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Abstract

Partitioning of circuit netlists is important in many phases of VLSI design, ranging from layout to
testing and hardware simulation. Most partitioning formulations are intractable, and the problem
is further complicated in part because logic circuits are hypergraphs, not graphs. Thus, various
standard net models (e.g., a k-clique or a spanning k-tree for a k-pin net) have been used to convert
the netlist hypergraph into a graph representation. In this paper, we demonstrate that the “dual®
intersection graph of the hypergraph better captures netlist properties relevant to partitioning.
We apply this transformation within a testbed that uses an eigenvector computation to optimize
the ratio cut metric of Wei and Cheng [32]; the eigenvector approach has previously been shown by
Hagen and Kahng [13] to be more effective than standard Kernighan-Lin based methods, particularly
for ratio cut optimization. The eigenvector computation yields a linear ordering of nels, rather
than modules; we compute a good module partition via a sequence of incremental independent-set
computations in bipartite graphs that are derived from the net ordering. An efficient matching-based
algorithm called 1G-Match was tested on MCNC benchmark circuits as well as additional industry
examples. Results are quite promising: the algorithm yields an gverage of 28.8% improvement over
the results of [32]. The intersection graph representation also yields speedups aver, e.g., the method
of [13], due to additional sparsity in the netlist representation.

1 Preliminaries

With increasing system complexity, a hierarchical divide-and-conquer approach is used to keep the
layout synthesis process tractable. Since early design decisions will constrain all succeeding decisions,
the high-level phases are critical to the quality of the final layout. Many good solutions to the placement,
global routing and detailed routing problems depend on the output of the partitioning algorithm. This
is especially true with the growing emphasis on performance issues in layout: signal delays typically
decrease as one moves downward in the design hierarchy, e.g., on-chip communication is faster than
inter-chip communication, and so the foremost goal in decomposition is to minimize the number of
(critical) signal nets which cross between subproblems. This partitioning formulation is basic to many
CAD applications, including wireability analysis in synthesis, the packaging or repackaging of designs,
and clustering analysis for, e.g., floorplanning [5]. In addition, Wei and Cheng [32] note that partitioning

can be crucial to efficient hardware simulation and test: a good partitioning will minimize the number of



signals between blocks that are multiplexed onto a hardware simulator; similarly, reducing the number

of inputs to a block implies that fewer vectors will be needed to exercise the logic.

1.1 Previous Partitioning Formulations

A standard model for VLSI layout associates a graph G = (V, E) with the circuit netlist; vertices in ¥V
represent modules and edges in E represent signal nets. The vertices and edges of & may be weighted
to reflect module area and the multiplicity or importance of a wiring connection. Because nets often
have more than two pins, the netlist is more generally represented by a hypergraph H = (V, E’), where
hyperedges in E’ are the subsets of V contained by each net [27]. A large portion of the literature has
treated graph partitioning instead of hypergraph partitioning: not only is the formulation simpler, but

many algorithms are applicable only to graph instances.

Two basic (graph) formulations for circuit partitioning are:

¢ Minimum Cut: Given G = (V, E), find the min-cut partition of V into disjoint U and W such

that e(U, W), i.e., the number of edges in {(u,w)}€ E | u € U and w € W}, is minimized.

e Minimum-Width Bisection: Given G = (V, E), find the partition of V into disjoint U and
W, with |U| = {W|, such that (U, W) is minimized.

Although a minimum cut may be found in polynomial time due to the max-flow min-cut theorem of
Ford and Fulkerson {8], the cut will often divide modules very unevenly. Because minimum-width bisec-
tion divides module area evenly, it has been a more popular objective, particularly within hierarchical
approaches. However, the area bisection requirement is unnecessarily restrictive, and various ad hoc
thresholds and penalty functions (e.g., the r-bipartition formulation of Fiduccia and Mattheyses [7])
have been used with varying degrees of success to relax this constraint. With this in mind, the recent

ratio cuf metric of Wei and Cheng [32] has proved to be a highly successful abjective function.

¢ Minimum Ratio Cut: Given G = (V, E), find the partition of ¥ into disjoint U/ and W such

UW) e« s
that %lTW% is minimized.

The ratio cut metric intuitively allows freedem to find “natural” partitions: the numerator captures
the minimum-cut criterion, while the denominator favors an even partition. A good ratio cut is very

useful: [32] reports average cost improvements of 39% over previous standard methods [7] on industry



benchmarks. Additionally, for testability and hardware simulation applications the recent Ph.D. thesis
of Wei [33] and [34] report extraordinary cost savings of up to 70% in a number of industry settings.
Unfortunately, finding either a minimum-width bisection or a minimum ratio cut is NP-complete [11]
(the latter by reduction from Bounded Min-Cut Graph Partition), so heuristic methods must be used.
Previous approaches to min-width bisection fall into several classes, as surveyed in [5] [14] [22]. Most

of these approaches can also be applied to the minimum ratio cut objective.

In practice, iterative methods are popular either as stand-alone strategies or as a postprocessing
refinement to other methods. Iterative methods are based on local perturbation of a current solution
and can be greedy (the Kernighan-Lin method [19] [27] and its algorithmic speedups by Fiduccia and
Mattheyses [7] and Krishnamurthy [21]), or stochastic (the hill-climbing “annealing” approach of Kirk-
patrick et al. [20], Sechen [28], and others). Practical implementations will use a number of random
starting configurations and return the best result [22] {32] in order to adequately search the solution
space and give predictable performance, or “stability”. For example, Wei and Cheng [32] use an adap-

tation of the shifting and group swapping methods in [7] in order to achieve the resulis cited above.

With respect to the present work, the most important class of partitioning algorithms consists of
“gpectral” methods which use eigenvalues or eigenvectors of matrices that are derived from the netlist
graph. Recall that the circuit netlist may be represented by the simple undirected graph G = (V, E)
with |[V| = n vertices vs,...,v,. Often, we use the n x n adjacency matriz A = A(G), where A;; =1
if {vi,v;} € E and A;; = 0 otherwise. If G has weighted edges, then A;; is equal to the weight of
{vi,v;} € E, and by convention A;; = 0 for alli = 1,...,n. If we let d(v;) denote the degree of node v;
(i.e., the sum of the weights of all edges incident to v;), we obtain the n x n diagonal matriz D defined
by D;; = d{v;}. (When no confusion may arise, we may also use d; to denote d(v;).) The eigenvalues
and eigenvectors of such matrices are the subject of the relatively recent subfield of graph theory dealing

with graph spectra [4)].

Early theoretical work connecting graph spectra and partitioning is due to Barnes, Donath and
Hoffman {1] [5] [6]. More recent eigenvector and eigenvalue methods have dealt with both module
placement (Frankle and Karp [9] and Tsay and Kuh [30]) and graph min-cut bisection (Boppana [2]).
In general, these previous works formulate the partitioning problem as the assignment or placement of
nodes into bounded-size clusters or chip locations. The problem is then transformed into a quadratic
optimization, and Lagrangian relaxation is used to derive an eigenvector formulation. {Appendix A
summarizes a prototypical eigenvector formulation, which is due to Hall [15].) In [13], Hagen and Kahng

established a close relationship between the optimal ratio cut cost and the second-smallest eigenvalue



of the matrix @ = D — A, where D and A are as defined above:

Theorem 1 (Hagen-Kahng):  Given a netlist graph G = (V, E) with adjacency matrix A, diagonal
degree matrix D, and |V| = n, the second smallest eigenvalue A of Q = DD — A yields a lower bound on

the cost ¢ of the optimal ratio cut partition, with ¢ > ':—l 0

This result suggests that the eigenvector z corresponding to A, i.e., the solution of the matrix
equation Qx = Az, be used to guide the partitioning. In [13], # was used to induce a linear ordering
of the modules, and the best “split” in terms of ratio cut cost was returned. To be more specific, the
n components z; of the eigenvector were sorted, yielding an ordering v = vy,...,v, of the modules.
The splitting rank r, 1 < v € n — 1, was then found which gave the best ratio cut cost when modules
with rank > r were placed in I/ and modules with rank < r were placed in W. This straightforward
construction achieved a very significant 17% ratio cut improvement over the RCutl.0 program of Wei
and Cheng [32} for the MCNC Primary benchmarks [13], and a 9% average improvement over RCut1.0
for both the MCNC Primary and Test benchmarks [14]. It was shown that the spectral approach for
ratio cut partitioning exhibited several desirable traits, including speed, provability, and stability. For
this reason, and becanse the spectral approach significantly outperforms iterative Fiduccia-Mattheyses
style methods, we have chosen to use eigenvector computations as the basis for our current algorithmic

approach.!

1.2 Main Contributions

The main contribution of the present work is in pointing out advantages to using a dual representation
of the logic design. We use statistical analyses of netlist structure and sparsity arguments to argue that
net structure and interrelationships, rather than module adjacencies, should constitute the primary de-
scriptors of a circuit. In particular, the dual intersection graph representation of the netlist hypergraph
vields much more natural circuit partitioning formulations, since it inherently emphasizes relationships
between signal nets. Moreover, the intersection graph yields a sparser circuit representation than tradi-
tional net models (for example, the MCNC Test05 intersection graph has an adjacency matrix that is

over len limes sparser than the adjacency matrix created using the standard clique model, with 19935

1While eigenvalue computations are not cheap, the run-times reported in [13] were actually less than for the multiple
F-M computations needed by the RCut1.0 program. Significant algorithmic speedups stem from the need to calculate only
a single (the second-smallest) eigenvalue of a symmetric matrix. In particular, netlist graphs tend to be very sparse due
to hierarchical circuit organization and degree bounds imposed by the technology fanout limits; this allows application of
sparse numerical techniques, specifically the block Lanczos algorithm [12]. We use an existing Lanczos implementation
[13] to calculate the second-largest eigenvalue and the corresponding eigenvector of the matrix ~Q = 4 — D. (This is
equivalent to computing the second-smallest eigenvector of @ = D — A, i.e., we compute —A and —v, and is preferable
by theoretical results of Kaniel-Paige-Saad [12] which show that the Lanczos algorithm converges faster to the largest
eigenvalues.)



nonzeros versus 219811 nonzeros); this allows speedup of numerical computations. Finally, the inter-
section graph representation is not sensitive to choice of net models since only the interrelationships

between nets are studied.

When we use the intersection graph representation of the netlist, we may formulate the minimum-
cost module partitioning as a two-stage process. In the first stage, we partition the nels of the design.
Some modules will belong only to nets on one side of the partition; these modules can be unambiguously
assigned to that side. However, other modules may belong to nets on both sides of the partition. Thus,
the second stage of the module partitioning involves finding the best completion of the net partition, i.e.,
an assignment of each shared module to one side or the other such that the partition cost is minimized.
We propose an efficient algorithm, called 1G-Match, for completing the net partition; the algorithm is
so named becanse it is based on a matching computation in a special bipartite graph. IG-Match affords
a tight bound on the number of nets cut in completing any given partition; this bound is essentially
best-possible. When we move from one net partition to another based on a shift in the splitting rank
of the sorted eigenvector, the corresponding change in the bipartite graph is very small. Therefore, an
interesting incremental strategy is possible, and the computational burden of examining all splits of
the eigenvector can be effectively amortized. Empirical results are very encouraging. The IG-Match
method yields significant improvements over the previous ratio-cut partitioning methods: results are an
average of 28.8% better than those of Wei and Cheng [32] [34], and also give a 7% average improvement

over a “voting” scheme recently proposed by Hagen and Kahng [14].

The remainder of this paper is organized as follows. In Section 2, we discuss netlist representations
and define the netlist intersection graph. In Section 3, we formulate the problem of completing the
module partition from a given net partition as a maximum independent set instance in a bipartite graph,
and then present the IG-Match algorithm along with analyses of its performance and complexity. Section
4 gives performance results on benchmarks from MCNC and industry sources; we also give comparisons
with previous work, including the RCut1.0 program of Wei and Cheng [32] and the “voting” method of

Hagen and Kahng [14]. Finally, Section 5 gives conclusions and directions for future work.

2 Netlist Representations and the Intersection Graph

2.1 Standard Net Models

The graph representation of the netlist hypergraph is accomplished using a net model which determines

the A;; values in the weighted graph representation of the design. Many net models have been proposed,



including spanning paths, spanning cycles, spanning trees, star topologies, ete. Several models can suffer
from nondeterministic asymmetry in the connection weights A;j, i.e., not all adjacencies derived from
a given k-pin net will be accorded the same significance. Furthermore, some topologies (e.g., minimum
spanning iree, centroid-based star [29], etc.) are inherently dynamic, requiring recomputation with

every change in the module placement (see [22] for a survey).

The most common net model is that of a weighted clique, where a k-pin net will induce C(k, 2) edges
among its £ modules. Recent work has widely adopted a “standard” weighted clique model [22], wherein
a k-pin net contributes 15 to each of C(k,2) A;; values. Obvious advantages of the clique model stem
from its “fairness” (i.e., symmetry). However, the model also has a number of disadvantages. As noted
by Yeh et al. [35], multi-pin net models have always presented a difficulty for iterative partitioning
approaches, since the net model must somehow allow us to correctly capture both the immediate and
the potential cut gains associated with any perturbation of the current module partition. Slight changes
in the net model will result in significantly different output, and thus the clique representation exhibits
some [ragility. For spectral heuristics, the primary disadvantage of the clique model is that the resulting
adjacency matrix has too many nonzeros (e.g., a 100-pin clock net will generate 4950 nonzeros), negating

the effectiveness of such sparse operator methods as the Lanczos technique.

Given the fragility of the clique model and its unsuitability to sparse numerical methods, our initial
investigations centered on alternate net representations. In particular, empirical analysis of the Fiduccia-
Mattheyses approach led to the discovery of interesting relationships between the size of a net and the

probability that the net is cut in the heuristic (ratio-cut or min-width bisection) circuit partition.

2.2 The Intersection Graph

We begin this section with a simple thought experiment [14]: Given a 2-pin net and a 14-pin net in a
circuit netlist, which is more likely to be cut in the optimal ratio-cut partition? A simple random model
would indicate that it is much less likely for all 14 modules of the larger net to be on a single side of the
partition than it is for both modules of the smaller net to be on a single side of the partition. The 14-pin
net is thus much more likely to be cut, and one might guess that that the cul probebilily for a k-pin
net, given a random partition, would be roughly 1 — O(27%). This rough relationship has indeed been
confirmed for heuristic minimum-width bisections of various small netlists from industry and academia,
including, e.g., ILLIAC IV printed circuit boards. However, our analysis of Fiduccia-Mattheyses and
spectral output [32] [13] for both minimum-width bisection and minimum ratio-cut metrics has shown

that this intuitive model does not necessarily remain correct, particularly as circuit sizes grow large.



For example, a typical locally minimum ratio cut (i.e., an optimized partition) for the MCNC Primary2

netlist yields the following statistics, shown in Table 1.

Net Size | Number of Nets ] Number Cut
2 1835 21
3 ags 29
4 203 18
5 152 26
] 120 5
T 52 12
B 14 0
9 83 5
10 14 1
11 a5 0
12 5 a
13 3 0
14 10 o
15 3 o
16 1 0
17 72 22
18 1 1
23 1 0
26 1 1
29 1 0
30 1 0
31 1 0
33 14 4
34 1 Q0
aT Q

Table 1: Cut statistics for k-pin nets. Note that the probability of a net
being cut in the best heuristic partition does not necessarily increase mono-
tonically with net size, counter to intuition.

Such statistics as these are not surprising in retrospect: while a random meodel may suffice for
small circuits, larger netlists have strong hierarchical organization reflecting the high-level functional
partitioning imposed by the designer. Thus, nets themselves may very well contain “useful” partitioning
information.? Furthermore, if we consider the partitioning problem from a slightly different perspective,
we realize that the minimum (ratio) cut metric is not only asking for an assignment of modules to the two
sides of the partition, but is equivalently asking us to assign nets to the two sides of the partition, with
the objective of maximizing the number of nets that are not cut by the partition. In other words, we
want to assign the greatest possible number of nets completely to one side or the other of the partition.
A central observation of this paper is that such an objective can be captured using the graph dual of

the netlist hypergraph, also known as the intersection graph of the hypergraph.

The dualization of the problem is as follows. Given a netlist hypergraph H = (V’, E’) with |V/| =n
and |E'| = m, we consider the graph G’ = (V, Eg) which has [V| = m, i.e.,, G’ has m vertices, one
for each hyperedge of H (that is to say, each signal in the netlist). Two vertices of G’ are adjacent

if and only if the corresponding hyperedges in H have at least one module in common. G’ is called

2Interestingly, this suggests that standard thresholding methods for sparsifying the input, i.e., by disregarding large
nets, may actually be discarding useful partitioning information.



the intersection graph of the hypergraph H. For any given H, the intersection graph G’ is uniquely

determined; however, there is no unique reverse construction. An example of the intersection graph is

shown in Figure 1.

Netl A= 12012+ 153) = 0.42
A, =11201/2+1/5) =035
— Net2 AL, =1/1(13+1/2)=0.83

A =12(13+1/5)+ 1/1(1/3 + 1/5) = 0.80

A, = 1/1(172+ 1/5) = 0.70
Netd Net3 b

Figure 1: Left: the hypergraph for a netlist with six signal nets (each node
represents a module). Right: the intersection graph of the hypergraph
(each node represents a signal net). The intersection graph edge weights
Al; are also shown.

Given this definition, the adjacency matrix A’ of the intersection graph G’ has nonzero elements A,
exactly when signal nets s, and s, share at least one module. As with the usual mapping of the netlist
hypergraph to a graph via the weighted clique net model {Section 2.1), there are a number of possible
heuristic edge weighting methods for the intersection graph. We have tried several approaches, most of
which lead to extremely similar, high-quality partitioning results; this seems to support the conclusion
that the intersection graph is indeed a highly robust, natural representation. In the discussion below,

we use the following weighting in the intersection graph construction:

For each pair of signal nets s, and s, with ¢ > 1 nodes v1,...,v, in common, let |s4| and 53| be the

number of nodes in s, and s, respectively. The element A, is then given by
ab

1
Z(d 1) ISai+l_sﬂ)

where dj is again equal to the degree of the k** common node wg, i.e., the number of nets incident to
g q g

module k (see Figure 1).

This net weighting scheme is designed so that overlaps between large nets are accorded somewhat
lower significance than overlaps between small nets. The diagonal degree matrix I’ is constructed
analogously to the matrix D described in Section 1.1 above, with the I)}; entry equal to the sum of the

entries in the j** row of A’. Thus, D;; indicates the total strength of connections between signal net s;



and all other nets which share at least one module with s;, i.e.,
m
/P L)
Dj; =3 Al
i=1

Given A’ and D', we then find the eigenvector z' corresponding to the second eigenvalue A’ of
Q' = D' — A’, using the same Lanczos code as in [13]. As described in Section 1 above, the sorted
eigenvector yields an ordering v’ of the net indices, and we use this ordering to derive a heuristic module
partition. Before presenting our new partitioning algorithm, we note that the intersection graph has
had only limited previous application in the CAD literature. Pillage and Rohrer [24] applied the “nets-
as-points metric” to module placement, the idea being that a heuristic 2-D placement of nets would
establish preferred regions for each module - i.e., a module would wish to lie somewhere within the
convex hull of the locations of nets to which it belonged). This formulation required a number of ad
hoc decisions and an iterative solution scheme, mostly because the intersection graph is not naturally
suited to placement. For partitioning, Kahng [18] used diameters of the intersection graph to yield an
approximate hypergraph bisection heuristic; more recently, Yeh et al. [35] proposed to compute gains
from a “net perspective” in an iterative multiway partitioning approach. Finally, Hagen and Kahng
[14] have recently discussed a simple spectral approach involving the intersection graph; we refer to
their method in the next section as the “IG-Vote” method, for purposes of comparison with the present

results.

3 Spectral Partitioning Based on the Intersection Graph

Recall that sorting the second eigenvector of the netlist intersection graph yields a linear ordering v’ for
the signal nets of the original netlist. Nets at one end of the sorted eigenvector will usually have very
weak connections to nets at the other end, so our basic strategy is to test all possible splitting points of
the linear ordering, in order to see which splits might lead to a good module partition. Although such
an approach seems computationally expensive, we shall show later that an efficient incremental method

can be applied.

Consider what happens when we split the vertices of the intersection graph into two sets L and R.
It is possible that the sets of modules contained respectively by the nets of L and the nets of R are
disjoint, and that the partition is “perfect”, with net-cut zero. However, this is unlikely. Rather, a net
I; € L might share one or more modules with a net r; € R. If we draw an edge {l;,r;} between all

pairs of signal nets (!;, 7} which are on opposite sides of the split and which have at least one module



in common, we induce a bipartite graph B(L, R, Eg) (see Figure 2). Note that by such results as
Theorem One [13], use of the eigenvector-based ordering suggests that |Ep|, i.e., the number of edges

in {(#;, )l € L,r; € R}, will be small.

1 3 2 1 4
4
L={1234]
2
5
3 2 R={5678)

6 8
Figure 2: Inducing a bipartite graph from the intersection graph.

If a given edge {l;,;} is present in B, the key observation is that for any module partition, at most
one of the following can be true: (i) /; has all of its modules on the L-side of the partition, or (i) r;
has all of its modules on the R-side of the partition. This follows immediately from the fact that [;
and r; have some module in common. In [18], nets left uncut by the final module partition were called
winners, and those cut were called losers. Adopting this terminology, we see that the min-cut objective

is to maximize the number of winner nets, or equivalently, to minimize the number of loser nets.
In formalizing this optimization, the following graph-theoretic terms are useful.

Definition: Given a graph G = (V, E), an independent set in G is a subset V' C V such that no two
nodes of V' are connected by an edge. A mazimum independent set (MIS) is an independent set with

largest possible cardinality.

Definition:  Given a graph G = (V, E), a vertez cover (VC) of G is a subset V' C V such that for
every edge {v;,v;} € E, either v; € V' or v; € V'. A minimum vertez cover (MVC) is a vertex cover

with smallest possible cardinality.

Definition:  Given a graph G = (V, E), a matching in G is a set of k edges in E, no two of which
have a vertex in common; we say that k is the size of the matching. A mazimum malching (MM) is a

matching with largest possible size.

Using these terms, the problem of maximizing the number of winners (minimizing the number of cut
nets) is equivalent to finding a maximum independent set in B. While the MIS problem is NP-complete

in general, it is efficiently solved for bipartite graphs. The following two standard results (see, e.g.,

10



Theorems 10.1 and 10.2 in [16]) motivate our algorithmic approach.

Theorem 2: For a bipartite graph B = (L, R, Eg) with |L|+ |R| = n, the sizes of any minimum
vertex cover and any maximum independent set sum to n. Moreover, the complement of any MIS will

be a MVC, i.e., (LUR)— MIS = MVC. 0

Theorem 3: For a bipartite graph B = (V, E), the size of a minimum vertex cover of B is equal

to the size of a maximum matching in B. 0

Given a minimum vertex cover, by Theorem 2 we may simply take its complement to obtain a maximum
independent set, and vice versa. (Our plan will be to derive an MIS and make all of the corresponding
signal nets winners.) Theorem 3 provides a lower bound for the size of the vertex cover (i.e., the set of
loser nets); if we can find a vertex cover whose size is equal to that of the maximum matching in B, we
claim optimality of the solution in that a completion has been found with net-cut as small as can be

expected.

Our high-level strategy is as follows. Given the intersection graph G' = (V, Egr), we will split the
eigenvector-based net ordering v’ at some index 7. Placing v}, i < r, in L, and v}, j > r, in R, induces
a bipartite subgraph B = (L, R, Eg) of G'. The algorithm will try all splitting ranks r = 1,...,n -1,
where n = |V]. This is shown as the IG-Match main loop in Figures 5 and 6.

For each bipartite subgraph B, Phase I of the IG-Match main loop involves finding a maximum
independent set in B (the reader is referred to Figure 3). We first find a maximum matching in B
using the standard augmenting-path technique [23] and breadth-first search.? The size of the MM gives
the size of the MVC, which is the number of cut nets that we hope to achieve. From the maximum
matching, we construct a maximum independent set in B (i.e., the set of winner nets), as follows. Any
unmatched vertex of B is a winner (Figure 3 shows the unmatched vertices on each side of the partition
as Uy and Ug). Starting from any vertex in Ur or Ug, we trace alternating paths, none of which will
be an augmenting path since the matching was maximum. We mark the second, fourth, ete. vertices in
each of these alternating paths as losers; the (first,) third, fifth, etc. vertices in each path are marked as
winners. We do this because the vertex cover (i.e., set of losers) must contain at least one vertex from
every edge; in particular, it must contain at least one node from every edge in the set of alternating

paths. In Figure 3, winners on paths starting at vertices of Uy, are denoted as the set Even(L) since

3Given a matching M, an alternating peth in M consists of a path of edges e; € Ep such that for any two consecutive
edges in the path, exactly one is in M. An augmenting path of M consists of 2m + 1 edges e; € Eg, such that e; ¢ M
for i odd, e; € M for i even, and e; is adjacent to e;yq for all i = 1,...,2m. The idea is that a new matching M,
|M'| = |M{+ 1, can be constructed from M by replacing the even edges of the augmenting path by the odd edges. It is
well-known that a matching M is maximum if no augmenting path of M can be found.

11



they are at even distance from UL, and losers on these paths are denoted as Odd(L)); Even(R) and
Odd(R)) are similarly denoted. Note that Uy C Even(L) and Ur C Even(R).

Even(R)
Odd(R) UL

Ur Odd(L)
Even(R)

Figure 3: An example bipartite graph showing the matching M and the
sets Uz, Ug, Even(L), Even(R), Odd(L), and Odd(R).

It is possible that after Phase I has been executed, there remain some edges in the matching M
whose vertices do not belong to any one of the sets Even(L), Even(R), Odd(L), or Odd(R).* In Figure
3, these remaining vertices and their induced bipartite subgraph are denoted as B' = (L', R, Ep}.
Phase II of the IG-Match main loop will consider all modules which have not been assigned to a side
of the partition via any of the winners determined in Phase I. Essentially, Phase II will put all of these
unassigned modules first on one side, then the other, and determine which option yields the better ratio
cut cost. Note that this will force all nets in L' to be winners and all nets in R’ to be losers, or vice

versa.

We now show that the IG-Match algorithm is optimal in that the number of nets cut by the module

partition will never exceed the size of the maximum matching in B.
Theorem 4: The set of loser nets output by Algorithm IG-Match is a vertex cover in B.

Proof: By the construction in Phase I of the main loop, any edge in an alternating path which began

in Uy or Ug is covered by some loser net. The remaining edges in B are incident to vertices of the

474 is worth noting that the set of loser nets computed during Phase I of the IG-Match main loop is the so-called
eritical set described by Hasan and Liu in {17]. The critical set & = Odd(L) U Odd(R) is the unique subset of nodes in
B such that every minimum vertex cover of B contains C. Note that even though we start with an arbitrary maximum
matching M in B, a result of [17] shows that we will always end up with the same Odd and Even, independent of which
maximum matching we use.

12



subgraph B’ defined above. Any edge between two vertices in B’ is covered, since Phase II of the main
loop will make losers of either all vertices in L' or all vertices in R’. The only remaining edges are those
between a vertex in B’ and a vertex not in B’. Without loss of generality, assume that an edge {a, b} in
this class is between vertex a in L' and vertex b in R — R'. If b is in Odd(L), the edge {a, b} is covered
since all vertices in Odd(L) are losers. And if b is in Even(R), then we would have an alternating path

from an unmatched vertex (in L) to a vertex in B’ (i.e., a}, contradicting the definition of B'. 0

Theorem 5: The number of loser nets found by Algorithm IG-Match in completing the net partition

is less than or equal to the size of a maximum matching in B.

Proof: No edge of the matching M can lie between a vertex in Odd(L) and a vertex in Odd(R),
else there would be an augmenting path and M would not be a maximum matching. However, by the
construction of Phase I every vertex in Odd(L) and in Odd(R) is incident to some edge of the matching
M. By the construction of B’, after Phase I has been completed, we have incorporated exactly one

vertex from each matching edge into the set of losers. O

Thus, the number of losers is no more than the size of the MM, which by Theorem 3 is an optimal
bound. In practice, the number of nets cut by the completed module partition can be less than the size
of the MM (see the example of Figure 4). This is because a loser net v in Odd(L) may in some instances
only have modules in common with nets in Even(R). When Phase II assigns all the modules of nets in
Even(R) to the R-side of the partition, the net v will end up with all its modules on the R-side and
none of its modules on the L-side, i.e., net v will actually not be cut by the partition, even though it
is a loser. Beyond the net-cut improvement achieved in Phase II, further elimination of loser nets from
the cut may be possible. In view of this, an interesting extension of our algorithm would be to make
recursive calls to IG-Match in order to optimally assign modules of B, B, etc.; this is currently under

investigation.
Figures 5 - 7 give detailed pseudocode for the IG-Match algorithm.

As we test all splits of the sorted eigenvector, we may retain information between the successive maxi-
mum matching computations, as well as between the successive MIS constructions. This allows efficient

implementation of the IG-Match algorithm which has small amortized complexity.

Theorem 6:  Given the intersection graph G' = (V, Eg:) of the netlist hypergraph, The 1G-Match
algorithm requires O(|V | * (|[V| + |Fg¢|)) time to complete the module partition for cach of the {V| — 1

net partitions derived by splitting the sorted second eigenvector of Q'(G').
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Netl={ab}] O — — = =— — Netd=(b,d)

Net2={b,c]) Net5={e,f}

Net3=fael](OF — — = = — O Net6={g.e}
Even(L) = {Netl, Net2} Even(R) = {Nel5, Net6}
V. = {abc) V= lefig)

A {d} cuts 1 net
V + (d] cuts 2 nets

Figure 4: In the above example, the partition Vg U {d}|Vr will cut fewer
nets than would be indicated by the size of the maximum matching,.

Proof:  The breadth first searches for augmenting paths in Phase I of the main loop require time
O(|L| + |Eg)) to complete, while the breadth first searches to find W and Wg respectively require
O()L| + |Ep|) and O(|R| + |Ep|) time. It is clear that at any given iteration of the main loop, these
time bounds are no greater than O(|V|+|Eg:|). The remaining operations within the main loop require
time O(|V]) or O(|Eg+|). Since the main loop of the algorithm is run once each time a node is moved

from L to R, the complexity of the algorithm will be O(|V| * (|V[|+ |Eg:])). 0O

4 Experimental Results

In this section, we present computational results for the IG-Match algorithm on a number of benchmark
circuits from the MCNC layout test suite, as well as two additional industry circuits reported in [32].
For each benchmark, we compare our results with the best results of the RCut1.0 program as reported in
the Ph.D. thesis of Wei [33], the earlier paper of Wei and Cheng [32], and the recent journal publication
[34]. The results reported in [32] [33] are already an average of 39% better than Fiduccia-Mattheyses
output in terms of the ratio cut metric; in obtaining this assessment, the authors of [32] compared the
best of 10 Reutl.0 runs to the best of 20 F-M runs, all with random starting seeds. We also compare
our [G-Match results with those of an intersection graph based algorithm in {14] (the authors of [14] call

their method the EIG1-IG algorithm; we use the term IG-Vote to contrast it with the present method®).

5A description of the EIG1-IG / IG-Vote method is given in Appendix B. This is included to facilitate the review
process since reference [14] is not yet generally available; however, the discussion of Appendix B will not appear in the
final paper.
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The CPU times required by our numerical algorithms are very competitive with those cited in [32]
for Fiduccia-Mattheyses optimization: for example, the eigenvector computation for PrimSC2 requires

83 seconds of CPU time on a Sun4/60, versus 204 seconds of CPU for 10 runs of RCutl1.0.

While the spectral approach cannot take module areas (weights) into consideration, this has not
been a significant disadvantage in practice, as witnessed by the results of Hagen and Kahng in [13].
Furthermore, that the spectral algorithm is oblivious to node weights does not present a difficulty
for other large-scale partitioning applications in CAD, e.g., test or hardware simulation. For such
applications, the input is simply the netlist hypergraph with uniform node weights; [33] reports that
ratio cut partitioning saved 50% of hardware simulation costs of a 5-million gate circuit as part of the

Very Large Scale Simulator Project at Amdahl; similar savings were obtained for test vector costs.

Test Number of Wei-Cheng RCutl.0 1G-Match Percent

problem elements Areas Neta cut Ratio cut Areas Nets cut HRatio cut improvement
bml 882 9:873 1 12.73 x 10~ 21:861 1 553 % 10~° 57
19ks 2844 1011:1833 109 588 x 10" | 650:2194 85 5.96 x 107 -1
Prim1 333 152:681 14 1.35x 10~° 154:679 14 134%x 10" 1
Prim2 3014 1132:1882 123 577 x 10~° | 740:2274 77 458 x 1077 a1
Test02 1663 372:1291 95 198 x 10-% | 2111452 38 1.24 x 10~ 37
Test03 1607 147:1460 31 14.44 % 10~% | 803:304 53 898 x 10°° 33
Test04 1516 401:1114 51 11.42x 10~° | 73:1442 [ 5.70 x 10~% 50
Tesat05 2595 1204:1391 110 6.57 x 107 | 105:2490 3 3.06 x 10~ 53
Test06 1752 145:1607 18 7.72% 10°% 141:1611 17 7.48 x 1077 3

Table 2: Qutput from IG-Match algorithm, compared with results from the
RCutl.0 program of Wei and Cheng. Results are 28.8% better on average
than those of RCutl.0.

Table 3 compares IG-Match output with computational results reported by Hagen and Kahng [14]
for their 1GG-Vote algorithm on the same suite of test cases. We include these results in the present
discussion to give additional evidence of the quality of the IG-Match algorithm, and in particular to
show the effectiveness of the matching formulation. The 1G-Match algorithm represents a average of 7%
improvement in partition quality over the IG-Vote algorithm. As a final note, we observe that IG-Match
achieves an average improvement of 22% over the original EIG1 algorithm of [13], which did not use

the intersection graph representation.

5 Conclusions

We have presented a new approach to module partitioning, based on a combination of spectral techniques
and the intersection graph representation G’ for the circuit hypergraph. Statistical analysis of net cut

probabilities as a function of net size, as well as sparsity considerations in the numerical computation,
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Test Number of Hagen-Kahng IG-Vote (EIG1-1G) 1G-Match Percent

problem elements Areas Nets cut Ratio cut Areas Nets cut Ratlo cut improvement
bml 882 21:861 1 5.53 x 10~° 21:861 1 553 x 1070 o
19ks 2844 662:2182 92 6.37 x 100 650:2194 85 596 x 10~° 7
Prim1 833 154:679 14 1.34x 10~ % 154:679 14 134x 10713 4]
Prim2 3014 730:2284 87 5.22x 10~° 740:2274 77 458 % 10™° 13
Test02 1663 228:1435 43 1.47x 10°F 211:1452 33 1.24x 10~ % 16
Test03 1607 T8T:820 64 9.92 x 10~% 803:804 58 8.98x 10~7 10
Test04 1515 71:1444 6 5.85 x 107 73:1442 6 570 x 10~ 3
Test05 2595 103:2492 8 3.12x 10~° 105:2490 3 3.06x 1077 2
Test06 1752 143:1609 19 8.26 x 10~ 141:1611 17 7.48x 10~° 10

Table 3: Output from IG-Match algorithm, compared with results from the
1G-Vote algorithm of Hagen and Kahng [14]. 1G-Match results uniformly
dominate IG-Voie results, and IG-Match averages 7% improvement over
IG-Vote.

led us to consider the intersection graph representation. We use a sparse Lanczos code to induce a linear
ordering of nets via the sorted second eigenvector of Q'(G”), and formulate the completion of the module
partition as a maximum independent set computation in a bipartite graph. Our 1G-Match algorithm
guarantees to complete a module partition without cutting more nets than the size of a maximum
matching in the bipartite graph; this bound is tight. Furthermore, the computation is efficient in an
amortized sense even when we wish to test all possible partitions (“splits”) of the sorted eigenvector to
see which leads to the best module partition: IG-Match tests all splits in O(|V|*(|V]| +[E]) time. Since
the computational complexity of the Lanczos implementation scales well with increasing problem sizes
[12], we believe that this overall methodology will continue to be useful even when problem sizes grow

very large.

For the MCNC Test and Primary benchmarks, along with two additional industry benchmarks, our
IG-Match algorithm obtained an average of 28.8% cost reduction over the RCut1.0 program of Wei and
Cheng [32] [34]. This contrasts with the 9% improvement obtained by Hagen and Kahng [13] using the
spectral approach with a traditional clique-based net model; this difference highlights the advantages
of the intersection graph representation. We again note that the spectral computation is faster when
we use the intersection graph, due to additional sparsity of up to an order of magnitude fewer nonzeros
in the netlist representation. The 1G-Match algorithm also obtained a 7% average improvement over
the forthcoming “voting” heuristic of Hagen/Kahng [14]. With respect to practical advantages, our
IG-Match algorithm derives its output from a single, deterministic execution of the algorithm - i.e.,
the approach is inherently stable and does not require multiple random starting points as with other

approaches.

A number of interesting open issues remain. The eigenvector computation can be sped up further by
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additionally sparsifying the input through thresholding, or by relaxation of the numerical convergence
criteria. A hybrid algorithm which uses clustering to condense the input before applying the partitioning
algorithm (such an approach is discussed by Bui et al. [3] and by Lengauer [22}) is also promising.
Parallel speedups of the Lanczos code are also possible. With any of these heuristics, the ratio cuts so
obtained may optionally be improved by using standard iterative techniques. The recursive enhancement
of IG-Match described in Section 3 is also of interest. Finally, following the successes reported by Wei
and Cheng [33] [34], the intersection graph based ratio cut partitioning should be applied to ratio
cut partitioning for other CAD applications, particularly test and the mapping of logic for hardware

simulation.
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IG-Match for B = (L, R, Eg}. Main Loop Phase I: Selecting Winner Nets

L, R : sets of net-vertices in left, right partitions

E; : set of edges in the intersection graph G’

Ep : set of edges between L and R

M : set of edges in maximum matching between L and R
P : augmenting path from R to L

N : set of net-vertices to examine in breadth first search
Wi, Wg : sets of winner net-vertices in L, R

ve l /* v is the next net in the sorted IG eigenvector */
L:=1L—{v}
for all edges (v,y) € Eg do

Ep:=Ep —{(v,v}}

/* Construct a maximum matching */
if 3u such that (v,u) € M then
M =M - {v,u}
P := an augmenting path from « to L
if | P} # 0 then /* augment M according to the edges in P */
M= =M-{(z,y): z€L,y€ R, (z,y) € P}
M =Mu{(z,y):z€l,yec R (y,z) € P}
R:=RU{v}
for all edges (z,v) € Eg do
if z € L then
Ep = Egu{(z,v)}
P := an augmenting path from v to L
if |P| # 0 then /* augment M according to the edges in P */
M=M-{{(z,y):zs€Ly€ R () € P}
M =Mu{(z,y):zeLy€ R (y.x) € P}

/* Construct a maximum independent set */
Wi := set of unmatched net-vertices of L, i.e., U
N =W
while N #0 do
let z € N
N = N—-{z}
for all edges (z,y) € Fp do
if (z',y) € M and z' € W then
Wi = Wr + {:{:'}
N:=N+{z'}
endwhile /* Wy = Even{L) */
Whg := set of unmatched net-vertices of R, i.e., Un

N = Wng
while N # 0 do
let ye N
N =N - {y}

for all edges (z,y) € Ep do
if (z,%) € M and y' ¢ Wg then
Wr == Wi +{y'}
N :=N+{y}
endwhile /* Wgr = Even(R) */

Figure 5: First phase of main loop, Algorithm 1G-Match: selecting the
winner nets.
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IG-Match for B = (L, R, Eg). Main Loop Phase II: Module Assignment

L, R : sets of net-vertices in left, right partitions

Ep : set of edges between L and R

Wi, Wg : sets of winner net-vertices in L, R

Vi, Vr : sets of modules contained by neis in Wy, Wg resp.
Vv @ set of modules not contained by nets in W or Wg

Ve =19
Ve:=@
for all nets z € Wi do
Vi := Vi U { modules in net =}
for all nets y € Wg do
Vr := Vr U { modules in net y}
Vo=V — (VL U VR)
calculate ratio-cut with partitions V¢ U Viy and Vg
calculate ratio-cut with partitions V1 and Vr U Vi

Figure 6: Second phase of main loop, Algorithm IG-Match: constructing
the module partition.

Overall 1IG-Match Algorithm for B = (L, R, Ep)

L, R : sets of net-vertices in left, right partitions

Ep : set of edges between L and R

M : set of edges in maximum matching between L and R
V : set of modules in netlist

L=V,R:=0;Fg =9 M =9
while L # # do

Phase I : select winner nets

Phase 11 : perform module assignment to partitions
endwhile

Figure 7: High-level outline of complete Algorithm IG-Match.
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6 Appendix A

A prototypical example is the work of Hall [15], which we now outline. This work is particularly relevant
since it uses eigenvectors of the same graph-derived matrix Q = D — A (the same I and A defined
above) that we utilize. Donath and Hoffman, Boppana, and others use different matrices derived from
the netlist graph, but exploit similar mathematical properties (e.g., symmetry, positive-definiteness) to
derive alternate eigenvalue formulations and relationships to partitioning.

Hall’s result [15] was that the eigenvectors of the matrix Q@ = D — A solve the guadratic placement
problem of finding the vector £ = (z1, z3,..., 2;) which minimizes

zZ= %Z E(.’B.‘ - IJ')2A|'J'

i=1j=1

subject to the constraint |z| = (zTz)!/? = 1, with A;; again equal to the strength of the connection
between modules i and j.

It can be shown that z = ¢TQxz, so that to minimize 2 we may form the Lagrangian
L=2TQzc— MzTz—1).
Taking the first partial derivative of L with respect to & and setting it equal to zero yields
20 - 2-z =0,

and this can rewritten as

Q- M)z =0

where I is the identity matrix. This is readily recognizable as an eigenvalue formulation for \, and
the eigenvectors of @@ are the only nontrivial solutions for z. The minimum eigenvalue 0 gives the
uninteresting solution =z = (1/y/n,1/\/n,...,1/\/n), and hence the eigenvector corresponding to the
second smallest eigenvalue A is used.

7 Appendix B — The IG-Vote Method of [14]

Given the intersection graph ” and the net ordering v’ based on the sorted second eigenvector z’ of
Q'(G'), it is too simplistic to construct the (U|W) module partition by merely assigning signal net s,
to U, signal net s,r to W, signal net s,; to U, etc. This is because such assignments will soon begin
to conflict: a net assigned to U will contain some module that also belongs to a net already assigned
to W. To escape this difficulty, the authors in [14] adopted the following strategy: assign a module M;
to, e.g., U only when enough of the nets containing M; have been assigned to U. This is accomplished
with a heuristic weighting function, where each net exerts “weight” on its component modules inversely
proportional to the size of the net. In practice, to guarantee that every node is assigned to a partition,
all nets/modules are first placed in U, and then the nets are moved one by one to W (beginning with
syt and continuing through s,; ). A module will move to W only when enough of its total incident
net-weight w; (i.e., more than some threshold proportion) has been shifted to W. In the pseudocode
below, and in the experiments reported in [14], a threshold of 1. nei-weight is used. Symmetrically, one
may also start with all nets/nodes in W, and shift nets beginning with syt , since this yields a different
set of heuristic node partitions. The output is the best ratio-cut partition among the up to 2+ (n — 1)
distinct heuristic partitions so generated. The conversion of the sorted second eigenvector to a heuristic
node partition is summarized in Figure 8:
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Module Assignment to Partitions — IG-Vote

w = array containing the otal net weight of each node
z = array containing the moved net weight of each node
Compute eigenvector ' of second eigenvalue A(Q'(G'));
Sort entries of 2/, yielding ordering v’ of net indices;

{* initialize net-weight vector *}
w=1_0
for i = 1 to n = number of modules
for each signal net s; containing module M;
add I/ISjl to w;

{* begin with all nets/nodes assigned lo partition U *}
z=0
for j = 1 to m = number of nets
for each module M; in net Su!
add 1/|s,,;,| to z;
if zi > (wi/2)
move module M; from partition U to partition W
calculate and output the ratio cut cost for (I/, W) partition

{* begin with all nets/nodes assigned to partition W *}
z=9
for j = m downto 1
for each module M; in net Sy!,
add 1/|s,,;| to z;
if 2; > (w.— / 2)
move module M; from partition W to partition U
calculate and output the ratio cut cost for (I/, W) partition

Output best ratio cut partition found.

Figure 8: High-level description of the IG-Vote heuristic [14] for module
partitioning frotn the sorted eigenvector of the intersection graph.
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