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Abstract

A specific type of nonlinear parabolic partial differential equations {the diffusion-reaction equations)
describes the phenomena of wave propagation in excitable media. The application of the method of
lines technique reduces the problem to the simultaneous solution of a system of ordinary differential
equations on a chosen time interval for each node of the space grid. A novel explicit method for the
numerical integration of mildly stiff ordinary differential equations was recently proposed by Ashour
and Hanna. Our investigation of the applicability of this method to very stiff ordinary differential
equations such as the simplified FitzHugh-Nagumo (FN) equations shows that it is possible to save
approximately 60% of computer time, while keeping the desired relative error of the relaxation
parameter &p < 1%. The optimal values of the integration step h and the averaging parameter o are
h = 0.08, and o = 0.36 respectively. The sensitivity of these values to parameter changes of the F'N
equations shows that FN parameter changes less then 15% do not significantly affect the appearance
of spurious oscillations in solution, and therefore the values of  and o may remain unchanged. We
conclude that the new Ashour-Hanna method may be successfully used for solving the highly stiff

FitzHugh-Nagumo equations.



INTRODUCTION

The class of nonlinear parabolic partial differential equations which are known as diffusion-reaction
equations describe the phenomena of wave propagation in excitable media (Tyson and Keener [1]).
Excitable media arise in biological systems, chemical processes and in variety of other application
areas. The complex character of nonlinearities, the great diversity of the time constants of differ-
ent variables (which introduces the stiffness of ordinary differential equations (ODE) to which the
original problem is reduced), and the necessity to obtain a solution in time and space (often three di-
mensional) tends to make the solution of these problems excessively time consuming even for modern
super computers and massively parallel computer systems. In our previous work (Kogan et.al [2]) we
used a special modification of the method of lines which aliows one to reduce the overall time of data
exchange in a massively parallel computer system. Thus the main component of consumed computer
time is the time needed for the numerical integration of the stiff ODE’s. Numerical integration al-
gorithms with variable integration step size are not suitable for parallel computations, because the
difficulty of synchronizing data exchange between the computing elements. The only alternative is
to use the well-known fixed step explicit or implicit methods. The comparison (Victorri et.al [3])
of explicit and implicit methods of nurmnerical integration shows that explicit methods have some
advantages in cost per step and required storage in the computer memory. Therefore, most of the
computer simulations of wave propagation have been carried out using the explicit Euler first order
method or the Runge-Kutta second order method with a comparatively small step size (A = 0.01
and h = 0.02 respectively). Recently Ashour and Hanna [4] (AH) developed a hybrid method for
the solution of moderate and mildly stiff ODE’s. This method is based on the average of the Euler
and Runge-Kutta 2 solutions at each step of integration. The present investigation was undertaken
to determine the possibility of applying the AH method te the solution of highly stiff ODE’s such as
diffusion-reaction equations. As an example, we consider the simplified FN equations, which approx-
imate the generation of action potential in heart muscle cells (see Kogan et.al.[5]). The AH method
is compared to alternative numerical algorithms with respect to: the permissible integration step
size by which the amplitude of spurious oscillations in the solution is less than 0.1%, the sensitivity
to parameters changes of FN equations, the relative error in relaxation parameter p (see Zykov[6]),

and the overall time needed for the computation of one cardiac cycle.



THE FITZHUGH-NAGUMO SIMPLIFIED EQUATIONS

The basic FN simiplified equations when reduced to dimensionless form [7] are:

%—‘:3 = AE+F(E)=1I+ ILiim (1)
&1
= = «BlE) -] 2)

E - fast variable (membrane potential displacement between the interior and exterior of the cell)
I - slow variable (generalized outward current)

A = 8%/8z2? + 87 /3y* - two dimensional Laplacian operator

F(FE) - current-voltage characteristic of the fast inward current

f{E) - current-voltage characteristic of slow outward current

e(E) — small parameter (inversely proportional to the time constant of the slow outward current)
The initial and boundary conditions used in the simulation are:

E(I’yao):I(r,yvU):O;E!B:aTB':O (3}

The piece-wise linear approximation of the functions F{E), f(E) , and (E) is shown on Fig.1.

The widely used set of parametersis: G, =1;Gy=1;G, =30; E;, =0.16

£1 if £ < 0.01 and dI/dt >0

£2 if £ > 0.01 and dI/dt >0 )
€= :

£3 if I > Inin and dI/dt <0

€4 = key otherwise,

where £4 determines the action potential duration restitution properties (Kogan et.al [3]).
We define an action pofeniial as the time course of membrane potential E which is above the
threshold potential Ey;. The action potential is initiated by overtreshold stimulation and formed by

the activation and inactivation of inward and outward currents. This mathermnatical model reflects

qualitatively the essential properties of heart muscle cells.
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F1G. 1. The piece-wise linear approximation of functions F(E), f(E), and ¢(E). tane = G, ;
tan 8 = Gy ; tany = G, ; Eyp — the threshold potential.

THE ASHOUR - HANNA METHOD

The classical explicit integration methods (such as Euler and Runge-Kutta) have very limited
stability regions. Since the integration step size is restricted mainly by stability rather than by
truncation error consideration, these methods tends to become extremely inefficient (Aiken {8]).
More efficient implicit methods allowing use of a much larger step size, such as implicit Runge-Kutta
and backward differentiation methods, are used to perform the integration for moderately and mildly
stiff problems. These metheds, however, require more storage and take more computation time per
step.

Recently Ashour and Hanna [4] proposed a new simple explicit method for the integration of
mildly stiff ODE’s. Consider system of ODE’s

v =fty (5)

with initial condition
u(to) = vo. (6)

Using the Ashour-Hanna method, starting from a specified or previously determined y(t) we first



carry out a single step using the first-order explicit Euler method:

YEuler (t + h) = y(t) + hf[t, y(t)]' (7)

Then we carry out a single step using the second-order explicit Runge-Kutta-Trapezoidal method

starting from the y(2):

yricor(t + ) = y(t) + (A/2) x {f{t, y()] + f[t + Ay ypuier (¢ + H)]}. (8)

Finally, we average the Euler and RK2T values to obtain the new value as follows:

y(t + h) = ayEufer(t + h) + (1 - a’)yRKZT(t + h) (9)
= y(t) + (A/2{(1 + ) f[t, ()] + (1 — &) f[t + hy ypuier (t + D))}, (10)

where « is an averaging parameter, 0 < a < 1. When o = 0, the AH algorithm is reduced to the
second order RK2T; when « = 1, it is reduced to the first-order Euler method. The parameter
a is chosen so as to minimize spurious oscillations in the solution and maximize the permissible

integration step size.
RESULTS

Analysis of applicability of the AH method is performed using the simplified FN ;:_quations (1)-(4)
as an example of a highly stiff ODE. The term which describes propagation in equation (1) (the
Laplacian, AFE) was eliminated by making AE = 0.

Usually the instability in the numerical computation is defined (Beckett et.al [9]) as appearance
in computer solution an undamped oscillations or some other characteristic which the true solution
should not have. For our problem it is important that the solution will be aperiodic without any
oscillations, Therefore we choose the parameters of AH method & and h so as to eliminate any
spurious oscillations of the calculated action potential. That is, a solution is considered suitable
only if the derivative of the action potential changes its sign no more than twice during one action
potential period. As a reference point, Fig.2a shows an action potential obtained using the Euler
method with a very small time step, & = 0.001. This curve is considered ideal. Shown in Fig.2b is
the action potential obtained using the Euler method with A = 0.095. This curve has oscillations
and is considered unsuitable following comments from Moore et.al [10).

The region of parameters « and /t with the AIl method which provides nonoscillatory solution for

FN equations with basic parameters is presented in Fig.3. We varied the most important parameters
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FiG. 2. Action potential generation by Euler method. A. h = 0.001, without spurious oscillations.

B. h = 0.095, with spurious oscillations.
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F1G. 3. Nonoscillation region (shown by dots) for AH method. Problem parameters: G, = 30.0,
Gy =107, = 0.02.
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F1G. 4. Determination of relaxation parameter p.

of the system, including G,, G and £2 by as much as 15% to identify how this region changes. The
results are shown in Fig.5-Fig.7. We conclude that problem parameters changes have little influence
on spurious oscillations.

To compare the considered methods, we estimate their relative error of the relaxation parameter
p. This parameter is calculated as the ratio of the action potential duration D at the threshold level,
and rise time At (Fig.4a). The rise time is determined as shown in Fig.4b, where the action potential
is presented in large scale. We compared the p obtained in each calculation with p obtained by the
Euler method with 2 = 0.001. In Table 1 the results are presented for Euler, RK2 and AH methods
with the maximum integration time step which provides nonoscillatory solution. One can see from
Table 1 that this maximum time step of integration does not provide maximum accuracy and that
to get reasonable accuracy for each method it is necessary to decrease the corresponding integration
time step. The results of calculation for the maximum integration time step corresponding to solution
without spurious oscillations and relative error 6p < 1% are shown in Table 2.

In Table 2 the times of calculation for each method are also presented. Although the time of
calculation of one point of action potential increases from Euler to AH, the overall time of calculation
is smaller for AH. This result is due to the larger permissible integration time step which leads to
reducing the total number of integration steps for the calculation of an action potential. Since the

AH method gives a large permissible value of h for the given permissible relative error bp and a



Numerical | Parameters of algorithm | Number | Time of calculation | Error
algorithm o h of steps | one point | total %

EUL - 0.035 2857 1.743-03 4.98 2.45
RKZ - 0.065 1539 3.060-03 4.71 2.84
AH 0.75 0.250 400 4.450-03 1.78 18.59

absence of spurious oscillations.

Table 1. Time of calculation and relative error ép obtained with maximum time step which provides

Numerical | Parameters of algorithm | Number | Time of calculation | Error
algorithm o h of steps | one point | total %

EUL - 6.010 10000 | 1.743-03 | 17.18 0.92
RK2 - 0.018 3956 3.060-03 16.99 0.97
AH 0.36 0.081 1235 4,450-03 5.50 0.93

Table 2. Time of calculation and numerical algorithm parameters for relative error §p < 1%

shorter time of caleulation it can be considered as more efficient.

CONCLUSION

All of the results show that the new AH method can be used not only to obtain the solution of
mildly stiff ODE, but also of highly stiff ODE such as the FitzHugh-Nagumo equations. The AH is
shown to be more efficient in solving the FN equations than the other explicit methods (Euler, RK2).
This method gives the largest region of & and A without spurious escillations in solution. This does
not significantly change with variation in the parameters of the problem. Also, AH provides the
required accuracy defined by the parameter p. Satisfying the same requirements, this method gives

three times faster solution than Euler and RK2.



APPENDIX A. SENSITIVITY OF AH METHOD TO THE VARIATION OF
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FiG. 5. Nonoscillation region for AH method. A. Problem parameters: G, = 24.0, Gy
€5 = 0.02. B. Problem parameters: G, = 36.0, Gy = 0.7, e2 = 0.02.
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F1G. 6. Nonoscillation region for AH method. A. Problem parameters: G, = 30.0, G; = 0.46,
g3 = 0.02. B. Problem parameters: G, = 30.0, Gy = 0.94, £ = 0.02.
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Fia. 7. Nonoscillation region for AH method. A. Problem parameters: G, = 30.0, G; = 0.7,
€9 = 0.012, B. Problem parameters: G, = 30.0, &Gy = 0.7, €5 = 0.028,



APPENDIX B. PROGRAM FOR AH METHOD

P e L L T PP P PR R T P P T e

/* This file contains integration routines. */

/*********************ﬂ*********#*******************#************/

#include "heart.h"

/***********#*****#***i**#********t********t****t***#************/

/* Externs */

/*********#********************************************#*********/

extern float delta_t;

extern float alpha;

extern flcat E;
extern flocat I;
extern flocat SE;

extern flocat SI;

extern float fE();

extern float fI();

Aok ek ok ok o i ok o o oo o A Ko o o Aok ook ok ook e okok ok Ak ke ke ok ok ok f

/* MK implementation of Ashour - Hanna algorithm */

JRE Rk kR kR AR KRRk Rk R Rk Rk k ok [
veid ah()

{

float newE;
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float newIl;

float newEeul;
float newleul;
flecat newErk2;

float newlrk?2;

/* First: single step using Euler method */

newEeul = E + delta_t * fE( E, I );

1 + delta_t * fI( E, I, SE, SI );

newleul

/* Second: single step using Runge-Kutta-Trapezoidal */

newErk2 = E + 0.5 * delta_t *
( fE( E, I) + fE( newEeul, newleul ) );
newIrk? = I + 0.5 * delta_t « ( fI( E, I, SE, SI ) +

fI( newEeul, newleul, newEeul-E, newIeul-I ) );:

/* Third: average Euler and RK2T to obtain new value */

newE = alpha * newEeul + ( 1 - alpha ) * newErk2;
newl = alpha * newlIeul + { 1 - alpha ) * newlrk2;
SE = newE - E;

E = newE;

SI = newl - I;

I = newl;

}

11
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