environment (the external input).

8.2.2 Nlustration of KATAMIC's dynamics

To illustrate the dynamics of the KATAMIC model as a whole, this section provides a diagrammatic
Hlustration in which the model goes through one B-cycle. A 4-bit wide pattern of an input sequence
is being processed. To make the description more concise, some of the 9 steps of the KATAMIC
algorithm have been combined and the complete B-cycle (i.e. 9 algorithmic steps) s shown
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diagrammatically in 5 consecutive plates. In each plate, the values of the three state variables (stm,
n-ltm, and p-ltm) are shown in color -- yellow, blue, and red respectively. Within each dendritic
compartment of a predictron these variables are shown as color bars with heights encoding their
values. A color bar with a height equal to the height of the dendritic compartment has a value 1. A
color bar with half the height encodes a value of 0.5. In each consecutive plate a copy of the whole
dendritic branch of each predictron is placed to the right. Color coded within this copy are the new
values of the state variables which reflect the changes occurred during the corresponding algorithmic
steps. These changes are also described in the accompanying figure captions.
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Figure 8.7.1: KATAMIC dynamics: Plate 1

The KATAMIC network in its initial state. The values of the n-itm and p-/tmwithin each DCP
are 0.5 (medium-height blue and red bars) while the values of the stm is 0.01 (tiny yeliow
bars). The seed-DCPs are gray shaded. The values of the activations in the dendritic
compartments of the recognitrons are set fo 1 (black) which sets up the network in a
receptive state {the BBSs can pass the external input to the AFs).

91



R

[ _ § <— cument pattem —- : r T ,

: H 3 g —
1 it i | L
INPUT sequence OUTPUT sequence

1. Basic KATAMIC architecture (in naive state)
2. Current state (after saveral ssqusnces have been learnsed)

92



Figure 8.7.2: KATAMIC dynamics: Plate 2

The dendritic trees drawn to the right of their original position show the KATAMIC network
after it has learned few sequences and is currently processing of pattern 6 of a particular
input sequence. The sequence is 11 patterns long and the remaining 6 patterns {from 6
to 11) are shown to the left whereas the outputs (predictions) of the network generated by
the first 6 patterns are shown to the right. Black rectangles in the sequences encode 1-
bits while white rectangles encode 0-bits. The output of the current B-cycle has not yet
been generated (the corresponding bits are shaded gray). Notice that compared to the
naive state the values of the stm & /im state variables are ditferent.
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Figure 8.7.3: KATAMIC dynamics: Plate 3

This plate illustrates steps 1, 2 & 3 of the KATMIC algorithm. (1) The network gets the
input pattern (pattern 6) (formula 8.1). The network has not produced yet an output so
pattern 6 in the output sequence is shaded gray. We assume that the states of the 4
BSSs are such that the input bits are passed directly (shown by the thick arrows to the right
of the BSSs) along the AFs. The values of the individual bits are shown with black or white
circles placed on the AFs and also next to the synaptic contacts made by the
corresponding PFs. Notice that the values carried by PF4 and PF& (which presumably
originate from other BSSs not shown in the drawing) are assumed 1o be 0. (2) The input
bits are injected in the corresponding DCPs (injected-stm). Each 1-bit (along PF1 & PF3) is
muttiplied by the value of the synaptic weight (encoded by different shades of gray -- black
is 1 and lighter is smaller than 1) made by the corresponding PF to the 4 DCPs. This
multiplication yields the values of the injected-stm. (formula 8.2). (3) The strmin each DCP is
updated ({tormuia 8.3). For instance, the stm value at the level of PF1 in P3, and at the
level of PF3 at P1 have become 1 and the values of the stm in the neighboring DCPs at
these levels (PF1 & PF3) have also increased. The values of the sim in the rest of the
DCPs have remained the same due to 0 injected-stm.
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Figure 8.7.4: KATAMIC dynamics: Plate 4

This plate illustrates steps 4 & 5 of the KATAMIC algorithm. (4) The #ms within the DCPs
are updated. To demonstrate how the /tm-update process works in the 4 possible
situations {formulas 8.5-8) we assume that during processing of the previous step of the
sequence (step 5) P1 has made a wrong-0 prediction ==> p-itm is modified; P2 has made a
correct-0 prediction ==> no leamning; P3 has made a correct-1 prediction ==> no learning;
and P4 has made a wrong-1 prediction ==> n-itm is modified. The update of p-itm in P1
and n-itm in P4 has been done in ail of their DCPs. (5) Resource management -- torgetting
{formulas 8.9a,b).
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Figure 8.7.5: KATAMIC dynamics: Plate 5

This plate illustrates steps 6, 7, 8, and 9 of the KATAMIC algorithm. (6) Temporal encoding
-- the stmvalues in each DCP are shifted to the next DCP towards the soma and decayed
(formula 8.10). The stms at level PF6 are shifted/decayed to the DCPs at level PF1. 7
Make prediction -- each predictron computes its output (formulas 8.1 1-12). For illustrative
purposes | assume that for P1 the stm vector is more similar to the n-#tm ==> 0-bit output;
for P2 the strm vector is more similar to the p-ftm ==> 1-bit output; for P3 the stm vector is
more similar to the n-ftm ==> 0-bit output; for P4 the stm vector is more similar to the p-itm
==> 1-bit output. The values of the output bits are shown with small black or white circles
placed at the synaptic contacts {small black arrows) made by the axons of the predictrons to
the corresponding DC's. (8) Attempt recognition--- at this step the network reads the next
pattern from the input sequence (pattern 7). The values of input bits are shown by small
black or white circles placed at the synaptic contacts made by the MFs to the
corresponding DC's and BBSs. Each DC' computes an XOR of its inputs. DC's where the
XOR yielded 1 are shaded black and the rest remain white -- value 0. The results of these
computations are summed for each recognitron to yield its activation value {not shown
graphically) (formula 8.13). These values are further thresholded (8" = 1) and the outputs
of the recognitrons whose activations have exceeded the threshold (R3 & R4) have been
setto 1 (formula 8.14). The outputs of the recognitrons are shown as black or white circles
placed on the RF fibers. P1 has generated a correct-0 prediction; P2 has generated a
correct-1 prediction; P3 has generated a wrong-0 prediction: and P4 has generated a
wrong-1 prediction. (3) Generate next input -- each BSS reads its control signal from the
corresponding RF and depending on its value resets the state of the associated gate (for
simplicity we assume here that Tb is very low). BSS1 & BSS2 have received 0s and
therefore they pass their “internal” inputs 1o the AF fibers {shown by the thick curved
arrows.and the small circles placed on the AF fibers (formula 8.16). BSS3 & BSS4 have
received 1s and therefore they pass their “external” inputs to the AFs. At this point the
network completes one full B-cycle.
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8.2.3 Signal Flow in the KATAMIC model

To illustrate the dynamics of the KATAMIC network a signal-flow diagram portraying the network
in several consecutive B-cycles is shown in Figure 8.8. It shows:

(1) The signals flowing along the major wires (MF -- mossy fiber, AF/PF -- ascending/parallel
fiber, RF -- recognition fiber, axon of predictron -- prediction, CF -- climbing fiber). There is a set
of these wires for each canonical circuit (predictron, recognitron, BSS). The values of the signals
on the individual wires (0 or 1) are shown as low and highs states of the horizontal lines.

(2) Values of the stm, the p-Itm, and the n-/tm are shown for the seed-DCP of one predictron.
They are encoded as different shades of gray such that white = 0, and black = 1.
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7. attempt sequence recognition (8)

__6. predict next input (7)
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4. modify Itm & /tm resource management (5->4)
.3, update stm

| 2. inject stm

1. get input

100



Figure 8.8:  Signal flow in the KATAMIC model

The diagram illustrates the KATAMIC memory during processing of 4 consecutive steps of
a sequence -- B-cycles. (Notice that these are not necessarily the first 4 steps of a
sequence, that is why the stm, the p-Itm, and the n-/tm are shown 10 have some non-zero
values at the beginning). The chart shows what happens during each of the four possible
cases with respect to the types of predictions made (correct-1-prediction, correct-0-
prediction, wrong-1-prediction, wrong-0-prediction -- see step 4 of the KATAMIC algorithm
for definitions). The order in which these cases have been presented is for illustrative
purposes only. Each B-cycle in the figure, during which a single pattern is processed, is
divided into 7 steps (vertical dofied lines). These steps correspond to the steps of the
KATAMIC algorithm. Steps 4 (modification of /tm) and 5 {#tm resource management) of the
algorithm are lumped in step 4 of the flow-chart. Also, step 8 (generation of next input) is
equated with step 1 (getting the next input).

8.3 Implementation on the Connection Machine

The *LISP code which implements the KATAMIC memory on the CM-2 Connection Machine is
given in Appendix B.2.

8.4 Simulations

Mathematical analysis of the behavior of a multi-parametric non-linear dynamic system such as the
one described here is not straightforward. Computer simulations provide a reasonable alternative.
This is the approach that was taken to analyze the performance of the KATAMIC model. Of course,
to examine the behavior of the system for all possible combinations of parameters is mmpractical and
computationally expensive. Therefore, I focus only on a small set of simulations designed to test the
most critical characteristics of the KATAMIC memory. These are: (1) speed and convergence of
learning, (2) dependence of performance on network parameters, (3) memory capacity and
interference between memory traces. The results of some of these experiments are described below.

Most of the experiments with the KATAMIC memory follow a common experimental desi gn. A
set of pattern-sequences of equal length (each pattern has the same width) is repeatedly presented to
the network. The patterns forming the sequences are randomly generated and have, a priori, a
specified “1-bit-density”, (i.e. percentage of the randomly selected 1-bits of the total number of bits
in a sequence). Therefore, for a given experiment, all sequences that have the same density are

statistically equivalent and monitoring the network’'s performance on one of these sequences rather
than on all of them is sufficient.

8.4.1 Performance dependence on the Ts & Tt decay constants

In a set of experiments I tested the dependence of the KATAMIC's performance on some network
parameters; namely, the temporal and spatial decay constants (Tt and Ts). Ts specifies how
individual patterns are distributed among the predictrons, while Tt specifies the stm duration (1.e.
for how many B-cycles its value persists in the dendritic tree before it decays to 0). In these
experiments, ten sequences of length 10 (64 bits wide) and density 10% were presented to the
memory. The set of all sequences was presented 10 times in a sequential order. The quality of the
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predictions made for one (the first) of these sequences was monitored. For each repetition of this
sequence the ratios match/goal and spurious/goal were recorded at each B-cycle. The measures:
goal, match and spurious are defined as follows:

+ goal is the total number of 1-bits i the inptt pattern at B-cycle (t).

* match is the number of 1-bits in the output pattern (i.e. prediction generated) at B-cycle (t-
1) that match the 1-bits in the input pattern at B-cycle (t). From this definition it is evident
that match/goal < |,

*  spurious is the number of 1-bits in the prediction that do not match the 1-bits in the input
pattern at B-cycle t. Therefore the number of spurious is in the range (O,P - goal). The
ratio of spurious/goal is in the range (0,(P-goal)/goal)

The criteria for correct (good) performance are: (a) match/goal equal or close to 1, i.e. none or
very few misses, (b) spurious significantly lower than the value of match (e.g., 10% of the
match).

The basic experiment was repeated for values for the spatial (Ts) & temporal (Tt) decay
constants varying over 6 orders of magnitude (-10'5, -10‘4, -10'3, -10‘2, -10-1, and -1), 1.e. 66
= 36 experiments. The results are presented as sets of density-plots on Figure 8.9a (match/goal)
and Figure 8.9b (spurious/goal). Within a wide range of values of the Ts & Tt constants (-10"3 -
10-2), the quality of the predictions made improves rapidly during the first 3 to 5 repetitions (Figure
8.9a) while at the same time the spurious goes practically to zero (Figure 8.9b). Also, at each
repetition the spurious decreases after the first few patterns of the sequence -- the time necessary
for the memory to “recognize” the sequence (Figure 8.9b). Notice also that: (1) the pattern-by-
pattern predictions made during the first exposure of the memory to a sequence are random, (2) the
last (10th) prediction made for any of the sequences during any of the repetitions is irrelevant since
the memory has not been exposed to an eleventh pattern. While any measure of the performance
will depend on the set of performance criteria employed (e.g., speed of learning or quality of
match), on the basis of these results it is safe to say that the memory operation is robust (i.e. good
performance is maintained within a very wide range of Ts & Tt values).

8.4.2 Effects of “1-bit-density” of the input sequences

It is to be expected that the 1-bit-density of the processed sequences will have an effect on the
performance of the network. To examine these effects, two sets of experiments were performed.

The first set was composed of eight separate experiments. It tested how performance is affected
when the sequences stored are all of the same density within an experiment but of different 1-bit-
densities (e.g., 10%, 20%,...,.80%.) between experiments (1 to 8). In each of the eight
experiments, a set of 10 sequences of the same 1-bit-density was presented 10 times 1o a najve
system. For each experiment one arbitrarily chosen sequence from the 10 sequences in the set was
monitored. Notice that the sequences used in each experiment are statistically equivalent. The
results of these experiments are shown in Figure 8.10. The basic observations to be made here are:

Mot ool
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Figure 8.9a: KATAMIC perfonmince as a function of Ts & Tt (match/goal)

The resulls {measurements of match/goal) of the 36 individual experiments are arranged
in a 6'6 grid. tn each experiment 10 different sequences were learned and the
perfermance on only one of the 10 was monitored. The experiments are organized hy
increasing values of Ts & Tt with their smallest values (--00001) in the upper teft-hand
corner. The x-axis for each of the experiments represents the pattern number within the
monitored sequence (1 to 10), while the y-axis represents the number of repelitions of the
monitored sequence. A gray scale encoding is used to represent the value of
match/goal for each repetition and patte  the small squares). In this encoding scheme,

the bright end of the scale corresponds fo good performance (correct recall) whereas the
dark end indicates bad perfermance (poor recall).
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Figure 8.9b:  KATAMIC performance as a function of Ts & Tt (spur/goal)

The layout of the results is the same as in Figure 8.9a. It is important to notice that the ratio
spurious/goal can be bigger than 1. All such values are shown as white in the figure. In
other words, the dark end of the scale means good performance (low spurious) while the
white end means bad performance (high spurious).
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Figure 8.10:  Various 1-bit-densities in different experiments

Each of the eight individual experiments are presented by two density plots, one for
match/goal and the second for spurious/goal. Labels above the individual density
plots (large squares) are interpreted as: the notalions “;:K:2mc” are irrelevant: the numbers
“10 to 80" stand for the % 1-bit-densily of the 64-bit-wide sequences learned in the
individual experiment; “(m) or (s)” show what is being plotted (match/goal or
spurious/goal}. The interpretation of the gray scale code for the little squares within the
large squares as well as the meanings of the X and Y axes are the same as in Figures 8.9ab.

(1) With a constant number of sequences stored (10), the smaller the 1-bit-density, the faster the
learning. This is reflected in the fact that predictions improve (i.e. match/goal -> 1) while at the
same time the spurious drops to 0. For sequences of density 10% and 20% it takes 4 to 8
repetitions for the predictions to become perfect (match = goal), while for sequences with more
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than 40% density the quality of the predictions made improves with repetitions but perfect
predictions are not achieved within the 10 repetitions.

(2) As it can be expected, the variance of the match is bigger for sequences with lower bit
density.

The second experiment tested how performance is affected when the sequences learned within
one and the same experiment have different densities. The model learned a set of 9 different
sequences of 1-bit-densities 10%, 20%.,...,90% (each pattern is 64 bits wide). This set of
sequences was presented 10 times in a row. The results are shown in Figure 8.11. Several
observations can be made here:

(1) Sequences of various 1-bit-densities can be stored in the network together (i.e. co-exist) and
can be successfully recalled.

(2) Sequences with lower 1-bit-densities (10% to 40%) are learned faster and the quality of
predictions made for these sequences undergoes a more significant change overall as compared to
the sequences with higher 1-bit densities (50% to 90%). Also, as one might expect, for the
sequences with lower densities (10% to 30%) the level of spurious during learning is very high
because the possible spurious is very high. The results of the experiment suggest that if the model
1s used to store sequences in a broad range of 1-bit-densities, then it performs best for the sequences
that have bit-densities in the middle of this range.

(3) Learning sequences of high 1-bit densities (> 50%) is not very “interesting” since the higher
the density is, the less is the possible number of spurious and the less is the possible margin of
difference between the sequences.

8.4.3 Effect of noise in the patterns

An important question is how noise affects the performance of the model. In other words, what
happens when the network is presented with a noisy version of a previously learned sequence (e.g.,
with missing or added 1-bits in some or all of the individual patterns)? The expectation is that,
within limits, the KATAMIC model will be able to tolerate the noise and the sequence of predictions
it makes will be very similar to the learned sequence (the target sequence).

To systematically analyze the behavior under such conditions, the follow ing experiment was
designed. The KATAMIC mode] (confi gured as 128 predictrons with 256 DCPs per predictron)
learned 10 different, randomly generated sequences (10% 1-bit-density for each sequence) of length
20 parterns. Using one of the learned sequences as a basis (target sequence), two sets of noisy
sequences (5 sequences per set) were generated. The sequences in the first set were generated by
reducing the number of 1-bits in the target. This was accomplished by turning them into O-bits.
This type of noise is called here “Deleted-noise”. The resulting 5 sequence set had 10%., 20%,
30%, 40%, and 50% D-noise respectively. In other words, the total 1-bit-density of these
sequences was 9%, 8%, 7%, 6%, and 5% respectively. The sequences in the second set were
generated by increasing the number of 1-bits to be greater than in the original sequence. This was
done by turning some of the original 0-bits to 1, i.e. “Added-noise”. 10%, 20%, 30%, 40%, and
50% A-noise of the number of 1-bits in the target sequence were used. The total 1-bit-density of the
resulting sequences was 116, 12%, 13%, 14%, and 15% respectively.

Using these two sets of sequences, two experiments were performed -- one for each set. In
each experiment, after the 10 original sequences were repeated 20 times and learned perfectly (see
Figure 8.12 for the quality of learning of the target sequence), the learning was disabled and five
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noisy sequences were presented in a row. Then each of the 5 predicted sequences (outputs) was
compared with the target sequence in terms of match and spurious.
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Figure 8.11:  Various 1-bit-densities in a single experiment

The interpretation of the labels, the axes, and the gray-scale data encoding is the same as
in Figure 8.10.
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Figure 8.12: Noise tolerance -- learning target sequences

Density plots of A} match/goal, and B) spurlous/goal. The pattern numbers (1 to 20)
are shown on the X-axis, the repetitions (1 to 20) on the Y-axis. The gray-scale encoding
of the measured vaiues of match/goal and spurlous/goal is the same as in all previous
figures.

The results of the two experiments are presented in Figures 8.13a,b. As can be seen from graph
(a), D-noise is tolerated well in terms of recognition of the noisy sequence (i.e. the predicted
sequence matches the target sequence). The quality of match/goal gradually decreases when the
percentage of D-noise is increased from 10% to 50%. At the same time the number of spurious bits
generated increases. At a D-noise level of 30% the amount of spurious generated reaches the
amount of correctly generated 1-bits -- the match (notice the overlapping error bars). If we take this
D-noise level as a cut-off point, then we can say that within the paradigm of this experiment the
model can tolerate about 30% D-noise. Another important thing to notice here is that within the
same noise range the quality of the match is always better than its theoretical minimum (the case
when the “noisy bits” are not corrected for). This thearetical minimum for the match is presented as
a line going through (x=10%,y=0.9) and (x=30%,v=0.7)

The effects of corresponding amounts of A-noise are significantly less severe than that of D-
noise (Figure 8.13b) in terms of spurious generated. Overall, the results of these experiments show
that the model can tolerate safely about 20% noise (of A or D type} in the patterns.

8.4.4 Learning branching sequences

An Important question is how the network behaves if it has learned two or more sequences which
have the same heads (the first few patterns) but different tails (the remaining patterns. To look at
this issue, two sequences (S1 and S2) of length 10 (composed of 128 bits wide patterns) and 10%
1-bit-density were generated at random. The first three patterns of sequence S1 were copied over to
the corresponding patterns (1,2,3) of S2 obtaining a new sequence S2'. As a result, S1 and S2'
were the same from patterns 1 through 3 and different in patterns 4 through 10. Symbolically

represented, the two sequences are: SI=ABCDEFGHIJ S27=ABCKLMNOPQ. Sequences S1 and
52 were learned using two different learning protocols:
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Figure 8.13: Noise tolerance -- processing of noisy sequences

Graph (a) shows the network's performance on sequences with D-noise. Graph {(b) shows
the performance when A-noise is added. Percentage of D- or A-noise are shown on the
X-axis, the ratios match/goal and spurious/goal are plotted on the Y-axis. Error bars
are used 10 show the magnitude of the Standard Deviation (SD).

(1) The sequence pairs S1 followed by S2' were repeated 100 times. Of interest here was the

model’s behavior for each sequence at and after the point of divergence (pattern #4 in each
sequence).
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Protocol 1: Perormance results for only one of the two sequences {S1) are shown here.
The results for the second sequence (S2') are similar. As in previous figures, the pattern
numbers are plotted on the X-axis and the number of learning trials (i.e. repeated
exposures of the network to the sequence) are shown on the Y-axis. Gray scale coding of
the A} match/goal and B) spurios/goal are the same as in previous figures. The
vertical columns at step 4 represent the values of the match/goal (plot A} and
spurlos/goal (plol B).
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Figure 8.15:  Learning branching sequences -- priming effects (100 repetitions)

Protocol 2: As in previous figures, the pattern numbers are plotted on the X-axis and the
number of learning trials (i.e. repeated exposures of the network to the sequence) are
shown on the Y-axis. Gray scale coding of the A) match/goal and B) spurios/goal are
also the same as in previous figures.

(2) Sequence S1 was repeated 2 times in a row (a sequence-double) followed by 2 successive
repetitions of sequence 52/, followed by 2 repetitions of $1, and so on until 50 repetitions for each
sequence-double were performed. The objective of this experiment was to test for “priming”
effects. In other words, does the network’s response differ between the first and the second
exposure to the same sequence? It was expected that, while at the first exposure, the network will
generate “noise” at step 4 (i.e. a mixture of predictions belonging to both sequences), at the second
exposure it will predict the most recently seen sequence.

The results of the first experiment are presented as two density plots (match/goal and
spurious/goal) in Figure 8.14, Learning of the two sequences took only few repetitions. As
expected, the learning with protocol 1 resulted in noise at step 4. However, after step 4 (where the
confusion occurs) the network unmistakably continued to generate correct predictions for the
currently processed sequence (e.g., S1 or $29.

The performance under protocol 2 (Figure 8.15) confirmed our expectations. Nuamely, during
the second repetition of each sequence (in a row) the model learned (in about 8 repetitions) to
correctly predict step 4 and the spurious were minimal.

An unexpected network behavior was observed if protocol 2 was let to run longer (1000
repetitions). After about 200 repetitions the network managed to learn that the second repetition of
each sequence (e.g., S1) is followed by the other sequence (e.g., S27) (Figure 8.16). Effectively
the network exhibited a higher order learning. It learned not only the order of patterns in the
sequences, but also the order of the sequences itself. This is an interesting effect,

At step 4 there were always some spurious bits observed. However, after about 400 Tepetitions
they reached a steady state. At at a closer examination, for each of the sequences, it was found that
the spurious bits correspond to the active bits at the same step (4) in the alternate sequence.
Effectively the prediction which the network learned to produce at this step represented an OR of the
patterns at step 4 of sequences S1 & S2'.

8.4.5 Memory capacity

A variety of measures of memory capacity have been used in neural network research. One
common measure is the number of traces that are stable under the recall operation. This is presumed
to set an upper bound for the possible memory storage. However, with a set of random memory
patterns to be learned, even a few stored traces might generate spurious associations and thus not be
stable. 1define the memory capacity of the network as the number of sequences that can be learned
reasonably well without excessive spurious recall. In this sense, capacity is a function not only of
the network size but also of the length of the sequences and 1-bit-densities, the length of the cues,
and the relative importance of complete versus correct recall,
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The pattern numbers {10) are plotted on the X-axis and the number of learning trials (1000)
are shown on the Y-axis. Gray scale coding of the A) match/goai and B) spurios/goal
are the same as in previous figures. Notice that after about 200 repetitions the network
learned the order of the sequences S1 and $2' as can be seen in the column representing
match/goa!l at step 4 (plot a).

As in the previous sections the method for evaluation of the memory capacity is based on
simulations. Two separate sets of experiments were ran. In the first set (A) the dependence of the
maximal length of a single memorized sequence on the number of DCPs per predictron was
measured. The second set (B) examined how many short sequences (short with respect to the
maximal sequence length obtained from the previous experiment) can be learned and recalled
without much spurious recall.

(A) Maximal length of a single learned sequence

One estimate of the memory capacity of the model can be obtained by observing experimentally
what is the maximal length of a single memorized sequence and how this length depends on the
number of dendritic compartments per predictron. To obtain this estimate, a set of 10 experiments
was performed. The network configured with 64 predictrons and 256 DCPs per predictron. In each
experiment a single sequence of 15% 1-bit-density was presented 40 times in a row. In the first
experiment the length of the sequence (i.e. the number of patterns it contained) was 10. This length
was systematically increased to 20, 30, ..., 100 patterns in the 2nd to 10th experiment. The usual
performance characteristics were measured at each B-cycle (match/goal and spurious/goal).
The average value of the goal for this experiment was (15% of 64 = 9.6). By definition the ratio
match/goal at each B-cycle is in the range 0 to 1. The maximal value of the spurious for these
experiments is (64 - 9.6) /9.6 =5.67. Fora given B-cycle, this maximum corresponds to the case
when all “non-goal” predictrons fire.

The results of the experiments are summarized in Figures 8.17. As can be seen from Figure
8.17A, the quality of the predictions made improves rapidly during the first 5 to 10 repetitions and
for all sequences after about 20 repetitions it becomes better than 95%. The speed of learning is
somewhat non-monotonic for the longer sequences, e. g., the sequence with length 100 is learned
faster than that of length 90. This can be explained with the fact that the sequences were randomly
generated and have a limited length and width. These results are very satisfactory but they are not
meaningful unless one takes into account the number of spurious generated in each experiment. As
can be seen from Figure 8.17B, the number of spurious behaves very nicely, i.e. it drops rapidly to
0 for all sequences with lengths less than 60 patterns. For sequences of length+ more than 60
patterns the ratio of spurious/goal stays above the level of 1 throughout all repetitions (i.e. the
number of spurious bits is larger than the number of 1 bits in the target pattern -- the goal). From
observing both the matches and the spurious one can conclude that the maximal length of a single
sequence (15% density) learned by the KATAMIC model (with the given network configuration --
64 predictrons with 236 DCPs/predictron) is 60 patterns. In other words, the maximal length of the
sequence 15 about 23 % of the number of DCPs per predictron. A sequence of length 60 patterns
and width 64 bits contains 60%64=3,840 bits which are spatially (within patterns) and temporally
(between patterns) ordered. If we assume that each DCP represents one memory location, then we
have 256%64=16,384 memory locations. Therefore the ratio between the information stored ina
sequence in terms of bits and the total number of memory locations in the model is 3,840 / 16,384 =
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23.4%. In other words, using the measure described above, the memory capacity of the KATAMIC
model is about 23% of the total number of storage locations in the network.
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Figure 8.17: Memory capacity as a function of sequence length

Each of the 10 curves in the two plots represents a separate experiment. In successive
experiments the sequence lengths were varied from 10 to 100 patterns labeled in the
legend 1o the right. The repetitions of each sequence are shown on the X-axis while the
measured ratios A) match/goal and B) spurious/goal are plotted on the Y-axis.

(B) Memory capacity for multiple short sequences

An alternative way of probing memory capacity is to run a set of experiments in which one
gradually increases the total number of sequences to be stored is gradually increased. Of interest
here is when the quality of the predictions starts to deteriorate significantly. Three different
experiments were run. To probe the space of behaviors of the network, three experiments were
run. The patterns used in these experiments have 10 % 1-bit density.

In the first experiment 5 sequences were learned. After ubout 4 presentations each of these
sequences was learned almost perfectly (> 99%) and the level of spurious was minimal (<2%).

In the second experiment the network attempted to learn 10 sequences. The behavior was
similar, i.e. each sequence was learned after about 5 repetitions. However, the overall quality of the
predictions has decreased to about 97% and also the number of spurious has also increased to about
3%, especially within the first 3-4 patterns of each sequence. This is due to the fact that, with the
chosen bit-density of the sequences (10% or about 6.4 bits per pattern set to 1) there is some
overlap between the corresponding patterns in the 10 sequences

In the third experiment the network tried to learn 20 different patterns. While the behavior with
respect to the predictions was similar to the previous two experiments, the behavior with respect to
spurious was poor. The number of spurious varied significantly and the average value of the
spur/goal ratio was 0.6. The maximal value of this ratio for each B-cycle in this experiment is (64 -
6.4)/64=9,

From these three experiments it is obvious that a KATAMIC model with dimensions 64*256
can safely learn about 10 sequences of length 10 patterns each. If we consider that the total bit
content in these 10 sequences is 64*10%10 = 6,400, then the estimate of the IMEemory capacity using
this second method is (64*10*10) / (64*256) = 39.0%. This number, which is higher than our
previous (A) estimate, can be explained by the fact that the shorter the sequences, the smaller the
number of ransitions between patterns.

The estimates of the memory capacity of the KATAMIC model are only preliminary. They are
significantly higher than estimates of memory capacity obtaincd in other models. For instance, the
memory capacity of the Hopfield network for static patterns is ubout 14% of the number of storage
locations. For Kanerva's Sparse Distributed Memory (SDM} this number is about 10% (Keeler,
1988).

The capacity of a generic associative memory and the SDM in particular (Kanerva, 1984:
Kanerva, 1988) has been estimated analytically (Chou, 19x58). Defining the capacity as the
maximum number of words (patterns) that can be stored and reirieved reliably by an address within
a given sphere of attraction (i.e. the area where the memory cun correct delta factor errors), Chou
demonstrated that the capacity of any associative memory is limited to an exponential growth rate of
I-ha(delta) where ha(delta) is the binary entropy function in bits, and delta is the radius of the
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sphere of attraction. He also demonstrated that by choosing an optimal set of network parameters
the SDM can actually achieve this exponential growth. As Chou pointed out, the exponential
growth in capacity for the SDM is in sharp contrast with the sub-linear growth in capacity for the
Hopfield associative memory (McEliece et al., 1988).

The growth of memory capacity of the KATAMIC model has not been estimated analytically as
yet. However, as will be discussed in section 12.9.1, the KATAMIC architecture and dynamics
can, to a first approximation, be mapped to the SDM model. Therefore, I suggest that the
KATAMIC model will also have an exponential growth in memory capacity.

8.5 Summary of KATAMIC characteristics

The potential utility of the KATAMIC model is a result of its statistical properties, which lead to the
following important and interdependent functional characteristics:

(1) Rapid learning: Few exposures (on average 4 to 6) of the network to a particular sequence
are sufficient for learning (>90% correct). The speed of learning depends: (a) non-significantly on
the length of the sequence. Learning of longer sequences is less accurate durin g the first 10
repetitions, (b) significantly on the 1-bit density of the sequences, (¢) on the number of already
learned sequences. This rapid learning is a major improvement over the simple error back-
propagation recurrent networks (Jordan, 1986; Elman, 1988) which require hundreds/thousands of
epochs to achieve reliable performance.

(2) Memory Capacity: Multiple sequences can be stored in the model. This is a significant
improvement over oscillators/pacemaker based models (Torrus, 1986; Miall, 1689). The memory
capacity is comparable if not better than that of other models (¢ g., Hopfield, Kanerva).

(3) Sequence completion: A short cue, which is sufficient w discriminate a particular previously
stored sequence, can retrieve the complete sequence. This is un improvement over current models
which allow the retrieval of only very few elements at the end of the sequence and then only after
almost the whole sequence is presented as a cue.

(4) Sequence recognition: A built-in recognition mechanism allows flexihle sequence
recognition on a pattern-by-pattern basis. This mechanism is used internally fu1 switching from
learning to performance mode.

(5) Fault and noise tolerance: Missing elements (bits within patterns) within a reasonable range
(up to 30% of the number of 1-bits) can be tolerated (i.e. substituted during reca’  The memory
can interpolate and extrapolate from existing data and is fault tolerant. With regard (o noise and fault
tolerance, the KATAMIC memory is comparable to other state-of-the-art models.

(6) Robustness of performance: The model operates within a wide range of values for the
memory parameters. For instance, for the sg)atia! and temporal decay constants (Ts, Tt) this range
spans over several orders of magnitude (1072 to 10-2),

{7) Straightforward scaleability: (a) Adding more predictrons, using the same inter-connection
scheme, allows processing of correspondingly wider sequences (i.e. longer patterns). (b)
Increasing the number of dendritic compartments per predictron allows storage of sequences with
longer lengths. This feature of the KATAMIC memory is an improvement over the stmple recurrent
networks (SRN) (Elman, 1988) where there is not an obvious solution of how much to increase the
number of hidden units and how to change the connectivity pattern if it should be less than fully
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connected -- a structural constraint which causes significant technical problems for hardware

implementation. In contrast, the KATAMIC memory can be made very large, and large amounts of
information can be stored in it,

(8) Integrated processing: The model is capable of concurrent learning, recognition and recall of
sequences. This is a significant improvement over the majority of previously proposed models

which focus only on specific aspects of processing. Such models often must keep learning and
performance stages separate.
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9 TAXONOMY OF MEMORY IN DETE

There are two major types of memory mechanisms in DETE which are necessary for the
development of its language and reasoning abilities (Figure 9.1). These are: (1) Short-term memory
(STM) (a.k.a. immediate or primary memory), and (2) Long-term memory (LTM). This functional
classification of DETE’s memory corresponds to the memory classification scheme commonly used
in cognitive psychology (Squire, 1987). An important difference, however, is that while the
psychological classification is not clear on whether STM and LTM have different brain mechanisms,
in DETE, there is a clear physical difference between them, More specifically, the neurons
(predictrons) forming the STM and LTM are different from each other and interleaved. LTM is of
two types: (a) Declarative memory (DM}, and (b) Procedural memory (PM). While both the
declarative and the procedural memories are intrinsically sequential, there is a fundamental
difference between them. The Declarative memory stores sequences as a whole. For instance, it
stores words as complete entities rather than as sequences of gra-phonemes. On the other hand, the
procedural memory stores information about the order of segments within a sequence. For
instance, the order of the gra-phonemes in a word or the order of words in a sentence. The DM is
further divided into: Episodic Memory (EM), and Semantic Memory (SM). The PM is also
subdivided into: Morphologic/Syntactic Procedural Memory (MSPM), and Motor Memory (MM).
The MSPM is in turn subdivided into Verbal Memory Bank (VMB), Transition Detector Bank
(TDB) and Order Memory Bank (OMB). The characteristics of each of these memories, their
function and implementation in DETE are described below.

9.1 Short-Term Memory

The Short-Term memory (STM) is the basis of DETE’s ability to repeat short sequences of items
(e.g., several consecutive words or a short sequence of visual frames) immediately after
presentation. It basically serves as a limited capacity buffer. DETE has separate short-term
memories for the visual and the verbal modalities (Figure 9.1). Both, the visual and verbal STMs
have been designed so that they exhibit the following functional characteristics:

(1) One shot storage (memorization). A word or a sentence presented only once can be repeated
right away. A simple visual sequence (e.g., of an attended object) can also be mentally recalled
right away. As will be seen in the next section, this feature of the STM is a result of specific
changes introduced in the dynamics of the KATAMIC model which serves as basis for the STM
(and which normally needs 4 to 6 stimulus repetitions to learn). '

(2) Fast and complete reser. When a new input (sentence or image) is presented (i.e. when the
focus of attention is shifted), the STM content is reset (emptied) in response to a signal coming
along the Climbing Fibers (CF) (Figure 8.2). For instance, the memory trace of the verbal input
“The ball is left of the triangle” resides in the STM unti! the next verbal input is presented, e.g.,
“The triangle is moving up™. The new input leaves a trace in the STM that overrides the old ace if
the activation that produces the new trace is physicallv in the same area of the STM where the old
trace resides. If the new trace is in a different part of the STM, then the old and the new traces can
temporary coexist. This feature allows DETE potentially to handle ellisions.
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structure correspond to individual, physically distinct memory mechanisms implemented in
DETE.

(3) Recall wiggered by a non-specific signal. The content of the STM can be recalled
(rehearsed) without the necessity of a specific external cue to tri gger each iteration. An example of
a specific cue for the trace left by the verbal input “The ball is left of the triangle” is for instance,
“The ball is™. A non-specific signal (e.g., an external verbal request for repetition like “What?” or
“Repeat” or “Say again™) can trigger the recall of the memory trace. In general, repetition
(rehearsal) of the STM content is done by DETE continuously. In other words, a sequence residing
in the STM at a given moment is repeated again in the next momen: if there is no external stimulus to
interfere with this process. Behaviorally speaking, DETE has an “intent” to repeat whatever it has
heurd or seen a moment ago. The trigger for this rehearsal is implemented as a non-specific cue to
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Figure 9.1:
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the memory (see next section) generated at the end of each moment. Once the rehearsal is
interrupted by another external stimulus the content is lost.

(4) Limited capaciry. The recall performance deteriorates gracefully if the capacity is exceeded.

(5) Fast decay. As a result of the “drive” for internal repetition, the STM is refreshed at each
moment. To match the characteristics of the human STM, DETE’s STM is set up so that if not
refreshed through rehearsal its content is rapidly lost,

9.1.1 STM implementation

Both the verbal and the visual STMs are implemented as modifications of the basic KATAMIC
memory model (see Chapter 8 for discussion of the KATAMIC model). To meet the above-
mentioned specifications of the STM, the following three changes in the KATAMIC model were
made:

(1) i fth injection rate. In the KATAMIC model, the total amount of stm (not
to be confused with STM in this section) in the dendritic branch of each predictron increases with
the progress of the sequence. This is due to two factors; (1) mwre som is injected every time cycle,
and (2) the ratio of the szm injected into the seeds of the DCPs (o the decaying stm in the rest of the
DCPs is in favour of the injected. As a consequence, patterns which come later in the sequence
leave stronger {tm traces, since stm accumulates in the dendritic tree with the progress of the
sequence and the som is an argument to the /fm-update function. Later, when a recall of a stored
sequence is attempted, the stronger traces (i.e. those of patteris towards the end of the sequence)
tend to express themselves easier. In other words, they have more weight when the dot-product is
calculated and therefore they influence the predictions more strongly than do the older traces. In
order to ensure that the earlier patterns leave stronger /m traces, a mechanism that decreases the
amount of injected stm during successive patterns was designed. This mechanism involves a
modulation (exponential decay with time constant Tb) of the stm-injection-rate b with time (for
definition of b see equation 3 in section 8.2).

b (1) = b(t) e TP (9.1)

(2) Reset of Jym, Another change introduced to the KATAMIC model is a reset of the /i to its
original value (see Table 8.2) at the beginning of every new input sequence. The /i is always
reset when a new sequence is input. However, if there is no input sequence, a “request” for
repetition of the previous sequence is generated in the form of a non-specific cue. In this case the
f1m is maintained unchanged to allow the sequence recall.

(3) Recall via a non-specific cue. A change in the way sequences are recalled is introduced in the
STM (as compared to the recall in the KATAMIC memory). Instead of using a specific cue (i.e. the
first few steps of a learned sequence), in the STM a non-specific “shock-input” is used for retrieval
of a stored sequence. A “shock-input™ is a pattern or a short scquence of patterns in which all bits
are setto 1.

The STM mechanism described above was tested in simulations which demonstrated that a
shock-input is capable of retrieving a complete trace (e.g., a whole sentence like “The red ball is in
tie center”) stored in the STM. The STM meets the design specifications because the non-specific
cue triggers the recall of the learned sentence. After the initial few steps during which all input bits
to the STM are set to 1, the STM starts to generate the correct sequence of predictions and uses
these predictions to complete the recall. The switch from the external input (i.e. the non-specific
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cue) to internal input (i.e. the output of the predictrons) is done by the recognitrons/BBSs after the
end of the non-specific external cue.

9.2 Long-Term Memory (LTM)

The long-term memory in DETE is a type of memory the basic characteristic of which is a larger
time span than the STM. In other words, the LTM is not reset any time a new sequence is input,
but rather it stores information about multiple sequences. There are two kinds of LTM -- declarative
and procedural, which reside in physically separate memory modules.

9.2.1 Declarative Memory (DM)

The declarative memory is memory for facts. There are two types of declarative memory, episodic
memory (EM) and semantic memory (SM). In DETE, these two categories are subserved by one
memory mechanism -- the basic KATAMIC memory. SM and EM can be regarded as the two
poles of a continuum, This continuum is formed during DETE’s training. Initially, while DETE is
still naive, all experiences are stored as episodes. Later the ones that are repeated over and over
again form the SM and the ones that are unique form the EM. The strength of the memory trace
(encoded in the /im) left by an input sequence depends on the magnitude of the /mm update rate -- a
constant (b -- see table 8.2). At small values of b, (< 1) an input sequence leaves a weak /i trace,
whereas at larger values of b the trace which is left is stronger. The constant b can be regarded as a
measure of the “emotional/alertness” state of DETE. Higher states of alertness (i.e. larger b) leave
stronger traces in the DM. In DETE, the magnitude of b is controlled externally by the user. In
other words, DETE currently does not contain an endogenous (internal) mechanism to control its
“emotional/alertness” state.

The general characteristics of the DM are: (1) It is composed of the traces of the sequences of
events that have been experienced, i.e. sequences of visual scenes or words in sentences. (2) The
storage is sequential, i.e. new traces are added with new experiences. (3) Memories can be
retrieved, i.e. “brought to mind” or instantiated through all modalities (e.g., verbally in the form of
hidden articulation or non-verbally in the form of imagination). (4) A cue, by virtue of its content,
can start a retrieval process at any point of a stored sequence and if left 1o itself the memory will
complete the sequence. (5) The DM undergoes consolidation -- repeated input stimuli reinforce the
existing Irm traces in the DM, and forgetting -- if particular trace is not reinforced through
repetitions, it is gradually overwritten by other traces and can ultimately be lost.

Episodic Memory (EM)

The EM in DETE stores and recalls {re-experiences) specific episodes (events). All unique
experiences (i.e. such that do not recur during its “life span™) are treated as episudes while all
recurring experiences form the semantic memory. To retrieve an episode (i.e. bringing it to WM)
DETE requires specific cues which it further elaborates by using the outputs of the memory as
inputs in consecutive B-cvcles.

Since the EM is a part of the DM, it possesses all of DM’s characteristics and also some specific
ones such as: (1) Its content is formed by w__~ual or unique events. (2) Memories are stored one-
shor as a result of unique experiences. For the one-shot storage of unique traces in the EM, DETE
uses large values of the /m update rate b. (3) Rewrieval requires time-consuming elaboration of cues
(Le. several B-cycles are needed to recal] a complete memory). (4) There is little cross-talk between
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traces since they represent unique events and generally different events have different
representations.

Semantic Memory (SM)

The SM extracts commonalties in and stores traces of multiple similar episodes or repetitions of one
and the same episode. For instance, a ball always bounces when it hits a wall. Since the things
that change in all cases of repetition are the times and locations where the events occur, repeated
events are stored only as traces in which the temporal and location information are effectively lost
(smeared in time).

Like the EM, the SM has all general characteristics of the DM and also some specific ones such
as: (1) Content is formed by familiar items which have been experienced over and over again during
the life-time (i.e. they have formed categories). For instance, words, recurring events, etc.
Effectively it holds the invariant features of the perceptually experienced objects or events. (2)
Memory traces are formed through multiple repetitions. Each individual repetition makes the
particular trace stronger. Ultimately the traces left are permanent (i.e. they cannot be overridden by
other traces) and strong (i.e. they need only a short cue with little or no elaboration to be retrieved).
(3) Retrieval is done when a partial cue is presented (i.e. response-sequence retrieval depends on the
cue and the memory content). Usually the context that is recalled together with the trace is either (a)
the most recent context in which this concept was seen, or (b) the most frequent context
(combination of contexts), or (c) an externally provided context.

DETE’s SM is roughly equal to the verbal memory module -- the Lexicon. In other words, the
traces in the SM are left by words which form “symbolic tokens”. As will be seen further in this
chapter, the Verbal Memory Bank together with the Order Memory form a functional unit which as a
whole serves as the Lexicon. The Lexicon is commonly viewed as a repository of both grammatical
and commonsense knowledge indexed by lexical items (Nakhimovsky, 1988). In DETE the lexicon
has the same purpose. Namely, the grammatical (syntactic) knowledge is acquired with experience
and involves knowledge about word order, e.g., the fact that (in English) modifiers (adjectives) are
placed before the objects (nouns) which they modify, e.g., “red ball” or “large square”. This
knowledge is extracted from the verbal input and is encoded as the statistically most probable
associations. The commonsense knowledge aspect of the lexicon is reflected in the association of
the network’s representation of the verbal tokens with the network representation of the visual
reality to which the verbal tokens refer. It is “commonsense” in the sense that the representation of
the visual world reflects the constraints which exist in the physical world. The network
representation of each word itself in the verbal bank of the memory forms the lexical item index.

In DETE the lexical items are formed by memory traces of the individual words together with
traces of the visual reality with which they were associated with. The memory trace of each word is
associated with information about all contexts (visual and verbal) in which it was encountered. This
representation is stored in the SM and evolves continuously with DETE’s exposure to new
experiences.

Implementation of the DM in DETE

The KATAMIC memory without modifications is used as the basis of the DM. This is possible
since the characteristics of the KATAMIC memory (as described in Chapter 8) correspond well to
the desired specifications of the DM outlined above.

Relation between the DM and the STM
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The predictrons forming the DM component of the LTM are interleaved with predictrons that form
the STM. As aresult, both the STM and the DM have the same modality partitioning (i.e. visual
and verbal) and also there is exchange of information between both memory categories.
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Figure 9.2:  Relation between DM & STM in DETE

The relation between the DM and the STM in DETE is exemplified by the connectivity of
two predictrons. To the left, P1 is a STM predictron white P2 is a LTM predictron. A single
recognitron containing 2 DC's serves both predictrons. It controls the state of a singte
BSS,
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The connectivity pattern between two neighboring predictrons, one of the DM type and the other
of the STM type is shown in Figure 9.2. This STM/DM pair of predictrons is connected to other
such pairs via parallel fibers (PFs). There are two important features of this wiring diagram: (1)
The two predictrons share a common input, (2) They also share a common BSS (bi-stable switch).
(3) The seeds of the two predictrons are located at the same level, (4) The DM has a special reset
line for its Irm components. The purpose of this connectivity is to assure that, due to the their
physical proximity and the same seed location, the DM and the STM get almost the same PF inputs.
The LTM influences the input to the STM because its output depends on prior experience. In other
words, what the STM receives and stores depends on the expectations (predictions) developed by
the LTM.

8.2.2  The Procedural Memory (PM)

Humans have the ability to remember the rhythm of a song without remembering the actual words,
Actually, they can associate (learn) different words with one and the same rhythm. One can also

the actual words due to the noise. Knowing the context of the conversation, we can use this thythm
1o partially reconstruct the possible content of the conversation. To explain this ability I postulate
the existence of an unconscious memory mechanism which functions as a kind of Order Memory
(OM) (learns order) and effectively counts the segments in the input stream and measures their
duration. Such a mechanism can provide the basis of the human ability to learn to count successive
events. For instance, this can be done simply by associatin g verbal labels (e.g., “one”, “two”, etc.)
with the individual orders of events in the memory,

The PM module in DETE is used to store information about the relative positions and durations
of the individual segments in any input Sequence. Such segments are, for instance, the phonemes
forming a word or the words forming a sentence, The part of the PM which stores such
information is called the Morphologic/Syntactic Procedural Memory (MSPM) (Figure 9.1). The
PM is also used to store information about the trajectories of the EYE and the FINGER. This part
of the PM is called the Motor Procedurqgl Memory (MPM) (Figure 9.1).

Architecture of the Morphologic/Syntactic PM (MSPM)

The morphologic/syntactic PM (MSPM) is also referred to as the Language Association Memory
(see Figure 2.4) and is a part of the PM which is used 1o learn the order of phonemes in words (i.e.
the morphology) and the order of words in sentences (i.e. syntax).

Components: The MSPM module consists of three basic components (Figure 9.3): (1) the
Verbal Bank (VB) -- i.e. the Lexicon, (2) the Transition Derecrors Bank (TDB), and (3) the Order
Memory Bank (OMB). The OMB, the VB, and the TDR are essential components of the MSPM
and therefore are all discussed together as an integrated mechanism.
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Figure 9.3:  Block diagram of DETE’s MSPM

Schematic drawing of the MSPM. MSPM takes verbal input in the form of gra-phonemes
from the Word Encoding Mechanism (WEM) and produces verbal output {gra-phonemes)
which is passed to the Verbal Activity Decoder (VAD) (see bottom left of Figure 2.4). For
simplicity, the Phoneme Order Memory and the Word Order Memory are shown side by

side in this figure while in practice the predictrons that form these memories are interleaved
{see Figure 9.4).

Details of the neural circuitry of DETE's Morphologic/Syntactic Procedural Memory are
provided in Figure 9.4,
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Figure 9.4:  Neural circuitry of the MSPM

A small scale drawing of the MSPM. In the Verbal Bank (VB) only 8 of the 64 predictrons
are shown. Each of these predictrons projects (makes a non-modifiable synapse of weight
1) to the corresponding Dendritic Compartments (DCls) of ail Transition Detectors (TDs),
The Phonemic Level of the Transition Detectors Bank has 5 Fast Transition Detectors
(FTDs). The Word Level of the TDB has 3 Slow Transition Detectors (STDs). Inthe Order
Memory Bank (OMB) only 8 predictrons are shown from the 64 in DETE. The FTDs and
STDs project one-to-one to randomly selected predictrons in the OMB.

The Verbal Bank is actually the set of predictrons that form the Verbal Memory in DETE, i.e.
the lexicon (8 out of the 64 VB predictrons are shown to the left in Figure 9.4).

The Transition Detecror Bank (TDB) is a layer of neural elements (Transition Detectors -- TDs).
TDs are not predictrons. Each TD has a soma characterized by an activation value. A single
dendritic branch is also a part of each TD. This dendritic branch is composed by dendritic
compartments DCls, The TDs are clock operated devices, i.e. at each time cycle each TD gets

127



inputs in paralle] to their DC's, and computes a new state. The state of a DC! is computed as a
temporal XOR function of its most recent inputs (Table 9.1). Here I(t-1) is the input to a given DC!
at time (t-1), I(t) is the input to the same DC! at time (1), and S(t) is its state at time (t).

Iit-1) I{1) S(1)
0 0 0
0 1 1
1 0 1
1 1 0

Table 9.1; Temporal XOR function

The Transition Detector Bank contains two types of TDs, Fast and Slow (see labels to the left in
Figure 9.4). The Fast TDs (FTDs) are used to detect rapid transitions like those between
consecutive phonemes in a word. In DETE the number of FTD)s is 16, i.e. the maximal length of a
word that DETE can process is 16 phonemes. The Slow TDs (STDs) are used to detect slower (i.e.
longer lasting) transitions like the transitions between words. There are 16 STDs in DETE, i.e. the
maximal length of a sentence that DETE can process is 16 words. The activation of a fast TDs is

Afand is computed as the sum of the activation values of the individual dendritic compartments.
The activation of each DC! is computed as a one-step-back tensoral XOR function on its inputs (see
formula 9.2). The activation of a slow TD is A% and is compuicd similarly as that of a fast TD. The
only difference is that the activity (states) over the dendritic braich is integrated over a longer period

of time (e.g., 3 cycles) (see formula 9.3). This integrative mechanism ensures the slower response
of the STDs to transitions in the external input.

f=DCl | "

A= TXOR(L0.Li-1)) 9.2)
i=1

g 3 DCt . .

A= T Y XOR((D (D) 9.3)

i=1

All FTDs form a separate bank which is called the Phonemic Level since it is devoted to the
recognition of the transitions between phonemes. The STDs form another bank -- the Word Level,
which is used in the recognition between individual words.

The TDs within each Transition Detector bank have different thresholds fth-1, th-2, ..., th-n).
The relation between these thresholds is such that th-1 < th-2 <, ...,< th-n. This ensures that one of
the TDs responds first to the input. This TD is called a first order TD (TD-1). The TD which
responds to the second segment of a sequence is respectively a second-order TD (TD-2) and so on.
A segment is a subsequence of length 5 B-cycles which corresponds to a gra-phoneme. During the
period while the activation value of a TD ts above threshold, it fires continuously (i.e. bursts). If
the activation value is below threshold, the TD is silent. Each TD, after it has stopped bursting,
goes into a refractory period. If another segment of the input gets stabilized during this refractory
period, the TD with the second lowest threshold picks up this input and gets into a bursting state.
This is how successive phonemes are picked up in an orderly tashion by the TDs in the Phonemic
Level. In other words, the main difference between the TDs in the different levels is in the
sensitivity of their response to the length of the transition period. TDs in the Word Level bank are
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less sensitive to fast transitions between se gments then those in the Phonemic Level. This allows,
for instance, the STD-1 in the Word Level bank to be continuously active all throughout the input of
the phonemic sequence of the first word. It becomes silent only after the phonemic sequence
representing the second word is input.

The Order Memory Bank is formed by a set of 64 predictrons (8 of them are shown as
differently shaded bars to the right in Figure 9.4). The OMB stores information about the order and
duration (number of patterns) of the individual segments that form the verbal sequences presented to
the VB.

Connectivity: The outputs of the VB predictrons project topographically to the dendritic
compartments of the TDs in both the Phonemic and Word Levels. Each axon of a VB predictron
makes an excitatory connection (weight = 1) with the same level DCls of each of the TDs (shown as
curved offsprings of the main connection lines in Figure 9.4). Within each level, the output of each
TD projects back to all remaining TDs forming shunting inhibitory connections (lateral inhibition --
middle of Figure 9.4). The purpose of this lateral inhibition is to ensure that at any moment only
one TD within each layer is active. Each TD also projects in a one-to-one way to a randomly
selected subset of the predictrons forming the OMB. The VB and OMB are also interconnected via
parallel fibers (PFs -- shown in Figure 9.4 as a bunch of horizontal lines connecting the two
memory banks).

Note that this architecture (which in the current implementation of DETE is prewired) can
instead be self-organized in the sense that the selection of TDs to represent the different orders is
purely random depending on the values of their firing threshold which are provided at random.

Usage: The MSPM allows DETE to learn simple syntactic rules. For instance, it can effectively
learn the rule “/n a NP the adjective comes before the noun”. Notice that DETE does not know
anything about adjectives or nouns. DETE can learn that words associated with color and size
feature maps precede words associated with shape feature map. So DETE can behave ag if it has
learned this rule. The MSPM stores associations between the verbal representation (in the VB) of
any pair of words in the verbal input stream with a representation (in the OMB) of their relative
sequential order in the sentence. For instance, the sentence “Small blue square moves np” leaves a
trace in the VB of the word scquence as a whole and at the same time it leaves a trace in the OMB
which contains information about the word order in this sentence. DETE’s ability to learn such
associations is due to the fact that during the training phase the verbal inputs have always a syntactic
Structure consistent with FIRLAN (or respectively SECLAN). During learning, each visual scene is
associated with its verbal descriptions and an order trace left in the OMB. If at different occasions
the same visual scene was described differently, then when the visual input is presented by itself,
the strongest (most frequently heard) or the most recent (primed) verbal output is evoked in
response in the MSPM.

Dynamics of the PM model

To illustrate the dynamics of the MSPM module at the word level, let us consider in detail the
following experiment (Figure 9.5). DETE is taught that there is a proper order for placing of the
different types of adjectives in front of a noun (the learning happens in the MSPM). For instance,
in the sentence “small red ball”, the adjective for size “‘small” comes before the adjective for color
“red”. At the same time we will see how the proper order of the phonemes forming the individual
words is also learned. A step-by-step description of the processing in the MSPM is given below.
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Schematic drawing of the MSPM dynamics during the learning of a syntactic rule. An
abstract representation of the system dynamics during processing of the sentence “small
red ball” is shown. The phonemic or word order is shown using a gray-scale coding (dark =
beginning of word or sentence, light = end of word or sentence). The representation of
the phonemes forming the words in the verbal input is also shown abstractly, i.e. only 2 bits
(set to 1 and shown as the corresponding letters) are used instead of 6 bits used in
DETE's verbal representation (see Chapter 4).

(1) The first gra-phoneme “s” in the word “small” is represented as a 5-step long temporal
sequence (see section 2.3.1 and Chapter 4). It generates a burst of activity in the subset of the VB
predictrons (5 & 11) which encode the gra-phoneme “s”. This activity pattern is propagated to the
corresponding DC's of the TDs in both Transition Detector Banks (Phonemic and Word Level).
The FTD-1 in the Phonemic Leve] starts firing since it has the lowest threshold of all FTDs. It
inhibits the rest of the FTDs. At the same time, it excites a subset of OMB predictrons (called
phonemic-order-1 predictrons -- PO-1 shown as the first dark-shaded bar in the OMB in Figure
9.5). The bursting in the VB (representing “'s”) and in activity in the OMB (representing PO-1) are
associated through the parallel fibers (PFs) connecting the two banks of predictrons. The onset of
s also activates one of the STDs (STD-1) in the Word Level. STD-1 behaves similarly to FTD-1,
1.e. inhibits the rest of the STDs and excites a different subset of the OMB predictrons (Word Order
I predictron -- WO-1 -- the second dark-shaded bar in the OMB in Figure 9.5).

(2) When the first transition period comes (between “s” and “m”) FDT-1 detects it (because its
activation value Af changes -- see formula 9.1) and stops firing. As aresult rhe shunting inhibition
output from FTD-1 to the rest of the FTDs is interrupted and during the wransition all FTDs are
silent. In other words, the MSPM does not learn how long the individual transitions are but does
learn how to automatically detect transitions of different lengths (fast by the FTDs and slow by the
STDs). At the same time (during the “s” to “m” transition) STD-1 in the Word Level continues to
be active since the transition period is too short (1 cycle) to be detected. As a result, STD-1
maintains the information that the network is still processing the first word in the sentence.

(3) When the second gra-phoneme “m” is presented, FTD-2 detects it (starts firing) since it has
the next lower threshold after the FTD-1, and also because FTD-1 is in a refractory period and
therefore is unable to prevent FTD-2 from firin g. FTD-2 in tumn prevents all other FTDs from firing
via its inhibitory influence. At the same time, it excites a different subset of the OMB predictrons
(phonemic-order-2 predictrons -- PO-2 in Figure 9.5), and similarly as before, the activation of
these OMB predictrons is associated with the activation representing “m” in the set of VB
predictrons.

The process described above continues phoneme after phoneme until the end of the first word
when a longer transition period is encountered. The effect of this transition period on the network
dynamics is two-fold. (1} Within the Phonemic Level it causes a reset of the FTDs’ states. While
none of the FTDs are active during this long transition, all FTDs that have been in refractory period
get out of this state and FTD-1 is again ready to fire first which will represent the first phoneme of
the next word. (2) Within the Word Layer, STD-1 stops firing as a result of the long transition,
goes in a refractory period and disinhibits the rest of the STDs. This allows STD-2 to respond
sefectively to the second word in the sentence.

The durations of the transition periods between the segments in the VB are critical for the type of
reset which the TDBs perform. A sequence of short transitions (e.g., between the phonemes of a
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word) causes sequential activation of FTDs (only one FTD is active at a time). Longer latency
transitions (between words) trigger switching between the STDs in the Word Level of the hierarchy.
At the same time, they reset all of the Phonemic Level FTDs (i.e. prepare them for a new word),

This MSPM described above segments out words and phonemes. It associates their verbal
representations with the order information in the OMB only if the verbal input is in itself
presegmented. In other words, if the phonemes forming a word in the verbal input are separated by
short transition periods, while the words in the verbal input are separated by longer transitions.
Notice that (in the current implementation) the proper segmentation of the external input is ensured
by the design of the gra-phonemic representation scheme (see Chapter 4). However, pilot tests
suggest that with a minor modification the KATAMIC model can be adapted to tolerate some degree
of time-warping -- stretching or shrinking of the gra-phonemic input representations. The actual
modification involves changing the way injected stm is delivered to the DCPs via the Parallel Fibers
(see Formula 8.2). Instead of injecting som only into the seed DCP, some stm is also injected in the
nearby DCPs of the predictron. The distribution of the injected stm is Gaussian (centered at the seed
DCP). The Full Width Half Maximum (FWHM) of the distribution defines the degree to which the
model can correctly handle time-warped gra-phonemes. The bigger the FWHM, the higher the
degree of time-warp tolerance and vice versa. Initial tests indicate that this design works as
proposed. The reason is that instead of having only a discretized trace of stm in the dendritic branch
of a predictron, we would have a more realistic (from the point of view of neurobiology) trace
which is to some degree smeared along the length of the dendrite (Gaussian shape) which is
equivalent to time smearing of the input. Using this modified KATAMIC architecture, DETE could

successfully recognize gra-phonemes which are 4 or 6 B-cycles long (5 B-cycles is the standard
duration).

8.3 Representation of time in DETE

DETE makes a distinction between modeling of dynamics of a sequence (via delay lines in the
predictrons -- Table 5.1) and modeling time such as needed for representing verb tense in natural
languages (e.g., moves, will move, moved). Time (in the latter meaning of the word) is
represented in DETE as an additional dimension to the visual and verbal memories. DETE contains
a neural structure called the Temporal Memory (TM). The purpose of the TM is to provide a time-
buffer for consecutive sequences. This time buffer allows sequences occuring at different (but close
to each other) moments to be associated. TM’s connectivity and dynamics are chosen such that it
can represent temporal characteristics of events (e.g., past, present or future) with respect to the
present moment. The TM consists of 8 Temporal Planes connected in series. They are labeled from
TP-0 10 TP-7. Each TP is composed of a set of predictrons (one for each pixel in each feature map)
and is divided into a verbal and a visual part. TP-0 represents the current moment in time (NOW).
TP-1 represents the previous moment in time and so on. The sizes of the TPs map one-to-one to the
sizes of the visual feature planes (16 x 16) and the verbal input vector (64 x 1). TP-0 gets
information directly from the visual feature extractors and the verbal encoder. Each unit in TP-0
gets external input from one unit in the visual or verbal feature planes.

Activation is transferred between the predictrons of the TPs in temporal chunks (moments) --
i.e. it does not flow as if through a simple pipe-line. One moment is equivalent to 300 B-cycles and
corresponds roughly to 3 seconds of real time. DETE contains a “moment clock” -- a procedure
which controls the transfer schedule between TPs (see Figure 9.6). The “moment clock™ generates
a signal once every 300 B-cycles. The set of & TPs is divided dynamically into two interleaved
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groups: Pumping TPs (PTPs) and Flushing TPs (FTPs). At each tick of the moment clock the first
group “pumps in” information while the second group “flushes out” information (Figure 9.6A).
The roles of pumping and flushing are reversed at the next tick of the moment clock (Figure 9.6B).
At each moment, the pumping TPs get their input from their left-hand (flushing) neighbors with
exception of TP-0 which gets external input. At the same time, (at the beginning of each momen)
the flushing TPs get a “shock input”, A “shock input” is a short burst of activation passed to the
inputs of the predictrons of all TPs which are in a flushing mode (FTPs). Each “shock-input” is
procedurally generated by the “moment clock™ and causes the memory content of the FTPs to be
flushed-out. This same content is captured by the corresponding right-handed PTPs.

There are two types of connections between the TPs. The first type is between the
corresponding neural elements in adjacent TPs. For reasons which will be explained later, these
connections are called “slow” connections. Each predictron in a TP sends its output to the input of
the corresponding predictron in the next TP. Therefore, each predictron serves both as a receiver of
input from its left neighbor and a sender of output to its right-hand neighbor. In other words, the
slow connections are used to pass a signal in a given direction (from TP-0 to TP-7) only between
neighboring planes. The signal transmittal is initiated at each tick of the “moment clock”. The
transfer line (wire) between two units in adjacent planes is gated externally. The gate is open for
transfer only when the right-hand TP is in pumping mode (i.c. a receiver) and the left-hand TP is in
flushing mode (i.e. a sender). At the beginning of each moment the receivers and senders reverse
their roles.

The second type of connection is made between each predictron in TP-1 to TP-7 and the
corresponding predictrons in TP-0 (Figure 9.6). Before making contacts with TP-0, these
connections are also gated by the “moment clock™. These of connections, together with the
connections made by the external input line to the TPs, are called “fast” connections because the
information is reaches all connected predictrons within one B-cycle (rather than being transfered in
moment chunks like the slow connections). In section 11.7 we show examples how this rapidly
spreading information is used both during learning and durin g understanding of verb tenses.

There are also connections between the predictrons in each of the TPs itself. These connections
are not shown in Figure 9.6, but are described in detail in section 10.1.3.

Each of the TP units is composed of a Short-Term Memory predictron and « Long-Term
Memory predictron (see Figure 9.2). Both of these predictrons get the same input (i.e. they are
connected in parallel) but they have different dynamics. The st in all TPs (STM and LTM) is reset
at the end of each moment. At the same time the /nm in all STM FTPs is reset and the & in the
PTPs does not change. To ensure contiguity of perception and operation, during each moment only
half of the predictrons in each TP are in the pumping mode whereas the other half are in the flushing
mode.

The TM described above is quite rigid, since it assumes a constant duration of the temporal
chunks. This limits the maximal length of a verbal sentence to 300 B-cycles (60 gra-phonemes or
about 9 to 11 words). At the same time, short sentences are separated by a long pause since only
one sentence is processed each moment.
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Schematic drawing of DETE's Temporal Memory (TM). The TM is shown in two
consecutive moments. Only one predictron {the thermometer-shaped icons) per TP is
shown. Slow connections are shown as thick lines with arrows at the end. Fast
connections are shown as thin lines. Lines that cross at straight angles with other lines or
with the predictrons do not make connections. The gates placed on the “slow"”
connections are shown as circles and thick arrows within them indicate their states {vertical
arrows: -- the gates pass the shocking input through; oblique arrows: -- the gates pass
through the inputs from the flushing predictrons). The dashed line originating at the
moment clock shows the flow of control signal to the gates located between the TPs and
the gates placed on the fast connections to TP-0.

The detailed dynamics of the TM wil] be illustrated in section 11.7 where we see on examples
how DETE learns various verb tenses. Here is only a description of object Tepresentation in the

same time DETE can learn the meaning of the word “shrinks” by looking at objects whose size
decreases with time.
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10 PUTTING IT ALL TOGETHER

This chapter focuses on how the individual modules of DETE were interfaced with each other to
construct a complete functional system. Also discussed here are some modifications of the basic
memory mechanism -- the KATAMIC sequential memory, which allow it to be used as Visual
Feature Memories (VFMs) as well as Verbal and Motor Memories (VM & MM).

10.1 Characteristics of the memory modules in DETE

The KATAMIC architecture is the basis of all memory modules in DETE. Some of KATAMIC's
parameters were tailored to support the necessary functional characteristics of the individual memory
modules (visual, verbal, and motor) and to provide desired interfaces among these modules. The
parameters which were varied include: (1) Dimensionality of the memory (1-D or 2-D arrangement
of the predictrons); (2) I-bit-density of the inputs to the memories (the visual, the verbal, and the
motor representations) and the temporal characteristics of the inputs to the different modalities; (3)
Internal partition of the memory modules (stripes and columns -- see further discussion), and
variations of the connection strengths (represented by the spatial decay constant Ts -- formula 8.2)
of the synapses made by the parallel fibers within and between modules: (4) Seed distributions
within each individual memory module.

10.1.1 Dimensionality of memory modules

The KATAMIC model described in Chapter 8 has a 1-D organization (the predictrons are arranged
in one row -- form a vector). On the other hand, most of the memory modules in DETE require a 2-
D organization, i.e. a square array of predictrons. Such spatial organization is necessary to support
a direct mapping from the individual visual feature planes (VFPs) to the corresponding visual
feature memories (VFMs). For each VFP there is a corresponding VFM with the same dimensions
(16 x 16 predictrons). Therefore, the number of predictrons forming each VFM is 256. Also, there
are 8 temporal planes and therefore a total of 256 x 8 = 2048 predictrons. An increase in the number
of predictrons results in a proportionate increase in storage locations in the memory.

10.1.2 1-bit-density of inputs

The combination of having a large number of pixels per VF plane and the choice of representation
within the feature planes (see Chapter 3) results in a significantly lower 1-bit-density of the inputs to
the VF memories as compared to the 1-bit-densities used to estimate the performance of the
KATAMIC memory (see section 8.4). Since any given visual feature of an object is represented as
4 active pixels within the corresponding VF plane, and since this activity is represented as
oscillations with a period of 5 B-cycles, the effective 1-bit-density of the inputs provided by the VF
planes is 4/256/5 = 0.312 % (compared to 10 or 20% used typically in the KATAMIC memory
experiments). This significantly lower 1-bit-density of the Input patterns translates into an increase
of the memory storage capacity of the individual VFMs (in terms of number of patterns stored) as
compared 10 the memory capacity estimated in section 8.4.5 for denser patterns.
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A similar assessment of the 1-bit-density can be done for the verbal input representation. While
the activity in the Visual Field is encoded in oscillations, in the verbal representation the activity is
encoded in “bursis”. A given element of the 64 bit long verbal vector (see Chapter 4) is active for 5
consecutive B-cycles -- a burst, after which it becomes silent. Since each gra-phoneme is
represented by 3*2=6 active bits corresponding to the three basic frequency formants, the 1-bit-
density of the verbal input is 3/64 = 4.68%. On the basis of the number of predictrons allocated to
the verbal memory and the 1-bit-density of the verbal input one would expect that the verbal
memory would not be able to learn hundreds of sequences (words), since the KATAMIC’s memory
capacity was shown to be in the range of tens of words (see section 8.4.5). This, however, is not
the case. It is important to notice that while the verbal representation is passed directly only to the
verbal memory, information about the verbal input is spread indirectly to all Visual Feature
Memories (see Figures 10.5 & 10.6). As a result, in effect the number of storage locations for
verbal inputs is increased. This allows DETE to maintain a relatively large lexicon of about 100
different words where the length of an average word is about 35 B-cycles (7 gra-phonemes x 5 B-
cycles per gra-phoneme).

10.1.3 Connection patterns and strengths within modules

A common principle in the design of all memory modules in DETE was to provide sufficient
hardware (predictrons) necessary to represent separately the features of several (up to 4) individual
objects that appear simultaneously in the Visual Field. The object segmentation was done in tandem
by two different encoding mechanisms: (1) segmentation in the temporal domain, and (2) separation
in the spatial domain. The choice of such double encoding was inspired by our interpretation of
recent neurophysiological data. More specifically, the temporal aspect of the representation, was
suggested by the observation of relatively high frequency oscillations (about 40 Hz) in the visual
cortex that can be correlated with features of objects in the Visual Field (Gray et al., 1989; Gray and
Singer, 1989; Gray et al., 1990). The spatial aspect of the representation was suggested by the fact
that in the neocortex the neuronal activity is very sparse and therefore it is reasonable to expect that
there is no overlap between the neural assemblies representing the features of different objects.
Moreover, it is quite unlikely that a particular neuron can double or triple its oscillation frequency
from, say 100 to 200 or 300 Hz, which will be necessary if it were encoding features of two or
three different objects. The spatial encoding of a particular feature of different objects (e.g., shape
or color) can be realized in various ways. One possibility is to completely segregate in space the
neural assemblies that represent different objects. For instance, they can be placed in separate
stripes or columns of the memory. Such organization can be found in various parts of the neocortex
and especially in the visual cortex (Hubel and Wiesel, 1962). Another possibility is to interleave in
space the various assemblies. Such a type of representation is typical, for instance, for the olfactory
cortex (Haberly, 1990). In our implementation, as discussed below, the former approach was
chosen for the individual memory modules.

Each feature plane in DETE represents the features of different objects within separate areas of
the plane. Such areas can take one of two different shapes called stripes and columns. Stripe is a
group of predictrons organized in a 2-D array of dimensions 4 by 16. Each stripe represents only
one feature of only one object. Stripes are used to represent object features in three out of the five
visual feature memories -- the shape, the size, and the color memories (see Figure 10.1 for an
example of a stripe in the Shape Feature Memory). The other two feature memories (the location
and motion) use columns 1o represent the features of individual objects. Columns are groups of 4
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predictrons arranged in a square (see Figures 10.2 & 10.3 for examples of columns in the Location
and Motion Feature Memories).

10.1.4 Seed distribution

In the KATAMIC model, the choice of the dendritic compartments which serve as seeds (i.e. where
the bifurcation of the ascending fibers occurs) was done at random with a priori defined density of
the seeds (see Table 8.1). However, to allow for a gradual change of the representations of the
visual features within individual modalities (e.g., in the siZe Feature Plane -- from small to large; in
the Motion Feature Plane -- from slow to fast, etc) in DETE it was necessary to go from random to
structured seed distribution. The following general principle of seed distribution was used:
predictrons that are close to each other within a given feature memory have their seeds also close to
each other along the dendritic branches. The most commonly used seed distribution was 2 diagonal
distribution,

A detailed description of the seed distributions and connectivity patterns of the Parallel Fibers
within each of the visual memory modules is provided below.

(1) Shape Feature Memory (SFM). The SFM (a 16 x 16 set of predictrons) is divided into 4 x
16 = 64 stripes each of which contains 4 predictrons. Each stripe represents the shape of a single
object. The locations of the seed-DCPs in the stripes of the SFM are shown in Figure 10.1.

A more detailed view of the connectivity pattern within the SFM is shown in Figure 10.2. In
the X dimension (within a stripe) the connection strengths are all set to 1. This gives all predictrons
within a stripe the same status (redundancy of codin g). In the Y dimension (between stripes) the
connection strengths decrease exponentially with distance in both directions from the seed-DCP.
Such connectivity pattern allows for a smooth transition between neighboring szripes. There are no
connections between the stripes along the X dimension. In other words. there is no interference
between the shape representations of two or more objects which appear simuliuneously in the Visual
Field. This aspect of the current set-up might not be realistic, since there are well known perceptual
illusions (e.g. based on line drawings) in which our perception of a particular geometrical feature
(like line curvarture) is distorted due to effects of perceptual interference with other shapes.

(2) siZe Feature Memory (ZFM). The distribution of the seeds in the ZFM is the same as that in
the SFM. The reason is that both the shape and the size representations are designed such that there
is a gradual change of feature value along the feature dimension (the Y axis) of the feature plane. In
the ZFM, the size dimension of an object varies monotonically from small to large along the Y axis.

(3) Color Feature Memory (CFM). The distribution of the seeds in the CFM is the same as that
in the SFM and ZFM. This choice is made for the same reasons described above. Here along the Y
axis are encoded different color values ranging from black to white.

(4) Location Feature Memory (LFM). The seed-DCPs in the Location Feature Memory are
arranged in a spiral plane with an axis parallel to the Z axis and centered in the middle of the LFM
(Figure 10.3). The projection of this axis onto the Visual Screen coincides with the center of the
EYE (retina). The spiral plane makes one complete turn along its axis. The direction of the turn is
clockwise but this is not critical. The reason for choosing this specific seed-DCP distribution is that
it, together with the phase-lags based representation of the distance of the object to the center of the
retina, provides a unique representation of the location of an object in the Visual Field. Effectively,
the spiral angle and the distance from the axis provide a polar coordinate system in which the
Jocation of each individual abject can be encoded in a unique wayv.
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Schematic drawing of the data flow between the Visual Screen (VS -- only 256 pixels are
shown out of 4096 total), the Shape Feature Plane (SFP) and the Shape Feature Memory
(SFM). Three noisy objects are shown on the VS (a square, a circle, and a triangle). The
Shape Feature Extractor {not shown) has mapped the shapes of the objects onto the SFP
(see Figure 3.3 for details). The mapping from the SFP to the SFM is topographic (one-to-
one). Predictrons forming the SFM are shown as vertical bars. The 16 possible shapes
that the SFP can represent are shown on the Y axis. Four objects having the same shape
can be simultaneously represented along the X axis. The dendritic compartments of the
SFM predictrons are organized along the Z axis. Of the 128 DCPs per predictron in the
current implementation of DETE, only 8 are shown (white rhomboids). The seed-DCPs in
all stripes of the SFM (in a given TP) are shown as shaded rhomboids. The organization of
the seed-DCPs in consecutive predictrons along the Y axis is diagonai.

to the rest of SFM predictrons
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M-m !w
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Figure 10.2:  Details of the seed-DCPs distribution in the SFM

Schematic drawing of the connectivity pattern within the SFM. Qut of the 256 predictrons
forming the SFM only 12 are shown as thermometer-shaped icons. The seed-DCPs are
shown as shaded rectangles. The organization of the seed-DCPs in consecutive
predictrons along the Y axis is diagonal {in the YZ piane). The strength of the connections
between predictrons is encoded by the thickness of the connecting lines. In the X
dimension alt connection strengths are set to 1 (shown as thick tines). In the Y dimension
connection strengths decrease exponentially with distance in both directions from the
seed-DCP (shown as gradually thinning lines).
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Schematic drawing of the data flow between the VS (only 256 pixels are shown out of
4096 total), the Location Feature Plane (LFP) and the Location Feature Memory (LFM).
The same objects as in Figure 10.1 are shown on the VS. The Location Feature Extractor
(not shown) has mapped retinotopically the locations of the objects’ centers of mass onto
the LFP (see Figure 3.6 for details). The mapping from the LFP to the LFM is also one-to-
one. Predictrons forming the LFM are shown as vertical bars. The DCPs of the LFM
predictrons are arranged along the Z axis. Of the 128 DCPs per predictron in the current
implementation, only 8 are shown (white rhomboids). A column is shown as 4 predictrons
arranged in a square. The seed-DCPs are shown as shaded rhomboids. The arrangement
of the seed-DCPs in the volume of the LFM is in a spiraf plane {shown as a staircase).

A more detailed view of the connectivity pattern within the LEM is shown in Figure 10.4. In
the radial dimension all connection strengths are set to 1. This allows all predictrons arranged along
a radius to communicate more strongly among each other than predictrons that are not along the
same radius. This feature is used for learning spatial relations like “in-front” and “behind” (see
section 11.5.2). In the X and Y dimension the connection strengths decrease exponentially with
distance in both directions from the seed-DCP. Such connectivity pattern allows for a smooth
transition between neighboring stripes. It also allows for encoding of angular distance between
predictrons.

10 the rest of SFM predictrons
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Figure 10.4:  Details of the seed-DCPs distribution in the LFM
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Schematic drawing of the connectivity patiern within the LFM. Out of the 256 predictrons
forming the LFM only 48 are shown. Every 4 predictrons within a column are shown as a
single thermometer-shaped icon. This piece of the LFM has been chosen such that the
left-most predictron corresponds to a predictron in the center of the LFM (i.e. it coincides
with the axis of the spiral plane). The seed-DCPs are shown as shaded rectangles. The
organization of the seed-DCPs in consecutive predictrons within the 3-D volume of the
LFM follows a spiral plane. The connections originating at only three of the predictrons are
shown (solid thick lines used for inputs). The strength of the connections between
predictrons is encoded by the thickness of the connecting lines. In the radial direction
dimension all connection strengths are set 1o 1 {shown as thick lines). In the X and Y
dimensions connection strengths decrease exponentially with distance in both directions
from the seed-DCP (shown as gradually thinning lines).

(5) Motion Feature Memory (MFM). The seed distribution in the MFM is the same as that in the
LFM, however the mapping from the MFP and MFM (Figure 10.5) is different from that between
the LFP and LFM. The choice of this seed-DCP distribution was made on the same basis as for the
LFM, since here we need again something that amounts to a polar coordinate system
representation. However, in the MFM the distance from the center corresponds to the speed of
motion and the angle corresponds to the direction of motion.

(6) Verbal Memory (VM). The predictrons in the verbal memory are arranged along a single
dimension. There are 64 predictrons and each of them codes for a specific frequency range (see
Chapter 4). The distribution of the seeds in this memory module is diagonal (Figure 10.6).
Similarly to the cases of the shape, size, and color memories, this distribution ensures that
frequencies that are close to each other are represented in predictrons that are near each other.

10.1.5 Winner Take All mechanism {WTA)

At each B-cycle, the output pattern of each of DETE’s Visual Feature Memories (VFMs) is piped
thru a Winner Take All (WTA) mechanism (see Figure 10.8). The WTA mechanism allows only
one predictron in a given VEM (the one that has the strongest 1-bit prediction -- i.e. has the maximal
activation level of all predictrons in the specific VFM -- see Formula 8.11) to pass its output to the
Verbal Memory. The outputs of all other weaker predictions (i.e. those with smaller activations) are
not passed thru. In other words, instead of 1s, Os are passed along the axons of these predictrons.
The WTA mechanisms are based on lateral inhibition between the predictrons from which each
VFM is composed. Their function is to allow only one (the strongest) of all possible responses to
be generated by the particular VFM (SFM, ZFM, LFM, CFM, and MFM). Since each of the
predictrons has an activation threshold ©P (see Formula 8.12) effectively each WTA has the same
generation threshold. At any B-cycle, depending on the magnitude of this threshold, a particular
VFM generates an output or is silent. In the current implementation the thresholds of the WTA
mechanisms are set externally by the user. Low settings of the thresholds (e.g., 0.05) result in a
very “verbal” DETE while high settings (e.g., 0.1) correspond to a relatively quiet or, in the
extreme case, a completely silent DETE (see “Learning word order” in section 11.3.2). As will be
seen on examples in Chapter 11, the length of a visual scene description generated by DETE
depends on (1) the thresholds of the WTA mechanisms, (2) all prior experiences, i.e. the
distribution of utterances of various lengths in the training set (the most frequent length utterances

have left the strongest trace in the memory), and (3) the most recent experiences (i.e. priming
effects).
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Schematic drawing of the data flow between the VS, the Motion Feature Plane (MFP) and
the Motion Feature Memory (MFM). The same objects as in Figure 10.1 are shown on the
VS. The Motion Feature Extractor (not shown) has mapped the motions of the objects
onto the MFP. Notice that the mapping is not topographic (see Figure 3.7 for details). The
mapping from the MFP to the MFM is one-to-one. Predictrons forming the MFM are shown
as vertical bars. The DCPs of the MFM predictrons are arranged along the Z axis. Of the
128 DCPs per predictron in the current implementation, only 8 are shown (white
rhomboids). A column is shown as 4 predictrons arranged in a square. The seed-DCPs are
shown as shaded rhomboids. The seed-DCPs are arranged in a spiral plane (shown as a
staircase) within the volume of the MFM,
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The verbal Memory is composed of 64 predictrons (only 16 are shown columns). There
are 256 DCPs per predictron (only 64 are shown as small rectangles forming the columns).
The seed-DCPs are placed on the diagonal and are shown as dark-shaded rectangles.

The WTA mechanism serves another purpose as well. Namely, the outputs the WTA are used
1o control the clock phase of the Focus of Attention Master (FAM), i.e. the position of the TAW in
the space of possible phases of the FAM clock. The WTA output has a given phase. A procedural
module then uses this phase to reset the FAM to be the same phase. Control of the FAM phase is
important for learning of certain linguistic skills such as verbal description of size and location
relations. An example of how the WTA mechanism and the FAM is used in learning of size
relations between two objects is given in section 11.5.1.

In DETE, the pattern of activity generated in the Verbal Memory in response to a verbal input
and filtered by the WTA mechanism can be used in a visual search task. For instance, DETE is
shown several objects one of which is red. By a verbal command “Where is the red” or “Which one
is red” or “Show me the red”, DETE is also given the task to find the red object (i.e. focus the
attention on it) and to verbalize “red”. To accomplish this task DETE performs a sequential search
in the Visual Screen. It moves its focus of attention randomly from one object to another (never to
an empty space). To illustrate the function of the WTA, consider further how DETE accomplishes
this task. The verbal input and specifically the word “red” generates a sustained expectation of a red
object. This expectation is represented by activity in the red area of the Color Feature Memory.
The threshold of the WTA is set such that this activity is subthreshold, i.e., it is not passed thru the
WTA. When the object with the red color falls on the retina, the si gnal representing its color feature
(red) is passed from the CFP to the CFM. Since the CFM is already biased towards red by the
verbal input, the additional activation of the red area of the CEM (see Figure 3.5) exceeds the WTA
threshold. As a result WTA mechanism passes out the signal from the red area back to the Verbal
Memory. This activity, in turn, causes the Verbal Memory to verbalize the word “red”. Notice that
the WTA thresholds are set so that none of the Visual Features Memories by themselves (i.e.

without the bias from the verbal memory activation) can produce a response (i.e. reach the WTA
threshold).

10.2 Interfacing the individual memory modules

To be able to support the types of functionality which we expected form the system, the patterns of
connectivity between the individual Visual Feature Memories on the one hand and between Visual
and the Verbal Memories on the other hand were desi gned differently.

10.2.1 Connectivity patterns between visual modules

The different Visual Feature Memories are not directly interconnected. For this reason DETE does
not learn by itself associations between visual features unless they are pooled together by the
meaning of verbal inputs like: tomato = red circle: orange = orange circle; grapefruit = large vellow
circle; comet = yellow circle moving down along the diagonal. This connectivity pattern was
chosen for simplicity and does not reflect the neuropsychological and neurophysiological reality. Tt
1s well known that animals and pre-lingual children can easily associate various visual features. For
instance, cats and dogs do not have verbal memory, and vet they manage 1o co-associate visual
features. Le. they learn that, sav, rat-shapes are associated with grey color. Also, the connectivity
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among various functional modules in the visual cortex suggests that often the same neural circuitry
is shared by various features like color, motion, etc. (Van Essen and Maunsell, 1983).

10.2.2 Connectivity between verbal and visual memory modules

The outputs of all predictrons in the Verbal Memory are connected via inter-modular fibers making
non modifiable synapses of weight 1 to all predictrons in the Visual Feature Memories (Figure
10.7). Such connectivity pattern is necessary so that any word can be equally easily associated with
any visual representation, also because it is desirable that activity in any part of the verbal memory
can affect the activity in any part of each VFM. The particular choice of using outpur-to-input
connections (the outputs of the verbal predictrons spread to the inputs of the visual memory via
inter-modular fibers) as opposed to input-10-inpur connections (the input lines to the verbal memory
spread to the visual memories as parallel fibers and vice versa) is done because it is desirable that
DETE can “imagine” a visual feature in response to a “hidden articulation” of the corresponding
word. Such capability is only possible if an output-to-input connectivity is chosen and cannot be
supported by an input-to-input connectivity pattern. The connectivity in the opposite directions -
from visual to verbal memory follow the same fully connected pattern and the synapses made by the
visual to verbal inter-modular fibers are also non-modifiable and set to 1.
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Figure 10.7:  Inter-modular connectivity

Schematic drawing of the connectivity pattern between the verbal memory module and
any of the visual features memory modules. The inter-modular connectivity is achieved by
reciprocal inter-modular output-to-input connections. Each predictron in a given module
makes non-modifiable synapses with weights 1 to the dendritic branches of all predictrons
in the other memory module. All synapses made by an inter-modular fiber are at the same
“level” along the dendrites. This level is chosen at random for each fiber. Fibers crossing
each other at straight angles are not connecled.

10.2.3 DETE's complete memory architecture

A schematic view of DETE’s memory architecture is shown in Figure 10.8. For the purpose of
simplicity, only two out of the five Visual Feature Memories are shown, and also only two out of
the eight Temporal Memory Planes are shown. Each of the Visual Feature Memories is reduced to
an array of 2 x 2 pairs of predictrons (one STM and one LTM per pair). In the Verbal Memory only

two out of the 64 pairs of predictrons are shown. The connectivity patterns are shown
schematically.

Figure 10.8: Detailed view of DETE’s Temory organization

Down-scaled view of DETE's memory architecture. The vertical thermometer-shaped
icons represent predictrons (4 dendritic compartments per predictron are shown as small
squares stacked in a ¢column; the circles underneath represent the somas). The STM
predictrons are shaded whereas the LTM are non-shaded. The horizontal thermometer-
shaped icons (bottom left) represent Transition Deteclors (TDs). The connectivity patierns
are shown schematically. Wires crossing each other at straight angles do not make
contacts. The abbreviations refer to: VF(EYE) -- Visual Field: VS -- Visual Screen; FAM --
Focus of Attention Master; ISM -- input Segmentation Mechanism; WEM -- Word Encoding
Mechanism; SFE(P,M) -- Shape Feature Extractor (Plane, Memory); CFE(P,M) -- Color
Feature Extractor (Plane, Memory): LFE(P,M) -- Location Feature Extractor (Plane,
Memory); MFE(P,M} -- Motion Feature Extraclor (Plane, Memory); ESE -- Eye State
Extractor; ELM -- Eye Location Memory; EDM -- Eye Diameter Memory; FSE -- Finger State
Extractor, FLM -- Finger Location Memory; FMM -- Finger Motion Memory; WTA - Winner
Take All mechanism; MSPM -- Morphologic/Syntactic Procedural Memory; VM -- Verbal
Memory; TDB -- Transition Detectors Bank; VAD -- Verbal Activity Decoder; ME -- Mind's
Eye; MC -- Moment Clock.
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PART Il
Performance and Evaluation

Part IIT of this thesis is concerned with the evaluation of DETE’s performance. In a series of
experiments, in which the task complexity is gradually increased, we demonstrate how DETE can
learn meanings of words for objects and their features like “ball”, “triangle”, “red”, “small’: also,
words describing motion states such as “stands”, “moves”, “inoves diagonally”, “bounces”, etc.
Further, we show that DETE is capable of dynamically building generalizations from prior visual
and verbal experiences by using an oscillation based role-binding mechanism. DETE’s linguistic
skills are probed further in the domain of syntax acquisition (e.g., word order). Finally, part IiI
demonstrates how DETE, due to its unique architecture which contains explicit representation of
tinme, can acquire meanings of verbs in several verb tenses (present, past, future, and their perfect
forms).
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11 INCREMENTAL LANGUAGE ACQUISITION

In a series of experiments this chapter demonstrates how DETE gradually acquires some basic
language skills. In an increasing order of complexity these language skills are: (1) formation of
simple concepts -- learning words for objects and their features, and learning words for events, (2)
generalization within and between the visual and verbal modalities, (3) question answering, (4)
learning more complex concepts for spatial and motion relations between objects, and (5) learning
about temporal relations between events. Each experiment consists of a training (learning) phase
during which DETE makes associations between the visual and verbal inputs, and a testing
(performance) phase during which the quality of the associations made is tested. In some
experiments the two phases are separate in time, i.e. testin g 1s done after a whole block of leaming
trials is presented, while in other experiments the training and testing are interleaved. In a third
group of experiments the testing is actually a part of the training,

11.1 Experimental protocol

The need of a well-designed learning protocol arises since DETE is a complex neural/procedural
system. The more complex a system is, the more its degrees of freedom grow. Therefore, it is
imperative that appropriate constraints are imposed on every single element of the system as well as
on the inputs and expected behaviors. All experimental protocols reported in this chapter were
designed using a common strategy which is characterized by a gradual increase of task complexity.
In the beginning, DETE is taught the basic linguistic elements such as the meanin gs of single words
for individual instances of objects or events and is trained to answer simple questions. Later, DETE
learns to extend known words to novel instances. The next step is the learning of short phrases and
sentences. It is important to point out that for the learnin g of more complex tasks DETE is required
to have already mastered some simpler tasks. For instance, in order to be able to answer questions
DETE had to first learn the names of individual objects. However, not all tasks require that DETE
retains all the knowledge accumulated during prior experiences with simpler tasks. In such cases,
10 reduce the memory load, the number of trainin g trials, (and the computational €Xpenses necessary
for the maintenance of a fully integrated system), I resorted to teaching DETE only the necessary
prerequisites for the performance of the particular complex tasks. This strategy allows for obtaining
2 better understanding of the performance of the task at hand, but limits the possibility for
exploration of the influences of more comprehensive prior knowledge on the performance of the
particular task. In other words, the interference in the learning of different linguistic phenomena has
not vet been tested. This makes the comparison of DETE’s performance with the performance of
human infants (which are exposed to the whole spectrum of linguistic phenomena and acquire the
various linguistic skills on their own pace) somewhat difficult,

The designs of the experiments in this chapter are visualized in a number of figures and the
results are shown in several tables. In general, the numerical values listed in the tables represent
the number of learning trials it took for DETE to produce the first correct response for any particular
task and also the number of trials necessary to achieve 90% correct response. This second measure
1s representative of DETE s behavior since the correctness of the responses was not sustained
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through successive trials but in general improved with continuous training. This learning behavior
was often a result of the choice of the particular training set. More specifically, depending on the
ordering of pairs in the training set DETE experienced periods of non-monotonicity of learning. For
instance, after it has learned the correct meaning of a particular word, DETE might unlearn it and
associate another meaning with the same word. In general, however, with a sufficiently long
training sequence DETE leamns the correct meaning. The basic mechanism which allows DETE to
accomplish this task is the built-in forgetting mechanism of the KATAMIC memory. This ability is
a direct consequence of the continuous redistribution of p-ltm and n-lom resources (see formulas
8.9a and 8.9b in section 8.2).

11.2 Learning single words

11.2.1 Learning words for objects

DETE's training started on a simple task of learning the meanings of words that name individual
objects. For this purpose DETE was exposed to a number of pairs of the type (WORD:x,
PICTURE:x). Here, x stands for any object, which has a verbal and visual representation denoted
respectively with the prefixes WORD: (W:) and PICTURE: (P:). The pictorial representation of
the object x (P:x) stands for a combination of the following visual features: color (C:x), shape
(8:x), size (Z:x), location (L:x), and motion (M:x,x). Motion has two components, direction and
velocity. The task is to prove that after learning a sufficient number of such pairs DETE can
“imagine”, for instance, red color (C:red) in response to the word “red” (W:red) and
correspondingly it can utter (generate) Wred in response to a visual input of C:red (e.g., when the
whole Visual Field is red). To learn this task, for a moment -- i.e. 300 B-cycles (see Table 7.1),
DETE is simultaneously presented with a verbal input (e.g., W:ball) and a visual input (e.g.,
P:ball). Note that the visual input (P:ball) has five components, i.e. P:ball = [C:*, S:circle, Z:*,
L:*, M:**]. The symbol *“*” stands for any possible value of a given feature.

As described in section 3.2, each element of this set of components is represented as a small
group of oscillating neurons in the corresponding visual feature plane. During the process of
learning DETE captures the invariant features of the objects. Capturing feature invariance is
possible because the training data set is constructed such that the characterisin (catures of each
object are kept constant during the pairings, while at the same time the rest of the features are
allowed to vary. For instance, the most characteristic visual feature of “ball” (W:ball) is its circular
shape (i.e. P:ball = [C:*, S:circle, Z:*, L:*, M:* *]), whereas for the word “red” (W:red) it is the
color (C:red) that is most characteristic.

The verbal representation of each word is associated with a specific visual representation and
this association constitutes the meaning that DETE has attached to the particular word (Figure
11.1). The learning of this kind of “meaning” (i.e. the grounding of a symbol) is achieved by
forming a strong association between the word that names a set of objects (e.g., ball) and the most
invariant of the visual features of the objects. For instance, W:ball is associated the strongest with
the shape S:circle, while weaker traces are formed between the W:ball and colors like C:red,
C:green, Ciyellow, etc., or sizes as S:small, S:large, etc., and similarly for the rest of the features.
Later, during testing, the presentation of a verbal input by itself like W:ball associatively activates
(i.e. brings to the WM) the visual representations of S:circle, together with the statistically most
frequent values of the other visual features (e.g., C:red, L:center, etc.).
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Schematic representations (abstracted and highly simplified) of the meanings of two words
W:ball (an object) and W:small (a feature) are shown as ovals on the top. (The actual verbal
representations are formed by the traces of the gra-phonemic sequences of the words
which are stored in the verbal memory). The visual representations of two objects that
appear in the Visual Field are shown in parentheses. The word W:ball names a large red
ball located left above the center and moving fast in north-eastern direction (P:ball =
S:circle; C:red; L:up_left; Z:big; M:north_east, fast). The word W:small names a small
blue square located in the center moving slowly north_east (P:square = S:square; C:blue:
L:middle; Z:small; M:nonth_east, siow). The five visual feature planes (S,C,.L,Z,M) are
shown schematically in a composit feature plane in the middle. The assoclations between
the visual and verbal representations are shown as links between them. The meanings of
the two words are represented by the thickness of the links that their verbal
representations form with the individual features in the VFP. The word “bali” has its
strongest link to the circular feature in the SFP, whereas the word “smal” has its strongest
link to the smaflfeature in the ZFP.

In the first experiment DETE learns the meanings of the words “circle”, “square” and “triangle”.
Notice that in the English language these words commonly refer to shapes but also whole objects
with circular, square or triangular shape are often named by these words. Also, objects named by
these words can have different colors, locations, sizes, and motions. With this in mind, the
experiment was designed in the following way. Pairs of visual and verbal inputs of the type
([W:x], {P:x]), and specifically, ((W:circle], [C:x, S:circle, Z:x, L:x, M:x,x]), ([W:square], {C:x,
S:square, Z:x, L:x, M:x,x]), and ([W:triangle], [C:x, S:triangle, Z:x, L:x, M:x,x]) were presented
In a sequence -- one pair per moment. DETE made associations between the visual and verbal
representations at each presentation. After the presentation of each pair the learning was disabled
(1.e. no update of the /rm was done) and two tests were run: 1) visual-to-verbal test, 2) verbal-to-
visual test. In the verbal-to-visual test DETE was given a verbal input (e.g., W:circle) and the
activity generated in the visual bank of the Long-Term declarative Memory was examined. The
visual response was considered to be correct if, as a result of the verbal input, sustained oscillations
were induced in at least one neuron located in the proper area (i.e. the area that represents circles) of
the shape bank of the visual memory. In practice, however, we commonly observe several of the
neurons exhibiting increased activation in the predefined area. In the visual-to-verbal test, a novel
instance of a circle, a square, or a triangle was presented as visual input and the activity generated in
the verbal bank was monitored. The response was considered correct when all gra-phonemes were

generated in the correct order without intervening noise. Schematically, this experiment can be
described as follows:

TRAINING: ([W:circlelsquareltriangle], [C:x, S:circlelsquareltriangle, Z:x, L:x, M:x,x])
TESTING (verbal -> visual): ([W:circlelsquareliriangle], [S: 7])
TESTING (visual -> verbal): ([W: 7], [C:x, S:circlelsquareltriangle, Z:x, L:x, M:x,x])

The results of the experiment are summarized in Table 11.1. As the table demonstrates, the
learning of both tasks is quite fast but the learning of the visual-to-verbal task is somewhat slower
than the learning of the verbal-to-visual task.
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Verbal input Visual input 1st(100%) correct after trial #

Color Shape _Size Loctn  Motion ver->vis vis->ver
W:circle * O * - * 4(169) 6(187)
W:square * . > * . 5(183) 8(192)
W:triangle * A . * * 5(181) 9(211)

Table 11.1:  Results of learning cirecle | square | triangle

Using the same experimental design DETE was trained to “understand” in separate experiments
(starting from a naive system) a whole list of single words including:

1) words for color: white, red, orange, yellow, green, blue, and purple
2) words for size: small, medium, large
3) words for location wrt center of VF :
a) above, bellow
b) left, right
¢) in_center, near, far
4) words for motion in straight line and constant speed:
a) still, slow, fast
b) north, east, west, south, north-east, north-west, south-east, south-west

In each of these experiments, the corresponding feature plane is carved up into mutually
exclusive regions and each region is associated with only one word. In other words, in these
simple sets of experiments I purposefully avoided teaching DETE about multiple verbal carvings of
the same visual feature plane (categorization). How DETE learns different categorizations is
discussed in the following sections.

An important characteristic of these sets of experiments is that all of the words that DETE
learned map to features which are stationary in time. In other words, the location of the neural
assembly that represents a particular object feature does not change in time. Even in the case of
words for motion, the representation of motion is also static in the MFP {(as long as the motion is in
a straight line and with constant speed). However, when an object moves, its location changes in
the LFP. For this reason, I will discuss the learning of the meaning of the word “moves” separately
in the next section, where I focus on events.

A consistent observation on DETE’s performance for each of the experiments described above
was that the learning of a particular word is fast. More significantly, the actual learning speed
(number of trials) depends on how fine the carving of the feature plane is (i.e. into how many
regions a particular feature plane is divided). In general, the larger an area of the FP {which is
labeled by a particular word), the longer it takes for the word to be learned. However, the total
number of trials to learn a complete carvin g of any of the five feature planes was approximately the
same (remember that each feature plane is a square array with dimensions 16 x 16),

11.1.2 Learning words for events

The first series of experiments considered situations when the visual features do not vary in time
(stationary events). In the following experiments DETE is taught the meaning of words for events.
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By an EVENT happening to an object I mean a change in one or more of the visual features (that
represent the object) from one visual frame to another (remember that a visual frame is 5 B-cycles
long). Some examples of events are:

moves (change of location)

accelerates (change of motion speed)

turns (change of motion direction)

bounces (change of the direction of motion while in contact with another object)
shrinks (change in size relative to its previous size)

transforms (change in shape relative to its previous shape)

transcolors (change in color relative to its previous color)

disappears (change -- loss of all visual features)

In reality, most of the features of an object, such as shape or size, do not change with time.
Actually, the time-invariant features of an object are those which we usually associate with the
object. Other features, however, often change with time. For instance, if the object moves, its
location changes. This change of location can be monotonic (e.g., in the case of linear motion with
a constant speed), or non-monotonic (e.g., during jumping or bouncing).

The ability of DETE to learn the meaning of words that name events is illustrated in the
following three experiments. First, DETE learns the meaning of the words “moves” and “stands”.
These words stand for events whose duration could be arbitrarily long (i.e. “enduring-events”).
Next, DETE learns words that describe different types of motion with respect to the direction of
motion (e.g., moves_horizontally, moves_vertically, moves_diagonally). Finally, it learns the
meaning of the word “bounces”. This is an event which occurs in a very short time -- the actual
change of direction of motion happens within one B-cycle (i.e. a “momentary-event™

* Learning the meaning of “moves” and “stands”

To learn the meanings of the words “moves” (W:moves) and “stands” (W:stands) DETE uses the
visual representation of object motion in the Motion Feature Plane (MFP). Details of DETE’s
motion representation are given in section 3.2.5. In accordance with this representation, an object is
moving if the set of neurons that represent this object in the MFP is located anywhere outside of the
central area of the MFP (Figure 11.2). The central area of the MFP represents stationary objects.
The word W:moves does not specify a direction or speed of motion. Therefore, a 1 wing object
can be represented anywhere in the motion segment of the MFP. The actual .« ation of the
representation on the MFP depends on its speed and direction of motion.

In this experiment DETE is presented with multiple pairs containing the word W:moves and a
sequence of visual frames showing a moving P:object (M:* (20) -- i.e. the dircition of motion is
arbitrary but the speed is always non-zero). All other visual f. -tures are kept constant within each
presentation but vary across pairs. Within the same experiment, the learning of the word “moves”
is alternated with the learning of the word “stands”. Notice that “moves” and “stands” are mutually
exclusive in the sense that together their visual representations cover the whole MFP (Figure
11.2A). The learning of W:stands was achieved by presenting multiple pairs containing W:stands
and P:object where M:*,(=0) (i.e. the direction of motion is irrelevant and the speed is zero). All
other visual features were kept constant within each presentation but varied at random across pairs.
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Figure 11.2:  Learning the meanings of “moves” & “stands”
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A) Theoretical carving up of the MFP. The shaded area around the center of the MFP is
the segment to which the word “moves” is mapped. The white area in the center is the
MFP segment to which the word “stands” is mapped. B) Labels of various segments in
the MFP. C&D) Activation of the predictrons in the "moving” and “motionless™ segments
of the MFM in response to corresponding verbal inputs.  Only positive activation is shown -
- see scale on the bottom. E&F) WTA thresholded activation. The threshold is such that
only the highest activity (black) is passed through.

As a result of this training procedure DETE learns to generate (in response to the W:moves or
W:stands presented without a corresponding visual input) activity in the motion or the motionless
segment of the MFM (Figure 11.2C&D). As this figure demonstrates, the activation (see Formula
8.11) generated in the MFM in response to the verbal input itself is well localized in the
corresponding areas -- in the motion segment when the verbal input is W:moves, and in the
motionless segment in response to W:stands. However, the activation value is not the same for all
predictrons in the segment. The pattern of activation generated in each particular instance depends
on the training set to which DETE has been exposed. Additionally, the strongest activation is
observed in those predictrons to which the most recent visual stimulation (extracted motion) has
been mapped (i.e. priming effect) or to which the majority of the previous inputs have been mapped
(ie. frequency effect). The Winner Take All thresholded outputs of the MFM show which of the
predictrons ultimately pass their activity to the rest of the memory modules in DETE (Figures
11.2E&F). The MF Memory neurons activated in response to W:moves oscillate in-phase. In
other words, they represent one single moving object. Notice that if the oscillations of neurons
were out of phase, such activity would represent multiple moving objects.

The results of the experiment are summarized in Table 11.2. They suggest that (1) DETE takes
longer to learn W:moves than W:stands, and (2) it takes longer to learn the visual-to-verbal
ransformation than the verbal-to-visual transformation.

Verbal Visual input 181(100%) correct after trial#
input Color Shape Size Loctn _ MotnV.D ver->vis vig->ver
W:moves * y * " # 0, 48(1350) 52(1420)
W:stands ¥ * ! =0, 5(40) 22(42)

Table 11.2:  Results of learning W:moves & W:stands

The observation that DETE takes longer to learn W:moves than W:stands can be attributed to
the fact that the segment of the MFP where the representation of moving objects can be generated,
encompasses a much larger area of the MFP (240 neurons) than the segment for the representation
of objects that are standing-still (16 neurons). The ratio of the sizes of these segments is 15:1 and it
was chosen somewhat arbitrarily when the Motion Feature Extractor was designed. However, the
ratio of the number of learning trials it took, until the first correct responses were produced for the
two words (W:moves than Wi:stands), is smaller than 15. In other words, the relation between the
size of a particular segment of a plane (e.g., the “motion” segment of MFP) and the speed of
learning is not linear in this example. If this relation was linear, one would expect that it will take
about 15 times more trials to learn W:moves than W:stands. However, the time was only about 8
times longer. Notice that for all moving objects their location changed in time while the
representation of the standing still objects was stationary in the LFP (but at different locations)
giving another feature dimension along which “moves” and “stands” differ. Another observation is
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that the achievement of 100% correct responses requires a significant number of trials. This
phenomenon will be discussed later.

The table also shows that DETE takes lon ger to learn the visual-to-verbal transformation than the
verbal-to-visual transformation. This is due to the different representations chosen for the visual
and verbal features. The visual features are represented by simple oscillations (which evidently is
easier 1o be learned by the KATAMIC model, whereas the verbal representation consists of complex
pattern-sequences (sequences of gra-phonemes)).

* Language carving (categorization) of motions

The relation of language to the perceptual categorization of various types of motion can be
demonstrated in the following experiment. Starting from a naive state, DETE was taught the
meanings of the phrases “moves horizontally”, “moves vertically”, and “moves diagonally”. Ascan
be seen in Figure 11.3A, there is a direct and mutually exclusive mapping of the meaning of each of
these phrases to specific segments of the Motion Feature Plane. The training protocol for this
experiment was set up similarly to the protocol used in the previous experiment where DETE
learned the meanings of the words “moves” and “stands”. In other words, the trials of horizontal
motion were randomly mixed with trials of vertical motion and trials of diagonal motion. In each
trial a single visual/verbal pair was shown to DETE. Testing was done by giving DETE only a
verbal or a visual input. Figure 11.3B shows the response of the MFM when DETE hears the
phrases “moves horizontally”, “moves vertically” or “moves diagonally” (after these phrases have
been learned). These activations can be interpreted as if DETE is imagining objects moving in the
corresponding directions. On the other hand, if DETE looks at an object that is moving horizontally
(left or right) which will be represented by some localized activity in either one of the shaded
segments in the left-hand drawing in Figure 11.3A, then this activation, if combined with an
appropriate verbal question (e. g.. “How does it move?”) can elicit by association activity in the
verbal memory. When this verbal activity is decoded by the Verbal Activity Decoder (i.e.

converted from gra-phonemic to graphemic -- alphabetic representation) it sounds as “moves
horizontally”,

DETE's ability to learn such mappings from the visual representation of motion to verbal
representation is based on the KATAMIC memory’s ability to successfully associate a given
sequence (e.g., the verbal representation of a word) running in the Verbal Memory with several
different sequences representing various motions in different parts of the motion MFM segment .

The results of this experiment are summarized in Table 11.3. As might be expected from the
symmetry of the expressions “moves horizontally” and “moves vertically”, the number of trials it
took DETE to learn each of them is about the same. The learning of “moves diagonally” was about

two times slower, which can be explained by the larger area of the MFP which represents this type
of motion.

Verbal Visual input 1st (100%) correct after trial #
input Motign direction ver-svis vis->ver

W:moves_horizontaiiy - Oor —» 17(170) 19(200)

W:moves_vertically vort 18(190)  20(210)

W moves_diagonally X or #or X\ or X 33(700) 38(780)

Table 11.3:  Results of learning W:moves_horizontally | vertically | diagonally
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A) Desired representation of the meaning of the three types of motion (horizontal, vertical
and diagonal) in the MFP: B) Activity generated in the MFM in response to the verbal input
of the phrases without corresponding visual input. C) WTA thresholded activity patterns.

The Color, Shape, siZe and Location features of the objects used in this experiment were
selected at random for each individual learning instance. The speed of the objects was also selected
at random but in all cases it was non-zero. The directions of motion were represented by activity in
the following areas of the MFP: (1) D or F for horizontal motion; (2) B or H for vertical motion; (3)
A or Cor G or I for diagonal motion (see Figures 11.2 & 11.3).

* Learning the meaning of “bounces”

DETE learns the meaning of the word W:bounces by watching objects bouncing at the walls of the
Visual Screen. The objects used in this experiment moved along linear trajectories with constant
speeds. The bounces were elastic.

An event of bouncing is represented in the Motion Feature Plane by an instantaneous change in
the direction of motion (between two consecutive B-cycles). It is important to mention that change
in direction, (which is independent of the speed and the location of the object immediately before
and after the event), is what DETE associates with W:bounces. Actually, what DETE is learning
about the word “bounces” is the temporal sequence of invariant features including: (1) near wall and
moving towards the wall, (2) stationary for 1 B-cycle at the wall, (3) near the wall and moving
away from the wall.

To learn the meaning of W:bounces, the following experiment was performed. A set of 150
pairs containing: 1) The same verbal component: W:bounces, and 2) Different visua) components --
various objects (in terms of shapes, sizes, colors, speeds and directions of motion) were allowed to
bounce at random locations off any of the four walls of the Visual Screen Each pair was input
during one moment (300 B-cycles) and the bounces were at random times during the moment. The
experiment was composed of interleaved learning and testing trials. During the learning trials DETE
was allowed to learn the visual and verbal associations (i.e. the update of the LTM was enabled).
As in previous experiments, during the testing trials the learning was disabled (i.e. no new
associations were learned). Two separate responses were tested: (1) Verbal-to-visual: In this case
only the verbal input was given. To confirm whether or not DETE has learned the meaning of
“bounces”, the activity in the motion segment (see Figure 11.3) of the MFP was monitored. When
the verbal input associatively induces localized activity (oscillations) in the MEP and when the
location of this activity flips over an axis of symmetry in the MEP (such behavior represents an
event of bouncing within the moment when the verbal input is presented), then the interpretation of
the response is that DETE has learned the meaning of the word “bounces” (Figure 11.4). (2)
Yisual-to-verbal: A novel instance of an object bouncing off the wall was presented and the output

of the verbal memory was monitored to see if the visual representation of bouncing will trigger the
generation of the word W:bounces.

The experimental protocol is summarized below. The notation “?” means that we are monitoring
the activation in the particular Feature Plane. The notation “-><-" means a change in direction.

TRAINING: ([W:bounces], [C:x, S:x, Z:x, L:x, M:x;-><-])
TESTING (verbal -> visual): ([W:bounces], [M: 2,7])
TESTING (visual -> verbal): (IW: 7], [C:x, §:x, Z:x, L:x, M:x;-><-))
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Figure 11.4: Learning the meaning of “bounces”

The verbal input, the visual input, and three states of the activation within the LFP and the
MFP are shown to illustrate how the word “bounces” is represented and learned in DETE.
W:bounces is input at random times during the same mement (300 B-cycles) when in the
visual input DETE sees an object with an arbitrary shape, size, color, location and motion
bouncing off one of the four walls of the visual screen. (A) Before the actual event, the
representation of the object's location in the LFP changes gradually from one visual frame
to another (shown as an arrow in the figure}. During the same interval the representation of
the object's motion is stationary. The representations of the rest of the features are also
stationary since color, shape, and size are kept constant during this experiment. (B) When
the object touches the wall it becomes stationary for one B-cycle. Therefore, the
representation ot its motion is in the “still” segment of the MFP since motion is computed
as the difference of locations between two consecutive visual frames. (C} After the event
has happened the representation of motion is again stationary within the MFP because the
object is moving linearly with a constant speed. However, it has changed its position. In
any instance of bouncing, this change is over an axis of symmetry which is paraliel to the
wall that the object bounces off (the bounce is elastic).

The results are presented in Table 11.4. DETE succeeded in “imagining” a bounce in response
to W:bounces after 72 learning trails. However, it took 117 presentations of visual/verbal pairs for
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DETE to generate the proper verbal response when it was presented with a new instance of
bouncing. These results demonstrate that it is easier for DETE to learn to “imagine” things in
response to verbal input, than to learn to “articulate” what it sees. The number of learning trials is
also larger than in previous experiments which can be explained with the increased degree of
freedom in the visual part of the data set (i.e. here we have left not only the size, location, shape and
motion to vary as in the first experiment but we also vary the color).

Verbal Visual input 1(100%) correct after trial #
input Color Shape Size Loctn MotnV.D  ver-svis vis->ver
W:bounces * v * * ¥ ><- 72(400) 117(512)

Table 11.4:  Results of learning W:bounces

11.3 Generalization

The ability of an information processing system to handle reasonably well inputs which it has never
seen before is commonly known as generalization. In DETE we can look for a generalization ability
within each of the input modalities: visual and verbal. We can test the generalization ability for a

novel input within a given modality by monitoring the responses which the input produces in the
other modality.

11.3.1 Verbal generalization

Verbal generalization is tested in the following manner. During the training phase DETE is
presented with a set of input pairs containing corresponding propositions (i.e. visual scene and
verbal description). For instance, the sentence “Red ball in the center.” is paired with a picture of a
red ball which is in the center of the Visual Screen. Each pair is presented at least once.

A test of the verbal generalization ability is done when a novel sentence i< presented, i.e. one
that was not used in the training set. A successful generalization occurs when DETE generates a
correct visual representation (image) in its “mind’s eye” -- the set of 5 activity patterns generated by
the Visual Feature Memories. For instance, a presentation of the novel noun phrase “big trian gle”
leads to the construction of the corresponding image in the “mind’s eye” (Figure 11.5). Note that
DETE must have already learned the meanings of the words W:big and W:triangle. The
construction of the mental image is incremental. The first word, “big”. elicits activity in the segment
of the ZFP where the size “big” is represented. Notice that this is a fairly large area in the ZFP (see
Figure 3.4). In other words, this verbal-to-visual mapping is fuzzy. Exactly where in this segment
the activity is induced depends on two factors: (1) the set of prior experiences, i.e. the content of the
training set used to teach DETE the word “big™; (2) the most recent experience involving the word
“big”, L.e. priming effects. The second word, “triangle”, elicits activity in the SFP in the area where
triangles are represented. The activities elicited in the ZFP and SFP are in phase. This is due to the
fact that the Focus of Atention Master (FAM) is designed so that if there is not a visual input, the
first word of any verbal input is synchronized with the Temporal Attention Window (TAW). In
other words, the TAW opening coincides with the first B-cycle of the first gra-phoneme. Also,
since the duration of each gra-phoneme is the same as the duration of the pause between words and
the same as the duration of the FAM oscillation period (5 B-cycles), the phase locking is
automatically maintained for successive words (as long as nothing new appears in the VF and no
saccades are done to other objects in the VF). Notice also that the verbal input “big triangle” does
not elicit activation in the rest of the feature planes. In other words, DETE does not envision a
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concrete triangle (e.g., one that is big but also red, located in the center and stationary). This is due
to the fact that the visnal feature memories were designed such that there is no direct interaction
between them (see section 10.2.1). Therefore, due to this design constraint DETE cannot make
direct associations between individual visual features. The interactions between the individual
visual feature memories are indirect through the verbal memory.

- big triangle _ Verbal input
0 < 300 Bcydles
ane TR
===
siZe Feature Plane (ZFP)

Shape Feature Plane (SFP)

Figure 11.5:  Verbal generalization

DETE has learned the words W:big and W:triangle separately but has never encountered
the noun phrase "big triangle” paired with a visual input of a big triangle before. When
DETE is presented with the verbal input "big triangle” without locking at one, it constructs
incrementally in its “mind’s eye” an image of a big triangle which is represented as phase-
locked oscillations in the appropriate areas of the ZFP and the SFP.

Our interpretation of DETE’s behavior in this case is that it has “understood’” this novel verbal
input. In other words, it has made a proper verbal generalizanon. The fact that the verbal input has
evoked the visual representation of one object (and not just a set of disjoint visual features) is
represented by the phase-locking of the oscillations. Notice that this ability is due to the fact that
phase locking is pre-set up when there is only verbal input but no visual input.

11.3.2 Visual Generalization

The test of the visual generalization ability is done in a similar fashion. A novel visual scene is
presented and DETE is expected to elicit a proper verbal response. For instance, if DETE has been
taught to produce the verbal outputs” small red ball” and “large blue square” when it sees the
appropriate pictures, then we can test if it can utter “small blue ball” at the sight of one without a
prior exposure to the corresponding visual/verbal pair. There is a substantial difference between this
type of generalization and the type of generalization described in the previous section. In the verbal-
to-visyal transformation DETE converts a sequential input (consecutive words) into a multi-featured
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“image” in its “mind’s eye” (i.e. into activation patterns in the appropriate set of visual feature
planes). In the case of visual-to-verbal transformation, however, DETE has to generate a single
word sequence from a multi-featured image.

Of course, various verbal outputs that correspond to individual visual features or their
combinations (a picture) can be generated. For instance, in response to a picture of a blue triangle,
DETE can generate either the utterance “blue triangle” or “triangle blue”. The first utterance is
linguistically more acceptable. Therefore, one of the issues that arises in verbal generation is the
issue of proper word order. Another issue is that of the utterance content. In the previous example
the blue triangle on the picture can also possess a number of other features (e.g., small, in the
corner, moving fast up, etc.) and potentially DETE can generate a word sequence which includes
words like “small”, “fast”, etc. DETE has to choose which of the visual features to describe (i.e.
word selection). In the following section I discuss separately how DETE handles these two issues.
First, I consider how DETE selects the content of a specific utterance, then I consider the order of
the word in the generated sequence, given that its content is already selected.

Generation of multiple descriptions for the same scene

One and the same visual scene can be described differently, i.e. the visual reality can be carved up
verbally according to different classification criteria. The question is on what basis can DETE select
the content of its utterances. DETE’s selection of the set of visual features to be described verbally
is based on the states of the Winner Take All (WTA) mechanisms which are coupled with each of
the individual visual feature memories and placed on the pathways from these memories to the
verbal memory. For descriptions of the functions of these mechanisms see section 10.1.5.

Learning word order (simple syntactic rules)

After the content of a possible utterance has been chosen (i.e. the information is available in parallel
at the output of the visual memory - WTA mechanism), the next issue is that of selecting the correct
word order. What does a proper verbal response mean for us as teachers and judges of DETE’s
performance? In the simple cases mentioned above (e.g., sentences of the type NP = ADJ
NOUN), it is satisfactory if DETE generates the proper words in the correct order (i.e. words that
correctly describe features of the object in an order consistent with FIRLAN’s or SECLAN’s
syntax). For our example this translates to DETE generating size words before shape-words. This
behavior might be interpreted as if DETE is obeying the syntactic rule: “To make a noun phrase of
an adjective and a noun, first generate the adjective, then the noun”. The number of possible
permutations in the word order increases with the number of words to be uttered. The ability to
place words in a proper sequential order during generation is a task that DETE learns through
experiences. English speakers have a feeling about the right order of words in verbal descriptions.
Such a feeling of correctness is not innate but is learned and is a reflection of the predominant verbal
experience (e.g., “Ladies and gentlemen” sounds OK vs “Gentlemen and ladies” sounds weird).

To test DETE’s ability to obey simple syntactic rules, a set of experiments was performed. A
number of sentences containing a single noun phrase (NP) were presented to DETE after it had
already learned the meanings of the individual words used to construct the sentences. All noun
phrases were three words long and contained an adjective for size (e.g., “small”, “medium”, or
“large™), an adjective for color (e.g., “red”, “green”, or “blue”), and a noun (e.g., “circle”,
“square”, or “triangle™). In other words, the noun phrases had a particular word order: NP =
adjective-for-size (adjZ) + adjective-for-color (adjC) + noun. The 27 possible phrases were divided
into two groups. Eighteen phrases formed a training set and the remaining 9 formed a testing set.
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The training set was presented in sessions containing the 18 phrases in a random order. Testing on
the training set was done after each presentation of the complete training set. The training sessions
continued until DETE was able to generate each of the sentences in the training set correctly. During
testing, the learning was disabled and the visual component of the training set were presented in a
new random order while the verbal output generated in response was monitored. After the whole
training set was mastered, DETE was tested once on the testing set.  During training, matching
visual and verbal inputs were paired (presented simultaneously). During testing (both on the
training set and on the testing set), only visual inputs were presented and DETE’s verbal responses
were monitored. Throughout the experiment, the locations and motions of the objects were chosen
at random. The results of this experiment are presented in Table 11.5.

Yerbal & Yisval inpyt 1st correct verbal Verbal response
response after trial to visual input

Size Color Shape(Obj) _ # on training set . from testing set(©P=.1)
small red circle 4
small red square small red square
small red triangle 6
small green circle 4
small green square 5
small green triangle small green ...
small blue circle small biue circle
small biue square 3
small blue triangle 5
medium red circle ... red circle
medium  red square 5
medium  red triangle 6
medium green circle ... green circle
medium  green square 5

medium  green triangle S

medium  blue circle 4

medium  biue square 6

medium blue triangle ... blue ...
large red circle 3

large red square 4

large red triangle large red ...
large green circle 5

large green square large ... square
large green triangle 6

large blue circle 6
large blue square large blue square
large blue triangle 5

Table 11.5:  Visual to verbal generalization

All 18 visual scenes used in the training set are given in plain font. @P is the activation

threshold of the predictrons /'WTA mechanisms. The 9 visual scenes used in the testing
set are in bold.
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As the performance table indicates, DETE was able to generate the first correct word order for
the phrases used in the training set within about 5 repetitions of each individual phrase (phrases with
omissions were not considered correct). It started to give continuously correct responses after about
350 exposures to the entire training set. The fact that different phrases have different lengths in
terms of gra-phonemes did not significantly change the number of presentations required for the
learning of each phrase. This seems to be due to the fact that all 9 individual words forming the
phrases have been already learned by DETE and in the present experiment DETE learned only the
possible orderings in which they appear in the utterances (i.e. first, second, or third). This task is
handled by the Morphologic/Syntactic Procedural Memory (MSPM) and is not very difficult since
the sequences were only three words long.

DETE’s performance on the testing set is more interesting. As can be seen from the table, in
some cases DETE generated only a one-word response, in other cases it generated a 2-word
response and only in 3 cases did it generate a complete three-word response. It is important to
mention that the WTA generation threshold @P for all visual feature memories was set to 0.1 (a
relatively high threshold). This prevented activity from some visual memories reaching the verbal
memory bank. With a lower setting of the WTA threshold (e.g., 0.05) all words were generated.
Another observation is that in all cases the words appeared in a correct order and in the instances
where the verbal output was incomplete (i.e. omitted words), there were pauses in the generated
sequences in positions were the omitted words should have been generated. The omission of
words can be explained by the relation between the chosen threshold and the extent to which the
individual words were learned (i.e. the strengths of the traces which they have left in the memories).

11.4 Learning Question/Answer Sequences

A standard task for any Natural Language Processing (NLP) system is question answering. This
task is often used to examine the system’s understanding ability. The complexity of the question
answering task has been studied in detail in (Lehnert, 1978). DETE was trained to answer simple
questions such as:

Q1: “What is the color of the smal] ball?"” (while lookin ¢ at a small ball)
Al: “Red.”

(2: “What is bigger?” (while looking at a small riangle and a large square)
AZ: “Square.”

03> “What moves?” (looking at a stationary circle and a triangle moving to the left)
A3: “Triangle.”

All of these questions contain a user-specified feature, e.g., color, size, etc. and a request that
DETE returns the value of this feature for the attended object.

To be able to test DETE’s ability to learn the meanings of words that stand for more abstract
concepts such as color (W:color -- a variable that can take different values like red, blue, green),
and shape (W:shape -- a variable that can take values like circle, square, triangle), we need to teach
DETE to understand and answer questions. “Understanding” here is meant as the ability to generate
appropriate verbal output (and maybe to do the appropriate imagination or motor response) in
response to verbal queries. In symbolic terms, such behavior corresponds to the retrieval of slot-
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fillers in a slot-filler representation (a.k.a. schema or frame representation). For instance, if DETE
sees 2 small red ball in the left upper corner moving down, and is asked “What color?”, it should be
able to generate the verbal response “red” rather than anything else like “ball” or “small”, etc. If it is
asked “where” it should respond with “left” (or with a phrase like “up left”).

Such behavior can be learned using the followin g experimental protocol. During the learning
phase DETE gets a verbal input (e.g., W:what_color) together with a visual input of an object with
1s five visual attributes. Then a second verbal input which corresponds to the desired answer is
presented (e.g., W:red). Multiple sessions of this type cause DETE to leam to make the temporal-
spatial association between (W:what_color & C:red)(t), and (W:red)(t+At) (or any other color).
Later, during the testing, when prompted by the verbal input W:what_color, in the presence of the
pictorial representation of the color (C;red) DETE produces the right utterance, namely W:red.

Table 11.6 shows the results of an experiment in which DETE is taught to answer the
questions: “What_color” and “What_shape” while looking at various objects which are either balls
or squares and are either blue or red. The sizes, locations, and motions of the objects are chosen at
random (represented by “*” in the text and tables) during training and testing.

LEARNING protocol:
Input-1: ((W1:what_color | what_shape],[C:red | blue, S:circle | square, Z:*, L:*, M:* *])
Input-2: ((W2:red | blue | circle | square],[C:red ! blue, S:circle | square, Z:*, L:*, M:* *])
TESTING protocol:
Input: ((Wl:what_color | what_shape],{C:red | blue, S:circle | square, Z:*, L:*, M:* *])
Qutput: ([W2:red | blue | circle | squarel,[C:red | blue, S:circle | square, Z:*, L:*, M:* *])

Verbal input Visual input 1st(100%)correct verbal
Color Shape Size  Loctn Motion output after trial #

W:What_color C:red 8:0 * > > red 4(83)
W:What_shape Cired S§:0 * . . circle 61R9)
W:What_color C:blue 8:O * * * blue 4,1y
W:What_shape C:blue $:0O * > * circle 6(79)
W:What_color Cired s:O0 * > * red 4(69

W:What_shape C:red S$:O0 - * * square 5(78)
W:What_color  C:blue S:[0 * * * blue 6(81)
W:What_shape C:blue S:[O0 * v * square 7(91)

Table 11.6:  Question answering -- slot-value retrieval

As can be seen from this table, on average it took S trials before DETE generated the 1st correct
response, and about 80 trials on average 1o stan generating continuously correct responses.

DETE’s ability to answer questions of this I¥pe can be interpreted as an ability to learn the
meaning of words such as “color” (1.e. a notion that encompasses all color values) or shape (i.e. a
notion that encompasses all possible shapes). However, notice that DETE has not learned
separately the meaning of the word “what”. In a similar way DETE can learn the meaning of the
Wiwhat_location (W:where), Wiwhat_size, W 'what_speed (W:how_fast), W:what_direction, eic.
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11.5 Learning spatial relations between two objects

A variety of words can be used to describe spatial relations between two objects. Spatial relations
are seemingly more complex than temporal relations because they can refer to several different
spatially relevant features including size, distance, location and motion. Also, a variety of reference
systems can be used within each of these modalities (e.g., the size of an object with respect to
another object can be small, same, or large; the speed of an object with respect to (WRT) other
objects can be slower, WRT a second object can be the the same, or WRT to a third object can be
faster; etc.). Often the reference system is not mentioned explicitly (i.e. needs to be inferred). For
instance, in the sentence “the ball moves left”, the direction “left” is with respect to the walls of the
Visual Screen which is nor mentioned in the sentence. This section describes separately how DETE
learns the meanings of words that stand for relations within the size, location and motion feature
spaces.

11.5.1 Learning about size relations

DETE’s representation of size was introduced in section 3.2.2. The size of an object is represented
in the ZFP as a function of the total number of pixels of the Visual Screen which it covers. (Notice
that this representation does not allow DETE to handle information about linear dimensions of an
object, but rather it defines the size as the surface area covered by the object.)

The following set of experiments demonstrates how size relations between two objects are
learned by DETE. DETE'’s task was to learn to generate a one-word response -~ an answer, (e.g.,
W:circle) while looking at a visual scene that contains two objects of different sizes (e.g., a circle
and a square where Z:circle > Z:square). This verbal response is triggered by a verbal stimulus
(input), e.g., W:what_is_bigger. In other words, DETE is trained to answer the question “What is
bigger”, while looking at two objects of different sizes.

A set of 100 visual scenes was generated. Each of them contained two stationary objects of
different shapes (a circle and a square; a square and a triangle; or a circle and a triangle) and different
sizes -- six possibilities:

1) Zcircle > Z:square  or 2) Z:square > Z:circle
3) Zcircle > Z:triangle  or 4) Z:triangle > Z:circle
5) Z:triangle > Z:square or 6) Z:sqi;are > Z:triangle

The size of each object was chosen from within the whole range of possible sizes, but such that
the two objects in a particular image fit together into the visual screen (i.e. no overlapping). The
distribution of the sizes throughout the trials was random (multinomial). The rest of the objects’
features, i.e. color and location, were generated at random (the objects were stationary). For each
of the 100 scenes, corresponding sentences of the type [Wliwhat_is_bigger W2:(circle | square |
triangle)] were also generated. The phrase “what is bigger” was treated as one word. In other
words, the teaching strategy was to give the question and to follow it by providing the correct verbal
answer while at the same time pointing to the correct object itself (i.e. focusing DETE’s artention
externally). The training consisted of presenting DETE with the corresponding visual/verbal pairs
from the set. The testing was done by presenting povel images from the set and pairing them only
with the verbal input W:what_is_bigger, after which DETE’s verbal response was observed.
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During the testing, DETE’s attention was not forced externally to the correct object. The response
was considered correct if DETE was able to name the bigger object.

First, consider what happens during the learning (training) phase. To perform this task DETE
uses the interactions between the visual and verbal memories and the focus of attention mechanism
(Figure 11.6). When DETE looks at an image containing only two objects of different sizes, its
attention at a given moment can be directed either to the smaller, or to the larger of them. (I do not
consider here the case when the attention is directed to a location different from the location of the
objects.) As was mentioned before, the fact that DETE is attending to an object is represented by
phase-locking the Temporal Attention Window (TAW) to the object’s features. (Notice that TAW-
phase is always locked to some object but it has the ability to flip from one object to another from
time to time.) The verbal and visual representations of each object are phase-locked. In other
words, once the verbal-to-visual association of an object is learned, the phase relation between these
two representations does not change. As a consequence, a particular verbal response to a visual
input cannot be initiated at any B-cycle but only at particular cycles, which appear regularly and are
dependent on the oscillations in the visual memory banks.

Immediately before the verbal input is provided, DETE can be attending visually to either one of
the objects. A critical event during each training instance is that when the second word -- the name
of the bigger object, is presented, DETE's attention is always shifted by the teacher to the bigger
object or stays there if it was there to begin with. As a result of this, the trace in the stm left by
W:what_is_bigger is always associated with the visual representation of the object that is bigger in
size (more specifically with its size representation since all other features vary from trial to trial).
Notice that at the same time there is also activity going on in another location of the ZFP, the one
representing the size of the smaller object. While the absolute location of these two activities in the
ZFP varies from trial to trial (since the objects in the images have various sizes), their topographic
relation in the ZFP is maintained throughout the experiments. The activity representing the bigger
object is always above the activity representing the smaller object in the ZFP (sec Figure 3.2.2).
Due to the fact that the szm update happens only during the time when the TAW 1s open, DETE
associates the activity in the verbal memory stronger with the activity in the “bi gger” arca of the
ZFP, rather than to that of the “smaller” area of the ZFP. The topographical relation between
“bigger” and “smaller” is also reflected in the stored trace. The effect of the “smaller” is that there is
also some moved-ahead previous firing activity in the smaller part of the memory with respect to the
activity 1n the “bigger” part of the memory (Figure 11.6). The WTA mechanism which is coupled

with the siZe Feature Memory (ZFM) selects the stronger activation and passes it to the verbal
memory bank,

During testing, after the word “W:what_is_bigger” is presented, DETE switches and locks the
phase of the FAM clock to the activity in the “bigger” segment of the ZFP independently of which
object was initially in the focus of attention. This phase switch is due to the fact that the
representation of W:what_is_bigger in the verbal memory and the input activity in the “bigger” area
of the ZFP potentiate each other. As a result, the “bigger” activity in the ZFP prevails over the
“smaller” activity while processed by the WTA mechanism. The WTA mechanism coupled with the
siZe Feature Memory passes only the “bigger” activity out. This activity in term resynchronizes the
FAM clock to the bigger object. This resinchronization is done procedurally. Namely, the WTA
phase is used by a procedural module 1o reset the FAM to the same phase. Once the phase of the
TAW is locked to the correct (bigger) object, then the verbal output corresponding to this object is
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generated. This is due to the fact that the activity in the visual memory affects the activity in the
verbal memory only during the time when the TAW is active.

To summarize, what DETE actually learns in these experiments 1s to switch appropriately its
focus of attention in response 10 a given verbal input. Once the attention is directed to the correct
object in the Visual Screen, the generation of the corresponding verbal response is facilitated by the

relation between the opening of the TAW and the information transfer between the visual and the
verbal memories.
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A) Several of the visual/verbal pairs used for learning. B) Schematic representation of the
sequence of events in the system during a test with a square and a larger ball in the Visual
Field. The 2-D Visual Feature Memories are shown as 1-D structures extended in time.
Activations induced by the visual inputs in the VFMs are shown as sequences of black bars
(oscillations). Notice that the oscillations representing the two objects have different
phases. The dashed lines across the VF memories represent successive openings of the

TAW. The * symbol to the right marks the instant when the initial TAW phase (equal to the
phase of the square) is switched by the WTA signal to the phase of the ball.

The actual experiment was conducted by interleaving training and testing trials in the following
way. After DETE has learned the words W:circle, W:square and W:triangle, it was exposed once
to each of the six possible size relations, i.e. an instance of a visual/verbal pair from each of the 6
kinds was presented (see the first column of Table 11.7). Here, the verbal input contained the
question followed by the answer. Testing began after this initial exposure. It was done by showing
DETE (at the beginning of a new moment) a novel scene (not previously seen) and asking the
question W:what_is_bigger. DETE’s verbal response was then observed for the duration of the
moment. 1f DETE did not generate a verbal response during this period, then at the beginning of the
next moment the same visual scene was paired with the question and followed by the correct answer
which was provided by the teacher verbally and visually by pointing at the object. The purpose of
repeating the testing input in the form of training input (i.e. contains the answer) after a failure was
to increase DETE’s chances of learning it. No testing was done after this repetition and the training
process continued with the presentation of another training/testing sequence. The frequency
distribution of the six possible situations was equal throughout the whole training/testing session.
‘The results of the experiment are shown in Table 11.7.

siZe relations btwn. correct 1st correct  beginning of total # of
visually presented verbal verbal resp. continuously trials

objects response at trial # correct resp, presented
Z:circle » Z:square W circle 15 176 300
Z:square > Z:circle  W:square 23 148 300
Z:circle > Z:triangle Wcircle 29 113 300
Z:itriangle > Z:circle  W:triangle 18 205 300
Z:square > Z:triangle  W:square 26 184 ‘ 300
Z:triangle > Z:square W:triangle 21 152 300

Table 11.7:  Results of learning about size relations

On average, the first correct response for each of the 6 possible size relations was about trial 22.
As 1n all previous tasks, the first correct response was often followed by incorrect responses or no
responses at all. With continued training, the trials when DETE generated correct responses became
more and more frequent. Then, after a sufficient number of trials (this number was different for
each of the six situations), DETE started to generate correct responses to all successive trials. On
average, the “fusion” of the correct responses occurred after about 163 training/testing trials. The
total number of trials presented was 1,800 or 300 for each situation (size relation).

11.5.2 Learning location relations between objects

First, consider how the descriptions of the spatial relations between two objects (events) by an
observer (speaker) can be represented in a coherent way. I propose that such a representation
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should be based on three separate notions (spatial roles); (1) Speaker location (S), (2) Event (object)
location (E), (3) Reference location (R). These spatial roles provide a basis that can formally cover
most of the spatial location relations. The S, E, and R are defined below:

1) Speaker location (S) is the physical location of the speaker -- the person who makes the
observation and produces a statement about it. The speaker location is characterized by two
features: (1) direction of gaze, and (2) speaker orientation. For instance, the speaker can be sitting
in front of a TV monitor looking at the center of the screen. The direction of the gaze is a vector
from the speaker’s eye to the center of the screen. The gpeaker orientation is a vector originating
also at the speaker’s eye. This vector is perpendicular to the gaze vector and points up with respect
to the speaker’s body (mouth). Together with an assumption that the speaker (a human) is standing
straight and still with his eyes fixed in their normal position in the orbits, these two features of the
speaker location provide an unique coordinate system which can be used to describe the location of
objects on the Visual Screen.

2) Event location (E) is the location of the object or event within the Visual Screen that the
speaker is talking about. It can be the same or different from the S.

3) Reference location (R) is the location of a second object/event in the world with respect to
which the first object/event is described. Again, R can be the same or different from S and/or E.

To illustrate the notions of S, E, and R, consider the sentence “The ball is behind the triangle”.
In this sentence, E is the location of the ball, R is the location of the triangle, and S is the location
of the person (or DETE) with respect to the Visual Screen. Notice that § is not mentioned
explicitly. From the sentence we can infer that S with respect to E and R is such that the three
locations are aligned and R is between S and E. What distinguishes the roles which object A (the
ball) and object B (the triangle) play (e.g., an E or a R) is the order in which they appear in the
sentence relative 1o the content words (e.g., behind, in front, etc.).

In our set-up we have two speakers, the teacher who provides the verbal input to DETE and
DETE itself which generated the verbal output. For simplicity, an assumption is made that the
locations of these two speakers are the same at all times. Also, it is assumed that DETE and the
teacher have the same orientation and look at the same object at all times (and specifically during
training). What are the representations of the three spatial roles within the framework of DETE?

The Speaker location is not represented_directly in DETE as some activity in the Location
Feature Plane. It is represented indirectly by means of the location of the center of the retina (EYE)
on the Visual Screen which in turn is reflected in the phase of the Temporal Attention Window
opening. The farther away an object is from the center of the EYE, the larger the phase delay of the
oscillations which represent this object. For simplicity, I assume that the speaker low ation within the

Visual Screen can change (i.e. DETE’s EYE can be at a different location on the VS), but the
orientation is always the same -- pointing up.

The Event location is represented by activity in the LFP which corresponds to the object that is

involved in the particular event. In the example given above, this is the activity in the LFP that
represents the ball.

The Reference location is represented by a second patch of activity in the LFP. This activity can
correspond to another object or to the particular part of the frame of the Visual Screen (e.g., the left

wall, or the upper right comner, or the whole frame itself). In the example given above, this is the
activity in the LFP that represents the triangle.
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As will be seen in section 11.7 concerning temporal relations, the above-defined set of spatial
roles (which is used to describe spatial relations between two objects with respect to an observer)

corresponds to the set of roles proposed by Reichenbach to describe temporal relations
(Raichenbach, 1947).

Since spatial relations are higher dimensional (e. g, 3-Din the real world and 2-D in the Blobs
world) as compared to the temporal relations (1-D WRT the time axis), the set of possible verbal
expressions that can be used to characterize spatial relations is larger than the set used for
characterizing temporal expressions. Some examples of different verbal descriptions of a particular
spatial arrangement of E and R while S varies are gtven in Figure 11.7.

Visuat Input Possible verbal descriptions
and retinal state (S)

—

E is close 1o R: (|Pe - PR| < Pg) & {|Pe - PR| < PR} & PRE(alphaE - alphar)< PRE
E Is farther than R: (P > Pr)

E is on the same side as R: {alphat = alphas)

E is behind R: (PE > PR) & {on a line) & {on same side)

If 8 is at one of the walls:
E is 10 the right of R

(L2
E Is away from R: (alphaE = alphan - Pi)
E is closer than R; (Pt < P}
E is opposite from R:

if 5 is at one of the walls:
Eis above R:

E Is as far as R: (P = PR)
E is close to R: {PAE{alphaE - alphar) < PRE)
E is closer left than R

E
R E is farther up than R
(&
S

o hs ant an W If S is at one of the walls:
E is right of R:

In each image, E and R have the same locations on the screen
but the location of § varies while its orientation is maintained

Figure 11.7:  Description of spatial relations
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Possible verbal descriptions of a fixed spatial relation between E and R when S varies - in
three different positions. The size of the retina corresponds to the diameter of the largest
circle centered at S. The other three smaller, concentric circles demarcate the areas of the
Visual Field in which objects are represented by oscillations with different phases (e.g.,
Ph-1, ....-4). The sentences in bold to the right of each scene are possible verbal
descriptions of the corresponding scenes. The text in plain font after each sentence is a
list of discriminating conditions. PE and PR are the phases of the oscillations representing
the E and R objects respectively. af and aR correspond to the angles spanned between
the speaker orientation (vertical direction) and the E and R objects respectively.

In a series of experiments DETE was taught to generate a verbal description of E with respect to
R. The description was generated in response to the question “Where_is-E?”. In separate
experiments DETE learned the meaning of the word pairs: closer / farther; in-front | behind; left of /
right_of. In these experiments I consider only situations in which the Speaker location (i.e. DETE’s
observation point which is the same as the location of the center of the EYE on the Visual Screen) is
always in the center of the Visual Screen. At the same time, the location of the objects/events which
are being described (i.e. the Event locations), and the locations of the objects/events with respect to
which the descriptions made (i.e. the Reference locations) vary. I also allow the size of the retina to
vary depending on how far away from the center of the retina the two objects are. For the
experiments described below, the size of the EYE is set large enough (but not larger) so that both
objects are within the Visual Field.

Learning the meanings of closer & farther

The meanings of the words closer & farther were leamed in a similar way as smaller & bigger (see
section 11.5.1). DETE’s task was to learn to answer the question “What_is_closer”, while looking
at two objects at different locations (E -- the closer object & R the farther object) and respectively at
different distances from S.

A set of 100 visual scenes was generated, each of which contained two stationary circles of the
same size but of different colors (a red and a green; a green and a blue; or a blue and a red) and
different relative locations (L) with respect to S -- six possibilities (here L:color stands for the
distance of the object with the particular color from S and the symbol “>* shows which distance is
bigger):

1) L:red > L:green or 2) L:green > L:red
3) Lired > L:triangle or 4) L:blue > L:red
5) L:blue > L:green or 6) L:green > L:blue

Notice that for this experimental setup the only degree of freedom was within the Location
Feature Plane. To simplify the experimental setup, the rest of the features were preset and
maintained constant across all trials. The locations of the objects were chosen from within the
whole range of possible locations. The distribution of the locations (distances) throughout the trials
was random (multinomial). For each of the 100 scenes, corresponding sentences of the type
[W1:what_is_closer W2:(red | green | blue)] were also generated. The phrase “what is closer” was
treated as one word. The teaching strategy was to give the question and to follow it by providing
the correct verbal answer while at the same time pointing to the correct object itself (i.e. focusing
DETE’s artention externally). The trainin g consisted of presenting DETE with the corresponding
visual/verbal pairs from the set. Similarly, as in the size learning experiment described above, the
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testing was done by presenting novel images from the set and pairing them only with the verbal
input W:what_is_closer. After this, DETE’s verbal response was monitored. During the testing,
DETE’s attention was not forced externally to the correct (closer) circle. The response was
considered correct if DETE was able to name the color of the closer circle.

How does DETE learn this task? At the beginning of each trial DETE’s attention can be focused
to either one or none of the circles. When the second word -- the color of the closer circle is
presented, DETE’s attention is always shifted by the teacher to that circle or stays there if it was
there to begin with. As a result, the trace in the stm left by W:what_is_closer is always associated
with the visual representation of the location of the circle that is closer. Notice that at the same time
there is also ongoing activity in another part of the LFP -- at the location of the circle which is
farther away. While the absolute positions of these two activities in the LEP vary from trial to trial
(since the circles in the images have various locations), their topographic relations in the LFP are
maintained throughout the experiments. The activity representing the closer circle is always closer
t0 S in the LFP as compared to the activity representing the farther circle. Since the stm update
happens only during the time when the TAW is open, DETE associates the activity in the verbal
memory stronger with the activity in the “closer” area of the LFP, rather than to that of the “farther”
area of the LFP. Therefore, the topographical relation between “closer” and “farther” is also
reflected in the stored trace.

During testing, after the word “W:what_is_closer” is presented to DETE, it switches by itself
the phase of the FAM clock and locks it to the activity in the “closer” segment of the LFP
independently of which object was initially in the focus of attention. This phase switch is due to the
fact that the representation of W:what_is_closer in the verbal memory and the input activity in the
“closer” segment of the LFP potentiate each other by exchanging signals along the inter-modular
fibers (see section 10.2.2) which results in injection of som in the corresponding predictrons and
increase of their activation levels. As a result, the “closer” activity in the LFP prevails over the
“farther” activity while processed by the WTA mechanism. Consequently, the WTA mechanism
coupled with the Location Feature Memory passes only the “closer” activity out. The output activity
resynchronizes the FAM clock to the closer circle. Once the phase of the TAW is locked to the
correct (closer) circle, then the verbal output corresponding to this object is generated since, as was
mentioned before, the activity in the visual memory affects the activity in the verbal memory only
during the Temporal Attention Window (TAW).

Similarly to the size learning experiment described in the previous section, in this experiment the
training and testing trials were interleaved. After DETE has learned the words W:red, W:green, and
W:blue, it was exposed once to each of the six possible location relations, i.e. an instance of a
visual-verbal pair from each of the 6 kinds was presented (see Table 11.8, column 1). Here, the
verbal input contained the question followed by the answer, Testing began after this initial
exposure. It was done by showing DETE (at the beginning of a new moment) a novel scene (not
previously seen) and asking the question W:what_is_closer. DETE's verbal response was then
observed for the duration of the moment. If DETE did not generate a verbal response during this
period, then at the beginning of the next momenr the same visual scene was paired with the question
and followed by the correct answer provided by the teacher verbally and visually (i.e. pointing at the
object). The frequency distribution of the six possible situations was equal throughout the whole
training/testing session. The results of the experiment are shown in Table 11.8.
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Location relations btwn. correct 1stcorrect  beginning of total # of

visually presented verbal verbal resp. continuously trials
gircles respQnse at trial # correct resp, _presented
L:red > L:green W:red 9 77 300
L:green > L:red W:green 12 84 300
L:red > L:blue W:red 12 76 300
L:blue > L:red W:blue 11 o1 300
L:green > L:blue W:green 8 87 300
L:blue > L:green W:blue 11 69 300

Table 11.8:  Results of learning closer / farther relations

On average, the first correct response for each of the 6 possible location relations was about trial
10. Compared to the results of the size learning experiment, here the learning is somewhat faster
(10 vs 22). This can be explained by the fact that the degrees of freedom in this experiment are less
than in the size learning experiment. Namely, in the present experiment only the color and the
location of the objects (circles) were allowed to vary across trials whereas in the size-learning
experiment the size was also allowed to vary. In general, the higher the degrees of freedom, the
slower the learning. On average, DETE started 1o continuously produce correct responses after

about 80 training/testing trials. The total number of trials presented was 1,800 or 300 for each
situation (location relation).

Learning the meanings of in-front & behind

The In-front/Behind spatial relation between two objects can be viewed as the co-occurence of two
other relationships between the objects: (1) closer/farther, and (2) on the line that connects S, E and
R. The learning of the first of these relationships was described above. The representation and
learning of the second relationship takes advantage of the specific distribution pattern of the seeds in
the Location Feature Memory (a spiral arrangement -- see section 10.1.4), and the radial
connectivity pattern of the parallel fibers in this memory. This feature of the LFM ensures that,
when E and R are on the same radial, the activity which represents them (i.e. the injected sem) is
summed (added up) producing a strong radial activation pattern. As a result, any such pattern of
activity generated in the Location Feature Memory can be interpreted as the presence of two objects
on the same line as S (remember that the Location Feature Memory is ri gidly coupled to the EYE).

In summary, DETE learns about relations of objects in space (the Visual Screen) similarly to the
way size relations are learned. In both cases the choice of representations and specific.i's the
functional topographical organizations of the LFP and ZFP on the one hand, and the dx nunics of
the KATAMIC memory, on the other hand, provide the physical basis for the learning.

11.6 Learning about motion relations

Propositions about motion carry information simultaneously about some or all of the following
features: location (of speaker -- S, object -- E, and reference -- R) but also about the direction (of
object and reference), and speed (of abject, and reference).
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Verbal inputs
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the R
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is faster than
the R
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{PE < PR) & (PE increases)

(DE,R decreases...increases)

(DER = const. & PE, PR increase)

(DE.R increases)

{ME > MR)

Descriptions of motion relations



Possible verbal descriptions of various motion relations between E (a ball), R (a square),
and S. Each sentence to the right of a scene is a possible verbal description of this scene.
The relations between the representational elements characteristic for each scene are
shown in parentheses. PE and PR are the phases of the oscillations representing the E
and R objects respectively. Dg R is the distance between E and R, and Mg and MR are
the distances of the representations of the two objects from the center of the Motion
Feature Plane (MFP).

Of importance is also that some temporal component of motion (the time when it oceurs, its
duration, etc.) is always associated with each verbal description of motion. This component is
commonly associated with the current NOW window. In other words, to evaluate the direction and
velocity of motion the evaluator (DETE or a human) needs time,

Another important observation is that the location relations between moving objects are typically
not of the order rype as in the case of temporal relations (e.g., before, after) but are topographical in
nature (e.g., left of, above, close to, etc.). However, in sentences that describe the speeds of the
objects contain information of the order nype (e.g., faster, slower) there is a linear scale along which
they can be described. Some visnal examples and the corresponding verbal descriptions of motion
relations between two objects in the Visual Screen at a given time are shown in Figure 11.8.

In learning the meanings of motion-related words, it is most important that each word have at
least one distinctive representational feature in the Location and/or Motion Feature Memories. The
representations of motion words/phrases can have spatial and/or temporal components. For
instance, “passing by” has a temporal component (the distance between the objects in the Location
Feature Plane initially decreases and then increases with time), whereas, “is faster than” also has a
spatial component (the distance from S of the activity in the Motion Feature Memory that
corresponds to E is larger than the distance to the cell assembly representin gR).

11.7 Learning temporal relations between events

Recent studies in the field of computational linguistics have addressed many of the issues related to
the understanding of temporal relations in narratives (Raichenbach, 1947, Hinrichs, 1988;
Passonneau, 1988; Webber, 1988). Some linguistic forms that carry time information are: verb
tenses (e.g., present, past, future, etc.), temporal adverbials (e.g., yesterday, morning, tonight),
and temporal adjectives (e.g., slowly, fast). This section demonstrates how DETE learns to
understand one of these linguistic forms, namely the verb tense.

The general approach taken in computational linguistics to the analysis of propositions about
time is to represent them symbolically using structures such as histories (Forbus, 1985). Such
structures are created during sentence parsing using analytically derived, hand-coded rules.

More specifically, the majority of the current theories of time representation build upon the work
of Reichenbach (Raichenbach, 1947). According to this theory, all temporal relations encountered
in narratives can be accounted for in a model which uses three different time measures:

(1) Speech time (S) -- a point in real-time at which the utterance is produced (read) or at which
the question-answering session is taking place.

(2) Event time (E) -- the time when the event mentioned in the utterance occurs. The Event time
can be before, at the same time as, or after the Speech time.
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(3) Reference time (R) -- the temporal perspective (point in time) from which an event is viewed
by the person who generates the utterance. It indicates where along the time axis the current focus
of attention is located.

Some examples of the possible relations between the three time measures and the corresponding
tenses in the English language are given in Table 11.8. In the last column the table shows the
representations of the simple and perfect forms of the present, past and future tenses in terms of
Reichenbach’s Speech time (S), Event time (E), and Reference time (R). Here “<” indicates
“temporary prior to”, and “=", “at the same time as”.

Tense Example S/E/R relations
1a Simple present The ball moves E=R=8
1b  Present perfect The ball has hit the square E<R=S
2a Simple past The ball hit the wall E=R<S
2b Past perfect The ball had hit the wall E<R<S
3a Simple future The ball will hit the wall S<R=E
3b  Future perfect The ball will have hit the wall S<E<R

Table 11.8:  Verbal tenses and their S/E/R representations

It is important to notice that the relations between these three time measures are only with regard
to their order, i.e. qualitative but not absolute or quantitative. Also each of these measures is
actually a temporal window (has a real time duration) rather than a point in time.

In DETE, each of the temporal roles is represented as an activation of neural-assemblies in a
specific plane of the Temporal Memory (see section 9.3). Sometimes, all three roles are represented
in the same plane (e.g., in the case of present tense), in other cases two of them can share one and
the same plane and the third is represented in a different plane (e.g., future ten<e. present perfect
tense, etc.). In yet other cases, each of the roles is represented in a different piane (e.g., future
perfect tense, past perfect tense, etc.). An important feature of these representations (based on the
dynamics of the temporal planes) is that at each consecutive moment the representations of E, R,
and S are shifted to the next temporal plane in ascending order. In other words, the temporal
memory maintains traces of several (up to 8) consecutive moments.

Together with the aforementioned general features of the temporal role representations, each of
these roles has its own specific representational characteristics. For instance, Speech time (S) is
represented by the activation generated in the TP-0 of the verbal memory bank by the verbal input or
by DETE during the generation of a verbal response. The representation of S also includes the
activity generated in the visual bank of the same temporal plane. This activity can be produced
either by direct visual input (e.g., during the learning of present tense) or it can be induced in the
visual bank by the activity in the verbal bank (e.g., during the process of comprehending of verbal
input). The Event time (E) is represented as activation generated in the TP-0 of the visual bank by
the visual input -- a sequence of frames that capture the event. The Reference time (R) is also
represented as an activation in the visual bank. This activation is induced by the “referent” visual
event. The most important characteristic of this representation is that the phase of oscillations of this
actvation is always the same as the TAW. In other words, the termporal aspect or temporal focus is
always directly related to the time of the Referent event (R).
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11.7.1 Present tense

DETE learns the meaning of the verb “hits” in its present tense form in the following way. It
observes a circle moving towards one of the walls of the screen and within a certain small time
window around the event of hitting (i.e. within the same moment -- see Table 5.1) it is told: “The
circle hits the wall”. This visual/verbal input pair is repeated multiple times while both the locations
of the hits on the walls and the objects that hit the walls vary. As a result, DETE associates the
whole sentence and in particular the word “hits™ with an object that comes in contact with a wall
independently of where along the wall such a contact is made.

Learning of Simple Present Tense and Present Perfect Tense in DETE is schematically
represented in Figure 11.9. DETE’s Temporal Memory Planes (see section 9.3) are shown in this
figure as a series of 8 unidirectionally connected columns of circles (e.g., TP-0, TP-1, ..., TP-7).
There are two banks of circles in each Temporal Plane -- a visual and a verbal. The verbal bank
contains 2 chains and the visual contains 3 chains of circles. Each circle in the visual bank
symbolizes the distributed neural assembly (a subset of all predictrons of the visual memory) of
oscillating predictrons which represent all features of an individual object at a given momenr. A
moment is defined as the interval between two resets of the szm in the STM. This interval is one
sentence long. The left-most column of circles symbolizes the present moment (i.e. TP-0). Each
successive column of circles represents the activity of its left-hand neighbor at the previous moment.
Shading of circles indicates activation of the neural assembly -- a sustained oscillatory process
persisting during that moment. Different shadings indicate different phases of the oscillations.
Notice that all active circles in a particular chain have the same phase. The learning of tenses is
presented schematically in the figure by a series of snapshots of the network’s activity at successive
moments.

The learning of Simple Present Tense is presented in two snapshots (Figure 11.9A). At
moment O DETE is looking at a ball moving towards a wall. The motion of the ball continues
during moment 1 (not shown in the figure). During momen: 2 DETE sees the ball hitting the wall
and at the same time hears the verbal input “The ball hits the wall”. The event of hitting is
represented by the black box around the circle. This black box indicates that a change in some of the
features of the ball has occurred (e.g., it has come in contact with the wall and as a result its
direction of motion has changed ).

After DETE has been exposed to multiple pairs of visual events and their verbal descriptions in
present tense, we test how it understands a sentence which is a proposition about an event in
present tense. The level of understanding can be examined by observing the activity that DETE
generates in the visual memory banks (the image generated in its “mind’s eye”) when it hears a
sentence describing an event in present tense without having any visual input.

When DETE gets a verbal input that contains a proposition in simple present tense, the
following happens (Figure 11.10A). The verbal input associatively triggers activity in the visual
memory. The pattern of activity in the visual memory is localized in the same TPs which were
active when the particular visual / verbal association was learned. In the case of simple present
tense, the induced activity is in TP-0. In successive moments, the activity in both the visual and the
verbal banks is immediately transfered (during one B-cvcle) via the “fast” connections (see section
9.3) to higher order TPs. These leaves lower order TPs prepared to get new inputs (e.g.,
successive sentences and/or visual inputs).
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Figure 11.9:

Leaming present tense

A schemalic representation of the sequential stages of activation spread within the
Temporal Feature Maps during learning of A) Simple Present Tense, and B) Present
Perfect Tense. Empty circles indicate a lack of activation in that part of the plane. Shaded
circles indicate activated neural assembiies. Different shades of gray represent different
oscillation phases. Boxed circles represent assemblies of predictrons for which at least
one element of the assembly has changed its activily status (i.e. slopped or started to
oscillate) during the particular moment. Qutlined and shaded circles represent assemblies
of predictrons at least one of which is different as compared o the shaded circles (i.e.

sustained change).
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Figure 11.10: Imagining present events

A schematic representation of the sequential stages of activation spread within the
Temporal Feature Maps during understanding of A) Simple Present Tense, and B)
Present Perfect Tense. The meanings of the symbols are the same as in Figure 11.8.
Description of the figure is given in the text.

Learning of present perfect tense happens in a similar way as that of simple present tense. It
requires that appropriate activation patterns are present in DETE’s temporal memory during several
(minimum two or three) consecutive moments. For instance, at time 0 DETE gets an activation in
the visual memory bank by looking at a ball which is moving towards the wall (Figure 11.9B). A
few moments later (e.g., at time 2) the ball hits the wall which produces activation in the appropriate
visual feature memories (e.g., in the Motion Feature Memory -- change of direction of motion).
This activation represents E -- the event time. In vet another few moments later (e.g., at time 4)
DETE gets the verbal input “The ball has hit the wall”. This input generates activation in the TP-0
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of the verbal memory bank which represents S - the speech ttime. Of importance here is that this
activation is in phase with the Temporal Attention Window. In other words, it also represents R --
the reference time. Notice that R is not explicitly mentioned in this sentence. R is the same as the
speaker time S. The activation generated in the verbal memory bank is associated with the
activations currently present in various temporal planes of the visual memory bank and has left
memory traces there.

What happens when DETE is given the verbal input “The ball has hit the wall” without any
visual input, after it has learned the meaning of present perfect tense. The activation produced in the
TP-0 plane of the verbal memory bank immediately (i.e. during the same moment) induces
activation in a set of planes (e.g., TP-0,...,4)} in the visual memory bank (Figure 11.10B). This
activation is triggered by the signals going along the fast connections connecting the individual
temporal memory planes. The induced activation pattern in the visual bank recreates the activation
pattern which was present there (as a result of direct visual input) during the learning process.

11.7.2 Future tense

Observe a ball moving towards the wall of the Visual Screen and within a certain time period before
it hits the wall tell DETE: “The ball will hit the wall”. The representation of the phrase “will hit”
induces activity in the verbal bank of TP-0 (Figure 11.11A). This activity is transferred to higher
order TP-s in consecutive moments. When the actual event of hitting happens (e.g., two moments
later), it induces a change of activity in the visual bank. The learning of simple future tense is done
when the activity in the verbal bank of TP-2 is associated with the activity in the visual bank of TP-
0. Note that depending on how late after the verbal input the visual input comes, the position of the
activity representing the verbal input can be anywhere from TP-1 to TP-7.

In a much similar way DETE learns the meaning of future perfect tense (Figure 11.11B).

When DETE gets a sentence containing simple future tense, e.g., “The ball will hit the wall”
without a corresponding visual input, the following happens (Figure 11.12A). At moment O the
representations of the ball and the wall are activated (by induction from the verbal memory) in the
visual memory bank. At successive moments (1, 2, 3 ...) the representation of the verbal input
moves from TP-0 to TP-1, TP-2, TP-3,... and in each case it keeps active (via the “fast”
connections) the representation of the ball, the wall, and the event of hitting in TP-0. During
learning, the verbal activity was at different TPs (1-7) when it was associated with the visual activity
in TP-0, therefore during understandin g the shifting of verbal activity will keep the corresponding
units in the visual part of TP-0 active constantly at every successive moment. This maintained
activity in TP-0 represents an expectation of the event of “hitting”. Two extreme cases can occur.
First, if during learning the visual input came always with the same delay after the verbal, then
during understanding the expectations will not be generated continuously but will corne only ar the a
priori learned moment of time. Second, if during learning the verbal and visual inputs were
separated with i long temporal gap (e.g., 8 moments) then DETE will not be able to establish the
association between both and future tense will not be learned.

The sequence of visual representations (i.e. its understanding) which DETE generates when it

gets a verbal input proposition in future perfect tense are shown in Figure 11.2B and their
Interpretation s similar.
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Simple Future Tanse Future Perfect Tense

L The ball will have hit the wall
The ball will hit the wall (when the circle bounces).
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The ball will hit the wall. The ball will have hit the wall
(when the circle bounces).
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has at ieam one
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Figure 11.11: Learning future tense

A schematic representation of the sequential stages of activation spread within the
Tempora! Feature Maps during learning of A) Simple Future Tense, and B) Future Perfect
Tense. The meanings of the symbols are the same as in tigure 11.9. Description of the
figure is given in the text.
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Simple Future Tense

Future Perfect Tense
e The ball will have hit the wall
The ball will hit the wall (when the circle bounces),
0O T T2 T Tha T Th§ Tip xemm:h\mmw
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The ball will hit the wall. The ball will have hit the wall

(when the circle bounces).
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has #t least one
different teature

! induced activation

Figure 11.12: Imagining future events

A schematic representation of the sequential stages of activation spread within the
Temporal Feature Maps during understanding of A) Simple Future Tense, and B) Future
Perfect Tense. The meanings of the symbols are the same as in figure 11.9. Description
of the tigure is given in the text.

11.7.3 Past tense

DETE observes a ball hitting one of the walls of the Visual Screen and few moments later it hears:
“The bail hit the wall” -- a simple past tense proposition.
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Simpie Past Tense
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Figure 11.13: Learning past tense
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A schematic representation of the sequential stages of activation spread within the
Temporal Feature Maps during learning of A) Simple Past Tense, and B) Past Perfect
Tense. The meanings of the symbols are the same as in figure 11.9. Description of the
figure is given in the text.

Simple Past Tanse Past Perfect Tenss
The ball had hit the wall
The ball hit the wall (when the circle bounced)

P T T T TR TR TRE Ty Tiena 0
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verbal
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The ball hit the wall. The ball had hit the wal]
(when the circle bounced).

D feature change

has at least one
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Figure 11.14: Imagining past events
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A schematic representation of the sequential stages of activation spread within the
Temporal Feature Maps during understanding of A) Simple Past Tense, and B) Past
Perfect Tense. The meanings of the symbols are the same as in figure 11.9. Description
of the figure is given in the text.

At the B-cycle when the ball hits the wall this event induces the corresponding activation in the
visual bank of TP-0 (Figure 11.13A). During each successive moment before the verbal input is
given, this visual activity is transferred to higher visnal TPs. When the verbal input is presented, it
induces activity in the verbal bank and this activity is associated with the activity in the visual bank.
Therefore, the meaning of the word “hit” (past tense) is represented as an association of the
corresponding verbal activity in the lower-order TP and the visual activity in the higher-order TP.
During each instance of past tense learning, the stimuli (i.e. the verbal and visual inputs) can be

separated by one or more moments. This period is called an Inter Stimulus Interval (ISI). The ISI
in DETE can vary from 1 to 7 moments.

The learning of past perfect tense is done in a similar fasion as shown in Figure 11.13B.

What does DETE imagine when it hears the sentence “The ball hit the wall” without seeing the
actual event. In other words, how does it “understand” this utterance? The verbal input induces
activity in the TP-0 level of the verbal bank (Figure 11.14A). This activity immediately spreads to
the visual bank along the “fast” connections and associatively activates the visual representation of a
ball hitting the wall in the higher-order visual TPs. Depending on the temporal distribution of the
Inter Stimulus Intervals (ISIs) between the visual and the verbal inputs during learning, the actual
position of the visual representation of the event of hitting can vary.

An example of DETE’s processing dynamics during the understanding of past perfect tense is
shown in Figure 11.14B.

11.8 Learning Homonyms

What happens when an alternate training regimen is used? Consider the example when during the
learning of a word like “circle” (see section 11.2) the learning protocol is changed in the following
way. Instead of using the training protocol described in Table 11.1. in which every visual/verbal
training pair is of the type ([W:circle], [C:x, S:circle, Z:x, L:x, M:ix,x]) -- call it type-1 pair, in this
experiment, the type-1 pair was alternated with a pair of type-2. In a type-2 pair, the visual part
instead of maintaining constant the gircular shape feature and having different values for the rest of
the feature dimensions (i.e. [C:x, S:circle, Z:x, L:x, M:x,x]), the red color feature is kept constant
and the values of the remaining feature dimensions are varied (i.e. [Cired, S:x, Z:x, L:x, M:x,x]).
This experiment effectively tests whether DETE can learn homonyms, since in some of the trials the
word “circle” referred to an object with a circular shape independent of the rest of its visual feature,
while in other riuls the word “circle” referred to an object that was red and the rest of its features

were irrelevant. Notice that, as expected, in some of the trials both the circular shape and the red
color features were on.

As in the experiment in section 11.2., after the presentation of each pair (pairs of type-1 and
type-2 were aliernated) the learning was disabled. i.e. no update of the /rm was done and two tests
were run: (1) Verbal-to-visual test: -- in this test DETE was given only the verbal input W:circle and
the activity gencrated in the visual bank of the Long-Term declarative Memory was monitored (i.e.
no external visual input was provided). The response was considered to be correct if, as a result of
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the verbal input, sustained oscillations were induced in at least one neuron located in the proper
areas, i.e. either in the area that represents circles in the shape memory bank, or in the area that
represents red in the color visual memory bank. (2) Visual-to-verbal test: -- this test presented: (a)
a novel instance of a circle with randomly chosen other features, followed by (b) a novel instance of
a red object with all other features randomly chosen, and then (¢) a red circle with the rest of the
features randomly chosen. The activity generated in the verbal bank was monitored (i.e. no verbal
input was provided). The response was considered correct when all gra-phonemes forming the
word “circle” were generated in the correct order without intervening noise. Schematically this
experiment can be described as follows:

TRAINING: ([W:circle], [C:x, S:circle, Z:x, L:x, M:x,x])
([W:circle], [C:red, S:x, Z:x, L:x, M:x,x])

Notice that one training trial consists of presentation of two pairs, one of type-1 and the other of
type-2. Their order varied randomly from trial to trial. The total number of training trials was 100.

TESTING (verbal -> visual) ([W:circle], [C: 2,8: 7])
TESTING (visual -> verbal)

a) ([W:7], [C:x, S:circle, Z:x, L:x, M:x,x])

b) ([W: 7], [Cired, 8:x, Z:x, L:x, M:x,x])

c) ([W:7?], [Cied, S:circle, Z:x, L:x, M:x,x])

The results are summarized in Table 11.9 which demonstrates that DETE can learn homonyms.
In the given example, the word ‘circle’ had two different meanings -- circle and red. The learning
of both tasks was again rapid. In the visual-to-verbal task, when only one of the visual features
(e.g., S:circle or C: red) was present in the visual input, DETE needed more trials (12 on average)
to produce the verbal response (W:color) than if both visual features were present at the same time
(1st correct response after trail 5). In the verbal-to-visual task which required that activity is
generated in ¢ither the red or the circle field of the corresponding plane in order for the response to
be considered correct, the learning was faster. Only after 4 to 5 trials DETE started to “envision”
circular shape or a red color in response to the word “color”. The number of traces to achieve a
100% correct performance are shown in parentheses.

Verbal input Visual input 1st (100%)correct at trial #

Color__Shape Size Loctn _ Motion ver->vis vis->ver
circte " @ iy - * 4(35) 13(123)
circle red * * * * 5(41) 11(112}
circle red O * > * not for 300 trials 5(49)

Table 11.9:  Results of learning a homonym

An interesting observation on DETE's performance of the verbal-to-visual test was that during
testing DETE exhibited priming effects. Namely, if the preceding visual/verbal training pair was
of type-1, DETE responded with generating an activity pattern in the circle area of the shape
memory bank. but did not induce activity in the color memory bank. Alternatively, if the last input
parr was of type-2. DETE “imagined” red but did not “imagine” circle. For the total duration of the
experiment (300 training trials) DETE never imagined both a circular shape and a red color feature
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together in response to the verbal input “circle”. Effectively, DETE disambiguated the meaning of
this word on the basis of its immediate prior training experience.

11.9 Learning selected features of different languages

An interesting language feature which can demonstrate, on the one hand, DETE s ability to acquire
more sophisticated grammatical rules (as compared to simple word order) and on the other hand to
illustrate DETE’s ability to handle grammatical features of languages different than English is gender
agreement. English and Japanese do not have gender agreement, whereas Spanish does. For
instance, in Spanish we say:

La pelota roja. (The red ball.}
El cuadro rojo. (The red square.)

To test DETE’s ability to learn gender agreement we designed the following experiment. A set
of 2-word noun phrases (NPs) was generated. Each NP had the form (Noun Adj). Two Spanish
nouns were used (one feminine -- “pelota”, and one masculine -- “cuadro”) and a number of
adjectives relevant to the blobs world. Only regular adjectives were chosen (i.e. use suffix -a for
feminine, and suffix -o for masculine). Irregular adjectives were not used; e.g., verde (green).
Most of the NPs were used as a training set and the rest in a testing set. Examples some of the
adjectives used are:

pelota Toja amarilla pequenia negra blanca
(red) (yellow) (smal]) (black) (white)
cuadro rojo amarillo pequefio negro blanco

In humans, learning gender agreement in noun phrases is mostly based on the ability to make
associations between words on the level of corresponding word fragments (e.g., between the
endings -- suffixes, or the beginnings -- prefixes). Notice that for this particular task visuai-to-
verbal associations do not seem to be essentjal and are probably done only during the early stage of
learning (when the individual words are learned). Later the mature speaker accomplishes this task
as mostly a verbal-to-verbal task, i.e. making such associations becomes a kind of a verbal game.
For instance, the child hears a new Adj associated with some Noun (e.g., “pelota negra”) and
without having even to know the meaning of the word negra(o) (black) it can successfully generate
“cuadro negro”, However, to produce this response, the child needs to be in the right context.
First and foremost, before it can generate the response, it must be aware of the nature of the task
(e.g., “combine Noun + Adj”). This can be done by receiving the verbal input “pelota negra” which
SCTVES as a context for the subsequent verbal input. Then it hears “cuadro” (or sees a square which
can be just an outline without color). The representation of “cuadro” augments the context, It
seems that humuans have a built-in learning mechanism which has the natural tendency after a
number of exposures to generate the response which contains the second word (negra) but modified

by the context (cuadro) to (negro). Some of the possible ways to run such an experiment are
presented below,

(1) Tzaining: Learn individual NPs by associating each NP with its visuaj correspondence (e.g.,
P:red-ball & W-1 :pelota, W-2:roja: or P:red-square & W-1:cuadro, W-2:10jo; etc.)

(2) Testing:
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a) Visual-to-verbal test: Give verbal input W-1:cuadro and activate the black area of the
Color Feature Plane (this represents the task or context). Observe if there is a verbal response
{expect “negro™). Here the visual input provides the substance to the verbal response.

b) Verbal-to-verbal test: Immediately after an example has been given (e. g., P:red-ball &
W-1:pelota, W-2:roja) (this represents the task or context), give only a nove! Noun (e.g., W-
I:cuadro). Observe if there is a verbal response (expect “rojo”). Here the previous verbal input
provides the substance to the verbal response.

In this experiment we are interested in the verbal-to-verbal test. To be able to do this task the
System must have the ability to associate two sequences (e.g., the phonemic sequence forming
word-1 (W-1) with that formin g W-2 which are presented one after another (without intervening
inputs). The first requirement for this 10 happen is that the representations of the two sequences
must reside simuttaneously in the memory for a while. Also, the sequences should be indexed in
the memory as first and second (i.e. appropriate representations of word order should be
generated). If these conditions are fulfilled, then the question is how the association of the
corresponding suffixes can be done. One option is to align the corresponding parts of the
representations of the two sequences in time (e.g., in this case their endings). Then they can be
easily associated as co-occuring. Such alignment of parts could be done by giving a special status
to the corresponding parts. Notice that the beginnings and the ends of words have by nature a

special status since they are either preceded or followed by lon ger transition periods -- the pauses
between words.

The critical module of DETE’s architecture which allows it to learn this task is the
Morphologic/Syntactic Procedural Memory (MSPM) and its integral part -- the Short Term Memory
(STM) component of the Verbal Memory (VM) (see Figure 9.4). This memory module has almost
all necessary fu nctionality to accomplish this task; namely: a) the STM component of the VP serves
as a temporat buffer for the first word (W-1} while the second word (W-2) is input. Since these
words are different, they can coexist in memory which allows them to be associated. b) The input

second word (W-2) by activatin g the most recently processed W-2, ¢) The representations of the
words can effectively be aligned in time since the gra-phonemes of which they are composed are
also ordered in the OMB (PO-1, PO-2, ... -- see section 9.2.2). d) The transition periods after each
word give special status to the last gra-phoneme in each word. This is due to the fact that the
representation of these gra-phonemic indices (and the gra-phonemes themselves) are active for the
duration of the transition period between words. This feature allows the end-of-word gra-
phonemes to he ussociated. This scheme will work if the lengths of W-1 and W-2 are the same in
terms of number of gra-phonemes. However, in natural languages this is usually not the case. To
overcome this difficulty the MSPM needs also another indexing component which marks the words
not by the absolute order of the gra-phonemes (as it is currently done) but in addition marks the
beginning-of-word {e.g., a prefix), word-stem, and end-of-word (e.g., a suffix). This can be done
by normalizing the Phonemic Order (PO) representation of each word so that the first PO (PO-1) is
always mapped 10 some unit (call it Word-Start -- WS) and the last PO (PO-end) of all words
(notice that these differ in value) is mapped to another unit {call it Word-End -- WE).
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11.10 Discussion

Our experience with DETE’s performance on various language learning tasks so far has shown that
it is a powerful and robust system. This is mostly due 10 its architectural design based on the idea
of grounding symbols in perceptual experience.

From an engineering point of view, an important question (while designing a complex system
such as DETE) is the complexity of the task which it is supposed to accomplish. This question is
related to another question, namely what is the essential minimal architecture which can accomplish
the task and what are the task-irrelevant components of the system? To estimate the complexity of
the PGLA task from an information theoretic point of view is difficult, and while no attempt is made
here to answer this question, one insight from the field of neurosciences might help to see it from
another perspective. It seems that in the evolution of the brain, nature has allowed for almost any
known “functional trick” to be incorporated in the nervous s\slem. Such a “collection of tricks”
provides the brain with flexibility and effectiveness in the processing of a variety of tasks.
Therefore, looking for a minimally complex system to perform a given task seems not to be the turn
that evolution has taken. Hence, it is worth separating the engineering aspects of designing an
efficient system from the more basic questions of how does the brain do what it does.

There are several approaches to performance evaluation of a particular task. Sometimes it is
sufficient to know that the system is able to perform the task. In other cases, especially when the
system performance needs to be compared with the performunce of other similar systems, it is
important to design a set of performance criteria to be tested on the basis of particular measurements
of system behavior. These criteria might be different for difterent tasks. In DETE such criteria
were, for instance, speed of learning and accuracy of performance. While at this point no criteria
have been designed to judge the performance of the system as a whole, specific criteria were used in
the evaluation of the individual modules.

It is our observation that the overall performance of DETE during learning of various sub-tasks
measured as speed and reliability of learning conforms well with a specific statistical model -- the
model underlying the solution to the “occupancy problem” (Feller, 1957). The occupancy problem
can be stated as follows: Consider n bins and a sequence of 1rials during each of which one and
only one bin is visited. Assume also that the distribution of the visits over the bins is multinomial
with equal probability for the visit of each bin. The question is: How does the probability that after
trial x all bins have been visited at least once depends on the nuinber of trials x? The solution to this

problem is given by the following formula (see Feller 1957, pp 91-92 for the derivation of this
formula):

n
: n! i
P(x) = E (-l)lm(l-ﬁ)x (11.1)
1=0

The bins in this statistical model correspond to the bits (predictrons) in the memory modules.
The number of bins corresponds to the number of bits that represent a particular feature value. For
instance, in the Motion Feature Plane, the number of bits that encode stationary (still) objects is
3x3=9. A “visit” of a bin corresponds to activation of the feature that this predictron encodes (e.g.,
red, square, etc.). The probability that after trial x all bins have been visited at least once gives us
some estimate of the speed and reliability of learning.
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For each of the experiments described in this chapter we know the number of bins (pixels) in the
area of the particular feature plane to which a given concept (e.g., moves or stands) is mapped. For
instance the “moves” area of the Motion Feature Plane is composed by 14x14 - 3x3 = 187 bins
(bits). The areas in the same feature plane where horizontal and vertical motions are mapped have
equal sizes of 2x5x3=30 bins (bits), etc. The results of each of the experiments described in this
chapter were compared with the probability distribution obtained from the above-described statistical
model in which the appropriate values for the number of bins were used. In general, the statistical
model explains satisfactorily the speed of learning and the accuracy of the responses made by
DETE. In other words, the leaming curve for each experiment (after the necessary prerequisites
have been learned) is similar to the curve that can be derived on the basis of this statistical model.
To illustrate this claim, compare, for instance, the results of the experiment in which DETE learned
the meaning of the word Wi:stands (see Table 11.2) with the predicted speed of learning on the basis
of the statistical model. As shown in Figure 11.2, the area of the Motion Feature Plane (MFP)
which represents stationary objects has the size 3x3=9 pixels (which map one-to-one to 9
predictrons in the Motion Feature Memory). Figure 11.15 shows the experimental learning curve
(successful and non-successful trials) when DETE attempts to verbalize the word W:stands while
looking at a stationary object. This data was obtained with the learning protocol described in section
11.1.2. As the plot shows, it took 22 trials for DETE to produce the first correct verbal Tesponse,
and it took it 42 trials to start producing continuously correct responses.

1-.- All | I | L ] A S EESEEGRAER AIIIIIII.
I !
I I
I |
0.8+ I |
trial # 22 trial # 42
first start of
0.67 correct continuous
response correct
0 al responses
o.2+4
10 20 30 40 50

Figure 11.15: Learning curve of the word “stands”

The trial numbers are shown on the X-axis. Correct verbal responses are indicated by 1s
onthe Y-axis and incorrect responses by 0s (both 15 and 0s are shown as black dots at the
corresponding Y level).

The theoretical curve (Figure 11.16) for this particular experiment was derived on the basis of
formula (11.17 in which the value of n was set 10 9. As can be seen even without applications of
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any ransformations (e.g., a cumulative sum) to the raw data (Figure 11.15), it is well fitted by the
theoretical probability distribution shown in Figure 11.16. Similarly, good correspondences
between the experimental observations and the theoretical predictions for the speed of learning were
found for the most of the experiments. In the cases when the statistical model did not fit well the
experimental data (e.g., learning of the word W:moves which was faster than predicted by the
statistical model), the shapes of the curves (S-shape) were nevertheless the same. In the example of
W:moves in particular, the disparity between the two curves can be explained by the influence of
the remaining memory modules on the process of learning.

1+
0.8+

0.6+

1 1 ]
+ + + {

10 20 30 40 50

Figure 11.16: Example of a theoretical learning curve

The number of learning trials are shown on the X-axis. The probability for a correct
response (a value between 0 and 1) is shown on the Y-axis.
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PART IV
Comparison

Part IV compares DETE to other connectionist and symbolic models designed to perform tasks of
language acquisition and sensory-motor integration. The KATAMIC sequential model is compared
in terms of architecture and performance to other state-of-the-art connectionist models for sequence
processing. Also, described are some neuropsychological aspects of humans’ ability to acquire
language. A review of the brain structures underlying such .bility is presented. Parallels with
DETE’s architecture are drawn along the way. Finally, a summary of the current status of this
research and directions for future work are outlined.
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12 COMPARISON TO OTHER WORK

DETE is a multifaceted project. On the one hand, it is a novel attempt to handle a version of the
blocks world task, as described by Winograd (Winograd, 1972; Winograd, 1973), and therefore its
performance can be compared to other systems designed to handle this task. On the other hand,
DETE is built from connectionist modules, some of which (e.g., the KATAMIC memory) are
unigue, while others have been already described in the literature (e.g., Winner Take All network,
lateral inhibition). The newly invented modules can be compared to existing ones in terms of
functionality and architecture, while the modules borrowed from the literature can be discussed in
implementational terms. DETE is also capable of language processing up to a certain level of
complexity and as such can be compared to other natural lan guage processing systems,

12.1 Connectionist models of NLP

Some of the recently proposed connectionist models of NLP can be seen as an alternative or
complement to symbolic models. However, PDP models of NLP fall short of being able to
understand stories at the level achieved by the symbolic models. While it is possible to construct
connectionist models that can effectively handle stories with multiple scripts (see e.g., Sharkey et
al., 1986; Miikkulainen, 1990; Miikkulainen and Dyer, 1991) such systems have difficulties in
handling unexpected or unusual situations. Such ability requires higher-level monitoring and
control mechanisms. Translated to the traditional Al terminology, these systems lack the ability to
do dynamic inferencing (i.e. construction of novel information structures from seemingly disjoint
pieces of available information) (Touretzky, 1989). Dynamic inferencing is the basis of planning
(construction, analysis, and execution) (Dolan, 1989; Lee, 1991; Dyer, 1990).

12.1.1 Localist connectionist models of NLP

The approach to representation taken in the localist models is to assi gn single nodes in the network
to individual items (e.g., words or concepts) (van Gelder, 1989). The idea of building localist
representations is not new. A somewhat more elaborated version of this idea is embodied in
semantic networks (Quiilian, 1967), which are widely used in classical symbolic systems. The
difference between semantic and localist networks is that while the former have labeled arcs between
the nodes, the latter have activation values which can be spread along weighted connections. There
are two busic clusses of localist networks. On the one hand are those that spread continuous values
between nodes. i.e. “pure spreading activation networks” (Anderson, 1983; Cottrell and Small,
1983 Waltz and Pollack, 1985) to achieve retrieval, variable binding (Lange and Dyer, 1989;
Shastri and Ajjunagadde, 1989b; Shastri and AJjanagadde, 1989a) and inferencing. On the other
hand, there are those that propagate discrete symbols, i.e. “marker passing networks” (Charniak,
1986; Fuhlmun, 1977; Hendler, 1988) to achieve the same functionality. Recently, attempts have
been made 10 implement markers just in terms of activation (Lange and Dyer, 1989). Unlike DETE,
the ROBIN svsiem developed by Lange and Dver is able to do goal/plan analysis by spreading
activation (e.g.. 1o select the correct meaning of the word “pot” in the sentence “Hid pot in
dishwasher when saw the police coming.”). However, ROBIN is not capable of learning.
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Another attempt was made recently to replace individual nodes with patterns over ensembles of
nodes (Sumida and Dyer, 1989).

The main advantages of the localist networks is that they offer knowledge-level parallelism
(Sumida and Dyer, 1989). Since the activation values on the nodes are allowed to relax over time,
which gives the user a handle over the temporal dynamics of these networks, one can interpret their
behavior with respect to timing effects in cognitive tasks and semantic priming. The basic problem
with such networks is that their structures are ad hoc and programming of such networks is tedious.
They cannot learn from experiences and localist models are not robust with respect to nerwork
damage or choice of task. As it has been suggested (Sumida and Dyer, 1989; Dyer, 1990; Dyer,
1991) that the structure of the localist networks can be regarded as a metaphor for a system
composed of numerous functionally differentiated distributed networks.

The single_node_per_concept approach taken in some localist networks seems absurd.
However, the majority of Localist Connectionism (LC) is involved in constructing networks which
replace single concept nodes with distributed assemblies over ensembles. These ensembles are
further hooked up and trained -- intra- and internodal weights are modified. DETE takes basically
the same approach within its feature memories, except that DETE’s representation of individual
concepts (e.g., “ball”, or “hit™) are spread over several feature memories.

12.1.2 Distributed connectionist models of NLP

Language processing tasks of various degrees of complexity have been explored by a number of
researchers. Simple recurrent networks (or similar models) are used in most of these research
efforts. Below is a short summary of the most prominent attempts made in this direction. Included
are descriptions of the specific tasks, summary of the results and discussion of the shortcomin gsof
these studies.

ffrev Elman

Elman (Elman, 1988; Elman, 1989b) applied his simple recurrent network (SRN) -- an
extension of the model of Jordan (Jordan, 1986) to a number of lin guistic Lu~hs, In his earlier work
he demonstrated that a SRN can learn the lexical Category structure (e.g., the order of verbs, nouns,
adjectives, etc.) which is implicit in a large corpus of language (Elman, 1989b). The success of his
modeling effort was based on the fact that in natural languages there is a clear correlation between
lexical category structure and word order. In other words, as EIman points out, not all classes of
words may appear in any position -- certain classes tend to co-occur with other classes.

Elman trained his network on a large set (10,000) of two- and three-word sentences. The input
stream did not have indications of where one sentence ends and the next begins. During testing on
novel sentences, the network was not capable of predicting exactly the second and third word after it
was given the first word of a sentence. Nevertheless, it had a tendency to activate output nodes that
correspond to words belonging only to the plausible classes that can follow the class to which the
first word in the sentence belongs. By examining the weights in the hidden layer (using hierarchical
clustering analysis), Elman demonstrated that as a result of the training, the weight space had
evolved clusters that correspond to different lexical categories (e.g., nouns and verbs).
Furthermore, the verbs were subdivided by their argument requirements and the nouns were divided
Into animates and inanimates. The knowledge of class behavior was shown 1o be quite detailed.

DETE was tested on a similar task -- learning some stmple syntactic rules like word order (see
section 11.3.2). However, there are several differences between the tasks used by Elman’s
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network and DETE. (1) The body of lan guage (three word sentences) was smaller (27 sentences).
(2) During learning DETE did not associate consecutive pairs of words in the sentences, but
associated visual images with verbal sequences. (3) The sentence boundaries were provided to
DETE. (4) The testing was done not by giving the first word of a new sentence and expecting the
system 1o complete it but instead a novel visual image was presented and DETE’s verbal description
of this image (object) was observed. (5) The most important difference perhaps is that Elman’s
model (as he acknowledges himself -- Elman 90 (Elman, 1990)) lacks semantic information. In
other words, its structural information is not grounded in the real world.

obert Allen

Sequential back-propagation networks (Allen, 1988; Allen and Riecken, 1988; Allen, 1987)
(called connectionist language users -- CLUES ) were used to answer simple questions about objects
in a microworld. In these experiments the input to the network is composed from both a sequential
verbal part (words forming a sentence which demanded a verbal response about the visual scene to
be generated) and a semantic representation part (the visual world which was kept static during the
sentence processing). The network was taught 10 generate a simple yes/no response (output)
regarding the correctness of the linguistic description with respect to the simultaneously presented
semantic representation. Allen tested the network performance on a number of tasks: (1)
generalization (i.e. transfer of the ability to generate answers to patterns which have not been seen
before) (Allen, 1988), (2) learning of pronoun reference for objects in some simple cases (recency
and semantic prining) (Allen and Riecken, 1988). In the most complex experiment Allen’s system
performs disambiguation of anaphora (i.e. finding the correct referent for a pronoun which can have
several different referents in the sentence). While Allen demonstrates that his system is capable of
generalization and can learn some basic linguistic skills such as simple pronoun reference, one
probiem with the chosen network architecture is its slow learning rate (about 1.5 million epochs are
necessary before convergence is reached). This slow learning process is typical for networks using
the error back-propagation learning algorithm and Justifiably raises the question of neural
plausibility. Another shortcomin g of this system is that it cannot be easily scaled up. This limits the
robustness of the system and does not allow the integration of multiple simple tasks.

Mark St. John and James McClelland

St. John and McClelland (St.John, 1990; St.John and McClelland, 1989) used a cue-based
constraint satisfuction algorithm to process a number of prototypical stories. The model takes a
story as input and it learned to answer questions. Story comprehension was learned by experience.
Some of the specific tasks on which this model was tested include pronoun resolution, inferencing,
revision of on-going interpretation, and learning. The network used in these experiments was also a
variation of Elmin’s model, The major shortcomings of this mode] were: (1) The predicate roles
were chosen arbitrary, i.e. they were not grounded in any physical reality. (2) The representarion of
¢ach proposition in terms of different roles such as “agent”, “‘predicate”, “patient”, or “recipient” are
hand-coded. In other words, there is no mechanism for parsing the sentences into the chosen
representation. In essence, this svstem faces the same problem as that faced by classical symbolic
systems, namely that of building the representation for each entry. (3) The learning was exmemely
slow. This is a problem with all systems that use simple recurrent networks with a back.
propagation learning mechanism,

In its current implementation DETE is not capable of dealing with verbal input of the same level
of complexity us St. John’s model. The main reason is that DETE does not explicitly allocate sets
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of processing units for the various roles such as “agent”, “predicate”, “patient”, or “recipient”.
There are at least two possible ways how to bring DETE to this level of performance. The
straightforward way is to allow for such type of unit allocation. Actually, this solution might not
be completely at hoc. (There is anecdotal neurophysiological evidence that selective ablation of
parictal association cortex can lead to very specific impairments of the semantic processing abilities.)
The second way is to invent a completely new representation which can be based for instance on the
temporal properties of the memory.

Risto Miikkulainen

A large scale natural language processing system called DISCERN was constructed by
Miikkulainen (Mtiikkulainen, 1990). DISCERN uses a recurrent back-propagation mechanism
(FGREP) to form distributed representations, These representations are processed by a hierarchy of
memory modules implemented as Kohonen type feature maps. DISCERN reads short stereotypical
stories (e.g., about restaurant Visits), generates expanded paraphrases of these narratives and
answers questions about them. The properties of the neural networks used in this system allowed
for the emergence of abilities such as inferring of unmentioned events and unspecified role fillers.
While DISCERN does not have the ability to do one-shot learnin g, which is necessary to store an
event in-a Short-Term Memory (e.g., a phone number), it can (after some iterations) store a
declarative representation of some episode such as a specific visit to a restaurant. (Notice that such
an episode has a much longer duration which allows for an incremental construction of its
representation in memory.) In other words, DISCERN can store: AGENT = John, SCRIPT =
restaurant, LOCATION = Malibu seafood, etc. Thus, DISCERN has an event memory that it can
refer to. It can also answer questions about its content.

Currently DETE cannot answer questions about past events, such as “What green object went
north and hit the wall 7 where the event was something way back in the past. To be able to do this
task DETE needs additional architectural modules to represent a hierarchy of temporal units. For
instance, seconds, minutes, hours, days, months, years, centuries, etc. Also, it needs structures

that represent parts of temporal units, e.g., morning, noon, evening, January, February,
quarter, semester, etc.

aray

Irving Biederman and John Hummel

Biederman and Hummel have developed a theory and a computational model of human image
understanding. Their system Tepresents objects as a spatial arrangement of a limied number of
volumetric primitives (e.g., block, cylinder, etc.) (Biederman, 1987; Hummel and Biederman,
1990). It does not have any language processing ability. Like DETE, Hummel and Biederman’s
model uses phase differences of oscillations to accomplish visual binding. However, unlike DETE,
their system is also capable of representing complex objects.

Rumelhart & McClelland

Several connectionist models have been proposed during the past few years that simulate
different aspects of the surface dynamics (morphology and phonology) of past tense acquisition as
observed empirically in psychological studies of children. In a widely publicized paper Rumelhart
and McClelland have shown thar a simple neural network can exhibit to a remarkable degree the

characteristics of young children learning the morphology of the past tense in English (Rumelhart
and McClelland, 1987).
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be able to learn the past or future tense, or can they be learned independently? At first glance it
seems that morphology helps (e.g., knowing the meaning of “bounce” may help understanding
“bounced”). However, the verb stem in not always preserved in the past tense form (e.g., “go”
and “went” refer to the present and past tense of one and the same action but have quite different
morphology). Also, there are verbs that have the same morphological form in the present and past
tenses (e.g., hit, hit). Here some contextual information should help.

12.2 Tough problems for neural network models of NLP

The non-symbolic nature of neural network technology raises a number of issues when used for
construction of Natural Language Processin g systems. Some of the most difficult are the choice of
representation and the related problems of modularity, role binding, and sequence processing. In
this section, the methods employed by DETE for dealin g with these problems are described and
discussed in the light of related research,

12.2.1 Formation of distributed representations

The use of distributed representations, instead of localist representations, has a number of
advantages -- the most significant of which are robustness and graceful degradation of performance
in the face of damage. However, a major issue is that of choice of specific representations. In other
words, where do distributed representations come from and what do they stand for, i.e. do they
have some internal meaning?

One of the most widely used approaches for forming distributed representations is to encode
semantic features. This “semantic microfeature” approach has been used, for instance, in the case-
role assignment task (Hinton, 1981; McClelland and Kawamoto, 1986). In ihis approach concepts
are classified along a set of dimensions predetermined by the designer (e.g., animate/inanimate,
male/female, etc.) and one or more units are assigned to each feature. During processing, a
particular classification of an Input corresponds to a pattern of activity over a subset of the units,
This approach is analogous to the way the nervous system processes information by means of
dedicated (labeled) lines. Such labelled lines can be found in almost all sensory systems (Kandel]
and Schwartz, 1985) and form the basis of topography-preserving maps (e.g., color is encoded in
the retina using three different types of labeled lines, for red, green, and blue). However, such
labeled lines are typical for the lower-level sensory processing and functional analogues of such
lines in higher cognitive processing (while theoretically possible) have not been demonsirated
experimentally.

Another approach is 10 develop internal representations in intermediate layers in the neural
network hierarchy. A good example of this approach is the network used by Hinton to learn family-
tree relations (Hinton, 1986). Another example is the simple recurrent network used by Elman to
predict next word in a sequence of words (Elman, 1989a; Elman, 1990). This approach, however,
does not address the issue of encoding input/output representations.
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Another approach to the development of representations was proposed by Miikkulainen
{Miikkulainen and Dyer, 1987; Miikkulainen and Dyer, 1989; Miikkulainen and Dyer, 1988;
Miikkulainen and Dyer, 1991). His FGREP network develops representations for the symbols
automatically while the network is learning the processing task. These representations are global
(both input & output) and are stored in a separate network (called the lexicon). The main advantage
of such representations is that they encode the properties of the input that are most critical for the
task since they are adapted according to the back-propagation error signal.

Yet another method -- “symbol recirculation” (Dyer, 1990) was used by Lee et al. (Lee et al.,
1990) for forming lexical patterns (XRAAMs). Lee stored hidden layers of Pollack’s RAAM
(Pollack, 1990) into a lexicon formed by a recirculation.

In DETE, the representations of the words in the language which are stored in the memory have
two components: (1) a gra-phonemic representation of the word itself which is associated with (2)a
distributed representation of the corresponding visual experience which the particular word refers
to. In this sense, the language which DETE acquires is completely grounded in visual experiences.
One might argue that the approach taken by DETE suffers from the same problems as the other PDP
approaches to representation, namely choosing the set of the visual features is equivalent to making
a choice of semantic features and such a choice is arbitrary. While on the surface such an argurnent
appears to be justified, the substantial contribution which DETE makes in choosing the visual
features comes from the fact that: ( 1) They are natural and there is abundant evidence that, namely
these features are used for grounding of most of our early language (for references on the
acquisition of early language in blind and sighted children see (Dunlea, 1989)). (2) These
representations provide the basis for the formation of hi gher-order mental representations (Lakoff
and Johnson, 1980; Lakoff, 1987; Lakoff, 1989).

12.2.2 Types vs tokens

Symbolic models of cognition in general keep separate the information about symbols (e.g. their
properties and relations) from the information about the individual instances of a specific symbol.
In other words, they keep the rypes separate from the tokens. In the field of neural networks,
various approaches have been proposed to merge fypes and tokens. For instance, in analyzing his
experiments on learning lexical categories, Elman found that the network had encoded every token
by a distinct representation which reflects the context in which the rokcn appears. The
representation of zype was done by clustering all rokens of a particular class closer in space while
keeping the distances between the different types large. It was also observed that the rokens of a
particular fype were not randomly distributed but there were sub-clusters which correspond to the
different linguistic contexts (e.g. “boy” in a subject position vs “boy” in an object position) in
which a roken may appear. This feature of the representation corresponds to a grammatical-role
distinction which cuts across lexical items,

DETE introduces a novel approach to the representation of nypes and tokens. A rype in DETE is
represented as a memory trace (/om pattern in the LTM) while a roken is represented as an activity
(i.e. an oscillation pattern) in the network which has been generated as a result of the memory trace
that represents the npe. Several tokens can be instantiated in DETE at the same time. They are
represented as phase shifted oscillations over the same (if the tokens are identical) or overlapping (if
the tokens are only similar) parts of network.
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12.2.3 Role binding

One of the hardest problems for connectionist models is that of role binding, or more generally,
variable binding. One approach to the role-binding problem is the use of conjunctive coding
(Touretzky, 1987). In this approach the role filler pairs are represented conjunctively in a matrix of
units. A generalization of conjunctive coding is to represent bindings as a tensor product of the
representation vectors of the role and the filler (Smolensky, 1987: Dolan, 1989; Dolan and
Smolensky, 1989). Other solutions to the binding problem are based on building dynamic
connections (Feldman, 1982), application of paralle! constraint satisfaction (Touretzky and Hinton,
1988), signatures (Lange and Dyer, 1989), and position specific encoding (Barnden, 1989).

An approach in some ways similar to ours was taken by Shastri and Ajjanagadde (Shastri and
Ajjanagadde, 1989b; Shastri and Ajjanagadde, 1989a). The authors designed a continuous rule-
based reasoning system based on a localist connectionist model. Similarly to DETE they use phase-
locking of oscillations. However, while DETE uses phase-locking to assemble objects from their
features, their system uses phase-locking of oscillations to encode fillers and arguments and to
propagate bindings. Shastri’s system can represent predicates such as “give”, “own” and “can-sell”
as collections of arguments (or roles). For instance, “give” is represented as a collection of
argument bindings which include: giver, recipient, and give-object. The argument bindings are
established dynamically in the system (e.g., giver = John, recipient = Mary, give-object = book)
when it is ‘told’ that “John gave Mary Book1”. Given this type of representation and dynamics the
system can do dynamic inferencing. For instance, from the input “John gave Mary Book1” it can
infer that Mary owns the book.

Currently DETE cannot do inferencing of the type done by Shastri’s systen: since it does not
represent causal relations of the sort that Shastri can encode in his network. However, unlike DETE
this system is not capable of acquisition of language. Its representations (connectivity patterns and
synaptic weights) were hand-crafted and fixed. Also, it does not discriminate between memory
types (e.g., STM vs LTM). The architecture uses several types of special purpose nodes to perform
basic logical functions (e.g., T-and nodes, t-or nodes, p-btu nodes, etc.) for which there is no
evidence that they can be directly mapped to neurons in the nervous system.

Currently DETE does not face the role binding problem at the same level as the script-based
Processors since it operates in a simpler world (the Blobs world). DETE does not represent
explicitly case roles such as agent, act, recipient, patient, location (e.g., “The ball (agent) hit (act)
the triangle (recipient) in the corner (location) hard (modifier).”). However, to be able to
answer cuestions of the sort “Who left a big tip at Malibu seafood?” DETE would need special
visual modules that deal with images of moving, complex agents (humans/robots), actions (e.g.,
ungrasping of round object above a table = leaving a tip), and abstract concepts (e.g., transfer of
possession of the coin by voluntary agreement). These visual modules might be implemented as
some sort of higher order maps. They would serve the purpose of case roles but will be more
robust than case roles in AT and other connectionist systems.

While currently DETE does not have case roles, it has structures that function as “visual roles”.
These visual roles are represented by the topographic maps of predictrons to which various visual
features are mapped. For instance there is a “shape role”, a “color role”, etc. The fillers of the
visual roles (e.g., “circle™, “red”, etc.) vary in time. DETE can answer questions about the fillers.
For instance: Q1: What color is the ball? Al: Red. Q2: What size is the triangle? A2: Small.

203



The visual role binding in DETE is done in the temporal domain and the focus of attention (FA)
mechanism operating over the current active context is used to keep things together,

12.3 Associative memory models

Associative models of memory have been studied in psychology, neuroscience and computer
science in many forms (Anderson and Bower, 1973). Linear matrix memory models are described
by Kohonen (Kohonen, 1972; Kohonen, 1977), Anderson (Anderson, 1970; Anderson, 1972),
and Gardner-Medwin (Gardner-Medwin, 1976).

As was pointed out by von der Malsburg (von der Malsburg, 1981; von der Malsburg, 1983;
von der Malsburg, 1987) and others, a major weakness of simple associative memories as models
for cognitive processing is their low power of generalization. This is a result of the fact that
associative memories treat patterns as monolithic wholes. In other words, they glue all pairs of
features in a pattern together and durin grecall, in general, they recover either the whole pattern or
nothing of it. In order to successfully generalize, a system must be able to decompose complex
patterns into functional components that can be later used in new combinations (Feldman, 1988).
The introduction of a selective attention mechanism in DETE, which is coupled with a sequential
associative memory, allows DETE to overcome the limitations of simple associative memories by
being able to segment out one object from another (or background) in a scene containing several
objects.

12.4 Self-organizing feature maps

12.4.1 Kohonen’s feature maps

Self-organizing feature maps (Kohonen, 1982b:; Kohonen, 1984) is a neural mechanism for
clustering high-dimensional data into a lower dimensional space. For instance, a 2-D topological
feature map can implement a topology-preserving mapping from a hi gher dimensional input space
(e.g., 3-D) onto a 2-D output space. The map consists of an array of neural elements, Each data
point (e.g., a 3-D vector) in the Input space is projected via a set of three weights (one for each
dimension of the input) to each unit in the map (Figure 12.1). The map responds to any input with
a localized pattern of activity over the units. The response of each unit in the map is proportional to
the similarity of the input vector and the unit’s weight vector. The unit with the largest output value
1s usually considered as the image of the input vector on the map.

During the process of self organization, the weight vectors are tuned to specific items of the
input space so that topological relations are retained. This means roughly that nearby vectors in the
Input space are mapped onto nearby units in the map. This is a very useful property, since the

complex similarity relationships of the high-dimensional input space become visible on the map
(Miikkulainen, 1990).

A significant property of Kohonen’s mechanism is that the whole area of the map is eventually
covered by data. For example, a map of hierarchical data essentially displays the minimal spanning
tree of the data items, curved to fill in the whole area of the map (Kohonen, 1982b). The map
consists of subareas, which are continuous and where nearby units stand for nearby items in the
input space. The most frequent areas of the input space are represented in greater detail, i.e. more
units are allocated to represent these inputs. A neurobiological analogue of this characteristics of the
map can be easily demonstrated. For instance, in the developing motor and somatosensory cortices,
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areas that correspond to body parts that are used more often (e.g., the hand and the tongue) have
larger representations (Kandel and Schwartz, 1985). However, the boundaries of these continuous
areas are not marked on the map.

INPUT
vector

map

Figure 12.1:  Kohonen’s feature map

A data point in a 3-D input space is projected via modifiable weights (differently shaded
arrows) to each of the processing units in the 2-D feature map. (The connections of the
input vector to only one of the units are shown, and similar connections 1o the rest of the
units are assumed.) Different levels ot gray on the map are used 1o represent the
response of the units to this input.  The bright end of the scale corresponds to strong
responses while the dark end stands for weak responses. The response of one of the
units (white) is strongest -- this is the image of the input vector in the feature map.
Neighboring units also show strong responses which diminish with distance. The lateral
connectivity of the progessing elements is not shown on this figure.

The organization of the map, i.e. the development of the weight vectors, is formed in an
unsupervised learning process (Kohonen, 1982a; Ritter and Schulten, 1988). During each step of
this process the map adapts in two ways: (1) the wei ght vectors become better approximations of the
input vectors, and (2) neighboring weight vectors become more similar. Together these two

adaptation processes eventually force the weight vectors to become an ordered map of the input
space.

Each adapration step consists of three tasks:

(1) Measuring the similarity of the input vector and the unit’s weight vector. One method for
measuring the similarity is with a scalar product of the input vector and the weight vector, i.e. by
computing a weighted sum of the input components (Kohonen, 1982a; Miikkulainen, 1987).

(2) Determining the adapting neighborhood. This can be achieved by focusing the initial
response of the map throuch lateral inhibition spread via non-modifiable lateral connections with
pre-determined weight distribution. A weight distribution with the form of a “Mexican hat”, i.e.
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difference of Gaussians (DOG) has been successfully used for this purpose. It also has the
advantage of being biologically plausible (Hartline, 1949; Ratliff et al., 1966).

(3) Changing the weights within this neighborhood. Conventionally, the weights change in
proportion to the Euclidian distance of the input vector and the weight vector.

The visual feature maps (VFMs) used in DETE are not of the same type as Kohonen’s feature
maps. DETE’s VFMs do not self-organize with experience but are artificially designed. Also the
features which are mapped in these VFMs are extracted by procedural modules from a simulated
visual world (observed via a retina). The particular feature choices were not arbitrary but were
intended to capture the choices made in the human brain during evolution.

12.4.2 von der Malshurg's “dynamic link architecture”

A “dynamic link architecture” for graph matching in two layer neural networks (containing feature
layer and a pattern layer) was developed by von der Malsburg and his co-workers (von der
Malsburg 81, 88a; Bienenstock and von der Malsburg 87) (von der Malsburg, 1981; von der
Malsburg and Singer, 1988; Bienenstock and von der Malsburg, 1987). This neural network
architecture augments traditional neural nets by the ability to flexibly encode syntactic bindings
between data atoms (neurons) and to organize complex binding structures efficiently. The basic
approach to the representation of bindings is to have neurons synchronize their temporal activity to
express binding between them. This synchronization is produced by excitatory connections
between neurons in the two layers. The organizational process that produces appropriate binding
structures consists of a feed-back loop between signal correlation and rapidly modifying
connections, This feed-back loop is positive, in the sense that strong correlations lead to
connections of increased strength, and strong connections lead to correlations. This process of self-
organization naturally favors certain ordered connectivity patterns. One particular kind of organized

connectivity pattern consists of two-cimensional locally connected networks. These are ideal for the
representation of objects.

An important natural organization process in the dynamic link architecture is the storage and
retrieval of network patterns. Another useful process natural to the architecture is labeled graph
matching: The ability of the system to “discover” that for an active connectivity pattern there exists
another, stored connectivitv pattern which is label-isomorphic to the first, to activate that isomorphic
connectivity pattern and to realize the isomorphism by an activated linkage between the two.
Discussions on deriving excitation and inhibition dynamics within the feature and pattern layers and

between these layers for the labeled graph matchin g problem are given in (von der Malsburg 88b)
(von der Malsburg, 1988).

‘The main difference between DETE’s feature planes and the feature maps proposed by von der
Malsburg as well as those proposed by Kohonen is that while the latter are dynamical self-
organizing systems, the ones used in DETE are hard-wired representations generated by procedural
feature extractors. This approach has been sufficient for the current stage of DETE’s development.
Itis foreseeable, however. that in a more complex visual world it will be necessary to incorporate
some sort of self-organizing feature maps, such as those described above, that will be capable of

learning to automatically extract task-relevant features. Such maps might be used for creation of
both the visual and verbal representations.
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12.5 Sequence processing

Human information interactions with the environment -- such as perception of spoken language and
generation of speech, writing and reading text, singing as well as visual perception of ever
changing scenes in the world -- are sequential in nature. On the other hand, the brain mechanisms
involved in the processing of these phenomena are intrinsically paralle! and distributed. The design
of systems with externally sequential behavior produced by parallel architectures is a challenging
problem. Models of sequential memories have been proposed by a number of investigators. The
simplest way to model sequential recall of patterns is to store the patterns sequentially and to recall
them sequentially. This method is, unfortunately, not sufficient for recall of sequences, such as
songs, as was shown by Lashley in a paper on serial order (Lashley, 1951).

One of the first attempts to demonstrate a neural mechanism capable of storing and retrieval of
sequences was done by David Marr (Marr, 1969). He suggested that the cerebellum learns to
perform motor skills. In his model the information about movements and the contexts in which
particular movements should occur was learned by cerebellar Purkinje cells. Marr proposed a
detailed mathematical model of the cerebellum and used it to explain how conditional reflexes can be
learned in this structure as well as how it can serve in the initiation of movements.

More recently, with the new wave of interest in neural networks, recurrent PDP networks
capable of performing the task of sequence completion are gaining much attention (Rumelhart et al.,
1986). The general procedure for a recurrent network is that a sequence is presented to a running
system while it performs a number of iterations. The output of certain units are compared to the
target for that unit at a priori specified time points and error signals are generated. Each of these
error signals is then passed back through the network for the same number of iterations as in the
forward pass and weight changes are computed at each iteration. The sum of all such changes for
any given weight is saved. This procedure poses some memory problems since weights on the
hidden and output layer synapses must encode information about all patterns in the sequence
through which the network has processed during the forward pass. Rumelhart et al. used a simple
fully connected PDP network (5 input, 30 hidden, and 3 output nodes) to store a set of 25
sequences of 6 steps each. The network was supposed to learn to predict the last 4 steps of each
sequence on the basis of the first two which uniquely identified the rest. For this task the network
required thousands of sweeps through the training examples and the performance was not perfect.

Grossberg and Stone proposed a hierarchical matched filter avalanche structure to store time-
delayed patterns (Grossberg, 1969). The avalanche network was capable of generating an arbitrary
space-time pattern (Figure 12.2). It can be viewed as composed of a series of outstars. An outstar
1s a hetero-associative memory module designed to carry out sparial pattern learning. The
avalanche model did not have autonomous learning abilities. In general the order of activation of
the outstars, as well as the spatial patterns themselves, needed to be learned. This task was left to

other networks, like auto-associative memories, as was described in the theory of serial learning
(Grossberg and Pepe, 1970).
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Figure 12.2:  Grossberg’s avalanche model

A) a probabilistic graph of an outstar. v1is & source vertex, v, i = 1 are sink vertices. B) an
outstar avalanche -- series of outstars v11 ... Vk1, k=12, .. K(,T) whose source vertices
are excited successively every & time units via axon collaterals from vg. If the k!h outstar
could learn the kth spatial approximation to a space-time pattern, then a single control
vertex v could activate an arbitrary complicated space-time pattern by successively
activaling each source vi1. (Adapted from Grossbe rg.1965.)

Another architecture for a connectionist sequential machine was proposed by Jordan (Jordan,
1986). This was a three layer recurrent network which can be regarded as a generalization of a
content-addressable memory (Hopfield, 1982) in which the memories correspond to cycles or other
dynamic trajectories rather than static points. The input to this network 1s vomposed of a “plan”
vector which is kept constant during the retrieval of a given sequence and a state vector which
changes as a function of the previous state and output (Figure 12.3). The network learns a
sequence of output vectors using a back-propagation (BP) learning rule. The performance of such a
network was analyzed in comparison with a sparse distributed memory (SDM) by Keeler (Keeler,
1988) who found that its memory capacity is lower for similar sized networks. Another
weaknesses is that learning and séquence production are done during separate phases. Such a setup
does not allow the network 10 be used in a situation when a real time adaptation to the environment
1s required. Also, the use of a BP learning mechanism requires hundreds of epochs before the error
correction procedure leads to convergence. Finally, the possibility that such learning rule as error
back-propagation can be found in the brain is very slim.
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Figure 12.3: Jordan’s network

Schematic drawing of Jordan's three layer recurrent network. Three input and three state
units are shown in the input layer. All of these units are fully connected via modifiable
synhapses to three hidden units which in turn are fully connected again via modifiable
Synapses to the three output units. The output layer units feed back {in a one-to-one
mapping) via non-modifiable synapses to the state units which are auto and mutually
connected via inhibitory connections. (Adapted from Jordan, 1986.)

12.5.1 Comparison of KATAMIC and Kanerva's SDM models

A very interesting and promising approach o the problem of sequence storage and retrieval was
taken by Pentti Kanerva (Kanerva, 1984; Kanerva, 1988) in his work on Sparse Distributed
Memory (SDM). SDM is a massively parallel architecture. The model is very similar in
mathematical terms to the models of the cerebellum proposed by Marr (Marr, 1969) and Albus
(Albus, 1971). In brief, SDM is an associative, random-access memory that uses very large
patterns (hundreds to thousands of bits long) as both addresses and data. When writing a pattern
(n-bit vector of 1 & -1 elements) at an address in the memory, the pattern is added to existing
information at each of many nearby memory locations within a given Hamming distance. Each
storage location in the SDM is a set of n counters. When reading from an address in the memory,
information stored at nearby memory locations (within the same Hamming sphere) is pooled (the n
bits of each location added in parallel) and thresholded for output (output in the i-th bit = 1 if the
sum of i1-th bits > 0, and = -1 otherwise). The SDM is of interest due to its inherent ability to store
sequences of patterns and to “predict” (recall) the remaining portion of a sequence when prompted
by an earlier segment of the sequence. To store such sequences, SDM uses information about its
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immediate past. This information is stored in SDM using “folds”. A k-fold system contain the
time history of the k-1 previous time steps (Figure 12.4).
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Figure 12.4:  Kanerva’s sequential SDM

Transitions in a modified Sparse Distributed Memory -- a three-fold memory for sequences.
(Adapted from Kanerva, 1888.)

While the SDM is mathematically very elegant and computationally powerful, the proposed
neural plausibility of the model is questionable, Kanerva has investigated a possible mapping of the
SDM on the mammalian cerebellum, If adequate, such a mapping would be very important and can

computers. However, the assumption that Purkinje cells in the cerebellum can serve as address

decoders is highly questionable, since the information which they receive through mossi fibers and
climbing fibers can hardly be encoding addresses,

A limitation of Kanerva's algorithm is that it does not allow retrieval of sequences at different
rates and sequences with missing steps. In a simple extension on Kanerva’s model, Keeler has

proposed the addition of time-delay terms with wei ghts which are “smeared out” in time to achieve
this functionality (Keeler, 1988).

The KATAMIC memory, which was conceived independently of Kanerva’s SDM, has a
number of similarities to it, Here the former is compared to the latter in terms of architecture and the

essential differences are pointed out. The mathematical tools used 1o assess SMD’s capacity can be
applied to the KATAMIC model.

(1) The number of predictrons corresponds to the dimensionality of the n-bit vector stored in
each location of the SDM.

(2) The spatial time constan: Ts corresponds to the radius of the Hamming sphere in the SDM.
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(3) The values of the fields in the n-bit input vector (0,1) in the KATAMIC memory map to (-
1,1} in SDM.

(4) The process of computing the difference between the P-ltm & n-ltm is analogous to the
process of reading from SDM (thresholding of the pooled vector). Notice, however, that there is no
analog of the dot-product between the stm and the (p-n)-ltm in SDM.

(5) The stm in the predictrons does not have a direct analog in SDM but functionally can be
mapped to the folds. The temporal decay constant Tt of the sim maps to the number of folds in
SDM. Keeler’s “time-smearing” enhancement of the SDM brings it even closer to the KATAMIC
memory.

12.5.2 Comparison of KATAMIC and Eiman’'s SRN model

While the efforts in inventing novel and more powerful neural network models have been extensive,
little has been done in terms of comparative assessment of their strengths and weaknesses. For
instance, only few studies have been done to compare Al and connectionist approaches with
learning from examples (Fisher and McKusick, 1989; Mooney et al., 1989). The number of
comparative studies between neural net models is also limited (Keeler, 1988).

Sequence processing networks form a specific class of connectionist models. In general these
networks fall into two categories -- synchronous updating networks (SUNSs) and asynchronous
updating networks (AUNs) (D'Autrechy and Reggia, 1989). SUNs are characterized by the fact
that activation values on the nodes are updated at each clock cycle (Kohonen et al., 1989; Kohonen,
1984; Kanerva, 1984; Kanerva, 1988; Rumelhart et al., 1986; Jordan, 1986: Pollack, 1986; Elman,
1988; Shimohara et al., 1988; Nenov, 1990). The majority of these nets use error back-propagation
as a learning mechanism (Rumelhart et al., 1986). Exceptions are the Kohonen'’s model which uses
a Hebbian learning mechanism (Hebb, 1949) and the recently proposed KATAMIC model (Nenov,
1990) in which a novel, more complex, neurally inspired learning mechanism is adopted. AUNs,
on the other hand, are characterized by the fact that the node activations are not updated
synchronously (Buhmann and Schulten, 1987; Buhmann and Schultan, 1988; Amit, 1988:
Kleinfeld, 1986; Sompolinsky and Kanter, 1986: Tank and Hopfield, 1987; Bell, 1988; Peretto and
Niez, 1986; Willwacher, 1982). These networks can be regarded as modifications of the classical
Hopfield-Little-network models (Hopfield, 1982; Hopfield, 1984; Litde, 1974:; Little and Shaw,
1975). The classical models which have symmetric weights and operate within a noise-free space
cannot be used as content addressable memories for temporal patterns. Such spin-like networks,
however, can realize storage of temporal patterns if the synaptic weights are sufficiently non-
symmetric and noise is introduced in the system. The sequential order of stored patterns in these
models is a consequence of the asymmetry of the synapses, which provide direct projections
between equilibrium states of the network. The transitions between the states are noise triggered.

Both the SUNs and the AUNs have problems along different functional dimensions
(D'Autrechy and Reggia, 1989). Recently, several attempts have been made 1o bring these two
classes closer together (Puark. 1988). A type of hvbrid architecture, as it was pointed out by
D’Autrechy and Reggia, may incorporate the best features of each of them.

Methods

Our choice was based on the relative simplicity and popularity of this SRN model as well as on the
availability of results from several experimental studies. While the KATAMIC memory has not yet
been used extensively by the neural network community, and therefore only variations of the basic
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architecture is at hand, the SRN model has different variants (cf. Amit, 1988; Elman, 1988; Mozer,
1988, Pearlmutter, 1988, Pineda, 1987a; Pineda, 1987b, Rowher and Forrest, 1987; Servan-
Schreiber et al., 1988; Sompolinsky and Kanter, 1986; Stornetta et al., 1987: Williams and Zipser,

Comparisons of KATAMIC and SRN models were done along a number of functionally
relevant axes including prediction accuracy, length of training, and memory capacity. Network
implementations with comparable structural complexity and resource utilization (# of links & # of
state variables, nodes) were used. The implementation details of both the KATAMIC and the SRN
used in this study are described farther in this section. The data sets, the design, the motivation,
and the results of the individual experiments are discussed below.

Elman’s simple recurrent hetwork (SRN)

Elman’s SRN neural net has a three-layer feedforward. architecture (Figure 12.5) and is a

weights of value 1. They project back to the hidden layer in a fully connected fashion via trainable
weights. The activation of the context units 1s set initially to 0.5 which represents a “don’t know”
state, since the activation values vary 1 the range of 0.0 t0 1.0. The weights between the input and
hidden, context and hidden and hidden and output layers are trained using the error back-
propagation method. The objective of the network training is such that each pattern in the input
Sequence can produce an output pattern €qual to the next pattern in the sequence. This is achieved
by propagating back to the network an error signal which at each time cycle is calculated as the
difference between the next pattern in the input and the activation of the output layer obtained
through the forward propagation of the present input pattern,

OUTPUT
LAYER

be

HIDDEN

CONTEXT
LAYER

Figure 12.5:  Elman’s network
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A schematic diagram of the simple recurrent network {SRN) mode! (Eiman 88). Four layers
of neurons labeled: input; context: hidden; and output are presented as shaded circles.
Different shades of gray are used for units that belong to different layers. In the forward
path {from input to hidden; from context 1o hidden; and from hidden to output fayers) the
connectivity is full (i.e. each neuron in the layer of origin projects 1o all neurons in the
destination layer via modifiable synaptic weights). The projections from the units in the
hidden layer to the context layer are topology-preserving, i.e. one to one. In the drawing,
tor the purpose of clarity, connections from only one representative neuron for each layer
are shown.

Implementation of KATAMIC and SRN on the CM-2

The KATAMIC memory which was discussed in Chapter 8§ has 64 predictrons with 512 dendritic
compartments (i.e. a total of 32,768 compartments). The p-ltm & n-ltm were initially set to 0.5 and
were continuously updated but not reset during the learning process. The initial value of the stm in
each DCP was 0.001. It was updated at each time cycle and reset at the end of each sequence. At
each time step the following performance features were recorded:

(1) goal -- number of ON bits in the next input pattern

(2) match -- number of ON bits in the present output pattern which match the ON bits in the
next input pattern

(3) spurious -- number of ON bis in the present output which do not match the ON bits in the
next input pattern

In our implementation the SRN* model had 64 input nodes, 256 context nodes, 256 hidden
nodes, and 64 output nodes. All weights were randomly initialized in the range of 0.0 to 1.0 except
the recurrent weights between the hidden and context layers which were set to 1.0. All weights
except the recurrent ones were updated at each cycle. At the beginning of each sequence the
activation of all nodes was reset to 0.5. The learning rate was set 1o (.25. At each time step the
following performance features were recorded:

(1) goal -- number of ON bits in the next input pattern

(2) match -- sum of output unit activation in the network-generated present output pattern for
those output units which match the ON bits in the next input pattemn

(3) spurious -- sum of activation in the network-generated present output pattern for those
output units which match the OFF bits in the next Input pattern

Detailed information about the CM mmplementation of the KATAMIC and the SRN networks is
presented in Table 12.1.

-

* The code for the RBP model was written by Walter Read.
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#links (weights)

input-> hidden 64'256 =16,384
context->hidden 256"256 =65,536
hidden->context (setto 1) 256"1 = 256
hidden->output 256*64 =16.384
Total (each link has also a delta valuse) = 98,560"2
#state variables (activation)
input nodes = 64
hidden nodes = 256
context nodes = 256
output nodes = _ 64
Total = 640
KATAMIC
¥ links
input->AF synapses (non-modif. set to 1) 64*256 = 16,384
input->PF synapses (Ts non-modif) {1%) of (64*256) x 64 = 10,496
Total =26,880
# state variables
p-itm 64*256 = 16,384
n-itm 64*256 = 16,384
stm 64"256 = 16,384
Total =49 152

Table 12.1:  Implementation details of the KATAMIC & SRN models
Data sets

The sequences used in the experiments were composed of binary vectors (0 & 1 code). Various
structured and random distributions of the active (ON or 1) bits were used. A random number
generator was used to produce the sequences with 10% 1-bit-density for experiments 1 and 2. The
10 sequences used in experiment 3 were generated by permuting 10 random patterns of 10% 1-bit-
density.

Experiments

Essential requirements for any kind of experimental comparison is that the system-dependent
parameter settings are justified, and that the experimental paradigms and data encoding chosen for
both systems are fair. We must be also aware of the fact that each system may be superior at
different performance characteristics (e.g., correciness vs. cost). To compare the speed and
accuracy of sequence learning in the two models, three separate experiments were run. In the first
experiment both models learned a single, 10 steps long sequence composed of randomly generated
binary patterns of 1-bit-density 10%. The second experiment tested both models in learning of 10
randomly generated sequences of 10% I-bit-density. In experiment three the models again
attempted to learn 10 sequences, however this time sequences 2 through 10 were generated by
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random permutation of the patterns in sequence 1. Hence, this experiment was designed to test the
performance on correlated sequences.

Experiment 1: Learning a single sequence

A single randomly generated pattern sequence of 1-bit-density 10% and 10 steps length was
presented to the models multiple times (10 times for the KATAMIC model and 100 times to the
SRN model). During the learning, the accuracy of the predictions made by both models was
recorded.

Experiment 2: Learning a set of randomly generated sequences

Ten sequences of length 10 and 1-bit-density 10% were presented to each of the models 10 times in
sequential order. The quality of the predictions made for one (the first) of these sequences was
monitored. NOTE: From a statistical point of view all sequences were equivalent and it was
sufficient to monitor the behavior of the models for only one of the sequences. The criteria for
correct (good) performance were: a) none or very few misses, b) low (how low) number of
spurious.

Experiment 3: Learning a set of correlated sequences

In this experiment again ten sequences were learned but they were generated by permuting ten
randomly generated patterns of 1-bit-density 10%. Both network models were exposed to 100
repetitions of the whole set of sequences.

Results
Experiment 1: Learning a single sequence of length 10.

The results of this experiment from the KATAMIC and SRN runs are presented as sets of density-
plots on Figure 12.6A (KATAMIC: match/goal), Figure 12.6B (KATAMIC: spur/goal), Figure
12.6C (SRN: match/goal), Figure 12.6D (SRN: spur/goal). For the KATAMIC model the
predictions become effectively perfect (1.0) and stable after only 2 repetitions (Figure 12.6A). At
the same time the number of spurious goes practically to zero (Figure 12.6B). On the other hand,
after about 20 repetitions the SRN model reaches an average accuracy level of only 0.7. This
accuracy does not improve significantly during the next 80 repetitions and in fact has a tendency
towards deterioration (Figure 12.6C). Also the predictions made by the SRN model are very
“choppy” (Figure 12.6C). The amount of spurious is tolerable (Figure 12.6D).
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Figure 12.6: Learning a single sequence of length 10

On the X-axis we piot the sequential steps in any particular sequence and on the Y-axis the
number of learning trials (i.e. repeated exposures of the network to the sequence). Two
separate measures are plotted for each experiment. {1) The ratic of mateh to goal, and
(2) the ratio of spurious 1o the difference of the total number of I/O bits and the goal.
Both of these measures take vaiues between 0 and 1. In the plots of the match/goal,
the bright end of the gray-scale represents accurate predictions (i.e. the match is close to
the goal), white the dark end represents poor prediction quality (i.e. the match is smail as
compared 10 the goal). The opposite is true for the plots of the spurious/goal. Here
the bright end of the scaie shows multiple spurious -- poor performance.

Experiment 2: Learning 10 random sequences of length 10.

The results of this experiment are presented on Figure 12.7A (KATAMIC: match/goal), Figure
12.7B (KATAMIC: spur/goal), Figure 12.7C (SRN: match/goal), Figure 12.7D (SRN:
spur/goal),
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Figure 12.7: Leaming 10 random sequences of length 10

The interpretations of the gray-scale and axes labels are the same as in Figure 12.6.

For the KATAMIC model the predictions effectively become perfect (1.0) and stable after 6
repetitions (Figure 12.7A). Also, at each repetition the numbx; of spurious decreases after the first
few steps of the sequence -- the time necessary for the memory 10 “recognize” the sequence (Figure
12.7B). The SRN model reaches a peak accuracy of only 0.33 within the first 100 repetitions and
the predictions are very “choppy” (Figure 12.7C). '

Experiment 3: Learning 10 correlated sequences of len ath 10,

As expected, both models exhibited worse performance on coriclated sequences. However, while
the SRN model did not show *significant* learning during 101} repetitions of the sequences, after
15-20 repetitions the KATAMIC memory learned the sequence~ with 0.96 accuracy (Figure 12.8A)
and about 0.02 spurious (Figure 12.8B).
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Figure 12.8: Leamning 10 correlated sequences of length 10

A) match; B) spurious. The interpretations of the gray-scale and axes labels are the same
as in Figure 12.6.

NOTE, that for any sequence in this set some steps are harder to learn than others. For the
different sequences in the “permuted” set the hard-to-leam steps are different. This, of course, is a
direct reflection of the relations between the different sequences (i.e. that they are correlated).
Therefore, if a given step contains the same pattern in several different sequences which is followed
by different patterns in the next step, then such a step will be more difficult to learn than if the same
step contained a different pattern in the different sequences.

Discussion

Several system dependent characteristics may account for the observed performance differences.
Notice that with the SRN network parameters which were chosen (see Table 12.1), the network
performance in experiments 1 and 2 reached a plateau after the first few dozen repetitions. For this
reason, experiments with thousands of learning trials (as commonly done in SRN network training)
were not run.

It seemns that the superior performance of the KATAMIC memory can be explained by the fact
that during sequence processing the network maintains information about the spatial-temporal
relations of the ON bits within several previous input patterns. The closer time-wise a previous
input is to the present input the more it affects the current prediction. This short-term information is
maintained within the stm. In contrast, the SRN model maintains information in the context units
only about the input pattern which immediately precedes the current input pattern. This major
functional difference between the two models can explain the vastly different performance on the
data set of experiment 3 (correlated sequences). For successful performance of thi- test a mode]
actually needs to maintain information on several previous time steps.

Another major advantage of the KATAMIC model is thai the predictions which it makes are
“absolute™ in the sense that they are either 1 or 0. In the case of the SRN model, on the other hand,
a threshold needs to be chosen beyond which an activation value at an output node can be
considered as a positive prediction (sometimes two thresholds: high for 1 and low for 0, can be
used). The choice of threshold is arbitrary,

It is important to notice that for both models the experiments were designed so that the actual
predictions made were never used as consecutive input to the memories. Using the actual
predictions made is of importance if we want 10 test the sequence completion ability of the models.
As a direct consequence of the far better level of prediction accuracy which can be reached by the
KATAMIC model, this model can be successfully used for learning and recall of actual individual
sequences. The SRN model, on the other hand, even if we ac cept a generous (0.5 threshold level
for the output unit activation, has such poor performance thal it seems impossible to be used for
recall of longer sequences from initial segments (cues).

Conclusions

The results of this comparative study (which uses systems of similar order of complexity and same
problem sizes) indicate that the KATAMIC memory performs significantly better than the SRN
model along all functional dimensions.
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In terms of accuracy of predictions made, as it can be seen from experiment 1, the SRN model
never reaches the performance level of the KATAMIC memory. On average, within 100 repetitions
the SRN model reaches an accuracy level of 0.7 and the predictions are very “choppy”, while the

accuracy of the predictions made by the KATAMIC memory in the same task are almost perfect
(0.98) and very stable.

In terms of speed of learning the KATAMIC model is also better. As it can be seen also in
experiment 1. While the SRN model took about 20 repetitions to achieve its asymptotic level of
accuracy (0.7), the KATAMIC model required only 2 steps. While from a computational point of
view, with the inroduction of fast parallel computers, the actual learning speed may seem not to be
of importance, for real-time applications such as adaptive speech recognition and robotics the
advantages which a fast learning algorithms offers are still very valuable.

In terms of memory storage capacity, measured here as the number of sequences which can be
learned and retrieved satisfactory (with acceptable accuracy and a tolerable amount of noise), the
KATAMIC model is again superior. While extensive testing of the memory capacity of both models
was not performed, the results of experiment 2 are quite revealing. While the KATAMIC memory
managed to learn 10 sequences after about 6 repetitions and was able to recall each one of them
perfectly after the second step on average, the SRN model periormed very poorly with an average
prediction accuracy of 0.35 which did not improve substantially during the first 100 repetitions.

12.5.3 KATAMIC vs TDNN
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Figure 12.9:  Architecture of the TDNN

Dynamics of the four layer TDNN architecture in the process of recognition of the
phonemes “B", “D", and “G". The input layer (containing 16 units encoding consecutive
values of 16 melscale spectral coefficients computed at 10 msec rate) is fully connected to
the 8 time delfay units in the 1st hidden layer. These units are connected to 3 TDNN units
in the 2nd hidden layer which in turn are connected to the 3 output units -- one for each
phoneme. The sizes of the black and gray squares for each unit encode their activation
values. {Reproduced with permission from Waibel et al., 1987.)

Another neural network for sequence processing, called the Time Delay Neural Network
(TDNN), was proposed by Alex Waibel (Waibel et al., 1988a; Waibel et al., 1988b; Waibel, 1989)
and is successfully used for speech processing at Advanced Telephony Research (ATR), Osaka and
Carnegie Mellon University (CMU). TDNN is a multi-layer perceptron type of device which uses
modified McCulloch & Pitts neurons as basic processing units. The modification consists of
allowing each unit to receive inputs measured at several consecutive time steps (usually 2 to 5) via
separate, modifiable weighted connections (Figure 12.9). The layers are fully interconnected. This
design allows the TDNN to relate and compare current input with the past history of the events.
Another important feature of this model is that its hierarchical structure allows higher layers to attend
to larger time spans which leads to a division of labour between the layers -- local short duration
features of the input are formed in the lower layer while more complex longer duration features are
learned at the higher layer. A major disadvantage of the model is its learning algorithm -- back-
propagation (Rumelhart et al., 1986). Consequently, learning of a relatively simple task (as
compared to the general speech recognition task) -- e. g, speaker-dependent recognition of the
phonemes “B”, “D”, and “G” in varyin g phonetic contexts, takes 20,000 to 50,000 iterations on a
supercomputer -- several days (Waibel et al., 1987).

12.6 Other models of selective attention

12.6.1 Fukushima’s Neocognitron

A mechanism for control of visual attention was proposed by Fukushima in his “Neocognitron”
model (Fukushima, 1980; Fukushima, 1987a; Fukushima, 1987b) -- an extension of his earlier
“Cognitron” model (Fukushima, 1975). The Cognitron as well as the Neocognitron are
multilayered neural networks with strong self-organizing capability modeled after the anatomy and
physiology of the visual system. They consist of several modules {Ug, Uj, Uz, Us] connected in
series (Figure 12.10). In accordance with Hubel and Wiesel's view (1962) on the visual system,
the models have a number of “s-cells” (organized in layers U, Ugs, Ug3) which correspond to
simple cells in the primary visual system, and “c-cells” (organized in layers Ucg, Ucq, Uga, Ucsz)
having the properties of complex cells. The Neocognitron has been used for recognition of
handwritten characters independently of their location in the visual field. In its most advanced
version, the system is able to sequentially recognize individual characters from a set of overlapping
and noise-distorted characters appearing simultaneously in the visual field. The ability to
sequentially refocus its attention was accomplished by temporary interruption of the feedback from
the higher to the lower layers in the network (the X line in Figure 12.10).
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Figure 12.10: The Neocognitron

Hierarchical organization of the Neocognitron architecture. The white circles represent
neural elements or groups of neural elements. Small shaded circles represent inhibitory
interneurons. Thick wires indicate converging and diverging connections between two
groups of ceils; thin wires indicate one-to-one connections between two corresponding
cells; excitatory synapses are indicated by arrows (small for fixed weights and large for
variable weights); inhibitory synapses are indicated by T-shaped connections (thin for fixed
and thick for modifiable); connections used for gain control are indicated by small black
circles; connections indicating threshold control are indicated by small black triangles.
(Adapted from Fukushima ,1987.)

12.6.2 Crick’s “Searchlight of attention” hypothesis

A neurally realistic model of selective attention -- “the Searchlight of Attention” was proposed by
Francis Crick (Crick, 1984), This is a multi-layer neural network which models part of the visual
pathway in the brain including the Lateral Geniculate Nucleus of the Thalamus (LGN), the
Perigeniculate Nucleus (PGN), and the neocortex (Figure 12.11). The connectivity and dynamics
of the neural elements in this architecture model closely their counterparts in the brain. In this model
attention is defined as increased thalamic input to a patch of neocortex -- a “searchlight beam”. The
searchlight is expressed in rapid firing in a subset of principal thalamic neurons controlled by a
negative feedback from the reticular formation. Due to the specific firing properties of the thalamic
neurons (ability to generate a burst of action potentials as a result of hyperpolarization by reticular
inputs, followed by a 100 msec long refractory period), the searchlight can be tumed off and moved
to the next place in the stimulus space demanding attention. The function of the searchlight in the
NEOCortex is to form temporary neuronal assemblies. Crick suggested that visual binding in the
neocortex occurs in longer intervals of about 50 ms during which bursts of impulses, produced by
“searchlights™ of attention in the thalamus, provide the signal for rapid synaptic changes. This
theory seemts to have electrophysiological support, for instance Dempsey and Morison (Dempsey
and Morison, 1942) observed “augmenting” and “recruiting” waves spreading to the cortex after
thalamic stimulation.

The “searchlight of attention” model was implemented by Nenov and Read and tested on the
CM-2 Connection Machine (Read and Nenov, 1991). Based on our experiments, we can confirm
that the model is capable of generating and maintaining a searchlight for a short period of time. I is
aiso capable of switching the beam from the most intensely firing patch of neurons in the visual
Input 1o the next lower mtensity paich. However, it was not able to continue switching to further
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less intense patches in the input and the temporal discrimination between the patches became blurred
with time. For this reason, and because of its demand of computational time, this model was not
incorporated in DETE (despite our original intention).

Malsburg  (to V2, V3, V4, Vp, MT, IT, etc.) (to Wcmicke"s area &)
synapses (feature extraction comices) (verbal association cortices)
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Figure 12.11: Crick’s “Searchlight of attention™ model

Schematic drawing of the neural architecture supporting Crick’s “searchlight of attention”
hypothesis. A three layer network containing idealized neural elements which correspond
to real neurons in various brain cortices and nucleiis depicted. Cell bodies (shaded circles)
are focated in the corresponding nuclei/cortices (shaded rectangles). Thick arrows
represent excitatory synapses whereas thin arrows represent inhibitory synapses. The
brain structures belonging to two distinct Sensory processing pathways are shown: (1) the
visual pathway (lo the left) includes: LGB -- lateral geniculate body, PGN -- perigeniculate
nucleus, V1 -- primary visual cortex, and (2) the auditory pathway (to the right) includes:
MGB -- medial geniculate body, NRP -- nucleus reticularis proprius, and A1 -- primary
auditory cortex. (Adapted and elaborated from Crick, 1984.)

12.7 Other Systems for Sensory-Motor integration

12.7.1 Darwin I, It, and NIl

A selective recognition automaton based on the principles of neuronal group selection (Edelman,
1987)was constructed by Gerald Edelman, George Reeke, and their colleagues. The neuronal
group selection principle is based on the premiss that the maturation of neural circuits in the
developing brain follows a Darwinian selection process. This process is a sort of competition in
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which a set of random variables are modified by experience and due to selection few of them win
and are potentiated whereas the rest degenerate. As a result of this process the system adapts to the
conditions imposed by environment in which the contest takes place.

The earlier bare-bone versions of the system called Darwin I and II (Edelman and Reeke, 1982;
Reeke and Edelman, 1984) engaged in recognition and classification of patterns. Darwin III
(Figure 12.12) /Reeke et al,, 1989) is provided with three senses: (1) vision -- through a simple
square-shaped retina which has a central (higher acuity) and peripheral (lower acuity) areas; (2)
touch -- mediated by a four-joint arm that had a single pressure sensing device at the end (the
finger); and (3) kinesthesia -- measuring the position of the arm joints in space. Darwin III, whose
basic design principles were re-entrant mappings and neuronal selection contains about 46 networks
(repertoirs), and about 6,000 neurons with 150,000 connections. These networks are organized in
several modules: (1) Oculomotor (OM) system with a main purpose of learning to track moving
objects. In its naive state the motion of the eye is random. After about 2,000 trials the OM System
learns to follow an object that appears in the visual field. The learnin g of this behavior is based on
lateral inhibition between neural groups (a proto-attention mechanism) and depression of activation
of selected neuronal groups. (2) Motor system capable of performing several tasks: (a) Reaching
task -- the arm can move around the visual field und! it can touch objects that are in this field.
Initially the motions are random but with multiple trials during which Darwin is looking at an object
while at the same time €xecuting an arm motion, it learns to reach to an object as soon as one
appears in the visual field. The learnin g of this task is controlled by a cerebelum-like network that
inhibits neural activity going from a motor cortex-like network to a network that models the spinal
cord. The cerebellar network implements the goal to reach by filtering out gestures of the arm that
are inappropriate for reaching. (b) Sensing task -- touching and feeling the object that the arm has
just reached for. (c) Tracing task -- exploration of the object.

Categorization of objects is done by associating the visual representation of object with its tactile
representation (obtained via tracin g). After successful recognition, a reflexive motion is generated
in response (e.g., swat away of a bumpy object -- rejection response).

Environment
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Figure 12.12: Darwin III

The principle functional subsystems of Darwin I1l. For explanation, see text. {(Adapted from
Reeke, Sporns, and Edelman, 1989.)

Darwin III can be compared to DETE along several dimensions. (1) Language: DETE is capable
of handling language whereas Darwin does not take language input. (2) Vision: While Darwin
learns to recognize objects by modifying the strengths of the connections between maps, DETE is
provided with hard-wired feature extraction modules which automatically categorize the features of
objects in various feature maps. A meta-level classification of these maps is done in DETE by
means of the verbal input. (3) Goal-driven behavior: Darwin III was provided with innate goals.
For instance: (a) “seeing is better than not seeing” (i.e. if you are moving from a bright area to a
dark area, go back); (b) “it is better to be close to an object than far from it” (i.e. if you see an
object, reach for it); (c) “it is better to touch than not to touch” (i.e. if you are touching an object,
keep exploring it). These innate goals were implemented by value-sensitive cells which monitor the
environment and evaluate the consequences of Darwins behavior. DETE, on the other hand, in its
current version lacks completely an intentional (motivation or goal /plan) component and operates in
a purely reflexive of filter-like fasion. (4) Moror behaviors: Darwin is capable of actions in
response to external stimuli. For instance it can reject a rough object when it touches one. DETE
does not possess this functionality. (5) Associative memories: Both systems use the association
between two modalities to achieve recognition: in DETE, visual & verbal; in Darwin I visual and
somaestetic (tactile/ kinesthetic).

12.7.2 Gary Drescher

In his Ph.D. thesis from M.LT. Gary Drescher (Drescher, 1991) describes a schema-based
symbolic processing mechanism which operates in a 2-D microworld containing uniform-sized
objects which are able to move but cannot rotate., Drescher’s model, unlike DETE which is
concerned primarily with early language acquisition in humans, focuses on the carly stages of
human sensori-motor integration. The model is an implementation of the cognitive development
theory of Jean Piaget (Piaget, 1952: Piaget, 1954). In computer simulations it addresses the
questions of sensori-motor learning and concept formation. The program, like DETE is
implemented in *Lisp on the CM-2 Connection Machine. It controls a simulated robot that has a
body, a hand, and a visual system. The system Is able to shift its eye forward, backward, left or
right. The visual input (a cross-shaped visoal field composed of 5 foveal regions) of the simulated
robot is designed to provide a bird’s-eve view of its visual world (an array of 5 x 5 = 25 regions),
Each region of the visual world can either contain or not contain an object. Each region of the visual
field (retina) contains information about 16 features (items) of an object present in it (e.g., shape,
texture, color, taste, touch, etc.). The robot’s hand can touch and grasp objects and move them
around by performing sequences of primitive actions including: a) move hand forward, backward,
left or right; b) grasp and ungrasp. There is an initial, bare schema for each primitive action. For
instance, the “grasping” schema asserts that the result of a grasp action is a tactile sensation of the
object in the hand. Learning in this model corresponds to incremental construction of a chain of
interconnected schemas from the 10 mnitially supplied bare schemas. An example of such learned
schema 1s “shift the eye from a given orientation to any other orientation”. While Drescher’s model
can perform a broader spectrum of sensory-motor interactions then DETE, it lacks the ability to
represent events happening in the past or events that are expected to happen in the future. Also,
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since it is not a language acquisition and processing system, it cannot answer questions about the
states of the objects that it can see and manipulate.

12.8 Representation of space & time

12.8.1 George Lakoff

In his book “Women, Fire, and Dangerous Things” George Lakoff presents a theory of cognitive
linguistics (Lakoff, 1987). One of the major conjectures of this theory is that humans reason by
using some of the same mechanisms that are involved in perception. Lakoff provides linguistic
evidence that the humans’ reasoning mechanism can be seen as growing out of perceptual and motor
mechanisms. In a later paper Lakoff argues that cognitive linguistics converges with connectionist
cognitive science in a variety of ways (Lakoff, 1989). More specifically he emphasizes the fact that
the brain uses patterns of activation over topographic maps of the Sensory space to represent the
meanings of sensori experiences. He points out that a particular activation pattern is meaningful
only with respect to the particular map in which it appears. In fact, two activations patterns which
are the same (or very similar) will have completely different meanings if they appear in two different
maps. Their meaning will depend on the sensori features that each of the maps encodes and the
sensory system from which it gets its input, While Lakoff does not suggest a concrete neural
architecture and implementation of these topographic maps, DETE's Visual Feature Planes are in
fact an embodiment of Lakoff’s theory. Indeed, if we compare the organization of the Location
Feature Plane (LFP) to that of the Motion Feature Plane (MFEP) (or the organization of the siZe
Feature Plane with that of the Color Feature Plane) we can see that similar (or even exactly the
same) patterns of activation in the two Feature Planes will have completely different meanings. For
instance, an activation pattern that has four active pixels in the lower left-hand corner of the LFP
will represent an object located in the lower lefti-hand corner. However, in the MFP the same
pattern will represent an object moving fast South-West. Notice, however, that DETE’s feature
maps are not just an implementation of Lakoff’s theory. We have augmented Lakoff’s theory by
proposing that the maps need not be necessarily topological in nature (e.g., the LFP). Instead, they
can be based on any mapping which is adequate for solving of particular task as long as the

implementation of this mapping is neurally plausible (e.g., MFP). Also, DETE’s maps have a
compiex temporal dimension.

12.8.2 Leonard Talmy

In his theory of how language structures space {Talmy, 1983) Talmy focuses on the “fine structure”
that language ascribes to space. Talmy postulates the existence of such “fine structure” arguing that
two sentences such as “The bike is near the house.” and “The house is near the bike.” (which one
would expect to be syvnonymous on the grounds that they represent two inverse forms of a
symmetric spatial relations) obviously do not have the same meanings. These sentences, Talmy
argues, would be synonymous if they specified only this symmetric relation (i.e. the quantity of
distance between the objects). However, in addition to this the first sentence makes the non-
symmetric specification that the house is to be used as a reference point for the bike’s location. The
second sentence makes the opposite non-symmetyic specification. In other words, Talmy assigns
different spatial roles 1o the objects in space depending on the syntactic structure of the utterance. In
his theory Talmy provides a detailed analysis of a variety of examples of spatial relations between
actual physical objects and also of the metaphorical extensions of such spatial relations.
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Like Talmy’s representation, DETE’s representation of space uses spatial roles such as “Speaker
location”, “Event (object) location” and “Reference location” (see section 11.5.2) to capture the
“fine structure™ of the spatial relations between objects. The scope of the spatial relations that DETE
deals with is much smaller than that covered by Talmy and DETE does not deal with metaphorical
extensions. However, unlike Talmy, who proposes a symbolic representation without testing it
experimentally, in DETE we propose and implement a detailed neural representation of the theory
and demonstrate its potential in computer simulations.

12.8.3 Reichenbach

Together with a representation of space, the representation of time is the other most important
component of a cognitive theory. As discussed in section 11.7, most of the current theories of time
representation are extensions of the work of Reichenbach (Raichenbach, 1947), According to this
theory, all temporal relations encountered in narratives can be accounted for in a model which uses
three basic temporal roles: (1) Speech time (S); (2) Event time (E); (3) Reference time (R). DETE
provides a connectionist implementation of Reichenbach’s abstract theory. It represents each of the
temporal roles as an activation of neural-assemblies in a specific plane of the Temporal Memory (see
section 9.3). Specifically, Speech time (S) is represented by the activation generated in the TP-0 of
the Verbal Memory by the verbal input or by DETE itself during the generation of a verbal response,
The Event time (E) is represented as a pattern of activation generated in the TP-0 of the Visual
Feature Memories by the visual input -- a sequence of frames that capture the event. The Reference
time (R) is also represented as a pattern of activation in the Visual Feature Memories. However,
this activation is induced by the “referent” visual event. In DETE’s implementation the temporal
aspect (or temporal focus) is always directly related to the time of the Referent event (R).
Sometimes, all three roles are represented in the same Temporal Plane (e. g., in the case of present
tense), in other cases two of them can share one and the same TP while the third is represented in a
different TP (e.g., future tense, present perfect tense, etc.). In yet other cases, each of the roles is
represented in a different TP (e.g., future perfect tense, past perfect tense, etc.). This connectionist
representation of time allows the model to learn the meanin gs of verb tenses.

12.9 Other work in symbol grounding

12.9.1 Josep Maria Sopena

Josep Maria Sopena (Sopena, 1988) used a modification of Servan-Schreiber’s (Servan-Schreiber
et al., 1988), and Elman’s (Elman, 1988) architectures (3-layer neural network made up of 72
input, 35 hidden, and 8 output nodes) to associate visual patterns to their verbal descriptions. The
visual patterns consist of objects (pyramids, cubes, etc.) having simple features (red, green, etc.)
and arranged in a variety of spatial relations (behind, on, next to, etc.). Each visual pattern is
associated with a verbal description composed of a five word long sequence of the form: ADJ
NOUN VERB ADJ NOUN (c.g., red pyramid is_on_a green block). Sopena used a small set (22)
of training visual/verbal pairs and tested the model on a larger set (42 pairs). The experiments were
focused on the generalization capacity of the network, the learning of new concepts, and on the kind
of grammar which the network acquired. In comparison to DETE, Sopena’s architecture is much
stmpler. For instance, it does not have separate memory modules {(e.g., verbal, visual, short-term,
long-term, temporal memory, etc.). As a result, it cannot handle most of the tasks on which DETE
was tested such as learning about motion, learning the meanings of various verb tenses, etc.
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12.9.2 The Lo miniature language acquisition project

This research project, which is currently underway at the International Computer Science Institute
(ICSI Berkeley, CA), is lead by Jerome Feldman and George Lakoff (Feldman et al., 1990;
Hollbach Weber and Stolcke, 1990: Regier, 1991; Stolcke, 1990). The Lo project seeks to develop
computational models of language acquisition in the semantic domain of spatial relations between
geometrical objects in two-dimensional scenes. The major achievements of this project are
discussed below.

Andreas Stolcke

Learning feature-based semantics usin g Simple Recurrent Networks (SRNs) was the objective
of Stolcke’s studies (Stolcke, 1990). In these studies, sequential natural language input was
mapped into static feature-based semantic output. The language taught to the network is a restricted
version of the Lo language -- an artificial language specified by Feldman and his colleagues
(Fahlman, 1988; Feldman et al., 1990) which is a subset of English. Stolcke’s networks are simple
extensions to the original Elman’s SRN model. They are used in two sets of experiments exploring
the task of extracting semantic features from sequential word input: (1) learning of sentences
containing a single predicate applied to multiple-feature objects (e.g., a light circle touches a small
square }; (2) learning of sentences with embedded structures (e.g., a triangle touches a Square above
a circle). The results of these studies show that SRN can indeed learn (with fair amount of
robustness) to incrementally assemble complete (static) semantic representations (feature vectors)
from word-by-word presented simple declarative sentences, However, the results of the second set
of experiments (with sentences containin g embedded structures) were less satisfactory. SRNs were
unable to correctly process center-embedded PPs (e.g., a triangle touches a circle below a
Square). This inability was due 1o the fact that SRNs cannot produce a hierarchical representation
of the semantic space (which seems to be necessary for the performance of this task). The network
was able, however, to handle multi-leve] sentence-final embeddings (e.g., g triangle to the left of
a circle touches a square) because it was able to maintain information about the immediate past.

A general problem with the choice of representations taken in this study is that unlike DETE the
semantic representations in Stolcke’s System are not generated during the learning process (i.e.
these symbols are not mapped to any perceptual information from the visual world) but are
generated a priori in a random fashion. Such an approach does not allow capturing of real meanings
of the words since the randomly generated representations do not reflect the actual relations between
the objects and features in the physical world. Another weakness of this approach is that the output
(semantic) representation is static and there are no temporal cues concerning the correlation between
the input elements (words) and the target (semantic) representations. As a result Stolcke’s system
cannot learn about a world in which there js motion, interaction among objects and feature changes.

Terry Regier

As a part of the same Ly research effort (Fahlman, 1988), Regier developed a neural network
model based on a quickprop architecture (Fahlman, 1988) which learns to associate scenes
containing several simple objects with terms that describe the spatial relations among the objects in
the scenes (e.g., above/below, on/oft, inside/outside, Io_the_]eft_of/to_the_right__of) (Regier,
1991}, As in our initial experiments on learning spatial lexemes (see section 11.5.2), Regier
considers the situation when the feature space 1s partitioned by the words into mutually exclusive
regions. Ina number of experiments Regier demonstrates that the System can generalize the Jearned
words so that thev can be applied 10 new siwations. In order to avoid overgeneralization or
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“roughness” in the categorization of the feature space, Regier uses each positive evidence for a
particular spatial arrangement as an explicit, weak negative evidence for all other spatial
arrangements. The choice of this approach was based on observations that children acquire
language apparently without the benefit of negative evidence (Braine, 1971; Bowerman, 1983:
Pinker, 1989).

Like Regier’s system, DETE uses each positive evidence (e.g., an instance of a particular object
with its features or a relation between two objects) as a weak negative evidence for the rest of
possible objects or relations. This functionality is accomplished by the “resource management” step
of the learning algorithm for the KATAMIC sequential associative memory (see Formulae 8.9a&b
in section 8.2.1(5)). A significant difference between DETE and Regier’s model (with respect to
the representations of spatial relations) is that while DETE learns the meanings of words like
“above” with respect to a horizontal line passin g thru the center of the Visual Field, Regier's system
is more sophisticated in categorizing spatial relations. For example, by using actual 2-D objects as
landmarks (instead of an imaginary line) it manages to partition the visual field in a more adequate
way.

Another parallel between DETE and the Ly project is that the grammatical structure of the
FIRLAN language used in DETE is similar but more complex (has a larger set of grammatical rules
and a larger lexicon) than the Lo language used in the domain of simple two-dimensional static
scenes considered by Feldman and co-workers (Feldman et al., 1990).

12.9.3 MAIMRA & DAVRA

In an attempt to address some of the issues related to language acquisitions in children, Jeffrey Mark
Siskind at M.LT. developed a system called MAIMRA (Siskind, 1990). MAIMRA is a symbol
manipulation system composed of the traditional parser, linker and inferencer. It receives two types
of inputs: (1) descriptions of sequences of scenes depicted via a conjunction of true and negated
atomic formulas, and (2) time ordered sequence of sentences which describe the events taking place
in the scenes. The output of this system is a lexicon consisting of the category and the meaning of
each word in the verbal input. This output is generated by a process of reverse application of a
compositional semantics linking rule followed by constraint satisfaction.

Recently MAIMRA was extended to DAVRA (Siskind, 1991b; Siskind, 1991a). DAVRA relies
on a collection of syntactic and semantic principles, collectively termed Universul Grammar to
determine the syntactic category and meaning of the words. DAVRA is more flexible than
MAIMRA in the sense that it does not assume a fixed, built in grammar prior to lexical acquisition,
but rather it uses a parameterized variant of Siskind's theory on which MAIMRA is based and
acquires the parameter values during the training sessions. The system was tested on sets of few
English and few Japanese sentences.

Unlike DETE, both MAIMRA and DAVRA do not have 2 perceptual mechanism; both the
linguistic and non-linguistic input are presented in symbolic form 1o these systems. For instance,
the symbolic description of a scene in the form (BE(cup,AT(John)) A —BE(cup AT(Mary)));
(BE(cup,AT(Mary)) A —BE(cup,AT(John))) is paired with the sentence “The cup slid from John
to Mary”,

12.9.4 RobotWorld

Patrick Suppes and his graduate students at Stanford University have developed a natural language
acquisition system itmplemented in RobotWorld (Suppes et al., 1991). Like DETE this system
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focuses on learning natural language about spatial relations in a dynamically changing visual
environment. Like Siskind’s system, this system is symbolic in nature (implemented in Lisp) and
uses extensively the inherent power of Lisp for symbol manipulation. Each experimental trial with
this model consists of a verbal input and a corresponding action performed by a simulated robot.
During each trial the system’s memory is modified -- the system learns. The learning consists of:
(1) Formation of associations between words (for objects, properties and relations) and internal
symbols (which represent various categories). (2) Derivation of the grammatical form (e.g.,
"ACTION the OBJECT") from the verbal instance (e.g., “Get the screw!”). The acquisitton of new
grammatical forms is done by making probabilistic associations between words in the utterance and
internal symbols. (3) Storage of the verbal input in a short-term memory for the duration of the
trial. Suppes’ system is currently capable of learning about 50 words in 360 three-word long
sentences in English, German, Chinese, and Russian.

Despite its symbolic basis, Suppes’ system and DETE share certain important commonalties,
€.g., no prior linguistic knowledge is assumed. Both systems learn the words for specific objects
or spatial relations. The set of possible mappings of the words are given a priori to the systems.
However, DETE assumes prewired features in visual feature memories -- distributed
representations, whereas Suppes’ System assumes internal language -- symbolic tokens.

Both systems associate verbal and non-verbal inputs in the process of language acquisition.
DETE associates visual scenes and verbal descriptions whereas Suppes’ system associates verbal
stimuli and (user-coerced) actions which are used to correct mistaken actions. Also, both systems
are able to acquire simple grammars, which mostly contain grammatica] forms defining word order
in short sentences. Unlike DETE, however, Suppes’ system acquires only a “comprehension
grammar” whereas DETE also acquires a “production grammar”. In other words, DETE is capable
not only of “understanding” grammatically correct verbal inputs but it can also generate
grammatically correct verbal outputs in response to questions. Suppes’ system, on the other hand,
is mute and can only learn to execute verbal commands.

12.10 Symbolic models of NLP

A major approach taken by symbolic models of natural language processing (NLP) is based on
Script Theory (Cullingford, 1978). (Other approaches include: goal/plans, beliefs and
attack/support). The Script Theory is based o the construction of a Conceptual Dependency (CD)
representations of natural language (Schank and Abelson, 1977; Schank et al., 1981). A NLP
System based on this theory usually contains in memory a number of scripts and the language input

to a scriptapplication system is matched to the known scripts after it has been parsed into a
conceptual representation,

Among the most comprehensive models which used the script technology for NLP are SAM
(Script Applier Mechanism) (Cullingford, 1978), FRUMP (Fast Reading Understanding and
Memory Program) {DeJong, 1979, BORIS (Dyer, 1983). The major shoricomings of the
traditional symbolic NLP models is that they are very fragile and knowledge-limited. In other
words, the data processing mechanisms which they involve are usually very specific to domain of
knowledge for which particular svstem has been designed. Also, these mechunisms have to be
hand-crafied and with some exceptions (e.g.. JPP which learned to generalize terrorism stories
(Lebowitz, 19803) the models cannot learn, i.e. modify their behavior depending on their
experience. The representations of new concepts have 1o be hand-crafted by the programmer. The

229



performance spectrum of such rule-based systems is limited by the set of rules which the system
designer has provided. Also, their ability to generalize is often based on complex rules which
require substantial knowledge engineering.

DETE shares some of the limitations of symbolic models. For instance, it operates in a limited
domain -- the Blobs World. In fact DETE is even more domain-limited than the symbolic NLP
systems since it cannot operate in the task domains that symbolic systems typically can (e.g.,
shopping, restaurants, castles and dragons, visiting dignitaries, legal cases, etc.). However, a
significant advantage of DETE is that it can learn from experience. Once its architecture is
constructed, the representations of new instances are automatically extracted and new concepts are
learned by experience. Also, as DETE’s visual architecture is expanded, it will be able to deal with
structured objects and more complex interactions between them. Then it could learn about
restaurant scripts, knights fighting dragons, etc. simply by viewing visual scenes of such event
sequences and associating them with verbal descriptions.

12.11 DETE versus language acquisition in children

Children do not start to learn language all at once (Bruner, 1983). A number of psychological
experiments concerned with language development in children have shown that there is a phase in
early development, when the child communicates with its parents by means of gestures such as
reaching, smiling, pointing and babbling vocalizations. This type of communication occurs in the
form of a dialog. An important and necessary characteristic of this pre-language type of
communicative behavior is the innate ability of the child to direct and maintain attention to objects in
the environment to which the parent points (i.e. shared object of attention) (Bruner, 1975; Ninio and
Bruner, 1977). This behavioral characteristic is fundamental also for the DETE model.

In the field of theoretical linguistics there have been several theories concernin g the relationship
between language and cognition in general and visual perception in specific. A group of researchers
lead by Chomsky (Chomsky, 1986} have advanced the theory that language is an independent
aspect of intelligence and relies only on lan guage-specific mechanisms. This theory is founded
largely on the belief that humans possess an innate grammatical ability which is universal. A second
group of researchers including Piaget (Piaget, 1951) and Bates (Bates, 1976) take an opposite
stance by suggesting that cognitive processes are primary and that language is fully dependent and
emerging from already developed cognitive concepts. Middle-ground hypotheses, that argue for the
significance of the interaction between language and non-linguistic cognition, have also been
advanced. While it is difficult 1o take a definite position with regard to any of these theories (since
none of them has actually proposed a realistic functional model of language acquisition), and since
there is a possibility that all of them are to some extent correct or can even be regarded as alternative
and mutually non-exclusive interpretations of the same phenomenon, in the development of DETE
we have leaned towards the latter ones because they seem to have much stronger support from
experimental studies (Andersen et al., 1984; Dunlea, 1989).
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13 NEUROPSYCHOLOGICAL & NEUROBIOLOGICAL INSIGHTS

DETE’s structure and functions were inspired by a number of general principles underlying the
functional organization of the language, vision, attention, memory, and motion related areas in the
brain. However, with the exception of the memory mechanisms (which are based on neural
networks interpretable from a physiological perspective), none of DETE’s peripheral modules have
been implemented as realistic neural networks (of the types found in the cortical and subcortical
areas of the brain}. In other words, all modules except the memory modules are implemented as
procedures and therefore the model as a whole is a hybrid one. This chapter describes in some
detail the currently available neuroscientific knowledge about the brain systems involved in vision,
language processing and attention and relates it to DETEs architecture and function. It also outlines
future directions of DETE’s development in terms of a more realistic neural architecture and
function. Such an effort is relevant and necessary since the ultimate question of our research is how
does the human child (its nervous system) acquires language and not just how can we build any
device that mimics human language processin g abilities.

13.1 Neural codes -- Discussion of representations

The question of what constitutes meaningful signals in different parts of the brain, or in other
words, what is the physical embodiment of the units of information, is still open. Most neural
network models assume that the average frequency of action potentials is the carrier of information
between neurons. This “frequency coded” representation of the information flow ignores the exact
timings of the individual firings of the neurons. While frequency coding seems to be a good
representation of information for some parts of the nervous system (e.g., at the neuro-muscular
junction), for other areas of the brain precise time of spike arrival can make a crucial difference.
Since Action Potentials (APs) are always carried along bundles of nerve fibers (axons), the AP state
of a given nerve at a particular time and location along the nerve (cross section) can be regarded as a
pattern of 0s and 1s (i.e. silence or APs) and such representation can be called “pattern coding”. A
classical example of pattern coding is that of pre-synaptic inhibition, a widespread mechanism in the
brain (Kandel and Schwartz, 1985). The importance of precise timing has been demonstrated in
several studies (Segundo et al., 1963: Segundo and Kohn, 1981; Carr and Konishi, 1988). Recent
evidence of phase-locked activity in the visual cortex is also very suggestive (Gray et al., 1989;
Gray and Singer, 1989; Grav et al., 1990; Eckhorn et al., 1988).

DETE uses this second tvpe of representation -- pattern coding. Henceforth, what is important
for DETE is not the average frequency of APs along a wire but the relative timing of the APs.

13.2 Visual Perception
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The retinal ganglion cells are the ultimate source of all information flow from the retina to
the lateral geniculate bodies (LGBs). The cells in the LGBs as well as the ganglion cells are
of two types which differ in size, connectivity patterns and function -- small cells
(parvocellular division) and large cells (magnocellular division). The LGBs project to the
primary visual cortex (area V1). The parvocellular division projects to “blob” and “inter-
blob" areas while the magnoceliular division projects primarily to area 4B. These three
cellular divisions in turn project 1o the “thin stripe”, “pale(inter)stripe”, and the "thick stripe”
areas of the secondary visual cortex (V2). Here functions are segregated as shown in the
figure. Further projections lead to higher associational visual cortices in the occipital,
temporal and parietal lobes (IT -- inferotemporal cortex, PP -- posterior parietal cortex).

The human ability to see is made possible by the brain’s capacity to process enormous quantities of
information simultaneously. In the already classical papers of Hubel and Wiesel (Hubel and
Wiesel, 1974; Hubel and Wiesel, 1977), and more recently Livingstone (Livingstone, 1988) it was
suggested that visual signals are segregated and processed by at least three separate processing
systems in the brain, each with its own distinct function. One system processes information about
shape; a second, information about color; a third, information about movement, location and spatial
organization (Figure 13.1). The three systems can be physiologically segregated at the level of the
lateral geniculate nuclei (LGN). Within each of these tracts the visual information goes through a
hierarchy of semi-independent processing stages (Van Essen and Maunsell, 1983). There are
significant back-projections between different levels of this hierarchy as well as some cross-
connections between stages whose functions are not well known (Koch, 1987). These

observations triggers an important question about the nature of object representation as a whole in
the visual system.

The visual features listed above are extracted at different levels of the visual processing system
in the brain. In its present version, DETE is not concerned with the complexities involved with the
extraction of each feature in the brain. Only the magnocellular system and especially its encoding of
shape, motion and location properties are modeled. However, of importance is the structure of the
final representations produced by each visual feature extraction module.

13.2.1 The retina

DETE’s simulation of the visual system can be assumed to start at the level of the ganglion cells of
the retina whose axons form the optic nerve. The rest of the retinal processing stages are skipped,
assuming that the form in which the visual input is represented corresponds more or less 1o the type
of information flow generated by the ganglion cells and transmitted along the optic tract, At this
level, an assumption is made that there is a retinotopic pattern encoding of the input image. In other
words, pixels of the VF (which correspond to ganglion cells) carry trains of spikes depending on
the existence of an object projection at this location of the “retina’.

13.2.2 Segmentation -- figure/ground separation

Before we can recognize an object, “figure™ must be segregated from “ground™ -- one must
somehow pick out regions that are likely to correspond 1o distinct objects. A figure must be selected
on the basis of physical properties of the visual mput, such as regions of homogeneous color or
lexture, or contiguous zero-crossings in the second derivative of the function relating intensity to
position (which occur at the edges of objects). That is, because one has not yet identified the object
(segregating its form from the background is a logical prerequisite to recognition), one can only use
physical parameters to parse figure from ground. There are numerous proposals in the computer
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vision literature for ways of organizing input into regions likely to correspond to figures (Ballard
and Brown, 1982).

A theory that provides a physiologically plausible answer to the segmentation problem was
proposed by Ungerleider and Mishkin (Ungerleider and Mishkin, 1982). According to this theory
the visual system has two separate mechanisms: a “ventral” and a “dorsal system”, The “ventral
system” forms representations of an individual part or the overall shape envelope of an object.
Because the receptive fields of the cells in this system are large, it does not register the locations of
parts; hence, only one part can be processed at a time (otherwise it would not be able 1o tell when
two objects of the same type are present (i.e. the front and back wheels of a car). The
representation of shape used in the ventral system should be concrete, capturing the precise shape
and surface details of the part or object. This system does not process relations among parts, except
insofar as they are implicit in a low resolution representation of the entire object (a kind of blurry
blob-like form). In contrast, the “dorsal system” seems to be able to derive abstract
representations of the spatial relations among parts or objects. The use of categorical
representations of spatial relations (e. g., “connected to”) is especially appropriate for classes of
objects whose members are subject to non-rigid transformations. In such Cascs, the parts can be
arranged in a large number of topographical configurations.

The most straightforward solution to the segmentation problem requires a minor revision to the
Ungerleider and Mishkin theory. It seems clear that “what” and “where” are not so distinct
conceptually: sometimes the spatial relations amon g the parts are critical for identifying the form.
Rather than “where.” the dorsal system seems specialized for representing spatial relations,
including those among parts of a single object. The relations amon g high-resolution representations
of parts presumably are represented the same way as are the spatial relations among separate objects
in a scene.

In DETE the problem of visual segmentation is much simpler since DETE looks only at simple
shaped objects that are non-overlapping and well defined in terms of boundaries and colors. The
segmentation is done procedurally by the Input Segmentation Mechanism (1SM) (see section 7.2.1 ).

13.2.3 Motion representation

The perception and processing of motion in the brain has been studied extensively in the past few
decades (Koch and Poggio, 1985). Reichardt’s original work (Reichardt, 1970) on motion
detection in the fly retinae looked at the timing difference between two adjacent detectors to
determine direction of motion. The information about visual motion in primates at the level of the
retina is represented as time differences in the firing pattern of axons in the Optic nerve. At the level
of the visual cortex, the relative timing information is used to drive cells that respond best to edges
that are moving in particular direction. Semir Zeki (Zeki, 1976) has found an area labeled MT
located in the middle temporal lobe (MTL) in monkeys (see bottom right corner of Figure 13.1),
which has a high proportion of cells sensitive to movement or stereoscopic depth.

DETE’s motion feature extractor is very simple in comparison to the known brain circuitry
involved in the perception of motion. This procedural module calculates the difference between
location of the center of gravity of an object between successive visual frames, The system handles
only solid objects. A more realistic neural implementation is desirable.
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13.2.4 Shape representation

Psychological experiments on object recognition have shown that the shape of an object is the most
significant of all visual features (Biederman, 1987). The visual system processes images at
different spatial frequency bandwidths. Higher spatial frequencies correspond to more light/dark
alternations per degree of visual angle; thus, higher resolution is required to detect higher spatial
frequencies. The shape-extracting module of the human visual system can be described as having a
number of different “channels,” each differing in resolution. At average viewing distances, the
lowest spatial frequency channel produces an output that will often correspond to the general shape
envelope of an object, Neurons in area V4 (see bottom left corner of Figure 13.1) have been found
1o be sensitive to shape and color.

DETE’s shape extraction module is extremely primitive. As it was mentioned before it was
implemented procedurally, i.e. not as a neural network. Therefore, a meaningful comparison of this
module’s functionality to the known brain mechanisms for shape processing is not possible.
However, in the process of further development of the system it is very desirable to redesign this
module so that it is more neurally realistic.

13.2.5 Location (position) variability representation

One and the same object often occurs at various locations in the Visual Field. Nevertheless, once
we have seen an object, we can recognize it just as easily when it subsequently is in a different
position in the Visual Field. A number of mechanisms have been proposed to solve the problem of
position variability. Marr suggested that the appearance of objects is stored in object-centered
representations (Marr, 1982). In such representations, the locations of parts of objects are specified
relative to other parts, not positions in space. The solution to the problem of position variability
adopted by the primate visual system is evident in the neurophysiological literature. Namely, in
primates the visual cells in area TE (near the anterior end of the inferior temporal lobe) have very
large receptive fields, and respond when patterns are present over a large range of positions (the
receptive field size is usually larger than 20 x 20 degrees of visual angle). This area of the brain is
crucial in recognition per se (Mishkin, 1982). Therefore, primates rely on not representing the
position of a pattern in the high-level shape representation system. One implication of this solution
is that only one shape can be recognized at a time although we can rapidly switch back and forth
between stimuli. If multiple stimuli are processed simultaneously, the large receptive fields would
result in the system’s inability to tell whether there is one or two stimuli of th same kind present in
different locations. Hence, figure/ground segregation is necessary to isolaie individual patterns
before they can be processed further. If such segregation is done, then duplicate patterns can be

1solated and processed separatelv, preventing confusions about how many instances of a pattern are
present in the field.

However, when we see an object, we automatically know where it is with respect to other
objects in the scene. Therefore, there must be a separate representation of the object’s location,
which implies two separate mechanisms - one to represent the object’s shape independently of its
position and one 1o represent its nosition, Ungerieider and Mishkin have shown evidence for “two
cortical visual systems™ (Ungerleider and Mishkin, 1982). They claim that the ventral system,
running from area OC (primary visual cortex) through area TEO down to area TE, is concerned with
analyzing whar an object is, whereas the dorsal svstem, running almost directly from circumstriate
arca OB to area OA and then 10 area PG (in the parietal lobe) is concerned with analyzing where an
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object is. There are well-known neural connections running along both pathways, and the visual
properties of these areas have been well documented (Mishkin and Ungerleider, 1982).

The approach taken in DETE is consistent with the above mentioned observations. Namely, the
representation/recognition of object’s shape is done separately from the representation/recognition of
its location. For this purpose two different visual feature memories are used.

13.2.6 Visual associations

The assembly of an object representation from its extracted features is performed by the visual
association cortex. Perception requires that the various features extracted by the different
subsystems are further organized in such a way that related ones (those belonging to a single object)
are grouped together. The Gestalt psychologists (Wertheimer, 1923; Koffka, 1935) suggest that
visual perceptions are possible because the brain uses certain visual properties to group the parts of
an image together and also to separate objects from.one another and from their background. Such
organizing properties are, for instance: location and velocity of motion (e.g., elements that move
together probably belong to the same object); co-linearity (e.g., a house is not perceptually split in
two when a telephone wire crosses in front of it); depth, lightness and texture. The fact that these
functions all fail at equiluminance (when different objects have equal luminance) suggests that the
ability to link parts of scenes together, to discriminate figure from ground and to perceive the correct
spatial relationship of objects might be carried by the magno system (Livingstone, 1988) (see right-
hand side of Figure 13.1) which is performed at the level of the visual association cortex. The main
function of the visual association cortex is to leamn (cluster and categorize) the relations between the
visual features of the objects such as shape, size, motion, location, and color. It is evident that such
a learning process takes place independently of any verbal processes. Such functional independence
is advantageous for any language learning, since it allows for a single trial (or only a few trials)
verbal/visual association which speeds up the verbal learnin g.

Neuroscience research has revealed many details of the neural mechanisms involved in low-level
vision (¢.g., stereopsis, clustering of visual features, segmentation, feature detection). However,
nearly nothing is known about high-level (model-level) vision in humans including recognition and
learning of different images and extraction of their meaning. For instance, it is not known where in
the brain the image of a chair (objects in general) are represented and how. Also it is not known
where in the brain visual actions (e.g., grasping, or eating, or bending) are represented. When a
child reads a picture book like “Sleeping Beauty”, it uses the (static) images to help learn the
meanings of the words. The child sees a prince swinging a sword at a dragon and hears “fight the
dragon”. The child needs a system to recognize and learn general as well as story features that are
representationally more abstract.

The neural substrate involved in object assembly may consist of convergence zones in the brain
(Damasio, 1989). These convergence zones could be neurally represented by subsets of neurons
located in the neocortex, the thalamus or the claustrum which project back from higher to lower
level structures (Crick and Koch, 1990).

In DETE, the various memory modules serve as associative mechanisms in which the “gestalts”
are formed. As discussed before, the essential mechanism which accomplishes this gestalt
formation is based on phase locking of oscillating neural assemblies each of which represents
individual components of the whole gestalt (mental image).
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13.2.7 Imagery

Visual mental imagery is a kind of “seeing” in the absence of the appropriate immediate sensory
input; it is “re-seeing” and “re-creating” of information previously seen and stored in the memory
(not necessarily exactly in the same way as it was experienced initially). Imagery is an important
component of the process of thinking. For instance, one can anticipate the trajectory of a moving
object by mentally projecting its path. This is a type of visual inference-making process. We can
also discover an efficient way for packing irregularly-shaped objects into a container by imagining
them arranged in different ways. In other words, we are able to voluntarily manipulate an internal
visual scene in time and space. Imagery is also often used when one tries to answer questions from
memory about subtle visual properties of objects, resulting in one’s imaging an object and
“recognizing” previously-unrecognized (i.e. internally non-verbalized) features. For example, we
tend to use imagery when we try to answer questions like: “Whar shape are a beagle’'s ears?”
(Kosslyn, 1985) or “Which is larger, a goat or a hog?”. It seems that in such cases we are recycling
visual memories, internally “looking” at the object again and recognizing (verbalizing for ourselves)
previously-unrecognized properties.

In DETE, visual imagery is an inherent property of the system. Imagery occurs always when a
meaningful (i.e. previously learned) verbal input is presented. For instance, DETE “imagines” a red
ball above a green triangle when it hears the verbal input “Red ball is above a green triangle”. While
in humans we do not have technical means to observe the image generated in somebody’s “mind’s
eye”, we can easily monitor the activity generated in DETE’s visual feature memories and effectively
have an access to DETE’s “mind’s eye”. (Notice that DETE does not have a separate “mind’s
eye”.) Knowing how information is encoded in these visual feature memories, we can interpret
such activity in terms of various internal images.

For the image generation module (in DETE this is the visual memory) to be useful, some other
part of the system needs to receive it as input. Neuroscience research tells us that there are direct
connections from the high-level visual cortices to polymodal association cortices (e.g., the angular
and supramarginal gyri) where visual information is associated with auditory and somatosensori
information. In DETE the output of the visual memory is fed directly to the verbal memory bank.

Humans can combine symbolic thoughts in novel ways (e.g., “the giant hamburger from outer
space ate UCLA™). This combinatorial ability is essential for language (animals do not seem to have
it). To be able to do that, a language processing system needs to go beyond the level of simple
symbol grounding. Essentially it needs to be able to generate novel visual representations on the
basis of verbal input for which there is already grounding in some sensory experiences. At this
stage of development, DETE is not capabie of doing that (has not been tested yet). Unfortunately,
the neurolinguistic research has not yet found satisfactory answers about how such verbal to verbal
associations might come about in the brain.

13.3 The verbal subsystem

Looking at neuroanatomical, electrophysiological, neuropsychological and lesion data one can easily
get the impression that almost every part of the brain is involved in processing of one aspect of
Janguage or another. The reason for this is that language has various components fe.g., perceptual
vs. expressional or cognitive vs. affective, etc.) the processing of which is done by various systems
of the brain such as the sensory svstems (language inputs), the motor systems (language
production), the limbic system (motivation for language performance -- perception/production), and
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the higher associational areas (language comprehension and planning). This section discusses
briefly: (1) The modules that compose the language system in the brain and describes the
information flow through the network which they form. (2) The impairment of various language
functions as a result of localized brain lesions. (3) Some representative models which explain these
data. (4) A mapping between language-related brain areas and functionally corresponding modules
in DETE.

13.3.1 Input/Qutput and central processing of language
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Figure 13.2: Language-related areas in the brain

The neocortex is functionally divided (Brodmann's classitication) into: visual areas -- 17
(V1}, 18,19 (V2); auditory areas -- 41 (A1), 42 (A2); somatosensory areas -- 1,2,3,5
(51,52); motor and premotor areas -- 4,6,8; posterior association areas -- 39 {angular
gyrus}), 40 (supramarginal gyrus}; language-specific areas -- 22 {(Wernicke's area), 44,45
(Broca's area). subcortical refay nuclei along various neural pathways are shown as ovals
and labeled by their standard abbreviations,

Reviews of brain areas related to speech and language can be found in (Penfield, 1966; Millikan et
al., 1967; Zurif, 1990; Caplan, 1980; Studdert-Kennedy and (Ed.), 1983; Caplan et al., 1984;
(Ojemann, 1991). While some of these regions have been investigated in great detail, the actual
circuitry in these cortical and subcortical areas is mainly unknown. Figure 13.2 shows in a
schematic way the major brain areas involved in langnage processing. Details are given in the
sections that follow.

Language Input systems

Information which is verbal in nature can enter the brain via at least three distinctive sensory
channels: (1) The auditory channe! for spoken language. (2) The visual channel for written or
signed language. (3) The somatosensori channel which allows blind people to read brail using the
tactile receptors in the skin of their fingers. These sensory systems are not dedicated uniquely to
language but are used for a variety of sensory inputs.

Language Qutput systems

Along with the existence of a variety of ways to get language input '« the brain, there are several
ways how language can be expressed. (1) Spoken language. (2) Written or typed language (3)
Signed language. Similarly to the language input systems, the language output systems are not used
uniquely for language.

Language-specific systems

On the basis of numerous clinical studies of various forms of aphasia (motor and semantic language
dysfunctions caused by stroke, brain trauma, tumor, Alzheimer’s disease, ¢tc.), dyslexia (reading
impairment), and aprosodias (impairment of the affective components of language), a number of
functionally vnique and locationally different areas in the brain have been identified. The major
language-specific cortical areas and subcortical gray matter nuclei are described below. They can be
broadly grouped in areas involved in processing of the cognitive aspects of language (e.g.,
semantics, syntax, morphology, etc.), and areas subserving the affective aspects of language (e.g.,
prosody, emotional gesturing, etc.).

Cortical Areas:
Areas subserving the cognitive components of language:

The major cortical areas which are involved in processing of the cognitive aspects of language are
shown in (Figure 13.2). They include: (1) The motor speech center of Broca (Brodmann’s areas
44, 45); (2) The auditory speech center of Wernicke (posterior part of Brodmann’s area 22); (3)
The lexical siorage centers (Brodmann’s areas 20.21,37,38); and (4) The center for reading
(Brodmann’s areas 39,40). All of these centers are highly interconnected and to a great extend their
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functions can be overlapping, i.e. verbal processes are dynamically localized. Following are brief
descriptions of the basic language specific cortices:

(1) Broca’s area: is located in the posterior part of the inferior frontal gyrus (Brodmann’s area
44, 45) (Broca, 1865). It is adjacent to the motor cortex which controls the movements of the lips,
tongue, jaw, palate, vocal cords, and diaphragm. This area seems to be a syntactic center for
language comprehension and production (Caramazza and Zurif, 1976; Zurif, 1990). It is also
possible that Broca’s area contains the neural network which functions as an Order Memory
(Sabouraud, 1981).

(2) Wernicke's area: is located posterior to the auditory cortex in the superior temporal lobe
(posterior part of Brodmann’s area 22) (Wemnicke, 1908). It is responsible for the generation of the
underlying structure of an utterance. This structure is then transmitted through the arcuate
fasciculus to Broca’s area, where it evokes a detailed and coordinated program for vocalization.
The program is passed to the adjacent face area of the motor cortex, which activates the appropriate
muscles of the mouth, the lips, the tongue, the larynx and so on. Wernicke’s area is important not
only in speaking but also plays a major role in the comprehension of spoken word and in reading
and writing. This area might be responsible for sustaining of semantic inference (Zurif, 1990).

(3) Lexical storage centers: are located in the anterior inferotemporal cortex (areas 20,21) and
in the posterior temporal region (areas 37, 38). These cortical areas have been implicated in anomia
(difficulty in finding words as a result of lesions -- naming problem) (Damasio, 1990).

(4) Reading center: is located in the angular and supramarginal gyri in the occipito-parietal
junction of the left hemisphere. Lesions in these areas can cause profound alexia and agraphia (lost
of ability to read and write) (Dejerine, 1891).

Areas subserving the affective components of language:

In addition to the propositional (cognitive) aspects of lan guage represented in the left hemisphere
(Le. in right-handed people in which the left hemisphere is language dominant). homologous areas
to Broca’s and Wernicke's areas were found in the right hemisphere (Ross, 1981). These right-
hemispheric areas support the affeczive components of language including musical intonation of
speech (prosody), and emotional gesturing (right Broca’s area), as well as prosodic comprehension
and comprehension of emotional gesturing (right Wernicke's area). These two areas are connected
via the right arcuate fasciculus. The cognitive language areas located in the dominant hemisphere
are vastly interconnected with the affective language areas in the non-dominant hemisphere via the
corpus callosum.

Subcortical and other brain areas

The neocortical areas in the left and right cerebral hemispheres are not the only areas in the brain
involved in language. Yet in the early davs of neurophysiology of higher cognitive functions it had
been recognized that a number of extra-cortical brain structures such as the thalamus, the basal
ganglia, and the reticular formation are heavily involved in different aspects of language processing
(Penfield and Roberts, 1959). According to Penfield, the thalamus, and the basal ganglia (caudate
nucleus, putamen, globus pallidus) are the main subcortical centers responsible for the integrative
processes underlying language generation. The basal ganglia, for instance, receive inputs from a
wide-spread areas of the postceniral neocortex {sensory and associational) and project to large areas

n the frontal lobes (specifically motor, premotor, and supplementory motor areas) (Coté and
Crutcher, 1953).
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13.3.2 Language disorders (impairment by lesions)

Aphasias are various langnage disorders which arise as a consequence of focal brain lesions.
Aphasias have been studied extensively by nerologists, linguists, and cognitive scientists. A brief
summary of the major types and their characteristics is given below. A more detailed account of the
major language and speech disorders along with their characteristics and implicated brain areas is
presented in Table 13.1. For reviews on aphasias and related disorders see (Benson, 1979:
Schwartz, 1985).

Broca’s aphasia: A lesion in Broca’s area disturbs the production of speech but has a much
smaller effect on comprehension. In Broca’s aphasia, speech is labored and slow and articulation is
impaired. Construction of more complex grammatical structures is impaired (agrammatic) and as a
result the speech has a telegraphic style.

Wernicke’s aphasia; Damage to Wernicke’s area.on the other hand, disrupts all aspects of
language usage. In Wernicke’s aphasia speech is phonetically and even grammatically normal but it
1s semantically deviant. Words are often strung together with considerable facility and with the
proper inflections. The utterances have the recognizable structure of sentences, however, the choice
of words is often inappropriate. Usually an utterance as a whole may expresc its meaning in a
remarkably round-about way.

Conduction aphasia; Destruction of the arcuate fasciculus, disconnecting Wernicke's area from
Broca's area, leaves speech fluent and well articulated but semantically aberrant. Lesions to the
angular gyrus have the effect of disconnecting the system involved in auditory language and written

language. This results in an almost intact ability to speak and understand spoken language but
impaired ability to read.

In table 13.1, the phenomenon of language has been divided into comprehension (form input
into internal representation), production (from internal representation into output), and language
tasks (from input, via internal representation to output). The comprehension and production are
further subdivided according to the sensory modalities involved. X-ed fields mark the language
features which are impaired in a particular disorder, whereas blanks mark the lan guage features that
are intact. The numbers in brackets are pointers to the following references: [1] (Broca, 1861), [2]
(Wernicke, 1874), [3] (Dejerine, 1891), [4] (Ross, 1981), [5] (Heilman, 1975), (6] (Liepmann,
1914), [7] (Damasio, 1990), [8] (Goodglass and Kaplan, 1972), [9] (Lecours et al., 1983), {10]
(Caramazza and Zurif, 1976), [11] (Heilman and Scholes, 1976). The question mark (?) means
“not known”,
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13.3.3 Models of Language processing in the brain

With the advances of knowledge about the relation between brain and language complexity,
sophistication and the diversity of theoretical models has increased. To give a flavor of the
modeling efforts, two of them are discussed bellow.

The Wernicke-Geschwind model

From the analysis of different language-related deficits, Karl Wernicke formulated the first model of
language processing in the brain (Wernicke, 1906; Wernicke, 1874/1977) (Figure 13.3). Wemnicke
hypothesized that the language faculty was dependent upon the ability to manipulate sensory and
motor images of words. In this model the storage of the sensory images of words was attributed 1o
Wernicke’s area whereas the motor representations of words were held in Broca's area. When a
word is read, the visual pattern (from the primary visual cortex) is transmitted to the angular gyrus,
which applies a transformation that activates the auditory representation of the word in Wernicke’s
area. There is a substantial neurophysiological evidence that the comprehension of a written word
seems to require that the auditory representation of the word be evoked in Wernicke's area. Damage
to the angular gyrus seems to interrupt communication between the visual cortex and Wernicke's
area, so that the comprehension of written word is impaired. Writing a word in response to an oral
instruction requires information to be passed along the same pathways in the opposite direction:
from the auditory cortex to Wernicke’s area to the angular gyrus.
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Figure 13.3:  Block diagram of language processing in the brain

243



Language specific areas in the left hemisphere. The main corlical areas involved in
language processing according to this mode! are: 1) the primary auditory cortex; 2)
Wernicke's area; 3) Broca's area, and 4) the angular gyrus.

Wernicke’s model was further elaborated by Norman Geschwind (Geschwind, 1970) and is still
fairly adequate today. However, as was noticed by numerous researchers, this model fails to
account for various aspects of language disturbances like the tendency for omission of function
words and the tendency to nominalize verbs in Broca’s aphasics (Goodglass and Kaplan, 1972;
Lecours et al., 1983).

Coltheart’s model

An example of a more advanced process model of language recognition, comprehension, and
production which explains most of the data from various language deficits is the model proposed by
Coltheart (Coltheart, 1987) (Figure 13.4). This model of the functional architecture of the language
processing system includes processing modules and connectivity patterns that can collectively
account for observed aphasia, alexia, agraphia, and other language deficits. The explanations which
the model supports are in terms of decouplings between modules or disruption (lesioning) of
modules.
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Figure 13.4:  Coltheart’s model
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A simple process model for the recognition, comprehension and production of spoken
and written words and non-words. Contains: (1) Preprocessors for acoustic and
orthographic analysis {lop left and right); (2) Input memories -- auditory and orthographic
lexicons (immediately below); (3) Data conversion modules -- orthographic-to-phonological
& acoustic-to-phonological (middle left and right); (4) Output memories -- phonologicai &
orthographic lexicons and buffers; (5) Cognitive system (in the middie) -- coupled
reciprocally to most of the memory modules. {Adapted from Coltheart, 1987.)

Some of the major shortcomings of this and similar models are: (1) They are not computational.
In other words, there is no choice of specific representations of the processed data, no concrete
mechanisms proposed for the individual modules, etc. Therefore, testing the validity of these
models is difficult and their predictive power is limited. (2) The putative functional components are
not mapped to actual neural circuits in the brain that subserve the proposed functions. (3) The levels
of specificity in the functional description of the individual modules are not comparable (e.g.,
“cognitive system” vs “response buffer” -- Figure 13.4).

13.3.4 Mapping of DETE’s verbal modules to the brain

A coarse correspondence can be established between DETE’s modules and the language specific
areas in the neocortex of the left hemisphere: (1) DETE’s Word Encoding Mechanism (WEM)
corresponds collectively to the auditory pathway which includes: ear, cochlea, cochlear nucleus,
superior olivary nucleus, inferior colliculus, medial geniculate nucleus, primary and secondary
auditory cortices (Heschl’s gyrus -- A1, A2). (2) The lexical (verbal) memory corresponds to the
Wernicke’s area and the anterior temporal areas. (3) The Order memory for morphologic and
syntactic processing corresponds to Broca’s area. (4) The EYE followed by the visunal feature
extractors and the visual memory modules correspond to the visual pathways which include: retina,
lateral geniculate nucleus, primary visual cortex (V1), secondary visual cortex (V2), etc.

13.3.5 Hidden speech

One of the very interesting but not extensively explored forms of interaction between language and
thought is the so-called “inner speech phenomenon™. Psychologists usually characterize “inner
speech” as soundless mental verbalization, which occurs at instances when we are thinking about
something, planning or solving, reading or writing (Sokolov, 1972). In all these cases, part of our
mental processing is done in the form of hidden articulation -- we talk to ourselves. One of the first
attempts to study this phenomenon was made by L.S. Vigotskij in 1934 (Vigotskij, 1970). A
possible reason for leaving this phenomenon out of the main track of language research seems to be
the common belief that “hidden articulation™ is simply a side effect of the language generator
rehearsing (anything we think we may have to put into words at some point), so hidden articulation

Is pot important in thinking, but is mainly important for expressing thoughts that come from
elsewhere.

Hidden articulation is manifested in DETE in situations when DETE receives a visual input
without verbal input. In such cases, if we observe the activity in the verbal memory bank generated
by association with the activity in the visual memory banks, we often can interpret this “hidden™
verbal activity as individual words of phrases. While in DETE I have not explored the effect of this
“hidden” verbal activity on the ongoing activity in the visual bank, 1 expect that it might be
significant. In other words, the “hidden articulation™ may influence the way DETE perceives the
visual world. In humans such interactions may be significant during reading of text. If a linear
string of letters (e.g., words forming a sentence) falls on our retina (Visual Field), maybe the first
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internally verbalized word in the sentence drives our oculomotor apparatus to initiate a specific
sequence of saccadic motions from one word to another. I would suggest, that if the hidden
articulation mechanism is not engaged when we have a text in front of our eyes, then the mere
process of moving the eyes over the text does not result in reading it (i.e. transforming of the visual
input into a meaningful internal representation). One may argue, however, that hidden articulation
is not commonly present during visual perception. In other words, we do not constantly articulate
for ourselves the names of the multiple familiar objects (whose names we know) whenever they fall
in our visual field. However, interestingly enough, children in the early stages of their language
development seem to do that spontaneously. For instance, at the sight of a familiar object in a
picture book, a child will often spontaneously name the object. While this is not hidden but rather
overt verbalization, one may expect that in the rest of the situations, when the child sees the same
familiar object but does not name it allowed (maybe the child has a pacifier in its mouth), it
nevertheless articulates the name in its mind.

13.3.6 Temporal aspects of language processing

Text reading and writing are sequential processes (at least during the input and output stages).
Traditional Al natural language processing (NLP) programs also exhibit some sequentiality in the
processing of language, e.g., they read and generate text from left to right. After each word or
phrase is read by the system, it is immediately subjected to some lexical analysis. At a first glance,
it may appear that humans are functioning similarly. However, one important difference between
humans and NLP Al programs is that people perform text reading and generation in real time and
the speed of text reading affects the level of comprehension. For instance, the faster we read, the
less we usually manage to understand. On the other hand, if reading is done very slowly
comprehension also deteriorates and can cause ambiguities (e.g., “I want a can ... opener”).
Traditionally, computer programs modeling human language comprehension do not operate in real
time. In other words, there is no time limit for the processing of each word. Such programs
usually process each word to the extent that is desired by the programmer before the processing of
the next word begins. Feeding words faster or slower to such a system does not affect the
performance (words are usually stored in some buffer and the processing speed depends on the
speed of the computer and the complexity of the lexical analysis).

Compared to such traditional NLP systems, DETE depends critically on the time allocated for
the processing of each word or phrase relative to the time allocated for input and output processing
or for processing in the other modules (e.g., visual, attentional, and motor). Description and
physiological/psychological justification of the hierarchy of temporal relations in DETE is given in
Chapter 3.

13.4 Neural basis of Selective Attention

Mutltiple objects are usually present in the Visual Field when our eyes are open. However, we deal
only with a fraction of them at any instant (usually one or two). For instance, psychophysical
studies of the eye movements during the visual exploration of a scene have revealed that the eyes are
directed sequentially to various locations of the scene. The shift from one location of eye fixation to
another (saccadic motion) happens very rapidly (3-5 saccades per second). As a result, the
information contained in the scene is passed to our visual processing systems selectively and
sequentially. This ability is due to an attentional mechanism whose function is to contro! the
quantity and the temporal order of information chunks through the system.
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There are two main jssues in constructing a visual selective attention mechanism:

(1) Where to focus -- which of the many objects in the Visual Screen should the system attend to
and what mechanisms control the movement of attention from one object to another, also how long
should the attention be kept at a given object?

(2) How to focus -- this is a question of what is the “meaning” (i.e. neural representation) of the
attentive process with respect to the other components of the system.

These two issues, as they relate to DETE, will be discussed separately in light of the currently
available models in psychology and neuroscience that address them,

13.4.1 Control of the attentional focus

The focus of attention is often refered to as the “spotlight” of attention (e.g., Eriksen & Hoffman
74; Crick 84; Koch & Ulman 85; Laberge & Brown 89; Posner 80) (Eriksen and Hoffman, 1974;
Crick, 1984; Koch and Ullman, 1985; LaBerge and Brown, 1989; LaBerge and Brown, 1989;
Posner, 1980). The focus of attention can be driven either by the available data in the external
environment (data driven) or by the state of the internal environment of the system (conceptually
driven). The neural mechanisms underlying (a) the data driven and (b) the conceptually driven
attentional control are different. This dichotomy of focus control has a long history in the
psychological literature. For instance, Milner (1974) distinguishes extrinsic and intrinsic control of
attention; Butter (1987) distinguishes reflexive and voluntary control; LaBerge and Brown (1989)
use the terms bortom-up and top-down control (Mozer, 1991). Both the data driven and the
conceptually driven control of attention have two different components: (1) control of location of the
attentional focus, and (2) control of its size.

(1) Control of location: -- The location of the visual attention focus is closely associated with the
location of the eye(s) (more specifically the foveal part of the retina) with respect to the Visual
Screen. In other words, most of the time we are attending to whatever we are looking at (i.e.
whatever part of the Visual Screen is projected to the foveal part of the retina). Chapman
(Chapman, 1990a; Chapman, 1990b) and Weismeyer and Laird (Wiesmeyer and Laird, 1990) made
major steps towards a concrete model of voluntary attentional control by taking a computational

approach in describing some attentional strategies and control primitives for visually guided
behavior.

(@) Bottom-up control is reflexive in nature. 1t is closely related to the types of reflexive
motions in which the eyes are involved. On the basis of neurophysiological and psychophysical
siundies one can discriminate five neural control systems that keep the fovea on the target (Gouras,
1985b). The eve movements which these svstems subserve are: saccadic eye movement; smooth
pursuit movement: optokinetic movement; vestibulo-oculomotor reflex; and vergence movement.
The eye movements which DETE performs can be categorized as saccadic eye movements.

Saccades are rapid re-directions of the eye(s) to targets of interest in the Visual Field which
result in foveation of the targets. Making saccadic motions is the natural state of the human eye
during awake state. For instance, it has been demonstrated that in order to fixate the eye on a
stationary object for some time, one must voluntary inhtbit the saccadic motions. Saccades are
reflexive and ballistic movements of the eyes (Figure 13.5).
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Figure 13.5: Saccadic motions of the eye

Dynamics of a saccade: A target (x) appears in the periphery (upper left corner) of the
Visual Field (the large circle) at moment 1=0 and is detected by the visual system. About
200 msec later the oculomotor system initiates a saccade {rapid ballistic movement fowards
the target) which is completed within 50 ms on average -- the target is now projected on
the fovea (the small gray circle in the middle of the Visual Field). Following is a 200 msec
refractory period during which the oculomotor system is unable to generate another
saccade.

The control of saccades involves complex neural circuitry which includes two distinct cortical
areas -- the frontal eye fields and the occipital eye fields, and a number of premotor nuclei located in
the midbrain -- vestibular nuclei, in the reticular formation -- pontine gaze center, and superior
colliculus. Several neural models have attempted to account for various aspects of saccadic control
(Hikosaka, 1989; Desimone et al., 1989). In the present version of DETE, the saccadic system has
not been modeled in detail. Instead the voluntary and reflexive components of saccadic control have
been implemented as follows.

The reflexive component which is active durin g free exploration of the visual space or during the
execution of a visual search task “Where is the red ball” has been implemented as a procedural
module.

In humans, a variety of stimuli from the environment can trigger a switch in the bottom-up
attentional mechanism (i.e. capture the attention). Some examples are intense or flashing light, a
sudden appearance of a new object in the Visual Field. an object motion, etc. In DETE examples of
such attention capturing stimuli are appearance/disappearance of an object in the Visual Field or

sudden change of one or more visual features of an ohject, e.g., its location (during motion) or its
size, etc.

(b) Top-down control is volunrary. In humans it depends on the current expectations
triggered by the task at hand. In DETE, the basic principle underlying such mechanism is that the
neural representation of the task enables only some of the features -- those which are of interest for
the 1ask to capture the attention (similar ideas were suggested by [LaBerge (LaBerge and Brown,
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1989), and Mozer (Mozer, 1991). During initial learning, the voluntary control is substituted by
external (joystick guided) control of the retinal position on the Visual Screen. Later this control is
active during the execution of a task such as the direction of the eye to a particular location in
response to a verbal command.

(2) Conmrol of size: -- Intuitively, it is easy to see that if the objects on the Visual Screen vary in
size, so must the size of the attentional spotlight. Empirical evidence for this was provided by
Eriksen and Yeh (Eriksen and Yeh, 1985) and LaBerge (LaBerge, 1983). In physiology, this
process is known as accommodation of the eye. The accommodation (focusing reflex) involves
three separate processes: a) increase of the lense curvature by contraction of ciliary muscles
innervated by the parasympathetic part of the autonomic nervous system, b) constriction of the
pupils by the pupilary sphincter muscles -- parasympathetic control, ¢) convergence of the eyes by
the medial rectus muscles innervated by the 3rd cranial nerve (Gouras, 1985a). This reflex can be
modulated by voluntary control. The neural pathways for this complex reflex arch involve a
complex neural circuit that includes: the fovea, LGN, visual cortex, pretectal region, Edinger
Westphal nucleus, the occipital eye fields, the superior colliculus, and other structures. The major
control systems for eye movements are discussed in more detail in (Julesz, 1991; Eriksen and
Murphy, 1987, Arbib, 1989).

DETE’s algorithm for accommodation in DETE is described in section 6.2.1. This
accommodation mechanism is different from the eye accommodation reflex in humans which is
driven by detection of blurness in the image on the retina. DETE is not provided with blurred
images.

13.4.2 The neural plausibility of DETE’s attentional mechanism

The visual selective attention mechanism used in DETE is based on the idea that the segmentation of
visual patterns can take place in the temporal domain. This hypothesis was first suggested by von
der Malsburg (von der Malsburg, 1981; von der Malsburg, 1983; von der Maisburg, 1987).
According to this idea, components of each pattern become temporary synchronized while the
activity between patterns is desynchronized (phase shifted). From the various type of oscillations
observed in the brain such as the o-waves in the visual cortex or the 8-waves in the hippocampus, it

seems that the oscillations on which attention is based are the y-oscillations (Gray et al., 1989; Gray

and Singer, 1989; Gray et al., 1990; Eckhorn et al., 1988} (40-70 Hz) typical for some complex
cells in the cortex.

The idea, that coherent oscillations of different sets of stimulus-specific neurons is the neural
representation of selective attention, was also suggested by Crick and Koch (Crick and Koch,
1990). According to these authors, such an attentional mechanism can serve as a foundation of a
neurobiological theory of consciousness. They also suggested that a similar mechanism is involved
in auditory, olfactory, as well as tactile attention.

13.4.3 Anpnatomical localization of Selective Attention

In humans the ability to direct attention towards sensory events within the extrapersonal space is
mediated by a complex cerebral network which includes cortical and subcortical components, A
schematic diagram of the brain structures subserving visual attention and their relation to ocular
motion and fixation is shown in Figure 13.6.
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Figure 13.6: Brain areas involved in visual attention

The eye (retina) is the source of the signals which provide the basis for attentional and
cognitive processing. A number of brain nucle (Lateral Geniculate Nucleus -- LGN,
Superior Coliculus, and Pulvinar) serve as relay and control stations along the signal path
and during its processing in the various areas of the cortex {V1, V2, V3, IT). Feedback
loops at different levels provide signals which reach the oculomotor muscles and the ciliary
muscle via the superior coliculus. The muscles, in turn, accomplish the various types of
€ye movements and eye accommodation,

The function of the attentional mechanism is based on two major assumptions: (1) Attention is
expressed in the cortex. (2) There is a subcortical control mechanism of the attention window.

(1) Cortical expression: -- The function of the association cortex 15 to bind together distributed
circuits which by virtue of their simultaneous activation represent a set of facts. During sustained
attention, neurons located in the inferotemporal, inferior parietal, and frontal cortices have been
demonstrated to fire in response to the salient aspect of the stimulus (e. g., to redness it the task is to
recognize the color of an object) (Fuster, 1980). The posterior parietal cortex of the inferior parietal
lobule, the periarcuate region (including the frontal eve fields), and the cingulate cortex constitute
the three major components of the association cortex that contain separate representations of the
extrapersonal world (Figure 13.7). The first representation, centered around the posterior parietal
cortex (area PG) and perhaps extending into the high-order sensory association cortex of the
superior temporal sulcus, may contain a sensory template of the extrapersonal world. The second
representation, centered around the frontal eve fields (Brodmann’s area 8), contains a motor map for
the distribution of scanning, orienting and exploration (Schiller et al., 1979). A third
representation, centered around the cingulate cortex, contains a motivational map for the distribution
of interest and expectancy.
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Figure 13.7:  Attention-related areas in the cerebral cortex

Location of the major cortical areas where the focus of attention is expressed.

The correspondence of these three attentional representations to DETE’s modules is as follows:
The posterior parietal cortex (area PG) contains the focus of attention towards the external world
(the visual and verbal input) -- sensory attention. This corresponds to the visual and verbal memory
modules in DETE. The frontal eye fields correspond to part of the motor memory module involved
in EYE control. The cingulate cortex could be the area where the focus of attention towards the
mternal world (internally generated visual images and verbal activity) is expressed -- mental
attention. In DETE this area is also mapped to the visual and verbal memory modules.

(2) Subcortical control: -- It is provided collectively by a subcortical neural circuit which
includes: (a) the superior colliculus, (b) the thalamus -- distributor of the activation from the
reticulum, and (c) the pulvinar (Figure 13.8).

(a) The superior colliculus: -- Plays important role in the control of eye movements via the
oculomotor neurons located in the oculomotor nuclei of the medula.

(b) The thalamus: -- Abundant neuroanatomical evidence suggests that all sensory impulses,
except the olfactory ones, terminate in the gray masses of the thalamus (Carpenter and Sutin, 1983),
The thalamus serves as a chief sensory integrating mechanism which maintains/regulates the states
of consciousness and attention. It is involved not only in the transmission of sensory inputs and
tuning of the cortical output, but also in the synchronization and desynchonization of cortical activity
(Purpura, 1970). Specific areas in the thalamus such as nucleus reticularis thalami (Rafal and
Posner, 1987; Crick, 1984) probably play a significant role in the control of attention.
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Figure 13.8:  Attention-related areas in the brain stem

Dorsal view of the brain stem showing the the major sutcortical areas involved in the
control of visual attention. Labeled the thalamus, the pulvinar and the superior colliculus.

If we postulate the existence of Focus of Attention Master (FAM) type circuits in the brain
functionally similar to that in DETE, then it is possible that the FA-master for the frontal lobe is
located in the Nucleus Medialis Dorsalis (NMD) of the thalainus -- the thalamic nucleus which is
most distinctly and directly connected to it (Fuster, 1985). The FA-master for the posterior
(sensory) lobe might be distributed in the other sensory specific nuclei of the thalamus. For
instance, the visual-FA-master is perhaps in the Lateral Geniculate Body (1.GB) (Crick, 1984),
which receives fibers from the optic tract and projects via the optic radiation to the calcarine cortex
(V1 -- the primary visual area). The neurons in the LGB are retinotopically organized. Some
internal oscillatory mechanism in the LGB/PGN/V1 can serve as a phase filter for the “clock”
located in these structures which allows only the firing of ncurons which are in phase with this
clock to reach the cortex.

(c) The pulvinar: -- Another possible location of the centralized clovking mechanism for
control of the attentional window is the pulvinar (Rafal and Posner, 1987, Petersen et al., 1987) or
the claustrum. The pulvinar has reciprocal connections to all visual cortical areas. This connectivity
pattern is exactly what was postulated for the Focus of Attention Master in DETE.

Since DETE’s visual world is composed of simple objects (e.g., no shades of gray or various
color mixtures, no recurring patterns, etc.), DETE does not hu\ ¢ mechanisms for driving attention
on the basis of Gestalt grouping principles such as proximir or similarity (Koch and Ullman,
1985). Such principles are evidently very important in human attentive processing. Also, since
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DETE is exposed only to simple-shaped objects which are perceived as a whole rather than a
collection of parts or regions of various textures, colors, and shades, the modeling has not focussed
on how the visual system integrates multiple shifts of attention in order to achieve a coherent
perception of more complex objects (Baron, 1987).

So far, our emphasis has been on visual attention. However, attention is also a property of
other sensory systems. The auditory system is the other relevant sensory system within DETE’s
framework that exhibits attentive properties. However, while it is known that humans can handle,
for instance, the cocktail party effect (see von der Malsburg for possible neural mechanisms) (von
der Malsburg and Schneider, 1986), this is out of the scope of DETE's “aunditory” system, and
therefore will not be discussed it in detail. I will only point out that the Auditory-FA-master is
possibly located in the Medial Geniculate Body (MGB) of the thalamus which receives fibers from
the Inferior Colliculus (IC) and projects via the geniculotemporal radiation to the transverse
temporal gyrus of Heschl (the primary auditory cortex -- Brodmann’s area 41). The response
properties of the MGB neurons are tonotopically organized (high frequencies are represented
medially and low frequencies laterally).

13.5 Neural plausibility of the KATAMIC model

As was mentioned before, the KATAMIC model is the basis of all memory modules in DETE’s
architecture. While it has been used as a general and special purpose-sequential memory in DETE,
a separate research line was developed in which an attempt was made to demonstrate that the
KATAMIC model can be regarded as a physiologically plausible model of the cerebellar cortex. It
is important to stress that no claim and not even a suggestion is made here that the cerebellum is
crucial for language processing in the brain. However, it is plausible that a sequential associative
memory mechanism functionally similar to the KATAMIC memory could be found in the
archicortex (e.g., the hippocampus) as well as the neocortex.

In the following sections, a mapping between the KATAMIC model and the cerebellar cortex
(CC) is presented at the levels of cerebellar cortical cytoarchitecture and cellular neurochemistry.
Supporting experimental evidence is provided. Since detailed descriptions of cerebellar
cytoarchitecture can be found elsewhere, here only the aspects critical for the KATAMIC model are
pointed out (Figure 13.9). From the 5 major cellular types in the CC: Purkinje cells (PC), Golgi
cells (GoC), Granule cells (GrC), Basket cells (BC), and superficial Stellate cells (SC) the focus in

the present model is only on the first three. The model incorporates several specific
cytoarchitectural features:

(1) Each GrC axon has two functionally distinct components: (a) ascending fiber (AF) which
makes multiple excitatory synapses with the Purkinje dendritic tree (Llinas, 1982; Bower and
Woolston, 1983} before it bifurcates and turns into (b) parallel fiber (PF) which passes through the
dendritic trees of 200-450 PCs.

(2) While most drawings of the cerebellar circuitry suggest that the GoCs are sampling the PFs,
in the present model these synaptic connections are not considered and instead we incorporate the
fact that many of the deep GoCs which have dense arborization in the granule layer (Eccles et al.,

1967) are actually sampling mossy fibers via en marron synapses (observed at least in the rat brain)
(Chan-Palay and Palay, 1971).
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(3) In the KATAMIC model, the BSSs (GrCs) get direct projections from the predictrons
(PCs), whereas, in the cerebellar circuitry, PCs give recurrent collaterals to the GoCs (Hamori and
Szentagothai, 1966) instead of to the GrCs. However, these collaterals make synapses at the cell
bodies (axo-somatic) of the GoCs and I hypothesize that functionally the two circuits (the
KATAMIC, on the one hand, and cerebellar on the other hand) are equivalent. This assumption is
based on the fact that the two negative synapses within the cerebellar circuit -- from PC axon to
GoC soma, and from GoC to the glomerulus (a complex Synapse containing mossy fiber, GoCs
axon, and GrC dendrite) yield a positive copy of the PC output to the GrC.

(4) Another crucial cerebellar feature concerns the climbing fibers (CF). They originate in the
inferior olivary nucleus and pair off one-for-one with the PCs. The olivary projections reach the
CC in synchronously firing patches (zones of Oscaarson) (Ito, 1979) (see Figure 13.10). 1
hypothesize that each zone is processing a different sequence and the size of a zone maps to the

pattern width. An action potential (AP) coming along a CF is guaranteed to trigger a complex spike
In the corresponding PC.

Pu = Purkine cell (black) St = stellate cell

Go = Goig: cell (dotteq) Ba = Dasket celi

Gr = granule cell Ci = climbing fiber

Pa = parallel iber Mo = mossy fber (black)

Figure 13.9; Neural circuitry of the cerebellum
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A simplified drawing of the basic cerebellar circuit. (Reproduced with permission from
Llinas, 1975. Copyright © 1975 by Scientific American, Inc. All rights reserved).
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Figure 13.10: Cerebellar connections (1/0) in the brain
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The set of nuclei and the positive feed-back loops involved in the cerebellar control of
voluntary movements.

Two basic assumptions are made in the KATAMIC model of the cerebellar cortex. First, it is
postulated that at different stages of processing in the cerebellum, the information code
(representation) is different. While I agree with the widely accepted belief that the important factor
1n the CC control of the intra-cerebellar nuclei is the average firing frequency of the PCs (i.e. a “unit
of information code™ is a time segment during which a particular PC maintains a stable frequency
(Eccles, 1977)), I hypothesize that within the CC of significance are the spatial-temporal relations
berween the APs arriving along MFs. The PCs serve as code transformation devices effectively
time-multiplexing the predictions (made by their primary dendritic branches) of the incoming spike
trains along the ascending parts of the GrC’s axons. Second, while the relay stations involved in
the actual transformation of a motor program into motor action are represented by a multitude of
brain-stern nuclei interconnected by relatively long (Houk, 1987) positive feedback loops (see
Figure 13.10), the actual motor programs for automated motions are processed by a short loop
located within the cerebellar cortex which involves the PCs, GoCs & GrCs, and these motor

programs are represented as pattern sequences in a KATAMIC like sequential associative memory in
the CC.

KATAMIC-to-cerebellum mapping -- the network level

The following paragraphs compare a set of different hypotheses about the functional si gnificance of
the CC neurons to the hypotheses made by the KATAMIC model.

Various hypotheses KATAMIC hypotheses

Purkinje Cells
Conwol the firing of the intra-cerebellar nuclear Function as PREDICTRONSs -- neural
cells which serve as comparators for the elements capable of learning to generate
signals arriving from motor cortex to those predictions (APs) in a time-multiplexed form
from muscles and proprioceptors, and correct concerning the input which they will receive
the motion (Eccles, 1973). along ascending fibers (AFs).

Golgi Cells

(1) Maintain GrC (hence PFs’) activity fixed at Serve as RECOGNITRONSs - sequence
a relatively constant rate (i.e. automatic gain recognition devices which generate a
control) (Albus, 1971). recognition signal when part of a familiar
(2) Act as phase lag elements (e.g., leaky sequence s processed by them and the
integrators with time constants of several neighboring PCs.  They control the state of
seconds) (Fujita, 1982). the GrCs.

Granule Cells

Ensure that little correlation occurs between the Input gating devices which pass either the
activities of individual PFs (Sabah. 1971). external input (from MF) or the internal input
(from PC collaterals) to the parallel fibers.

Climbing Fibers
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Provide a teaching signal for the modification sequences cannot be recalled (Demer and
of the synaptic properties of the PF->PCs Robinson, 1981).
junctions (Brindley, 1964).

Reset sequence generation (Boylls,
1975). Without them, previously learned
Granule Cells’ axons (AFs & PFs)

Provide the context for learning and the Carry the external input or the prediction, both
synapses they make with PCs are modifiable of which modulate the szm in the DCPs.
(Marr, 1969).

KATAMIC-to-cerebellum mapping -- the sub-ceHular level
The mapping at this level is based on three hypotheses:

Hypothesis 1:

There 1s a short-term memory storage mechanism in the dendritic tree cytoplasm of PC represented
by the intracellular [Ca*+].

Facts: Inputs (i.e. action potentials -- APs) arriving along the PFs cause infusions of Ca** ions at
the synaptic junctions (Ito, 1987; Kano and Kato, 1987). Also, dendritic spike bursts (d.s.b.) are
interposed between the somatic spikes and patches of PC dendritic membrane have active
electrogenic properties (Llinas and Sugimori, 1980).

Interpretation: The spontaneous firing in the PC dendrites is generated along multiple sites of the
dendritic tree and these sites are associated with the synapses made by the PF.

Fact: The time course of the dendritic action potentials (for PF-induced APs) is much longer than
that of the soma generated Na* AP (Eccles, 1977).

Interpretation: The existence of such persistent dendritic APs fits with the KATAMIC model
according to which the sim is not being reset (d.s.b. persists) until they die out «wr a CF input
indicates the end of one sequence and the beginning of another.

Hypothesis 2:

There is a long-term memory storage mechanism in the membrane/cytoplasm of the PCs dendrites
represented by the [PKC].

Facts: During cerebellar learning, long-lasting changes in the number of membrane associated K+
channels occur in the dendritic tree (Alkon, 1984: Jaeger et al.,, 1988). These changes are due to the
movement of calcium-sensitive enzyme Protein Kinase C (PKC) from the cytoplasm to the dendritic
membrane. The PKC movement is in response to changes in [Ca**] and another second
messenger, diacylglycerol, that accompany the association of temporally related sensory stimuli
(Alkon, 1989). Also. at the cell membrane the PKC causes a decrease in potassium conductance
(gK*) which reduces the potassium-ion flow and makes the cell more excitable. The critical factor
for reduction of this flow is not the input stimuli themselves but their orderly temporal relation.

Hypothesis refinement: Cerebellar “learning” occurs not exclusively (or even not at all) at the
parallel fiber synaptic sites, but is a feature of the PC’s dendritic membranes and spectfically of the
membrane patches that contain K+ channels whose concentration can be affected through Ca++
dependent transportation of PKC from the cvtoplasm to the membrane.
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Hypothesis 3:

The firing state of the PCs depends on the interaction of the som & imm in each dendritic
compartment and in the cell as a whole.

EFacts: K* conductances (/tm) together with the cytoplasmic Ca* distribution (stm) are critical in the
establishment of the PC activation level (i.e. membrane potential) which further determines the
response state of the cell. The somatic activation (membrane potential) is effectively computed as
the dot-product of szm and .

Interpretation: Physiologically the dot-product can be viewed as a multiplication of the /rm
(resistance) and the st (current) at each DCP which yields a local membrane potential, followed by
an addition of all these potentials (i.e. batteries connected in parallel) to produce the somatic
potential.

13.6 Neuropsychology of memory

There are at least two possible levels of comparison between DETE’s memory mechanisms and the
memory systems in humans. (1) Taxonomy: DETE’s memory taxonomy is discussed in Chapter
9. In general it is the same as the taxonomy of human memory as revealed by neuropsychological
and neurobiological studies. (2) Circuitry: This is the level of the neural circuits and their dynamics
which serve as memory modules. In the following sections I discuss this second level, making
comparisons between DETE and human’s memory mechanisms and their dynamics.

13.6.1 Short-term memory (STM)

The short-term memory (a k.a. primary memory (James, 1890; Hal gren, 1989), immediate memory
(Squire, 1986), or iconic memory (Coltheart, 1983)) is the basis of our ability to repeat short
sequences of items. For example, one can repeat several consecutive di gits of a phone number or a
sentence immediately after it has been read or heard. Its neural substrate is in general a short-lasting

change in the neuronal membrane properties (most likely at the synapses). The STM is not
impaired in amnesia.

Modalities of the STM

STM can be observed in all sensory modalities. Its characteristics, however, vary between
modalities. These variations seem to be due to the dynamics of the inputs to each of the individual
modalities. For instance, in the auditory modality, meaningful inputs usually come sporadically
{e.g., single words or sentences) and the auditory STM is specialized in maintaining of such well-
defined temporary chunks. In the visual modality, the input seems to enter the system
continuously. However, there is also a degree of chunking which corresponds to saccades. The
duration of a fixation between saccades is on average few hundred milliseconds.

Functional characteristics of the STM

The visual and verbal STM have the following characteristics: (1) One-shot storage (memorization) -
- asentence presented only once can be repeated right away. A simple visual sequence (e.g., of an
attended object) can also be mentally recalled right away. (2) Fast and almost complete reset of its
content when a new input (sentence or image) is presented (i.e. when the focus of attention is
shifted). (3) Possibility of rehearsal of content without the necessity of a specific external cue to
trigger each iteration. A non-specific signal (e.g.. external verbal request for repetition) can trigger
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the recall of the memory trace. Once the rehearsal is interrupted the content is lost. (4) Limited
capacity, recall performance deteriorates if the capacity is exceeded. (5) Fast decay if not refreshed
through rehearsal. If rehearsed it can be kept in mind for few minutes. All of the above functional

characteristics of the STM have been successfully incorporated in the Short Term Memory used in
DETE.

One possibility for the anatomical localization of the STM is that it is an intrinsic capacity of each
cortical processing system (Monsell, 1984). Thus, each unimodal sensory cortex, like the visual
and the auditory cortices, has the ability to store short spatial-temporal sequences (i.e. serve as a
small capacity memory buffer).

The “localization” of the STM in DETE in general corresponds to the physiological
observations. Namely, the STM is interleaved with the LTM and is part of each of the visual feature
memories.

13.6.2 Long term memory (LTM)

The long-term memory is a type of memory which is characterized by a much larger time span. It
comes in two modalities: declarative and procedural.

Declarative Memory (DM)

The declarative memory is a memory for facts. There are two types of declarative memory, episodic
memory (EM) and semantic memory (SM). These two categories are not completely separable and
in fact can be regarded as the two poles of a continuum. This continuum is formed during our
lifetime. Initally (while we are young) all experiences are stored as episodes, later the ones that are
repeated over and over again form the SM and the ones that are more unique form the EM. The DM
(and especially its episodic component) is profoundly affected in amnesia in the sense that new
episodes cannot be stored (anterograde amnesia) and some episodes experienced prior to the onset
of amnesia cannot be recalled (retrograde amnesia) (Milner and Teuber, 1968).

The general characteristics of the DM are: (1) It is open to introspection (i.e. accessible to
conscious awareness). (2) It is composed by the traces of the sequences of events (their
representations) that have been experienced (i.e. seen or heard) for instance, facts, episodes, lists,
routes, maps, thoughts, words, and images of everyday life. (3) The storage is sequential {with
experience). (4) Memories can be declared (i.e. brought to mind or instantiated) through all
modalities (e.g., verbally in the form of hidden articulation or non-verbully in the form of
imagination). (S) A cue, by virtue of its content, can start a retrieval process at any point of a stored
sequence and if left to itself the memory will complete the sequence. (6) The efficiency of its
encoding and retrieval can be enhanced voluntarily (e.g., through repetition, emotional state, drugs,
etc.). (7) Undergoes consolidation and forgetting.

Considering these points one by one we can say: (1) While the content of DETE’s DM is
available to inspection it is not open to introspection. (2) The content of DETE’s DM is also stored
in traces of the sequences of events that DETE has experienced. (3) Storage is sequential. (4) DETE
contains all necessary mechanisms for “declaration” of memories, i.e. bringing them up to the
working memory in the form of patterns of activity. (5) The KATAMIC model (which is the basis
of the DM) allows complete sequences to be recalled by a cue. (6) While the efficiency of encoding
can be enhanced through repetition, the repetitions are not a result of a voluntary process, since
DETE currently does not have internal motivation. (7) A process of consolidation and forgetting is
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also typical for DETE’s memory. It is based on a mechanism for competition for stm resources in
the dendritic trees of the predictrons that form the memories (see section 8.2.1 for details).

Episodic Memory (EM)

Episodic memory in humans is the ability to store and recall (re-experience) specific episodes
(events) (Tulving, 1985). Examples of such episodes are for instance, the day I got my diploma,
the birth of my baby, etc. A trace of each episode is stored together with the information of the
specific place and time in which it was experienced. For the retrieval of an episode (bringing it to
WM) one usually requires a conscious effort to elaborate specific cues (Kolodner, 1984). From the
above definitions it is evident that unique episodes form the content of the episodic memory while
multiple re-occurrences of similar episodes form the semantic memory. Since DETE operates in a
very impoverished sensory world it is important to distinguish what constitutes a unique episode for
DETE. In DETE all experiences that do not recur are treated as episodes while all recurring
experiences form the semantic memory.

The EM has all general characteristics of the DM and also some specific ones such as: (1)
Content is formed by unusual or unique events in the personal history (autobiographic events). (2)
Memories are stored one-shot as a result of unique experiences. (3) Retrieval requires time-
consuming elaboration of cues. (4) Cross-talk between traces rarely occurs. There is little cross-talk
between traces since they represent unique events and generally different events have different
representations. (5) Emotional states affects the strength of the created traces.

To the extent that each unique experience that DETE has had (i.e. one that has not been repeated
many times) is an episode by definition and since such episodes leave traces in DETE’s long term
memory, DETE has an episodic memory. However, DETE lacks a major component of the
episodic memory system -- the ability of this memory to be influenced by the emotional state.
Humans do not remember equally well all unique episodes that they have ever experienced. In
general, episodes that have a stronger emotional context are remembered better. To match DETE’s
behavior better 1o that of humans we need to incorporate emotional and motivational modules.

Semantic Memory (SM)

Semantic memory is the ability to extract the commonalties in and store traces of multiple similar
episodes or repetitions of one and the same episode. Such examples in DETE are, for instance, a
ball bounces when it hits a wall, or a balloon explodes when poked with a pin.  Since the things
that change in all cases of repetition are the times and locations where the events occur, the temporal
and location information is effectively lost (smeared in time).

Like the EM, the SM has all general characteristics of the DM and also some specific ones such
as: (1) Content is formed by familiar items which have been experienced over and over again during
the life-time (i.e. they have formed categories). For instance: words, scripts, stable facts, familiar
faces, eic. (2) Memorv traces are stored through multiple repetitions. Each individual repetition
makes the particular truce stronger. Ultimately the traces left are more permanent and strong. (3)
Retrieval is done when a partial cue is presented (response-sequence retrieval depends on the cue
and the memory content). Usually the context that is recalled together with the trace is either a) the
most recent context in which this concept was scen, or b) the most frequent context (combination of
contexts), or ¢) an externally provided context. (4) Cross-talk between traces: similar sequences
create similar traces and different sequences create different traces. This ability is natural and
desirable for the establishment of semantic memory.
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The lexicon is one type of semantic memory. It is a repository of both grammatical and
commonsense knowledge indexed by lexical jtems (Nakhimovsky, 1988). The grammatical
knowledge of DETE which is acquired with experience involves knowledge about word order and
syntactic relations (e.g., gender agreement in SPANLAN). It is extracted from the verbal input and
is encoded as the statistically most probable associations. The commonsense knowledge aspect of
the lexicon is represented in the association of the verbal tokens with their visual representations. It
1s commonsense in the sense that these representations reflect the constraints which exist in the
physical world. The network representation of each word itself forms the lexical item index.

In DETE the LEXICON is formed by the representations of the individual words together with
the conceptual structures which they were associated with. The memory trace of each word is
associated with information about all contexts (visual and verbal) in which it was encountered. This
representation evolves continuously with DETE’s exposure to new experiences. In other words,
DETE extracts the meaning of each word from its syntactic (verbal) and semantic (visual) use and
stores it as a distributed memory trace.

The Declarative Memory system resides partly in the hippocampal formation (HCF) and partly
in the neocortex. One theory is that a short-living memory trace is established in the HCF which is
later consolidated (transferred) in the neocortex (Halgren, 1984). Other theories, however, suggest
that the HCF is not involved specifically in the storage of declarative memory traces but rather in the
formation of configural associations (Sutherland and Rudy, 1989).

In DETE, the declarative memory is distributed among the verbal and visual long term memory
modules. DETE does not possess modules which resemble functionally the HCF.,

The Procedural Memory (PM)

The procedural memory (PM) is a type of LTM which is not affected by amnesia. The PM is
responsible for such highly automated behaviors as reading, typing, swimming, diving, etc.
(Tulving, 1983). It has the following characteristics: (1) It is unconscious (1.e. accessible only
through performance). (2) It is modality specific. (3) It contains skills (motor -- e.g., diving;
perceptual -- e.g., reading; cognitive -- mental arithmetic; and their combinations). (4) Encoding
and retrieval can be enhanced voluntarily (e.g., through repetition, emotional state or drugs). (5)
Exhibits priming effects (Warrington, 1970; Graf et al., 1984). (6) It is amenable to consolidation
and forgetting (competition effects).

Humans have the ability to remember the rhythm of a song without remembering the actual
words, Actually they can associate (fearn) different words with one and the same rhythm. We can
also remember the rhythm of the words coming on a busy phone line even when we cannot catch
the actual words due to the noise. Knowing the context of the conversation we can use this rhythm
to reconstruct the possible content of the conversation. To explain this ability I postulate the
existence of an unconscious memory mechanism. This mechanism functions as a kind of an Order
Memory which effectively counts the segments in the input stream and measures their duration.
Such a mechanism can be later used as the basis of our ability to learn to count successive events.
This can be simply done by associating verbal labels (e.g.. W:one, W:two, etc.) to the individual
orders in the memory.

The PM is used in DETE to control the location and size of the visual focus of attention to the
external world; to learn motion trajectories of the finger, and to do segmentation of the visual and
verbal input. In other words it is used as a motor memaory.
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The extrapyramidal motor System seems to be the anatomical substrate subserving the
Procedural Memory (Mishkin et al., 1984).

13.6.3 The working memory

The working memory (WM) (Weiskrantz, 1982; Phillips, 1983) is in general the collection of
activity patterns in all memory modules at a given moment of time. These patterns change with time
as a result of external and internal influences. The patterns that form the working memory can be
generally classified as: (1) Current attention -- patterns that are in the focus of attention, and (2)
Current context -- patterns that are out of the focus of attention. Brain areas that have been

paleocortex also some midbrain structures such as the thalamus, basal ganglia and the claustrum.
The hippocampal formation (HCF) does not seem to be directly involved (but certainly contributes)
since complete bilateral damage of the HCF leaves most aspects of consciousness intact (Damasio et
al., 1985). The WM is impaired in amnesia (Weiskrantz, 1982: Baddeley, 1982; Baddeley, 1986).

Anatomical localization of the Current Context

The current (mental) context is stored in the frontal cortex (FC) (specifically in the prefrontal cortex
-- the association area of the frontal lobe) but is instantiated in the HCF, The contribution of the
frontal cortex to contextual memory can be infered from clinical observations of patients with
damage to the FC. In such cases experimentalists have observed: source amnesia, (Halgren, 1989),
confabulation, defective recency judgements (i.e. incapability to inhibit the interference of an old
habit with respect to current behavior (Mishkin, 1964)), defective veracity judgements, and failure
to release from proactive interference.

al., 1964).
Anatomical localization of the temporal representations

It is plausible that the FC contains only the representations of time (Fuster, 1985; Milner, 1982:
Milner et al., 1985) and allows for planning, An interesting question is, what happens to a person
without the FC? Does he/she live in an eternal NOW and cannot understand propositions
concerning time?
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14 CURRENT STATUS, FUTURE WORK AND CONCLUSIONS

14.1 Current status

DETE was conceived and developed as a test-bed for neurally-based computational modeling of
language acquisition through associations of visual and verbal experiences. This thesis reports on
the completion of the first phase of the project. This phase included the following stages: (1) All
individual components of DETE’s architecture were implemented and tested separately, and special
attention was paid to the performance of the KATAMIC memory which is the heart of DETE. (2)
The individual components were assembled in a complete functional architecture. (3) A series of
basic experiments with increasing level of complexity (described in Chapter 11) were performed. In
the beginning of each experiment DETE was either in its naive state or it has already learned the
prerequisites for the particular experiment. However, due to limited availability of computational
time on the CM-2 Connection Machine and for the purpose of speeding up of the developmental
process, most of the experiments were performed using “canned” representations of the visual
input. (4} A mature (educated) DETE -- one that was trained on all experimental situations to the
point that it can perform any of the learned behaviors on demand, was not tested since the
computational resources available to us at present (a 16K processors CM-2) were not sufficient for
this task. As a result, a number of interesting questions such as what are the possible interferences
between the different acquired abilities, has not vet been looked at.

14.2 Future work

By its nature, the DETE project allows extensions in a number of directions. At present, however,
we are interested in extending the work on DETE in only few directions which we consider of
significant interest.

14.2.1 Neurally realistic modules and connectivity

As described in Chapter 13, DETE incorporates only some general organizational and functional
principles which are characteristic to the neural circuits in the brain that subserve the tasks at hand.
This is especially true for the peripheral modules in DETE which were implemented procedurally.
For this reason, I have no strong commitment to the nuts and bolts of the system. In fact, from a
perspective of neural realism many of them are wrong.

In the current implementation of DETE only the memory modules are neural networks and a
specific attempt was made to map the KATAMIC architecture to the neural architecture and function
of the cerebellum (see section 13.5). However, the rest of DETE's modules were implemented
procedurally. In our future work we intend to substitute the procedural modules with neural
networks based on neural architectures of the corresponding functional systems in the brain,

Similarly to the way in which lesion studies of language-related areas provide important data
about their functional significance and the significance of their interconnections, DETE’s language
abilities can also be examined by introducing artificial lesions of individual modules or their
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connections. Such experiments can throw light on a number of questions: (1) How good is the
correspondence between the model and the brain? This can be assessed on the basis of similarity or
dissimilarity of behavioral abnormalities when corresponding areas or connections are lesioned. (2)
Lesions in the model which lead to specific functional disorders can have predictive value for the
expianation of similar behavioral disorders in human lan guage.

14.2.2 Additional language capacity

Currently, as demonstrated by the experiments described in Chapter 11, DETE's linguistic abilities
are very limited. For instance, DETE’s lexicon is very small. Also, we have not demonstrated
convincingly that DETE can learn various languages with their grammatical idiosyncrasies. DETE
is not capable yet to make verbal-to-verbal associations. It cannot handle prosodic inflections of the
language, etc. In the remaining part of this section we focus on some of these limitations and
outline future experiments. When necessary we suggest modifications and additions to DETE’s
architecture,

(1) Expanding the lexicon: The design of the visual feature planes used in DETE allow it to
represent the meaning of a larger number of individual words than demonstrated in Chapter 11. For
instance, DETE has a unique visual representation for non-linear and/or accelerated motions and
therefore it can potentially learn the meanings of words such as “turns” or “speeds-up”. However,
a number of word categories cannot be currently handled by DETE. For instance: (a) Words
concerning structured objects and their motion -- e. g., “cat” (structured object), “walks” (involves
coordinated motion of pieces of structured object). To be able to handle such words DETE needs a
more sophisticated visual system which is capable of processing of part/whole relations. (b) Words
concerning abstractions -- e.g., “power”, “organization”, “process”, responsibility”. (c) Words
involving emotions, goals, plans, mental states -- e.g., “sad”, “wants”, “decides”, “sleepy”.

(2) Learning multiple languages/grammars: All natural lan guages have a common inherent
feature -- they possess a syntactic structure. The syntactic structure of a language can be partially
expressed as a set of recursive rules about the acceptable ordering of words in sentences, about
word classes, and about word relations (i.e. constituent structure). Spanish, for example, inverts
the common English noun phrase order ADJ NOUN to NOUN ADJ and sometimes uses suffixes
in place of explicit pronouns (e.g., “andaron” vs “they walked”).

The development/acquisition of each grammatical system can be viewed from two different
perspectives: 1) Ontogenetic: In other words, how did different grammatical rules emerge in the
process of evolution of a particular language, and are these rules (or their essence) universal across
languages? These questions (related to the ontogenesis of language) were not in the focus of this
thesis. 2} Phylogenetic: How do we acquire grammatical skills being exposed to language inputs
which are already grammaticallv structured? Is there some innate universal grammar or at least
some predisposition for grammatical order in our minds? It is evident that people are able to acquire
languages that have very different grammars and this means that we as human language learners
create unconsciously in our minds (during the carly vears of our development) functional
representations of the grammatical constraints in a particular language. This second perspective on
language acquisition is the focus of this thesis. We attempted to examine the neural mechanisms
that are involved in the process of “shaping” of our minds for language understanding and
production.

While the experiments described in this thesis demonstrate explicitly that DETE is capable of
learning only small subsets of different languages (e.g, a number of lexical items and simple
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syntactic structures), we believe that the current architecture can support more robust language
capabilities. In its current version DETE has been tested on examples from two artificial languages
(FIRLAN and SECLAN) which were both subsets of English (see section 2.4.2). For our future
work we believe that instead of these two languages we should use another set of artificial
languages -- ENGLAN, SPANLAN and JAPNLAN (subsets of English, Spanish and Japanese).
These languages will have separate lexical items, e.g., “pelota” or “tama” (Japanese for “ball”)
instead of “ball” and “mover” or “ugoku” instead of “move”. In some cases the words are totally
different, (e.g., “pelota” vs “ball”), but in other cases, the words are close (e.g., “move” vs
“mover”). In our future experiments with DETE we envision two different scenarios: (a) Learning
the three languages separately. In this case we can compare the rates of acquisition for
corresponding words or grammatical structures. (b) Learning two (or three) languages
simultaneously or one after another, In this case we can study the types of interferences between
languages. We can test also whether it takes longer for DETE to learn SPANLAN after ENGLAN
has been learned than if SPANLAN is the first language? Concretely, does the ADJ NOUN (in
English) vs NOUN AD]J (in Spanish) word order difference impair DETE in some way when
learning SPANLAN? (For instance, it is known that English speakers have trouble with such thing
when learning Spanish, due to, ostensibly, interference from English forms).

Some interesting features of English (vs Spanish and Japanese), limited, as much as possible, to
the blobs task/domain which can be used for testing DETE are listed below. (We use words like
“book™ in the Japanese, but they can later be replaced with Blobs’ World words, e.g. “ball” = tama,
“moves (intrans)” = ugokimasu)

1. Demonstrative adjectives vs demonstrative pronouns
* English: the same words are used:

Look at this (that} ball.  vs Look at this (that).
* Spanish: there is a single demonstrative pronoun:

Mira esta pelota.  (Look at this ball.)

Mira este cuadro. (Look at this square.)

vs.

Mira esto. (Look at this.)

(one can say “Mira esta” but it really is an ellision, as in *“Mira esta (pelota)™)

Empuja esa pelota. (Push that ball.)

Empuja esa. (Push that (one).) (ellision)

* Japanese: one MUST use different words for demonstrative adjectives vs demonstrative
pronouns:

adjectives: pronouns:
kono isu (this chair) vs kore (this)
sono isu (that chair) VS sore (that )

e.g.  Kono hako mite kudasai. (This box, look at it please.)

Kore wa, mite kudasai. (Look at this please.)
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2. Verbs “to be”
* English: same verb is used for:

- equals (The ball is a ball)
- property assignment (The ball is broken)
- existence (There is a ball in the comner)

*» Spanish:
“ser” is used for equivalence and fundamental properties
“esta” is used for non-essential properties
La pelota es una pelota. (The ball is a ball)
La pelota esta rota. (Ball is broken <temporarily>)
“hacer” is used for existence
Hay una pelota abajo. (There is (exists) a ball below.)
Habia una pelota ariba. (There was a bail above.)
* Japanese: breaks up “to be” in a different way:
“desu” is used for equivalence
“arimasu” for existence (and properties of) inanimate objects
“imasu” for existence (and properties of) animate objects
€.g.  watashi-wa Nenov desu (I am Nenov)
koko-ni-wa shinbum arimasu (here-at-topic magazine is) i.e. here is a magazine
soko-ni-wa Dyer-san imasu (There is Mr. Dyer.)

To test DETE on a subset of the Japanese “to be”, one could say, always use “arimasu” for
rounded objects and “imasu” for objects with corners. This would not be “correct” but could show
how DETE could learn to associate correct restrictions with use of these verbs. Since in the blobs
world there are no “animate” objects, to test the ability of DETE to make such a distinction is
currently impossible. (DETE can’t even recognize an animate figure, which would be complex).
However, one CAN test DETE’s ability to associate different verbs with different visual objects,
based on some OTHER features (i.e. other than animate/inanimate distinction). For instance, in
JAPNLAN DETE could be trained to distinguish arimasu (i.e. with inanimates) with, say, large

objects and imasu (i.e. with animates) with small objects.
€.2.  soko ni chisai tama-ga arimasu (there-at small ball-subj is) There is a small ball.
soko ni ookii tama-ga imasu (there is a large ball)

To test GENERALIZATION, DETE could be trained on small/large circles and triangles, and
then be tested on small/large squares. If DETE has associated “imasu’” with large in the size map,
then the generalization should work for any shape,

3. Spatial relations

* English and Spanish: use prepositions;



The book is on the table.
El libro estd encima de la mesa.

* Japanese: does NOT allow this construction. One must say something more like, “The table’s top
at, the book is.”

e.g. tsukue-no ue-ni hon-ga arimasu (desk-’s top-at book-<subj> is).
i.e. the book is on the top of the desk
4. Case indication
* English and Spanish: indicate cases by word order:
Juan toma leche.
John drinks milk.
» Japanese: uses particles in post-fix position:
John-san-wa mizu-o nomimasu. (John-Mr.-topic water-obj drinks.)
5. Number agreement
* English & Spanish: indicate number by a postfix “s” inflection and matching verb inflection:
The ball moves. Vs The balls move.
La pelota mueve. v§ Las pelotas mueven,
* Japanese: does not directly indicate number, nor does the verb get inflected due to number:
_kono hana-wa sakura-desu (this/these flower(s)-topic cherry blossom(s) is/are)
6. Negation
* English and Spanish: use a marker to negate positive sentences:
The ball is broken. Vs The ball is not broken.
La pelota estd rota. Vs La pelota no estd rota.
* Japanese inflects each verb tense differently to negate it:
watashi-wa mizu-o nomisu (I water drink.)
watashi-wa mizu-o nomasen (I water not-drink.)
watashi-wa mizu-o nomashita (I water drank.)
watashi-wa mizu-o nomasen deshita (I water drank not.)

Since one of the first words that children learn is “no™, an interesting research question is what
would be necessary for DETE to be able to learn negations. For instance, as we demonstrated in
section 11.1.2 DETE can learn the words “stands™ and “moves”. However, another way of
expressing the meaning of “stands” is to say “does not move”. Can DETE learn the meaning of
“not” -- i.e. generalize “not” to other verbs (or nouns) it hears? A major problem is that unlike
“stands” the phrase “not moves” contains the word “moves” which will cause DETE to imagine
movement. It is possible that something similar occurs in people. For instance, if we one says
“John is not hitting Mary™ we first imagine John hitting her and then in some way mark it as not so.



One possible experiment would be to (1) teach DETE the word “moves” on moving ball, (2) teach it
not moves” on a stationary ball, (3) test it on other objects. Another experiment would be to (D

teach DETE the phrases “not red”, “not green”, “not blue”, “not large”, and (2) test it on “not white”
and “not small”,

7. Causality & desire
* English and Spanish: indicate causality/desire by clausal/phrasal constructions:
The ball hit the square and caused it move. (Made it move.)
* English: uses infinitival construction for desire:
I want the ball to move.
* Spanish: uses relative clause + subjunctive form of verb:
La pelota choqué con el guadro y lo hico mover.
Quiero que mueva la pelota. (subj of mover)
* Japanese: indicates both causality and desire via inflections on the verb:
€.g. nomu (to drink), nomimasu (drinks),
nomaseru (cause to drink),
nomitai (want to drink)
€.g. mizu-o nomitai (I want to drink water)
John-san ni ano mizu-o0 nomasaremashita ((I) John-by that water was-caused-to-drink)
John made me drink that water
In the blobs world, this could be tested by sentences like:
“The ball hit the wall and that made it go south,”
“The ball hit the square and made the square move.”

To test a limited meaning of the word “want” in the blobs world would require making up some
distinction in a dialect for this task/domain. For instance, we can interpret “Want red ball” as DETE
putting the red ball in the upper right corner. However, to acquire the real meaning of this word
DETE needs additional modules which represent internal states such as desire.

8. Subject
* English: (usually) must mention the subject of an active verb:
I drink water.
* Spanish and Japanese: drop the subject if it can be inferred from context:
Tomo agua. ((I) drink water)
mizu-o nomimasu ((I) water-obj drink)

9. Topic indicators

* English & Spanish: have direct/indirect articies to indicate first (vs subsequent) mention of an
object in the discourse:
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Isee A ball. (Veo UNA pelota)
Where is THE ball? (Donde estd LA pelota;)
* Japanese: does not have this distinction. Instead, particles (-wa, -ga) are used:
“-wa” is a topic marker, about something the speakers both know about.
6:30-ni-wa mizu-o nomimasu (at 6:30 topic, water (I) drink)
“-wa” is used in certain negations:
asoko-ni-WA hon-wa arimasen (over there-at-topic book-topic is-not)
There is not a book over there.
“-ga” is used to introduce new things, as in statements of existence.
isu-ga arimasu (There is (exists) a chair,)

Figuring out when to use “-ga” vs “-wa” seems as impossible for non-Japanese as is the correct
use of “the” and *“a” for non-native English speakers. Currently DETE cannot track conversational
topics and cannot engage in real dialogs. To do that it needs to be able to maintain a separate
conversational context in memory. Also, in addition to its current representational capacity it needs
some way of representing its partner in the dialog, i.e. a sufficiently complex model of a human or
another robot. Such model is necessary so that DETE can predict, anticipate and elicit specific

responses from its partner which would be impossible unless DETE knows what this dialog partner
is capable of.

10. Speaker-hearer distinctions

Example of such type of distinction can be found in statements about distance of objects wrt both
speaker and hearer:

» English: “this” and “that” indicate distance of object from speaker
* Spanish: has 3: esta, esa, aquel (this, that, that (over there))
* Japanese: (likewise) has kono, s0no, ano,where:

“kono” is near speaker

“sono” is far from speaker but near hearer

“ano™ is far from both speaker and hearer

To add this to DETE would require for the system to track and maintain topics of conversation,
Also, DETE would need 1o be able to ““see” an object in visual field that represents the teacher or
other person. This would greatly expand the conversations between DETE and the teacher(s). For

example, we can have a special 2-D shape in the visual field that represents NENOV and another
which represenis DYER. Then we can teach DETE:

-- point to shape, say *‘this is ME”
-- point to other shape, say “that is DYER”

One possibility for achieving such functionality is by encoding of VOICE TONE. However, it
could be also done by setting a master “who’s talking’ switch.

* English, Spanish and Japanese: have indexicals, such as
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[ 1] "

“T Vs you
+ 5y09’ VS l‘m”
“watashi-wa” Vs “anata-wa”’

For instance I could say to DETE: “I am to the right of DYER.” and DYER could say: “I am to
the left of NENOV™. From such verbal statements DETE would have to learn that “I” is used by the
speaker to refer to WHOEVER is the one who happens to be speaking, and “you” is whoever
happens to be listening. As discussed above, to be able to learn the meanings of “I”, “you”, “they”
etc. DETE needs to have a model of itself as well as a model of the partner(s) in the dialog,

11. Modifiers

» English: puts adjective before noun, with referred order of <number> <size> <attribute> <color>
NOUN:

The 3 big expensive red balls (vs The red 3 expensive big balls)
» Spanish: puts adjectives after noun (usually), with number before:
Los tres pelotas rojas y caras
(the 3 balls red and expensive)
« Japanese: puts “real” adjectives in front of NOUN (like English)
chisai hon (small book)
shiroi kami (white paper)

Japanese has na-adjectives. They normally function like nouns but can modify other nouns (like
noun-grouping in English). There is no way (except for memorizing) to tell if an adjective is the -na

type and therefore requires a -na inbetween. (DETE should be able to memorize this from
experience.)

kirei-na tatemono (pretty-na building)

As demonstrated in Chapter 11 DETE is capable of learning the meanin g of some modifiers as
well as the order in which various calsses of modifiers are arranged when constructing noun
phrases. While the number of examples on which DETE was tested was very small, we believe that
DETE’s current memory modules (and specifically the Morphologic/Syntactic Procedural Module)
are sufficient for successfully learning of a large number of syntactic forms containing various
modifiers in a number of languages.

12. Transitive, intransitive & reflexive verbs
» English: has verbs that can act as either transitive or intransitive:
John went away.
John went homnie.
* Japanese: verbs must be one or the other:
intransitive:
John-san uchi-e ikimasu

(need particle “-e¢” for destination)
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(John-Mr. house-to goes)
* Spanish: has reflexive:
Juan se fue. (John went himself)
Juan se lavo las manos. (John himself washed the (his) hands.)
13. Possessive
* English: has two forms:
(a) John’s book’s pages.
{b) The pages of the book of John.
» Spanish: has only form (b)
(b) Las pajinas del libro de Juan.
+ Japanese: has only form (a)
John-san-no hon-no kami
14. Conjuncts
* English: uses “and” for conjuncts
John and Mary went home.
. Spénish: uses “y” in much the same way
Juan y Maria se fueron a casa.
* Japanese: has several different conjuncts for “and”
John-san-TO Mary-san-wa uchi-e ikimashita
(John-Mr. AND Mary-Miss-topic house-to went)
the particle -to is not used for clauses, or implied clauses)
(e.g. “John is an american and a student” canNOT use -to
i.e. John-san-wa america-jin-to gakusei desu (NOT allowed)
instead must do:
John-san-wa america-jin de gakusei desu
(*de” is a shortened form of “desu™)
other conjuncts are -mo and -ya
A-mo B-mo verb = Both A and B verb
A-ya B-va verb = A and B (from among others).
15. Spatial/temporal relations
Particles/prepositions in English, Spanish and Japanese vary widely.
€.¢.  English: We think OF Mary,
Spanish: Pensamos EN Maria. (i.e. We think IN Maria.)
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¢.g.  Japanese: uses -ni for time and -de for place
particle -ni indicates a STATE at a location
6:30-ni = “at 6:30™
particle -de indicates an ACTION at a location
uchi-de = “at home”
e.g., Spanish: alas 6:30 (at the 6:30)

Location
particle -¢ indicates location as a DESTINATION
¢.g. uchi-NI hon-ga arimasu (the book is at home)

(home-at book-subj is)
uchi-DE mizu- nomimasu ((I) drink water at home)
uchi-E ikimashita ((I) went home)
(home-to going)
This could be tested in Blobs World by sentences such as:
The ball is at the north. (in Japanese, use -ni)
The ball is moving in the north (area). (in Japanese, use -de)
The ball is moving north. (in Japanese, use -e)
16. Expressions of power/authority/politeness/status

* English: has one “you”

* Japanese: has polite inflections on verbs. The Japanese “you” (anata) is only good among friends
who are equals (it has no other “you” form).

* Spanish: as an informal and formal “you” (i.e. tu and Usted)
17. Embeded grammatical constructs

Languages have the ability to embed grammatical constructions and (at some point) children have
the ability to do this embedding ad nauseum. This is basically an ability to generalize, not at the
category level, but at the level of recursive structure. For instance:

I'want to go home.
I want to ask John to go home.
I want John 1o ask Mary to g£o home.

I want John to want to ask Mary to want to ask Fred to £o home.

P wane ...
or
The small ball,

The small small small small ball.
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or
The man who knows the boy is named Fred.
The man who knows the boy who shot the deer is named Fred.

« Japanese: appears to NOT have anything directly equivalent to either relative clauses or infinitival
forms. It uses a kind of adjectival clause, for instance, the Japanese for “The man who shot the
deer went home.” would be something like: “The deer-shooting man went home.” Currently DETE
is not capable of dealing with such embeded structures..

18. Learning verb tenses of other verbs

Besides the verb “hit” (the learning of its tenses was described in section 11.7), we can uses a
number of other verbs in the blobs world and as part of our future work we intend to test DETE on
learning such verb tenses. Some examples of such verbs are given in Table 14.1.

[Feature “Past_Tense Present Tense  Future Tense
location moved moves will move

size shrunk shrinks will shrink
velocity stopped stops will stop

shape transformed transforms will transtorm
color changed color changes color will change color
existence disappeared disappears will disappear

Table 14.1: Verb tenses of additonal verbs
19. Pronoun reference

One of the classical problems discussed in linguistic literature is that of reference. The problem of
reference has various manifestations and numerous linguistic theories have attempted to explain and
model them (Lees and Klima, 1963; Langacker, 1969; Winograd, 1972; Charniak, 1974; Hobbs,
1986). 1believe that DETE’s dynamics can allow it to learn correct reference in a relatively simple
case, the meaning of the word “it”. “It” can refer in different contexts to different things. For

instance, in one context “it” can refer to a ball, in another to a circle or any object, or even to an
event,

The following experimental design can be used. After DETE learns the meanings of a set of
individual words, including “triangle”, “ball”, “wall”, “hits”, “explodes”, and “bounces”, DETE
will be exposed to a series of visual scenes of two kinds: (1) Objects hitting a wall and bouncing.
(2) Objects hitting another objects which explode as a result of the hit. After these visual and verbal
experiences, DETE will be given two sentences with the same syntax but without any visual input:
(1) *“Triangle hits wall. It bounces.” (2) “Triangle hits circle. It explodes.”

To find out how DETE interprets the word “it” in the two sentences we can look at the image
generated in DETE’s “mind’s eye” in each case. In the first case, I expect that the context
established by the rest of the words in the sentence will generate an image of a bouncing triangle.
Notice that since “it” might refer to the wall instead of the triangle, it is possible also that DETE
imagines the wall moving back after the hit. In other words, DETE may get confused by the two
possibilities. However, since in all of DETE’s prior experiences with objects hitting the wall, the
objects were those that bounced, DETE should not get confused and should generate the correct
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visual image (a bouncing triangle). In other words, it will interpret “it” as being the triangle -- the
first noun in the sentence (left of Figure 14.1).

Assume that in all of DETE’s prior experiences with sharp objects (e.g., triangles, squares, etc.)
hitting circles, the circles exploded (like balloons). Then when DETE gets the second sentence, due
to its prior experience, it should imagine an exploding circle rather than an exploding triangle. In

other words, in this case DETE interprets the word “it” as refering to the circle -- the second noun
In the sentence (right of Fi gure 14.1),

VERBAL
INPUT

TRIANGLE HITS WALL TRIANGLE HITS
. BALL.
IT BOUNCES. IT EXPLODES.

(BALL HITS TRIANGLE.
IT EXPLODES)

VISUAL IMAGINATION

>

>
>

| 3
g
>
&
> &
- >

| b J
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Figure 14.1: Learning pronoun resolution -- the meaning of “it”

Schematic view of the expected sequences of visual images generated in DETE’s “mind's
eye” by the two verbal inputs. For clarity, the motion of the objects is indicated by brighter
“motion traces” left behind the dark objects.

(3) Learning verbal-to-verbal associations: DETE has not made yet the major leap of being able
to learn new concepts by associating verbal input with prior visual and verbal experiences. For
instance, it is not capable of understanding the meaning of the word “apple” by mentally processing
the verbal input “Apple is a small red circle” without associating directly the word apple with a small
red circle in the Visual Field. In other words, DETE lacks the ability to do verbal-to-verbal
association. As part of our future work we intend to train DETE on examples such as: “Red is a
color.” or “Circle is a shape.” Notice that in these cases the system is expected to have leamed in
advance the meanings of some or all of the individual words. By processing the verbal input it will
acquire some additional aspects of the meaning of the individual words (if all of them have been
learned before) or one specific meaning of the novel words in the sentence. For instance, if in the
first sentence “Red is a color.” the system has already learned the meaning of the word “red” and
has also learned that “is a” means in general an association of the two words between which this
phrase appears, then by processing the verbal input “Red is a color.” the system should make the
specific association. (In theoretical terms, it will build an “IS-A hierarchy”). As a system which
possesses a declarative memory (DM), DETE should also be able to answer questions such as; Q:
“Whatis red?” A:"A color.” or Q: “What is circle?” A: “A shape (or an object).”

(4) Prosodic processing of language: It has been established empirically that in the early stages
of language development children rely heavily upon prosodic cues and prosody is essential for
language bootstrapping. If DETE is to model the development of lan guage acquisition in humans, it
1s essential that it is sensitive to prosody. In its current implementation DETE has the potential of
limited prosodic processing. The choice of verbal representation described in Chapter 4 is such that
it can be used in a natural way to encode prosodic inflections in language which can be used in
experiments. For instance, DETE should be able to learn words that differ only in the position of
the accent such as the Spanish words “héblo™ (= a talk) and “hablé” (he talked).

14.2.3 Additional basic cognitive capacities

(1) Mental representation of the teacher or other agents: The ability of maintain and manipulate an
internal model of its instructor or parent is evident in children. During social interactions, kids are
aware when a teacher or a parent is attending to them and soon in their cognitive development they
learn to detect when their own attempts 1o communicate something are being understood by the
teacher. When children realize that they are not understood, they usually elaborate a new plan
which often involves language creativity. Incorporating the ability of creative language usage in the
model is of great interest for us. Empirical observations tell us that an interaction with a
knowledgeable and capable person is necessary for the acquisition of language. Also kids, and for
that matter an artificial system like DETE, must have (needs) a model of the partner, e.g. it has to
know what this partner can do and how he/she does it. This knowledge must be acquired through
interactive experiences. To be able to communicate with a teacher DETE needs to expand its
vocabulary to include talking about self and teacher, At minimum it has to learn the meanings of the
words “I"”" and “you™.
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(2) Internal motivation to communicate: Motivation or drive to communicate is the most essential
component of human language development. The reason kids learn to communicate initially by
gesticulations (point to something, orient the body to something) and later verbally is to achieve
some goal (e.g., get attention or toy or food). It is interesting to observe that a developing child
would keep asking (repeating a demand) until the response it expects is given by its partner in the
dialog -- D-partner (this can be a parent, another child, etc.). If the D-partner misunderstands the
child, it keeps repeating the demand in the same verbal form (few seconds apart with maybe
changing intonation) or tries to elaborate it. The internal urge to keep asking and the mental ability
1o elaborate the demand so that it can be understood comes natural to the child. Notice also that the
child is aware (has a belief or a model) whether he/she is being understood or not. What clues does
a child use to establish such belief? Most often the cue is a response of a kind that the child
expected generated by the D-partner. Such response can take many forms, e.g., the D-partner does
the thing the kid wants; or the D-partner makes a gesture of understanding (ok, yes + repeat
demand, or just with an appropriate intonation). The set of satisfactory responses are learned by the
child through multiple experiences.

(3) Imposed and self control: Another very important observation, which is so trivial that we tend
to overlook it, is that parents and kids share a common world and both can perform a variety of
behaviors, however, they encourage each other to do only some of these behaviors and discourage
each other from doing others. The reason for this is mainly to keep some personal/social
homeostasis (set-point).

Unfortunately, at the current stage of the project, DETE does not possess neither internal
motivation 10 acquire language (no set of goals to satisfy), nor does it have a model of its teacher.
So DETE does not know if the response that it generates Is understood by the teacher. Also, it
does not have the necessary mechanisms to elaborate its response or demand so that it can be
understood. Effectively, in its current version, DETE is a system that generates complex but only
reflex-like verbal responses and does not have sophisticated mechanisms to elaborate its responses
in accordance with feedback from its teacher. In other words, it cannot get into a meaningful

dialog. Development of a computational model of parent and self imposed control during verbal or
motor interaction with the environment is essential.

14.2.4 Higher cognitive functions

A natural path for DETE to follow is the path already taken by symbo! manipulating systems for
Natural Language Processing. Some prominent cornerstones along this path include: (1) SHRDLU
(Winograd, 1972) a semantics-based NLP program which by representing language in terms of
procedures for actions was capable of conducting dialog about a world of blocks, and was also
capable of carrying out simple commands, such as “Put the blue pyranud on the green block”. (2)
MARGIE (Schank, 1975, Schank, 1981) a program based on a domain independent
representational system (Conceptual Dependency theory) which was capable of making inferences.
(3) SAM (Cullingford, 1978) -- a script based system capable of paraphrasing and learning
stereotypic image sequences on the screen. (4) PAM (Wilensky, 1978; Wilensky, 1983) --
explanation based story understanding system endowed with goal/plan manipulation abilities. It
was able to learn and process stories and infer unstated goals & plans of the actors (e.g., knight,
princess, and dragon). (5) BORIS (Dver, 1983) -- a system capable of reading text and reasoning
about goals, plans, emotions, interpersonal relations. (6) OpEd (Alvarado, 1990) -- a system that
reads editorials about economic protectionism and uses Argument Units to abstractly represent the
beliefs of the participants in an argument,
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An interesting research question is what needs to be added to DETE to be able to go along this
path of development? One reason for augmenting DETE with additional functional modules is that
then the above-mentioned higher cognitive abilities can be learned (vs. hand coded ) as a result of
which the system will be more robust.

14.2.5 Real time operation in real environments

In the current implementation DETE operates in a simulated visual environment (the Blobs World).
In itself this world is very impoverished and in many ways is not an adequate mode] of the real
world. This adds additional limitations on DETE’s ability to acquire concepts that adequately
correspond to the words which it hears. To be useful as a research tool for computational modeling
of early child language acquisition, it is imperative that DETE be placed in a real environment. As
part of our future work we intend to outfit a mobile robot with video and speech processing
equipment and link it (by cable via a workstation front-end) to the CM-2 Connection Machine which
will be running a DETE-style software system. We intend to teach this “sensory-grounded” robot
simple verbal commands for manipulation of the objects in the environment.

In order to perform FINGER-object interactions the system will require additional features: a)
To be able to accomplish the command “DRAG the ball from A to B.” The FINGER must be
capable of connecting itself (via a hook, by glue or by friction) to the object. b) In order to execute
the command “STOP the ball.” DETE requires either the ability to control the final state of the
objects (in case of elastic objects) by the FINGER or the objects should be able to stick to the
FINGER (i.e. non-elastic interactions allowed).

In a real world scenario DETE needs to learn spatial relations that involved composite rather than
simple objects. For instance, it needs to learn the meaning of the sentence “The ball is between the
hind legs of the chair”. Correspondingly it should also learn actions involving composite motions.

In a real world DETE will require 3-D capabilities. It should learn to navigate in space,
approach objects, and sense the changes in their visual appearance (e.g., DETE would move and an
object on the retina would grow in size; or DETE would grasp and see its fin ger on retina touching
an object; DETE would turn and a new object would appear to move on retina -- but it would be
DETE moving, not the object being seen). The language which DETE is taught needs also to be
augmented to be able to describe the real world.

Ultimately we envision two or more robots talking and interacting with each other. With built-in
motivational mechanisms the robots will engage in solving tasks such as stacking blocks in
cooperation with each other. We will explore the issues in teaching one robot to give/receive
commands from another robot. With the help of a human teacher the robots should learn to produce
utterances such as “It is your turn.” (notice that the concept of “turn taking” cannot currently be
represented in DETE) or “You can put that block on afier I put this one on.” or “Bring me the red
block from over there.” or ** Let’s start a stack here.”.

14.2.6 Research on psychological validity

The vltimate test of any model is how well it fits the data. In the last few years, powerful
computational tools have been developed which allow a standardized approach to the analysis of
early language acquisition in children (MacWhinney. 1991). Using these tools and protocols from
the extensive database of child’s talk collected as a part of the CHILDES project we can compare the
stages through which DETE goes (in learning its language) with the stages of human child’s
language development. It is important 1o state here that such a comparison is not necessarily fair
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(legitimate) since the two systems (DETE and a human child) differ immensely in the levels of their
complexity, in the content of their environments and the length of time during which they are
exposed to these environments. In other words, such comparisons can be at the most only
suggestive and are a useful exercise which can be expanded to a full-blown project once more
sophisticated computational models of early language acquisition are developed.

14.3 Conclusions

The following major contributions of the research described in this thesis can be stated:

(1) Natural language acquisition: DETE demonstrates that a large-scale neural/procedural system
capable of acquisition of basic linguistic skills through associations of visual and verbal inputs can
be developed and successfully tested. The experimental results show that:

* Symbols that refer directly to objects or features in the visual world like “ball” “red”, etc., (but
also more abstract words like “shape”, “color”, etc.) are grounded in Sensory experiences.
While NLP systems, e.g., Conceptual Dependency, assume this grounding by creating
ungrounded symbols and then relate them causally, DETE actually does the grounding and
proposes explicit representations of physical objects and actions.

* Subsets of langnage semantics and syntax (word order and morphological inflections) need not
have explicit rules. Instead they can be represented and processed as temporal/spatial
correlations in sequence memories. Also, they can be learned dynamically through interactions
of verbal and sensory experiences.

* A visual binding mechanism based on phase-locked oscillations of neural assemblies can
successfully be used for processing associations of visual and verbal inputs. It allows the
system to perform visual-to-verbal generalizations and vice versa.

* A class of visual feature planes (and the corresponding memories) connected to a verbal
memory module can be successfully used in the process of word meaning acquisition.
Specifically, we demonstrate how some linguistic theories for the representation of space and
time and notably those of George Lakoff, Leon Talmy, and Reichenbach (Lakoff, 1989; Talmy,
1983; Raichenbach, 1947) can be implemented and tested computationally.

* A pseudo-acoustic (gra-phonemic) representation of the verbal inputs is proposed. It allows
the linguistic processing in DETE to be linked to acoustic processing of speech rather than
textual input. This representation can be used to handle prosodic inflections in the verbal input
which will allow future versions of DETE to distinguish between various language accents of
speakers.

* A novel and substantially more robust representation (as compared to svmbolic and other
connectionist models) of lexical items in the lexicon is proposed. In this representation the
verbal tokens for the individual concepts are stored as distributed f1m patterns in the Verbal
Memory, whereas the meanings of the words are represented as distributed patterns across a set
of Visual Feature Memories and Temporal Memory Planes. The representations of the lexical
items are not hand-coded (as in symbolic systems) or generated as random patterns (as in the
majority of the connectionist svstems) but are acquired in the process of associations between
visual and verbal experiences.

(2) Connectionism & Neural Networks:
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a) The KATAMIC model: As an essential part of this thesis, a novel neural architecture for
rapid learning, recognition, and recall of patern sequences, called the KATAMIC sequential
associative memory, was designed, implemented and evaluated. The KATAMIC memory uses a
novel type of neural element (not classical McCulloch-Pitts neurons) called predictrons. Like real
neurons, predictrons have dendritic branches formed by dendritic compartments with complex
dynamics and built-in short-term and long-term storage capacity. Our experiments demonstrate that
the KATAMIC memory exhibits:

* Extremely rapid learning: Only a few exposures (on average 4 to 6) to a particular sequence
are sufficient for learning.

* Flexible memory capacity: Multiple sequences can be stored in the network, with a _
memory/processor ratio comparable to, if not better than that of other neural net, PDP or
connectionist models,

* Sequence completion: A short cue can retrieve the complete sequence.

* Sequence recognition: A built-in mechanism allows sequence recognition on a pattern-by-
pattern basis, which is used internally for switching from learning to performance mode.

* Fault and noise tolerance: Missing elements (bits within patterns or whole patterns missing
within sequences can be tolerated) within a reasonable range (30% of the number of I-bits).

* Integrated processing: The model is capable of concurrent learning, recognition, and recall of
sequences. This is a significant improvement over most previously proposed models that focus
only on one specific aspect of processing at a time, e.g., the PDP class of models. Also, the
KATAMIC model has the built-in ability to monitor the quality of its performance and
automatically to switch (during the processing of a particular sequence) from accepting input to
producing output. This ability is critical in the sense that it allows DETE to learn while
exploring the environment.

b) DETE’s architecture: In terms of its architectural design DETE falls midway between
“minimalist” PDP architectures and “completely innate” architectures. The former use minimal
complexity -- e.g., three lavers of nodes and a simple learning rule and attempt to discover
regularities in the input space through thousands (and often hundreds of thousands) of training
trials. The latter are completely pre-wired, do minimal learnin g if at all and accomplish pre-specified
tasks in an almost reflexive manner. DETE’s neural architecture, which combines localist
representation (within the Visual Feature Planes) with distributed (space and time smeared)
representation (within the Visual Feature Memories) makes the complex task of perceptually
grounded language acquisition (PGLA) learnable within 2 reasonable amount of time and with
substantially smaller number of training trials.

(3) Computarional Technology: The implementation of DETE on the CM-2 Connection Machine
demonstrates that this fine-grain SIMD massively parallel computer is an adequate platform for
implementation of large-scale neural architectures.

* Unlike most of the connectionist/PDP/neural network models, which contain from few dozens
to few hundreds of computational units, DETE is a large-scale mode] which contains over a
million neural elements. To achieve this. DETE took advantage of the virtual processing
capability of the CM-2,
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* DETE’s memory architecture, which contains several highly interconnected modules, is
significantly more complex than all current connectionist models used for language acquisition
tasks. Despite its complex connectivity, the model rendered itself to a straightforward
implementation on the CM-2 since the 2-D and 3-D topography of the modules was easily
mapped 10 the hypercube architecture of the CM-2.

» Taking advantage of the Supercomputer power of the CM-2 we were able to run numerous
computationally intensive experiments with DETE in a reasonable amount of time. Such a
volume and complexity of experiments would be impractical to do with a general purpose serial
processor (e.g., a workstation) and would tax even a supercomputer like the Cray.

* Taking advantage of *LISP -- this hi gh level language is designed for parallel programming of
the CM-2 and made DETE’s code relatively compact. In contrast, an implementation of the
same system on a serial computer would require substantially more code.

(4) Compurational Neuroscience: An attempt was made to establish mappings between DETE’s
structure and function and the connectivity and function of brain areas involved in vision, attention,
memory, and the integrated processing of lan guage.

* A novel theory of cerebellar cortical function is proposed. Founded on the well established
fact that the cerebellar cortex serves as a sequential associative memory for storage of motor
programis, this theory suggests an actual neural representation of these motor programs and the
cellular mechanisms involved in their storage and recall. Based on neurophysiological,
neuroanatomical, and neurochemical data about the structure and function of this cortex, the
theory suggests specific functionality for the major neuronal types in the cerebellum. Purkinje
cells are viewed as neural elements (predictrons) which learn to predict consecutive inputs
(Action Potentials) coming along parallel fibers. Golgi cells (recognitrons) are viewed as
monitoring the correctness of the predictions made by the Purkinje cells with respect to the
actual inputs coming along the mossy fibers. Cerebellar granule cells (BSSs) are involved in
switching of the cerebellar cortical function from “attending” to “performing” mode.

* A model of selective attention processing, based on phase-locking of oscillating neural
assemblies, was developed. Its major characteristic is the ability to simultaneously represent
several (up to 4) objects that appear in the visual field and to keep one of them in the focus of
atrention while treating the rest of them as a context,

* Possible mappings between the individual components of DETE’s architecture and brain
structures implicated in carrying out corresponding functions are proposed and discussed.
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