Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

IMPROVING THE QUADRATIC OBJECTIVE FUNCTION IN MODULE
PLACEMENT

L. Hagen December 1991
A. Kahng CSD-910081






Improving the Quadratic
Objective Function in Module Placement*

Lars Hagen and Andrew Kahng

Dept. of Computer Science, UCLA, Los Angeles, CA 90024-1596, (310)206-7073

Abstract

Traditional goals in placement for cell-based designs involve minimizing either total wire-
length or channel density; each of these metrics in some sense corresponds to final layout area.
In traditional approaches, a net model is used to transform the netlist hypergraph into a graph
representation. A linear wirelength objective is then derived, but then for technical reasons a
guadratic form is actually optimized using relaxation or eigenvector methods. We address this
seeming inconsistency and propose a simple transformation of the quadratic objective which
“recaptures” the original minimum-wirelength objective. Computational results for a wide
range of standard benchmarks show that this refinement gives very significant savings in both
total wirelength and channel width for linear placement: these values are respectively reduced
by an average of 7% and 18% over results obtained with the previous standard approach.

1 Preliminaries

Module placement has presented one of the most persistent challenges in IC layout synthesis. The
true criterion for a good placement is efficient autoroutability, subject to performance and chip
area constraints. Thus, placement models and objective functions are very hard to formulate.
Many methods have been proposed, such as clustering, iterative improvement, row-assignment,
recursive min-cut, force-directed, etc.; early techniques are surveyed by Hanan et al. [12}, and

Lengauer [15] gives a recent overview.

We may view the placement procedure as the assignment of n modules to n available slots
such that a given cost function is minimized, i.e., we have a quadratic assignmeni formulation. In
particular, to simplify our discussion we will address the problem of linear placement, where the

modules are assigned to positions 1,...,n on the one-dimensional integer lattice. The linear place-
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ment problem, which we will formalize below, captures a number of practical applications, e.g.,
placement within cell rows. Furthermore, as shown by Kurdahi and Sastry {14], two-dimensional
placement in cell-based designs can be modeled as two interacting one-dimensional placement

Processes,

There are three main components to any module placement approach:

o First, a net model represents signal nets (hyperedges in the netlist hypergraph) by graph

edges.
e Second, given the net model, an objective function is formulated for global minimization.

e Third, a (heuristic) optimization method must be used to minimize the objective function.

The results in this paper stem from the following simple observation: while standard net models
and objective functions are aimed at minimizing wirelength, the accompanying optimizations
actually minimize a completely different objective function which is guadratic in wirelength. Put
another way, the traditional approach to placement algorithms becomes problematic in that one
picks a net model which reflects a minimum wirelength objective, but then takes a “left turn™ and

instead minimizes the sum of squared wirelengths.

This inconsistency between the objective function developed from the net model and the cost
function actually optimized is the subject of the present work. Our goal here is to determine
an appropriate net model and objective function, and then be able to actually minimize a good
approximation to this objective function. For a number of reasons, it appears that the linear wire-
length objective is in fact a good objective function. And while technical reasons have historically
motivated the substitution of the quadratic for the linear wirelength objective, we show that a
simple change of weights in the quadratic form of the objective will “recapture™ the effect of the
original minimum-wirelength placement objective. Experimental results confirm that when our
refinement is applied to traditional placement methods, very significant improvements result for

both the total wirelength and maximum channe] width metrics.



The remainder of this Extended Summary is organized as follows. In Section 2, we review the
traditional placement approaches, i.e., net models, objective functions and optimization methods.
This brings to light the above-mentioned “inconsistency”, which we heuristically resolve via a

method proposed in Section 3. Section 4 presents experimental results and conclusions.

2 The Placement Process

Placement has traditionally been formulated as a quadratic assignment problem where modules
must be placed into available slots. The slots are often assumed to be linearly ordered, e.g., for
backplane formation or cell placement within assigned rows. As noted above, this is reasonably
general since two-dimensional placement may be described by two simultaneous one-dimensional

placement processes [14].

Linear Placement: Given a netlist graph G = (V, F) with |[V| = n and connection weights
cij between module pairs (vi,v;), map the modules onto distinct positions z; taken from the
set {1,...,n} such that an objective function dependent on the ¢;; and the module positions is

minimized.

2.1 Net Models

In the first phase of the placement algorithm, a net model is derived which yields a graph repre-
sentation of the netlist hypergraph; the net model reflects the routing cost of the placed netlist
and determines the ¢;; values in the above formulation. Many net models have been proposed,
including spanning paths, spanning cycles, spanning trees, star topologies, etc. Several models
can suffer from nondeterministic asymmetry in the connection weights ¢;;, i.e., not all adjacen-
cies derived from a given k-pin net will be accorded the same significance. Furthermore, minimum
spanning tree, centroid-based star (e.g., [18]), or other topologies are inherently dynamic, requiring

recomputation with every change in the module placement (see [15] for a survey).

The most common net model is that of a weighted clique, where a &-pin net will induce C(k, 2)



edges among its & modules (see Figure 1). The early survey by Hanan et al. [12] details several
clique weighting variants which propose uniform weighting of the C{k, 2) edges by such values as £,
%, ﬁ, etc. Simple dimensional analysis shows that all of these net models are essentially identical
in practice. Recent work has widely adopted a “standard™ weighted clique model [15], wherein
a k-pin net contributes Lz to each of C(k,2) ¢;; values. While the most obvious advantages of

the clique model stem from its symmetry, we briefly digress here to provide additional intuition

behind the standard edge weighting.
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Figure 1: The standard clique net model: each k-pin net contributes 2+ to
the ci; value for each of the C(k,2) pairs of nodes (v;, v;) which belong to the
net.

Since the goal of linear placement is to minimize the wire length contributed by each net,
i.e., the net span in one dimension, we would like the weighting of each net to be related to the
minimum possible wire length W L,,;,, for each net. Intuitively, the weighting should be inversely
proportional to W L., so that the objective function does not “try too hard” to place the &

modules of a net into < % slots when such an arrangement is physically impossible.

In the discrete linear placement problem defined above, the minimum wirelength WL;, of a
k-node net is k — 1, and by the above intuition we should adopt a weighting function on the order
of ﬁ Thus, our heuristic picture of linear placement supports use of the present standard clique

net model.



2.2 Objective Function

Certainly, the goal of module placement must encompass minimization of total wirelength. Each
grid unit of wire requires an additional quantum of chip area which is dependent on the wiring
pitch. Moreover, larger wirelength generally implies larger RC constants, which can adversely
impact system performance. Of course, layout area in cell-based designs is also determined by
the number of wiring tracks used, i.e., the sum of channel widths is also an important objective
function. Although minimum wirelength placement and minimum channel-width placement are
not perfectly correlated, we note that results of Adolphson and Hu [1] may be used to establish a
probabilistic relationship between the two metrics. Indeed, our experimental results below show
that when we use our new methods to improve wirelength, the channel width usually also improves.
In view of these arguments, we choose to minimize a sum of wirelengths objective function; for
linear placement, this corresponds to minimizing the sum of net spans. Such a conclusion is
in agreement with researchers who have considered the tradeoffs between linear and quadratic
objectives. For example, Sigl et al. [18] recently concluded that “a linear objective function seems

to reflect the actual wiring demands more accurately than the quadratic objective function”.
2.3 Optimization Methods

Finally, it is well known that the Linear Placement formulation above is NP-complete when we
minimize the objective function 37, ; eij|@: — ;| [8]. By contrast, if we relax the slot constraint
and introduce a quadratic form in the minimization, efficient numerical algorithms can be used to
obtain a global optimum solution. More specifically, we represent the circuit netlist by the simple
undirected graph G = (V, E) with |V| = n vertices vy,...,v,. We use the n x n connection matriz
C = C(G), where ¢y, = 1 if (v, w) € F and ¢, = 0 otherwise. If G has weighted edges, then c,,,
is equal to the weight of (v, w) € E, and by convention c,, = 0 for all v € V. If we let d(v) denote
the degree of node v (i.e., the sum of the weights of all edges incident to v), we get the n x n
diagonal matriz D defined by Dy; = d(v;). As noted by, e.g., Hall [11], Cheng and Kuh [4], and

Tsay et al. [20], the real eigenvector corresponding to the second smallest eigenvalue of Q gives



a linear placement solution vector ¥ which minimizes }-, . ¢ij|z; — z;|? subject to the constraint

|F] = 1.1

Eigenvector solutions to the linear placement problem with quadratic objective function can
then be found by either iterative relaxation methods [4] [20] [18] or sparse-matrix operator tech-

niques such as the Lanczos method [10].2

Some heuristic justifications for the squared wirelength objective have been put forth, notably
that the metric reduces congestion since it tends to reduce the maximum wirelength of any net.
However, it is by no means clear why so much effort has gone into optimizing the particular
squared wirelength objective Zi,j cij | — .1:J-|2, which is not very reflective of the “true” cost
function, X:‘.J. cijlzi — zj|. Indeed, much work within the past five years simply points to the
formulations used by Hall [11] and Cheng and Kuh [4], rather than presenting any rationale for
the quadratic objective. As Lengauer notes in [15] (p. 317): “The main reason why quadratic
wire-length estimation is so popular is that the method leads to quadratic cost functions that can
be minimized easily .... Thus, the final motivation for using quadratic wire length is driven by

methodical, not modeling, arguments.”

It is interesting to note that very few researchers besides Lengauer have commented on this

issue. Sigl et al. [18] claim to be the first to explicitly address the differences between the linear

1Hall [$1] noted that the eigenvectors of the matrix Q = D — C solve the problem of finding the vector z =

(1111:21 saa pxn) m.in.im.lzing
1 n n
S35

i=1 j=1
subject to the constraint |z| = (zTx£)!/? = 1. Since z = 27 @z, to minimize z we may form the Lagrangian
L=3z"Qz— Mzg"z- 1)
Setting the first partial of L with respect to r equal to zero yields
2Qz — 22z =0,
which can be rewritten as
(@-ADz=0

where I is the identity matrix. This gives an eigenvalue formulation for A, and the eigenvectors of ¢} are the only
nontrivial solutions for g. The minimum eigenvalue 0 gives the uninteresting solution z = (1//m,1//n,...,1//n),
and hence the eigenvector corresponding to the second smallest eigenvalue A is used. Again, note that the slot
constraint is replaced by the requirement that |2] = 1.

2Using the eigenvectors of the second- and third-smallest eigenvalues of Q yields a two-dimensional placement
which also minimizes the weighted sum of squared wirelengths.



and quadratic objectives. As noted above, they find the linear objective to be more “accurate”.
However, in order to minimize the linear objective via a quadratic formulation, Sigl et al. use a
dynamic net model which requires an iterative algorithm. Thus, the method in [18] alternately
solves a quadratic program and updates the coefficients of the program until a convergence criterion
is satisfied. By contrast, the next section proposes a heuristic which empirically allows direct

computation of a good linear placement via, e.g., a Lanczos sparse-matrix code [9] [10].

3 A Heuristic Improvement to the Quadratic Objective
Function

In this section, we briefly outline intuition leading to an enhancement of the traditional quadratic
objective for linear placement. Recall from the discussion of Section 2 that we would like to
minimize z = 3, ; ¢ij|zi — z;], i.e., the weighted sum of wirelengths. However, due to complexity

reasons we prefer a quadratic objective function which is amenable to global optimization.

To minimize z, we could minimize the square of z if we are restricted to using a quadratic

objective function. However, the expansion of 2? is the highly complicated expression

el,|zy = zo|? + cdalzy — 23|+ 4+ 2 cr2ci3lTy — T2l |21 — 23] + -+
which can be rewritten as

1 1
22 = chgjkﬂi —z;°+® (= mized terms)
i=1j=1

Ignoring the sum of mixed terms P in this expression for z? leads us to a more natural quadratic

minimization objective for linear placement:

n n
1_5:5: 2 2
z = Cif |'.v:,-—.rj

i=l j=1

and we suspect that minimizing z* can be shown to be nearly equivalent to minimizing 22, i.e.,



minimizing z, for a large class of problems, Certainly, the experimental results in the next sec-
tion demonstrate that this simple modification leads to significant wirelength and channel-width

savings.
4 Experimental Results and Conclusions

Given the weighted clique model, we solve the associated linear placement problem using the stan-
dard eigenvector-based approach outlined in Section 2 above, using a Lanczos-based implementa-
tion reported in [10]. Given a graph representation G for the netlist, the eigenvector corresponding
to the second-smallest eigenvalue of Q(G) = D(G) — A(G) gives a linear ordering of the modules.
We simply evaluate the sum of net spans (i.e., total wirelength) and the channel width induced

by this linear ordering,.

Tables 1 and 2 show results for linear placement of a number of MCNC benchmarks (the
Primary and Test suites), as well as for additional industry netlists (three ILLIAC boards and
two benchmarks obtained from Hughes Aircraft Co.) that were evaluated in [21] and [10]. Using
the standard clique net model, where each k-pin net containing modules v; and v; contributes
= to the value c;j, we obtain results that reflect the methods of [20], [4] and a number of
recent researchers. However, when we square the final ¢;; values and apply the same quadratic
optimization techniques, we reduce both wirelength and maximum channel width by an average

of 7% and 18%, respectively. Since each of these metrics is representative of overall layout area,

these improvements have a great deal of practical significance.

A number of interesting open issues remain. For example, it is possible that alternate functions
of the ¢;; (i.e., other than ¢;;2) can be applied to transform the standard quadratic objective.? As
long as fixed cj; are used, the usual efficient quadratic optimization algorithms remain applicable.
In fact, it is quite reasonable to envision a placement methodology which tests a number of

alternate functions of the c,;, then returns the best result.

31t is interesting to note that early work, e.g., that of Steinberg [19], proposed changing the exponent of the
|#; — x;] term in the objective function. However, no work has examined any alternate exponents for the ¢;;.



Test Number of €5 Cij Percent
problem elements WL squared WL WL squared WL | WL reduction
1C67 67 2311 56543 2204 €3320 4.63
1C116 115 4561 108187 4790 122420 -5.02
1C151 151 6809 188125 6351 224757 6.73
bml 832 56739 9006325 52822 9802464 6.90
19ks 2844 569362 325582810 403835 264652195 29.07
Priml 833 57991 7998623 52267 9244365 9.87
Prim?2 3014 1029741 659759635 803172 603056922 22.00
Test02 1663 316837 144173965 377974 235816852 -19.30
Test03 1607 168994 33363650 130070 48533696 23.03
Test04 1515 175023 42366645 225495 94964351 -28.84
Test(5 2585 573500 317395208 563515 4417593801 1.74
Test06 1752 435829 219226747 294939 201103961 32.33

Table 1: Results for twelve industry benchmarks showing wirelength and
squared wirelength values when Y7, . ¢;;l2; — ;] and 3, ; ¢ij%|z; — zj|* objec-
tive functions are used with an eigenvector method to yield the linear placement,
Average WL improvement is 7%.

Test Number of ¢j Cij Percent Channel

problem elements Channel Width | Avg Density | Channel Width | Avg Density | Width reduction
1C67 67 36 34.493 54 32.896 3.67
IC116 115 71 39.661 64 41.652 9.86
IC151 151 33 45,093 76 42.060 8.43
bm1 382 128 64.330 114 59.889 10.94
19ks 2844 470 200.158 299 141.995 36.38
Prim1 333 144 €9.617 121 62.745 15.97
Prim2 3014 583 341.653 382 266,430 34.48
Test02 1663 364 180.521 339 227.284 -6.87
Test03 1607 166 105.161 130 30.940 21.69
Test04 1515 213 115.527 237 143.842 11.27
Test05 2595 458 221.002 354 217.154 22.71
Test(6 1752 518 248.761 262 165.344 51.35

Table 2: Results for twelve industry benchmarks showing channel width and
average channel density values when ¥, ; cij|2: — 2;|% and 37, . ei®|zs — 2
objective functions are used with the eigenvector method to yield the linear
placement. Average reduction in channel width is 18%. As with the wirelength
results, note that the gains seem larger as problem size increases.

In conclusion, we have retraced the traditional attack on linear placement of modules in cell-
based layout. The basic observation is that a quadratic objective amenable to global minimization
is usually substituted for the true linear wirelength objective; however, the standard quadratic
form does not have a strong relationship to the original objective. Thus, we propose a simple
modification of the weighting function used in the quadratic form of the objective. This allows
global minimization of a function that more closely reflects the minimum wirelength goal. Indeed,
experimental results confirm very significant savings in both wirelength and channel width. Since

these metrics reflect layout area, we believe that our proposed modification will be highly useful



within the context of existing placement methods.
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