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Abstract

In this paper, we present a stream processing approach to query processing and optimization in
temporal databases. We first discuss the distinctions between timestamps which store relevant time
information and ordinary integer-based attributes, and show that most of the temporal operatars
found in the literature are equivalent to traditional relational algebra. However, temporal data and
queries have several intrinsic characteristics that can be exploited in query processing and optimiza-
tion. Based on the stream processing paradigm, we discuss the processing strategies for various
temporal operators. A summary of the current status in the area of temporal query processing and
optimization, and some research issues that should be addressed in the future are discussed.

*This work was partially supported by a MICRO grant from the University of California and the Hughes Aircraft
Company.






1 Introduction

Many real database applications intrinsically involve time-varying information. With the availability
of cheap processing and storage units, there is a growing interest in temporal databases which store
the evolving history of the “enterprise” of interest. A common approach to implementing a temporal
DBMS can be described as follows:

First, each tuple is augmented with a pair of timestamps which indicate its lifespan,
and the temporal tuples are stored in a conventional relational DBMS. Second, a query
language {and thus the corresponding temporal data model) is defined to allow users
to query the timestamps. A preprocessor is implemented to translate a user query into
its equivalent relational query. The translated query is then processed by the relational
DBMS which stores the temporal data.

Fundamentally there is no difference between a timestamp which stores relevant time information
and an ordinary integer-based attribute. However, temporal data and queries provide several unique
characteristics and challenges for query processing. We will argue that ignoring these characteristics
can result in orders of magnitude poorer performance.

In this paper, we discuss a stream processing approach, which takes advantage of data ordering,
for processing various temporal join and semijoin operations which are the most common and ex-
pensive computations in database systems. We note that temporal join and semijoin operators often
contain a conjunction of several inequality predicates involving only timestamps. As temporal data
often has certain implicit ordering by time, we will demonstrate that the stream processing approach
is often the strategy of choice.

We also study the processing of the complex snapshot queries. That is, the query is restricted to
tuples that are active as of a particular time or over a certain time interval in the past as opposed to
all tuples in the entire relation lifespan. We propose an indexing strategy that is appropriate for a
certain subclass of complex temporal inequality join queries that are qualified with snapshot operators
such as the “as of” operator. The strategy, which is based on the stream processing paradigm, is to
provide an indexing mechanism such that tuples in the proximity of the query-specific time interval
or time point can be retrieved efficiently.

The organization of this paper is as follows. In Section 2 we present the data model and the types
of query that we consider. Section 3 is devoted to the discussion of the differences between timestamps
and ordinary attributes, We show in Section 4 that all temporal operators (except the time-union
operator) that appear in the literature can be translated into equivalent relational expressions. A
stream processing approach is presented in Section 5, and the generalized data stream indexing
technique is proposed in Section 6. In Section 7 we discuss query optimization issues involving the
time-union operator which cannot be implemented using the five conventional relational operators.
Section 8 contains a summary and a perspective on future research.



2 Data Model

In the temporal data model, time points are regarded as integers { 0, 1, ---, now } which are
monotonically increasing and where now is a special marker that represents the current time. A
time-interval temporal relation is denoted as X(S,V,TS,TE), where S is the surrogate, V is a time-
varying attribute, and the interval [TS,TE) denotes the lifespan of a tuple. The TS and TE attributes
are referred to as time attributes (or simply timestamps) while other attributes are referred to as
non-time attributes. All relations are assumed to have a homogeneous lifespan — [0,now). We also
assume that for each tuple, the TS value is always smaller than the TE value. That is, for each tuple
<s,v,ts,te>, “ts<te” must hold. Using the taxonomy in [Sno87], the TS and TE attributes are called
the effective timestamps as opposed to the transaction timestamps, and a database system which
handles effective times is called a “historical database”. The readers should bear in mind that we
are dealing with a “historical database” although we use the term “temporal database” as temporal
data refers to both current data and history data.

We discuss the classification of several types of Temporal Select-Join (denoted TSJ) queries; each
class has a restricted form of query qualification which is defined as a conjunction of a number of
comparison predicates and/or join predicates. The classification allows us to study the difficulty
and complexity of query processing and optimization for each class, and therefore helps us decide
what strategies may be more suitable for a particular class of queries. The characterizations of these
queries can be informally stated as follows:

Disjoint Join The join condition between two tuples does not require that their lifespans overlap,
as illustrated in Figure 1(a). For example, queries with join conditions “R;.TE<R;.TS" or
“R;.TE<R;.TE” belong to this category.

Overlap Join The join condition between two tuples requires that their lifespans share a common
time point, i.e., they overlap. We consider two special kinds of overlap joins whose formal
definitions will be presented shortly:

T8J; — All participating tuples that satisfy the join condition share a common time point,
as illustrated in Figure 1(b). For example, finding a complex “event pattern” in which
all events occur during the same period of time (or as of a particular time point) can be
viewed as a TSJ; join query.

TSJ2 — The tuples that satisfy the join condition overlap in a “chain” fashion, as illustrated
in Figure 1(c). However, the participating tuples that satisfy the join condition do not
have to have a common time point. For example, finding an event pattern in which events
occur in some overlapping sequence can be viewed as a TSJ, join query.

Note that TSJ; queries also belong to TSJ,.

Generally speaking, these queries can be difficult and expensive to process. Studying the character-
istics for each query category in more detail, as we demonstrate in a later section, provides some
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Figure 1: Classes of temporal joins

new alternatives in achieving more efficient query processing strategies. This is particularly true for
“overlap joins” which will be the main focus in this paper.

We now precisely define several classes of queries that are of interest here. Given a query Q =
OP(Ry,Rm) (R1,"+,Rm), we construct a join graph (denoted as G) from the query qualification
P(R1, -+, Ry ) using Algorithm 1. Based on the join graph, we are able to formally define TSJ; and
TSJ; join queries.

Algorithm 1 Join Graph: there are m nodes in the join graph G; each node represents an
operand relation R;, 1<i<m, and is labeled with the name of that relation. We add an undirected
edge between nodes R; and R; (i#]) into G if the following condition is satisfied:

P(Ry,-+,Rm) = Ri.TS<R;.TE A R;.TS<R;.TE!

That is, for each m-tuple <ry,-+,rp>, where rx € Ry, 1<k<m, that satisfies the qualification
P(Ry,---,Rm), r; and T; must span a common time point.

Definition: TSJ; — A query Q = OP(R;,Rm) (R1,-*",Rm) belongs to TSI, if the following
conditions hold:

1. The number of operand relations in Q is greater than 1, i.e., m>1.

2. The join graph G constructed using Algorithm 1 is a connected graph, i.e., all nodes in G are
connected,

O

Definition: TSJy — A TSJ; query is also a TSJ| query if the join graph G constructed using

! This condition is defined such that we can also handle the Jjoin predicate “X.TE=Y.TS” for a join of two relations.
Testing the implications can be readily achieved via algorithms presented in [Ros80, Ull82, Sun89]. Moreover, semantic
constraints optimization can be used to add more edges in the graph.



Algorithm 1 is a fully connected graph. In other words, for all i and j such that 1<i<m, 1<j<m and
i#],

P(Ry,++,Rm) = Ri.TSKR;.TE A R;. TS<R;.TE

That is, for each m-tuple <ry,---,7,,>, where rx € Ry, 1<k<m, that satisfies the join condition
P(Ry,-++,Rm), all participating tuples (r’s) must span a common time point. ]

T8J, and TSJ; are classes of temporal pattern queries (e.g., multi-way temporal joins) in which
the lifespans of tuples intersect. For example, Cartesian products across multiple relations (i.e., no
join predicates) and a query with the join condition “R;.TE<R;.TS” are examples of queries that
do not belong to either TSJy or TSJ,. The characteristics of these two types of queries are crucial
in developing the data stream indexing scheme to be described in a later section. We also find it
convenient to define a special subclass of TSJ; queries as follows,

Definition: TSJ] — A query Q = Op(g,,...R.)(R1, <+, Rm) is 2 TSJ| query if

Q is a TSJ; query, and all comparison predicates (not join predicates) in P involve only
non-time attributes.

a

The class of TSJ; join queries includes the “natural time-join” [Cli85, Cli87], the “intersection
join” [Gun91], and the temporal join operators discussed in [All83, Leu90] and in a later section:
contain-join(X,Y), overlap-join(X,Y), and intersect-join(X,Y).

3 Timestamps vs Ordinary Attributes

From a theoretical view point, there is no fundamental difference between timestamps and integer
valued attributes such as salary and department number. However there are significant practical
distinctions with respect to the manner in which temporal data is updated and queried. Some of the
distinctions that we list have been pointed out by other researchers, and the list is not necessarily
complete. We believe however that the list does represent the major distinctions.

1. Time is advancing in one direction.
The time domain is continuously expanding and the most recent time point is the largest
value in the domain.

2. The constraint “R.TS<R.TE” holds for every time-interval temporal tuple.
Naturally it is assumed that for each tuple its TS value must be smaller than its TE value,
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While most researchers implicitly make this assumption, it is seldom pointed out that this
assumption can play a role in query processing and optimization {Leu90).

3. Types of query may be different.

Temporal queries share many common operators with conventional queries. The following
highlights the major differences which are more in the nature of characterizing the types of tem-
poral query that might be expected and which would be more rare for non-temporal database
systems. As we show in a later section, these queries can be expressed in terms of traditional
relational algebra or query languages such as SQL and QUEL.

o The join condition often contains a number of inequality join predicates on only times-
tamps.

¢ A special kind of select query, commonly called snapshot query, allows us to “view” the
database content that is active over a period of time or as of a particular time.

o “within” operator — This operator represents the “distance” relationship between two
entities. For example, find all events that occur within 5 minutes of the time an event X
occurs.

The workload characteristics generally have a significant impact on the data organization. For
example, for applications in which temporal data is more frequently accessed via surrogate
values, retrieval via surrogates should be as efficient as possible, e.g., “chaining” tuples of the
same surrogates together as suggested in [Ahn86].

4. Meta-data (i.e., statistics, properties, and characteristics) of temporal data.

The most commonly mentioned meta-data includes lifespan, time granularity, and regularity
of temporal data along the time dimension. The meta-data of a relation can be significantly
altered after an operator is applied to the relation. For example, it was pointed out in [Cli87,
Seg87] that the lifespan may be changed as a result of temporal qualification. In this paper,
meta-data is not our major concern; see [Cli87, Seg87] for more details.

5. Temporal data update characteristics.

Temporal data can be classified as “static” or “dynamic”. “Static” means that once a piece
of data is inserted into the database, it will never be updated. Otherwise, it is “dynamic”. In
general, history data is usually static in nature although some literature suggests supporting
retroactive updates (e.g., [Lum84])%2. In most work, the so-called “append-only” policy is
adopted:

The current data value (of attribute V) of an object s is represented by a tuple
‘<s,v.ts,now>". That is, the value v is valid since t,. The tuple is called current
tuple. When the value v is no longer valid at t., the TE attribute of the tuple (i.e.,
“now”) is updated to t.. The tuple ‘<s,v,t,,te>" is called a history tuple.

That is, users cannot update the timestamps arbitrarily but users can query timestamps.
Coupled with the fact that time is advancing in one direction, this kind of update suggests

2 Proactive update is also another proposed feature that is seldom found in conventional database systems.



that a special storage structure that exploits the “append-only” policy may be more efficient
(e.g., [Ahn88, Gung89])3.

6. The special markers “now” are stored in current tuples.

In general, the effective update times are not necessarily monotonically increasing with
respect to the order of updates (e.g., due to concurrency control systems). The marker “now”
of a tuple can be set to an arbitrary value although it is generally assumed that “now” is the
latest current time. More importantly, the marker “now” cannot be treated as if it were the
largest value in the time domain®*. For this reason, the comparison between “now” and any
other data values have to be defined accordingly. For example, one has to define what the
predicate “R.TE<t” means for current tuples (i.e., those whose TE value is “now”).

7. Temporal data can be partitioned into the current and history versions.

There is a natural separation of temporal data into current and history data. Current tuples
tend to be more frequently accessed than history tuples, especially in business applications.
Moreover, due to the “append-only” update policy, the current tuples are always modified when
time-varying attribute values are changed. This distinction may suggest using a different stor-
age structure (and storage media) for history and current tuples (e.g., [Ahn88]). For example,
storing current tuples using a separate file structure allows us to eliminate storing the special
markers “now” and therefore conventional indexing techniques can be used for current data.
Note that the TS and TE values for all history tuples are known since “now” is not stored in
any history tuple.

8. Time-varying attribute values can be continuously varying.
The data values of some time-varying attributes can be represented by a function of time.
For example, consider the position of a moving vehicle. Suppose that instead of storing a data
value for every time point, we store the initial position and the speed of each vehicle. The
current position of a vehicle can be expressed as:

current_position = initial_position + speed X time_elapsed.

That is, the current position of a vehicle can be computed using the extrapolation function.
This distinction is seldom discussed or even addressed in temporal database research work, but
it appears in the area of simulation and temporal analysis [Kab90, Nar89]®.

To recap, although there is no theoretical distinction between a timestamp attribute and an ordinary
integer-based attribute, making use of these characteristics of temporal data and queries, as we will
argue, are essential to the efficient implementation of temporal DBMS.

* This also suggests that if retroactive update is not supported, one can store as many history tuples in a disk page
as possible so that higher disk utilization can be achieved. Generally, indices using dynamic splitting algorithms tend
to reduce the disk utilization to a lower value.

* The marker “now” can be viewed as an unbounded variable in a logic programming language such as Prolog
[Ste86]. Once it is set to a value, it cannot be changed.

® This type of extrapolation function can also be found in spatial databases. Moreover, one can think of temporal
relation of this form contains (theoretically) infinite number of tuples.



4 Temporal Operators

In this section, we discuss several temporal operators that are commonly used in temporal DBMS
literature; they are temporal join, select, “within”, “time-project”, and “time-union” operators, We
show that except for the “time-union” operator, which returns a single interval that is equivalent to
several overlapping or contiguous intervals, these operators can be expressed in terms of relational
algebra or relational query languages such as SQL and QUEL. In other words, most temporal op-
erators are syntactic sugar — they can be directly specified in terms of comparison predicates and
join predicates involving only timestamps; the use of these operators allows us to express a temporal
query more intuitively. This leads to the following observation:

In general, query optimizers do not search over all possible equivalent query plans for the
minimal cost [Sel79]. Moreover, the query processing strategies that are implemented are
based on what are expected to be the common types of query and data characteristics. It
is our belief that a major difference between temporal and conventional queries is in the
types of query that are common. Although we can translate temporal queries into their
equivalent conventional counterparts, executing the translated queries on conventional
DBMS may be very inefficient because the common forms of translated queries are often
ignored by the conventional relational query processors and optimizers. Giving attention
to the characteristics of temporal queries is therefore key to an efficient query processing
algorithm and optimization. This is the focus of the remainder of this paper.

4.1 Join Operators

In [Leu90], we noted that temporal join operators often contain inequality predicates involving only
timestamps. For example, the following temporal join operators represent the thirteen temporal
relationships presented in [ALI83]:

meet-join(X,Y) — “X.TE=Y.TS"

contain-join(X,Y) — “X.TS<Y.TS A Y.TE<X.TE”

start-join(X,Y) — “X.TS=Y.TS A X.TE<Y.TE”

finish-join(X,Y) — “X.TS>Y.TS A X.TE=Y.TE"

equal-join(X,Y) — “X.TS=Y.TS A X.TE=Y.TE"
overlap-join(X,Y) — “X.TS<Y.TS A Y.TS<X.TE A X.TE<Y.TE".

Note that the overlap-join(X,Y) is asymmetric with respect to the operands. One can define a
symmetric version as follows:

intersect-join(X,Y) -~ “X.TS<Y.TE A Y.TS<X.TE".



In [Cli87, Gun91], the time-join (denoted as T-join) and the time-equijoin (denoted as TE-join),
which is also called the natural time-join, have been proposed. In [Gun91] the TE-join is defined as:

“Two tuples from the joining relations qualify for concatenation if their time intervals
intersect and the equality join predicate P on only non-time attributes hold.”

The TE-join is a T-join when the equality join predicate P is “true”. In [Gun91], the authors noted
that “the concatenation of tuples is non-standard, since only one pair of TS and TE attributes is
part of the two joining tuples”. It turns out that both T-join and TE-join can actually be expressed
in terms of the standard relational operators as follows:

TLY.TSX.TE (TP A X.TS<Y.TS A Y.TS<X.TE A X.TE<Y.TE(X,Y) )
U TLy.Ts,Y.TE (OP A x.Ts<v.T$ A v.TE<X.TE(X,Y) )
U TLx.TS,X.TE (OP A Y.IS<X.TS A X.TE<Y.TE(X,Y)} )
U TLX.TS,Y.TE (OP A Y.TS<X.TS A X.TS<Y.TE A Y.TE<X.TE(X,Y) )

where X(8,V,TS,TE) and Y(S,U,TS,TE) are temporal relations, L is the projection list involving
only non-time attributes (i.e., X.5, X.V, and Y.U), and P is the join predicate involving only non-
time attributes (i.e., “X.8=Y.5”). Suppose we are interested in only the tuple pairs that satisfy the
join condition, then the TE-join and T-join become the intersect-join {as opposed to the union of
four joins):

Op A intersect-—join(X,Y) (X3Y)'

That is, the query response consists of tuple pairs whose participating tuples intersect and satisfy P.
In [Seg89], the event-join(X,Y) is defined as:

TE-join(X,Y) U TE-outerjoin(X,Y) U TE-outerjoin(Y,X)
where the TE-outerjoin(X,Y) is defined as:

“For a given tuple z € X, outerjoin tuples (with null values) are generated for all time
points t € [2.TS,z.TE) where there does not exist y € Y such that t € [y.TS,y.TE) and
the join predicate on only non-time attributes is satisfied (e.g., “z.8=y.8").”

Note that the TE-outerjoin is not the same as the “outerjoin” operator defined in [Cod79]. Asin the
case for the TE-join, the TE-outerjoin can also be defined in terms of traditional relational algebraic
operators. The equivalent form in the relational tuple calculus is presented in Appendix A.



Before we continue our discussion, let us emphasize once again that (to the best of our knowl-
edge) all temporal join operators that have been proposed in the literature can be expressed in terms
of conventional relational algebra. In other words, these join operators do not increase the expres-
siveness of the temporal query language (compared with the relational algebra). This argument is
equally applicable in the following subsection which concerns snapshot operators.

4.2 Snapshot Operators

We discuss several commonly used snapshot operators — between, intersect, as of, and time-slice
operators whose use allows us to “view” the database content that is active during a particular time
interval or at a particular time point.

The between, intersect, and as of operators can be defined in terms of comparison predicates on
timestamps as follows:

¢ between — Given a time point T and a time interval [ts,t.), “T between [t,t.)” holds if and
only if “t,<T A T<t.” holds.

e intersect — Given two time intervals [TS,TE) and [ts, te), “[TS,TE) intersect [t,,t.)” holds if
and only if “t;<TE A TS<t.” holds. “Op(Ry,-- -, Ry,) intersect [tg,t.)” is defined as:

UPp A [Ry.TS,R1.TE) intersect [t,,te) A - A [Ren.TS,Rm.TE) intersect [t te)(E1s°* s Rm)

where P is a query qualification.

e as of — This operator is a special case of the intersect operator. Given a time interval [TS,TE)
and a time point t, “[TS,TE) as of t” holds if and only if “t between [TS,TE)” holds. However,
“[TS,TE) as of now” is equivalent to “TE=now”. “Op(Ry,+-,Rm) as of t” is defined as:

Op A [R1.TS,R,. TE) as of t A - A [Rm.TS,Rm.TE) as of ¢ (Rla e ‘aRm)

where P is a query qualification.

In [Cli87], the time-slice operator is defined as the intersect operator except that its definition also
requires that the lifespan of a selected tuple be the intersection of the lifespan of the qualified tuple
and the query specific interval. As in the T-join that we discussed earlier, the intersection of the
lifespans can be expressed in terms of a union of four different expressions. If we are only interested
in selecting tuples whose lifespan intersects with the query-specific interval, the time-slice operator
becomes a single conventional select operation:

Op A [X.TS,X.TE) intersect [t ,t5) (X)-



In short, the snapshot operators are equivalent to a conjunction of several comparison predicates
involving only timestamps. As an example, the following query selects tuples that satisfy a predicate
P on a non-time attribute during the entire interval [ty, t2):

OP A RTS<t, A t2<R.TE (X).

4.3 “Within” Operator

There are two “within” operators which are distinguished by the combination of operands: time
intervals and time points. We define the within-i-i operator which represents the maximum “distance”
(N) between two time intervals {t;,ts) and [t3,t4) as follows:

Within-i-i([tl,tz),[t3, t4),N) holds if

o “[tq,t3) intersect [t3,t4)” holds, or
o (0Lt —ty <N)V(0<t; -ty <N)” holds.

This operator can be expressed in terms of SQL or QUEL queries. Essentially, using the operand
relations (X and Y), one can obtain two temporary tables (denoted as X’ and Y’} — containing
all the original tuples but with the TE value of each tuple incremented by N units of time. The
within-i-i(X,Y,N) becomes intersect-join(X’,Y’), i.e., a join between the two temporary tables.

The within-i-p operator which represents the maximum “distance” between a time interval [ts,te)
and a time point t is defined as follows:

within-i-p([ts,te},t,N) holds if

e “t between [ts,te)” holds, or
» “0 < t—te < N” or “0 < ts—t < N” holds.

As in the case for the within-i-i operator, the within-i-p operator can be expressed in terms of SQL or
QUEL queries. Given a time-interval temporal relation X, one can obtain a temporary table (denoted
as X’) — the TS value of each tuple is decremented by N units of time and the TE value is incremented
by N units of time. Together with a time-point temporal relation Y(S,V,T), the within-i-p(X,Y N}
operator becomes a join operation whose join condition is “X’.TS< Y.T A Y.T<X'.TE".

4.4 Time-project & Time-union Operators

The time-project operator (denoted as 1) basically projects on the pair of timestamps of a temporal
relation: Tx 1sx. e (X). Together with a select operator, one can find the time intervals of tuples
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that satisfy a query qualification P:

Tr(Op (X)) = T xrsxre (Op (X))

We note that this combination of the time-project and select operators appears as the tdom operator
in [Gad88] and as the dynamic time-slice operator in [CLi87]. As an example, the following query
retrieves the time interval(s) during which Tom was the manager of the Sales Department from the
relation DEPT(Dname,Mgr, TS, TE):

ﬂ-T( O Dname=Sales A Mgr=Tom (DEPT) ).

If a person was the manager of a department during several periods of time, more than one interval
(not necessarily overlapping) may be returned. For example,

’ITT( O Mgr=Tom (DEPT) )

returns the interval(s) during which Tom was a manager. If Tom was the manager of several depart-
ments at the same time, the query response contains several tuples of which time intervals overlap.
This leads to some observations. First, in the response to the query it is often more natural and
intuitive to return one or more disjoint intervals each of which is equivalent to several overlapping
or contiguous intervals. Towards this end, one can define a time-union operator which unions several
overlapping intervals and returns a single equivalent interval. Second, the time-union operator can
play a role in query optimization if the result from the time-project operator is joined with other
temporal relations. However, the time-union operator is really a fixed point computation and cannot
be expressed in terms of traditional relational algebra®. Essentially, the fixed point computation is
to join the interval relation with itself repeatedly until no new tuple is generated. For an interval
relation r(TS,TE), the join condition is the “overlap-join(r,r) or meet-join(r,r}”. The following logic
program (using syntax similar to Prolog {Ste86)]) implements the time-union operator”:

time-union(TS,TE) :- concat(TS,TE), - overlap(TS,TE).
concat(TS,TE) :- r(TS,TE).

concat(T8§,Te) :- r(TS,TE), concat(Ts,Te), TS<Ts, Ts<TE, TE<Te.
overlap(Ts,Te) :— r(TS,TE), Ts<TS, TS<Te, Te<TE.
overlap(Ts,Te) :— r(TS,TE), TS<Ts, Ts<TE, TE<Te.

¢ Incidentally, a variant of this fixed point computation was proposed as a linear recursion operator in [Tuz90].
Their data model, however, only implicitly references timestamps.

" Unfortunately there is no “standard” language or operator for recursion and for this reason, we use a logic
programming language. On the other hand, one need not implement the time-union operator using recursions — see
Section 7.
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In a later section, we discuss the optimization issues raised by the use of various temporal op-
erators. First, we present a stream processing approach for temporal join and semijoin operations.
As temporal data often has certain implicit ordering by time, the stream processing approach which
takes advantage of data ordering is often the preferable alternative to conventional methods.

5 Stream Processing Techniques

We present stream processing algorithms for implementing temporal join and semijoin operations.
For properly sorted streams of tuples, we show that temporal join and semijoin operators can often
be carried out with a single pass over the input streams, and the amount of workspace required can
be small. The tradeoffs between sort orders, the amount of local workspace, and multiple passes over
input streams are discussed.

5.1 What is Stream Processing?

Abstractly, a stream can be defined as an ordered sequence of data objects. Stream processing is a
paradigm which has been widely studied [Abe85, Par90] and used in languages such as Lisp; it is very
similar to list processing in which elements of a list are sequentially processed. Stream processing
also appears naturally in database systems; it closely resembles the notion of dataflow processing. In
the functional data models [Shi81, Bat88] a function, which is implemented by a stream processor,
is a mapping from input stream(s) into output stream(s). Furthermore, function composition can be
viewed as “connecting” a network of stream processors through which data objects flow.

A classical example of a stream processing operation is the merge-join. When we merge-join two
relations sorted on their key attribute, at any point in time we need only one tuple from each table
as the “state”. The join is efficiently implemented as both tables are read only once. Moreover, the
output from this join operation is also sorted on the key attribute so that subsequent operations on
this output can then take advantage of this ordering [Smi75, Sel79].

There are several intrinsic characteristics of stream processing in database systems. First, a
computation on a stream can access only one element at a time (referenced via a data stream pointer)
and only in the specified ordering of the stream. Second, the implementation of a function as a stream
processor may require keeping some local state information in order to avoid multiple readings of
the same stream. The state represents a summary of the history of a computation on the portion of
a stream that has been read so far; the state may be composed of copies of some objects or some
summary information of the objects previously read (e.g., sum, average, etc.) Using the local state
information, the implementation of a stream processor can be expressed in terms of functions on
the individual objects at the head of each input stream and the current state. That is, a stream
processor takes an object from each input stream and, depending on the current state, it can change
the current state to a new state and at the same time output some objects on its output stream(s).

12
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Figure 2: A stream processor to sum all employees’ salaries in each department.

Let us consider a simple stream processor which lists all the departments and computes the sum
of all employees’ salaries in each department, as shown in Figure 2. If the stream of tuples is grouped
by the department name, the local workspace simply contains the partial sum and a buffer for the
tuple just read. The point here is that the state contains summary information, and the function
(i.e., sum) is expressed in terms of the current state and an input object.

The third characteristic of stream processing is that there are often tradeoffs among the following
factors:

1. the size of the local workspace which depends on the function itself, the statistics of a specific
instance of the data streams, and the garbage-collection criteria,

2. the sort ordering of input streams, and

3. multiple passes over input streams (i.e., the number of disk accesses).

Very often stream processing requires input streams to be properly sorted in order to perform the
computation while reading the input streams only once. In addition, the sort ordering of input
streams greatly affects the size of the local workspace required. Conversely, suppose there is enough
local workspace to keep all data objects. Then only a single pass over the input streams is required
and {theoretically) the sort ordering would not be important.

For many practical situations in query processing, it is important to make use of the ordering of
tuples so that we can minimize the amount of the local workspace and the number of passes over
the input streams. As temporal data often implies ordering by time, treating temporal relations
as ordered sequences of tuples (i.e., streams of tuples) suggests that stream oriented strategies for
temporal query processing could be especially effective. In the next subsection we discuss the appli-
cation of stream processing algorithms to implementing temporal join and semijoin operations. In
these discussions the sort ordering of streams plays a major role.

13
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Figure 3: Contain-join: Both X and Y are sorted on TS in ascending order (only timestamps are
shown)

5.2 Sort Orderings

Suppose we have temporal relations X(S,V,TS,TE) and Y(S,V,TS,TE). We are interested in the
effect of various sort orderings on the efficiency with which it is possible to implement the temporal
join operators in the stream processing paradigm. We concentrate only on inequality joins, such
as the contain-join, that is, the operators that have only inequalities in their explicit constraints.
We focus on how various sort orderings would affect the size of the local workspace required for the
operations. Before we proceed, we note that the only form of state information we need consider for
joins and semijoins is the subsets of the tuples previously read and not any aggregate information
such as sum, max, avg, etc.

5.2.1 Contain-join

Contain-join(X,Y) outputs the concatenation of tuples X and Y if the lfespan of X contains that of
Y; that is, the join condition is “X.TS<Y.TS A Y.TE<X.TE”.

The join algorithm assumes that: (1) there is an input buffer for reading tuples from each stream
(denoted as <Buffer-x, Buffer-y>, and the tuples as 23 and y), and (2) on the average, the TS {and
TE) values of two consecutive X tuples differ by 1/A, units of time (similarly, 1/}, for Y tuples).
The algorithm for the case when both relations X and Y are sorted on the attribute TS in ascending
order, as shown in Figure 3(a), is:
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1. Initially there is no state tuple and the first tuple from each stream is read and stored in the
buffer.

2. Read phase: copy zp and g into the state space. Reading next tuples from both streams
depends on the TS values of x5 and y,. The first case is when “4,.TS < z5.TS” as shown in
Figure 3(b). As all Y tuples read so far do not join with zp, more Y tuples should be read such
that “y.TS>x3.TS”.

The second case is when “y,. TS>2. TS” as shown in Figure 3(c). The state of the current
computation is:
{X tuples whose lifespan span y;,.TS}
U {Y tuples whose TS value lies in [}.

A tuple from an input stream which allows more state tuples to be discarded will be read. To
estimate the number of disposable state tuples, 1/A, and 1/}, are used. If the next X tuple
is read, disposable Y tuples are those which satisfy “z. TS <Y.TS<¥ ”, where the expected
value of ¢ (denoted as #) is (5. TS + 1/);). Likewise, disposable X tuples are those which
satisfy “y,.TS < X.TS<?” ” when the next Y tuple is read, where #” is (y5.TS+1/),).

3. Garbage-collection phase: discard X tuples in the state if “X.TE<y,.TS". Also discard Y
tuples if “Y.TS<zp.TS”. The garbage-collection conditions must guarantee that the Y and X
tuples being discarded do not satisfy the join condition with any subsequent X and Y tuples
respectively.

4. Join phase: output X and Y tuples if they satisfy the join condition.

5. The algorithm terminates if either stream has been exhausted and there is no corresponding
state tuple. Otherwise, go to Step 2.

Note that the separation of this join algorithm into several phases is primarily for the sake of expla-
nation; it is possible that Steps 2, 3 and 4 can be merged together to gain better performance. Also,
the state can be characterized as follows: (1) when there is no Y tuple in the state, the maximal set
of X tuples that are required to be kept in the state consists of all overlapping X tuples at time point
1. TS, and (2) conversely, when there is no X state tuple, the maximal set of Y state tuples that is
required consists of those whose TS value lie in the lifespan of zp.

For the case when the relation X is sorted on the attribute TS and the relation Y is sorted on
TE in ascending order, the algorithm is similar to the above one with the following exceptions:

1. Read phase: the Y tuples that can be discarded when an X tuple is read would be the same
as above, but the disposable X tuples when the next Y tuple is read are those which satisfy
“up. TEXX.TE<y.TE+1/A,".

2. Garbage-collection phase: dispose of X tuples if “X.TE>w,.TE”, and dispose of Y tuples if
“Y.TS<zp.TS”.

3. The state is {X tuples whose lifespan span y.TE} U {Y tuples whose lifespans are contained
within I},

15



5.2.2 Contained-semijoin & Contain-semijoin®

Contained-semijoin(X,Y) selects X tuples if there erists a Y tuple such that the lifespan of Y contains
that of X. Contain-semijoin(X,Y) selects those X tuples whose lifespan contains that of any Y tuple.
For semijoins, a stream processor can output a tuple as soon as it finds the first matching tuple.
Because of this, we devise an optimized algorithm which requires only one buffer for each input
stream. Suppose the relation X is sorted on attribute TS and the relation Y is sorted on TE in as-
cending order. The algorithm for contain-semijoin(X,Y) (and contained-semijoin(Y,X) respectively)
is as follows:

1. Read an X tuple and store it as 5.

2. Read the next Y tuple and store it as y, (the previous y, is discarded) until one of the following
holds:

o “2p. TS<y.TS A 4. TE<zp. TE" — i.e., 2, and y, satisfy the semijoin condition, or
o “y TE>2p. TE”, or
¢ all Y tuples have been read.

If “yp. TS<2,.TS”, immediately go to Step 2. On the other hand, if the semijoin condition
is satisfled between zp and ys, output zp. (For contained-semijoin{Y,X), y is output if the
condition is met and go to Step 2). It can be easily verified that only one Y tuple needs to be
kept in the workspace.

3. Go to Step 1 unless the termination condition is met.

It is interesting to comsider using a semijoin algorithm as a preprocessor for a join operation.
Intuitively, the advantages are: (1) the output stream from a semijoin operation has the same
sort ordering as the input stream — order-preserving; (2) with proper sort orderings, the semijoin
algorithms scan input streams only once, and a number of “dangling” tuples may be eliminated,
which may reduce the size of workspace for join operations. In Table 1 we summarize the effect
of various sort orders on the contain-join(X,Y), contain-semijoin(X,Y) and contained-semijoin(X,Y).
The readers may refer to [Leu90] for the state information requirements of processing other inequality
joins and semijoins for other sort ordering combinations.

6 Generalized Data Stream Indexing

We now turn to the processing of the snapshot queries using a new indexing technique based on
TSJ] queries, i.e., multi-way temporal joins. We focus on two way joins, i.e., two data streams, but
the results are easily generalized to handle more than two data streams. We then discuss the query

® Similar to “restriction” operator in [Seg87].
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(a)

(b)

()

(d)

sort orders contain contain contained

Relation X [ Relation Y || -join(X,Y) | -semijoin(X,Y) | -semijoin(X,Y)
TS| 1 | TS| 1 (a) (c) (c)

TS l TS l - - -

TS| 1 |TE| 1 () @ -

TS l TE 1 - - (d)

TE T TS T - - (d)

TE| | | TS| | (b) (4) -

TE T TE 1 - - -

TE| | |TE| | (a) (c) ()

Sorting the corresponding attribute in ascending order.

Sorting the corresponding attribute in descending order.

The sort ordering is not appropriate for stream processing — no garbage-collection criteria.

state = {X tuples whose lifespan span y,.TS}
U {Y tuples whose TS value lie in {}

state = {X tuples whose lifespan span y,.TE}
U {Y tuples whose lifespans are contained within [}

state C {X tuples whose lifespan span z;.TS}
U {Y tuples whose TS values lie in [}

local workspace = <Buffer-x, Buffer-y>.

Table 1: Effect of various sort orders on contain-join, contain-semijoin & contained-semijoin
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processing algorithms using data stream indices. A quantitative analysis and a comparison with
conventional indexing schemes are presented.

6.1 Data Streams

As we discussed earlier, a stream is an ordered sequence of data objects and temporal data often
implies ordering by time. In the “append-only” databases, two natural situations occur in which
history tuples can be organized as data streams:

1. Current and history tuples are stored in the same file structure: whenever a tuple (i.e.,
<8,v,t,,now>) is created, the tuple is appended to the data stream. When the data value
(v) is no longer valid say at time point t., the TE timestamp of the tuple in the data stream
is then modified to f.. In this approach tuples in the data stream are sorted by the TS values
in increasing order.

2. Current and history tuples are stored in the different file structures: whenever a tuple (i.e.,
<s,v,t,,now>) is created, the tuple is inserted into a table that stores only current tuples
(i.e., in a current store). When the data value (v) is no longer valid at time point #., the TE
timestamp of the tuple is modified to t.: the history tuple is then removed from the current
store and appended to the data stream. In this approach, tuples in the data stream are sorted
by the TE values in increasing order.

Data streams can be stored using a variety of file structures such as sequential file and Bttree
although different file structures generally have different retrieval and storage cost. The most impor-
tant requirement is that tuples in a data stream can be efficiently accessed one at a time and in the
order of successive timestamp values using the data stream pointer. To simplify our discussion, we
focus only on data streams that are sorted on the TS timestamp. The schemes can be easily adapted
to the case when the data streams are sorted on the TE timestamp; see [Leu92] for details.

6.2 Checkpointing Query Execution

Consider the execution of query Q € TSJ{ as a stream processor. In our approach indices are built
by periodically checkpoint the execution of Q on X and Y along the time axis, and checkpoints are
in turn indexed on their checkpoint times as depicted in Figure 4. Informally, a checkpoint (e.g.,
cky, in Figure 4) at a time point (e.g., t2) contains enough information about the execution of Q on
X and Y such that the response of a snapshot query (e.g., Q intersect [t ,t) where ty<t] <ts) can be
obtained in the following way:

Find the appropriate checkpoint (e.g., in this case cky,) using the time index on check-
points, then access tuples in the operand data streams which started since t;. “Continue”
the execution of the query (e.g., in this case Q) using the tuples thus accessed until t.

18



R time index on
checkpoints

- 4 sequence
ki, kg ki Chig %

of checkpoints

Q

- X
- Y
time

Figure 4: Checkpointing a query execution and time index on checkpoints

Since not all tuples of the operand data streams can be accessed randomly, one can regard this
approach as creating a sparse index on data streams using Q. The sequence of checkpoints and the
time index of checkpoints form the foundation of the generalized data stream index. For convenience,
we refer to the query Q as the indexing condition®.

We now discuss how the checkpointing is performed. Suppose we have an indexing condition
Q = op(X,Y) € TSJ|. We first derive a new predicate Px (called the state predicate) from P by
replacing all terms in P involving Y with “true”. That is, Px contains only comparison predicates
involving X. The state predicate Px becomes the indexing condition on the data stream X. Similarly,
we derive the state predicate Py for the data stream Y. As will become clear shortly, the checkpoint
of Q at a time point t can be expressed in terms of the checkpoint of the derived state predicates on
individual data streams at time point t.

Three kinds of information are stored in a checkpoint (denoted as ck) — checkpoint time, state
information and data stream pointers. For a checkpoint ck¢ performed at time point t, let the
checkpoint prior to ck; be denoted as ck,- (at time t~) and definel®:

1. The checkpoint time is t11.

2. The state information of the data stream X, denoted as s,(X), contains the tuple identifiers
(TID’s) of all tuples x € X such that “x.TS<t A t< x.TE A Px” holds, where Px is the state
predicate. Basically the state information contains tuples which are active as of the checkpoint
time and satisfy the state predicate. Note that tuples in s¢(X) either belong to s;-(X) or start
during the interval [t™,t). Similarly, the state information of a data stream Y contains tuples

® More generally, the indexing condition Q can be a query that subsumes a set of frequently asked queries. For
examp]e, Q can be O-interaect—juin(x,Y)(X!Y)'

9 Tt follows that t~ < t. If there is no such ck,-, ck,~ and t~ are assumed to be an empty set and 0 respectively.

'! The special marker (now) is the latest current time and thus it represents a time point larger than all checkpoint
times.
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y € Y such that “y. TS<t A t< y.TE A Py” holds, where Py is the state predicate for the data
stream Y.

3. The data stream pointer of X, denoted as dsp¢(X), contains the TID of tuple x € X such that
x has the smallest TS value in X but greater than or equal to t. Using the data stream pointer,
one can access the tuples which start at t or after t. Similarly, the data stream pointer of Y at
checkpoint time t is denoted as dspy(Y).

In addition to the three basic types of checkpoint information mentioned above, one can also
store the TID’s of matching tuple pairs as the incremental result in checkpoints. Given a checkpoint
ck¢ (at time t) and its next checkpoint ck.+ (at time t*), we denote X, and Y, as the portion of
data streams X and Y respectively that start during [t,t7). Note that X; and Y, can be accessed via
the data stream pointers dspy(X) and dsp,(Y) respectively. We also denote S;(X) and Si(Y) as the
tuples retrieved using the TID’s in the state information s,(X) and s,(Y) respectively.

The incremental result of Q stored at checkpoint time t, denoted as iry(Q), contains the TID’s of
the following matching tuple pairs:

p( (X, US«(X)), (Y uS(Y)))

that is, the tuple pairs that satisfy the join condition. Note that a pair of TID’s need not be stored if
both TID’s have been stored in the state information at checkpoints ck; or ck,+. When we discuss the
query processing algorithms in the next section, we will focus on the three basic types of checkpoint
information which can be used to compute the incremental results.

Example 1: Consider Q2 = T intersect—join(X,¥)(X,Y) as the indexing condition (Figure 5):

1. The checkpoint time is t, and the data stream pointers contains the TID’s of tuples from X
and Y as defined earlier.

2. The state information at checkpoint time t contains tuple x € X and tuple y € Y that are
active at t. Note that the state predicates Px and Py are “true” for X and Y respectively.

In Table 2 we list the three types of information in the checkpoints as well as the incremental result
that can be stored in checkpoints. m]

At this point, we can make some comments regarding the basic scheme. First, given a sequence
of checkpoints as illustrated in Figure 4, one can easily build a time index on checkpoints based
on the checkpoint times. That is, given a time point t, the checkpoint taken at t, or the previous
checkpoint or the next checkpoint can be accessed directly. Moreover, conventional methods such as
Bttree can be used for implementing this type of indexing. For example, checkpoints are stored at
leaf nodes of a B¥tree as variable length records.
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Figure 5: Checkpointing the query Q;

| checkpoints || cky, | cke, | cke,
t ty ts t3
s¢(X) {x0, X1 } {x1, X3} {xs, Xe}
s¢(Y) {¥a, ¥1} {ya} {}
dspy(X) {x2} {x4} {x7}
dspy(Y) {y2} {ya} {vs}
ir(Qz) { <x1,¥2>, | { <x4,¥3>, | { }
<X2,¥1>, <X1,¥4>,
<X2,¥2>, <Xs,¥4> }
<X3,¥1>,
<x35YZ> }

Table 2: Checkpoints of Q; in Figure 5
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6.3 Query Processing using Data Stream Index

In this subsection, we discuss the processing algorithms for some types of complex snapshot queries
using the proposed checkpointing and indexing scheme, and discuss their limitations.

Suppose we have a generalized data stream index based on the indexing condition Q = op(X,Y)
€ TSJ}. Let 0p:/(X,Y) € TSJ| and Q' be a query of the following form!?2:

Q' = op/(X,Y) intersect [t,,te), or
Q' =0p(X,Y)asof t,

In order to use the data stream index, one has to obtain two predicates from P’ as in the case for
state predicates — P’|; and P’|y. That is, P’|; (respectively P’],) is obtained by replacing all terms
in P’ that involve Y (respectively X) with “true”’®. Furthermore, we require that P’|y = Px which
is the state predicate that is used to determine and store the state information of data stream X.
Similarly, we require that P’|, = Py. The implications are necessary because the state information
in checkpoints obtained using P has to be a superset of the state information that would have been
obtained using P’ instead of P, and therefore the checkpoints contain sufficient information for the
query processing. The algorithm that uses the data stream index for the intersect queries is as follows.

Algorithm using Data Stream Index

1. Given the query specific interval [t,, te), access the latest checkpoint (denoted as ck,) prior to
ts using the time index on checkpoints. Let the checkpoint time of ck, be t.

2. Retrieve the tuples using TID’s in the state information s;(X) and s,(Y) that are stored in the
checkpoint cke, and apply the predicates P’|, and P’|, respectively.

3. Retrieve tuples in X and Y which start during [t,t.) by following the data stream pointers
dspy(X) and dsp,(Y), and apply the predicates P’|y and P’|, respectively.

4. The set of all tuples from (2) and (3) contains all the tuples that should participate in the join.
Select tuple pairs that satisfy the user query qualification P’. Note that the tuples that have
to held in workspace is limited to tuples spanning a common point in time.

For the as of queries, the query processing algorithm remains essentially the same except that in step
3 only tuples in X and Y which start during [t,ts] (instead of [t,t.)) are accessed.

It can be shown that the following classes of queries can also be processed using the data stream
indices:

12 We believe that the class of queries that can be processed using data stream indices can further be generalized —
the investigation will be left as a future research work.

'3 More restrictive predicates (P’|x and P’|,} may be obtained by using constraint propagation algorithms [Ull82,
Chak84, Jar84, Leu91].
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1. opi(X) intersect [ts,te), where P’ = Px.

2. Oop«(Y) intersect [t,,t.), where P’ = Py.

Example 2) Consider the data stream index (whose checkpoints are shown in Figure 5 and Table 2)
and a user query Ointersect—join(X,Y)(X,Y) intersect [ty t.). In step (2), we retrieve tuples {xo,x;}
and {yo,y1}. By following the data stream pointers, the join operation in step (4) produces tuple
pairs: { <x1,¥1>, <X1,¥2>, <X1,¥3>, <Xz,¥1>, <X2,¥2>, <X3,¥1>, <X3,¥2>, <X3,¥3>, <X4,¥3>,
<X4,¥4>, <X5,y¥4> }. Note that had the incremental results been stored in checkpoints, this query
can also be processed by using both the state information and incremental results (i.e., without using
data stream pointers). O

Let us now discuss some limitations of the proposed checkpointing and indexing scheme. In
the proposed scheme, only TSJ| queries can be allowed as the indexing conditions. Recall that
for join queries in TSJ, the lifespans of all participating tuples have to intersect with each other.
To understand the importance of this restriction, let us consider the “before-join(X,Y)” whose join
condition is “X.TE<Y.TS” as the indexing condition. That is, tuples that satisfy the join condition
do not necessarily intersect. Given a tuple z € X which starts at some time t, we note that z may
join with (theoretically infinitely) many “future” tuples y € Y which start after the tuple z ends?,
For the query processing algorithms that we presented earlier to work properly, the TID of tuple z
has to be stored at every checkpoint after the time point t. This requires significant storage space
and renders the proposed scheme inefficient. With the restriction to TSJ] queries, we only need to
store in a checkpoint the TID’s of tuples that span the checkpoint time.

The state information may still require a large amount of storage space when many qualified tuples
span the checkpoint times. In [Leu92a} we presented some optimization techniques in reducing the
storage requirement and discussed the tradeoffs. In the following subsection, we present a quantitative
analysis on the overhead of storing the state information in checkpoints of the original scheme.

6.4 Quantitative Analysis
We first list some required notation:

e A denotes the mean rate of insertion of tuples into the relation.
. denotes the average tuple lifespan.
o TR, denotes the relation lifespan.

® sizeyuple denotes the tuple size in number of bytes.

'* Or conversely, the tuple y € Y may join with (theoretically infinitely) many “past” tuples £ € X which ends before
the tuple y starts.
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e sizeyq denotes the TID size in number of bytes.

Using Little’s result [Lit61], the average number of active tuples of a relation at a random time is:

o= ATy

A reasonable assumption is that the number of active tuples at checkpoint times is also fi. Similarly,
the total number of tuples in the relation is:

A-TRye

Suppose that the selectivity of the state predicate q for the state information of data stream X is
04y 1.€., 04 is the fraction of tuples in X that satisfy q. The number of TID’s stored in the state
information is:

Oq Nk -0 = aq-nck-z\-T_ls

where ng is the number of checkpoints that have been taken. We define the overhead as the ratio
of the storage size for state information over the relation size:

Oq * Dek - Tl - sizegia/ {TRys - sizegupre}

This quantity is consistent with our intuition that the overhead is smaller for (1) relations with
relatively short tuple lifespans (represented by the ratio Ty,/TRj), and (2) more selective state
predicate (i.e., o4 is smaller).

6.5 Comparisons

Several temporal indices have recently proposed (e.g., [Elm90, Gun89, Kol89, Kol91, Lom89, Rot87))
which are extensions of traditional dense indexing methods such as B*tree or multi-dimensional
indices such as R-tree, and are based on ezplicit timestamp values in tuples. One can compare the
storage requirement of these methods with the data stream indexing technique. For example, suppose
we create a Bttree index on the TS timestamp. That is, there is an index entry in the B*tree for
every tuple in the relation. Recall that the relation lifespan is TR)s and the rate of insertion of tuples
is A, The total number of TIDs stored in the leaf nodes of the BT tree, which is also the total number
of tuples in the relation, is:

B = A-TRy
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Assuming that the state predicate in our proposed scheme is “true” and thus the selectivity (o) is
1. The number of TID’s stored in the state information of all checkpoints is:

CK = Dok * A T_ls
where ng is the number of checkpoints that have been taken !*. If we perform the checkpointing
at a rate smaller than 1/T),, the data stream index would require less storage space. More detailed
analysis can be found in [Leu92a].

6.6 Temporal Aggregate Functions

The notion of state information is not limited to the qualified tuples that span checkpoint times, and
can be further generalized in the context of stream processing. Recall that the state information of a
stream processor at a particular time t represents a sumnmary of the history of a computation on the
portion of data streams that have been read before t. It may generally be very difficult to characterize
the state information (and therefore its storage requirement) for an arbitrary computation. However,
the notion of state information can be easily defined for aggregate functions.

Suppose that we ask an aggregate query: find the weekly sales volume on the daily sales records
for the year of 1989 '®, We further suppose that we checkpoint the aggregate query on a yearly basis.
For example, consider the checkpoint times t;_; and t;. The state information at checkpoint time t;
can be defined as TID’s of tuples that started during the last week of the year of t;_;. To process
the above aggregate query, one can retrieve the state information at t; (i.e., for the year of 1989) and
tuples that started after t;, and evaluate the aggregate function. Note that the number of TID’s in
the state information for this aggregate query is bounded — at most one week of daily sales records.
Also note that the temporal data is not necessarily time-interval tuples.

7 The “interval” Operator

In this section, we briefly discuss the interval operator, its role in processing temporal join operations,
and its implementation as a stream processor.

We first define a generalized time-interval temporal relation as E(S,Vy,---,V},TS,TE) for some
k>1, where S is the surrogate, V;’s (1<i<k) are time-varying attributes, and the interval {TS,TE)
denotes the lifespan of a tuple 7. For example, the relation E can be the result of the intersection-

1% More precisely, each checkpoint also contains a data stream pointer. On the other hand, there are fewer non-leaf
nodes in the time index on checkpoints compared with the B tree.

'® Several temporal aggregation operators have been proposed and defined in [Sno86, Seg87]. An example taken from
[Seg8T] is: “Get a series of T-day moving averages of book sales.”

17 That is, each tuple has only two timestamps which indicate the lifespan.
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join(X,Y) defined in [Gun91]. We can now define the interval operator in terms of the time-union and
project operators as follows:

interval(E) = time-union( Trs Te(E) )

That is, the interval operator unions the lifespans of all tuples in E and returns one or more non-
overlapping time intervals.

To illustrate the usefulness of the interval operator, let us consider the following TSJ} join query
involving relations X(S,V,TS,TE), Y(S,U,TS,TE) and Z(S,W,TS,TE):

ointersect—join(X,Y) A intersect—join(Y,Z) A intersect—join{X,Z) A X.V=v (XszZ)-

In general, there are a number of equivalent query plans from which the best plan will be chosen for
execution. One possible query plan (which is illustrated in Figure 6) is to use the interval operator
which computes the non-overlapping time intervals during which there exist X tuples that satisfy the
predicate “X.V=v¢". These time intervals can then be used to facilitate the join between relations
Y and Z. The query plan can be summarized as follows. First, the tuples that satisfy “X.V=1v"
are retrieved via scanuning the relation or accessing a conventional index on the attribute V, if it
is available. The interval operator is then applied to the qualified tuples to obtain their unioned
“lifespans”. Let us denote the time-unioned intervals as { [ts, ti"), ver, [tk,tlf ) }, for some k>1. Note
that the tuples in relations Y and Z that satisfy the join condition must also intersect with these
time intervals. If a stream index is supported on Y and Z, the join between Y and Z can be processed
as follows:

Uintersect-join(Y,Z)(sz) intersect [ti,ti'") for 1<i<k.

The final query response is the join between the temporary results from the above join operations
and the tuples in relation X that satisfy “X.V=v¢".

The central part of the implementation of the interval operator is the time-union operator. In
Figure 7, we show a stream processing implementation of the time-union operator. In this imple-
mentation, the input time intervals are sorted on the TS timestamp in ascending order. The stream
processor keeps the most recently read tuple (denoted as zp) in a buffer space. The state information
at any point in time is the minimum value of the TS timestamp (denoted as TS,y;,) and the maximum
value of the TE timestamp {denoted as TE;.y) of the tuples that overlap with each other and have
been read thus far (their initial values are 0). If the tuple zy has the TS value greater than TEqay,
the stream processor outputs a pair of values — [TSuin,TEmax) and keeps the z,.TS and z3.TE
values as TSpin and TEmay respectively. Otherwise, the stream processor will keep the larger of the
two values: z,.TE or TEy,«, as the new TE,,,. As in other stream processors that we discussed
earlier, the sort ordering of input data plays an important role in its efficient implementation.

26



XYZ

X
/ \ YZ
" x
intgrval‘ / \
o Y 7z

TXV=v

X

Figure 6: A query plan using the interval operator

b

=ik

.+ [%:.TS, ;. TE) - - -

Tsmin

Figure 7: The time-union stream processor

27

. max| | ... [Tsmim TEmax) Tt



8 Conclusions & a Look into the Future

In this paper, we discussed several characteristics of temporal data and queries, and presented stream
processing techniques for processing temporal join and semijoin operators which often contain a
conjunction of a number of inequalities. The effect of sort orderings of streams of tuples on the
efficiency with which an operator is implemented and the local workspace requirement in the stream
processing environment were studied. An interesting observation is that the optimal sort order may
depend on the query itself and the statistics of data instances. Based on the stream processing
paradigm, we further proposed a generalized data stream indexing technique that can facilitate the
processing of complex snapshot queries,

There are many research issues that need to be investigated. One of the most important one is
the “global optimization” problem which can be stated as follows:

Generally a query optimizer is given the following information:

e a list of available indices,

o a list of available join strategies,

¢ the data statistics,

o the sort ordering of input operands,
o the available buffer space, and

e the cost model.

For a given user TSJ query in the form of Op(Ry,---,Ry), where R;’s (1<i<m) are
temporal relations and P is a query qualification (i.e., comparison and join predicates),
the query optimizer generates a query plan which is a sequence of operations (such as
sorting the input data and performing a selected join strategy) which includes determining
of the join ordering. The global optimization problem is to choose a plan with the cheapest
cost.

We note that most of the research work in temporal databases to date has only considered storage
structures, query processing algorithms for simple temporal queries (such as select and join), and
indexing methods. The point here is that in addition to the new strategies for individual join
operation, we should also consider the global optimization problem. Following is an example.

To illustrate the issues involved, which are peculiar to temporal data and queries, let us consider
a query Op(X,Y,Z) where P is “contain-join(X,Y) A contain-join(Z,Y) A Py(Y)" and P,(Y)is a com-
parison predicate on relation Y. There are generally many equivalent query plans; we show a typical
one in Figure 8(a) which joins relations X and Y first, followed by the join between the intermediate
result and the relation Z. In addition to determining the optimal join ordering, the estimation of the
size of the intermediate join result, and the implementation of the select predicate Py(Y) (e.g., by
indexing or file scanning), there are several choices which are more peculiar to temporal! databases
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Figure 8: Global optimization: P(X,Y,Z) = contain-join(X,Y) A contain-join(Z,Y)

that the query optimizer has to consider. For example, both joins are contain-joins which can be
implemented either as stream processors, which we discussed earlier, or using the nested-loop join
method. Using the stream processing approach, one alternative is to sort the relations X and Z on
the TS timestamp in ascending order while sorting the relation Y on either TS or TE timestamp
(see Table 1}, In addition, the query optimizer can choose a stream processing implementation of
the contain-join(X,Y) such that its output is also sorted on the TS or TE timestamp of relation Y.
That is, one can directly “pipe” the output to the stream processor that implements the second join,
i.e., contain-join(Z,Y), without sorting the intermediate join result. The tradeoff is that the stream
processor for the contain-join(X,Y) may require a larger buffer space.

An alternative query plan is as follows. We note that the query qualification is equivalent to:
X.T5<Y.TS A Y.TE<X.TE A Z.TS<Y.TS A Y.TE<Z.TE A Py(Y).

Together with the implicit intra-tuple integrity constraints: “X.TS<X.TE”, “Y.TS<Y.TE”, and
“Z.TS<Z.TE”, the relationship among the timestamps can be represented by a graph as shown in
Figure 8(b) where an arrow represents the relationship “<”. From the graph, one can determine
that there is an implicit join between relations X and Z: intersect-join(X,Z). That is, for each triplet
<z,y,2> where z € X, y € Y, and z € Z that satisfies the query qualification, the lifespans of tuples
z and z must intersect. Therefore, the query optimizer can choose to perform the select operation
on the relation Y first, as shown in Figure 8(c). The intermediate result from the select operation
(and the interval operator) can be used to “restrict” the join operation between relations X and Z,
for example, using the data stream index on X and Z if it is provided. The final query response is
the join between these two intermediate results.

In the above problem formulation, we have ignored the project operator which also can be crucial
to generating and choosing an optimal query plan. Other research issues that are of interest include
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Figure 9: Deriving the relation X from X

the following. First, the class of queries that can be processed using the data stream indices is
larger than we have presented. Second, with the use of multiprocessor database machines becoming
more popular, fragmentation strategies for temporal data as well as temporal query processing and
optimization in such systems become more critical to the efficiency and performance. A preliminary
study on temporal data fragmentation strategies and temporal query processing algorithms for par-
allel machines can be found in [Leu91]. Thirdly, in [Leu90] we noted that time is rich in semantics,
and one can exploit semantic query optimization techniques in generating a better query plan. Its
use will be more crucial when the global query optimization problem is tackled, and it should be
addressed in the future.

Appendix A: The TE-outerjoin

We show that the TE-outerjoin can be defined in traditional tuple calculus. From the relation
X(S,V,TS,TE), we first obtain a new relation (denoted as X) which contains tuples of null values (of
attribute V) for each surrogate in X that is not explicitly stored in X, as illustrated in Figure 9:

X = { t<S,V,TS,TE> | dzq Jz, ( 21 E X Azxy € XA 2. TE<2:.TS A 21.5=2,.5
At.S=z3.5 A t.V=null A 1.TS=2,.TE A t.TE=2,.TS
A = dzz (73 € X A £1.5=23.5 A 23.TS<2,.TS A 2;.TE<z3.TE ) ) }

Next, we obtain from X another relation (denoted as X;) which contains the first tuple of attribute
V for each surrogate in X:

X¢ = { t<S,V,TS,TE> | 3z, (27 € X
A t.5=21.85 A t.V=null A t.TS=2,.TS A t.TE=z,.TE
A = Jzg ( 2 € X A 21.5=22.8 A 2,.TE<2,.TS ) ) }

Lastly, we obtain from X another relation (denoted as X;) which contains the last tuple of attribute
V for each surrogate in X:

Xf = { t<S, V. TS, TE> | daq ( 1 €X
At.5=x1.8 A t.V=null A t.TS=2,.TS A t.TE=2,.TE
A - deg ( 22 € X A xy1.5=22.5 A 21.TE<2,.TS ) ) }
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From the relation Y, we can similarly obtain three new relations (i.e., ¥, Y;, and Y)). Using these
six new temporal relations, the TE-outerjoin(X,Y) and the TE-outjoin(Y,X) are:

TE-outerjoin(X,Y) = TE-join(X,Y) U TE-join(X¢,Yr) U TEj-join(X;,Y)) U TE,-join(X,Y)
TE-outerjoin(Y,X) = TE-join(Y,X) U TE¢-join(Yy,X¢) U TE-join(Y1,X;) U TE,-join(Y,X)

That is, the TE-outerjoin is the union of four joins. The first three joins account for the cases in
which a surrogate appears in both relations X and Y, while the last join (i.e., TE,-join) accounts for

the case in which a surrogate appears only in the relation X (but not in the relation Y). The joins
TE¢-join(X,Y), TEj-join(X,Y), and TE,-join(X,Y) are defined as follows:

TE¢-join(Xys,Ys) = { t<S,V,U,TS,TE> |3z dy (z € Xy Ay € Y
A x.5=y.5 A z.TS<y. TS
AtS=z.S At.V=z.V A t.U=null A £.TS=2.TS A t.TE=y¢.TS ) }

TE;-join(Xy,Y)) = { t<S,V,UTS,TE> |z Jy (z € X\ Ay e Y
A 2.S=y.S A 2z.TE>y.TE
AtS=2.8 AtV=2V At U=null A t.TS=y.TE A t. TE=2.TE ) }
TEy-join(X,Y) = { t<S,V,U,TS,TE> |Jz (z € X
AtS=x.8 At V=2V At U=null A . TS=2.TE A t. TE=2.TE
A=y (yeYAxS=yS))}
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