Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

PERFORMABILITY CONCEPTS AND MODELING
TECHNIQUES FOR REAL-TIME SOFTWARE

A. Tai December 1991
CSD-910080

UNIVERSITY OF CALIFORNIA

Los Angeles

Performability Concepts and Modeling

Techniques for Real-Time Software

A dissertation submitted in partial satisfaction
of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Ann Tsu-Ann Tai

1991

© Copyright by
Ann Tsu-Ann Tai
1991

The dissertation of Ann Tsu-Ann Tai is approved.

Q\{/\Mkdﬂu
¥ N~V John F. Mever
Yoy G Bub,

Kirby A. Baker

Deaes Tougyson_

(/ Thomas Ferguson

M%OM/&,

[]ack\w Carlyle

4\7//\%%/(__,

David A. Rennels

Wopide Tidae)

‘ Algirdas Avizienis, CNnmittee Chair

University of California, Los Angeles
1991

1

In loving memory of my grandmother,
who raised me up
and was always there when I needed her.
She gave me her unconditional support,

and I miss her dearly, forever . ..

i1

TABLE OoF CONTENTS

Introduction 1
L1 Motivation 1
1.2 Basic Definitions and Associated Terminology 2
1.3 Organization of the Dissertation 1
Prior Work and its Relation to our Research 5
2.1 A Brief Retrospective 5
2.2 Application of Performability Concepts to Software 6
Framework of Software Performability Modeling 10
3.1 Total System 11
3.2 Performance Variable 14
SAN Realization of the Framework 15
4.1 Representation of the Total System 16
4.2 Example Analysis 20

4.2.1 Software Utilization, Success Criteria, and Expected Reward 20

4.2.2 Coverage and Computational Dependability 24
4.2.3 Workload and Software Failures 31
4.24 Maintenance Scheduling 34
5 Refinement of the Framework: a Reward Structure 41

v

5.1 Difficulties in Performance Variable Formulation 41

5.2 Evaluating Unified Measures via Distinction 44
3.3 A Reward Structure Using Composite Approach 16
54 Discussion L 19
Applications to Fault-Tolerant Software 51
6.1 Background L L 31
6.2 Assumptions. 32
6.3 Definition of Performance Variable 53
6.4 A Hierarchical Approach to Model Construction and Solution .. 55
6.5 RBModel 57
6.5.1 Dependability Sub-Model 59
6.5.2 Performance Sub-Model 63
6.5.3 Performability Model 65
6.6 NVPModel 69
6.6.1 Dependability Sub-Model 70
6.6.2 Performance Sub-Model 75
6.6.3 Performability Model 76
6.7 Results Analysis. N
6.7.1 Comparisons between RBand NVP ™

6.7.2 Comparisons between Fault-Tolerant Software and Non-

Fault-Tolerant Software 82

6.8 Alternative NVP Model B4

6.8.1 An Alternative Approach to NVP Operation 84

6.8.2 Dependability Sub-Model 86
6.8.3 Performance Sub-Model 92
6.8.4 Performability Model 95
6.9 Discussion 96
6.10 Evaluation for Fault Tolerant Software of Closed Loop Type 102
Conclusions and Future Work 112
7.1 Reward Structure 112
7.2 Hierarchical Approach 113
7.3 How the Reward Structure and Hierarchical Approach relate to
SANs 114
7.4 Summary of Future Work 116
Glossary of Notation_ 117
SAN Structure 121
Sample C Code for Software Performability Analysis 124
C.1 Program for Computing Expected Reward 124
C.2 Program for Solving a Markov Model for Steady State 127
Sample Mathematica Program and Output 131
D.1 Mathematica Code Computing the Expected Reward of NVP . . 131
D.2 Mathematica Output for the Expected Reward of NVP 133

vi

D.3 Mathematica Code Computing the Expected Reward of New-NVP 138

D.4 Mathematica Output for the Expected Reward of New-NVP . . . 141

References

vil

3.1

1.1

4.2

4.3

4.4

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

LisT oF FIGURES

An Overview of the Total System

Example of a Total System
A SAN Model for Total System
Gate Specification for Total System -
A SAN Mode] for a Sampled Data System
Gate Specification for the Sampled Data System
Underlying Markov Chain for the Sampled Data System
Expected Reward as a Function of Invocation Rate (I) . . -. C
Expected Reward as a Function of Invocation Rate (II)
An Example System Using “Skip-Frame” Strategy
A SAN Model for the System Using “Skip-Frame” Strategy

Gate Specification for the System Using “Skip-Frame” Strategy
Underlying Markov Chain for the “Skip-Frame” System
Computational Dependability as a Function of Coverage (1)
Computational Dependability as a Function of Coverage (II} .
An Example System Having Two Data Sources
A SAN Model for the System Having Two Data Sources
Ga.t;e Specification for the System Having Two Data Sources . . .
Markov Chain for the System Having Two Data Sources

Failure Probability as a function of Iteration Rate

viii

27

28

29

30

32

32

33

4.20

4.21

+1.22

+.23

4.24

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

Reward for Different Maintenance Schedules (e, = 0.0001)

Reward for Different Maintenance Schedules (e, = 0.002)
Reward for Different Maintenance Schedules (eg = 0.004)
Reward for Different Maintenance Schedules (eq = 0.006)
Reward for Different Maintenance Schedules (e, = 0.008)

Reward Difference as a Function of Original Software Quality

A Hierarchical Approach to Model Construction and Solution

Recovery Blocks Operation,
Dependability Sub-Modelof RB
Performance Sub-Modelof RB
Performability Modelof RB
N-Version Programming Operation
Dependability Sub-Model of NVP
Performance Sub-Model of NVP
Performability Model of NVP
Comparisons of RBand NVP
Expected Reward for Non-Fault-Tolerant Software
Alternative NVP Operation
Dependability Sub-Model of Alternative NVP
Performance Sub-Model of Alternative NVP
Performability Model of Alternative NVP.

Sensitivity to the Mean Execution Time of the Slowest Version . .

ix

38

38

39

39

40

ot
ot

62

64

66

70

72

75

77

81

83

85

87

93

96

97

6.17 Comparisons of RB, NVP and Alternative NVP 98
6.18 Impact of Component Performance 99
6.19 Comparison for Uniform Distribution 100
6.20 Comparison for Open Loop Case 110
6.21 Comparison for Close Loop Case 110
71 Two Types of Modularity 113

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

LI1ST oF TABLES

Fault Types and Notationsfor RB. 39
State Definitions for RB Dependability Model 60
Fault Types and Notations for NVP 71
State Definitions for NVP Dependability Model 73
Notations for Parameters 79
Assignments of Parametersfor RB, 80
Assignments of Parameters for NVP 80
Fault Types and Notations for new-NVP 87
State Definitions for new-NVP Dependability Model 88
Parameters of Uniform Distribution (RB). 101
Parameters of Uniform Distribution (NVP) 101
Parameters of Uniform Distribution (new-NVP) 101
Assignments of Parametersfor RB 108
Assignments of Parameters for NVP. 109
Assignments of Parameters for new-NVP 109

x1

ACKNOWLEDGMENTS

[would like to thank my committee members, Professors Algirdas AviZienis.
David A. Rennels, Jack W. Carlyle. Thomas Ferguson. Kirby A. Baker. and
John F. Meyer for serving on my committee. Professor Meyer was especially
instrumental in introducing me to performability and in guiding my research. [

would like to thank Professor Ferguson for his help on many mathematical details.

I wish to express my sincere appreciation to Professor Algirdas Avizienis for
his advice and encouragement that have contributed significantly to my graduate

study and dissertation research.

Special thanks to Professor Richard Muntz whose advice became a key for

the progress of my work.

Thanks also to Dr. Herbert Hecht for his steady support, encouragement and

patience in the past three years.

Heartfelt thanks to my husband and best friend Kam Sing for his steady

encouragement and support in many practical ways.

This research is partially supported by the Small Business Innovative Research
(SBIR) Contract F33615-C-1468 from the U.S. Department of Defense. I want
to acknowledge the support and interest of AAAF-3 of Wright Laboratories and

Mr. Marc Pitarys, the technical monitor.

xii

VITA

1984 B.S. (Computer Science), UCLA.
1985-1986 Research Assistant, Computer Science Department, UCLA.
1986 M.S. (Computer Science), UCLA.

1986-present Research Engineer, SoHaR Incorporated, Beverly Hills, CA

PUBLICATIONS

Herbert Hecht, Myron Hecht and Ann T. Tai, “Software Certification Testing,”
Proc. Ninth Annual Software Reliability Symposium, Colorado Springs, Colorado,
May 1991

Ann T. Tai, John F. Meyer and Herbert Hecht, “A performability model for real-
time software,” Proc. First International Workshop on Performability Modeling

of Computer and Communication Systems, Enschede, Holland, Feb. 1991
Herbert Hecht, Ann T. Tai and John F. Meyer, Avionics Software Performability,

prepared for USAF Wright Laboratories under contract F33615-90-C-1468, Jan.
1991

xii]

Wesley W. Chu, Andy Hwang, Herbert Hecht and Ann T. Tai. “Des; gn Consider-
ations of a Fault Tolerance Distributed Database System by Inference Technique.”
Proc. International Conference on Databases. Parallel Architectures, and Their

Applications, Miami Beach, Mar. 1990

Ann T. Tai, Myron Hecht and Herbert Hecht, “A Testing Methodology for
Critical Software,” Proc. of COMPSAC ’87, Tokyo, Japan, Oct. 1987

John P. J. Kelly, Algirdas Avizienis, Brad T. Ulery, Barbara J. Swain, Rung-
Tsong Lyu, Ann T. Tai and Kam-Sing Tso, “Multi-Version Software Develop-
ment,” Proc. of the Fifth IFAC Workshop, SAFECOMP’86, Sarlat, France, Oct.
1986

A Study of the Application of Formal Specification Methods for Fault-Tolerant

Software, Technical Report, CSD-880100, Computer Science Department, Uni-

versity of California, Los Angeles, June 1986

xiv

ABSTRACT OF THE DISSERTATION

Performability Concepts and Modeling

Techniques for Real-Time Software

by

Ann Tsu-Ann Tai
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1991

Professor Algirdas AvizZienis, Chair

To evaluate the operational properties of real-time software, performance and
dependability must be considered simultaneously. Accordingly, the use of a uni-
-fied performance-dependability measure for this purpose is highly desirable. A
generic performability model is developed to incorporate such a measure. The
model consists of a representation of the total system, together with the per-
formance variable V. The total system comprises the real-time program (object
system) in question and its operational environment. The model emphasizes the
representation of interactions between performance attributes and dependability
attributes and, moreover, captures the behavior of the software in its operational

environment.

Real-time software systems may exhibit both gracefully and non-gracefully
(the case in which an undetected error causes catastrophic failure) degradable
performance. We employ a binary (or multi-nary) classification of operational

integrity to govern the formulation for the unified evaluation. In this manner.

Xv

distinctive yet coherent formulations of the performability measures can be pro-
vided across the boundaries of the classes. Accordingly, a reward structure is
developed comprising the “top-down” and “bottom-up” (reward-based) capahil-
ity functions. The former is employed to classify the software behavior in question
using the concept of service threshold; whereas the latter realizes the evaluation
of the degradable performance for the appropriate service class(es). The per-
formance variable V is then formulated via the reward structure to summarize

program performance over a mission.

The framework has been applied to the assessment of software fault tolerance
techniques, namely, Recovery Blocks and N-Version Programming. A hierarchical
approach is employed for model construction and solution. Performability mod-
eling permits us to investigate the relationship between the cost of performance
and the effectiveness of fault tolerance techniques. The unified measure provides
to us insight about how to optimize the use of computational redundancy toward

a performability objective in an operational context.

xvi

CHAPTER 1

Introduction

1.1 Motivation

Separate performance and dependability models are inadequate for optimizing

software design because they usually preclude:

1. the evaluation of system performance under fault conditions for systermns

which exhibit degradable service;

2. an explicit representation of the environmental effects on dependability;

and

3. the analytical study of the performance penalty due to partial failure or

error recovery.
A unified measure overcomes these difficulties and permits

1. the study of various interactions between performance and dependability

attributes during real-time software operation;

2. the resolution of conflicting goals of performance and dependability given

limited resources for software development process.

In the evaluation of real-time software, such as avionics applications, it is par-

ticularly important to consider performance and dependability simultaneously.

Mission related metrics of the impact of avionics system modifications that in-
corporate both performance and dependability, directly related to elements of
software design, can provide the means for sound engineering tradeoffs [1]. Hence.
a model integrating performance and dependability assessment and translating
benefits from either field into the value of real-time software in user terms is
highly desirable. This model is aimed at capturing the interactions between
performance and dependability, such as 1) marginal performance with regard to
real-time constraints, causing system degradation or failure: and 2) fault toler-
ance schemes that cause response time/throughput penalties during fault-free

operation or recovery process, thus degrading system performance.

In summary, the objectives established for this research are:

1. To identify concepts of existing performability studies that can be carried

over to real-time software performability modeling.

2. To establish a framework for evaluation of software performability which
includes a total system model, and a performance variable to evaluate soft-

ware service quality via a reward structure.

3. To evaluate the framework by applying it to the assessment of software

fault tolerance techniques.

1.2 Basic Definitions and Associated Terminology

The basic definitions and associated terminology used in this dissertation follow
the conceptual framework provided by [2] for expressing the attributes of what

constitutes dependable computing.

Dependability is that property of a computer system that allows reliance to
be justifiably placed on the service it delivers. The service delivered by a system

1s its behavior as it is perceived by its user(s).

A system failure occurs when the delivered service deviates from the specified
service, where the service specification is an agreed description of the expected
service. The failure occurred because the system was erroneous: an erroris that
part of the system state which is liable to lead to failure. The cause of an error
is a fault. An error is therefore the manifestation of a fault in the system, and a

failure is the effect of an error on the service.

The faults fall classically into two classes: physical faults and human-made
faults. Human-made faults primarily are design faults. Design faults are commit-
ted either during the initial specification and design or during subsequent system
modification or maintenance procedures. The major distinction between the de-
pendability attributes of hardware and software is: software systems present only

design faults because there is no component deterioration.

In the context of fault-tolerant system employing computational redundancy
and design diversity, the results of individual system components are allowed to
differ within a certain range. Similar results are defined to be two or more results
that are within the range of variation that is allowed by the decision algorithm
used in a fault-tolerant system. Accordingly, when two or more similar results

are erroneous, they are called similar errors.

1.3 Organization of the Dissertation

Concepts of existing performability models are described in Section 2 of this
dissertation. A framework for the software performability model is presented
in Chapter 3. and this framework is translated into executable implementations
(stochastic activity networks) in Chapter 4, where examples of the application of
the framework and executable models are also shown. To refine the framework.
a reward structure based on a composite approach is presented in Chapter 5.
Applications to the assessment of software fault tolerance techniques using the
methods of hierarchical model construction are described in Chaptef 6. Conclud-
ing remarks and future work are presented in Chapter 7. Appendix A provides
a glossary of notation. Basics of stochastic activity network (SAN) structure
are introduced in Appendix B. Samples of C code that were developed for the
examples of software performability analysis are shown in Appendix C. Finally,
Appendix D provides the sample Mathematica programs and their output for

performability evaluation of fault-tolerant software.

CHAPTER 2

Prior Work and its Relation to our Research

2.1 A Brief Retrospective

A general framework for model-based performability evaluation was introduced
by Meyer [3]. It permits the definition, formulation, and evaluation of unified
performance-dependability measures. An important measure when observing a
system during a specified period of time is the amount of cumulative benefits (re-
ward) rather than the performance level at some point of time. A performability
measure defined as the probability distribution function of cumulative perfor-
mance during a specified period of time was introduced in [4]. The performa-
bility modeling and evaluation methods were applied to SIFT, an experimental
fault-tolerant computer system for an air transport mission [5]. Stochastic ac-
tivity networks (SANs) were developed to support (model-based) performability
evaluation of complex systems [6] [7] [8]. A performability evaluation tool based
on SAN, called METASAN !, was developed to assist in the construction and so-
lution of performability models [9]. The need for unified measures has also been
recognized by other researchers with various approaches. Beaudry developed the
notation of the computation availability to measure the effectiveness of the system

[10]. Castillo and Siewiorek studied the relationship between workload, perfor-

'METASAN is a registered trademark of the Industrial Technology Institute.

mance and reliability for digital computing systems (11]. Chou and Abraham de-
veloped performance-availability models of shared resource multiprocessors {12].
Arlat and Laprie discussed performance-related dependability evaluation for su-
percomputer systems [13]. Iver, Donatiello and Heidelberger described a recursive
technique for computing moments of the distribution of accumulated rewards for
repairable systems in {14]. Goyal and Tantawi developed an algorithm to com-
pute the performability distribution in a heterogeneous system [15]. They carried
out the analysis in the time domain to obtain a closed-form solution of the per-
formability distribution. Hsueh, Iyer and Trivedi developed a measurement-based
performability model using real error data collected on a multi-processor system.
[16]. They defined a reward function based on the service rate and the error rate
in each state in order to estimate the performability of the system and to depict
the cost of different failure types and recovery procedures. Smith, Trivedi and
Ramesh developed an algorithm to invert the transform equation using numerical
methods for computing performability distribution {17]. Recently, Couvillion et
al. described UltraSAN which uses stochastic activity networks and embodies
many strategies to keep model size small, thus speeding simulation and aiding

analysis {18].

A comprehensive survey of performability research work and results during

the past 15 years can be found in [19].

2.2 Application of Performability Concepts to Software

Since the late 1970s, work on the development and application of performability
models in a computing context has been primarily oriented toward hardware

systems. Very few studies have considered the relationships between performance

and dependability in software. Gelenbe and Mitrani studied the effect of errors
and recovery on the execution time of Algol-like programs [20]. Chimento and
Trivedi analyzed the execution time distribution of block structured Programs run
on processors subject to failure and repair [21]. Hsueh and Iyer’s measurement-
based performability model considers both hardware and software errors and

reflects the interaction between system components [22].

However, a representation more tailored to real-time software is needed. Sig-

nificant differences from hardware performability models include:

1. Real-time software systems may exhibit both gracefully and non-gracefully
(the case in which an undetected error causes catastrophic failure) degrad-

able performance.

2. While hardware degradation can often be measured as a function of physical
elements, such as the number of processors or memory modules, software
degradation is usually an abstraction and is often indicated by reduced

accuracy, functionality, etc.

3. Software failure is exclusively the consequence of the interaction between
program quality and the dynamics of the environment (there is no compo-

nent degradation).

4. There can be failure behavior correlations: 1) between software components
because of their precedence relation, or 2) between iterative executions of

a single program due to data dependencies.

5. Untreated, delayed response constitutes an important failure category.

Therefore, we have developed a performability modeling framework that is

suited to the particular needs of software evaluation [23]. The model consists of
a representation of the total system, together with the performance variable V
that quantifies a program’s value {worth) in a specified operational environment.
The generic performability model incorporates such a measure and is structured
in a manner that facilitates its low level representation as an executable graphical

model, e.g., a stochastic activity network.

The model emphasizes the representation of interactions between performance
attributes and dependability attributes and, moreover, captures the behavior of
the software in its operational environment. An important benefit of this ap-
proach is that it permits the explicit modeling of factors that cause software
failures, such as the probability of executing a particular software module in an
environment characterized by data variability, resource constraints, scheduling
discipline, and fault tolerance capabilities. Some of the difficulties faced by cur-
rent software reliability modeling that utilizes broad statistical measures such as

fault density and failure rate, may be overcome by the adoption of this model.

To account for all these factors in a model of a real piece of software, per-
formability evaluation tools are required. Hence, the model is generally defined
in a manner that is conducive to lower level representation in a form that can be
constructed and solved by either analytical methods or by existing performability

evaluation tools. Specifically, the use of stochastic activity networks is considered.

Real-time software architectures, especially those employing defensive pro-
gramming or fault tolerance strategies, may exhibit both gracefully and non-
gracefully degradable performance. Quantitative measures from a straight unified
evaluation may not correctly represent the service quality of a software system.

The problem can be resolved by employing a binary (or multi-nary) classification

of operational integrity to govern the use of a reward-based capability function. In
this manner, distinctive yet coherent formulations of the performability measures
can be provided across class boundaries. Accordingly, a reward structure is de-
veloped comprising the “top-down” and “bottom-up” capability functions. The
former is employed to classify the software behavior in question using the concept
of service threshold; whereas the latter realizes the evaluation of the degradable
performance for the appropriate service class(es). This reward structure permits
operationally meaningful and mathematically realizable performability measures.

and thus refines the framework.

CHAPTER 3

Framework of Software Performability

Modeling

The software performability concepts presented here are adaptations and ex-
tensions of earlier work concerning effects of transient and permanent hardware
faults on a system'’s ability to perform [4] [5]. A software performability metric is
a function of both program attributes and the conditions of the operational envi-
ronment. As mentioned in the opening section, a software performability model
consists of a representation of the total system, together with the performance

variable V.

Definition 1 A software performability model is a pair
SP = (1S, V),

where TS denotes the total system in question and V is the perfor-

mance variable quantifying the benefits of T'S from its operation.

The total system and the performance variable are described in the following
sections. To realize the evaluation of the performance variable, a reward structure
capable to provide a rather complete assessment of real-time software service

quality is developed in Chapter 5.

10

3.1 Total System

Definition 2 A total system is a pair
IS={P E),

where P is the program submodel, and E is the environment sub-

model.

A total system thus represents the real-time program (object system) in ques-
tion and its operational environment. The object program has both structural
attributes, which are static, and behavioral attributes which are dynamic and
environment dependent. The operational environment includes factors external
to the object program that affect its behavior, e.g., input behavior, computing
resources, and mission profile. These need to be accounted for since input be-
havior is the driving force for design fault manifestations, computing resource
availability is the basis for successful and timely program execution, and the mis-
sion profile conveys the time-varying nature of environmental conditions. The

general hierarchy of the total system is illustrated in Figure 3.1.

All of the attributes can be expressed in mathematical terms. For example, in
the structural part of a P-model comprising M software modules, the precedence
relations between software modules can be described by an M by M matrix Q,

that is,

Q= [‘L‘J’]s (3.1)

where g¢;; represents the precedence relation between software modules i and 7
1.e.,

¢i; = 0, if sequence (7; 7) does not exist,

11

Total System

®
Real-Time Computing
Program Environment
[®
Structural Behavioral input Computing Mission
Attributes Attributes Behavior Resources Profile

Figure 3.1: An Overview of the Total System

¢i; = 1, if sequence (7; j) is unconditional,

¢i; = {predicate}, if sequence (¢;) is conditional.

In the behavioral part of a P-model comprising M software modules, each of which
is associated with K phases, the phased operational outcome of the software

modules can be represented by an M by K matrix OC, that is,
OC = [oc, 4|, (3.2)

where oc, 4 represents a success, degradation, or failure of the software module s

(logic and timing) for the phase ¢.

Components which make up the P and E-models can become degenerate under
certain circumstances. For example, to model a software module whose behavior
is phase independent, the “mission profile” component will consist of scalars
describing a single phase mission instead of the vectors having elements indexed

on mission phases. The extent of the elaboration of attributes in the P and

12

E-models (i.e., the expansion of the bottom level of the hierarchy of the total
system shown in Figure 3.1) is determined by the characteristics of the svstem

under evaluation and the focus of the modeling.

Conventional software dependability parameters such as failure intensity are
not required in this software performability model. Instead. we emphasize the
fact that real-time software failure behavior is a function of 1) the stochastic prop-
erties of the input behavior, 2) the probabilistic distribution of service requests
and computing resource utilization, and 3) the capability of the fault-tolerance
provisions. These parameters are represented in our model as follows. The sto-
chastic properties of input behavior are represented in the E-model. Resource
utilization and phase dependent service demands are attributes of the environ-
ment, hence system workload also is represented in the E-model. Software fault
tolerance techniques usually involve one or more of the following: re-execution of
code, branching to alternate modules, or concurrent execution, all of which can
be expressed in terms of precedence relations, and are within the scope of the P-
model. When performability is to be evaluated over a time interval that includes
software maintenance, the effects of changes need to be modeled. This can be
accomplished by varying the behavioral attributes and the resource utilization
(to reflect changes in performance) and the input behavior (to reflect changes in

fault locations).

13

3.2 Performance Variable

The performance variable V' quantifies the performance of TS over a designated

mission period Ty (succession of mission phases), that is

V' = benefit from performance of TS over T,.

The performability of TS is then given by the probability distribution function
(PDF) of V. In certain applications, however, a less refined measure of V' may
suffice, e.g., the performability of TS is taken to be the expected (average) value of
V. Evaluation of performability, however measured with respect to V, is based
on a stochastic process which can be either an explicitly mathematical model
or derived from a SAN graphical model of TS, along with a reward structure,
which is usually implemented in a reward-based capability function [4], defined
on the state trajectories of that process. For a given trajectory u, tlie value of
this capability function is the accumulation of reward impulses associated with
operational outcomes (at the points of phase transition, or completion of an
iteration of a program/sub-program). The outcome of a program execution is
determined according to the performance and dependability requirements of the
real-time system. The value of the reward impulse is based on the contribution of
the outcome of program to the mission, which may be weighted by their phase-

dependent criticality to the mission.

14

CHAPTER 4

SAN Realization of the Framework

SANs consist of the following primitives: activities, places, input gates, and out-
put gates. Cases associated with activities permit the representation of uncer-
tainties. Activities are of two types, timed and instantaneous. Elongated ovals
represent timed activities and solid bars represent instantaneous activities. Places
are depicted as circles. As with Petri nets, each place can hold a non-negative
number of “tokens”. The distribution of tokens in the places of the network at
a given time constitutes the “marking” of the network at that time. Cases can
be associated with both timed and instantaneous activities and are represented
by small circles. The stochastic nature of the networks is realized by associating
an activity time distribution function with each of the timed activities and a
probability distribution with each set of cases. If exponential time distribution is
associated with all activities, then the state marking behavior of the SAN model
is defined by Markov processes, and can be described by the state-transition-
rate diagram. Ultimately, the state occupancy probabilities may be obtained by
standard Markovian solution techniques or simulation (as employed, for exam-
ple, in METASAN). More details about SAN primitive elements and connection
rules are introduced in Appendix B. SANs can naturally capture the charac-
teristics of real-time software by exploiting the rich syntax of the generic SAN

model. The methods for constructing the software performability model in SANs

15

are illustrated in Section 4.1. The examples of computations and result analysis
showing how SANs represent total system and support the performance variable

are presented in Section 4.2,

4.1 Representation of the Total System

The total system model TS = (P, E) is constructed through interconnection of
components of the P and E-models. Figure 4.1 depicts such an interconnection

for the case where P consists of two modules in series.

data P data data
E ’ » : »
resouce compenent component :
—_— " . for for :
; control module 1 O:tg:?g module 2 stajus
! 1 ' ———
1
, |
: |

Figure 4.1: Example of a Total System

Between the components, the upper lines convey the data state and indicate
data dependencies; the lower ones convey control and status information and
indicate precedence relations. Between the E and P components there can also
be computing resource status flow. The “feedback lines” from P to E represent
the potential effects of software computation results and execution status on
its environment. We illustrate the approach via an example. Suppose a real-
time software system has a phase dependent scheduling policy (invocation rate is
determined by mission phase). The interarrival time of external input data (from

a sensor) is exponentially distributed. A fraction of the data in the input domain

16

may trigger the manifestation of design faults in the software module. The data is
transferred, at the time of invocation, to the software module’s local data buffer.
Data in the shared memory is always updated by the latest arrival. The time
between invocations is deterministic and mission phase dependent. The time
between mission phase transitions is also exponentially distributed. The nature
of the input data determines whether or not the recipient software module will
experience a failure. If an execution is not complete by the time of the next
invocation, the prior execution is timed out. The next execution then starts with
the latest input. The corresponding SAN model and its gate specification are

shown in Figures 4.2 and 4.3, respectively.

data_out
3

sampling

Figure 4.2: A SAN Model for Total System

The left part of Figure 4.2 is an E-model consisting of a data behavior com-

17

61 { inputs 1: data_avail;
2: invoked;
pred { {(x1 &k x2) }

func { x2 = 0; }]

G2 [ountputs 1: data_avail;
2: data_buff;
3: t_fail;
4: data_out;
func { if (!x4) { x3++; }

x2 = x1; }]

@2 [outputs i: g.fail;
2: data_buff;
3: data_out;

func { x3 = x2; x1 += (x2 == 2); 32 » 0; }]

Gd_1 [output data_avail;

func { x1 = 1; }]

6Gd_2 [output Qata_avail;

func { x1 = 35 } 1

Gm_1 [output phase_id;
func { x1 = (21 + 1) % (mi_length + 1); }]

Om_2 [input phase_id;
pred { {(zx1) }
func { ; }]

Figure 4.3: Gate Specification for Total System

18

ponent (the upper portion of the left box) and a mission profile component {the
lower portion). A small percentage, e, of data from the input domain may trigger
program errors. The corresponding probabilistic information is conveyed by the
cases associated with the activity “input arrival”. Phase transition is specified
by the gate “Gm_1" using a modulo function. The empty marking of the place
“phase_id” represents the period between the missions, while each of the other
markings represents the identification of a particular mission phase. The activity
“phase_transition” has an exponentially distributed activity time, and the distri-
bution can be phase dependent. The activity “scheduler” has a phase dependent
and deterministic activity time and is always enabled, except between missions.
The right part of Figure 3 is a P-model with its upper portion representing the ex-
ecution information, and the lower representing the operational cutcomes. At the
time of invocation, input data should be “sampled” and stored in a buffer local to
the P component. This is represented by an instantaneous activity “sampling”.
The data in the shared memory (represented by the marking of “data_avail”) is
allowed to vary during program execution, (e.g. from “error stimuli” back to
“normal”). However, software module execution depends only on the data state
at the beginning of execution, which is represented by the marking of “data_buff".
If the execution activity does not complete by the time of the next invocation.
the execution status will be altered. In other words, a timing failure is flagged
by the addition of a token to the place “t_fail”. The activity “exec” is then re-
activated, which implies the restart of execution with the current input. Upon
the completion of an execution, the marking of “gfail” will flag a logic failure
if the associated input data is an error stimuli. All of these “condition-action™
rules are described in the gate specification. Via the interconnections among the

SAN primitives, the total system model captures the interactions between the

19

dynamics of P and E components in a natural way. Model parameters, such as
the fraction of data that are error stimuli, can be obtained from software tests in
which the inputs are random, but selected from data domains in proportion to

their occurrence in an operational profile.

4.2 Example Analysis

This section presents the example models and analytical results demonstrating
the capabilities of our software performability model. (Analytical solutions were

implemented in C. Sample programs for the analysis are shown in Appendix C.)

4.2.1 Software Utilization, Success Criteria, and Expected Reward

Consider a sampled data system in which newly arriving information (synchro-
nized with an invocation) can overwrite data in a buffer. For minimum lag
between input and output it is desired to invoke the program operating on the
sampled data very frequently, but as the time between invocations decreases
there is increasing probability of overwriting the data buffer before the existing
information has been processed. Assume the execution time is exponentially dis-
tributed with parameter (execution rate) 5. The time between invocations is
also exponentially distributed, with parameter a. If an invocation arrives before
the previous execution is complete, the new invocation preempts the unfinished
execution. A SAN model is shown in Figure 4.4. When a preemption (together
with a data ;averwrite) occurs, one token is added to the place “timeout”. When
an execution is complete, the place is reset. The corresponding gate specification

and underlying Markov chain are shown in Figures 4.5 and 4.6, respectively.

20

invocation axecution

G1 data_buff ' G2 timeout

(o) ®

Figure 4.4: A SAN Model for a Sampled Data System

G1 [outputs 1: data_buff;
2: timaout:
func { if (x1) {x2++;}

else {x1 = 1;}]

G2 [output : timeout;

func {x1 = 0:}]

Figure 4.5: Gate Specification for the Sampled Data System

Figure 4.6: Underlying Markov Chain for the Sampled Data System

21

A relationship between software utilization and cumulative benefit is studied,
specifically, the expected steady state reward per frame as a function of the
invocation rate « (an indicator of software utilization). A positive reward impulse
is assigned to an iteration upon its completion, while a negative reward impulse
1s assigned upon a time-out. Since invocations are Poisson arrivals, the number
of iterations within a frame having a fixed length r is a random variable. The
expected reward accumulated in a frame (in the steady state) is the expectation
of a random sum. Let w, and w; be the values of the positive and negative
impulses, respectively. Further, let p, and p; be the steady state probabilities of
iteration success and failure (time-out), respectively. Then the expected reward

per frame (per interval of 7) is

x K ar)¥
B = 5 3t (k= i)+ @))6 e)

=0 i=0

Both the p, and p; can be obtained by solving the Markov model. The set of

balance equations obtained from the Markov chain is:

ﬂ‘ip(sk)—a-P(So) =0, k=0

k=1
o P(Sk_l) —(a+ ﬂ)P(S;,) =0, k>1

and hence we have

and
a

k
a+6) «P(So), k21

P(S) = (

then, py = 322, P(Sx), and p, =1 — p; = P(So) + P(5y).

22

As an example, we let w, = 1.0 and w; = —5.0. The results are shown in
Figure 4.7. The expected reward increases as the invocation rate « increases up
to a certain point. Beyond that point, further increases decrease the expected re-
ward, because the larger number of missed iterations (execution time-outs) is not
compensated by the gain from additional computations. The points of maximum
reward show that a system with efficient code (indicated by a higher execution
rate 3) tolerates higher service demands (indicated by a higher invocation rate
a) for maximum benefit. On the other hand, code with a long execution time

(low 3), must be restricted to lower rates to avoid excessive missing iterations.

T T L] L] T L T Ll T
f =100 i
20.0 . -
&
@ 15,0k B=7s .
-]
E
L]
S
Nedf
.
b=l
[¥]
3
3 10.0 1
i~
@
8 =50
&
£
[}
5.0 F -
0 0 I 4 1] L L [l 1 L
[»] 5 1¢ 15 20 25 30 35 40 45 50

invocation rate o«
Figure 4.7: Expected Reward as a Function of Invocation Rate (I)

Now consider that the timing criterion is relaxed: the program is made re-
silient to one or more overwritten data. That is, an execution will not be counted
as failed until its second, or third time-out. We refer to the maximum number

of time-out tolerable as the “threshold” k. Accordingly, p; = £, +n P(Sk), and

23

F L] T L T T T T T
20.0 4
h =2
¥
w 15.0 | g
@
&
8 h =1
o
T
g+l
%]
m
z
A 10.0 F]
o h =20
@
-t
3]
L]
Q,
k]
L]
5.0 .
0 0 1 L L i 1 i L L
0 5 10 15 20 25 30 k13 40 45 50

invecation ratea

Figure 4.8: Expected Reward as a Function of Invocation Rate (IT)

Ps = 1 —ps = P(So) + P(S1) + ... + P(S14s). However, as the timing criteria
is relaxed, the latency caused by a timing failure is amplified by the increased
time-out threshold. Accordingly, the negative reward for a discarded execution
is increased by its original value multiplied by the time-out threshold. The re-
sults are illustrated in Figure 4.8. The points of maximum reward shift toward
the right as the threshold for time-out is relaxed from zero to two. This shows
that the system effectiveness can be improved if it is possible to relax the success

criteria.

4.2.2 Coverage and Computational Dependability

This section presents numerical results from the performability modeling of a

small-scale system shown in Figure 4.9. A preprocessor accepts data, invokes

24

a software module (main process) and transfers the sampled data to it. The
time between successive invocation/data transferring events is exponentially dis-
tributed with parameter a. The software module contains residual design faults,
causing a fraction of the sensor input data from the preprocess to trigger failure
of the main process. Erroneous results may be detected by an acceptance test
in the main process. Upon the detection of an error, the main process applies
the “skip-frame” strategy in order to achieve fault tolerance, i.e., a single missing
iteration (detected erroneous computation) can be masked by using the result
from the previous iteration. However, consecutive misses will cause failure. The
execution time of the main process is exponentially distributed. Further, if an
iteration is not completed by the time of the next invocation, it is considered a
time-out condition and a new iteration begins using the current input. Consecu-
tive time-outs also constitute a failure. The SAN representation of this system,
the gate specification, and the corresponding Markov chain are shown in Figures
4.10, 4.11 and 4.12, respectively. In Figure 4.10, the left part is the E-model rep-
resenting data behavior and service demands, while the right part is the P-model
representing the software module’s operational status and outcome. The cases
associated with the activity “invocation/data_transfer” indicate the probability
that an input is a potential error stimulus. The cases associated with the activity
“exec” indicate the coverage of the fault tolerance mechanism — the probability
of a successful error detection by the acceptance test. High coverage of error
detection is usually achieved by sophisticated checks and assertions which may
consume significant computation time [24]). Hence, the execution time of the
main process is a direct function of coverage. Accordingly, it is assumed that the

mean execution time (}) increases exponentially with coverage.

25

invocation &

normal normal .
sensor data data data ransfer computation
data . result
preprocess O— main process —————
error arror a B
stimuii stimuli

Figure 4.9: An Example System Using “Skip-Frame” Strategy

invocation/
data_transfer

1-e

data_butf

outcome

Figure 4.10: A SAN Model for the System Using “Skip-Frame” Strategy

26

Gd_1 [outputs 1: data_buff;
2: outcome;
fone { if (x1 >= 1) {
if (x2 == 0) {x1 = 1; x2 = 2;}
else { if (x2 == 2) {x1 = 0; x2 = 1; }}
alse {if (x2 == 2) {x1 = 1;}
else {x1 = 1; z2 = 0;}}
H

Gd_2 [outputs 1: data_buff;
1: outcome;
func { if {x1 >= 1) {
if (x2 =» 0) {x1 = 2; x2 = 2;}
olse { if (x2 == 2) {x1 = 0; x2 = 1; }}
else {if (x2 == 2) {z1 = 3;}
else {x1 = 2; x2 = 0;}}
1

@1 [inputs 1: data_buff;
2: outcoma;
pred { xi>=1 }
func { if (x1 == 3) {
if (x2 == 3) {x1 = 0; x2 = 1;}
else {x1 = 0; 22 = 2;} }

else {x1 = 0; x2 = 0;}]
G2 [output outcome;

func { if (21 == 2) { x1 = 1; }]

Figure 4.11: Gate Specification for the System Using “Skip-Frame” Strategy

27

0,0
B
cB
(1-e)a p ®.a
S, S
1,0 2,0
{1-e)a
Sy N SM)¢ 2 foon
4
02 U8 (2)% 2,2 2 0,1
) 5,
o-d
@ [3.3
{1-e)a

Figure 4.12: Underlying Markov Chain for the “Skip-Frame” System

Let p, be the probability that an iteration of a software module will com-
plete its task correctly and in a timely manner. We refer to this probability
as computational dependability, a performance-related reliability measure of the
type introduced by [10]. The dependencies between improvement of computa-
tional dependability and choice of the fault tolerance parameter — coverage, is
investigated. In this example, p, = W%d%%%ﬁ)@' Figure 4.13 shows the
computational dependability as a function of the coverage for the “skip-frame”
strategy. The value of ¢ increases from top to bottom. The bottom curve, with
the greatest e, increases monotonically with decreasing slope. This shows that the
highest dependability is achieved with perfect coverage (1.0) if the original failure
probability (indicated by e) is high. On the other hand, a significant decrease
in dependability due to increasing coverage values is noted for the upper curve.
This indicates that the fault tolerance mechanism is likely to reduce computa-

tional dependability when the original failure probability is very low, because the

28

performance penalty cannot be compensated by the reliability benefits. Each of
the remaining curves reaches a maximum at less than perfect coverage. Beyond
the maximum, the benefit of error masking due to coverage is outweighed by the
performance penalty — the resulting number of time-outs. The maximum shifts
toward the right (high coverage) as e increases. suggesting that it is beneficial
to choose high coverage for software with high original failure probability. We
also notice that the values of computational dependability, for different values
of e, are quite close to one another in the perfect coverage region. This is due
mainly to the fact that, if ¢ = 1.0, all single errors are tolerated; hence, the
resulting values of p, are distinguished only by differences in the probability of
consecutive errors. Since values considered for the e’s are small, such differences

are practically negligible.

0.9397 ¥ T T T T T T T

9.9996 | e - 0.00035 1

0.9985 | e = 0.00055

-/_//To.ooovs

0,9994

0.9993

0.9992

0.5391

0.99%0

0.5989

0.9988

computational dependabiiity Ps

0.9987 .
e = 0.0015

0.9986 | r

0.9585 P -

o 998" L it 1 L L L L 1 L
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 c.8 c.9 1.0
error detection coverage ¢

Figure 4.13: Computational Dependability as a Function of Coverage (I)

Figure 4.14 also shows the computation dependability as a function of the

29

coverage of “skip-frame” strategy. Nevertheless, each of the curves has a differ-
ent value of o — increasing from top to bottom. A larger a indicates higher
service demands, higher time criticality and greater vulnerability to timing er-
rors. The top curve with a small o is close to a straight line. This implies that
the greatest benefit will be achieved at perfect coverage for the systems with low
service demands. The curve next to the top is with a slightly larger o. It is also
monotonic but its slope decreases as coverage increases, which implies that very
higher coverage may not be cost-effective for the systems with fair workload. The
lower curves in the figure are with larger a’s which indicate heavier workload and
greater vulnerability to timing errors. Each of the lower curves has a maximum.
The maximum shifts toward the left (low coverage) as o increases, which implies
that caution must be taken when choosing coverage for software with high service

demands.

1.0000 4 T Y T T T T T T

0.9999

0,999

0.%997

0,9996

0.9995

.9994

0.999)

0.9992

0,9991

computatiocnal dependability Ps
(=]

0.9990

00,9989

o 99.. 1 'l Il Il L L L A L
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
error detection coverage c

Figure 4.14: Computational Dependability as a Function of Coverage (II)

30

The analysis shows that the choice of fault tolerance coverage determines
whether or not we can effectively achieve the desired computational dependability.
The choice of suitable values for design factors can have considerable influence on
performability, i.e.. a program’s ability to benefit its user. The optimum values

are functions of both the operational environment and the program itself.

4.2.3 Workload and Software Failures

Consider another example system shown in Figure 4.15. The iterations of the
module are looped: a new one starts upon the completion of the previous one.
The module takes input from data source 1 at the beginning of iteration and
from data source 2 near the end of iteration. A small percentage of data from
source 1 are error stimuli, and data source 2 is subject to noise, which are Poisson
arrivals with rate v. The error stimuli from source 1 will result in fault mani-
festation while the noise from source 2 will completely disrupt the computation.
In addition, it is assumed that error probability is a direct function of iteration
rate (workload). The corresponding SAN diagram, gate specification and Markov
chain are shown in Figures 4.16, 4.17 and 4.18, respectively. Failure probability
(i.e., P(81) + P(S3)) is computed as a function of workload (the iteration rate
). Figure 4.19 shows three curves with different noise rates. It is observed that
the failure probability is high when the iteration rate is very low, decreases as the
workload increases moderately, and increases when the workload becomes high.
This phenomenon is due to the characteristics of the operational environment:
when iteration rate is very low the chance that data source 2 accumulates noisy
data before an iteration completion is high and program is vulnerable to the ex-

ternal errors; when iteration rate is high the chance of design fault manifestation

31

is high and the program is vulnerable to the internal errors.

i-e

data '1. software B
source 1 e / module >

data
source 2

|

Figure 4.15: An Example System Having Two Data Sources

Figure 4.16: A SAN Model for the System Having Two Data Sources

32

61 [outputs : noise;

fane {x1 = 1;}]

G2 [outputs 1: noise;
2: outcome;
func { if (x1) {xi = 0; x7 = 1;}

else {x2 = 0;}}]

G3 [outputs 1: noise;
2: outcomea;

func {x1 = 0; x2 = 1;}]

Figure 4.17: Gate Specification for the System Having Two Data Sources

(1-e)f

Figure 4.18: Markov Chain for the System Having Two Data Sources

33

0.005¢C

0.0045

0.0040

0.003s

0.0030

0.0025

0.0020

0.0015

failure probabllity/iteration

00,0010

0.0008

0.0000 L L i 1 L L 'l L L
a 5 10 15 20 25 30 35 40 45 30
iteraticn rate P

Figure 4.19: Failure Probability as a function of Iteration Rate

4.2.4 Maintenance Scheduling

This section presents an analysis of maintenance scheduling policies using per-
formability prediction. This is an example of performability application in soft-
ware development process. Conflicting demands in software maintenance activ-
ities arise from the following: from a performance perspective, perfective main-
tenance (performance or functional improvement) should be given priority; from
a dependability perspective, corrective maintenance (fault removal) should be

given priority. The factors for effective maintenance scheduling include:

1. Original program quality: characterized by the original error stimulus prob-

ability eg in the software performability model.

2. Maintenance quality:

Z

o Corrective maintenance qualityis characterized by the corrective factor
e, which is the percentage of the error stimulus probability remaining

after the maintenance.

¢ Perfective maintenance quality is characterized by the perfective index
3. 1n which a is the multiplication factor for the reward associated
with a successful program execution to account for improvements due
to the maintenance, and b is the multiplication factor for the error
stimulus probability to account for the code added/modified during

the maintenance.

The example system illustrated in Figure 4.9 is used for this analysis. The

maintenance parameters are set as follows:
e, =02,a=12,b=1.2.

Assume that the maintenance activity for the software module starts at the con-
clusion of the first mission and is repeated for the two subsequent missions.
Two possible schedules are 1) corrective-perfective-perfective, i.e., C-P-P and
2) perfective-perfective-corrective, i.e., P-P-C. We compare them by computing
the cumulative reward over the four missions (the latter three reflecting the ef-
fects of the maintenance) and investigating the difference. Model parameters may
change between missions due to maintenance (the changes are determined by the
maintenance quality factors e,, a and b), but model parameters stay unchanged
within a mission. The expected cumulative reward for J missions is formulated

as
J

E(T) =) E(%),

=1

35

where
N
E(v) = E(Q_),
=1
in which N is the number of frames in a mission and is assumed to be independent
of 49 (the reward accumulated in a frame). We also assume that the mean lengths

of missions are identical. Then,

E(v) = N - E(v).

If a frame has a fixed length of 7, then E(+5) can be expressed as E(V}), and can
be evaluated by Eq.(4.1). The procedure to compute the cumulative reward is

as follows.

Step-1 Update model parameters according to the type of maintenance.
Step—2 Solve the Markov model for p, and py.

Step-3 Compute the expected reward.

Step—4 Add the mission reward to the cumulative sum.

Step—5 If the computation is not complete for all the missions, go to Step-1.

Figures 4.20 to 4.24 illustrate the cumulative reward from the two maintenance
schedules described above. The pairs of curves have different values of o, in an
increasing order, from Figure 4.20 to Figure 4.24. Figure 4.20 shows that schedule
P-P-C is more favorable over C-P-P, when e; is low. The reward difference
decreases when ey increases, as shown in Figure 4.21. The difference becomes
negligible when eq = 0.004, as shown in Figure 4.22. Further increase of e, results
in sign change of the reward difference as shown in Figure 4.23, which implies

that C-P-P becomes favorable when the original quality (from a dependability

36

perspective) is fairly low. As ey further increases, the benefit of C-P-P becomes
more obvious (Figure 4.24). We have also evaluated the cumulative reward for
the schedule P-C-P. Each of the P-C-P curves falls between the corresponding
C-P-P and P-P-C curves, which is a reasonable result. Figure 4.25 summarizes
the interesting points from the preceding ten figures, the values of the reward
differences fall on a straight line. The zero crossing provides a criterion in terms
of original software quality (indicated by ep) for scheduling decision. That is, if the
original software quality is sufficiently high, new features can be introduced before
corrective maintenance. Otherwise, corrective maintenance should take place
before accepting new features. This demonstrates how even simple performability

models can yield valuable insights into software maintenance strategies.

800.0 T T T
- e = 0,0001
e

700.0 | r

500.0 -

30C.0 -

expected cumulative reward
-9
o
=3
(=]
L]
1

200.0 -

100.0 p -

9.0 1 [)
0 1 2 3 4
cumulative number of missions

Figure 4.20: Reward for Different Maintenance Schedules {ep = 0.0001)

37

800.0 T T T
- e = 0,002
-

700.0 g

600.0 ,

500.0 | -

T
1

490.0

300.0 F -

expected cumulative reward

200.0 -

100.0 b

0 0 1 1 1
o] 1 2 3 4
cumulative number of misslons

Figure 4.21: Reward for Different Maintenance Schedules (ep = 0.002)

800.0 T T T

—— e = 0.004

—dh—

700.0 ¢ -
600.0 b
500.0 p h

400.0 | -

3c0.0 4

expected cumulative reward

200.0 | -

100.0 p -

0.0 L L 1
0 1 2 3 4
cumulative number of missions

Figure 4.22: Reward for Different Maintenance Schedules (e = 0.004)

38

80C.0 T T T

C-P-F =— e = 0,008

700.0 4

600.0 | =

500.0 | .

400.0 |- .

300.0 1 E

exXpected cumulative reward

200.0

100.0 1

0.0 1 1 J

cumulative number of misslons

Figure 4.23: Reward for Different Maintenance Schedules (eg = 0.006)

BCO.0O T T T

e = 0.008
700.0

L
1

600.0

500.0 F -

400.0 -

300.0 F -

expected cumulative reward

200.0 F -

100.0 p -

0'0 1 1 1
0 1 2 3 4
cumulative number of missions

Figure 4.24: Reward for Different Maintenance Schedules (e = 0.008)

39

BO-O Li T L] T T T L)

60.0

40.0

-20.0

-40.0

difference of cumulative rewards
=
o

-60.0

] 'l L 1 1 1 1

-B0,0
0 0.001 0.002 0.003 0.004 0.005 0.006 ¢.007 0.00B
criginal error stimuli probability eDd

Figure 4.25: Reward Difference as a Function of Original Software Quality

40

CHAPTER 5

Refinement of the Framework: a Reward

Structure

While simple and small scale problems, as presented in the previous chapter, can
be evaluated in an ad-hoc manner, performability measures for more sophisti-
cated real-time software applications need a rather formal and refined approach.
Accordingly, we have developed a reward structure which enables a meaningful
interpretation of the performance variable and makes its evaluation computation-

ally practicable.

5.1 Difficulties in Performance Variable Formulation

In general, there are two approaches to support the definition and evaluation of a
performance variable. The first approach is via the notion of a capability function
which maps the state trajectory of the base model representing system behavior
into user-oriented accomplishment levels [4]; accordingly, the performance vari-
able associates with a countable and finite set of accomplishment levels. The
second is through a reward structure which is a reward function associating re-
ward rate or impulse with state occupancies or state transitions, respectively, in
a base model [19], [25]; accordingly, the performance variable can assume a con-

tinuum of values. Both of the approaches support the evaluations of the system’s

41

ability to perform. Since the former emphasizes the user’s point view, we call it
a “top-down” capability function; and since the latter directly associates reward
with the system behavior (usually a stochastic process), we call it a reward-based

or “bottom-up” capability function.

In the performance variable formulation for real-time software, we face diffi-

culties due to the following facts:

1. Due to data/state dependencies in the computation sequence (e.g., closed
loops in avionics software), the effects of graceful service degradation may
propagate over iterative program executions and affect the quality of sub-

sequent computation.

2. Service loss (i.e., catastrophic failure caused by an undetected program
error), or untreated excessive service degradation may negate the benefits
accumulated from prior computation and alter the service quality from
“proper” to “improper” with no warning (the case which corresponds to

non-graceful degradation).

With the reward structure based on a direct “bottom-up” approach, such
as the reward-based capability function, it is difficult to reflect the correlation
between states and state transitions. Although a generic reward model allows
reward values to be any real numbers [26], the magnitude of the negation entailed
by an undesirable event in the sample path may be “prior states dependent.”
For example, the amount of the accumulated positive reward which needs to be
erased upon a catastrophic failure depends on how many tasks succeeded before
the failure. Thus the negative reward with the interpretation of a “penalty” or a

“cost” of improper service is difficult to express analytically.

42

Furthermore, a reward structure based on the direct “bottom-up” approach
is not able to explicitly take into account the service threshold. Neither the
formulation of the performance variable nor its evaluation results can directly
provide an indication of the boundary between “proper” and “improper” service.
This lack of semantics makes the underlying unified measures less meaningful
in practice. For example, system requirements usually define minimum perfor-
mance and dependability requirements. Comparison of design alternatives based
on quantitative unified measures are meaningful only when these minimum re-
quirements are satisfied. It can be explained via a simple example. Consider a
critical operational flight program which has a high iteration rate (high perfor-
marnce), but it generates an undetected erroneous output toward the end of the
mission, causing a loss of the aircraft. Next, consider a functionally equivalent
program which has a lower iteration rate (lower performance). It runs normally
throughout the mission. If the performance variable is defined on the basis of
the number of tasks (iterations) which succeeded through the mission period,
or based on a time-averaged “task completion rate,” the former case may corre-
spond to a better reward than the latter. Thus the direct use of a reward-based

capability function in software performability evaluation may result in bias.

On the other hand, a top-down capability function such as the one used for
the SIFT evaluation primarily supports discrete performability variables ranging
over a countable and fypically a finite set of accomplishment levels [5]. A capa-
bility function of this type provides an operationally meaningful interpretation
of performability measures with respect to both “bottom-line” performability re-
quirements and gracefully degradable service. However, due to the fact that low

level, design oriented details are often suppressed by a high level, discrete, and

43

non-quantitative performance variable, the evaluation results may not be suffi-
ciently informative to support the investigation of various design alternatives or

tradeoffs.

5.2 Evaluating Unified Measures via Distinction

To circumvent the difficulties in evaluations of software performability, we revis-
ited the concepts of “separate measure” and “unified measure” in performability

terminologies.

When evaluating a system, one generally seeks to relate and quantify aspects
of what the system is and does with respect to what the system is required to
be and do {2], [19]. In the context of computing systems and with respect to
a specified user-oriented or system-oriented service, performance typically refers
to “quality of service, provided the system is correct.” Dependability is that
property of a system which allows “reliance to be justifiably placed on the service

it delivers.”

Such service is proper if it is delivered as specified; otherwise it is
improper. Hence, separate performance and dependability evaluations are distin-
guished by regarding “performance” as “how well the system performs, provided
it is correct” and regarding “dependability” as “the probability of performing
successfully.” This distinction makes the separate evaluation only a partial as-
sessment of service quality and inadequate for systems where performance is
gracefully degradable. Performability concepts and modeling techniques have
been established for generating unified measures of performance and depend-

ability for gracefully degradable systems, thus enabling a complete evaluation of

service quality.

The objective of a system providing gracefully degradable service is to con-

44

tinue to benefit the user in the presence of errors. Accordingly, the definition of
“proper” service for such a system is not restricted to the extent of “error-free.”
Instead, service is said proper if and only if it does not violate the service quality

threshold (per its specification).

Based on these concepts and definitions, the evaluation of gracefully degrad-
able service is naturally contingent upon proper system behavior throughout a
designated time period. On the other hand, non-graceful degradation (service

loss) corresponds to the event of improper system behavior.

The above observations suggest that we ought to realize the unified measures
via distinction. That is, let the micro-level quantitative description of service
quality be conditioned by the macro-level qualitative classification of the system
behavior. This is not equivalent to a simple combination of individual assessments

of system performance and dependability since:

1. the macro-level classification is based on the service threshold which can be

defined by both performance and dependability criteria, and

2. the micro-level quantification measures performance degradation under er-

ror conditions.

Based on the notion of realizing unified measures via distinction, we defined
a reward structure. The reward structure simultaneously exploits the concepts
of the “top-down” and “bottom-up” capability functions. A “top-down” capa-
bility function is employed to classify the operational integrity and to guide the
formulation of the unified evaluation. In this manner, distinctive yet coherent
formulations of performability measures can be provided across the boundaries

of the classes. As mentioned earlier, 2 measure of gracefully degradable service

45

is naturally conditioned by the event that service quality is proper throughout
a mission (or other designated utilization period). Accordingly, a reward-based
capability function is applied to the “proper service” class to quantify the quality
of the gracefully degradable service. Under the “improper service” category, mea-
sures could be implemented to indicate the penalty of service loss or the degree
of safety impact. The details about the reward structure are illustrated in the

following section.

5.3 A Reward Structure Using Composite Approach

In order to capture the dependencies in the program behavior without introduc-
ing intractable states, we emphasize on a collective view of the state trajectory.
A collective view of the state trajectory denotes the collection of the “accounting
records” of the software behavior through a mission. This allows us to assign
reward values to software behavior on a local basis from a global perspective.
A local basis refers to the individual events such as an iteration of a program.
A global perspective assures that the dependencies between the events along a
sample path are taken into account. For example, in an open loop application
where the next state depends merely on external input, such that degradation
in computational accuracy does not influence the quality of the subsequent com-
putation, a collective vector can be defined on a set of random variables. Let
(45,74, c) be a collective vector in which the coordinates denote the number of
fully successful iterations, the number of detected and recovered erroneous iter-
ations, and the number of undetected erroneous iterations, respectively. With
a global perspective, the worth of the fully and partially successful iterations is

accounted for only if the number of undetected erroneous iterations is zero. As

46

another example, in a closed loop application where the current computation
depends on the program state generated by the previous iteration, a collective

vector can be defined on a set of random variables as follows:

(il,tlg, .. -;iN';ic)a

in which i, %, ..., 5 and ¢. denote the number of iterations before the first
degradation, the number of iterations before the second degradation, ..., the
number of iterations before the N** degradation, and the number of un-detected
erroneous iterations, respectively. With a global perspective, reward values are
associated with the software behavior by taking into account for the effects of

degradation which propagate along the succession of iterations.

To capture the semantics (user point of view) of the software behavior and
to effectively take into account the benefit negation due to improper service, a
“top-down” capability function is employed to classify the software behavior. The
formulation of the capability function can be simple because of its purpose: it
takes a collective view of the state trajectory as the function argument and em-
ploys a service quality threshold to translate the state trajectory with a collective
view into one of the performance level sets (classes). For example, performance
levels can just comprise two sets, namely, Aproper and Aimproper- A capability

function can then be defined as follows.

f

Aimproper 1f U{t,,40+t} Violates the service threshold
’Y(u{tu,to-i-t}) S

Aproper otherwise

\

where uy, 1,44} 18 the collective view of a state trajectory. The reward structure

47

with the composite approach can then be defined as:

’

Y(¥ftotorey) I V(U {toto+1)) € Aproper
Y{io.to+t} = 9

¥(t{to,t9+1)) otherwise

where 4(s,,40+¢}) is @ reward-based capability function which evaluates the worth
of proper software behavior, and §(uy, t,4¢}) is another reward-based capability

function which assesses the penalty.

Consider a single-program and single-mission system (SPSM) in which the
program does not communicate with any other program during a mission, and
the effects of software behavior do not propagate across missions. Assume that
the program is a closed loop one in which the effects of degradation propagate
over iterations but do not amplify. Let i‘{’to,to +¢} be an indicator random variable
which represents the number of program iterations between the d** and (d + 1)*
degradations for a mission starting at tq and having length ¢. Let T4 1041y be a
collective indicator vector consisting of the random variables igtn,to +t}- Andlet B
be a reward vector consisting of the r? coordinates, each of which is the reward
impulse associated with an iteration between the d** and (d+1)** degradation. If
we assume the penalty of service loss is independent of the state trajectory leading
to a catastrophic failure, then %(u, +,+¢}) becomes a constant c. Accordingly, we

have the following reward structure:

'S

R It porty 1 v(Igeg t04)) € Aproper
}r{to'to+t} =

c otherwise

.

where R - Iy, 40 44) = E?—.—o r. if[itogto +t} (D is the maximum degree of degradation

48

allowed by the service threshold), and ¢ < 0.

5.4 Discussion

To describe the behavior of real-time software over a mission period, a suited per-
formance variable Yy, 44} is defined which is a function of the amount of com-
putational tasks the program accomplishes during the mission period ¢. When
we assume that the execution time of a program follows a certain type of dis-
tribution, the value of Yy, ¢ 44} is usually unbounded. Moreover, the underlying
exact or asymptotic distribution of Yjy, 4+ can be continuous (see Chapter 6
for examples). Accordingly, the performance variable can be associated with a

continuum of values.

While the probability distribution function (PDF) of a performance variable
is often difficult to evaluate by analytical methods [19], it is, in general, analyt-
ically attainable at the macro-level (e.g., the probability of a performance level
class). A probabilistic measure at the macro level, such as the probability of
improper service, may indicate that the likelihood of a service threshold violation
exceeds the bottom-line performability requirement. In that scenario, it is more
legitimate to identify the negative contribution from individual performance or
dependability attributes of the design than to globally quantify its deficiencies.
On the other hand, if the macro-level measures prove satisfactory, then the less
refined measures at the micro-level, such as expected reward, will quantify the
system’s overall effectiveness and support design alternative selection and trade-
offs. In other words, the probabilistic measures at the macro level screen out
systems (or designs) which violate the threshold. Thus meaningful quantitative

comparisons or tradeoffs can be effectively performed by employing the weaker

49

measures at the micro-level.

The stated reward structure enables the composite use of the stronger and
weaker measures at different levels so that the evaluation becomes meaningful

and practicable.

The use of a collective view of state trajectory can be extended to evalua-
tions for more sophisticated systems, namely, single-program and multi-mission
system (SPMM), multi-program and single mission system(MPSM), and multi-
program and multi-mission system (MPMM). To account for spatial dependencies
(dependencies among the programs with “producer-consumer” relationships), a
collective view can again be applied to simplify the model construction and so-
lution. That is, to aggregate the correlated programs into a group, and to define
the random variables that give the collective view of a state trajectory based on

the group.

50

CHAPTER 6

Applications to Fault-Tolerant Software

6.1 Background

Research efforts have been devoted to the modeling and analysis of software
fault tolerance techniques. A majority of the literatures focuses on the two most
documented approaches, namely, Recovery Blocks (RB) [27], [28], [29], and N-
Version Programming (NVP) [30], [31], [32], [2], [33]. Three major objectives can

be identified from these efforts:

1. modeling and analysis of the dependability measures.
2. modeling and analysis of the performance measures.

3. detailed analysis of the correlated design faults in diversified software.

In the first category, research efforts include [34], [35], [36], [37], [38], [39],
[40], {41], {42], and [43]; in the second category, performance of RB and NVP
schemes are evaluated in {36]; in the third category, representative work includes
[44], [45], [46], [47], [48], [49], and [50].

Compared with the first and the third categories, much less research effort
has been devoted to performance study of fault-tolerant software. The study

presented here concerns a combination of the first and second categories. We

51

emphasize the impact of the performance cost on the overall effectiveness of the

fault tolerance techniques. We are motivated toward:

1. analyzing the contributions of dependability and performance attributes to

the overall effectiveness of software fault tolerance techniques.

2. investigating the interactions between the dependability and performance

attributes in fault-tolerant software.

3. assessing and comparing the different approaches to software fault toler-

allce.

4. identifying the implications of software dependability and performance en-

gineering, from analytical results.

5. exploring practicable approaches to model construction and solution for

realistic applications.

6.2 Assumptions

Software fault tolerance techniques evaluated in this research are Recovery Blocks
(RB) and N-Version Programming (NVP). The types of program addressed here
are for real-time applications. These programs are executed in loops. An iteration
involves the execution of the fault-tolerant software components such as voting,
acceptance tests, and alternative routines according to the control logic of a fault
tolerance scheme. At the beginning of an iteration, the program accepts input,
and it provides output at the end of the iteration. If the output of an iteration is
determined to be erroneous, it will be suppressed and/or some default value will

be provided, and the system may resume normal operations in the next iteration.

52

However, an undetected error will cause a catastrophic failure, i.e., it is not
possible to have a successful or degraded iteration which benefits the user for the
remainder of the mission. Further, each iteration is under a real-time constraint.
A real-time constraint is a deadline on the responsiveness of the computational
task. We assume that in a software fault tolerance scheme, there is a watchdog
timer in the supervisory system to detect the violation of a real-time constraint.
That is, if the execution of an iteration exceeds the deadline, it will be aborted
by the supervisory system and the program state will be restored to start a new
iteration. The treatment for such a detected timing error is as the same as a

detected logical error.

6.3 Definition of Performance Variable

Since computer performance benchmarking normally uses the measure “kilo iter-
ations” (per time unit or per time interval), we define the performance variable
as the number of successful iterations of a program in a designated time period
t, as perceived by the user. The performance variable is denoted as M(t). A
successful iteration is counted as one unit in M(#). A degraded iteration is con-
sidered as a partially successful one, and is counted as a fraction, ranging over
[0,1). An iteration resulting in catastrophic failure rules out all successful opera-
tions accomplished previously such that it forces M(t) to zero. M (t) reflects both
the performance and dependability attributes of a program. This performance
variable is supported by the reward structure defined in Chapter 5. We first eval-
uate the performance measures for an open loop application. Because there is no
data dependency between iterations in an open loop program, normal operation

resumed after a degradation is able to provide the same service quality as if no

53

degradation had occurred. Let Xo(¢) denote the nominally successful iterations

in ¢, independent of whether it benefits the
of cycles which generate undetected erronec

is defined as N(¢) > 1. Accordingly, we hax

’

Aimpra
Y(tito,to+e3) € <

Aproper

.

and

:?(u{to,to+f}) =1

where wy 1s the worth of a successful iteratic

The value of wy is set to unity according ta

which results in a detectable error is consi

mission and thus it is not accounted for ix

threshold violation makes the entire missig

independent of the failure behavior detail

Then, we have the following reward structu
F(wito,to+1)
Yt to1ey = M(£) = 4
0

\

Note that the random variables M(t) and X

in the sense that the former is a user-oriente

system-oriented stochastic process. Numeri
in the event of a service quality threshold

while Xo(?) could still be positive.

user; also let N(¢) denote the number
yus output in ¢. The service threshold

ve the following capability functions:

ver i N(t) > 1

otherwise

g * Xo(t)

on provided that the service is proper.
> the definition of M (#). An iteration
dered to have no contribution to the
1 the reward. Assume that a service
on worthless, and that the impact is
5; hence we set %(ugy, 1o44}) to zero.

re:

if Y(ugtg0+t}) € Aproper

otherwise

(o(t) are conceptually distinguishable
ed figure of merit while the latter is a
cally, they also differ from each other

violation, in which M(t) equals zero

54

6.4 A Hierarchical Approach to Model Construction and

Solution

In order to consider both performance and dependability attributes of fault-
tolerant software without introducing intractable states, we use methods of hier-
archical model construction and solution. That is, we build the model by layers,
start analysis from the lowest layer, and then pass the parameters calculated from

the lower layer to the upper.

performability
model

dependability D J— performance
sub-model sub-model

Figure 6.1: A Hierarchical Approach to Model Construction and Solution

A basic model is implemented in two layers, as shown in Figure 6.1. The lower
layer consists of a dependability model and a performance model. The software
failure behavior is represented by a discrete Markov chain in the dependability
model. The dependability model is responsible for supplying the probabilities
that a single iteration will succeed, degrade or fail. The performance model is
a renewal process, in which each program iteration is represented by a renewal

cycle. The performance model is responsible for supplying the mean and variance

55

of the renewal cycle time (the time for a single iteration). It is assumed that the
execution time of each individual component in the fault-tolerant software (e.g., a
version, an alternative or a decision function) is independently and exponentially
distributed. The mean and variance of the renewal time can be obtained using
Coxian’s method of stages and Laplace transforms [51]. The arrows between the
lower layer blocks “dependability sub-model” and “performance sub-model” in
Figure 6.1 indicate the information exchange between the two sub-models. That
is, the dependencies between the two types of attributes are taken into account in
the evaluation. Examples of the dependencies are: 1) the probability of real-time
constraint violation as evaluated by the performance sub-model contributes to
the probability of degradation (a dependability attribute), and 2) the probability
of a detected error as evaluated by the dependability sub-model increases the
probability of activating the use of the computational redundancies and thus
has impact on mean program iteration time (a performance attribute). The
information supplied by the lower layer forms the basis of a performability model
at the upper layer. Since the mission time we are looking into (0.5 hour to 15
hours) is much greater than the renewal cycle time (in milliseconds), and the
mean and variance are attainable, the renewal process has an asymptotic normal
distribution [52]. That is, the performability model is a renewal process with
an asymptotic normal distribution (defined on the parameters supplied by the
performance sub-model), in which the outcome of each renewal cycle has a hyper-
binomial distribution (defined by the parameters supplied by the dependability
sub-model). Based on this performability model, a moment generating function
of the performance variable can be derived, and thus the performability measures

become attainable.

56

This 1s a logical way to construct and solve models for complex systems. The
lower layer submodels are responsible for generating dependability and perfor-
mance measures on the basis of an individual iteration. These results are then
submitted to the upper layer model as parameters for the integrated evaluation.

The semantics behind the model hierarchy are:

¢ The lower layer of the model represents the characteristics of a fault-tolerant
system, namely, degradation and failure behavior, and operational disci-

plines.

o The upper layer of the model represents the effectiveness of the fault-
tolerant system by taking into account the nature of the application and

the user’s view of service quality.

Therefore, as shown in the following sections, the performability models of
different fault-tolerant software systems (RB, NVP, etc.) can share the upper
layer when these object systems are evaluated for the same application (open or
closed loop). On the other hand, the models for different applications can share

the lower layer when they represent the same fault tolerance system.

6.5 RB Model

Figure 6.2 shows the operations of a RB scheme. The system has two func-
tionally equivalent but diverse alternative programs, namely, the primary and
the secondary. There is also an acceptance test which checks the correctness of
the outputs of the alternatives. The supervisory system has a “watch dog timer”
function. That is, a timer is set according to the deadline defined by the real-time

system. The timer monitors the elapsed time from the beginning of an iteration.

57

If an iteration does not complete upon the expiration of the timer, it is aborted

by the supervisory system and a new iteration starts.

I)

A

a1

acceptance
test

acceptance
test

secondary

wn

(4]

Figure 6.2: Recovery Blocks Operation

The system operates as follows. The primary {(P) executes first, and the ac-
ceptance test (AT") runs upon the completion of the execution of P. If P computes
correctly and AT accepts its results, the current iteration completes and the next
starts (the case corresponding to path 1 in Figure 6.2). If AT rejects the results
of P for any reason, the secondary (S) executes and AT subsequently checks the
results of 5. If S computes correctly and AT accepts the results, the iteration
completes and the next starts (the case corresponding to path 2); if AT rejects
the results of S for any reason, the result is suppressed and the next iteration
starts (the case corresponding to path 3). Path 4 corresponds to the case in which
P generates an erroneous result and AT subsequently accepts it: similarly, path 5
corresponds to the case in which S generates an erroneous result and AT subse-
quently accepts it, conditioned on the event that AT rejects P. From a stochastic
process point of view, the iteration always resumes, independent of outcome type.

From the user point of view, however, a catastrophic failure (caused by an unde-

58

tected error) leads to loss of service. Therefore, paths 4 and 5 are represented by
the dashed lines in Figure 6.2. Finally, path 6 corresponds to the case that the
execution of an iteration exceeds its real-time deadline such that the iteration is
aborted and the next cycle starts. Since this scenario may occur at any stage of
an iteration, path 6 starts from the shaded rectangular instead of any component

encapsulated inside.

6.5.1 Dependability Sub-Model

Using the concept of a total system, an operational software error is a consequence
of the interactions between the error conditions in the object system and those in
1ts operational environment. In that sense, the dependability submodel is a fault-
manifestation model. Arlat et al developed rather complete fault classifications
and fault-manifestation models for RB and NVP [41]. We adapt them in the
lower layer as dependability submodels. The fault classification and notations for

probabilities of fault manifestation for RB are illustrated in Table 6.1.

Table 6.1: Fault Types and Notations for RB

Fault Types Probability of
Manifestation
Related fault in P and S Gps
Related fault in P and AT (or P, S and AT) dpt
Related fault in S and AT (st
Independent fault in P or § gp OT ¢
Independent fault in AT s

The derivation of the fault manifestation model is based on the following

assumptions:

59

1. No error compensation may take place within an alternative and the AT

during an execution, i.e., an error is either detected and treated or leads to

catastrophic failure;

2. The likelihood of singular behavior of the AT rejecting an acceptable result

provided by P and subsequently accepting the result given by S is negligible.

The detailed model, a Markov transition state diagram based on the assumptions,

is shown in Figure 6.3, in which
® pp =1 — gy — gpt — gps is the probability that P computes correctly,

e p, =1~ g, — qu is the probability that S computes correctly, conditioned

by the event that no fault correlated to P is manifested, and

® p: = 1 — q; is the probability that AT computes correctly, conditioned by

the event that no fault correlated to P or S is manifested.

The definitions of the states are shown in Table 6.2.

Table 6.2: State Definitions for RB Dependability Model

| States Definition

I initial state of an iteration
P execution of P

{ITP; |2 € {1,2,3,4}} | execution of AT after P

{5:]i€{1,2,3}} execution of S

{TS; i€ {1,2,3,4}} | execution of AT after S
B benign failure
C catastrophic failure

The partitioned states TP; correspond to the various types of faults that may

be manifested in P. The definitions are as follows:

60

TP, : mno fault manifested in P.

TP, : manifestation of an independent fault in P,

TP; : manifestation of a correlated fault between P and S.

TP, : manifestation of a correlated fault between P and AT.

Subsequently, states S and TS are decomposed. After an independent error
occurs 1n P, AT definitely leads to S; (a deterministic transition from TP,) ac-

?1 Manifestation of a correlated

cording to the definition of “independent error.
fault between P and S (state TP3) corresponds to a detected error and leads
through S3 and TS5 to state B. Manifestation of a correlated fault between P

and AT (state TP,) corresponds to an undetected error and leads to state C.

Let p.; denote the probability of a catastrophic failure (the case corresponding
to state C in Figure 6.3 or to paths 4 and 5 in Figure 6.2). And let p,q denote
the probability of benign failure (the case corresponding to state B in Figure 6.3
or to path 3 in Figure 6.2). Then from the Markov transition state diagram, we

have:

Pef — Pp'Qt'Qst+¢Ip‘qst+th
= (1_qP_‘Ipt"'Qpa)'Qt'q.st'i“?p'q.st'i‘q;)t
= @ Gat(l = gps) + @ - g1 — Ge) + @pe(1 — ¢19st)

N @ ae+ 0 Gat(l — q0) + gpr- (6.1)

1Arlat ef al stated that this unity transition is based on the assumption that no fault can
be activated in AT after activation of an independent fault in P. We think that the definition
of qp determines this transition by logic, so that any further assumption in this regard will be
redundant and contradictory.

61

Figure 6.3: Dependability Sub-Model of RB

62

We notice that the third term in the above expression is the dominant term. And

Psd = Pp Qe (Ps+qs) + 9o Ps -G+ 0p-Gs + s
= (1—qp~=gpt — @ps) " @t + (1-— Got)Gp - @(l — g5 — @at) + Gp* s + Gps
= g-(1- qet)(1 — qpt — 9195) + qp - gs(1 — qt) + Gps

=g (1 — Gpt — Qps — qst) + gp - q.(l - qt) + Qps- (6‘2)

In general, software fault tolerance schemes using redundancy are based on the
assumption that the probability of correlated errors between components is much
smaller than that of independent errors in a single component. Thus, the first
term in the above expression (Eq. (6.2)) is the dominant one. In other words,
the dependability of AT governs the benign failure probability. The other type
of benign failure is the detected real-time deadline violation, which corresponds
to path 6 in Figure 6.2. The analysis of benign failure of this type is presented

in the next section.

6.5.2 Performance Sub-Model

We assume that the program runs in an open loop and let the number of to-
tal iterations in a designated time period t be denoted by a random variable
K(t). K(t)is a renewal process in which each renewal cycle corresponds to a
program iteration. Assume that the execution time of the primary, secondary
and acceptance test are exponentially distributed, with parameters A, A,, and
A, respectively. Figure 6.4 depicts this renewal process, which is derived from
Figure 6.2. By definition, the random variable K (¢) is independent of outcome
type, hence paths 1 and 4 in Figure 6.2 are aggregated into a single path marked

p1 in Figure 6.4; likewise, paths 2, 3 and 5 in Figure 6.2 are aggregated into

63

a single path marked (1 — p;). The notation p; represents the probability that
an iteration completes upon a successful run of P and AT or fails due to the
similar errors between P and AT (caused by their correlated faults). From the

dependability sub-model (Figure 6.3), we have,

P1=Dp Pt + Gpe-

primary

T1-p

Yp

Figure 6.4: Performance Sub-Model of RB

Let the Laplace transform of the density functions (pdf’s) of the execution
time of the primary, secondary and acceptance test be denoted as Fy(S), F;(S)
and F}(S), respectively. Then the transform of the pdf of the renewal cycle time
Y is:

F(8) = po- FJ(S)F(S) + (1 — p1) - F(S)YF}(S)(F(S))?,
F*(S) & f(y).

Through inverse Laplace transform, we obtain the density function of the

renewal cycle time.

Due to a deadline 7 (the real-time constraint), the iteration time Y follows
the distribution defined by f(y) if the iteration completes before the deadline;

otherwise it stops at 7, which corresponds to path 6 in Figure 6.2 and can be

64

represented by a unit irnpulse at 7 scaled by the probability of deadline violation.

Accordingly, the actual density function of Y is:

4

fy) Y<r
g(y) = <

(L-F(r)-é6(y—71) Y27

.

where 6(y —) is the unit impulse function and F(r) = f5 f(y)dy. We let

P = 1-— F(T) (63)
which is the probability that an iteration violates the deadline. The probability
pu together with the probability p,a (Eq. (6.2)) constitute the probability of

degradation, which is used by the upper layer model for performability evaluation.

We can then compute the mean and variance of Y. That is,

BY] = ["yfwidy+ [7wy
= f;yf(y)dy+f-(1—F('r))-

E[Y?] = furyz f(y)dy+fo’r2 fy)dy
- /;yz f(y)dy +72- (1 — F(r)).

u=E[Y], and o= E[Y?] - (E[Y]?.

6.5.3 Performability Model

Figure 6.5 depicts the performability model at the upper layer. The shaded
rectangular box corresponds to the shaded rectangular in Figure 6.4, which en-

capsulates the operational details of a renewal cycle (an iteration of the program).

65

As mentioned in Section 6.4, the renewal process K (t) is approximately normally
distributed. The two expressions marked in the box are the mean and variance
of the asymptotic distribution (which are further explained late in this section).
They are functions of 4 and ¢?, the mean and variance of the renewal cycle time,
supplied primarily by the performance sub-model. The outward arrows from the
box denote the different outcomes of a renewal cycle, each of which is associated
with a probability which is primarily supplied by the dependability sub-model.
Contrasting Figure 6.2 to Figure 6.5, paths 1 and 2 in Figure 6.2 collapse to
the path marked (1 — pgy — pcs) in Figure 6.5, paths 4 and 5 collapse to the
path marked pcy, and paths 3 and 6 collapse to the path marked pg,. Intuitively
speaking, the performance variable M(t) corresponds to the number of cycles that
are feedback from the upper path (successful iteration) in time ¢ conditioned by
the event that no cycle in K(t) goes to the dashed path {undetected erroncous

iteration).

Figure 6.5: Performability Model of RB

Let Z = e*, then the moment generating function of the performance variable

M(t) can be derived as follows.

66

E[ZM] = szm «P(min t).

m=0

By rewriting the equation, we have

E[ZM] = Z°.P(M(t)=0)+ ZZ"' t) =m)
= P(M 0) + sz (M(t) = m). (6.4)
m=1

Let CF denote the event that there occurs one or more catastrophic cycles, and

CF* denote the absence of catastrophic failure, in the time period £. According

to the definition of M(t), we have

P(M(t)=0) = P(M(t)=0and CF)+ P(M(t) = 0 and CF*)

= P(CF)+ P(M(t) = 0 and CF*).

We first compute P(CF):

P(CF) = S P(CF|K(t)=k) P(K(t) = k)
- 2(1—(1—pcf)")-P(K(t)=k). (6.5)

We then compute P(M(t) = 0 and CF*¢):

P(M(t) = 0 and CF)

= SOP(M(t) = 0 and CF* | K(t) = k) - P(K(2) = k)

k=0
- gpdg’“ . P(K(t) = k). (6.6)

where py, is the probability of degradation — the probability that a computa-

tional result is suppressed due to either a logic or timing error (see Eq.’s (6.2)

and (6.3)):

Pdg = Psd + pi:.

67

Now we compute the second term in Eq. (6.4):
Z Z™ - P(M(t)=m)

= S Zn S P(M(t)=m| k) P(K(t) = k)

m=1 k=
= 223 (M) a-re-par ot PEG =R 60
m=1 k=m

Using the results of Eq.’s (6.5), (6.6) and (6.7), Eq. (6.4) becomes:
E[ZY] = Y P(K@®)=k) - (1—(1-pp)*)+

i z" f) (k) (1 — pag = peg)™ - pag"™™ - P(K(t) = k)

m=(k=m m
= SPE® =k (1= (1-pg)) +
=
ZP(K(‘* sz() 1 — pag — Pes)™ - pag™ ™™
k=0 m=0
= gP(K(t) = k) - (1= (1= pes)*) + (pag + (1 — pag ~ pes) Z)¥)
= E[(1=(1=pep)*) + (pup + (1 — pag — pes) - 2. (68)

The moment generating function enables the computation of the mean reward,

Let U = pgg + (1 — pag — pcy) - Z, then

d E[e*M
BiM) = S
=0
_ d(E[1—(1—pp)XO L UK U d2Z
B dU dZ ds

a=0

1 c
= Lo Pl Py SN () PR = B)
1 — pes k=0

- ll—pjg_l?i E[K(8)- (1 - pes)*®) (6.9)

According to the Central Limit Theorem for Renewal Process [52], K(t) is

approximately normally distributed with the mean ¢/y and the variance to?/u3

68

for large ¢ (in which g and o? are the mean and variance of the renewal cycle

time supplied by the performance sub-model), that is

, K(t)—t/p }
lim P{ ——~— <z} = ®(z). 6.10
t—o0 { fto_g/'u3 < () ()

Let i =t/p, & = \fto?/u3, and o = log(1 — p.s), we have
E[K(t)- (1 = per)"]
= E[(6X + p)eneX+9)
— ea,&(a,E[Xea&X] +ﬁE[e°&X])

= o[v o(a)de + [e p(z)da) (6.11)
5 &

Applying the result to Eq. (6.9), we attain the expected reward.

6.6 NVP Model

Figure 6.6 shows the operation of an NVP scheme. The system has three func-
tionally equivalent but independently developed programs (versions) and a deci-
sion function (voter). The supervisory system has a “watch dog timer” function,

which functions similarly to the one in the Recovery Blocks scheme.

The system operates essentially as follows. The three versions start to exe-
cute at the same time. When all the three complete their execution, the decision
function votes on their results. If there exists a majority representing a correct
computation, the result from the majority will be output (the case corresponding
to path 1 in Figure 6.6). If majority does not exist, the results will be suppressed
(the case corresponding to path 3). The next iteration starts after either of the

cases stated above. If there exists a majority representing similar erroneous com-

69

A

A

version 1

version 2

varsion 3

Figure 6.6: N-Version Programming Operation

putation, the erroneous result will be output (the case corresponding to path
2). From a stochastic process point of view, the iteration always resumes inde-
pendent of outcome type; from the user point of view, however, a catastrophic
failure (caused by an undetected error) leads to loss of service. Therefore, path 2
is represented by the dashed line in Figure 6.6. Finally, path 4 corresponds to the
case that the execution of an iteration exceeds its real-time deadline such that
the iteration is aborted and the next cycle starts. Since this scenario may occur
at any stage of an iteration, path 4 starts from the shaded rectangular instead of

any component encapsulated inside.

6.6.1 Dependability Sub-Model

We adapt the fault manifestation model for NVP in [41] to the lower layer as the
dependability submodel. The fault classification and notations for probabilities

of fault manifestation are illustrated in Table 6.3. Because the implementation

70

of the voter is normally application independent, we omit the category “related

fault in versions and voter.”

Table 6.3: Fault Types and Notations for NVP

Fault Types Probability of
Manifestation
Related fault in the 3 versions G3v
Related fault in the 2 versions G20
Independent fault in a version Giv
Independent fault in the voter 44

The derivation of the fault manifestation model is based on the following

assumptions:

1. No compensation may take place between the errors of the versions and of

the voter.

2. The probability that a majority exists among the version results, but the
voter delivers a non-majority result, or no majority exists, but the voter

delivers a good result from versions (error compensation), is negligible.

According to assumption 2, we decompose g4 into two parts, namely, g4 and
ga2- The former is the probability that a voter fails to recognize an existing
majority and suppresses the results (this corresponds to the case in which the
decision algorithm in the voter is too “strict”); the latter is the probability that
a voter fails to recognize the discrepancies among the versions and delivers an
erroneous result (this corresponds to the case in which the decision algorithm is

too “loose”). The detailed model, a Markov transition state diagram based on

71

the above assumptions, is shown in Figure 6.7 2. The model is simpler than the
one used in [41] because of assumption 2 and the decomposition of ¢4. In the

state diagram,

2= 1-— 3Qw(1 - Q£o)2 - 3q:'::2(1 - q:'v) - 3920 — 3¢

Figure 6.7: Dependability Sub-Model of NVP

The definitions of the states are shown in Table 6.4,

The partitioned states D; account for the various types of faults manifested

during version execution:

Dy no fault manifestation; three acceptable results.

?In [41], the term (1—g;,) is approximated to unity for simplicity. However, the motivation of
fault tolerant software of this type is to achieve the dependability goal through design diversity
such that the probability of independent errors need not be negligible (relative to correlated
errors). Thus the term is presented in our formulation.

72

Dg:

D3:

D5Z

Table 6.4: State Definitions for NVP Dependability Model

| States I Definition
I initial state of an iteration
vV execution of versions
{Di|ie{1,2,3,4,5}} execution of voter
B benign failure
C catastrophic failure

manifestation of an independent fault in one version; one independent

erroneous result and two acceptable results.

manifestation of independent faults in two or three versions; three

distinct results.

: manifestation of correlated faults in two versions; two similar erro-

neous results,

manifestation of correlated faults in three versions; three similar er-

roneous results,

Subsequently, the fault-free behavior of the voter leads to the following tran-

sitions:

1.

from D; and D, to I; that is, the voter evaluates two or three acceptable

results.

from D3 to Bj; that is, the voter evaluates three distinct results.

. from D, and Ds to C; that is, the voter evaluates two or three similar

erroneous results.

73

The faulty behavior of the voter leads to the following transitions:

1. D1, D,, Ds and D5 to B; that is, the voter does not recognize an existing

majority so suppresses the results.

2. Dj to C; that is, the voter does not recognize the discrepancies and delivers

an erroneous result.

As done for RB, let p.s denote the probability of catastrophic failure (the
case corresponding to state C in Figure 6.7 or to path 2 in Figure 6.6). And let
P.q denote the probability of benign failure (the case corresponding to state C in
Figure 6.7 and to path 3 in Figure 6.6). Then from the Markov transition state

diagram, we have:

P = (3¢i’ (1 — gie) + ¢iv”) - qan + 3q20(1 — qa1) + gsu(1 — qar). (6.12)

We notice that the second term in the above equation is the dominant term. And

Ped = P-qar+3¢(l — qin)® qan + (3¢ (1 — @io) + i) (1 — qa2) +
3q20qd1 + 3091

= (1 -3¢ (1 —¢w) ga + (3 (1 ~ giv) + ¢io°)(1 — gaz). (6.13)

We notice that the probability of benign failure is comprised by the probability of
voter error type one (ignorance of a majority) and the probability of independent
errors in a version (a second order factor). The other type of benign failure is
the detected real-time deadline violation, which corresponds to path 4 in Figure

6.6. The analysis of benign failure of this type is represented in the next section.

74

6.6.2 Performance Sub-Model

We assume that the execution time of the three versions in the NVP scheme
are independently and exponentially distributed with parameters Ay, A; and As.
Figure 6.8 depicts the renewal process K(t), which is derived from Figure 6.6.
By definition, the random variable K(¢) is independent of outcome type, hence

paths 1, 2 and 3 in Figure 6.6 are aggregated into a single path in Figure 6.8.

version 1

Y

= version 2

< version 3

A

Figure 6.8: Performance Sub-Model of NVP

Let the time for parallel version execution be denoted as Y,. And let the
execution time of the first version, the second version and the third version be

denoted as Y3, Y3 and Yj, respectively. Then,
Y, = MAX[W;, Yy, Vi),
And the PDF of Y, is:

G(y) = P, <y)
= PV <y, Yoa<y, Ya<y)

= P(Yi<y) - P(;<y) - P(Y3<y)

75

Thus we can obtain the pdf of Yo, that is, g(y). Let the Laplace transform of g(y)
be denoted as G*($) and the transform of the pdf of the voter execution time
(also distributed exponentially) be denoted as H*(s). Since the parallel version
execution is followed by the voter execution, the transform of the cycle time of
the renewal process is

F*(S) = G*(S)- H*(5).

Next the density function of the renewal cycle time Y can be obtained through

inverse transform:
F*(S) & f(y).

Due to a deadline r (the real-time constraint), the iteration time Y follows the dis-
tribution defined by f(y) if the iteration completes before the deadline; otherwise
it stops at 7, which corresponds to path 4 in Figure 6.6 and can be represented by
the unit impulse at r scaled by the probability of deadline violation. The actual
density function of ¥, and the corresponding mean and variance are attained in

the same manner as we did for RB (Section 6.5.2).

6.6.3 Performability Model

Figure 6.9 depicts the performability model at the upper layer in a similar manner

as for the RB scheme.

Contrasting Figure 6.6 to Figure 6.9, path 1 in Figure 6.6 corresponds to the
path marked (1 — py; - p.s) in Figure 6.9, path 2 corresponds to the path marked
Pef, and paths 3 and 4 collapse to the path marked py,. Thus, after integrating the
information supplied by the lower layer models, we have arrived at an upper layer
model identical to that for RB scheme. It follows that the moment generating

function derived from the performability model of NVP is the same as that of

76

1-Pyy-P

of
| >
' |
| |
| Rag |
i TR,
e |

Figure 6.9: Performability Model of NVP

RB as illustrated in Section 6.5.3.

6.7 Results Analysis

6.7.1 Comparisons between RB and NVP

We computed the expected reward of a 10 hour mission for both RB and NVP.

In order to make coherent comparisons, we assume that:

1. Except for the application independent component, the voter in NVP, the
probabilities of independent errors in the individual components, that is,

P, S and AT for RB and each version for NVP, are essentially equal.

2. The probabilities of similar errors between (two or three) components for

RB and NVP are essentially equal.

The extent to which AT detects errors in an alternative is often referred as
“coverage.” The execution time of AT is a direct function of coverage; whereas

the probability of faults in AT is a direct function of its execution time [36].

77

For simplicity and consistency, we assume full coverage for AT in this evaluation.
Accordingly, the probability of independent errors in AT is assumed to be compa-
rable with that of an alternative or a version; the probabilities of correlated faults
between P and AT, and between S and AT are assumed to be comparable with
those between two alternatives or two versions; the execution time distribution

of AT is assumed to be comparable with that of an alternative or a version.

Table 6.5 defines the notations for system parameters used in our evaluation.
The assignments of system parameters for RB and NVP are shown in Table 6.6
and 6.7 respectively. The detailed computation, including Laplace transforms
and derivations of density functions, are implemented in Mathematica. 3 The

sample Mathematica programs and output files are shown in Appendix D.

Figure 6.10 shows the comparison of the expected reward between RB and
NVP for a 10 hour mission. The reward is the expected number of successful
iterations for the time interval ¢ (which equals to 3.6 107 milliseconds) according

to our definition of the performance variable.

The upper and lower curves in Figure 6.10 are the expected reward as func-
tions of the probability of correlated errors between any two components in RB
and NVP, respectively. The results show that RB outperforms NVP. The formu-
lation of the expected reward is (Eq. (6.9)):

BM) = =L (K (t)- (1~ 5oy,
cf
which suggests that we should investigate the probabilistic failure behavior and
the random variable K(¢). Accordingly, we analyze the deficiencies of NVP by

tracing the system behavior represented by the sub-models in the lower layer.

3Mathematica is a registered trademark of the Wolfram Research Inc.

78

Table 6.5: Notations for Parameters

Parameter Definition
Ap execution rate of the primary
As execution rate of the secondary
A¢ execution rate of the acceptance test
Al execution rate of the first version
As execution rate of the second version
A3 execution rate of the third version
Ad execution rate of the voter
Qps probability of related errors between P and S
dpt probability of related errors between P and AT
Gt probability of related errors between S and AT
Gpst probability of related errors between P, S and AT
G20 probability of related errors between two versions
G3v probability of related errors between three versions
ap probability of independent errors in primary
s probability of independent errors in secondary
e probability of independent errors in acceptance test
Giv probability of independent errors the :** version
qd, probability of type 1 independent errors in the voter °
Qo probability of type 2 independent errors in the voter
t length of mission time
T deadline for an iteration

%see definjtion in Section 6.
see definition in Section 6.

6.1
6.1

79

Table 6.6: Assignments of Parameters for RB

Parameter Value
Ap :
A, 1
A 1
Ops variable
pt variable
st variable
Qpst 10-1
@ 0.0001
g 0.0001
a0 0.0001
t 3.6 107 (ms)
T 30 (ms)

Table 6.7: Assignments of Parameters for NVP

Parameter Value

A :
Az 1
A3 :
A4 o
G20 variable
g3v 10710
Giv 0.0001
44, 10°
9d, 10-%

t 3.6 107 (ms)

T 30 (ms)

80

expected number of successful lteraticns in 10 hrs (E6}

0.5 1 1 1 i | L 1 A1 1

0.0 20.0 4Cc.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0
probabllity of ceorrelated errcors (E-9)

Figure 6.10: Comparisons of RB and NVP

From the dependability submodels (Section 6.5.1 and Section 6.6.1), we can
see that for both RB and NVP, the probability of catastrophic failure (p.s, see
Eq.’s (6.1) and (6.12)) is dominated by the probability of correlated errors be-
tween the components. In the RB scheme, the probability of correlated errors
between two components comprises the terms gy, g, and g,,. We notice that
among them only g, completely contributes to p.s, while g,, is not responsible
for catastrophic failure. As to gy, it causes a catastrophic failure under the con-
dition that AT rejects P. The probability that AT rejects P is a factor which
reduces the contribution of ¢, to pcs. In the NVP scheme, on the other hand, the
probability of correlated errors between any two components directly contributes

to p.s. Therefore, p.s of NVP is approximately three times greater than that of
RB.

81

By looking into the performance submodels (Section 6.5.2 and Section 6.6.2),
we can see that: 1) for RB, the mean iteration time is dominated by the mean
execution time of P and AT, while 2) for NVP, the mean iteration time is length-
ened due to the fact that synchronization requires waiting for the slowest version

— a severe performance penalty.

Form Figure 6.10 we notice the following: the difference between the RB and
NVP curves at the low correlated error probability end (left hand side) is smaller
than the difference at the high correlated error probability end (right hand side).

The underlying factors for this scenario are:

e when the probability of correlated errors is low, the difference is primarily

caused by the difference in the performance cost.

e when the probability of correlated errors is high, the difference is not only
a result of the performance cost, but is also amplified by the fact that
NVP failure behavior is more sensitive to the correlated errors between

components.

6.7.2 Comparisons between Fault-Tolerant Software and Non-Fault-

Tolerant Software

Figure 6.11 shows the expected reward in a 10 hour mission for non-fault-tolerant
software. We assume that the program execution time is exponentially distributed
with a mean (}) of 5 milliseconds. Its error probability ¢ is kept as a variable.
Since conventional software does not apply error detection or recovery mecha-

nisms, manifestation of program faults will always cause catastrophic failures.

The computation is straight forward. We show the formulation of the expected

82

reward below, without derivation.

EM|=e™.)t-(1-q)

expected number of successful iterations in 10 nrs (E6)

0 0 1 L L L L & '
1.0 2,0 3.0 4.0 5.0 6.0 7.0 8.0 2.0 10.0
probability of program error ({E-7}

Figure 6.11: Expected Reward for Non-Fault-Tolerant Software

Notice that the expected reward approaches zero well before the program error
probability reaches 10~*. This is the value of the probability of independent errors
in a component used for the fault tolerant software evaluations in Figure 6.10.
In order to achieve a reward in the range compatible with that accomplished
by RB with correlated error probability on the order of 10~® to 10~7, or that
accomplished by NVP with correlated error probability on the order of 1072 to
107%, the error probability of the non-fault-tolerant program needs to be as low
as 1077, Therefore, under the condition of low correlated error probability, the

software fault tolerance techniques significantly improve performability.

83

6.8 Alternative NVP Model

6.8.1 An Alternative Approach to NVP Operation

From the above analysis, we recognize that NVP in general is inferior on per-
formability issues compared with RB, because of the severe performance penalty
from synchronization and the fact that NVP is more vulnerable to catastrophic
failures due to correlated errors. The performability analysis indicates possible
directions to improve the NVP scheme. One way is to improve the performance
by modifying the use of the computational redundancy in an operational context.
In the alternative NVP scheme, the decision function starts voting (comparison)
when any two of the versions complete their executions and wait for the slowest
one only if the comparison indicates a discrepancy. If the two versions agree, the

consensus result is output, and the third version is aborted. Subsequently,

o for an open loop application, the next iteration starts with new input data;

¢ for a closed loop application, the internal state of the aborted version is
re-initialized using the internal state of a successful version, then the next

iteration starts with new input data.

If the two versions disagree, the system will wait for the third version to complete.
Upon the third version’s completion, the second vote takes place on the results
submitted by all the three versions. Qur motivation is to make the performance
of NVP be dominated by the faster versions instead of the slowest version, while
keeping the slowest version as a “back-up” for the dependability objective. We
assume that the first and the second voters would be implemented with different

decision algorithims in order to minimize the probability that a voter outvotes ac-

84

ceptable results or passes erroneous results. Further, we assume that the internal
state of a program in a closed loop application is small, such that its restoration

takes negligible time.

Figure 6.12 shows the operation of the alternative NVP scheme which consists

of three versions and two voters.

version 2

Figure 6.12: Alternative NVP Operation

The system operates essentially as follows. The three versions start to exe-
cute at the same time. When any two of the versions complete, the first voter
compares their results. If both of them compute correctly, the consensus result
will be output according to the decision algorithm (the case corresponding to
path 1 in Figure 6.12). If the two versions produce similar erroneous result, the
voter outputs the consensus erroneous result (the case corresponding to path 4
in Figure 6.12). If discrepancy in the two versions’ results is detected by the
voter, the system waits for the result of the third version. The second voter takes

action when the third result is submitted. If there exists a majority represent-

83

ing correct computation, the result from the majority will be output (the case
corresponding to path 2 in Figure 6.12). If a majority does not exist, the results
will be suppressed (the case corresponding to path 3). If there exists a majority
representing similar erroneous computation, the erroneous result will be output
(the case corresponding to path 5). From a stochastic process point of view, the
iteration always resumes independent of outcome type; from a user point of view,
however, a catastrophic failure (caused by an undetected error) leads to loss of
service. Therefore, path 5 is represented by the dashed line in Figure 6.12. Fi-
nally, path 6 corresponds to the case that the execution of an iteration exceeds
its real-time deadline, such that the iteration is aborted and the next cycle starts.
Since this scenario may occur at any stage of an iteration, path 6 starts from the

shaded rectangular instead of any component encapsulated inside.

We have assessed the performability improvement from this alternative ap-

proach, which is described in the following sections.

6.8.2 Dependability Sub-Model

The fault classification and notations for probabilities of fault manifestation are
illustrated in Table 6.8. We assume that the probabilities of fault manifestation

for the two voters are equivalent. That is,

93 = 45 = qu.

As explained in Section 6.6.1, we decompose g4 into two parts, namely, g4 and gg..
The former is the probability that a voter fails to recognize an existing majority
(or consensus between two versions) and suppresses the results; the latter is the
probability that a voter fails to recognize the discrepancies among the versions

and delivers an erroneous result.

86

Table 6.8: Fault Types and Notations for new-NVP

Fault Types

Probability of

Manifestation
Related fault in the 3 versions 30
Related fault in the 2 versions Gou
Independent fault in a version Giv
Independent fault in the voter 1 q}
Independent fault in the voter 2 a3

q2\r+q3\r

&=E®

19y

Figure 6.13: Dependability Sub-Model of Alternative NVP

87

We apply the assumptions for NVP stated in Section 6.6.1 to the alternative

NVP. The Markov transition state diagram is shown in Figure 6.13, where

p=1=2¢(1 - giv) — a2, — 3q20 — g30.

The definitions of the states are shown in Table 6.9,

Table 6.9: State Definitions for new-NVP Dependability Model

States Definition
I initial state of an iteration
2V first stage of version execution

(waiting for the first two versions’ completion)

{Dsi |1 €{1,2,3,4,5}} | execution of voter after two versions complete
{3V; 11 € {1,2,3,4,5}} second stage of version execution
(waiting for the last version’s completion)

{Dsi |1 € {1,2,3,4,5}} | execution of voter after three versions complete

B benign failure

C catastrophic failure

The partitioned states D,; correspond to the various types of faults manifested

during the first stage of version execution:

D3, no fault manifestation; two acceptable results.

D3y;: manifestation of an independent fault in one version; one independent

erroneous result and one acceptable result.

Ds3: manifestation of independent faults in the two versions; two distinct

results.

Dy4: potential manifestation of correlated faults in two versions — one is

88

completed and the other is still in execution; one erroneous result and

one acceptable or independent erroneous result.

Dy5: manifestation of correlated faults in two or three versions; two similar

erroneous results,

Subsequently, the fault-free behavior of the voter leads to the following tran-

sitions:
1. from Dy, to I; that is, the voter evaluates two acceptable results.

2. from D;y, Dy3 and Doy to 3V,, 3V; and 3V, respectively; that is, the voter

evaluates two distinct results.

3. from Dys to C; that is, the voter evaluates two similar erroneous results.

The faulty behavior of the voter leads to the following transitions:

1. Dy to 3V4; that is, the voter does not recognize the consensus between the

two versions, so decides to wait for the third version.

2. Dy3, Di3, and D34 to C; that is, the voter does not recognize the discrep-

ancies and delivers an erroneous result.

3. Djs to 3V5; that is, the voter does not recognize the consensus between the

erroneous results and decides to wait for the third version.

The partitioned states Dj; correspond to the various outcomes of the second

stage of version execution.

D3y at least two acceptable results.

89

D33Z

.D35 .

: D3y corresponds to the manifestation of an independent fault in the

third version; two independent erroneous results and one acceptable
result. Djsq corresponds to no fault manifestation in the third version;

one independent erroneous result and two acceptable results.

three distinct results.

: manifestation of correlated faults in two versions — one completed

at the first stage and the other completed at the second stage; two
similar erroneous results and one acceptable or independent erroneous

result,

two or three similar erroneous results.

Subsequently, the fault-free behavior of the second voter leads to the following

transitions:

. from Dj; and Day, to I; that is, the voter evaluates two or three acceptable

results.

. from Ds;; and D33 to B; that is, the voter evaluates three distinct results.

from D34 and Dj5 to C; that is, the voter evaluates two or three similar

erroneous results.

The faulty behavior of the voter leads to the following transitions:

D3y, D3z, D3y and D35 to B; that is, the voter does not recognize the

consensus between the two or three versions and suppresses the results.

D331 and D33 to C; that is, the voter does not recognize the discrepancies

and delivers an erroneous result.

90

As done for RB and NVP, let p.s denote the probability of catastrophic failure
(the case corresponding to state C in Figure 6.13 and to paths 4 and 5 in Figure
6.12). Let p,q denote the probability of benign failure (the case corresponding to
state B in Figure 6.13 and to path 3 in Figure 6.12). From the Markov transition

state diagram, we have:

P = 2¢io(l — qiv)gar + 265, (1 — qio)(1 — qa2) - daz + Giv” - Qa2 +
@iv (1 — qaz)qa2 + 2q20 * a2 + 2q20(1 — qa2)(1 ~ qay) +
(g20 + 230)(1 — ga1) + (920 + qa0)ga1 (1 — qa1)
= 2¢i(1 — giv)qa2(1 + Giv — qa2div) + Civ qa2(2 — quz) +

g20(1 — qa1 — Qa1 - qaz) + @20(1 — @) + g3(1 — ¢3))

&

2¢iv - qa2(1 — i) + Giv® * qa2(2 — qaz) +

q2v(1 - le)(3 + le) + q30. (614)

It is clear that the probabilities of correlated faults dominate the likelihood of

catastrophic failure. And we have:

Ped = Prga’+2¢:,2(1 — qi)(1 — qa2)” + 2qi (1 — gio)* (1 — qa2)qa1 +
Giv*(1 — qa2)” + 2q20(1 — qu2)gqa1 + (g20 + gav)a’y
= p-gh ~26,(1 — qa2)(1 — g — qu2) + a2 (1 — ga2)(3(1 — qa2) — 4qur) +

2¢iu(1 — qa2)qa1 + 2g20(1 — qaz)qar + (qav + @30)04

R

2qio(1 — qa2)aar + 4(1 — ga2)(3(1 — qap) — 4gam) —

2¢:,(1 ~ qa2)(1 — qa1 — qua)- (6.15)

The above equation reveals that the probability of benign failure will be low if the
probability of independent faults in a version is reasonably low. The other type

of benign failure is the detected real-time deadline violation, which corresponds

9

to path 6 in Figure 6.12. The analysis of benign failure of this type is presented

in the next section,

6.8.3 Performance Sub-Model

We assume that the execution time of the first, the second and the third version
are independently and exponentially distributed, with the parameters A1, A2 and
As, respectively. Assume also that the execution time of the first and second
voter are independently and exponentially distributed, with parameters A, and
As, respectively. Figure 6.14 depicts the renewal process KX (t), which is derived
from Figure 6.12. Since the definition of the random variable K (t) is independent
of outcome type, paths 1 and 4 in Figure 6.12 are aggregated into a single path
marked p; in Figure 6.14; likewise, paths 2, 3 and 5 in Figure 6.12 are aggregated
into a single path marked (1 — p;). The notation p, represents the probability
that an iteration completes upon voting on two consensus-correct or consensus-

erroneous results. From the dependability sub-model (Figure 6.13), we have,

P2 = p(1—qa)+2¢(1 - gi)qae + @2 - qar + 220 - qaz + (q2v + ¢30)(1 — qa1)

= (P+ g2+ ¢.)(1 — qa1) + (200 — 6% + 2g20)quz- (6.16)

For the sake of illustration, we introduce the following notations. Let Y
denote the renewal cycle time. Let ¥;, ¥; and Y3 denote the time for any one of
the versions, any two of the versions, and all three of the versions to complete,
respectively. And let Y3 and Y, denote the time for the first and second voter
to complete, respectively. Let Y/ denote the sum of the time for any two versions

to complete and the time for the first voter to complete. That is,

Y=V, + Y.

92

version 1

Y

version 3

Figure 6.14: Performance Sub-Model of Alternative NVP

Let YT denote the maximum of Y7 and Y3 (the time when all three versions

complete their executions).* That is,
YH = MAX[Y!, Vi)
Let Y/ denote the sum of Y¥! and Yy,. That is,
Y =y 4y,

Let the pdf of ¥ be denoted as f(y). According to the alternative NVP

scheme,

fw) =p2 Aily) + p2 - foly), (6.17)

where p; is the probability that an iteration completes at the time when the first
voter is done (Eq. (6.16)), fi(y) is the pdf of Y/, and fa(y) is the pdf of Y.

The derivation of f(y) is as follows.

The PDF of Y5 is:

G1(y) = P(Y2 < y) = P(at least 2 programs completed in (0,y)).

*This notation is necessary since the slowest version may complete during or after the first
voter’s execution.

93

That is

Gi(y) = P(Y1 < y)P(Y2 <y)P(¥s > y)+P(Y1 < y)P(Y2 < y)P(Ys < y). (6.18)

Since the execution time of the three programs are independently and exponen-

tially distributed with the parameters A;, A; and A3, the equation (6.18) becomes

Gy (y) = (]_ - e—/\ly)(l _ e—z\zy)e—a\ay + (1 _ e—Agg)(l — 6_,\,y)e._),1y +

(1= e™M¥)(1 — e)™M 4 (1 — e™M¥)(1 — e~2¥)(1 — e ™M),

The pdf of Y, is the derivative of Gy (y), denoted as g;(y). The pdf of the execution
time for the first voter is:

Ri(y) = Age MY,

Let the Laplace transforms of g1(y) and ky(y) be denoted as G}(S) and Hy(S),

respectively. Then the Laplace transform of fi(y) is
FY(8) = Gi(S) - H{(S3).

Since fi(y), the pdf of Y7, is attainable from the inverse Laplace transform of

F7(S), we can derive the PDF of Y/, i.e., Fi(y).

Let V(y) denote the PDF of Y13, that is,
V() = (1= (1 -) (1 — o),
Let G;(y) denote the PDF of Y/, that is,

Gy(y) = Fiy) - V(y).

The pdf of Y7, g5(y), is then attainable. Let hy(y) denote the pdf of the execution

time of the second voter, that is,

94

h'«’(y) = A5‘3_’\“'5

and let the Laplace transform of g;(y) and h2(y) be denoted as G3(S) and Hj(S),

respectively, then we have,
F3($) = G3(5) - H3(S5).

which is the Laplace transform of ¥ /I, Then we can obtain the Laplace transform

of Y, the renewal cycle time:
F*(8) = p2- F{(S) + (1 = p2) - F5(5).

where p; is derived from Eq. (6.16). And the density function of the renewal

cycle time can be obtained through the inverse transform:
F*(8) & f(y).

Due to a deadline 7, the iteration time Y follows the distribution defined
by f(y) if the iteration completes before the deadline; otherwise it stops at 7,
which corresponds to path 6 in Figure 6.12 and can be represented by the unit
impulse at 7 scaled by the probability of deadline violation. The actual density
function of iteration time Y (with the consideration of real-time constraint), and

the corresponding mean and variance are solved in the same manner as we did

for RB (Section 6.5.2).

6.8.4 Performability Model

Figure 6.15 depicts the performability model at the upper layer in a similar

manner as for the RB and NVP schemes.

95

B pcf

Figure 6.15: Performability Model of Alternative NVP

Contrasting Figure 6.12 to Figure 6.15, paths 1 and 2 in Figure 6.12 collapse
to the path marked (1 — pay, — pcs) in Figure 6.15, paths 4 and 5 collapse to the

path marked p.s, and paths 3 and 6 collapse to the path marked py,.

Thus, integrating the information supplied by the lower layer models leads to
an upper layer model identical to that for RB and NVP. It follows that the mo-
ment generating function derived from the performability model of the alternative

NVP 1s the same as that for RB and NVP, as illustrated in Section 6.5.3.

6.9 Discussion

For sake of illustration, we use the abbreviation new-NVP for “the alternative

approach to NVP” in the rest of the chapter.

Our evaluation results show that the performance penalty due to version syn-
chronization is greatly reduced in the new-NVP scheme. This improvement is
contributed to by the fact that the version which takes the longest time to com-
plete becomes a back-up. The performance of an iteration is independent of

this dynamic back-up version, unless discrepancy is detected in the two versions

96

18.0 T T T T T T T T

16.0

14.0

12.0

10.0 F -

new-NvVPp

mean lteraticn time of the program in NVP scheme (ms}

4.0 1 1 1 1) | 1 L 3

B.O 9.0 10.0 11,0 12.0 13.0 14.0 15.0 16,0 17.0
mean execution time of the slowest version (ms)

Figure 6.16: Sensitivity to the Mean Execution Time of the Slowest Version

completed first. In other words, in the new-NVP scheme, the iteration time is
dominated by the two faster versions instead of the slowest one. As shown in
Figure 6.16, the mean iteration time of the new-NVP scheme is insensitive to the
mean execution time of the slowest version (here the “slowest” is identified by

the mean and is used in a static sense), compared with NVP.

We have evaluated the expected reward for a 10 hour mission with the new-
NVP. For coherent comparisons, we use the same assumptions and the same

parameter assignments as we used for NVP.

Figure 6.17 shows the expected reward for RB, NVP and new-NVP as a

function of the probability of correlated errors.

We have the following observations:

1. In the high dependability region (which corresponds to the low probability

97

by 7.0 T T T t T T T T
=)
w
H

6.0 | b
a
—
=
-—i
b 5.0 | J
)
-—
)
vl
M
o
het 4.0 F new-NvP 1
—
=
U
@
o 3.0F 1
o
4]
a RB
—
@ 2.0 F d
15
é
=
. 1.0 F NVE E
Q
Eel
0
Q
Q.
ﬁ 0.0 1 1 1 1 1 1 i 1

0.0 20.0 40.0 60.0 80.0 100.0 120.¢ 140.0 160,0 180.0

probabllity of correlated errors (E-9)

Figure 6.17: Comparisons of RB, NVP and Alternative NVP

of correlated errors), ranging from the beginning of the X-axis to the cross
point of the new-NVP and RB curves, new-NVP outperforms both RB
and NVP. This is because performance is the primary factor influencing
the reward in this region, so that new-NVP becomes superior due to its

outstanding performance.

. In the moderate dependability region (which corresponds to the moderate
probability of correlated errors), ranging from the cross point of the new-
NVP and RB curves to the cross point of the new-NVP and NVP, the
reward of new-NVP drops below RB but still above NVP. This is because
the dependability influence becomes visible in this region so that the per-
formance merit of new-NVP can no longer compensate for its dependability

deficiency.

98

3. In the low dependability region (which corresponds to the high probability
of correlated errors), ranging from the cross point of the new-NVP and NVP
curves to the end of the X-axis, new-NVP becomes inferior to both RB and
NVP. Its reward is even poorer than NVP for the following reason: the
new-NVP executes at a higher rate while it does not incorporate any major
dependability improvement, so it has a greater chance of running into an
input which activates the correlated faults between the versions and leads

to loss of the mission.

catastrophic failure probabllity = E-9

catastrophlc failure probability = E-7

expected number of successful iterations in 10 hrs (E6)

0.0 1 1 L 1 1 L
5.0 6.0 7.0 B.C 9.0 10.0 11.0 12.0
mean component versien execution time {(ms)

Figure 6.18: Impact of Component Performance

Figure 6.18 illustrates the impact of component performance on expected re-
ward for the new-NVP. The expected reward is a function of the mean execution
time of a component version in the new-NVP scheme. The upper curve is evalu-
ated under the condition of a low catastrophic failure probability, while the lower

curve is evaluated under the condition of a high catastrophic failure probability.

99

We can see that the expected reward increases when the component version per-
formance improves for the upper curve; on the other hand, the expected reward
decreases when component version performance improves for the lower curve.
This phenomenon can be explained as follows. When the dependability is not
sufficiently high, a higher iteration rate in general results in a poorer expected
reward because of the higher probability that an undetected error will trigger the
alteration of the performance level from “proper” to “improper”. Its implication
in software engineering practice is: perfective maintenance is beneficial only when
dependability reaches a certain level, otherwise corrective maintenance should be

given priority.

expected number of successful iteratlons in 10 hrs {E6)

0.0 1 1 1 1 1 1 L L

0.0 20.0 40.0 €C.0 9C.0 100.0 120.0 140.0 160.0 180.0
probablility of correlated errors (E-9}

Figure 6.19: Comparison for Uniform Distribution

Figure 6.19 shows the comparison of the expected reward for RB, NVP and
new-NVP under the condition that the component execution time are uniformly

distributed. The information about the uniform distribution for RB, NVP and

100

new-NVP is listed in Table 6.10, 6.11 and 6.12, respectively. For consistency,
we let the mean execution time for components in RB, NVP and new-NVP be
the same as those for the case of exponential distribution (results based on this
were shown previously in Figure 6.17). Other performance and dependability

parameters are the same as those used for the case of exponential distribution.

Table 6.10: Parameters of Uniform Distribution (RB)

Component | Probability distribution I Mean
P Uniform over (4.5,5.5) 5
S Uniform over (7.5, 8.5) 8
AT Uniform over (4.5,5.5) 5

Table 6.11: Parameters of Uniform Distribution (NVP)

Component 1 Probability distribution | Mean |
version 1 | Uniform over (4.5,5.5) 5
version 2 | Uniform over (5.5,6.5) 6
version 3 | Uniform over (7.5, 8.5) 8

voter Uniform over (0.2,0.8) | 0.5

Table 6.12: Parameters of Uniform Distribution (new-NVP)

Component | Probability distribution | Mean
version 1 | Uniform over (4.5, 5.5) 5
version 2 | Uniform over (5.5,6.5) 6
version 3 | Uniform over (7.5, 8.5) 8

voter 1 Uniform over (0.2,0.8) | 0.5
voter 2 Uniform over (0.2,0.8) | 0.5

The comparison shows that, in this setting, RB is inferior to both NVP and

101

new-NVP in the low correlated error probability region, because of the perfor-
mance penalty from its sequential execution of P and AT. It becomes superior
in the higher correlated error probability region due to its dependability merit.
Although the new-NVP performs the best for the low correlated error region, its
reward is not as high as for the uniform distribution as it is for the exponen-
tial distribution. This is due to the fact that the variance of version execution
time is much smaller than in the exponential case. The time to completion of
two versions is tightly bounded below, so that the improvement is relatively less

significant.

6.10 Evaluation for Fault Tolerant Software of Closed

Loop Type

We have also evaluated performability measures for fault-tolerant software in
applications of the closed loop type. In the evaluation, we assume that the effects
of graceful degradation (due to detected and treated errors) will propagate, but
will not amplify. We assume that the fault-tolerant software systems have the

following disciplines:

¢ After the first degradation, the quality of service of each successful cycle is

reduced and remains as a constant before a subsequent degradation.

¢ Upon the second degradation, the software system is safely “shut-down.”
That is, its output is ignored and manual operation takes place; the software

system is considered “out of service” from that point on.

Thus, only the cycle which produces an undetectable error and occurs before the

second degradation will constitute catastrophic failure.

102

Since the object systems (RB, NVP and new-NVP) are not changed from
the open loop case, the lower layer models defined previously are applicable.
Nevertheless, the upper layer, the performability model, needs to be modified in
order to reflect the impact of degradation propagation on user perceived benefits.
The performance variable M(¢) is defined as the number of successful iterations in
a mission period ¢. An iteration after the first degradation and before the second
degradation is considered as a partially successful one, and counted as a fraction.
For deriving the moment generating function of the performance variable for the

closed loop case, we define the following random variables:

D(t) = number of degradations (detected erroneous cycles) in t,
N(t) = number of failures (undetected erroneous cycles) in ¢,
K(t) = total number of cycles in ¢,
Xo(t) = number of cycles before the first degradation or a
catastrophic failure,
Xi(t) = number of cycles after the first degradation and before

the second degradation or a catastrophic failure.

And we let wo denote the reward impulse associated with a successful cycle be-
fore the first degradation, and w; denote the reward impulse associated with a

successful cycle after the first and before the second degradation.

The service threshold for classifying performance levels is based on D(t) and

N(t). The macro-level capability function is:

103

7(u{to»to+t}) € 3

A_fuuy_p,-ope,. if D(t) <1 and N(t) =0

Apa,-ﬁauu__pmpe,- if D(t) > 1 and N(t) =0

if N(t) >0

Aimproper

\

The reward structure which supports the performance variable is thus defined

as follows:

Yitotorsy = M(2) = 4

(wo - wl)XO(t) + un I((t) if 7(”) € Afu“y—proper
Wo XD(t) + w Xl(t) if ’)’(u) € Apartl'ally—proper

0 if 7(”) € Aimproper

Since Xo(%), Xi(2), D(t) and N(¢) uniquely determines M(t), we denote

M= h(.’zo, Il,d, n)

Let Z = €?, and we have the moment generating function:

E[ZM] =

Zh(xo,:n |d!") P(.’L‘(), :C1, da n)

s
V]38
[~]8
™3

]
Il
=}
2
I
o
H
(=}
I
o
Lo
N,
[l
=)

Zh(IOv"l'd’") P(x()a Ty, d’ n) +

8
8
)8
[V]8

3
Il
)
a
Il
=]
L]

o
I
o
G

-
If
o

Zh(xu,xl dn) P(-'L'O, ry, d’ n) (619)

MO
38
M
Wk

]
[k
Q
aQ,
1l
=)
&
<
il
=]
H
o
H
=3

The first term of the above equation (6.19) can be decomposed, and rewritten

by applying the definition of the reward structure. That is,

104

Zh(z0,21,d,n) P(:Ivo, z1,d, n)

M8
gL
M8
gk

o
Il
-
a
Il
=]
&
[=]
[t
(=}
&
b
[l
[~

Zh(z0,21,dm) P(;r:o, z1,d,n) +

I
NgE
™8
M8
MO

=
I
—
=9
(i
L=
<3
<
1
=]
B
s
1l
o

Zh(-’l-'ovxl din) P(:EO? L1, d" TL)

M3
M8
]2
gl

2
I
—
fu
Il
—
g
[=]
i
=1
)
=
H
-

= i i (1 — pag — Pes)™ - peg - P(K(t) = k) +

2 z Z (1 — Pdg _PCf)z°+xl—1 “Pdg * Pef * P(K(t) = k)

20=0 r1=1 k=x¢+x,+1

Bey k-1
Pag + poy E 1: ((Pag — pes)”) P(K(t))

Pdg Pef k-1
—__E 1—%k(1— pag — p- PIKHY=EF 6.20
Pdg|chk2((dg f)) (()) ()

The second term of the Eq. (6.19) can also be decomposed and rewritten by

applying the definition of the reward structure. That is,

>33

n=0 d=0

Zh(l‘o ,xl,d,ﬂ) P(a‘,‘o, .'B1 . d) n)

L
M8

4

o
II
b

-
1l
o

Zh(avo,xl i) P(wo, I, d, n) +

M-
s °
™8

R,
Il
=
8
Q
Il
=1
G
o
1l
<

Zh(-'co,-"r'l sdn) P(-’BO; z,,d, n)

gk
Nk
NE

&
Jl
)
]
[=]
Il
=]
bl
ks
1]
=]

1 oo [o%)
- Z Z Z Zh(:tn,:n.d,n)(l ~ Pag — pc,f)"”” . pdgd(l = Pay — Pcf)k-moud)
d=0 zo=0 k=xq+d
P(I(= + Z Z Z z Zh(:co,:r:l,d,n)(l — Pag — pcf)xo-i-xl—-l

d=2 zo=0 z,=1 k=zp+z; +d—~1

k—zg—a, -1
ot (7 T)t g P =
k—d

— Z Z Zw k+(wo—wl).'so(1 — Pdg — pcf)k_d 'pd'gd . P(I{(t) = k) +
d=0 k=d =0

Z z Z Zwo Totwy 1‘1(1 — Pdy — pcf)$o+$1—1pdg2) P(I((t) — k) .

105

k—zo—z141 k—zg—x1—1 - _
Z pdgz()pdyd"2(1 _Pdg)k o —lmd-2)

=2 d - 2
1 oo k—d oo
= Z Z Zw Ic+(wu—w1)xo(1 — Pag — Pcf)k_d . pdgd . P(I{(t) — k) + Z
d=0 k=d zp= 2o=0

2 2 ZmmTMT(l—pgy—pes)™ T peg” - P(K(t) = k). (6.21)

z1=1 k=zg4z; 41

The moment generating function (Eq. (6.19)) then becomes:

E[ZM] = 2(1 — (1 —pag — pes)*) P(K(t) = k) +
Ddg +pcf
LéoPel 57 (1 — k(1 — pug — peg)*) P(K(t) = £) +
pd’g +pcf k=2
co k-d
Z E Z Zw k+(wo—w1)xo(1 - Dag — Pcf)k_d 'Pdgd . P(K(f) = k) +
d=0 k=d zg=0

oo [o] S0
Z Z z Fuwn Fotw F1

ro=0 21=1 k=xo+x; +1

(1 = pag = peg)t T'pg,® - P(K(t) = k) (6.22)

Using the moment generating function Eq. (6.22), we can derive the expected

reward:
E[M] =3 (1 —pag—pes)* - P(K(t) = k) - wo k +
k=0
o0 k-1
> (1= pag—pef)* " - pag - P(K(£) = k) 3 (w1 k + (wo — wi) o) +
k=1 2o=0

Z (wo zo + w1 21)(1 — Pag — Pes)™*™ Tlpyy” - P(K(t) = k)

0 21 =1 k=xo+x1+1

= i(l_pdg_pcf)k‘P(I((t):k).wok +

5 []8
Ms

&
il

k=0
3 - wo + w1) k2 — (wo — wy) k
Z(l—pdg—pcf)"‘-pdg~P(K(t)=k).(o+ w1) 2(o — w) N
k=1

Pdg 2 k=2

P(K(t 1 — —)0

Ty L PR =B (1 —ps—n
k—xzp—1
> (wozo+wiar)- (1 pag— peg)”
x1=1

106

oC

= > (1—pay —pep)* P(K(t)=Fk)-wo k +

i (1 — pag — pes)*~! - pag - P(K(t) = k) - (wo + 1) k22— (wo—wi)k
k=1
(1 “;)::_Pcf) gj P(K(t) = #) Z: Si(k) (6.23)

The terms S;(k) are as follows:

—wo(k — 1) p* (1 ~ p) + wo p*(1 — p*-1)

S (1-p)

Sa(k) = _“’OP’“%—_?H)
&w==W%t£ﬂ

w - =

Sy(k) = %

Solk) = wlE-DP (1(;f)p;;w1 (#*** — p%)

where p = ¢* = 1 — pg, — p.y.

According to the Central Limit Theorem for Renewal Process, K(t) is ap-

proximately normally distributed with the mean ¢/g and the variance to?/u® for

large t. Let it =t/p, & = \/to?/u3, and €* = 1 — pg, — pes (as defined above), we
g Ddg 1

have

BM) = [T Boa) w0+) do +
&
® a(borie wo+wy) {6z + 1) — (wo — w1) (6z + i
pdgf_i_-;&e(+i 1)(,9(&.)(0 1)(l‘) . (0 1)()dx
2 00 6
Pdg N N
+ plz S;(6z + &) dzx 6.24
(1—Pdg—Pcf)/—'=’%*-‘cp()E () (629

Performability measures are evaluated for RB, NVP and new-NVP schemes

with the parameters listed in Table 6.13, 6.14 and 6.15, respectively. Figures 6.20

107

and 6.21 show the evaluation results for an open loop application and a closed
loop application, respectively, based on the parameter assignments. For the open
loop application, the expected reward is evaluated using the moment generating
function defined in Section 6.5.3. Each successful iteration is always associated
with a reward value wy which equals unity, because the effects of degradation do
not propagate. For the closed loop case, the expected reward is evaluated using
Eq. (6.24). To take into account the effects of degradation propagation, each
successful iteration before first degradation is assigned a reward value wy which
equals unity; whereas each successful one after the first degradation and before

the second degradation is given a reward value w; equal to 0.8.

Table 6.13: Assignments of Parameters for RB

Parameter Value
Ap L
As :
A :
dps variable
Ipt variable
st variable
Qpst 10-1°
dp 10°
s 10-¢
G 10-°
¢ 3.6 107 (ms)
T 100 (ms)

Compared with the open loop case, RB receives a noticeably poorer reward

for the closed loop. Eq.’s (6.2), (6.13) and (6.15) show that the probability of

108

Table 6.14: Assignments of Parameters for NVP

Parameter Value

M i
Aq :
Az 1
As oF
G2v variable
. 10-10
Giv 10-°
4, 10-°
Qd, 1079

t 3.6 107 (ms)

T 100 (ms)

Table 6.15: Assignments of Parameters for new-NVP

Parameter Value

A 1
Az :
A3 :
A4 o
As o
¢2v variable
e 10710
Giv 10-°
qa 107°
qd2 10~?

t 3.6 107 (ms)
T 100 (ms)

109

expected number of successful iterations in 10 hrs (E6)

expected number of successful iteraticns In 10 hrs {E8)

4,0 new-NVP

0.0 i 1 L 1

i

0.0 20.0 4C.0 60.0 80.0

160.0

120.0

140.0

probability of correlated errors (E-9)

Figure 6.20: Comparison for Open Loop Case

160.0

180.0

RB

NVP

'l

0.0 1 1 L Il
0.0 20.0¢ 40.0 60.0 80.0

100.0

120.¢

140.0

probabllity of correlated errcrs {(E-9)

Figure 6.21: Comparison for Close Loop Case

110

160.0

180,.0

independent errors in a decision function (an acceptance test or a voter) domi-
nates the likelihood of degradation. When an acceptance test is designed under
the temptation of full coverage, its error probability can be comparable with that
associated with an alternative. On the other hand, since a voter in NVP or new-
NVP is application independent and easier to verify, it is legitimate to assume
that the error probability of a voter is lower than that of a version. Therefore, the
RB scheme is more vulnerable to service degradation. Since the degradation has
more significant effects on the expected reward for a closed loop application than
for an open loop application, the change in the effectiveness of RB is a reasonable

result.

The results also reveal that the expected reward for RB and NVP is relatively
insensitive to the correlated error probability. This is due to the fact that the
system will no longer be active after the second degradation. Under this opera-
tional discipline, the effect of correlated errors, which causes the loss of a mission,

is suppressed after being twice degraded.

The new-NVP behavior is rather similar for the open loop and closed loop

cases. The factors associated with this phenomenon are:

1. The high performance of new-NVP results in a low probability of timing

errors.

2. The dependable voting scheme of new-NVP results in a low probability of

unnecessary result suppression.

Thus, new-NVP has a lower probability of degradation, which makes its expected

reward less sensitive to the effects of degradation propagation.

111

CHAPTER 7

Conclusions and Future Work

In this research, we have demonstrated the applicability of performability con-
cepts to real-time software and the approaches to model construction for captur-
ing the characteristics of software behavior. The mathematically based frame-
work is able to address a broad spectrum of software issues. Evaluation results
show that performability modeling can provide answers that form the basis for
objective, quantitatively derived, decisions for design and operational aspects of
real-time systems. The results go beyond what could be expected from intuitive

insights or unaided reasoning.

7.1 Reward Structure

Real-time software incorporating defensive programming or fault tolerance strate-
gies may exhibit both gracefully and non-gracefully degradable performance.
Aimed at capturing the characteristics of real-time software, we have explored
the methodology to evaluate the unified measures via distinction. The distinction
1s achieved by defining an integrated relationship of the top-down and bottom-up
capability functions in a reward structure. The top-down capability function ¥(u)
summarizes the software behavior at a macro level and qualitatively identifies if

the service threshold can be met by the system under question. Conditioned on

112

the macro-level classification, a bottom-up capability function 7(u) quantitatively
measures the quality of service at a micro-level. While the stronger probabilistic
measures, such as PDF, at a micro-level are often difficult to evaluate by an-
alytical methods, these at a macro-level are in general analytically attainable.
The stronger probabilistic descriptions at the macro-level screen out systems (or
designs) which violate the threshold, thus meaningful quantitative comparisons
or tradeoffs can be effectively performed by employing the weaker measures such
as expected reward at the micro-level. In summary, this integration is necessary
in order to provide operationally meaningful and mathematically realizable per-
formability measures. Further investigation is needed to formalize and rigorously
establish this relationship. We also notice that, since this approach permits dis-
tinctive yet coherent formulations of system effectiveness measures to across the
boundaries of the classes, further combination of system attributes becomes pos-
sible. For example, for the class of improper service (or non-gracefully degraded

service) safety notions can be applied to refine the measure of “loss.”

7.2 Hierarchical Approach

A hierarchical approach is used to construct performability models for assess-
ing the effectiveness of software fault tolerance techniques. Lower layer models
describe the software failure behavior and performance characteristics of fault
tolerance systems; the lower layer evaluates the local performance and depend-
ability measures ! with the consideration of their dependencies. The results are

supplied to the upper layer. The upper layer accomplishes an integrated evalua-

1We use the term “local measures” to refer to the individual entities in a total system, such
as the failure probability and mean execution time of a single program iteration.

113

tion by employing these local measures as key parameters of the performability

model.

The hierarchical approach enables model validation by use of separate de-
pendability and performance field data. The use of such separate dependability
and performance data is necessary because there may not be sources of field per-
formability data. Model maintainability and extensibility are enhanced by the
hierarchical approach, which allows modifications to be made at a specific level
rather than throughout the model as a design evolves or the model is applied to
a different system. This logical modularity facilitates concurrent model changes

and software maintenance.

7.3 How the Reward Structure and Hierarchical Ap-
proach relate to SANs

The reward structure proposed in Chapter 5 and applied in Chapter 6 can also
be realized by stochastic activity networks. SAN has the capability of performing
“marking dependent” reward assignment. By exploiting this capability, reward
evaluation can be based on a collective view of the state trajectory and be gov-

erned by the system’s qualification at the macro level.

In the SAN realization (Chapter 4), the model construction is based on the
architecture of a total system (ts-based); when we use straight analytical methods
for the evaluation of fault-tolerant software, the hierarchical approach is based
on the major attributes of the system (attributes-based). Figure 7.1 contrasts

the two approaches.

Accordingly, the SAN realization results in a modularity in a physical sense,

114

Total System Performability

Environment Program Performance Dependability

Figure 7.1: Two Types of Modularity

while the hierarchical approach results in a modularity in a logical sense. Both
types of modularity exhibit advantages and disadvantages. The physical mod-
ularity allows a more natural representation. It is able to accommodate high
complexity especially when software evaluation tools with a simulation option
are available. Models based on physical modularity may directly provide insight
on the interaction between the object software and its operational environment.
The logical modularity usually entails a simpler representation. Models based on
the logical modularity may directly support parametric studies and provide to
us insight about the contributions of performance and dependability attributes
to the overall service quality and dependencies between these attributes. Logical

modularity favors local modifications and thus enhances model maintainability.

The disadvantages of using the physical modularity are 1) the model con-
struction process is error-prone due to complex representation, and modifications
usually involve multiple sub-models so that maintenance is difficult, and 2) there
is no direct access to the contribution of performance and dependability to the
overall effectiveness. The disadvantages of using the logical modularity are: 1)
applicability is limited by the complexity of the object system, and 2) difficulty

exists for explicitly incorporating environmental attributes.

115

Our future direction is to explore an approach to integrate the concepts of

physical and logical modularities.

7.4 Summary of Future Work

In summary, future research issues include:

1. To formalize the reward structure for software performability evaluation.

2. To generalize the hierarchical methods for model construction and solution

for incorporating more environmental attributes.

3. To explore the use of existing graphical tools, such as those based on sto-

chastic Petri Nets, to evaluate more complicated systems.

116

APPENDIX A

Glossary of Notation

Aimproper Pperformance level set of improper service

Aproper performance level set of proper service

CF the event of catastrophic failure

CF* the absence of catastrophic failure

D maximum degree of degradation allowed by the service threshold

d number of degradation

E environment sub-model

fly) density function of program iteration time

9(y) density function of program iteration time with deadline consideration

Iy t044p collective indicator vector for the state trajectory in [to, to + 1]

K{t) number of total (program) iterations in time ¢
M(t) number of successful iterations perceived by the user in time ¢
NVP N-Version Programming

new-NVP an alternative approach to N-Version Programming

117

P program submodel

PDF probability distribution function

pdf probability density function

Def probability of an undetected erroneous iteration

Pdg probability of a degraded iteration

Psd probability of a detected erroneous iteration

Pir probability that an iteration results in real-time deadline violation
q probability of errors in a non-fault-tolerant program
qd probability of independent errors in the voter

Qiv probability of independent errors the it* version

Gps probability of related errors between P and §

dpt probability of related errors between P and AT

Opst probability of related errors between P, S and AT
Ip probability of independent errors in primary

qs probability of independent errors in secondary

st probability of related errors between S and AT

qt probability of independent errors in acceptance test
G20 probability of related errors between two versions
Qa3 probability of related errors between three versions

118

RB

SP

Ts

U{ts,to+1}

v

Y{to.to+t}

Recovery Blocks

Software Performability Model

length of mission period

Total System

state trajectory

a collective view of the state trajectory over a mission period [to, to+ 1]
a generic performance variable

performance variable summarizing the software behavior over [to, to+1]
program iteration time

unit impulse function

“Top-down” capability function

reward-based capability function

execution rate of a non-fault-tolerant program

execution rate of the primary

execution rate of the secondary

execution rate of the acceptance test

execution rate of the first version

execution rate of the second version

execution rate of the third version

119

A4

As

execution rate of the voter

execution rate of the second voter (in new-NVP)
mean of iteration time

variance of iteration time

real-time deadline for an iteration

120

APPENDIX B

SAN Structure

A SAN consists of the following primitive elements (based on [6]):

i)

iii)

iv)

activities, which are of two kinds: timed activities and instantaneous
activities. Each activity has a finite set of cases (at least one). A

1
2

timed activity with n cases is depicted as & " . An instantaneous

1
2

activity with n cases is shown as E n

places, depicted as O .

wmput gates, which have a finite set of inputs and one output. An
input gate with n inputs is depicted as %% . Each such input
gate is associated with a n-nary computable predicate and a n-ary
computable partial function on the set of natural numbers called the
enabling predicate and the input function, respectively. The input
function is defined for all values for which the enabling predicate is

true.

oulput gates, which have a finite set of outputs and one input. An

1
output gate with n outputs is depicted as —E: . Each such output

121

gate is associated with a n-ary computable function on the set of

natural numbers called the output function.

Structurally, an activity network is an interconnection of a finite number of

primitives, subject to the following connection rules:

1. Each input of an input gate is connected to a unique place and the output

of an input gate is connected to a single activity.
2. Different input gates of an activity are connected to different places.

3. Each output of an output gate is connected to a unique place and the input

of an output gate is connected to a single activity (via some cases).

4. Different output gates of an activity for a case are connected to different

places.

o

. Each place and activity is connected to some input gate or output gate.

In order to increase the understandability of SANs, the following conventions

are used in their graphical representation:

a) Activities with one case are shown without any case.

b) An input gate with one input, enabling predicate e(z) : x > 1, and
input function f such that f(z) = z — 1, is shown as a directed line

from its input to its output.

¢) An output gate with one output and output function f such that

f(z) =z +1 is shown as a directed line from its input to its output.

122

d) An input gate with one input, enabling predicate e(z) : 1 (always
enabled), and an identity input function is shown as a direct line to

its output without any input.

123

}

exit(0);
facanf(f1, "%1f", &prob_suc);
fscanf(f1, "%1f", &prob_fail);

reward = mission_rwd{alpha, prob_suc, prob_fail);

fprintf(fout, “%12.51f %15.81f\n", alpha, reward);
y fflush(fout);

double
mission_rwd(alpha, prob_suc, prob_fail)

{

}

double alpha, prob_suc, prob_fail;

int i, k;
double sum, accltd, pois, prev_pois;
double checksum;
k = 0;
sum = Q0.0;
prev_pois = -1.0;
while (1) {
accltd = 0.0;
pois = poisson(alpha, TAU, k);
fflush(stdout);

if ((pois < prev_pois) && (pois < 0,0000000000000001)) {
printf("poisson = %20.161f, k= %d\n", pois, k);
return (sum);
} else { .
prev_pois = pois;
for (i = 0; 1 <= k; i++) {
accltd += ((double) (k - i) * oc_suc +
(double) i * oc_fail) * comb(k, i)
* pow(prob_suc, (double) (k - i)} =
pow(prob_fail, (double) i);

accltd = accltd * pois;
sum += accltd;
} k += 1;
}

double
poisson(alpha, tau, k)

double alpha, tau;
int k;

int jroom;
double prod;
prod = 1.0;
for (j = 1; j <= k; j++) {
prod = prod * (alpha * tau) / (double) j;

m = (int) (alpha * tau) / 10;

for (j = 1; j <= m; j++)
prod *= exp(-10.0);

m = (int) (alpha * tau) % 10;

prod *= exp(-(double) m);

return (prod);

125

C.2 Program for Solving a Markov Model for Steady

State
/*
* program title: steady
*
: author: Ann T. Tai
* gummary: This pro%ram takes a set of balance equations as its
* input t solves the steady state occupancy
* probabllltles using the methods of matrix inversion
*/ and error compensation.
#i < h>
Finctude RS
#define SIZE T
main(argc, argv)
int argc;
char *argv[];
{
double matrix[SIZE]J[2 = SIZE];
double a[SIZE][2 * SIZE];
double b[SIZE];
double x[SIZE];
double fail_prob;
double beta, e, cvg, alpha;
double delta;
int mode;
int iteration;
double xcoord;
FILE *plotfile;
plotfile = fopen('plot.dat", "w");

if (plotfile == (FILE *) NULL) {
printf("Can’t open plot.dat for write\n");
exit(-1);

}

scanf ("%1f", &alpha);
scanf("%1f", &e);

scanf ("}1f", &cvg);
scanf ("%1f", &beta);
scanf("%d", &mode);
scanf ("%1f", &delta);
scanf("%d", &iteration);

sawitch (mode) {
case 1:
xcoord
break;
case 2:
xcoord = eo;
break;
case 3:
xcoord = cvg;
break;

case 4:
xcoord

break;

alpha;

beta;

}

printf("%10.41f", alpha);
printf("%10.41f", e);
printf£("%10.41£f", cvg);
printf("%10.41f", beta);

127

double r[SIZE];
double a[SIZE};

/* the initial solution */
for (i = 0, 1 < SIZE; i++) {
x[i] =
for (J = SIZE j € 2 % SIZE; j++)
x[i] = x[l] + inv[i] {j] > b{j - SIZE];
}

found = count = 0;
while (!found) {
for (i = 0; 1 < SIZE; i++) {
temp = 0.0;

for (j = 0; j < SIZE; j++) {
temp = temp + alil[j] = x[j];
r[i] = b[i] - temp;
}
}
for (i = 0, i < SIZ2E; i++) {
afil = 0.0;

for (j = SIZE; j < 2 % SIZE; j++) {
) e%i] 9[1] + inv[i][j] =* r[J - SIZE];

norme = 0.0;
for (i = 0; i < SIZE; i++) {
x[i] = x[i] + e[il;
} norme = norme + e[i];
count =® count + 1;
if ((norme < 0.005) Il (count == 20))

found = 1;
}
¥
double
failure_prob(x)
c doubla x[SIZE]);
double P;
int i;
P =0;
for (i = 0; i < SIZE; i++)
if (i Y 2 ==
p += x[il;
return (p);
}
read_matrix(a, b, matrix)
double afSIZE][2 * SIZE];
double b{SIZE];
c double matrix[SIZE][2 * SIZE];
int i: j;
double v;

for (1 = 0; i < SIZE; i++) {
for (j = 0; j < SIZE; j++) {
if (scanf("%1f", &v) !'= 1) {
return (-1);

129

APPENDIX D

Sample Mathematica Program and Output

D.1 Mathematica Code Computing the Expected Re-
ward of NVP

(et ok s s o o o s o AR KR o Kk oo k)

(* Fault Model x)

sk ok s ok o s s oo ok o SRR KRR KRR R)

pcf := (3 qiv™2 (1 - qiv) + qiv™3) gd2 + 3 q2v (1 - gdi) +

q3v (1 - qdi);

psd := (1 - 3 qiv"2 (1 - qiv)) qd1 + (3 qiv"2 (1 - qiv) + qiv"3)

(1 - qd2);

qiv = 0.0001;

qdi = 10°-9;

qd2 = 10°-9;

q2v = 107-9;

q3v = 10°-10;

(st kiR ok ok Ak ok kR KK ol R R R)
(* Performance Model *)

(s s s ol s ok ok koo R R RO KRR R ok ok)
<< Laplace.m;

H := Expand[(1 - Exp[-lambdal y]) (1 - Exp[-lambda2 y])
(1 - Exp[-lambda3 y])];
h := Simplify[D[H, y1];

(* Print["h(y) = ", h]; *}

1h := Laplace[h, y, s];

(» Print["H*(s) = ", 1h]; *)

g := lambda4 Exp[-lambdad y];

lg := Laplacelg, y, s];

Print["G*(s) = ", 1ig];

F := Expand[lh 1g];

(* Print["Fx(s) = ", F]; *)

f = Ilaplace[Apart[F,s]l, s, yl:

(* Print["f(y) = ", £]; *)

ptt = ¥[1 - Integratel[f, {y, O, taul}ll;
pdg = ptt + pad;

lambdal = 1/5; lambda2 = 1/6; lambdal = 1/8;

lambdad = 2;

tau = 30;

first := Integrate[Expand[y f], {y, 0, tau}] + tau ptt;
Print["first = ", first};

second := Integrate[Expand{y~2 f], {y, 0, tau}] + tau"2 ptt;

131

D.2 Mathematica Output for the Expected Reward of
NVP

Mathematica (DEC RISC) 1.2 (January 24, 1990) [With pre-loaded data]
by S§. Wolfram, D. Grayson, R. Maeder, H. Cejtin,
S. Omohundro, D. Ballman and J. Keiper
with I. Rivin and D. Withoff
Copyright 1988,1989,1990 Wolfram Research Inc.
-- Terminal graphics initialized --

In{1]:
In[2]:
Inf3]:
In{4]:
In{5]:
In{6]:
In(7]:
In(8]:
In(9]:
In(10]:
In(11]:
In[12]:
In{13]:
In(14]:
Inf{15]:
In{16]:
In[17]:
In[i8]:
In[19]:
In[20]:
In[21]:
In[22]:
Gx(8) = ------—--—-

lambda4 + s

uwn g ununngin

unw R itwnnn K NN

In[23]:
In[24]:
In[25]:
In[26]:
Inf{27]:
In{28]:
In[29]:
In[30]:
In[31]):
In[32]:
In[33]: 3974223749 453600 21600
first = 13.3486 + --------------- - ~--—soe=m--- + =—=——=-- +
60 59/4 11
24119511570 E 10679 E E39 E

34400 11232 350 432 608

133

pdg = 0.0348152
mu = 12.0435
gigma2 = 48.877
6
muhead = 2.98917 10
sigmahead = 1003.63
6
reward = 1.9986% 10
Accuracy(reward] = 10
-8
The iteration for co-related errors in two versions = 6.1 10
-7
1.831 10
0.0349152
-8
psd = 3,0998 10
pdg 0.0349152
mu = 12.0435
sigma2 = 48,877

pct
ptt

6
muhead = 2.98917 10
sigmahead = 1003.63
6
reward = 1.66886 10
Accuracy[reward] = 10
-8
The iteration for co-related errors in two versions = 8.1 10
-7
2.431 10
0.0349152
-8
psd = 3.0998 10
pdg = 0.0349152
mu = 12.0435
sigma2 = 48.877

pct
ptt

6
muhead = 2.98917 10
sigmahead = 1003.63
6
reward = 1.39485 10
Accuracy[reward] = 10
-7
The iteration for co-related errors in two versions = 1.01 10
-7
pef = 3.031 10
ptt = 0.0349152
-8
psd = 3.0998 10
pdg = 0.0349152
mu = 12.043%
sigma2 = 48.877
6
muhead = 2.98917 10

135

ptt = (.0349152
-8

psd = 3.0998 10

pdg = 0.0348152

mu = 12.0435
sigma2 = 48.877

6
muhead = 2.98917 10
sigmahead = 1003.63
reward = 568950.
Accuracy[reward] = 10

In[38]:=

137

Fitau := Integrate[f1, {x, 0, tau}];

firsti := Integrate[Expand[x f1], {x, 0, tau}];
secondl := Integrate[Expand(x~2 f£1], {x, 0, tau}];
{* Print["w = ", w]; *)

Print["w is done ..."];

(* w i3 the PDF of (Y2+Yv2) =)

W = Integrate[w, {x, 0, y}];

(* Print["W = ", W]; =*)

Print["W is done ..."];

(* V is the PDF of Y3 x)

V = (1 - Exp[-lambdal y]) (1 - Exp[-lambda2 y]) (1 - Exp({-lambda3 y]);
(* G2 is the PDF of MAX((Y2+Y2v) and Y3) =)

G2 = Expand(W V];

Clear[W, V, 1w, wJj;

(* Print["G2 = ", G2]; *)

Print["G2 is done ..."];

(* g2 is the pdf of MAX((Y2+Y2v) and Y3) *)

g2 = Simplify({Collect[Expand[D[G2, y]], y1];

(* Print["g2 = ", g2]; *)

Print["g2 is done ..."];

(* 1g2 is the LTx of MAX((Y2+Y2v) and Y3} #)

1g2 = Laplacelg2, y, 8];

(* Print["1g2 = ", 1g2]; *)

Print["1g2 is done ..."];

(* h2 is the pdf of Yv3 x)

h2 = lambda5 Exp[-lambdaS y];

{(* 1h2 is the LTx of Yv3 =)

1h2 = Laplace(h2, y, 8];

(* Print["1h2 = ", 1h2]; =*)

Print["1h2 is done ..."]:

Clear[G2, g2, h2];

(= 1£f2 is the LTx of (MAX((Y2+Yv2) and Y3) + Yv3) #*)
1£2 = Collect[Expand{1lg2 1h2], s];

Clearflg2, 1h2];

(* F is the LTx of the renewal cycle time *)
Print(["Evaluating partial fraction form of F*(s) ..."];
F2 = Apart[if2, s];

Clear[1f£2];

(* Print["Partial fraction form of F2«(s) = ", F2]; *)
f2 = Ilaplace[F2, =, y];

Print["f2(y) is done ..."];

(= Print["f2(y) = ", £2]; *)

Clear[F2];

F2tay := Integrate[f2, {y, 0, tau}l;

first2 := Integrate[Expand(y £2], {y, 0, taul}];
second2 := Integrate(Expand[y~2 £2], {y, O, taul}];
Ptimeout := 1 - (p2 Fitau + (1 - p2) F2tau); (* = *)
first := p2 firstl + (1 - p2) first2 + tau ptt; (* = *)
(* Print["first = ", N[firstl]; *)

sacond := p2 secondl + (1 - p2) second2 + tau"2 ptt; (% =)
(* Print["second = ", N[second]]; *)

t = 3.6 1076;

lambdal = 1/0.5; lambda2 = 1/0.6;

139

D.4 Mathematica Output for the Expected Reward of
New-NVP

Mathematica (DEC RISC) 1.2 (January 24, 1990) [With pre-loaded data]
by S. Wolfram, D. Grayson, R. Maeder, H. Cejtin,
S. Omohundro, D. Ballman and J. Keiper
with I. Rivin and D. Withoff
Copyright 1988,1989,1990 Wolfram Research Inc.
-~ Terminal graphics initialized --

In[1]:
In[2]:
In[3]:
In[4]:
In[8]:
In{6]:
In[7]:
In[g]:
In[9]:
In{10]:
In[11]:
In[i2]:
In[13]:
In[14]:
In[15]:
In[16]:
Inf17]:
Inf18]:
In[19]:
In[20]:
In[21]:
In[22]:
In[23]:
In[24]:
In[25]:
Inl26]:

HH LW R uannnin i n ki

gl is dene ...

In(27]:
In[28]:
In[29]:
In[30]:

lgl is done ...

In(31]:
In[32]:
In(33]):
In[341:
In[35]:
In[36]:

lhl is done ...

In[37]:
In[38]:
In[39]:
In[40]:

141

In[86]:
In[87]:
In[88]:
In[89]:
In[90]:
In[91]:
In[92]:
In(93]:
In[94]:
In{95]:
In[96]:
In[97]:
In[98]:
In[99]}:
In[100]:= -9
The iteration for co-related erorrs in two vaersions = 1., 10
p = 0.9998
p2 = 0.9998
ptt = 0.000265981

-8
2.99982 10
0.000266011

-9
pcf = 3.1002 10
mu = 0.549892
sigma2 = 0.141776

pad
pdg

&
muhead = 6.54674 10
sigmahead = 1752.01
6
reward = 6.4135 10
Accuracy(reward] = 9
-8
The iteration for co-related erorrs in two versions = 2.1 10
p = 0.8998
p2 = 0.9998
ptt 0.000265983
-8
psd 2.99982 10
pdg 0.000266013
-8
pcf = 6.31002 10
me = 0,549892
sigma2 = 0.141776

6
muhead = 6.54674 10
sigmahead = 1752.01

6
reward = 4.33014 10
Accuracy[reward] = 9

-8

The iteration for co-related erorrs in two versions = 4.1 10

143

The iteration for co-related erorrs in two versioms = 1.01 10

p = 0.93898
p2 = 0.9998
ptt = 0.000265988
-8
psd = 2,993982 10
pdg = 0.000266018
-7

pef = 3.031 10
mu = 0.549892
sigma2 = 0.141776
6
muhead = 6.54674 10
sigmahead = 1752.01
reward = 899769.
Accuracy[reward] = 10
-7
The iteration for co-related erorrs in two versions = 1.21 10
p = 0.9998
p2 = 0.,9998
ptt ©.00026599
-8
2.99982 10
0.00026602
-7
pcf = 3.631 10
mu = 0.549892
sigma2 = 0.141776

psd
pdg

6
muhead = 6.546874 10
sigmahead = 1752.01
roeward = 607488.
Accuracy[reward] = 10

-7
The iteration for co-related erorrs in two versions = 1.41 10
p = 0.9998
p2 = 0.9998
ptt = 0.000265991
-8
ped = 2.99982 10
pdg = 0.000266021
-7

pef = 4.231 10
mu = 0.549892
sigma2 = 0.141776

6
muhead = 6.54674 10
sigmahead = 1752.01
roward = 410152,
Accuracy[reward] = 10

-7

The iteration for co-related erorrs in two versicns = 1.61 10
p = 0.9998

145

1]

2]

[3]

[4]

8]

(10]

[11]

REFERENCES

M. J. Pitarys, “Modular embedded computer software for advanced avionics
system,” in Proc. NAECON, pp. 628-633, May 1990.

A. Avizienis and J.-C. Laprie, “Dependable computing: From concepts to
design diversity,” Proceedings of the IEEE, vol. 74, pp. 629-638, May 1986.

J. F. Meyer, “On evaluating the performability of degradable computing
systems,” in Proc. Int. Symposium on Fault-Tolerant Computing, (Toulouse,
France), pp. 44-49, June 1978.

J. F. Meyer, “On evaluating the performability of degradable computing
systems,” IEEE Transactions on Computers, vol. C-29, pp. 720-731, Aug.
1980.

J. F. Meyer, “Performability evaluation of the SIFT computer,” IEEE Trans-
actions on Computers, vol. C-29, pp. 501-509, June 1980.

A. Movaghar and J. F. Meyer, “Performability modeling with stochastic
activity networks,” in Proc. 1984 Real-Time Systems Symposium, (Austin,
TX), Dec. 1984

J. F. Meyer, A. Movaghar, and W. H. Sanders, “Stochastic activity networks:
Structure, behavior, and application,” in Proc. Int. Workshop on Timed
Petri Nets, (Torino, Italy), pp. 106-115, July 1985.

W. H. Sanders, “Construction and solution of performability models based
on stochastic activity networks,” computing research laboratory technical
report crl tr-9-88, The University of Michigan, Ann Arbor, MI, Aug. 1988.

W. H. Sanders and J. F. Meyer, “Metasan: A performability evaluation tool
based on stochastic activity networks,” in Proc. ACM-IEEE Comp. Soc.
1986 Fall Joint Computer Conference, (Dallas, TX), Nov. 1986.

M. D. Beaudry, “Performance-related reliability measures for computing sys-
tems,” IEEE Transactions on Computer, vol. C-29, pp. 540-547, Aug. 1980.

X. Castillo and D. P. Siewiorek, “Workload, performance, and reliability
of digital computing systems,” in Proc. Int. Symposium on Fault-Tolerant
Computing, (Portland, ME), pp. 84-89, June 1981.

147

(22]

[23]

[24]

[25]

[26)

- [27]

[28]

29]

(30]

(31]

(32]

M. C. Hsueh and B. K. Iyer, “A measurement-based performability model for
a multiprocessor system,” in Computer Performance and Reliability (G. Iaze-
olla et al., eds.), pp. 337-351, Elseview Science Publishers B. V., North-
Holland, 1988.

A. Tai, J. Meyer, and H. Hecht, “A performability model for real-time soft-
ware,” in Proc. First International Workshop on Performability Modeling of
Computer and Communication Systems, (Enschede, Holland), Feb. 1991.

H. Hecht, “Fault tolerant software for real-time applications,” Computing
Surveys, vol. 8, no. 4, pp. 391-407, 1976.

W. H. Sanders and J. F. Meyer, “A unified approach for specifying measures
of performance, dependability, and performability,” in Proc. International
Working Conference on Dependable Computing for Critical Applications,
(Santa Barbara, CA), pp. 87-94, Aug. 1989.

R. A. Howard, Dynamic Probabilistic Systems Vol. II: Semi-Markov and
Decision Processes. New York: Wiley, 1971.

T. Anderson, P. A. Barrett, D. N. Halliwell, and M. R. Moulding, “Software
fault tolerance: An evolution,” IEEE Transactions on Software Engineering,
vol. SE-11, pp. 1502-1510, December 1985.

B. Randell, “System structure for software fault tolerance,” IEEE Transac-
tions on Software Engineering, vol. SE-1, pp. 220-232, June 1975.

K. H. Kim and J. C. Yoon, “Approaches to implementation of a repairable
distributed recovery block scheme,” in Digest of 18th Annual International
Symposium on Fault-Tolerant Computing, (Tokyo, Japan), pp. 50-55, June
1988.

A. Avizienis and L. Chen, “On the implementation of N-Version Program-

ming for software fault-tolerance during program execution,” in Proceedings
of COMPSAC-77, pp. 149-155, 1977.

A. Avizienisand J. P. J. Kelly, “Fault tolerance by design diversity: Concepts
and experiments,” JEEE Computer Magazine, vol. 17, pp. 67-80, August
1984.

A. AviZienis, “The N-Version approach to fault-tolerant software,” IEEE
Transactions on Software Engineering, vol. SE-11, pp. 1491-1501, December
1985.

149

[45]

[46]

[47]

[48]

(49]

[50]

51

[52]

P. G. Bishop and F. D. Pullen, “Error masking: A source of failure de-
pendency in multiversion programs,” in Proc. 1st IFIP Working Conference
on Dependable Computing for Critical Applications, (Santa Barbara, CA),
pp. 25-32, Aug. 1989.

D. E. Eckhardt and L. D. Lee, “A theoretical basis for the analysis of mul-
tiversion software subject to coincident errors,” IEEE Transactions on Soft-
ware Engineering, vol. SE-11, pp. 1511-1517, Dec. 1985.

J. C. Knight and N. G. Leverson, “An experimental evaluation of the as-
sumption of independence in multiversion programming,” IFEE Transac-
tions on Software Engineering, vol. SE-12, pp. 96-109, January 1986.

F. Saglietti and W. Ehrenberger, “Software diversity - some considerations
about its benefits and its limitations,” in Proceedings of the Fifth IFAC
Workshop, SAFECOMP’86, (Sarlat, France), pp. 27-34, Oct. 1986.

A. AviZienis, M. R. Lyu, and W, Schuetz, “In search of effective diversity:
A six-language study of fault-tolerant flight control software,” in Proceed-
ings 18th Annual International Symposium on Fault-Tolerant Computing,
(Tokyo, Japan), pp. 15-22, June 1988.

J. P. J. Kelly and S. C. Murphy, “Achieving dependability throughout the
development process: A distributed software experiment,” IEEE Transac-
tions on Software Engineering, vol. SE-16, pp. 153-165, February 1990.

D. R. Cox, Renewal Theory. London: Methuen & Co. Ltd, 1955.

S. Karlin and H. Taylor, A First Course in Stochastic Processes. New York:
Academic Press, 1975. ‘

151

