Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

ON CONNECTIVITY VERIFICATION IN MULTI-CHIP MODULE
SUBSTRATES

A. Kahng October 1991
G. Robins CSD-910074

E. Walkup

On Connectivity Verification
in Multi-Chip Module Substrates*

Andrew B. Kahng, Gabriel Robins and Elizabeth A. Wa,lkup]L

Dept. of Computer Science, UCLA, Los Angeles, CA 90024-1596
1Dept. of Computer Science, Univ. of Washington, Seattle, WA 98195

Abstract

Multi-chip module packaging techniques present several new technical challenges, no-
tably substrate testing. We formulate substrate tesiing as a problem of connectivity verifi-
cation in trees via k-probes; this paper presents a linear-time algorithm which computes a
minimum set of probes achieving complete open fault coverage. Since actual substrate test-
ing also involves the scheduling of probe operations, we formulate efficient probe scheduling
as a special type of metric traveling salesman optimization and give two effective heuristics.
Empirical results using both random and industry benchmarks demonstrate reductions in
testing costs of up to 21% over the best previous methods. The paper concludes with
generalizations to alternate probe technologies and several open problems.

Key phrases: Multi-chip modules, VLSI testing, graph algorithms, open fault detection,
interconnect testing and verification, circuit probing, integrated circuit reliability.

1 Introduction

Multi-chip module (MCM) technology has recently emerged as an economically viable means
for packaging complex, high-performance systems [2] [7] [16] [20]. Traditionally, system perfor-
mance is limited by interconnection delays at the upper levels of the hierarchy (e.g., printed
circuit board or backplane), and may be improved by increasing circuit density and die size.
However, as we approach wafer-scale integration, poor manufacturing yield and incompatibil-
ity with mixed technologies make such a monolithic system implementation unattractive. The
MCM approach resolves this dilemma, allowing high circuit density and yield while decreasing

interconnect delay.

MCMs eliminate individual integrated circuit (IC) packages, allowing die to be situated

closer together. This shortens interconnect length and enables up to a three-fold increase in

*This research was supported in part by NSF grant MTP-9110696, by an IBM Graduate Fellowship (Robins),
and by an NSF Graduate Fellowship (Walkup).

clock frequency, a seven-fold decrease in area, and a 30% decrease in power consumption over
the best values achievable using high-density printed circuit boards (PCBs) [4). A typical MCM
(see Figure 1) consists of a substrate containing inter-chip wiring, upon which are mounted a
number of bare die. The MCM substrate is made of silicon, alumina, or cofired ceramic, and
usually consists of multiple layers (up to thirty or more wiring layers, as well as power and
ground layers}. The integrated circuits are bonded to pads of the “chip layer” of the substrate
using solder bumps or tape-automated bonding (TAB) technology [17].

Figure 1: An example of a multi-chip module, showing the underlying substrate
containing the interconnect, as well as several mounted die.

The increased use of multi-chip module packaging for large, high-performance systems has
focused attention on several new and challenging CAD problems, especially those related to
layout, thermal reliability, and testing [6] [16]. Testing in particular presents one of the most
persistent challenges of the MCM approach [1] [7] [20]. It is desirable to discover defects in
the MCM substrate as early as possible, since the cost of locating and fixing a system fault
increases geometrically with each successive stage of the system manufacturing and market-
ing process. Certainly, the fully-assembled MCM package can be tested using combinatorial
IC testing techniques. However, the pre-assembly MCM substrate simply contains a set of
disjoint wiring connections with no active devices; thus, the substrate cannot be tested using
conventional techniques. With this in mind, the present work addresses verification of electrical

connectivity in MCM substrates.

We model the interconnect in the MCM substrate as follows. A net is a set of pins p; that

are to be electrically connected. Each signal net is routed on multiple routing layers using a
tree topology, where we assume without loss of generality that each leaf is a net terminal, each
edge is a wire segment on a single wiring layer, and each internal node is a vig between two
or more routing layers (Figure 2). We wish to verify that the routing topology of each net is

properly implemented, with no faults.

L1 + - D

I R
V2
L2 @ @ @ @

Figure 2: A sample net (left} and its corresponding tree representation (right); pins
become leaf nodes while vias become internal nodes.

Two fault classes are of interest in MCM substrate testing: open faults, and short faults. An
open fault is an electrical disconnection between two points that are to be connected. As will be
discussed in Section 2 below, there are two types of open faults: wire opens, which correspond
to edge failures in the tree topology, and cracked vias, which correspond to a physical form
of node failure which arbitrarily disconnects subtrees and is not necessarily detected by tests
designed to cover wire opens. A short fault is defined to be an electrical connection between

two nets that are not intended to be connected,

Traditional methods for connectivity checking involve either parallel probing of the circuit
under test, or combinatorial exercising of the logic, neither of which apply to MCM substrate
testing [2]. In verifying connectivity for PCBs, a bed-of-nails tester will simultaneocusly access
every grid point, yielding an efficient, parallel checking procedure. However, this idea cannot be
applied to MCMs as feature sizes are too small to allow use of such a grid-based methodology.
A combinatorial approach, e.g., the boundary-scan method for hierarchical design, requires
system-specific, built-in test circuitry [9] [18). In general, this method will apply only to a
completely assembled MCM, but not to a substrate which contains isclated interconnect with

no active circuit elements.

Several groups have recently proposed new methods for verifying circuit connectivity during

MCM manufacturing. Fach of these new methodologies relies on sequential probing of the

MCM substrate, in contrast to the standard approaches above which use parallel probing or

combinatorial testing.

Golladay et al. [6] propose an electron-beam method to test MCM substrates for short fopen
faults by injecting charge into individual nets and then scanning them for faults. Unfortu-
nately, electron-beamn testers typically have a relatively small working window of access to the
chip/substrate, so that probing a location outside that window requires physical motion of
an apparatus. Compounding this drawback is the fact that an electron-beam may require a
long time to charge up large nets, so that a testing methodology based on this process can be

prohibitively slow [15].

All other sequential probing approaches involve variants of k-probe testing, where k “flying”
probe heads simultaneously move around the circuit, measuring resistance and capacitance
values to determine the existence of shorts between pairs of nets and opens between two pins
of a single net. Formally, we define a k-probe to be a set of k distinct net terminals which are
visited simultaneously by & movable probe heads.! A single k-probe simultaneously verifies all
(;) paths between pairs of terminals in the probe set by measuring resistance and capacitance
values. For example, when k = 2 the unique path between the two terminals is checked. A
2-probe sequential testing approach developed by Crowell et al. [3] for bare-board testing has
been adopted by certain MCM manufacturers [12]. The method of Crowell et al. uses only
one probe for each net in the layout, placing the probe heads on the two pins of the net which
are physically farthest apart. Unless the measured resistance deviates significantly from the
value predicted for the correct circuit, one assumes that no open fault exists. Similarly, only
when capacitance is far from the predicted value will a possible short fault between two nets

be investigated carefully.

The algorithm of Crowell et al. [3] is efficient in that it uses just one probing operation per
net. However, an unfortunate choice of probe locations may yield measured capacitance and
resistance very similar to the predicted values, even in the presence of a fault. For example, an
open fault caused by a disconnected pad will be detected only by directly probing a path through
the pad itself; probing any other path will fail to notice the small deviation in capacitance and
resistance values. Indeed, the number of pads in the net induces a lower bound on the number

of probe operations needed for fault coverage.

ICurrent probe technology generally uses k = 2, but probe machines with higher values of k are currently
under development [14].

As noted above, the incomplete fault coverage afforded by such methods as [3] is economically
unacceptable. Thus, MCM manufacturers are now adopting substrate test methodologies which
provide complete open fault coverage for all nets [14] {19]. With this in mind, Yao et al. [19]
have recently proposed a quadratic-time algorithm that determines a set of 2-probes which
will check for all possible open faults. It turns out that sufficient capacitance measurements
are taken during the open fault checking process to determine whether two nets have been
shorted together (i.e., we will encounter a capacitance value that is too high) [3] [19]. Thus,
the remainder of this discussion is confined to the issue of complete open fault coverage. In
this paper, we give a linear-time algorithm which for any k > 2 determines a &-probe set which
accomplishes complete open fault coverage of each net. The number of probes used by our

method is the minimum possible.

Once probes are found which adequately test the required classes of open faults, one must be
schedule the probes for execution by a mechanical tester. Obtaining a good schedule is critical,
especially with large production runs. Previous groups [3] [19] have used generic greedy or
iterative traveling salesman heuristics to attack this problem. In this paper, we propose two
effective heuristics for probe scheduling based on new observations concerning the metricity and

allowable structure of the probe set.

The remainder of this paper is organized as follows. In Section 2, we formulate optimal open
fault detection as a tree testing problem and present linear-time algorithms which find an optimal
number of probes to cover all possible open faults. Section 3 shows that probe scheduling to
minimize total travel time is a form of metric traveling salesman problem (TSP); we present
two effective heuristics, one of which has small constant-factor error bound for scheduling any
given set of probes. Section 4 gives experimental results on random and industry benchmark

layouts, and Section 5 concludes with directions for future research.

2 Open Fault Detection

In this section we address the following:

Minimal Probe Generation (MPG) Problem: Given a routing topology for a signal net

with [leaves (i.e., pins), determine a minimum set of k-probes needed to verify the net routing.

We consider two levels of open fault coverage: (i) coverage of all open faults on wire segments,

and (ii) coverage of all open faults on wire segments and “cracked” vias (see below). This section
presents optimal solutions for the two corresponding versions of the MPG problem. Due to the
nature of current probing technology, the discussion assumes k& = 2; extensions to arbitrary k

are straightforward.

2.1 Optimal Detection of Wire Open Faults

In order to test the integrity of all wire segments, certainly every segment which is incident to
a pin must be tested. Thus, the number of pins ! (leaves in the routing topology) induces a
lower bound of [4] probes when k = 2. Qur probe generation algorithm orders the pins of a
net as py,...,pr via an arbitrary in-order traversal of the routing tree. Choosing the L%J probes
{Pi:P.‘ﬂ,‘,J}x 1<i<g [%J, will cover all edges of the tree, as iHustrated in Figure 3; if { is odd,

an additional probe {p;,p:} is generated. Figure 4 gives the formal algorithm statement.

Probes

Figure 3: Selecting a minimal set of probes to detect the existence of any wire open
faults. The probes {p;,p; +14 J}, 1<i< f_%j, provide complete wire open fault
coverage.

Theorem 1: Given a net whose routing tree topology has I leaves, [{] 2-probes are sufficient

for complete wire open fault testing.

Proof: A graph is bridge connected if for every edge there exists some simple (i.e., vertex-

disjoint) cycle containing that edge. Starting with the original tree, for each probe we add the

ALG1: Optimal probe set generator for wire open fault detection
Input: A routing tree topology with [leaves

QOutput: A minimal set of probes for detecting wire open faults

Root the tree arbitrarily at an internal node

Induce an in-order labeling py,...,p; of the leaves

Output the probes {p,-,p,-ﬂ,“ Li<i<ti]

If l is odd Then Output the probe {p;, p}

Figure 4: ALG1: Optimal detection of all wire open faults.

corresponding edge connecting the two leaves of the probe into the graph. A set of probes is
sufficient to test for all wire opens if and only if it induces a bridge connected graph. In order
to convert a tree into a bridge connected graph via the addition of a minimum number of new
edges, it suffices to add the [1] new edges {piipiypyy} forall1 <i < |+], where py,...,pi is
the leaf sequence of the tree in any in-order traversal of the tree (when ! is odd, the additional

probe {p;,p} is used as well).

To see that every edge in the resulting graph G = (V, E) lies on some simple cycle, observe
that for every proper subtree in the original tree, there exists an edge in G connecting one of
the leaves of that subtree to a leaf not in that subtree. Given an arbitrary edge e = {v;, v/} in
the original tree (Figure 5), where v; is the father of v;r, one simple cycle that surely contains
the edge e is vi,...,v;,v%,...,Um, ..., v, v; where v; is any leaf in the subtree 7" rooted at
vir such that v; is connected (by a “probe edge”) to a leaf vy that is not in 7', and vy, is the
lowest common ancestor of both v; and v;. To see the existence of v; and vy, assume toward a
contradiction that every leaf v;. in T" is connected by a probe to vgs which is also in T'. Because
of the in-order labeling, leaves Yl and V4|41 ATE also in 7. Qur assumption that all probes
of leaves of 7" are internal to 7" then implies that v; must also be in 77, along with v; when {
1s even or v;_; when [is odd. In the case where is even, T” will contain all leaves of the input
tree topology, contradicting the fact that 7" is a proper subtree of the topology. For [odd, a
probe which tests the sole leaf v; not in 7' must connect v; to a leaf in 7, contradicting the

assumption that probes involving leaves in T/ are internal to T". O

Figure 5: ALG1 checks each edge e = {v;, vy} for an open wire fault using a probe
which forms a simple cycle containing e, as shown.

2.2 Optimal Detection of Cracked Via Faults

In manufacturing the MCM substrate, a via can physically “crack” due to such factors as
misalignment in lithography or thermal stress. In other words, subtrees rooted at this internal
node of the net can become electrically separated (see Figure 6) [19], so that certain sets of
probes will detect this open fault, while other sets will fail to find the cracked via. This section
gives a linear-time algorithm, which we call ALG2, that tests for both wire faults and cracked

vias using the minimum possible number of probes.

ALG2 begins by rooting the tree topology at an internal node R of maximum degree d and
then orienting all edges towards R. The algorithm then continues with each leaf node sending
to its parent a message list containing its label. When a given node has received message lists

from all of its children, it iteratively generates probes by pairing labels from distinct incoming

Craqked

/ "

Layer 1

SOOI

Layer 2 e

Figure 6: A cracked via in a routing. The two routing layers are depicted using
different shadings, while the cracked via (depicted in black) disconnects the circuit
as shown.

lists, at least one of which contains more than one node label; when the sum total of remaining
labels at that node has been reduced to less than d + 1, all remaining labels are concatenated
and sent to the node’s parent. This process is repeated at each node until only the root remains
unprocessed, where a simple cleanup step is then performed. Figure 7 traces the execution of

ALG?2 on a small example, while Figure 8 gives the formal statement of ALG2.

Theorem 2: Given a net routing topology, ALG2 generates a set of probes sufficient to test

for all wire open and cracked via faults.

Proof: by induction on the number of leaves in the tree,

Basis: Any tree of depth one is fully tested by ALG2, since in that case we test one leaf with
all others.

Induction: Assuming that our algorithm completely tests any tree with & leaves, we show that
it also completely tests any tree with k 4 2 leaves. Let T be a tree with £ + 2 leaves and let [}
and Iy be the first leaves paired together to generate a probe when we apply ALG2 to T. Let T
be the tree with k leaves which results when we remove [and I from T'. Let v be the internal
node whose message lists we are examining when we generate the probe {{;,l;}. We claim that
after generating the probe {I;,{3}, the message lists at v are precisely those that arrive at v’
(the node in T that corresponds to v in T), and so the rest of the execution of ALG2 on T
is the same as the execution of ALG2 on T". Since v is the first node at which we generate a
probe, it must be the case that just before I; and I are matched, the message lists at v contain
the names of all leaves which are descendants of v. When I; and I, are removed, the new lists
contain the names of all descendants of ' and so the algorithm proceeds as for the tree 7° with

k leaves. Clearly our probe sequence will test that {; and I, are connected; the continuation of

Figure 7: A sample run of ALG2 on a net topology containing 9 pins and 5 vias; a
total of five probes are generated (thick arcs).

ALG2 on T" will generate a probe sequence which tests that 7' is connected; and so we need

now only show that the connectivity between !; and 7" is also tested. If v is not the parent

10

ALG2: Optimal probe set generator for wire open and cracked via detection

Input: A routing tree topology (V, E)
Output: A minimal set of probes for detecting wire open faults and cracked vias

Root the tree at any via R € V of maximum degree d, and Direct all edges towards R
Each leaf node v sends the message {v} to pareni(v)
While 3v € V, v # R having received messages Mj,... y Myegvy-1 from its deg(v) — 1 children
While Z%")~! | M, | > d and 3i such that |M;] > 1
Let z € M;
Let y € M; for some j # 1, |[M;]| > 0
Generate probe {z,y}
M = M; — {2}
M; = M; — {y}
Let L=MU...U Mdeg(v)—l
Send L to parent(r)
V=V-{v}
When V = {R} and R has received messages M,,..., My from its d children
While 3i,j, 1 <i,j <d, i # j such that |M;| > 1, |M;] > 2
Reorder messages M,..., My such that {M;| < |M;; | forall1 <i<d
Let & < d be as small as possible such that |M;| > 0
Lletz e M1
Let y € M,
Generate probe {z,y}
M1 = M]_ — {1:}
M = M — {y}
Let L=MU...UM,
If || > 1 Then generate probes {L;,L;} ¥ 2<i <|L| and terminate
Else Choose any v € V such that v and L, were not passed up by same child
Generate probe { L, v} and terminate

Figure 8: ALG2: Optimal detection of both wire open and cracked via faults.

of both {; and l3, then some edge on the path from I; to I; in T coincides with an edge of 77,
Since the mutual connectivity of all edges on this path is tested, by transitivity the connection
of all of these edges to 7" is also tested. Conversely, suppose v is the parent of both {; and 1.
Both I} and I, pass to v message lists of length 1, but the only time we generate a probe from
two singleton message lists is at the root when all message lists have length 1, a phenomenon

which can occur only as part of the basis case.

Note that while our induction is on the number of leaves in the tree, every tree with more
than one leaf can be built from the basis case. There is only one tree with two leaves: the tree
with a root and two leaves at depth 1. There are two possible trees with three leaves: the tree

with a root and three leaves at depth one; and the tree with a root which has one leaf child at

11

depth one, and one internal node at depth cne, which in turn has two children which are leaves
at depth two. Of these three trees, only the last does not fit the basis case, but it will after one
more probe is generated. Any other tree with two or three leaves will never be given as input
to the algorithm since its root will not have degree d, and will not arise during the induction

since that would violate Lemma 7 below. O

We now use a sequence of lemmas to prove that ALG2 uses the minimum possible number

of probes.
Lemma 1: A node of degree d requires d — 1 probes to test whether it is cracked.

Proof: Testing an internal node for “cracks” using probes is analogous to connecting a set of
d vertices by edges until a single tree connects all the vertices. The result is immediate since a

tree with d vertices contains exactly d — 1 edges. 0
Lemma 2: No node passes up more than d leaf names in its message list.

Proof: by induction on the maximum distance from a node to any one of its leaves.

Basis: If the distance is zero then the node is a leaf and passes up one name in its message list.
Induction: Suppose the node does send up a message list containing more than d leaf names.
Since, by the induction hypothesis, each child of the node sent up at most d leaf names, the
propagated leaf names must come from the message lists of two or more children. But under
such conditions, the algorithm will generate probes using leaf names from different message lists
until either each child’s message list has length one, or the total message count is d or less. In
the first case, since the node received messages from at most d — 1 children, it can send up a
message list of length at most d — 1. In the second case, the node sends up a list of length at

most d. 0

Lemma 3: No internal node passes up fewer than d — 1 leaf names in its message list, unless

the list contains the names of all leaves that are descendants of that node.

Proof: by induction on the maximum distance from a node to any one of its leaves.

Basis: If the distance is zero then the node is a leal and it passes up the message list containing
its name.

Induction: Suppose a node passes up k leafl names where k < d — 1 and that the node has
t descendants where ¢t > k. Since ¥ < d — 1, no probes could have been generated at that

node, and k must be the sum of the lengths of all message lists sent by the node’s children.

12

Each of these children must have sent lists of length no greater than k, and so by the induction
hypothesis, each must have sent lists containing all their leaf descendants. The union of these

lists is precisely the list of the descendants of the node, and so we have a contradiction. O

Lemma 4: If any combination of 2(d — 1) or more leaf names are present among d non-empty
message lists at the root node and the difference in length between the longest two message lists
is no more than d — 1, then either all leaf names appear in the probe sequence exactly once, or

else one leaf name appears twice and all others appear once.

Proof: by induction on d.

Basis: d = 2. There are two message lists. If they both have the same length, then they are
completely matched with each other and no leaf names are repeated. If one has length one
longer than the other, then one leaf will need to appear a second time in order to match the
single leaf remaining after all the matches have been made.

Induction: Matches at the root are made by the algorithm until one of the incoming message
lists has length one. At this point there are at least 2(d — 1) leaves distributed among the
message lists. The next match leaves d — 1 non-empty message lists. The difference in lengths
between the two longest message lists has decreased by one unless these lengths were already
equal. The total number of leaves remaining is at least 2(d — 1 — 1) among d — 1 lists. We then

invoke the induction hypothesis for d — 1. 0

Lemma 5: If any combination of 2(d— 1) —k leaf names is present among d non-empty message
lists at the root node, then exactly one of the leaf names generated in the probe sequence wilt
appear k + 1 times in the generated probe sequence, and every other leaf name will appear

exactly once.

Proof: by induction on d.

Buasis: If d = 2 and k = 0 then we have two singleton lists, and we match them together without
duplicating any leaves.

Induction: If there exists any message list with length greater than one, we match it with a list
of length one and invoke the induction hypothesis. (There must be a list of length one, else we
would have 2(d — 1) or more leaf names present.) If no list has length greater than one, then

2(d—1) -k =d, or d =k + 2. We then must use one of the leaves d — 1 =k + 1 times. 0

Lemma 6: If k¥ > 0 and 2(d — 1) — k leaf names arrive at the root, then there are exactly

2(d — 1) — k leaves in the tree.

13

Proof: Suppose that at least one child of the root sent up a message list of length d — 1 or
more. There are d— 1 other children, each of which must have sent at least one leaf name. This
would imply a total of at least 2(d — 1) leaf names at the root, which is too many; hence, no
child of the root sent up d— 1 leaf names. Applying Lemma 3, we find that all leaf descendants
of the root must appear in the message lists received by the root, and so there must be exactly

2(d — 1) — k leaves in the tree. O

Lemma 7: No child of the root is left with a message list of length greater than one when all

other lists have reached length zero.

Proof: Suppose that when we get to the step L = My U...U My when V = {R} that one of
the M;’s has size |M;| > 1. There must be only one such M;, else we would have continued to
generate probes. Consider the last d — 1 probes generated: each must have taken one element
from M;, and M; must always have been the maximum-length message list at the root since
no other M; has length within one of M;. Hence, M; must have started with length d + 1, but

Lemma 2 guarantees this will not happen, and so |M;| < 1. O

Theorem 3: ALG2 generates the optimum number of probes for complete wire open and

cracked via testing.

Proof: Let ! be the number of leaves in the tree. If 2(d — 1) or more leaf names arrive at the
root, then by Lemma 4, we have either | or { + 1 leaf names used in the sequence of probes,
which is optimal since every leaf name must appear in at least one probe, or else not all wires
have been tested. If 2(d — 1) — k leaf names arrive at the root, then by Lemma 6 we have
1=2(d—1) ~k, and by Lemma 5 the sequence of probes contains [+ k = 2(d — 1) leaf names.
There are then d — I probes, which is optimal by Lemma 1. 0

Except at the root, each probe generated by ALG2 will remove two distinct leaf node names
from the messages (i.e., lists of leaf node names) being passed. At most d leal names will
remain to be processed at the root, requiring at most d — 1 additional probes. Therefore,
to test an /-pin net the optimal number of probes that our algorithm generates is bounded
by "Td +{d-1) = —;— + % — 1; this bound is achieved in a star topology (such a topology
is theoretically possible given the multi-layer interconnect). Assuming that d is a constant
dependent on technology, each node v passes no more than d leaf names up to its parent, and
thus each node will certainly receive fewer than d? leaf names from its children. Since each

node is processed only once, and since the amount of processing at each node is a constant, the

14

overall time complexity is linear in the size of the routing topology, which is clearly optimal.

3 Efficient Probe Scheduling

As noted above, efficient probe scheduling algorithms are necessary because testing cost is
largely dependent on the total travel time of the probe heads. In mechanical probing, individual
stepper motors will control the z— and y—coordinates of each moving head. The distance

dist(A;, B;) traveled by the i** probe head is given by

dist(A,-,B,-) = max[IA.‘S - BI':I ,]A - B,' ']

iy
This distance function (also known as the Chebyshev or Lo, norm) reflects the fact that the
maximum time interval for which any motor is engaged will determine the delay between con-
secutive probes; such a metric is typical in manufacturing applications and is quite accurate
despite second-order effects such as acceleration and deceleration of the moving heads. For k-
probes, when k = 2, the cost of moving the probe heads from a set of pin locations A = {A;, A2}
to another set of locations B = {B;, B3} is given by

¢(A, B) = min { max{ dist{(A;, By) , dist{A,,B,)] , max[dist(A;, B.), dist{A,,B;)] }.

For k > 2, the cost of moving the probe heads from A = {A;,..., Az} to B={By,..., B} is

given by
c(A,B) = IPI? mazx[dist(A;, Ba(])) , dist(As, B,,(g)) s eny dist{ Ay, Bo’(k))]
[
where {a} denotes the set of all permutations of the probe indices {1,...,k}. In other words,

we choose the mapping of A onto B in such a way that the maximum travel time of any probe

head is minimized (see Figure 9).

In some technologies, each probe head may be carried by its own moving horizontal bar. I all
such probe carriers are assumed to lie in the same plane due to the probe-machine construction,
collisions between probes become a concern and no two such bars are allowed to cross each
other’s path. In other words, the y coordinates of the k probe heads must satisfy gy <y <... <
Y at all times. Thus, the probe head coordinates are always sorted lexicographically [19]. This
constraint clearly yields a metric which we call the colliston-free metric; in contrast, the metric
discussed above will be referred to as the generalized metric. The collision-free metric is more

restrictive, since there is always a unique feasible permutation of the probe heads in traveling

15

Al1=(6,5)

B2=(11,2)

B1=(0,0)

Figure 9: An example showing the distance between two probes A = {41, A2},
B = {B1,B2}. We have dist(Al,B1) = 6, dist(A2,B2) = 9, dist(A2, B1) = 4,
and dist(A1,B2) = 5; thus, the distance between the two probes A and B is
min{max(6, 9), max(4,5)) = min(9,5) = 5 (i.e,, the best strategy will move one
probe head from A2 to Bl while the other probe head moves from Al to B2).

from one set of locations to another. In particular, for ¥ = 2 the cost under the collision-
free metric of moving the probe heads from 4 = {(z1,y1),(z2,¥2)} to B = {(z3,¥3), (24, 94)},

¥1 < ¥2, Y3 < Y4 is given by ma.x{ |21 —z3| , |l —wsl , |22 — 24|, fyo — val}-

The Minimal k-Probe Scheduling {(k-MPS) Problem: Given a set of k-probes, minimize

the total probe moving cost required in executing all probes.
A straightforward reduction from the geometric traveling salesman problem [5] yields:
Theorem 4: The k-MPS problem is NP-hard.

Proof: We can transform a geometric instance of TSP into an instance of MPS by introducing
k copies of each site, then considering each set of k identical copies of a site as a single k-probe.
Distances between probes will correspond to the original distances between the correspending

sites in the TSP instance. 0

The probe scheduling problem seems quite unapproachable, both due to its theoretical
intractability and because the distance and travel cost functions are not easily intuited. Thus,
previous work relies on generic traveling salesman heuristics to optimize the probe schedule.
For example, when k = 2 probe heads are available, Crowell et al. [3] use a bandsort algorithm
to optimize the movement of one of the probe heads. Of course, the other probe head may be
forced to travel very large distances between probes, and indeed the resulting schedule is often

exceedingly inefficient. Yao et al. [19] use simulated annealing and the Kernighan-Lin 2-opt

16

criterion [11] as the basis of an iterative interchange approach; their schedules save up to 83%
of travel costs over the method of [3]. Note that all of the heuristics proposed in [3] and [19)

have unbounded error.

In this section, we first show that the k-probe travel costs are actually metric (although
cleatly not geometric), i.e., distances between k-probes satisfy the triangle inequality for all
values of £ > 1. As a comsequence, traveling salesman heuristics with constant-factor error
bound apply [13]. Second, we exploit flexibility in the choice of probes to find probe sets which

can co-exist in an efficient probe schedule.

3.1 Metricity of the k.-MPS Problem

For the collision-free metric, the travel costs of the probe heads can be easily seen to satisfy
the triangle inequality, since the probe head coordinates are always in lexicographic order.
Thus, moving the probe heads from A to C via an intermediary B yields the same final probe
permutation as would result by moving directly from A to C. Metricity follows from the

metricity of the Chebyshev norm.

For arbitrary k-probes A, B and C, we may view the travel costs ¢(A, B), ¢(B,C) and
¢(A, C) in the generalized metric as being respectively determined by the optimal permutations
61:A— B,oz2: B— (C and g3 : A — C. Comparing the composed permutation 100z : A —

C with the permutation o3 : A — C yields the following:

Theorem 5: For any three k-probes A, B and C, the travel costs ¢(A, B), ¢(B,C) and ¢(A,C)
in the generalized metric satisfy the triangle inequality, i.e., ¢(4, B) + ¢(B,C) > ¢{A,C).

Proof: Compare the set of edges of permutation o3 : A — C that defines ¢(A4,C), with
the induced permutation oy 0 o3 : A — C (see Figure 10). Define max{o) to be the maximum
distance traveled by any probe head according to the permutation o. Clearly ¢(A,C) < max{s,0
o31), since o; o o2 18 not necessarily the minimum-cost permutation between 4 and €. On the
other hand, max(ey 0 62) < ¢(A, B) + ¢(B,C) by the triangle inequality and the metricity of
the Chebyshev norm. 1t follows that c(A,C) < ¢(A, B) + (B, C). 0

Theorem 5 allows us to apply heuristics which achieve bounded error for metric TSP in-
stances. In particular, Christofides’ combination of a minimum spanning tree construction and

matching [13] yields:

17

Figure 10: Metricity of the probe travel cost function.

Corollary 1: Given a set of n k-probes, for any fixed k > 1, a heuristic probe schedule with

cost at most 3 times optimal can be found in O(n?) time. O

3.2 Varying the Probe Set

A further optimization of the tour schedule is possible because the set of probes s itself variable.
Figure 11 depicts an instance where a “smarter” choice of probes reduces the optimal tour cost
by one-quarter. Most tree topologies can be tested with the minimum number of probes in
many distinct ways. For example, each three-pin net in Figure 11 can be tested by a minimal
set of 2-probes in three distinct ways (i.e., any two probes can be used); in fact, the 2-pin net
is the only connection topology with a unique minimum probe set. For special nets such as Vg4
and ground, the usual MCM architecture allows even more freedom: such nets can be viewed
as being implemented by vias to dedicated routing planes, so that any decomposition of the

terminals into sets of cardinality k will cover all open faults.

We thus obtain a new type of compatibility TSP problem, where sets of k-probes are selected
to cover every net such that the optimal tour cost for the union of all probe sets is minimized.
Such a formulation, where there is a synergy between the choice of probes and the optimal tour

cost, seems to be new in the literature and is of independent interest.

The Minimal Probe Generation/Scheduling {MPG/S) Problem: Given a routing
topology for a signal net, determine and schedule a set of probes so that the total probe moving

cost is minimized,

18

O, B2 B2

A2 @ A2
Bl
Bl o B3 ~af——p O B3
Al 9d—Pg Al OG—P9
A3
A3

Figure 11: An example of how selecting probes carefully can reduce the total tour
length by as much as ane-quarter; four probes are required for complete wire open
fault coverage over the two 3-pin nets {4; = (0,0), 4, = (0,1), Az = (1,0)}
and {B; = (e,¢), Ba = (¢,1 +¢€), Bs = (1 + ¢,¢)}. Assuming that the
probe tour must start and end at the origin, the probe set on the left will
be optimally ordered as {(A;,Az) , (B1, B2} , (B2, Bs) , (A, A3)}, requiring
about four units of travel time. The probe set on the right may be ordered as
{(A1,A4s) , (B1,B2) , (B1,Bs3), {A1, 43)}, requiring only about three units of
travel time.

In order to hybridize the probe-generation phase with the tour-scheduling phase, and to
take advantage of the non-determinism inherent in the probe selection, we propose the heuristic
ALG3 (Figure 12). ALG3 is based on a minimum-cost insertion strategy, i.e., it scheduies all
probes for a small subset S of nets, then iteratively adds the probe which has lowest insertion
cost in the tour while still allowing a minimum probe set.? In executing ALG3, we typically
choose S to be all nets other than power, ground, and 3-pin nets. That is, we specifically exploit
the high degree of freedom in choosing probes for power, ground and 3-pin nets. As seen in the

following section, ALG3 yields significantly shorter schedules than existing methods,

4 Experimental Results

We tested our algorithms on an MCM benchmark design obtained from Hughes Aircraft Co.,
containing 44 components and 199 nets. This is the same benchmark used by Yao et al. in {19].
We also used two randomized versions of the Hughes benchmark, where the same net topologies
were retained, but with pin coordinates reassigned randomly from a uniform distribution in the

layout region. ALG2 was used to generate minimal probe sets which cover all possible wire

2Note that a probe set which allows us to minimize travel cost may have more than the minimum possible
number of probes. However, the heuristics discussed in this section require that the number of probes is minimum;
the more general optimization is open.

19

ALG3: Insertion-based method for probe selection
Input: A collection NV of nets and their routing tree topologies
Output: An efficient heuristic probe schedule
Compute a minimal set of probes P which verifies a subset S C N of the nets
Compute a heuristic schedule (tour) Py,..., Py, PLof P
‘While 3 a net not having complete fault coverage
Find a probe P* for any net N; such that
(i) N; is still coverable by a minimal number of probes after P* is added, and
(ii) the probe’s minimum insertion cost between consecutive probes is
minimized, i.e., min ~ min {c¢(B;, P*) + ¢(P*, Pi41) — e(Pi, Pig1) }
feasible p~ ¢
Insert P* into the tour between probes F; and Py,

where ¢ was the tour index where P* had minimum insertion cost

Figure 12: ALG3: An insertion-based heuristic for probe selection.

open and eracked via faults, The schedules for these probe sets were optimized using the 2-opt

TSP heuristic, as well as by 2-opt followed by 3-opt (in a separate run).

We also tested a variant of ALG3 on the same benchmark, as described in Section 3.2 above.
We first generated a minimal set of probes for all nets other than the power, ground, and nets
with 3 or less pins, then computed a heuristic tour for these probes, using the 2-opt TSP
heuristic {again, in a separate run, we used 2-opt followed by 3-opt). Finally, we iteratively
added additional probes for the remaining nets which (i) could be inserted into the current tour
with minimum cost, and (1) were compatible with previously chosen probes in some minimum
probe set. In all cases, a total of 634 probes were generated by our algorithm, the same number
as that generated by the algorithm of [19]. With each of the ALG3 experiments, 226 probes were
initially chosen to cover the nets which had > 3 pins and which were neither power nor ground;
the remaining 408 probes were added incrementally. In the ALG3 experiments, we optionally
ran 2-opt improvement after every 10 probes added, and optionally ran 3-opt improvement after
every 50 probes added. All of the above benchmarks were run with the collision-free distance

function, as well as with the generalized distance function. These results are summarized in

Table 1.

As expected, the ALG3 variants, being able to carefully choose probes while constructing
the heuristic tour, outperformed ALG2 by a considerable margin. Results are somewhat better
when 3-opt is incorporated, also as expected. For the benchmark design, the best tour obtained

in [19] using simulated annealing had cost 150,525,000; in comparison, our ALG3 variants

20

ALG2 ALG2 ALG3 ALG3

MCM metric + 2-Opt + 2-Opt + 2-Opt + 2-Opt

+ 3-Opt + 3-Opt
Hughes generalized || 160,435,000 | 153,185,000 || 126,210,000 | 118,497,000
collision-free || 163,202,000 | 157,600,000 || 131,010,000 | 126,637,500
Randoml | generalized || 294,164,000 | 286,679,000 || 265,276,000 | 257,838,000
collision-free || 302,684,000 | 289,843,000 | 269,346,000 | 260,897,000
Random2 | generalized [295,956,000 | 285,379,000 [271,869,000 | 260,150,000
collision-free || 304,885,000 | 294,421,000 fj 270,767,000 | 263,113,000

Table 1: Performance of ALG2 and ALG3 variants on the industry benchmark and
on random examples. Note that the best probe schedule cost obtained by Yao et
al. for the industry benchmark, using simulated annealing, was 150,525,000 units.
The tour obtained by ALG3 + 2-opt + 3-opt gives savings of up to 21% over this
value. Each benchmark was run with the collision-free distance function, as well as
with the generalized distance function.

obtain up to 21% improvement over the results of [19]. Since simulated annealing usually gives
solutions quite close to optimal [8], our results indeed confirm that careful choice of compatible

probes is an important issue.

5 Future Work

Substrate testing for open faults is a critical phase in the production of multi-chip module
packages. We have formulated MCM substrate testing as a problem of connectivity verification
for trees using k-probes, and presented linear-time algorithms for optimal probe generation.
Our algorithms yield minimum probe sets for covering all possible wire open and cracked via
faults. Since the associated probe scheduling problem is metric, a bounded-error scheduling
heuristic can be obtained. Furthermore, we present an insertion-based heuristic which exploits
the special structure of 3-pin and the power/ground nets in the MCM substrate. This heuristic

significantly improves probing costs over previous methods.

There are a number of interesting open problems. The fact that many different probe sets
can cover a given net yields an interesting TSP variant, as noted above. It is possible that a
“prize-collecting salesman” formulation (e.g., at least two of the three possible probes must be
“collected” for each three-pin net) can be solved with constant-factor error via an LP-relaxation

scheme. This would be quite useful, as the bounded error heuristic of Corollary 1 in Section

21

3 applies only when all of the probes have been fixed. Analyzing the maximum error inherent
in arbitrarily fixing the probes is also of interest. Developments in probe technology will soon
allow k > 2 probe heads to move simultaneously, affording even greater freedom in choosing
the probe sets. Thus, the synergy between choice of probes and the resulting optimal schedule
cost will continue to be of significance. More sophisticated strategies for the efficient insertion
of probes into a partial tour are possible; for example, we may look for the best combination
of added and deleted probes, iterating this tour improvernent until no further cost reduction is
possible. Finally, the concept of verifying connectivity by checking paths, rather than edges, is
quite novel, as is the “physical” node failure mode (via cracking), and can be applied to both

trees and arbitrary graphs arising in other fields of study.

6 Acknowledgements

We thank Dr. Brian Tien (now at Cadence Design Systems) and Mr. Ed Shi of Hughes Aircraft
Company for access to the benchmark reported in Section 4. We are also grateful to Professor
C. K. Cheng, Mr. Nan-Chi Chou and Mr. David Yao of the UCSD CSE Dept., as well as Mr.

Tom Russell of ALCOA, for many interesting discussions.

References

[1] R. W. Bassett, P. S. Gillis and J. J. Shushereba, “Testing and Diagnosis of High-Density
CMOS Multichip Modules”, Proc. IEEE Workshop on Multichip Modules, Santa Cruz,
March 1991, pp. 108-113.

(2] R. H. Bruce, W. P. Meuli and J. Ho, “Multi Chip Modules”, Proc. Design Automation
Conf., June 1989, pp. 389-393.

{3] 3. C. Crowell, R.J. Keogh, and J.A. Conti, “Moving Probe Bare Board Tester Offers Un-
limited Testing Flexibility”, Industrial Electronics Equipment Design, McGraw-Hill, Sept.
1984.

4] W. W. Dai, “Performance Driven Layout of Thin-film Substrates for Multichip Modules”,
Proc. IEEE Workshop on Multichip Modules, Santa Cruz, March 1991, pp. 114-121,

22

{5] M. Garey and D. S. Johnson, “The Rectilinear Steiner Problem is NP-Complete”, SIAM
J. of Applied Math. 32(4) (1977), pp. 826-834.

(6] S.D. Golladay, N.A. Wagner, J.R. Rudert and R.N. Schmidt, “Electron-Beam Technol-
ogy for Open/Short Testing of Multi-Chip Substrates”, IBM J. Res. Develop. 34(2/3),
March/May 1990, pp. 250-259.

[7] D. Herrell, “Multichip Module Technology at MCC”, Proc. IEEF, Intl. Symp. on Circuits
and Systems, June 1990, pp. 2099-2103.

(8] D.S. Johnson, C. R. Aragon, L. A. McGeogh and C. Schevon, “Optimization by Simulated
Annealing: An Experimental Evaluation (part 1)”, Operations Research 37(6) (1989), pp.
865-892.

[9] Joint Test Action Group, “JTAG Boundary-Scan Architecture Standard Proposal”, Version
2.0, March 30, 1988.

[10] A. B. Kahng, G. Robins and E. A. Walkup, “On Connectivity Verification in Multi-Chip
Module Substrates”, Technical Report CSD-TR-910074, QOctober 1991.

[11] S. Lin, “Computer Solutions of the Traveling Salesman Problem”, Bell System Technical
Journal 44 (1965), pp. 2245-2269.

[12] B. McWilliams, nChip Inc., private communication (invited talk at CANDE meeting), San
Marcos, CA, April 1991.

{13] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Com-
plerity, Prentice-Hall, 1982,

[14] T. Russell, ALCOA Corp., private communication, August 1991.

[15] R. G. Sartore, N. Shastry, U. Brahme, K. Jefferson and R. Halaviati, “Tutorial for Com-
puter Aided Diagnostic E-Beam Testing of ASICs”, Proc. {th IEEE Intl. ASIC Conf.,
Rochester, Sep. 1991, pp. T8:1.1 - T8:1.7.

[16] K. P. Shambrook, “An Overview of Multichip Module Technologies”, Proc. IEEE Workshop
on Mullichip Modules, Santa Cruz, March 1991, pp. 1-6.

[17) M. Taylor and W. W. Dai, “TinyMCM?”, Proc. IEEE Workshop on Multichip Modules,
Santa Cruz, March 1991, pp. 143-147.

23

(18] L.T. Wang, M. Marhoefer and E.J. McCluskey, “A Self-Test and Self-Diagnosis Architec-
ture for Boards Using Boundary Scans”, Proc., First European Test Conf., Paris, April
1989, pp. 119-126.

[19] S.-Z. Yao, N.-C. Chou, C-K. Cheng and T. C. Hu, “A Multi-Chip Module Substrate
Testing Algorithm”, Proc. {th IEEE Intl. ASIC Conf., Rochester, Sept. 1991, pp. P9:4.1 -
P9:4.4.

[20] S. Weber, “For VLSI, Multichip Modules May Become the Packages of Choice”, Flectronics,
April 1989, pp. 106-112.

24

