Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

NEW SPECTRAL METHODS FOR RATIO CUT PARTITIONING
AND CLUSTERING

L. Hagen October 1991
A. Kahng CSD-910073

Submitted June 11, 1991
Accepted Octcocber 9, 1991
To appear in IEEE Trans. on CAD

New Spectral Methods for
Ratio Cut Partitioning and Clustering

Lars Hagen and Andrew Kahng

UCLA Department of Computer Science
Los Angeles, CA 90024-1596

Abstract

Partitioning of circuit netlists is important in many phases of VLSI design, ranging from layout
to testing and hardware simulation. The ratio cut objective function [27], though NP-complete,
has received much attention since it naturally embodies both min-cut and equipartition, the two
traditional goals of partitioning. Fiduccia-Mattheyses style ratio cut heuristics have resulted in
average cost savings of 39% for circuit partitioning and over 50% savings for hardware simulation
applications [29]. In this paper, we present several new rtesults for ratio cut computation. First,
we show a new theoretical correspondence between the optimal ratio cut partition cost and the
second smallest eigenvalue of a particular matrix derived from the netlist. This vields a provably
good approximation of the optimal ratio cut value. Second, we demonstrate that fast Lanczos-type
methods for the sparse symmetric eigenvalue problem are a robust basis for computing heuristic
ratio cuts based on the eigenvector of the second eigenvalue. We have tested our algarithm, EIG1, on
standard-cell and gate-array industry benchmarks. Results improve those of the RCut1.0 algorithm
of Wei and Cheng [27] by an average of 17% for the Primary MCNC benchmarks, while using less
computational resources. Effective clustering methods are an immediate by-product of the second
eigenvector computation. The clustering methods are very successful on all of the “difficult” input
classes that have been proposed in the CAD literature, and yield optimal solutions for instances
that are pathological for the Kernighan-Lin and simulated annealing approaches. Finally, we discuss
statistical analyses of netlist structure and other motivations (e.g., fanout and port limits in cell-
based design) for using the very natural intersection graph representation of the input as the basis for
pattitioning. A second new heuristic, EIG1-IG, is proposed, based on spectral ratio-cut partitioning
of the netlist intersection graph, EIG1-IG results are an average of 24% better than RCut1.0 results,
over the entire MCNC benchmark suite. Furthermore, runtimes are faster than those of EIG1 due
to additional sparsity in the eigenvector computation. Overall, we find that the spectral method
is appealing for several reasons: (i) it uses global information while iterative methods rely on
local information; (ii) modules in some sense make a continuous rather than discrete choice of
location; and (iii} we use a single numerical computation rather than multiple computations from
random starting points. The paper concludes by describing several types of algorithm speedups and
directions for future work.

1 Preliminaries

As system complexity increases, the divide-and-conquer approach is used to keep the circuit design
process tractable. The recursive decomposition of the synthesis problem is reflected in the hierarchical
organization of boards, multi-chip modules, integrated circuits, macros, etc. Since early decisions will

constrain all succeeding decisions, the high-level layout phases are critical to the quality of the final

layout. In particular, without a successful partitioning algorithm, good solutions to the placement,
global routing and detailed routing problems will be impossible. As noted by such authors as Donath

[7], partitioning comprises the essence of many basic CAD problems, including

*» Packaging of designs: logic is partitioned into modules, subject to constraints on module area
as well as 1/O bounds; this is the canonical partitioning application at all levels of the design
process, and it also arises whenever technology tmproves and existing designs must be repackaged

onto higher-capacity modules.

* Clustering analysis: in many layout approaches, partitioning is used to derive a sparse, clustered

netlist which is then used as the basis of constructive module placement.

¢ Partition analysis for high-level synthesis: accurate prediction of layout area and wireability
is crucial to high-level synthesis and floorplanning, and predictive layout models are made by
fitting analysis of the partitioning structure of netlists to models of the output characteristics of

particular place/route algorithms.

Note that signal delays typically decrease as we move downward in the design hierarchy; for example,
on-chip communication is faster than inter-chip communication. Therefore, the traditional metric for
the decomposition is the number of signal nets which cross between layout subproblems. Minimizing

this number is the essence of partitioning.

1.1 Basic Partitioning Formulations

A standard mathematical model in VLSI layout associates a graph G = (V, E) with the circuit netlist;
vertices in V represent modules and edges in E represent signal nets. The vertices and edges of G may be
weighted to reflect module area and the multiplicity or importance of a wiring connection. Because nets
often have more than two pins, the netlist is more generally represented by a hypergraph H = (V, E'),
where hyperedges in E’ are the subsets of V' contained by each signal [23]. A large portion of the
literature has treated graph partitioning instead of hypergraph partitioning: not only is the formulation
simpler, but many algorithms are applicable only to the graph restriction of the partitioning problem.
There are several standard transformations from the hypergraph representation of a circuit to a graph
representation. Thus, in this section we will discuss graph partitioning, and defer detailed discussion of

the hypergraph-to-graph transformation to Section 3 below.

Two basic (graph) formulations for circuit partitioning are the following:

¢ Minimum Cut: Given G = (V, E), find the min-cuf partition of V into disjoint U/ and W such

that the number of edges e = {u,w}, u € U and w € W, is minimized.

¢ Minimum-Width Bisection: Given G = (V, E), find the partition of V into disjoint U/ and
W, with |U| = |W|, such that the number of edges e = {u,w}, ¥ € U and w € W, is minimized.

By the max-flow min-cut theorem of Ford and Fulkerson [10], a minimum cut separating prescribed
nodes s and t can be found by flow techniques in O(n®) time, where n = |V|. Cut-tree techniques
[5] yield the global minimum cut using n — 1 minimum cut computations in O(n*) time. This time

complexity is rather high, and furthermore the minimum cut can divide modules very unevenly (Figure
1).

Because the minimum-width bisection divides module area equally, it is a more desirable metric, par-
ticularly with a hierarchical layout approach. Unfortunately, minimum-width bisection is NP-complete
[13], so heuristic methods must be used. Approaches in the literature fall naturally into several classes.
The top-down recursive bipartitioning method of such authors as Charney, Breuer and Schweikert 14]
[7] [23] repeatedly divides the logic until subproblems become small enough for layout. Clustering and
aggregation algorithms map logic to a prescribed floorplan in a bottom-up fashion, using seeded modules
or analytic methods (e.g., Vijayan [26]). It is also possible to look for natural clusters in the circuit

graph, as in the recent work of Garbers et al. [12].

In production software, iterative improvement is a nearly universal approach, either as a postpro-
cessing refinement to other methods or as a method in itself. The iterative improvement is based on
local perturbation of the current solution and can be either greedy (the Kernighan-Lin method [16] [23]
and its algorithmic speedups by Fiduccia and Mattheyses [9] and Krishnamurthy (18]), or hill-climbing
(the simulated annealing approach of Kirkpatrick et al. [17), Sechen [24] and others). Virtually all
implementations will also use multiple random starting configurations [20] [27] in order to adequately

scarch the solution space and yield some measure of “stability”, i.e., predictable performance.

An important class of partitioning approaches, particularly in relation to the present work, consists
of “spectral” methods which use eigenvalues or eigenvectors of matrices that are derived from the netlist
graph. Recall that the circuit netlist may be represented by the simple undirected graph G = (V,E)
with |V| = n vertices v1,...,v,. Often, we use the n x n adjacency matriz A = A(G), where a;; = 1
if {vi,v;} € E and ai; = 0 otherwise. If G has weighted edges, then a,. is equal to the weight of
{vi,v;} € E, and by convention a;; =0 for alli=1,...,n. If we let d(v;) denote the degree of node v;

(i-e., the sum of the weights of all edges incident to v;), we obtain the n x n diagonal matriz D defined

by Dy; = d(v;). (When no confusion may arise, we may also use d; to denote d(v;).) The eigenvalues
and eigenvectors of such matrices are the subject of the relatively recent subfield of graph theory dealing

with graph spectra [6].

Early theoretical work connecting graph spectra and partitioning is due to Barnes, Donath and
Hoffman (1] [7] [8]. More recent eigenvector and eigenvalue methods have dealt with both module
placement (Frankle and Karp [11] and Tsay and Kuh {25]) and graph min-cut bisection (Boppana [2]).
In general, these previous works formulate the partitioning problem as the assignment or placement of
nodes into bounded-size clusters or chip locations. The problem is then transformed into a quadratic

optimization, and Lagrangian relaxation is used to derive an eigenvector formulation.

A prototypical example is the work of Hall [15], which we now outline. This work is particularly rel-
evant since it uses eigenvectors of the same graph-derived matrix @ = D — A (the same D and A defined
above) that we discuss in Section 2 below. Donath and Hoffman, Boppana, and others use different
matrices derived from the netlist graph, but exploit similar mathematical properties (e.g., symmetry,

positive-definiteness) to derive alternate eigenvalue formulations and relationships to partitioning.

Hall’s result [15] was that the eigenvectors of the matrix @ = D — A solve the quadratic placement

problem of finding the vector & = (1,23, ..., ,) which minimizes
1 n n
=3 Z Z(x.- —z;)%a;;
i=1j=1

subject to the constraint |z| = (zTz)!/? = 1, with a;; again equal to the strength of the connection

between modules i and j.

It can be shown that z = zTQgz, so that to minimize z we may form the Lagrangian
L=2"Qz—Az"z~1).
Taking the first partial derivative of L with respect to z and setting it equal to zero yields
2Qz -2z =0,

and this can rewritten as

(@-A)z=0

where [is the identity matrix. This is readily recognizable as an eigenvalue formulation for A, and
the eigenvectors of @ are the only nontrivial solutions for z. The minimum eigenvalue (gives the

uninteresting solution z = (1/v/n,1/y/n,...,1/y/n), and hence the eigenvector corresponding to the

second smallest eigenvalue) is used. Note the several transformations inherent in this type of derivation,
e.g., the requirement that |z| = 1. The relationship between minimum-cut bisection and the second

eigenvector is hence somewhat indirect.

1.2 Ratio Cuts

One easily notices that requiring an exact bisection, rather than, say, a 60% - 40% partition of module
area, is unnecessarily restrictive. In the instance of Figure 1, even the optimal bisection will not yield
a very sensible partitioning. Penalty functions as in the r-bipartition method of [9] have been used to
permit not-quite-perfect bisections. However, these methods can require rather ad hoc thresholds and
penalties. This leads us to what is perhaps the most natural metric for partitioning, the ratio cut (also
known as a sparse cut or fluz cut) recently developed by Wei and Cheng [27] [28], and separately by
Leighton and Rao [19]. This is formulated for bipartitioning as follows.

¢ Minimum Ratio Cut: Given G = (V, E), find the partition of V into disjoint I/ and W such
that]%_'l{'%)[is minimized, where e(U/, W) is the number of edges e = {u,w}, u € U and w e W.

Figure 1: The minimum cut a|bede f will have cost = 10, but gives a very
uneven partition. The optimal bisection abd|cef has cost = 300, much
worse than the more natural partitioning abjede f which has cost = 19 and
is the optimal ratio cut.
The ratio cut metric gives the “best of both worlds™ in the sense that the numerator embodies
minimum-cut, while the denominator favors an even partition (see Figure 1). Recent work shows that

this metric is extremely useful; [27) reports average cost improvements of 39% over results from the

standard Fiduccia-Mattheyses method [9] on industry benchmarks. The ratio cut also has important

advantages in other areas of CAD: (i) in testability applications, a sparse partition will result in subcir-
cuits that have fewer I/O’s, thus requiring fewer test vectors; and (ii) in hardware simulation, runtime is
proportional to the number of interconnections at a given level of the hierarchy, so a sparse cut reduces
simulation costs. Wei and Cheng [27] [28] and the recent Ph.D. thesis of Wei [29] report extraordinary
cost, savings of up to 70% for such applications in a number of industry settings, and ratio cut partition-
ing has indeed attracted widespread interest. Unfortunately, one can show that finding the minimum
ratio cut of a graph G is NP-complete by reduction from Bounded Min-Cut Graph Partition in [13].
Multicommodity flow based approximation methods [5] [19] have been proposed, but are prohibitively
expensive for large problems. Wei and Cheng [27] [28] therefore use an adaptation of the shifting and
group swapping iterative improvement scheme of Fiduccia-Mattheyses, which was originally employed

for min-cut bisection.

In this paper, we present new results indicating that spectral heuristics based on matrix eigenvalues
are extremely useful for computing provably good ratio cuts. This conclusion is based on new theoretical
results as well as the implementation of fast numerical algorithms for directly computing a heuristic

ratio cut in the circuit graph. Our approach exhibits a number of desired attributes, including:

e speed, i.e., low-order complexity compatible with user requirements; the method also parallelizes

perfectly and allows tradeoffs between solution quality and CPU cost;

¢ provability, i.e.; a lower bound on the optimal solution cost; note that current iterative and an-
nealing methods cannot provide such a bound and indeed have unbounded error, particularly for

“difficult” instances {3];

e stability, ie., predictable performance, which in our case does not require any of the standard
devices such as taking the best of several solutions derived using multiple random starting points;

and

¢ scaling of solution quality with increasing problem size; by contrast, current iterative methods
suffer from the “error catastrophe” that is common to local search heuristics for combinatorial

problems [20].

We find that such features are becoming more crucial in a partitioning algorithm: the user requires rapid
and correct evaluation of implementation choices during synthesis, and the rapidly growing number of

design alternatives is making this harder to achieve.

The remainder of our paper is organized as follows. In Section 2, we show a new theoretical con-
nection between graph spectra and the optimal ratio cut. Section 3 presents EIG1, our basic spectral
heuristic for minimum ratio cut partitioning and clustering analysis. We derive a good ratio cut parti-
tion directly from the eigenvector associated with the second eigenvalue of Q = I - A. The spectral
approach, since it uses global information, will give a qualitatively different result than the standard iter-
ative methods which rely on local information. Furthermore, modules in some sense make a continuous,
rather than discrete, choice of location within the partition. Section 4 gives performance results and
comparisons with previous work, using benchmarks from the MCNC suite and other industry sources,
as well as classes of “difficult” inputs from the literature. Our method yields significant improvements
over the previous ratio-cut partitioning methods of Wei and Cheng [27] [28], and for both partitioning
and clustering applications we derive essentially optimal results for the difficult problem classes of [3]
and [12]. Section 5 shows that the spectral method for minimum ratio cut can be extended to the
dual intersection graph of the netlist hypergraph. Because of technological limits on fanout and module
degree, particularly for cell-based design, the intersection graph is quite sparse and is therefore even
better suited to sparse-matrix algorithms than the graph obtained from the netlist hypergraph through
the usual clique net model. Results of the EIG1-IG variant, which uses a ratio-cut partition of the inter-
section graph to construct a module partition, are significantly better than those of EIG1: 24% average
mprovement over RCutl.0 is obtained over the entire MCNC benchmark suite. Section 6 discusses

extensions and directions for future work, and our conclusions are contained in Section 7.

2 A New Connection: Graph Spectra and Ratio Cuts

In this section, we develop the theoretical basis of the method in the context of graph partitioning.
Although the discussion concerns graphs rather than hypergraphs, it is straightforward to model the
netlist hypergraph as a graph via standard hyperedge models, which we discuss in Section 3 below. The
experimental tesults reported below reflect such transformations of the input hypergraph into a graph

representation.

Recall that two standard matrices derivable from the circuit netlist are the adjacency matrix A and
the diagonal degree matrix D. We use the matrix Q = D — A mentioned above, which we may view as

the discrete analog of the Laplace A operator. Following are several basic properties of Q:

¢ (1) Q is symmetric.

¢ (2) Q is non-negative definite, so that (i) zQz = Zq;jm,-x,- 2 0 ¥z, and (ii) all eigenvalues of @
15
are > 0.
* (3) The smallest eigenvalue of Q) is 0 with eigenvector 1 = (1,1, ...,1), since Q1; = (D — A1) =

d; — Ea,-j 1 =d; —d; =0. We define A to be the second smallest eigenvalue of Q. (Note that

i
G is connected iff A > 0; by a theorem of Gershgorin [21], the multiplicity of the zero eigenvalue

gives the number of connected components of G.)
We may also show:

¢ (4) Using the notation E’ = Z to denote summation over all edges, the inner product
(i.J)eE

(z,Q2) = 2D — zAz = Zd.—a:f - Za,-ja:.-:l:j = Ed.—:c,-z - QZ' Ziz;
i ij i

which we may simply write as a complete square, ie., (z,Qz) = E‘(:c,- ~ 2;)%.

FAS L

* (5) Finally, the Rayleigh Principle [14] implies A= min %
zl]z#0

We use properties (4) and (5) to establish the main theoretical contribution of this paper, which is

a new relationship between the optimal ratie cut cost and the second eigenvalue A of Q = D — A.

Theorem One: Given a netlist graph G = (V, E) with adjacency matrix A4, diagonal degree matrix
D, and |V| = n, the second smallest eigenvalue A of @ = D — A yields a lower bound on the cost ¢ of

the optimal ratio cut partition, with ¢ > ;J:—

Proof: The optimal partition will divide V into disjoint I/ and W such that the ratio cut cost I%%—‘:V—'%
is minimum. We may rewrite this as /| = pn, [W| = ¢n, with p,¢ > 0 and p+ ¢ = 1. Now, construct

the vector z by letting
2o = q ifvueU
YTl -p ifu; €W

Then we have the following:

¢ r is perpendicular to 1, since by construction z -1 = 0.

e Since #; —x; = ¢ — (—p) = 1 for edges e;; crossing the U|W partition, we will have

(#2.Qe) =Y " (zi—2) (from(A) = 3 " (@i 2+ Y "(mi—2)’+ Y ' (mi-z)

¥} ijeu ijeEW el jew

=040+ Y (& —2;)? = e(U,W).
i€l jew

o We further note that |z|? = ¢%pn + pPqn = pgn{p +q) = pgn = JEHE

: o zQe — (UWin . H e(UW A
+ Since I:ill_il‘l'ﬁy = A from property (5) above, we have Ql'z‘%ﬂ = El((_le'WLl- > A, implying FE(TIJIW% >z,

and this gives the lower bound of Theorem One,

a

We note two important points. First, the % lower bound in Theorem One for the optimal partition cost
under the ratio cut metric is a tighter result than can be obtained using the early techniques of Donath
et al., which are essentially based on the Hoffman-Wielandt inequality [1]. Second, if we restrict the
partition to be an ezact bisection, Theorem One implies the same bound shown by Boppana [2], but
our direct derivation from the optimal ratio cut partition allows our result to subsume the result of

Boppana.

Given the result of Theorem One, a straightforward partitioning method is to compute A(@) and

the corresponding eigenvector v, then use v to construct a heuristic ratio cut.

3 New Heuristics for Ratio Cut Partitioning

A basic heuristic algorithm template is shown in Figure 2.

Input H = (V, £’} = netlist hypergraph;

Transform H into graph G = (V, E);

Compute A = adjacency matrix, D = diagonal matrix of G,
Compute second-smallest eigenvalue A(Q) of @ = D — 4;
Compute v, the real eigenvector associated with A(Q);

Map v into a heuristic ratio cut partition of H.

Figure 2: High-level description of basic spectral approach for ratio cut
partition of netlist hypergraph H.

Clearly, a practical implementation of this approach requires closer examination of four main issues:
(i) the transformation of the netlist hypergraph into a graph G; (i1) the calculation of the second
eigenvector v; (iii) the construction of a heuristic ratio cut partition from v; and (iv) a possible post-
processing stage to improve the heuristic ratio cut. The following subsections address these aspects in

greater detail.

3.1 Hypergraph Model

We have examined two heuristic mappings from hyperedges in the netlist to graph edges in G. The
first mapping is via the standard clique model [20], where each k-pin net is represented by a complete
graph on its k modules, with each edge weight equal to 1/(k — 1). Thus, the node adjacency matrix
A is constructed as follows: For each pair of nodes v; and v; with p > 1 signal nets in common, let
|s1], |s2l,-- -, |sp] be the number of nodes in the common signal nets 5,82, -, s,, respectively. Each

element of A is then given by

z 1
4 = 2 =Dy

The second mapping is given by using the standard clique model followed by an added sparsifying
heuristic: we have considered two methods of sparsifying Q: (i) ignoring less significant (e.g., non-critical
or very large) nets, and (ii) thresholding small @;; to 0 until the matrix has sufficiently few nonzeros.
This second class of hyperedge transformation is important because most numerical algorithms will
have faster runtimes on sparse input. Preliminary experiments with the sparsifying heuristics, as well
as a new cycle net model which also yields a sparser @ matrix, have been quite promising. However, we
confine the results we report below to those derived using the standard weighted clique model. This is
for two main reasons: (i) the weighted clique method already yields a fast and effective algorithm, and

(ii) the method is consistent with the usual net modeling practice in VLSI layout [20].

3.2 Numerical Methods

The theoretical results of Section 2 notwithstanding, it at first seems that the computational complexity
of the eigenvalue calculation is too great for any practical application. However, significant algorithmic
speedups stem from our need to calculate only a single (the second-smallest) eigenvalue of a symmetric
matrix. Furthermore, netlist graphs tend to be very sparse, due to hierarchical circuit organization
and degree bounds imposed by the technology fanout limits. This allows us to apply sparse numerical
techniques, in particular the block Lanczos algorithm. The field of matrix algorithms is well-studied due
to its tremendous importance in a number of applications. For a standard treatment of the symmetric
eigenvalue problem, and the Lanczos method in particular, the reader is referred to Golub and Van Loan
[14]. (Because tradeoffs between sparsity and runtime are implicit in the class of Lanczos methods, the
sparsifying approaches mentioned in Section 3.1 are indeed of interest, since the standard clique model

will represent a large k-pin net by C(k,2) nonzeros.)

10

We use an adaptation of an existing Lanczos implementation f21]. It is important to note that our
code actually calculates the second-largest eigenvalue and the corresponding eigenvector of the matrix
Q' = A— D. This is equivalent to computing the second-smallest eigenvector of Q = D — 4, i.e.,
we compute —A and ~v, and is preferable by theoretical results of Kaniel-Paige-Saad [14) which show
that the Lanczos algorithm converges faster to the largest eigenvalues. The numerical code is portable
Fortran77; all other code in our system is written in C, with the entire software package currently

running on Sun-4 hardware.

3.3 Constructing the Ratio Cut

We have also considered a number of heuristics for constructing the ratio cut partition from the second
eigenvector v: (i) construct T = sgn(v), ie, U = {i:v; > 0} and W = {i : v; < 0}; (ii) partition the
nodes around the median v; value, putting the first half in U and the second half in W; (iii) exploit the
relation between the eigenvector computation and quadratic placement, whereby a “large” gap in the
sorted list of v; values indicates a natural division (cf. Section 3.4 below); and {(iv) sort the v;, then
determine the splitting rank r, 1 < r < n — 1, that yields the best ratio cut cost when nodes with rank
> r are placed in U and nodes with rank < r are placed in W. We use (iv) as the basis of the EIG1
algorithm below, since it subsumes the other three methods and since the cost of evaluating all the
partitions is asymptotically dominated by the cost of the Lanczos computation. Although method (iv)
requires more effort than the other methods, its evaluation of all n — 1 partitions is simplified by using
data structure techniques similar to those used by Fiduccia and Mattheyses [9], so that cutsize may be
quickly updated with each node shift in the partition. Our conversion of the second eigenvector to a

heuristic node partition is summarized as shown in Figure 3.

Node Assignment to Partitions
Compute eigenvector v of second eigenvalue A(Q);
Sort entries of v, yielding sorted vector 2 of node indices;
Place all node indices in partition U
fori=1ton
move node v; from partition U to partition W;
calculate and output ratio cut cost for (I/, W) partition
Return lowest-cost partition so obtained.

Figure 3: High-level description of conversion from sorted eigenvector to
node partition.

With these implementation decisions, our Algorithm EIG1 is summarized as in Figure 4:

1

Algorithm EIG1

H = (V, E') = input netlist hypergraph;

Transform each k-pin hyperedge of H into a clique in G = (V, E)
with uniform edge weight 11—1;

Compute A = adjacency matrix, D = diagonal matrix of G;

Compute second-largest eigenvalue of @' = A — D by block
Lanczos algorithm (equivalent to A(Q));

Compute associated real eigenvector v;

Sort components of v and find best splitting point for indices
(i.e., modules) using ratio cut metric;

Output best ratio cut partition found.

Figure 4: High-level outline of Algorithm EIG1.

As we now describe, EIG1 generates initial partitions which are already significantly better than
the output of the iterative Fiduccia-Mattheyses style algorithm RCutl1.0 of Wei and Cheng [27]. In
fact, using the single sorted eigenvector we often find many partitions that are better than the Fiduccia-
Mattheyses result. Therefore, in this paper we do not consider iterative improvement methods, although
this puts our current results at some disadvantage. Certainly, post-processing methods are very useful

and will be quite appropriate, e.g., in a production implementation.

3.4 Experimental Results: Ratio Cut Partitioning Using EIG1

In this section, we present computational results using the EIG1 algorithm. We initially ran this heuristic
on the MCNC Primaryl and Primary2 standard-cell and gate-array benchmarks. Table 1 compares our
resulis with the betfer of the results of the RCutl.0 program as reported in the Ph.D. thesis of Wei
[29] and in the earlier paper of Wei and Cheng [27]. Note that the results reported in [27] [29] are
already an average of 39% better than Fiduccia-Mattheyses output in terms of the ratio cut metric; the
experiments run by the authors of [27] compared the best of 10 Rcut!.0 runs to the best of 20 F-M

runs, all with random starting seeds.

The CPU times required by our algorithm were very competitive with those cited in [27): for example,
the eigenvector computation for PrimSC2, using our default convergence tolerance of 104, required 83

seconds of CPU time on a Sun4/60, versus 204 seconds of CPU for 10 runs of RCut1.0.

One readily observes that the current eigenvector computation cannot naturally force a good ares
partition since graph nodes are unweighted. By contrast, the Fiduccia-Mattheyses method inherently

exploits module area information. Our results were obtained by applying the Lanczos code to the netlist,

12

Test Number of Wei-Cheng (RGCut1.0) _Hagen-Kahng (EIG1) Rux/{Bwe
problem elements Areas Nets cut Hatio cut Areas Nets cut Ratio cut Ratio
PrimGA1l 333 502:2929 11 7.48 x 10~° 751:2681 15 7.45 x 107" 989
PrimGA2 3014 2488:5385 89 6.08 x 10-% | 2522:5852 78 5.29 % 10~° 855
PrimSC1 833 1071:1682 35 1.94 x 10~ 538:2166 15 1.18 x 1077 802
PrimSC2 3014 2332:5374 89 7.10 x 10~° 2361:5345 73 6.13 x 10~ .859

Table 1: Comparison with best values reported in [27](29] on standard-cell
and gate-array benchmark netlists (area sums may vary due to rounding).
On average, the EIG1 results are 17.6% better. Note that EIG1 results
are completely unrefined: no local improvement has been performed on the
eigenvector partition.

then using the actual module areas' to determine the best split of the sorted eigenvector under the ratio
cut metric. Because module areas are ignored, our approach is somewhat better suited to standard-cell
and gate-array designs, as is reflected by the experimental results in Tables 1 and 2. It is possible
to make EIG1 more generally applicable via preprocessing netlist transformations which “granularize”
building-block designs into more uniformly sized pseudo-modules. This is an open area for future work;

preliminary implementations have been promising.

The fact that the EIG] spectral algorithm is oblivious to node weights is not a difficulty for other
large-scale partitioning applications in CAD, e.g., for test or hardware simulation, where the input is
simply the netlist hypergraph with uniform node weights. For example, [29] reports that ratio cut
partitioning saved 50% of hardware simulation costs of a 5-million gate circuit as part of the Very Large
Scale Simulator Project at Amdahl; similar savings were obtained for test vector costs. With such
applications in mind, we compared our method to RCut1.0 on unweighied netlists, including the MCNC
Test02 - Test06 benchmarks and two circuits from Hughes [27]. The RCut1.0 code was obtained from
its authors, and was run for ten consecutive trials on each netlist, following the experimental protocol in
[27]. Our spectral algorithm output averaged 9% improvement over the best RCut1.0 outputs {mostly

because the Test06 result was not good). The results are summarized in Table 2.

4 EIG1 Gives Clustering For “Free”

A number of authors have noted that finding natural clusters in the netlist is useful for several applica-
tions. Examples include: (i) when multi-way partitioning is desired or when the sizes of the partitions

are not known a priori; (ii) for purposes of floorplanning or constructive placement; and (iii) when the

!We followed the method in [27], where I/O pads are assumed to have area = 1.

13

Test Number of Wei-Cheng (RCutl.0) Hagen-Kahng (EIG1) Rux/Rwc
problem elements #Mods Nets cut Ratio cut #Mods Nets cut Ratio cut Ratio
bm1 882 9:873 1 1.27 % 10™° 21:861 1 55%x 107~ 434
19ks 2844 1011:1333 109 5.9 x 10> | 387:2457 64 6.7 x 1077 1.144
Prim1 833 152:681 14 1.35 x 10™* 150:683 15 1.46 x 10~* 1.082
Prim?2 3014 1132:1882 123 58 x 107> | 725:2289 78 4.7x 107> 814
Test02 1663 372:1291 95 1.98 x 10~% | 213:1450 60 1.94 x 10°% 982
Test03 1607 147:1460 31 1.44x 107% | 794:813 61 9.4 x 1077 654
Test04 1515 401:1114 51 1.14 x 107V | 71:1444 6 5.9 x 10”7 512
Test05 2595 1204:1391 110 6.6 X 10-° | 429:2166 57 6.1x 10~% .933
Teat06 1752 145:1607 18 7.7 x 10~° 9:1743 2 1.27 x 10-7Y 1.649

Table 2: Comparison on benchmark netlist graphs with uniform node
weights. Results reported for RCutl1.0 are best of 10 consecutive runs on
each input. Again, the EIG1 results do not involve any local improvement
of the initial eigenvector partition.

netlist is so large that clustering must be used to reduce the size of the input to a partitioning algo-
rithm. In this section, we make the important observation that clustering is “free” with our approach,
in that the second eigenvector v contains both partitioning and clustering information. The results be-
low demonstrate that a straightforward interpretation of the sorted second eigenvector can immediately
identify natural clusters in the classes of “difficult” partitioning inputs proposed by But et al. [3] and
Garbers et al. [12]. Such inputs have optimal cutsize that is significantly smaller than the optimal cut-
size of a random graph with similar node and edge cardinalities. Furthermore, on these difficult inputs
the Kernighan-Lin and simulated annealing algorithms usually return solutions that are an unbounded
factor worse than optimal [3). (For graph bisection, these standard approaches give results that are
essentially no better than random solutions, an observation which again leads us to question the future
effectiveness of iterative techniques as problem sizes become large.) In view of this, it is noteworthy

that our approach can easily deal with such “difficult” partitioning instances.

We first consider the class of inputs given by the random graph model Gpyi(2n, d, b), developed by
Bui et al. [3] in analyzing graph bisection algorithms. Here, the random graphs have 2n nodes, are
d-regular and have minimum bisection width almost certainly equal to b. We generated random graphs
with between 100 and 800 nodes, and with parameters (2n, d, b) exactly as in Bui's experiments {Table
1, p. 188 of [3]).2 In all cases, the module ordering given by the sorted second eigenvector immediately
yielded the expected clustering. Table 3 gives the sorted eigenvector for a random graph in the class
G Bvi(100,3,6). The expected clustering places nodes 0 — 49 in one half, and 50 — 99 in the other. The

eigenvector in Table 3 clearly shows this.

2A very slight modification of Bui’s construction was made: to avoid self-loops, we superposed d random matchings of
the n nodes in a cluster, rather than making a single matching on dn nodes and then condensing into n nodes.

14

Node Component | Node Component | Node Component | Node Component
0 -0.2156306 2 -8.18021E-0% 36 1.37846E-02 51 9.56038E-02
7 -0.211889 13 -7.70074F-02 98 2.38492E-02 63 9.86033E-02
6 -0.206269 45 -7.41216E-02 93 3.22976E-02 0] 9.93633E-02

42 -0.199676 5 ~7.39643E-02 85 4.34522E-02 82 1.00400E-01
28 -0.139419 a7 -7.38216E-02 91 4.75056E-02 56 1.00670E-01
30 -0.188609 9 -7.37229E-02 73 5.39718E-02 99 1.02075E-01
23 -0.145966 11 -7.32770E-02 71 5.84973E-02 58 1.04506E-01
-] -0.142736 10 -6.22291E-02 65 5.93850E-02 7 0.105093
3 -0.129631 17 -6.12589E-02 92 6.69472E-02 67 0.105109
15 -0.120541 40 -5.85974E-02 83 6.71368E-02 81 0.107045
39 -0.118946 49 -5.528838E-02 53 6.71782E-02 0 0.108130
38 -0,114429 24 -5.44673E-02 78 6.79049E-02 95 0.108719
27 -0.112974 32 -5.43187TE-02 60 7.61767E-02 59 0.109054
46 -0.108921 43 -5.36167TE-02 87 7.69490E-02 68 0.109451
19 -0.108893 44 -5.28886E-02 859 7.92044E-02 79 0.109522
12 -0.107540 43 -4.95200E-02 66 8.66147E-02 T2 0.109647
35 -0.107710 26 -4,36413E-02 54 8.74412E-02 84 0.110152
33 -0.107241 1 -4.12196E-02 97 8.80222E-02 74 0.111162
31 -9.93970E-02 36 -3.99069E-02 61 B.877B4E-02 50 0.112822
4 -9.78949E-02 212 -2.75223E-02 76 8.95560E-02 94 0.117317
16 -9,29926E-02 34 -2.64148E-02 69 9.02742E-02 62 0.122498
29 -9.22521E-02 20 -2.37243E-02 64 9.33758E-02 57 0.125205
14 -9.10469E-02 25 -1.92634E-02 38 9.49801E-02 85 0.132424
13 -8.83968E-02 21 -2.00013E-03 75 9.51491E-02 80 0.138341
41 -8.40547E-02 47 1.02043E-02 96 9.55961E-02 52 0.135806

Table 3: Sorted eigenvector for random graph in (G Bui(100,3,6). “Ex-
pected” clustering is nodes 0 — 49, 50 — 99.

The second type of input is given by the Ggar(n, m, Pint, Pezt) random model of Garbers et al. [12],
which prescribes n clusters of m nodes each, with all n . C(m,2) edges inside clusters independently
present with probability pi,: and all m? - C(n,2) edges between clusters independently present with
probability p.;;. We have tested a number of 1000-node examples of such clustered inputs, using
the same values (n,m,pint,Pest) as in Table 1 of (12]. In all cases, quite accurate clusterings were
immediately evident from the eigenvector, with most clusters completely contiguous in the sorted list,
and occasionally pairs of clusters being intermingled. Table 4 gives the sorted eigenvector for a smaller
random graph, from the class Ggqr(4,25,0.167,0.0032). The pins and pege are of the same order as
in the examples from [12], e.g., pins = O(n~%) (here implying expected degree 4 for each node). The
expected clusters contain nodes 0 — 24, 25 — 49, 50 — 74 and 75 — 99. Again, the eigenvector in Table 4
strongly reflects this. Because of the random construction, the “correct” clustering may deviate slightly
from expectation; in the instance of Table 4, the switch of nodes 47 and 73 may in fact correspond to
the “correct” clustering. As with the Ggy; class of inputs, the Kernighan-Lin and simulated annealing
algorithms fail on the Gga, input class, especially as pin; 3 p.zt, but note that this is exactly when the

eigenvector method will work well 3

3Furthermore, for completely pathological inputs where the cut size is zero (i.e., the graph is disconnected), Bui et
al. [3] note that Kernighan-Lin and simulated annealing will almost never discover the disconnection. In contrast, our
method will immediately yield A = 0 by the theorem of Gershgorin mentioned above. (Of course, a disconnected input
can also be recognized by simpler means.)

15

Node _ Component | Node Component | Node Component | Node Component
19 -0.122408 58 -8.02980E-02 T4 -4 69733E 03 B3 9.72816E-02
23 -0.120929 53 -7.90911E-02 47 -1.09157E-02 79 0.124942
21 -0.118306 70 -7.86159E-02 36 1.97259E-02 86 0.128686

1 -0.115762 71 -7.78550E-02 45 2.39392E-02 87 0.132406
17 -0.115104 60 -7.68319E-02 44 2.64149E-02 97 0.133227
10 -0.114198 54 -7.65931E-02 43 2.79049E-02 B85 0.135566
6 -0.114083 63 -7.47548E-02 45 2.90957E-02 75 0.138987
5 -0.112286 59 -7.44015F-02 42 3.T4555E-02 98 0.140964
9 -0.111083 62 -7.41008E-02 bl 3.74606E-02 76 0.141252
8 -0.110700 72 -7.387T34E-02 34 3.801B4E-02 81 0.141296
12 -0.110309 56 ~7.30906E-02 23 3.85021E-02 B2 0.142007
20 -0.110163 55 -7.13742E-02 32 3.85118E-02 91 0.144033
0 -0.110106 57 -7.12679E-02 38 3.87157E-02 30 0.149802
22 -0.109779 50 -7.03936E-02 33 3.88343E-02 95 0.150069
4 -0.108896 65 -6.99085E-02 30 4.00060E-02 92 0.151593
11 -0.108043 66 -6.96821E-02 26 4.00622E-02 84 0.152478
15 ~0. 1074156 51 ~-6.86737E-02 31 4.04879E-02 94 0.152605
18 -1.04816E-01 61 -6.81345E-02 46 4.09543E-02 90 0.153824
2 -1.04262E-01 69 -6,77T330E-02 41 4.24597E-02 83 0.154241
14 -1.03383E-01 64 -6. 76836 E-02 29 4.30074E-02 39 0.155534
24 -1.01804E-01 52 -6.75918E-02 27 4.36473E-02 99 0.155569
7 -1.01130E-01 67 -6.72584F-02 a9 4.41580E-02 96 0.160441
13 -1.00931E-01 43 -5.86593E-02 37 4.65159E-02 77 0.163642
16 -9.68630E-02 68 -5.10627E-02 40 4.74509E-02 73 0.165712
3 -9.17668E-02 73 -5.05522E-02 25 7.44758E-02 93 0.176925

Table 4: Sorted eigenvector for random graph in Ggar(4,25,.167,.0032).
“Expected” clusters are 0 — 24, 25 — 49, 50 — 74 and 75 — 99.

It is easy to envision more sophisticated interpretations of the sorted second eigenvector. For exam-
ple, because of the well-known correspondence between A(Q) and quadratic placement formulations, it
is reasonable to interpret large gaps between adjacent components in the sorted eigenvector as delim-
iters of natural circuit clusters. We have also considered using “local minimum” partitions in the sorted
eigenvector, i.e., those with lower ratio cut cost than either of their neighbor partitions, to delineate
clusters: in other words, all node indices between consecutive locally minimum ratio cut partitions are
placed together into a cluster. This is intuitively reasonable since, as noted above, there are usually
many distinct, high-quality (locally minimum) partitions that are derivable as splits of the sorted sec-
ond eigenvector. Initial experiments show these clustering approaches, which are distinct from previous
methods in the literature that utilize multiple eigenvectors, to be very promising. Indeed, we believe

that such new heuristics will grow in importance as problem sizes become extremely large and clustering

becomes a more critical application.

5 Using the Second Eigenvector of the Intersection Graph

In examining the performance of EIG1 versus iterative ratio cut and bisection algorithms, we noticed

several interesting relationships between the size of a net and the probability that the net is cut in

the heuristic (ratio-cut or min-width bisection) circuit partition. These observations led to an alternate
application of the spectral construction which significantly improved partition quality for virtually every

input that we tested.

5.1 The Intersection Graph

We begin this section with a simple thought experiment: Given a 2-pin net and a 14-pin net in a circuit
netlist, which is more likely to be cut in the optimal ratio-cut partition? A simple random model would
indicate that it is much less likely for all 14 modules of the larger net to be on a single side of the
partition than it is for both modules of the smaller net to be on a single side of the partition. Therefore,
we might guess that the 14-pin net is much more likely to be cut, and in fact that the cut probability
for a k-pin net would be roughly 1 — O(2-¥). This rough relationship has indeed been confirmed for
heuristic minimum-width bisections of various small netlists from industry and academia, including,

e.g., ILLIAC IV printed circuit boards.

However, our analysis of EIG1 and RCut1.0 output for both minimum-width bisection and minimum
ratio-cut metrics has shown that this intuitive model does not necessarily remain correct, particularly
as circuit sizes grow large. For example, a typical locally minimum ratio cut for the MCNC Primary?

netlist yields the following siatistics, shown in Table 5.

The obvious interpretation of these statistics is that while a random model may suffice for small
circuits, larger netlists have strong hierarchical organization, reflecting the high-level functional parti-
tioning imposed by the designer. Thus, nets themselves may very well contain “useful” partitioning
information. Furthermore, if we consider the partitioning problem from a slightly different perspective,
we realize that the minimum (ratio) cut metric is not only asking for an assignment of modules to the
two sides of the partition, but is equivalently asking us to assign nets to the two sides of the partition,
with the objective being maximization of the number of nets that are not cut by the partition. In other
words, we want to assign the greatest possible number of nets completely to one side or the other of the
partition. This objective can be captured using the graph dual of the input netlist hypergraph, also
known as the intersection graph of the hypergraph.

"The dualization of the problem is as follows. Given a netlist hypergraph H = (V, E) with |[V| = n
and |E’| = m, we consider the graph G’ = (V”, E”) which has [V”| = m, i.c., G’ has m vertices, one
for each hyperedge of H (that is to say, each signal in the netlist). Two vertices of G’ are adjacent

if and only if the corresponding hyperedges in H have at least one module in common. G’ is called

17

Net Size | Number of Nets | Number Cut
2 1835 21
3 385 29
4 203 18
s 192 26
6 120 3
7 52 12
8 14 0
9 a3 5
10 14 1
11 as 0
12 5 0
13 3 0
14 i0 o}
15 3 0
16 1 0
17 72 22
13 1 1
23 1 Q
26 1 1
29 1 Q
30 1 0
31 1 0
33 14 4
34 1 1]
37 1 0

Table 5: Cut statistics for k-pin nets. Note that the probability of a net
being cut in the best heuristic partition does not necessarily increase mono-
tonically with net size, counter to intuition.

the intersection graph of the hypergraph H. For any given H, the intersection graph G’ is uniquely
determined; however, there is no unique reverse construction. An example of the intersection graph is

shown in Figure 5.

Figure 5: Left: The hypergraph for a netlist with six signal nets (each node
represents a module}. Right: The intersection graph of the hypergraph
(each node represents a signal net).

Given this definition, the adjacency matrix A’ of the intersection graph has nonzero elements A7,

exactly when signal nets s, and s, share at least one module. As with the earlier mapping of the

18

netlist hypergraph to a graph formulation via the weighted clique net model (Section 3.1), there are a
number of possible heuristic edge weighting methods for the intersection graph. We have tried several
approaches. Surprisingly, most of the methods we tried lead to extremely similar, high-quality results,
implying that the intersection graph is a very robust, natural representation. The results below are

derived through the following construction:

For each pair of signal nets s, and s; with ¢ > 1 nodes vy,. .. ,Ug In common, let {s,] and |s3| be the

number of nodes in s, and s, respectively. The elernent Al is then given by
q
1,1 1
A=Y (o o)
¢ ; di*lsal o]
where d), is again equal to the degree of the ¥** common node v, i.e., the number of nets incident
to module k. This net weighting scheme is designed so that overlaps between large nets are accorded
somewhat lower significance than overlaps between small nets. The diagonal degree matrix D’ is con-
structed analogously to the matrix D described in Section 1.1 above, with the D;J' entry equal to the

sum of the entries in the 7' row of A’. Thus, Dj; indicates the total strength of connections between

signal net s; and all other nets which share at least one module with 55, l.e.,
m
_ '
Djy =) Al
i=1

Given A’ and I¥, we then find the eigenvector v’ corresponding to the second eigenvalue A’ of
Q' = D'~ A’, using the same Lanczos code as in the EIG1 implementation. We may sort the eigenvector

to obtain an ordering z’ of the signal net indices, which we then use to derive a heuristic node partition.

The procedure that we adopt is patterned after the method of Section 3.3, but with additional
features. Note that it is too simplistic to construct the (U {W) partition by merely assigning signal net
sz, to U, signal net s,, to W, signal net s;, to U, etc. This is because such assignments will soon
begin to conflict: for example, a net assigned to I/ will contain some module that also belongs to a net
already assigned to W. If we stop the assignment of nodes to I/ and W exactly when no further nets
can be completely assigned, then some nodes may remain unattached to either side of the partition. To
avoid such difficulties, we adopted the following strategy: assign a node v; to, e.g., U/ only when enough
of the nets containing v; have been assigned to /. This is accomplished with a heuristic weighting
function, where each net exerts “weight” on its component modules inversely proportional to the size
of the net. In practice, to guarantee that every node is assigned to a partition, we put all nets/nodes
in U, then move the nets one by one to W (beginning with sy, and continuing through s;_). A node

will move to W only when enough of its total incident net-weight w; {i.e., more than some threshold

19

proportion) has been shifted to W. (In the pseudocode below, as well as in the reported experiments,
we use a threshold of 1/2.net-weight.) Symmetrically, we also start with all nets/nodes in W, and shift
nets beginning with s,_, since this yields a different set of heuristic node partitions. We then output
the best partition among the up to 2 (n — 1) distinct heuristic partitions so generated. The conversion

of the sorted second eigenvector to a heuristic node partition is summarized in Figure 6:

Node Assignment to Partitions — Via Intersection Graph
w = array containing the total net weight of each node

z = array containing the moved net weight of each node
Compute eigenvector v’ of second eigenvalue A(Q');

Sort entries of v/, yielding sorted vector #' of net indices;

{* initialize net-weight vector ¥}
w=40
for i = 1 to n = number of nodes
for each signal net s; containing node v;

add 1/}s;} to w;

{* begin with all nets/nodes assigned to partition U *}
z=10
for j—z 1 to m = number of nets
for each node v; in net s,
add 1/|s_,.,;,| to z;
if z > (w,-/2)
move node { from partition U to partition W
calculate and output the ratio cut cost for (I/, W) partition

{* begin with all nets/nodes assigned to partition W ¥}
z=0
for j = mdown to 1
for each node v; in net s,
add 1/|sz1| to z
if z; > (wi/2)
move node i from partition W to partition U
calculate and output the ratio cut cost for (I, W) partition

Output best ratio cut partition found.

Figure 6: High-level description of conversion from sorted eigenvector (de-
rived from intersection graph) to node partition.

With these implementation decisions, our algorithm EIG1-IG, based on the second eigenvector of

the netlist intersection graph, has the high-level description shown in Figure 7:

20

Algorithm EIG1-IG

H = (V, E') = input netlist hypergraph;

Compute intersection graph G = (V”, E”) of H

Compute A’ = weighted adjacency matrix, D' = diagonal matrix of G”;

Compute second-largest eigenvalue of @” = A’ — D’ by block
Lanczos algorithm (equivalent to MQ'), Q' = D' — A");

Compute associated real eigenvector v';

Sort components of v’ to yield vector z’ of ordered net indices;

Compute vector w of net-weights for nodes in V;

Put all nets and nodes in U; shift nets one by one, moving node v;
to W when > w;/2 of its net-weight has been shifted;

Put all nets and nodes in W; shift nets one by one, moving node v;
to U when > w;/2 of its net-weight has been shifted;

Output best ratio cut partition found.

Figure 7: High-level outline of Algorithm EIG1-1G.

5.2 Computational Results: EIG1-1G

Table 6 shows computational results obtained using the EIG1-IG algorithm on a number of MCNC

benchmarks, as well as the two benchmarks from Hughes tested in [29]. The results show an average of

over 23% improvement in ratio cut cost over the best results obtained using 10 runs of Rcutl.0.

Test Number of Wei-Cheng (RCutl.0) Hagen-Kahng (EIG1-1G) ~ Percent
prablem elements Areas Nets cut Hatio cut Areas Nets cut Hafio cut improvement

bml 832 9:873 1 12.73 x 10~% 21861 1 553x 10°° 57

19ks 2844 1011:1833 108 5.88 x 10~° 662:2182 92 6.37 x 10~ -8
Prim1 833 152:681 14 1.35 x 10~° 154:679 14 1,34 x 10~7 1
Prim2 3014 1132:1882 123 5.77 x 10~ 730:2284 87 522 x 10~° 10
Test(2 1663 372:1291 95 1.98 x 10~1 228:1435 48 1.47 x 10~ % 26
Test03 1607 147:1460 31 14.44 x 1075 | 737:820 64 9.92 x 1072 31
Test04 15t5 401:1114 51 11.42 x 1072 71:1444 6 5.85 x 10~° 49
Test(5 2595 1204:1391 110 6.57 x 10~% 103:2492 B 312 x 10~7 53
Test06 1752 145:1607 18 7.72%x 107> | 143:1600 19 896 x 10~° -7

We note that runtimes are significantly faster with the EIG1-IG implementation, since the input
to the Lanczos computation is often much sparser than that obtained with the original clique-based
hypergraph-to-graph transformation. For example, the Test05 intersection graph results in a @’ matrix

that is over ten times sparser than the § matrix created by EIGI (19935 nonzeros versus 219811

Table 6: Output from EIG1-1G algorithm: partitioning using sorted second
eigenvector of the intersection graph of netlist hypergraph. Results are 24%
better on average than those of RCutl.0.

nonzeros). Even though convergence can be slowed by the relative uniformity of the Q}; entries, the gains

21

in sparsity result in a net runtime reduction. At the same time, the EIG1-IG results are significantly
better than EIG1. Recall that the original Wei and Cheng RCut1.0 algorithm partitions are an average
of 39% better than the output of traditional methods; the 24% average improvement that EIG1-IG
achieves over RCutl.0) is thus quite noteworthy. In practice, it is possible to run both EIG1 and EIG1-
IG, then choose the better result; however, we believe that a production tool might very well rely on

only the EIG1-IG algorithm.

6 Extensions and Future Work

A number of rescarch directions are still open.

* Speedups of the Eigenvector Computation. There are several obvious speedups to the basic
approaches used in EIG1 and/or EIG1-IG. A promising variant uses a condensing strategy first
proposed by Bui et al. [3]: we reduce problem size by finding a random maximal matching on
the graph, then using the edges of the matching to condense node pairs into single nodes. After
solving the condensed problem, which has |V|/2 nodes, the condensed nodes can be re-expanded
and an iterative improvement stage may follow. Although there is the drawback of yielding a
denser input to the eigenvector computation, the sparsifying heuristics mentioned above may be
applied so that an overall speedup is still obtained. Sparsifying heuristics can also be used by
themselves, e.g., simply thresholding small nonzero elements of to zero. A second type of
speedup occurs through weakening the convergence criferia in the Lanczos implementation, thus
reducing the accuracy of the eigenvector calculation; preliminary experiments indicate that for,
e.g., the PrimGA2 benchmark, we can speed up our current Lanczos computation by a factor of
between 1.3 and 1.7 without any loss of solution quality. Parallel implementations of the Lanczos
algorithm on medium- and large-scale vector processors are also of interest, since the algorithm

exhibits near-perfect parallel speedup.

¢ Iterative Improvement Post-processing With any of these heuristics, the ratio cuts so ob-
tained may optionally be improved by using standard iterative techniques. As discussed in Section
3 above, we have deferred such post-processing since our initial partitions are already so much
better than previous results. However, in practice the Fiduccia-Mattheyses style partition im-
provement methods should be applied to initial partitions generated by the EIG1 or EIG1-IG
heuristics. Such investigations could shed more complete light on the quality of eigenvector par-

titions as initial partitions for F-M style improvement. In addition, such work might shed new

22

light on the nature of the ratio cut cost surface for large VLSI partitioning problems.

e Other CAD Applications. Following the successes reported by Wei and Cheng [29] [30], EIG1
and EIG!-IG should be applied to ratio cut partitioning for other CAD applications, especially
test and the mapping of logic for hardware simulation. The results above certainly suggest that for
applications where the ratio cut has already been successful, our spectral construction will provide
further improvements. Extensions to multi-way partitioning are relatively straightforward, e.g.,
using locally minimum partitions in the sorted eigenvector. Finally, devising a net model or a

netlist transformation which accounts for arbitrary node weights is an important open issue.

7 Conclusions

We have presented theoretical analysis showing that the second eigenvalue of the matrix Q@ = D— A yields
a new lower bound on the cost of the optimum graph partition under the ratio cut metric. The ratio
cut metric has been recently shown to be highly useful in a number of CAD partitioning applications
ranging from simulation to physical layout. The very natural derivation of our new lower bound, directly
from the definition of the ratio cut metric, suggests that heuristic node partitions can be constructed
from the second eigenvector of @. In conjunction with sparse-matrix (Lanczos) techniques, this leads
to new algorithms for ratio cut partitioning which are significantly superior to previons methods in
terms of both solution quality and CPU cost. The overall approach is certainly competitive with
the fastest current methods for circuit partitioning, and the computational complexity of the Lanczos
implementation scales well with increasing problem sizes [14]. On standard-cell and gate-array industry
benchmarks, the solutions produced by our algorithm EIG1, which uses a traditional cligue net model,
were significantly {(an average of 17%) better than those of {27]. As expected, our method was also
effective for ratio cut partitioning of unweighted graphs, e.g., in test and simulation applications, where
the ratio cut metric has been shown to yield tremendous CPU savings [29]. In addition, high-quality
circuit clustering is a “free” by-product of the second eigenvector construction: indeed, EIG1 gives
optimal solutions for the difficult input classes of [3] and [12], which are pathological for the Kernighan-
Lin and simulated annealing algorithms. Finally, statistical analysis of net cut probabilities as a function
of net size, as well as sparsity eonsiderations in the numerical computation, led to algorithm EIG1-1G,
which constructs a node partition from the second eigenvector of the netlist infersection graph. On
the MCNC benchmark test suite, the EIG1-IG algorithm yielded an average of 24% improvement over
the previous methods of Wei and Cheng. We note that the EIG1-IG algorithm is generally faster than

EIG1, due to technological fanout limits which yield a sparse intersection graph.

23

Both the EIG1 and EIG1-IG algorithms derive a solution from a single, deterministic execution of
the algorithm, i.e., the spectral approach is inherently stable, and we do not need to take the best of
multiple runs as with other approaches. Finally, note that for all practical purposes, the numerical
Lanczos computation is perfectly parallelizable, in contrast to traditional partitioning heuristics. The
spectral approach to ratio cut partitioning can thus be seen to satisfy virtually all of the desirable traits

listed in Section 1 above,

No previous work applies numerical algorithms to ratio cut partitioning, mostly because the math-
ematical basis of ratio cuts has only recently been developed. However, from a historical perspective it
1s intriguing that spectral methods have not been more popular for other problem formulations such as
bisection or k-partition, despite the early results of Barnes, Donath and Hoffman and the availability of
standard packages for matrix computations. We speculate that this is for several reasons. First, progress
in numerical methods and progress in VLSI CAD have followed more or less disjoint paths: only recently
have the paths met in the sense that large-scale numerical computations have become reasonable tasks
on VLSI CAD workstation platforms. Second, early theoretical bounds and empirical performance of
spectral methods for the graph bisection problem were not generally encouraging. By contrast, The-
orem One gives a more natural correspondence between graph spectra and the ratio cut metric, and
our results confirm that second-eigenvector heuristics are indeed well-suited to the ratio cut objective.
Finally, it has only been with growth in problem complexity that possible scaling weaknesses of iterative
approaches, such as the Kernighan-Lin method, have been exposed. In any case, we strongly believe
that the spectral approach to partitioning, first developed by Barnes, Donath and Hoffman twenty years

ago, merits renewed interest in the context of a number of basic CAD applications.

8 Acknowledgements

We are grateful to Professor C. K. Cheng of UCSD, Dr. Arthur Wei of Cadence Design Systems and
Mr. Chingwei Yeh of UCSD and Amdahl for providing RCut1.0 code [29], and to Dr. Horst Simon of

NASA Ames Research Center for providing an early version of his Lanczos implementation {21].

References

[1] E. R. Barnes, “An Algorithm for Partitioning the Nodes of a Graph”, SIAM J. Aly. Disc. Meth.
3(4) (1982), pp. 541-550.

[2] R.B. Boppana, “Figenvalues and Graph Bisection: An Average-Case Analysis”, IEEE Symp. on
Foundations of Computer Science, 1987, pp. 280-285.

24

[3] T. N. Bui, S. Chaudhurt, F. T. Leighton and M. Sipser, “Graph Bisection Algorithms with Good
Average Case Behavior”, Combinatorica 7(2) (1987), pp. 171-191.

{41] H.R. Charney and D.L. Plato, “Efficient Partitioning of Components”, IEEE Design Automation
Werkshop, 1968, pp. 16-0 - 16-21.

[6] C.K.Cheng and T.C. Hu “Maximum Concurrent Flow and Minimum Ratio Cut”, Technical Report
(CS88-141, Univ. of California, San Diego, Dec. 1988,

[6] D. Cvetkovic, M. Doob, I. Gutman and A. Torgasev, Recent Resulis in the Theory of Graph Specira,
North-Holland, 1988.

[7] W.E. Donath, “Logic Partitioning”, in Physical Design Automation of VI.SI Sysiems, B. Preas and
M. Lorenzetti, eds., Benjamin/Cummings, 1988, pp. 65-86.

[8] W.E. Donath and A.J. Hoflman, “Lower Bounds for the Partitioning of Graphs”, IBM J. Res. Dev.
(1973), pp. 420-425.

[9] C.M Fiduccia and R.M. Mattheyses, “A Linear Time Heuristic for Improving Network Partitions”,
ACM/IEEE Design Automation Conf., 1982, pp. 175-181.

[10] L.R. Ford, Jr. and D.R. Fulkerson, Flows in Networks, Princeton University Press, 1962.

[11) J. Frankle and R.M. Karp, “Circuit Placement and Cost Bounds by Eigenvector Decomposition”,
IEEE Intl. Conf. on Compuler-Atded Design, 1986, pp. 414-417.

[12]} J. Garbers, H. J. Promel and A. Steger, “Finding Clusters in VLSI Circuits” ezfended version of
paper in Proc. IEEE Intl. Conf on Computer-Aided Design, 1990, pp. 520-523.

(13} M. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, 1979.

[14] G. Golub and C. Van Loan, Matriz Compulations, Baltimore, Johns Hopkins University Press,
1983.

[15] K. M. Hall, “An r-dimensional Quadratic Placement Algorithm”, Management Science 17(1970),
pp. 219-229.

[16] B.W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for Partitioning of Electrical Cir-
cuits”, Bell System Technical J., Feb. 1970.

[17] S. Kirkpatrick, C.D. Gelatt Jr. and M.P. Vecchi, ”Optimization by Simulated Annealing”, Science
220 (1983), pp.671-680.

(18] B. Krishnamurthy, “An Improved Min-Cut Algorithm for Partitioning VLSI Networks”, IEEE
Trans. on Computers 33(5) (1984), pp. 438-446.

[19] T. Leighton and S. Raoc, “An Approximate Max-Flow Min-Cut Theorem for Uniform Multicom-
modity Flow Problems with Applications to Approximation Algorithms”, JEEE Annual Symp. on
Foundations of Computer Sctence, 1988, pp. 422-431.

[20] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, Wiley-Teubner, 1990.

[21] A. Pothen, H. D. Simon and K. P. Liou, “Partitioning Sparse Matrices with Eigenvectors of
Graphs”, SIAM J. Mairiz Analysis and its Applications 11 (1990), pp. 430-452.

[22] L.A. Sanchis, “Multiple-Way Network Partitioning”, IEEE Trans. on Computers 38 (1989), pp.
62-81.

[23] D.G. Schweikert and B.W. Kernighan, “A Proper Model for the Partitioning of Electrical Circuits”,
ACM/IEEE Design Automation Conf., 1972.

25

[24] C. Sechen, Placement and Global Routing of Integrated Circuits Using Simulated Annealing, Ph.D.
Thesis, Univ. of California, Berkeley, 1986.

[25] R.S. Tsay and E.S. Kuh, “A Unified Approach to Partitioning and Placement”, Princeton Conf.
on Inf and Comp., 1986.

[26] G. Vijayan, “Partitioning Logic on Graph Structures to Minimize Routing Cost”, TEEE Trans. on
CAD 9(12) (1990), pp. 1326-1334.

[27] Y.C. Wei and C.K. Cheng, “Towards Efficient Hierarchical Designs by Ratio Cut Partitioning”,
IEEE Intl. Conf. on Computer-Atded Design, 1989, pp. 298-301.

[28] Y.C. Wei and C.K. Cheng, “A Two-Level Two-Way Partitioning Algorithm”, TEEE Inil. Conf. on
Computer-Aided Design, 1990, pp. 516-519.

f29] Y. C. Wei, “Circuit Partitioning and Its Applications to VLSI Designs”, Ph.D. Thesis, UCSD CSE
Dept., September 1990,

[30] Y. C. Wei and C. K. Cheng, “Ratio Cut Partitioning for Hierarchical Designs” to appear in JEEE
Trans. on CAD, October 1991.

26

