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ABSTRACT OF THE DISSERTATION

LARGE MARKOV MODELS FOR
COMPUTER PERFORMANCE AND
RELIABILITY ANALYSIS: EFFICIENT
METHODS FOR DETERMINATION OF
ERROR BOUNDS

by

Lui Chi Shing
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1991
Professor Richard R. Muntz, Chair

With the advance of computing technologies, we are able to build larger and more
complex computer systems. To ensure the performance as well as the reliability of
these systems, performance evaluation becomes a crucial component during the
design process. Markov models are widely used by performance analysts because
of their generality to represent the complex interactions between components in
real life systems. Most often the Markov model we want to analyze has irregular
structure and a closed-form solution is not known and to solve the Markov model,
we resort to numerical solution techniques. The most pervasive limitation of
numerical techniques is the inability to handle the very large state spaces which

are often required to represent realistic models.
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In this dissertation, we develop a methodology for analyzing large availabil-
ity Markov models for highly fault-tolerant computer systems. The state space
cardinality of this kind of availability models is very large and it is prohibitive
to generate all the transition rate matrix. The methodology we present can (i)
bound the system steady state availability and at the same time, (i1) drastically
reduce the state space of the model that must be solved. The bounding method-
ology is also iterative and generates part of the tramnsition rate matrix at each

step. At each step tighter errors bounds on the system availability are obtained.

We also develop a methodology to analyze a load balancing algorithm which
used minimum expected delay as routing policy. This kind of policy can be view
as a generalization of join the shortest queue routing policy. The state space
cardinality of the Markov model is infinite and no closed-form solution exists in
general. We present an numerical algorithm which can (i) bound the expected
response time of job (and expected number of jobs in the system) and, (ii) reduce

the state space of the model that need to be generated.
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CHAPTER 1

INTRODUCTION

In this chapter, we describe the problem we are studying and state the contribu-

tion of this dissertation.

1.1 Statement of the Problem

In recent years, the computer industry has made tremendous progress in pro-
viding processing power, computer network technologies, storage technologies,
etc. Research results in fields like algorithms, database theory and distributed
and parallel processing are also widely applied. These results enable computer
system designers to build larger and more complex systems. One of the require-
ments of these complex systems is that they have a satisfactory performance
under nominal conditions. Some of the common performance measures that need
to be optimized are expected response time, system throughput, ... etc. In order
to achieve an acceptable performance in today’s highly parallel systems, system
resources such as processors, disks or memory buffers, should be evenly utilized.
One way to evenly utilize the system resources is by using some form of load
balancing algorithms. In addition to performance under nominal conditions, an-
other important requirement for these complex computer systems is that they

be highly fault-tolerant. These systems must not only be able to perform at full



capacity when all components are fully operational but also, when faults occur
(either due to software, hardware or external source), there is often a requirement
that they still function correctly and at some guaranteed level of degraded mode

performance.,

Since complex computer systems are often expensive and/or used in critical
applications (e.g., air traffic control, banking transaction, etc), it is increasingly
important for computer designers to be able to predict the performance and
dependability properties of the system during the design phase to verify that the

system will meet specific fault-tolerant and performance requirements.

Simulation is one method of analyzing the system performance and depend-
ability. There are several inherent problems of using simulation in analyzing
computer systems. First, it is very time consuming and expensive to obtain
the desire result. Secondly, it is difficult to check the correctness of the simula-
tion. The problem is aggravated if we use simulation for dependability analysis
for complex computer systems because these systems are built to be highly fault-
tolerant. System failure becomes a rare event phenomenon, therefore, to get tight
confidence intervals of the system reliability /availability measures via simulation
can require excessively long simulation time. Recent work on rare simulation
techniques [CG87, SHG88, NNH90, GSN89] holds promise for broadening the

applicability of simulation in availability analysis.

Another approach to system performance and dependability analysis is to use
Markov models. Most of the dependability models or load balancing models have
irregular structure and closed form solutions are extremely difficult to obtain.
Therefore, numerical solution techniques are most often used to solve the Markov

model. The most prohibitive limitation with using numerical solution techniques



is that for realistic systems the model often has an unmanageably large state
space and it quickly becomes impractical to even generate the entire transition

rate matrix for the system model.

The problem we study in this dissertation is whether one can use approxi-
mation techniques to obtain bounds on performance measures of Markov models
that have too large (or even infinite) state space to be solved numerically. Specif-
ically, we explore how one can trade exact performance analysis for bounds and
in exchange obtain a reduction in computational cost. In this dissertation, we
study Markov models for dependability and performance analysis. Dependability
analysis via Markov models usually has finite but very large state space. For per-
formance analysis using Markov models, we study load balancing algorithms that
are aimed at evenly utilizing system resources. Specifically, we study the classic
join the shortest queue load balancing algorithm. This algorithm is appealing
not only due to it’s simplicity in implementation, but theoretically difficult to
analyze. Since the arrival process is state dependent and no close-form solution
exits in general. Since each servers has an infinite capacity queue, the state space

cardinality of the Markov model is infinite.

1.2 Contribution of this Dissertation

In this section, we outline the contributions of this dissertation. In chapter 3, we
propose a methodology to evaluate computer system dependability via Markov
models. There are two appealing properties in the methodology we develop,
namely, (i) bounds on the system steady state availability are obtained, (i) the
state space of the model that must be solved is drastically reduced. The bounding

algorithm is iterative and generates part of the transition matrix at each step.




At each step tighter bounds on system availability are obtained. The algorithm
also allows the size of the submodel to be solved at each step be chosen to
accommodate memory limitations. This general bounding methodology provides
an efficient way to evaluate reliability models with very large state spaces without
ever generating the entire transition rate matrix. We emphasize that the method

provides error bounds for availability and not just an approximation.

The dependability bounding methodology proposed in Chapter 3 assumes that
the original Markov process has an upper block Hessenberg form. In chapter 4,
we generalize the bounding methodology to a Markov process with a general

transition structure.

In chapter 5 we study a load balancing algorithm in which the routing de-
cision is based on minimum expected delay for the arriving job. This type of
load balancing algorithm is a generalization of the shortest queue routing load
balancing algorithm. We present an algorithmic approach to bounding the mean
response time of a multi-server system in which the minimum expected delay
routing policy is used, i.e. an arriving job will join the queue which has the
minimal expected value of remaining workload. We assume the queueing system
to have K servers, each with an infinite capacity queue. The arrival process is
Poisson with parameter A and the service time distribution on server : is expo-
nentially distributed with mean 1/p;,1 < < K. Without loss of generality, we
assume ) > g > ¢+ > pi. There is a rich literature in which the performance
of the shortest queue routing load balancing algorithm is studied, but none of the
previous work treats more than two servers and simultaneously, provides error
bounds. The major contribution of our computation algorithm is that it (1) allows

more than K > 2 servers, (2) allows heterogeneous servers, (3) includes schedul-




ing based on queue length and service rate (thus, a generalization of joining the
shortest queue) and (4) provides error bounds. This bounding methodology also

allows one to tradeoff accuracy and computational cost as will be demonstrated.




CHAPTER 2

RELATED WORK

In this chapter, we give an overview of previous research related to this disserta-
tion. We divide the related work into three parts. The first part of this chapter
concerns work related to solving large Markov model and bounding of perfor-
mance measure based on the Markov model. The second part discusses related
work on dependability analysis. The last part concerns performance analysis of

the join-the-shortest-queue load balancing algorithmn.

2.1 Solving Large Markov Model

To analyze the performance of a system, we often represent the system by a
Markov model and attempt to solve the model. Since closed-form solutions are
available only in a limited number of cases, such as simple queueing systems,
non-blocking Jackson-type queueing network, ..., etc. Most often the analy-
sis approach for solving the non-closed-form Markov models is by numerical or

approximate computation.

Some Markov models have special transition structures or properties which
make them easily analyze. One of these properties is reversibility, which was first
studied by Kingman [Kin69]. Intuitively, a Markov process X (t) which satisfied

reversibility is one in which the direction of time has no effect on the statistics of




the process. Therefore, X (t) and X(—t) have identical statistical properties. A
necessary and sufficient condition for a Markov process to be reversible is that it
satisfies the detailed balanced equations. Formally, a stationary Markov process

with state space § is reversible if and only if the following conditions are satisfied:

7(1)q(z,5) = 7(5)q(s,?) LIES (2.1)
dow(i) = 1 : (2.2)
ies

where 7(i) is the steady state probability of state ¢ and ¢(%, j) is the transition rate
from state ¢ to state 7. Finding the closed-form solution for a reversible process is
simplified because a reversible process satisfy detailed balanced equations. The

simplest examples of reversible Markov process is a birth-death process.

There are some Markov processes which have the matrix-geometric form.
Neuts [Neu8l] developed a body of elegant results in solving numerically this
kind of Markov processes. The transition rate matrix of this kind of Markov
process can be characterized by an infinite and repetitive structure in terms of

finite vectors of states. In general, the block generator matrix of this kind of



irreducible Markov process can has the form:

By

B,

B,
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with vector x = [Xg, X1, X2, . . .] being the steady state probability vector. Solution

to steady state probability vector x is reduced to solving the following:

oo
k
Xo Z R Bk
k=0
Xk

XO(I - R)_l [

where R can be solved iterative by the following procedure.:

R(0)

R(n +1)

0

Xo Rk

1

0

3 RYALAT

v=1,v#1

(2.3)
(2.4)

(2.5)

(2.6)

(2.7)

It can be shown that lim, . R(r) = R. The Markov process is stable if and

only if:

‘JT'Aog <

= o]

Y (k—1)mAre

k=2

(2.8)




where:

Ty A = 0 and (2.9)
=0
e = 1 (2.10)

A simple example of Markov process which has matrix-geometric form is M/G/1

queueing system.

For some Markov processes, although their state space cardinality is large,
they exhibit an nearly completely decomposable (NCD) form. Roughly speaking,
an irreducible Markov process is nearly completely decomposable if the interac-
tions between groups of states are not comparable with the interactions within
the groups. To illustrate the idea of NCD, let P be the stochastic matrix for an
irreducible Markov chain with dimension n and x be the steady state probability

vector. We said P is NCD if there exits a completely decomposable stochastic

matrix: i X
P; 0 0 0
0 P; 0 0
P* =
o o .- P, O
o o --- 0 Py

where P} is a square stochastic matrix. Let |P}| be the order of P}, then n =

TN . |Pi|. The relationship between the original stochastic matrix P and P* is:

=1

P = P 4+¢C (2.11)




where C is a square matrix with order n and e is a real positive number which
is small compare to the elements in P*. Simon and Ado [SA61] first showed that
(1) in the short-run dynamics, a local equilibrium is reached by the strong inter-
actions within each subsystem almost independently of the other subsystems. (2)
In the long-run dynamics, the weak interactions among groups make themselves
felt and the whole system moves towards a global equilibrium values attained
by the state variables of each subsystem at the end of the short-run dynamics
period. These properties indicate that the short-run equilibrium statistics can
be approximately analyzed without consideration of other subsystems. Once the
local equilibrium of each subsystems is obtained, they can be represented by
an aggregated variable and the long-run dynamics of the whole system can be

analyzed as a set of interactions between the newly formed aggregates.

It is noteworthy to mention the technique of aggregation to reduce the state
space cardinality of the Markov process we want to analyze because in some situ-
ations, we may be only interested the steady state performance of the system at a
“macro” level. In [Cou77], Courtois illustrated the existence of exact aggregation
of Markov model. To illustrate the idea of exact aggregation, let us consider an
irreducible Markov process with state space S. We partition the state space into
two disjoint sets, namely, & and &; (partitioning the state space into two sets
of disjoint sets is only for ease of exposition). The transition rate matrix of the

Markov process is:

Ql.l Q1,2

Q2,1 Q2,2

where Q; ; is the transition rate matrix from §; to §;. Let x = [X1,X2], be the

10




steady state probability vector for the Markov process. Courtois showed that we
can aggregate all states in S; into a single state, s;, 7 = 1,2. The aggregated

process has the rate matrix :

* 12
gz1 ®
where:
G;i = (Xig)7'x Qije (2.12)

Unfortunately, exact aggregation often requires the knowledge of conditional state
probabilities for the set of states we want to aggregate, which in turn requires
the steady state probability vector of the original model. Yet the importance of
the result is that we can at least conceptually apply exact aggregation to the
given Markov model, and therefore drastically reduce the state space cardinality
of the problem. By properly applying the transition rates between aggregates,
we get obtain an approximate result. One important note is that the aggregated
process, in general, is not a Markov process. Therefore, we cannot assume the

distribution of time staying in an aggregated state is exponential.

Kemeny and Snell [KS60] studied under what conditions an aggregated pro-
cess is still Markovian, and which they coined the name, lumpability conditions.
They establish the necessary and sufficient conditions that must be satisfied by
the lumping process so that Markovian properties are preserved. If the original
Markov model satisfies the lumping criteria, a lumped process can be obtained
and the state space of the original problem is greatly reduced. A necessary and
sufficient condition for a Markov process to be lumpable with respect to a par-

tition {S; US; U---U Sy}, 8§iNS; = 0 is that for every pair of sets §; and &,

11




Tk.s; have the same values for every state k € §;, where:

Ths, = 9 Gk for k € 8; (2.13)
{2 H

It is obvious that the lumpability is a very strong condition to satisfied.

One of the most common approximation method to solve Markov model with
large or infinite state space is by state space truncation. One of the most common
approaches to perform truncation is simply by cutting off the transition rates

outside the set of states we want to analyze. That is given rate rate matrix:

Qll Q12

Q21 Q22

with |@11] = n and we want to truncate all transition outside submatrix @,,. We

form a new rate matrix Q™ where:

Q" = Qn + diag(Qi2¢) (2.14)

where diag (Q, €) is a diagonal matrix with it’s i*» diagonal element being the i*
element of column vector (@12 €). Various truncation approaches were presented
in [GS87] like augmenting the external row sum to the i** column of the ma-
trix @Qq;. Although state space truncation is quite commonly apply in practice,
there are some practical and theoretical problems in applying the truncation.
In practice, we not only have to make sure that the resulting Markov process
after truncation is irreducible and from the theoretical point of view, errors in-
troduced by truncation is also very difficult to quantify. Convergence proofs as
the truncation size tends to infinity has been studied by Seneta [Sen80]. Seneta
also provide a simple and robust error bounds but these bounds do not secure an

order of accuracy.

12




If the original Markov model is difficult to analyze. One approach to cir-
cumvent the problem is to analyze another Markov model by perturbing the
transition structure of the original model. Schweitzer [Sch68] studied this prob-
lem and quantified the errors introduced in terms of the steady state probability
vector and the fundamental matrix of the perturbed Model. It is important to
point out that to obtain the fundamental matrix of a Markov model involves

performing matrix inverse and it is computationally expensive.

In some cases, system designers are interested in a performance measures
which depend primarily on how the system behaves in a certain restricted sub-
set of states. In [CS86], Courtois and Semal illustrated the idea of obtaining
bounds on conditional steady-state probabilities in a large Markov model. Given

a stochastic matrix:

Pll P12 PIN
Py Py Pon

P=
i Pyi Pn2 - Paw

Suppose we want to bound the conditional probabilities in the first block. Let v,
i = 1,...,N, be the conditional state probability vector over the states within

the ¢** block. I P;; is the only information provided, then let:
Z(0) = AN0)(I-Pu)™ (2.15)

where A~1(0) is a diagonal matrix which normalizes to one the row sums of the

13




matrix (I — P;;)7!, then v; can be bounded by:
min[Z(0)lx < [vile < max{Z(0)]i (2.16)
P, j=1,...,N are also available. Let

Z;(1) = A7(1) Py (I-Py)”" i=12,...,N (2.17)

J

and v, can be bounded by:
minfZ(D)e < [ile < max(Z;(1)]i (2.18)

They also proved that these bounds are the tightest ones that can be obtained
given only knowledge of the submatrix Py; (and of the second case, Pj for

j=1,...,N) [CS84, CS85].

In [Dij90], Van Dijk illustrated that the use of Markov reward proof tech-
niques to compare different Markov models and thereby obtain performance
bounds. Van Dijk used this proof technique to show that by modifying the
original system (which has no close-form solution) to obtain another system with
closed-form solution, simple but loose bounds can be obtained. This technique
has been applied in some queuing problems that have no close-form solution
[Dij88b, Dij88a, Dij8%a, Dij89b).

In this dissertation, we shall employ the techniques discussed above to reduce
the state space of the problem. Specifically, we use the Markov reward proof
techniques to show the model we modified indeed provides performance bounds.
Unlikely the approach used by Van Dijk, we do not necessary modify the model
to another model with closed-form solution. Rather, we modify the model such
a way that we can efficiently computer the performance measures. Since the
modification is not as drastic as [Dij88b, Dij88a, Dij89a, Dij89b], we obtain very

tight performance bounds.
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2.2 Reliability /dependability

Due to the growing dependence of society on computer systems, there is an in-
crease interest in evaluating and predicting fault tolerance in computer systems.
Dependability analysis has been an active area research for the past decade.
Techniques like combinatorics [Tri82], fault tree analysis [BFS75], simulation
[LB84, CG87] and Markov models [SG86, SG89, SG85a, GCS86, GLT86, HG8T].
In recent years, tools [CF86, CDL81, GCS86, MA82, TDG84] have been built to

aid system designers to evaluate system reliability.

Trivedi in [Tri82] used reliability block diagram to analyzed system reliability.
If the system we want to analyze has a regular structure, e.g., serial or parallel
configuration, and independent component failures and repairs, then it 1s easier
to analyze the reliability of this system. For example, given the system in Figure

2.1, let R; be the probability the component ¢ is reliable. The system as a whole

RZ
A— R, R, —B
R,

Figure 2.1: Combinatoric Analysis.

is consider reliable if there is a path from point A to point B. The probability of

a reliable system, R,, can be expressed as:
R, = R [1-(1~R)’| R (2.19)

But in real life situation, complex systems we want to analyze usually do not

have any regular structure and components failures do not occur independently,

15




that is, when one component fails, it will cause other components in the system

to fail as well. Hence combinatoric analysis becomes no longer applies.

The Fault tree technique was originated by H.A. Watson of Bell Laboratories
[Sin81] and techniques were further developed in [BFS75]. Fault tree uses fault
tree symbols (ex: AND gate, OR gate, .. .etc) to relate undesirable events in the
system that eventually leads to system failure. A fault-tree presentation of system

in Figure 2.1 is illustrated in Figure 2.2 is illustrated in: Where fg, represents

N"‘h ‘__""h

A 3>

Ty
[\

w'-h

Figure 2.2: Fault tree representation.

the event that component : failed and f, represents the system failure. Fault tree

construction is a tedious process because it requires:

1. specification of combination of failure events that lead to system failure.

2. application of a minimal cut set algorithm to remove redundant input events

in the fault trees.

3. for large, complex systems, system designers may have to specify tens of

thousands of fault tree symbols.

Many system analysts prefer simulation for system performance reliability
evaluation. But naive simulation does not work on a highly fault-tolerant com-
puter systems. Since computer systems are built to be fault-tolerant, system

failures are so rare that it requires extremely long run of simulation to obtain
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samples of system failure states. One promising approach to overcome this type
of problem is the concept of importance sampling. The basic idea is to perturb
the probability measure such that system failures become more frequent. This is
accomplished by making component failure events in the simulation occur with
probabilities that are much higher than the actual values. In order to obtain the
proper results, adjustments have to be made to the sample outputs to unbias
the performance estimator. Lewis, Bohm [LB84] used the importance sampling
technique to simulate the network reliability problem with independent compo-
nents. Their approach does not apply when there is interactions or dependency
between components. In [CG87], Conway and Goyal used a heuristic technique
of importance sampling, known as failure biasing, to evaluate the dependability
of highly fault-tolerant system. In [SHG88], failure biasing was used to estimate
the mean time to failure of Markovian systems. Nicola [NNH90] also showed that
by carefully selecting a heuristic for importance sampling, orders of magnitude
reduction in simulation run-lengths can be obtained. In [GSN89], the optimal
importance sampling distribution for dependability analysis of a three state ex-
ample was derived. Yet, the study of failure biasing or importance sampling has
been confined to the level of heuristics on very simple examples. Depending on
the system which is being modeled, it may be difficult to determine an efficient

importance sampling distribution.

Most research on dependability analysis represents the system in the form
of a Markov model. This approach proceeds by enumeration of system states.
The state transition rates are calculated, and the steady state reliability or de-
pendability measures can be obtained by solving the Markov chain. Due to the

complex interaction between system components, closed-form solution of system
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dependability is difficult if not impossible to obtain, therefore numerical methods
are used in solving the Markov model. In [SG85a, GCS86, GLT86], the authors
investigated several numerical techniques to evaluate dependability measures for
Markovian systems with large state space. Some of the popular numerical meth-

ods are:

1. power method

2. successive overrelaxation (SOR)
3. direct method

4, iteration and aggregation

5. Unsymmetric Lanczos method

The SOR method is suggested in [SG85a)] as the method of choice although the
optimum relaxation parameter w is difficult to obtain. Most of these numerical
techniques are iterative in nature and the convergence condition or the conver-

gence rate is difficult to guarantee.

Another limitation of direct application of numerical solution techniques is
that a realistic system model often has an unmanageably large state space and

it quickly becomes impractical to even generate the entire transition matrix.

All the dependability analysis discussed above either cannot handle large and
complex systems or the confidence intervals of the dependability measures are
costly to obtain. In this thesis, we develop a general bounding algorithm that
can (i) drastically reduce the state space of the Markov model and, (ii) provides
error bounds for the dependability measures. The bounding algorithm is iterative

and generates part of the transition matrix at each step. At each step tighter
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bounds on system availability are obtained. The algorithm also allows the size
of the submodel to be solved at each step be chosen to accommodate memory
limitations. This general bounding methodology provides an efficient way to eval-
uate dependability models with very large state spaces without ever generating

the entire transition rate matrix.

2.3 Joining the Shortest Queue Routing Policy

Multi-processor computing systems composed of many servers are now common-
place. In order to maximize the performance of the system, it is important to
distribute the workload evenly among all processors. Joining the shortest queue
is a natural way to balance the load in a multi-server system and thereby achieve
better system performance, i.e. mean response time. In [Win77], Winston showed
that given the arrival process is Poisson, join the shortest queue policy maximizes
the discounted number of jobs which complete service by a certain time ¢. In
[Web78], Weber generalized the result by relaxing the distribution of the arrival
process. In [EVW80], Ephremides et al. showed that join the shortest queue pol-
icy is optimal with respect to delay in a system with two queues. It is interesting
to point out that joining the shortest queue routing policy is both socially and
individually optimal.

One of the major difficulties in analyzing this kind of routing discipline is
the multidimensional nature of the state space, which is infinite in each of the
dimensions. Most of the published results are limited to the case where the

number of servers is equal to two and exponential interarrival and service times.

We give a brief review of the published literature on the shortest queue routing

problem. Kingman [Kin61], and later Flatto and McKean [FMT77] studied this
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problem with two servers via transform methods. They obtained an expression
for mean number of jobs in the system expressed as an infinite sum which can be
simplified under a heavy traffic assumption. Cohen and Boxma [CB83] treated
a similar problem as a Reimann-Hilbert boundary problem and obtained a func-
tional representation for the mean number of customers in the system. Conolly
[Con84] studied the same model as in [FM77, Kin61] and proposed an approxima-
tion algorithm for evaluating equilibrium state probabilities via state truncation.
Rao and Posner [RP87] proposed an approximation for a system with two servers
and each server having different service rates (heterogeneous servers). An ar-
riving job joins the server with smaller number of jobs (rather than joining the
server with minimum expected delay). The analysis approach involves treating
one of the queues as bounded so that the transition rate matrix for the modified
systemn can be expressed in a matrix-geometric form [Neu81). Grassman [Gra80]
studied the same problem with two servers and solved for transient and steady
state behavior. Halfin [Hal85] studied the two servers problem and used a linear
programming technique to compute bounds on the mean number of customers in
the system. Blanc [Bla87] studied the join shortest queue problem with arbitrary
number of heterogeneous servers. He proposed an approximation method which
is based on power series expansions and recursion which requires substantial com-
putational effort. Nelson and Philips [NP89, NP90] proposed an approximation
for mean response time of arbitrary number of servers. More importantly, the
approximation allows general interarrival and service time distribution. None of
the work cited above treats more than two servers and simultaneously provides

error bounds.

In this dissertation, we develop a computational algorithm that (1) allows
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more than two servers, (2) allows heterogeneous servers, (3) includes scheduling
based on queue length and service rate (thus, a generalization of joining the
shortest queue) and (4) provides error bounds. This bounding methodology also

allows one to tradeoff accuracy and computational cost.
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CHAPTER 3

AVAILABILITY BOUNDING
METHODOLOGY

Omne of the most important performance measures for computer system design-
ers is system availability. Most often Markov models are used in representing
systems for dependability/availability analysis. Due to complex interactions be-
tween components and complex repair policies, the Markov model often has an
irregular structure and closed form solutions are extremely difficult to obtain.
Another issue is that for a realistic system the model often has an unmanage-
ably large state space and it quickly becomes impractical to even generate the
entire transition rate matrix for the system model. In this chapter, we present a
methodology that can (i) bound the system steady state availability and at the
same time, (ii) drastically reduce the state space of the model that must be solved.
The bounding algorithm is iterative and generates part of the transition matrix
at each step. At each step tighter bounds on system availability are obtained.
The algorithm also allows the size of the submodel to be solved at each step be
chosen to accommodate memory limitations. This general bounding methodol-
ogy provides an efficient way to evaluate dependability models with very large

state spaces without ever generating the entire transition rate matrix.
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3.1 Introduction

Computer systems are widely used in many applications (e.g., air traffic control
and banking application) where dependability is crucial. System dependability
analysis has long been an active area of research. Techniques such as combina-
torics analysis, Markov or semi-Markov analysis [SG86, GT85, GLT86, HG87,
Tri82], and simulation [LB84, CG87] have been used in dependability analysis.
In recent years, tools [CF86, CDL81, GCS86, MA82, TDG84] have been built to
aid system designers to evaluate and compare different architectures during the

design process.

There are two major types of dependability measures that are of interest. The
first type concerns transient measures, e.g, distribution of the number of times
the system failed in a certain mode by time ¢. This type of measure is espe-
cially appropriate for mission oriented systems (e.g., spacecraft computers). The
second type concerns steady state dependability measures such as steady state
availability. These measures are appropriate for systems with lifetimes that are
long enough to span many failure and repair cycles (e.g., database management
systems or telephone systems). Methods to solve transient dependability mea-
sures of repairable computer systems have been reported in [SG86, SG89]. In this

dissertation, we concentrate on steady state availability.

Markov models are most widely used in analyzing system dependability be-
cause of their generality as well as the ability to represent complex interactions
among components (e.g., dependent failure rates, complex repair policy, etc).
Because of these complex interactions between components, closed form solu-
tions are extremely difficult if not impossible to obtain. Therefore, numerical

solution techniques are often used in analyzing the Markov model. One of the
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most pervasive limitations of numerical techniques is the inability to handle large
models. For models of realistic systems, the state space requirements often vastly
exceed the memory and storage capacity of current (or future) systems [SG85b].
Although approximations (e.g., state space truncation) can be applied to solve
the cardinality problem, the errors introduced are difficult to quantify. In this
dissertation, we present a methodology to compute steady state availability that
can drastically reduce the state space cardinality and at the same time, provide

error bounds.

The results recently reported in [LM90, MSG89] provide methods for com-
puting bounds on the steady state availability of repairable systems. In [MSG89],
a ‘one-step’ algorithm was proposed which requires the user to make an a priori
decision concerning the portion of the state transition matrix to be generated and
the steady state availability bounds are computed based on this submodel. In
[LM90], a ‘multi-step’ algorithm was proposed which allows a stepwise generation
of submodels such that at each step, lower bound on the stationary state prob-
abilities for those newly generated states are obtained. Hence, we can achieve
progressively tighter steady state availability bounds. Each successive application
of the algorithm in [LM90] can tighten the availability bounds but the spread be-
tween the bounds has a non-zero limiting value, i.e. the bounds cannot be made
arbitrarily tight. In this dissertation, we present a general bounding methodology
that augments the previous results by providing an iterative procedure to refine

the bounds to arbitrary precision.

After any step in the iterative computation, we will have generated lower
bounds for the stationary state probabilities for a subset of the states of the

model. The lower bounds on the state probabilities are used to compute upper
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and lower bounds on steady state availability. The algorithm we present can then
proceed in two ways: (i) another set states can be explored and lower bounds
for their state probabilities can be computed or (ii) the lower bounds on the
state probabilities which have been previously computed can be refined. We
refer to the former as a forward generation step and the latter as a bound spread
reduction step. This issue is briefly discussed and a heuristic to guide the iteration

is proposed.

Results in [LM90, MSG89] impose certain restrictions on the allowed set of
states at each step of the state generation. In this dissertation, we relax this

assumption and show that the general bounding methodology can still be applied.

In Section 3.2, we introduce the model and notation. A brief description of
the ‘one-step’ algorithm is presented in Section 3.3. In Section 3.4, the ‘multi-
step’ bounding algorithm is presented. The bound spread reduction algorithm is
presented in Section 3.5. Section 3.6 provides an algorithm to decide whether to
generate more of the transition rate matrix and apply the multi-step bounding
algorithm or apply the bound spread reduction algorithm to refine the bounds
for previously generated states. Up to this point in the exposition, we have
make certain simplifying assumptions about the set of states that compose the
submodel at each step in the iteration. Section 3.7 describes an extension which

removes these assumptions. An example is discussed in Section 3.8.

3.2 Markov Model and Assumptions

Assume a Markov model of a repairable computer system with state space S. §
can be partitioned into two disjoint sets: O and F, where O is the set of states n

which the system is ‘operational’ and F is the set of states in which the system
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is ‘failed’. Let R(i) be the reward rate associated with state 2,7 € S. Let R be
the expected reward rate of the Markov model. We can express R as:
R = Y _w(i)R(i) (3.1)
iE€S
where (%) is the steady state probability of state ¢. Steady state availability is a

special case of this expected reward rate function R where:

¢

1 ificO
R@E) = A (3.2)

0 ifieF

.

Let n be the number of components in the system being modeled. We can

partition the state space § as follow:
S = {FUFARU---UF}

where F; contains exactly the states with ¢ failed components. Figure 3.1 repre-
sents the transition rate matrix G of the model. In Figure 3.1, Q;; denotes the

submatrix of transitions from F; to F;.

In this dissertation, we make two assumptions concerning the availability
model. The first assumption is that the underlying Markov process is irreducible.
The second assumption is that the underlying Markov process has a block Hes-
senberg structure, i.e., @; ; = 0 for § < ¢—1. This corresponds to an assumption
that the probability of two or more components becoming operational in an in-
terval of length At is o(At). It is important to note that this assumption does
not preclude multiple repair facilities or other common features of dependability
models. Also note that a model in which a dormant component becomes active

due to the repair of a second component does not violate the assumption. We
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Figure 3.1: Transition matrix G.

simply do not consider such a dormant component as failed in the definition of

the state partitions.

3.3 One-step Bounding Algorithm

In this section, we briefly describe the one-step bounding algorithm as reported
in [MSG89]. This one-step algorithm will be used as the initial step in the general

procedure presented later in this chapter.

Since computer systems are designed with high availability in mind, it is rea-

sonable to expect that most of the components are operational most of the time.
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With this in mind, the algorithm utilizes an exact representation of transition
rates between states in |J¥_, F; for some k and represents the behavior of other
states approximately via aggregation [Cou77]. Using aggregation, each subset of
states F;, k < j < n will be represented by a single state in the new model. The
cardinality of the new model is!:
k
YRl + (n—k) (3.3)
i=0
Thus, the state space of the problem can be drastically reduced.
The problem in solving this new model is that the transition rates out of
aggregate states are not known. However as will be explained below, one can still

compute bounds on the system availability. First we state a result needed from

[CS84].

Theorem 3.1 Let L be any n x n matriz with L > 0 such that each row sum s
less than or equal to 1.

Let B(L) = {B| B is an n x n irreducible stochastic matriz and B > L. }

Let L;, 0 < i < n — 1 be the stochastic matriz equal to L except in the it
column. L; is matriz L with elements in the i** column increased as necessary to
make the matriz stochastic.

Let z; = the vector of steady state probabilities corresponding to L;.

Let Vi = { v | v is the vector of steady state probabilities for some B € B(L)

Let Zp = {v | 38,0 <:i<n—1 such that _ B; =1,v = Y3 Bz )
Then Vi = Zp.

We apply this theorem by associating the matrix L with the substochastic

1| F;| represents the cardinality of the set F;
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matrix corresponding to transitions between states in D = {FoU---U Fi}. In
this context, the theorem has the following probabilistic interpretation. Consider
the system starts in a state in D and as it evolves, every time the original system
would have made a transition out of D this is instead made a transition to state
i in D. For each choice of state 7, there is a corresponding stochastic matrix L;
formed by incrementing elements of the :** column for the substochastic matrix
of D. The probability vector z; is the conditional state probability vector under
the assumption that each time the set of states in D is reentered, it is via state
;. In [CS86], the authors also note that one need only consider those states in D
into which there is at least one non-zero transition rate from a state in D (i.e.,
the complement of D). We refer to these states in D as “return states”. In our
case, only states in Fi are possible return states (This is based on the second
assumption of our model.). The true conditional state probability vector for Dis
a linear combination of the solutions for each matrix, L;, for each possible return
state 7. Let Rp be the reward vector for states in D, and let Ap be the system

availability conditioned on the system being in D. Then clearly:

min,—{z,—Rp} S-ADS ma.r;{z;Rp} (3.4)

To obtain the steady state system availability 84, we need one further result

from [CS84], which can be stated as follow:

Theorem 3.2 Let G be partitioned as in Figure 3.1. Consider an n T n matric

Qag such that

Qag[Ia J] = 'UIQI.J]-T

where vy is the conditional probability vector for states in set I. If

X = (X1,Xas,...,Xn)
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is the steady state probability vector for Agy, then Xj,1 < i < n s the steady

state probability of being in some state of F; in the original mairiz G.

The problem with direct application of this result is the number of models
that have to be solved; namely, one for each state in Fi to which there is a non-
zero transition from a state in Fryq. This will be impractical for most availability
applications since the number of such states may be in the order of thousands. In
[MSG89], the concept of state cloning was introduced to help solve this problem.
With state cloning, only one submodel needs to be solved at the expense of looser
bounds due to the state duplication. In the following, we introduce the important

concepts from {MSG89].

Given the transition rate matrix in Figure 3.1, we can partition the matrix

into three sets of states:

Go = {%o}
Gl = {flu.rzU"‘Ufk}

G, = {fk.;.l Ufk+2 Ue.-- U}_,,}

The transition rate matrix G in Figure 3.1 can be represented by:

GOO C';"‘01 GOZ
G = | Gow Gun Gn
0 G21 G22

with G;; containing the rates for transitions between states in §; and states n

g;.
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Figure 3.2: Relationship of G and G'.

Figure 3.2 illustrates the concept of state cloning. Applying the technique of
state cloning to the states in G; of the transition rate matrix G, we have a new

g . I
transition rate matrix G :

GDO GOI 0 G02

0 0 |G Ga

There are two sets of states in G, namely Gy, and G4, that correspond to the set
G, in G. Each state in G; of G maps to a state in G, and to a state in Gyq- The
interpretation of cloning can be explained as follows. Assume the system starts
in Go. As components fail and are repaired, the process remains in Go and G

until for the first time there are k + 1 or more failed components. At this point
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the process is in G;. When the number of failed components falls to k, the process
enters G;;. The system then evolves in G; and G4 until the next time it enters
Go. From the comstruction, it is easy to show that the steady state probability

vector of for G is related to the steady state probability vector for G’ as follows:

If [x'o, 71, T'1,, 72} is the solution of #'G’ = 0 and Y r(z) =1,

then [r'y, 7"y, + 7’1, 7'3] is the solution of ¥G = 0 and Y7 (i) =1

Let G, = UL, . where F, is the subset of states of G,4 in which there are
exactly ¢ failed components. Now for each F;, # > k + 1 form one aggregate state
and for each F,, 1 < i < k form one aggregate state. Then the transition rate

matrix is depicted in Figure 3.3 where the 7; ; represent transition rates between

aggregate states.

Let us define D; = {GoU G,,} and C; = {G,4}. Note that the transition rate

matrix between states in D; corresponds to:

GOO GDI

GIO Gll

and as illustrated in the rate matrix in Figure 3.3, there is only one state by
which D, can be entered. Therefore, only one model, L;, has to be solved to

apply Theorem 3.1.

To solve this Markov chain exactly requires determining the transition rates
out of the aggregates states. Unfortunately, in general these transition rates can
only be found by solving the original model in Figure 3.1. In [MSG89], it is

shown that by putting the appropriate bounds on the aggregate transition rates,
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Figure 3.3: Form of transition matrix after aggregation.

the subject of the following theorem.

Proof : The proof is given in [MSG89] O

33

lower bound state probabilities for states in Dy can be obtained. This result 1s

Theorem 3.3 Consider a Markov process with generator G as depicted in Figure
8.8. By replacing the non-zero aggregate failure rates (i.e., ri; withj > 1 ) by upper
bounds and the aggregate repair rates (i.e., ri; with j < i) with non-zero lower
bounds, the Markov chain remains irreducible and the solution of the resuliing

model yields lower bounds for the stationary state probabilities for the states in

Replacing the aggregate transition rates in Figure 3.3 with bounds as de-




scribed in the above theorem, we obtain the matrix in Figure 3.4 in which the
rates indicated by a ‘+’ are replaced by upper bounds (on the actual values) and
the rates indicated by ‘= are replaced by non-zero lower bounds. A trivial upper
bound is the sum of all component failure rates and a trivial lower bound is the
minimum of all component repair rates. Note that if the original Markov process
is irreducible then the constructed Markov process will remain irreducible since

no non-zero transition rates are made zero.

Goo Go1|0 -+ 0 Gortr -+ Gon
Gio Guu |0 -+ 0 Gigpa -+ Gin
— 0 | + o+ +
0 0 [— o + +
0 0 |10 -— + +
0 0o(0 o0 0 0 - .

Figure 3.4: Form of rate matrix after bounding transition rates.

Once we find lower bounds on the state probabilities for states in Dy, we can
express bounds on the steady state system availability S4 as follows: let 7'(i)
be the stationary state probability for state i with the transition rate matrix

in Figure 3.4. Since for all : € Dy, 7'(i) is a lower bound on the stationary
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probability for ¢ in the original model, it follows easily that the bounds are:

STr(iR(E) < Sa < .Z 7' (2)R(2) + (1 -> w’(i)) (3.5)

€D

1 for operational states

0 for non-operational states

\

The idea behind the expression above is that 1 — ¥;ep, #'(2) is the fraction of
time that is not explicitly accounted for states in D;. The bounds are obtained
by assuming that in this fraction of time, the system is either always operational

or always failed.

3.4 Multi-step Bounding Algorithm.

In the ‘one-step’ bounding algorithm described in the previous section, the dimen-
sion of the submatrix D, is specified a priori and once the steady state availability
bounds have been calculated, there is no means provided for further tightening
the bounds. In this section, we describe a multi-step bounding algorithm [LM90]
which partially alleviates this problem. The multi-step algorithm allows incre-
mental generation of more of the transition rate matrix, i.e. at each step, a new
portion of the matrix is generated. Further, at each step the results from the
previous steps are used to form a transition rate matrix whose solution provides
lower bounds on the stationary state probabilities for an additional set of states.

This allows us to incrementally improve the bounds on system availability.

Let us introduce the following notation for the multi-step bounding algorithm:
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Qi

Qp;p; =

QDi,‘.

Rdr D =

&y

Ry ¢

Tij

DG =

set of states which are generated for the i** step of bounding procedure
and for which lower bounds on the stationary state probabilities are

to be calculated.
clone states for the states in D;.

aggregate state for all the states in C; that have exactly j failed com-

ponents.
{(DyU...UD;;UCU...UCiq}

aggregate state for all states in D.
the complement of {D' U D;}. ( i.e., the portion of the state space

that is unexplored.)

aggregated state for all the states in A that have exactly 3 failed

components.

integer associated with the :** step which denotes the minimum num-

ber of failed components for states in D;.

integer associated with the i** step which denotes the maximum num-

ber of failed components for states in D;.

transition rate matrix between states in D;.

transition rate vector from states in D; to state 2.

transition rate vector from aggregate state d’ to states in D;.
transition rate vector from aggregate state d’ to states in C;.
transition rate from state ¢ to state j.

vector of stationary state probabilities for states in D; when the tran-

sition rate matrix is G;.

At any step of the ‘multi-step’ bounding algorithm, there are three disjoint

sets of states. They are D', D; and A. During the :*" step of the algorithm, D;
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is composed of all the states with the number of failed components between L;
and H;. Figure 3.5 illustrates this partitioning of the state space in terms of the

transition matrix G.

In the following, we describe a sequence of state space transformations to rate
matrix G. We will show that for each state space transformation, state proba-
bilities for states in D; are individually bounded from below by each new model
in succession. During this sequence of state space transformation, we use the
basic aggregation/disaggregation technique described in [Cou77]. One important
note is that exact aggregation is not actually required in the computation of the
steady state system availability bounds. We merely use the existence of an ex-
act aggregation in the intermediate steps of the development as in the previous
section. In the end, we only need bounds on transition rates out of aggregate

states.

Figure 3.6 depicts the rate matrix G; as the result of the first transformation
of G. G; corresponds to the cloning of the states in D; and this set of cloned
states is denoted by C;. Note that in rate matrix G, the submatrix Qc, ¢, is equal
to Qp,p,. A similar transformation was described in the previous section and

based on that discussion, it is clear that:
if [7p1/Gy, FDijGus ReifGr» TAsG, ] 18 the solution of mGy =0 and Y7, (1) =1,
then [%p1/q,, ™0y /6, +7¢;/G1» Tasc,) 18 the solution of #G = 0 and S we(i) =1

Since e/, = 0, the following relationship holds:
i/ S TDi/G (3.6)

Figure 3.7 depicts the next transformation. In this transformation, Gz is

formed from G, by applying exact aggregation to the states in D'. Let d' be
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Figure 3.5: Rate matrix G. Initial matrix.

- Qoo Qop;, 0 Qpa |
Qoo Qo 0 Qpa
Qoo 0 Qcci Upia

i 0 0 Quap; Qaa |

Figure 3.6: Rate matrix Gy. Introduction of clone states.

the state which represents the aggregation of all states in D'. Because exact

aggregation is applied, we have the following relationship:

TDifG: = TDifGy (37)

G5 in Figure 3.8 is the result of the next state space transformation on G;. Gs
has a structure similar to that of G5 except that the transitions from d’ to states
in D; and C; are modified. The submatrices Ryp, and Ryc, in Gz and Rgp; in

G, have the following relationship :
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] Rd"D‘- 0 Rd'A

QDsd' QD;'D.' 0 Q'D;A

Qo 0 Qe Qpia

0 0 Qap;, Qaa

Figure 3.7: Rate matrix G,. After exact aggregation of the states in D'

:i'C.' > 0 (3‘8)

7 1
Rd'D.- + Rdlc‘. = Rd'Dl-

A probabilistic interpretation is that the original transitions from d’ to states
in D; are each ‘split’ so that part remains to the corresponding state in D; and

part goes to the corresponding cloned state in C;.

From the definition of G3, we can prove the follow theorem:
Theorem 3.4 7p, /¢, < Tp,/c,
Proof : The proof is given in Appendix A. O .

In the next transformation, we apply exact aggregation to the subsets of states
in C; and A. We form one aggregate state for each subset F; in C; and F; in
A. The result of this transformation is rate matrix G4 as depicted in Figure 3.9.

Note that we permuted the ordering of the state d’ and the set of states D; so

that the matrix has the same form as the rate matrix in Figure 3.4. Since we
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Figure 3.8: Rate matrix G;. Modified rates from state d'.
applied exact aggregation in forming G, the following relationship holds:
TD; /Gy = TD;i[Gs (3-9)

Since the rate matrix in Figure 3.4 and the rate matrix G4 in Figure 3.9
have the same form, Theorem 3.3 can be apply. Specifically, if the elements
shown in Figure 3.10 as ‘4’ are replaced by upper bounds on those rates and
the elements shown as ‘—' are replaced by non-zero lower bounds. The Markov
process remains irreducible and the solution for the stationary state probabilities
will yield a lower bound for the state probabilities for states in D;. Therefore,

the following relationship holds:
TDi/Gs S DGy {3.10}
From this sequence of transformation, we can conclude that:
DGy < TD/G (3.11)

In terms of state space cardinality, clearly G5 has a much reduced state space

compared with that of G. The remaining question is how to provide bounds for
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Figure 3.9: Rate matrix G4. Exact aggregation of states in C; and A;.
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Figure 3.10: Rate matrix G5. Replacement of transition rates with bounds.
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rates from state d' to D; and Cj for L; < j € H;. To answer the question, let us

define the following:

7y = exact steady state probability vector for states in D
T, = lower bound steady state probability vector for states in D' (which we
have computed in previous steps).?

a = sum of the lower bound state probabilities for all those states we have

generated so far.

1 = column vector of 1’s.

From Equation (3.8) and the rate matrix Gs, it is clear that we obtain lower
bound steady state probabilities for states in D; if the following relationships
hold:

Rd"D,‘ 2 R:ifD'.
Rd:D'. _<_ :i"D.' + R;lc'. (312)
Since 11';). is the lower bound steady state probability vector, it follows immedi-

ately that R;, p. can be expressed as:

Rd’,‘D.- = [Wp‘l]_IWD’QD',v.-

!

> [rpl+(1—a) 'rpyQpp, = Ryop, (3.13)
which provides a lower bound for transition rates from state d to the states in
D;.

For the rates ry j, Li < j < H;, let us define the following:

2If the lower bound steady state probability of some Ci, 1 < k < i — 1, are unknown, 0
will be used as lower bound. In the next Section, we will describe how we obtain lower bound
steady state probabilities for states in Cy.
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Dl = states in D; with exactly 7 failed components.

! o 4 . )
R, . = transition rate vector from state d to states in D!.
"y
Qp pi = transition rate matrix from states 7’ to states in D].
L]
I'maz = maximum entry in vector Qp pil.
3

The 7, i, rate from aggregate state d' to aggregate c;’ is easily seen to satisfy the

relationship:

rad = MIN{sum of all failure rates,

1

L] [T Qi1+ (1 = @)7rmae] = R;,'D{1} (3.14)

which provides a upper bound for transition rates from state d to each aggregate

states ¢!, I; < j < H,.
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3.5 Bound Spread Reduction.

In the previous two sections, we have described a one-step and a multi-step proce-
dure for bounding the steady state availability of a repairable computer system.
In these bounding procedures, errors® occur at each step. These errors can be

classified according to their sources:

1. by considering (a) the clone states, C; and (b) the aggregate states, A to

have reward of 0 or 1 in the evaluation of the availability bounds.

2. the difference between the lower bounds and the actual values of the sta-

tionary state probabilities of the ‘detailed states’ in D;.

The contribution to the bound spread by components, (1a) and (2) are not
reduced by successive application of the multi-step algorithm. In this section we
show how we can reduce these errors and obtain tighter bounds by reevaluating
previously calculated bounds for state probabilities. The bound spread reduc-
tion algorithm we propose is iterative in nature. We will first reduce the error
associated with clone states by obtaining lower bounds on their stationary state
probabilities. Once we obtain these lower bound state probabilities, an improved
estimate of the transition rates out of the aggregate clone states can be computed.
With these improved transition rates, we can reduce the error in the stationary
state probabilities of the ‘detailed states’ D;. An important point is that the
bound spread reduction algorithm does not require generating more of the tran-
sition matrix. (It does require reusing the previously generated portions of the

transition rate matrix.) In section 3.5.1, we present the approach to reducing the

3error is defined to be the spread of the system availability bounds.
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error associated with clone states and in section 3.5.2, we present the approach
to obtaining improved lower bound state probabilities for the ‘detailed states’,

D;.

3.5.1 Bound spread reduction for the clone states.

Until now we have assigned a reward of 0 or 1 to all aggregate clone states in the
computation of the system availability bounds. In this way, we never had to be
concerned with the state probabilities for individual clone states in C;. To reduce
this source of error, we would like to obtain a lower bound for the state probability
of each individual clone state. To do this, we will make use of the fact that the
clone states have exactly the same transition structure as the detailed states, D;.
Since this portion of transition rate matrix was generated in the previous step, we
can use it to compute a lower bound on the state probabilities of the individual

clone states.

Assume that at i + 1** step of the multi-step procedure, we have already
obtained lower bounds on the state probabilities for all detail states in D;4, and
we now want to find the lower bound steady state probabilities for all clone states

in C;. Let us define the following notation:

e, =  steady state probability vector for the clone states in C,.

T ki =  state probability vector for the detail states in D;}, with exactly
i1

L4, failed components.

QL , =  transition rate matrix corresponding to transitions from states
|'+1 Ehaed ]

. I .
in D1 to states in C;.
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From the flow conservation equation, we have:

me; Qoipy + Tptin Qptin, = 0 (3.15)

i+1 i+ Y

Note that in the previous step we obtained lower bounds on the state prob-
abilities Wpﬂ-fl and have generated the transition rate structure corresponding
to transitions between states that have from L; to H; failures. We now show
that by applying an iterative solution method (e.g., Jacobi or Gauss-Seidel Iter-
ative method [Var62]), we obtain a lower bound on the state probabilities of the
clone states. In the remainder of this section, we formulate the iterative proce-

dure using the Gauss-Seidel iterative method. Note that 7_z,,, is constant in

D1

this algorithm (the lower bound state probabilities obtained from the previous

bounding step). We will show that the iterative procedure:

1. converges and converges to a unigue solution.
2. converges from below.
3. converges monotonically.

4. the solution (fixed point) is a lower bound of the exact state probabilities

of the clone states.

These characteristics are especially interesting because they indicate that the iter-
ative process can be terminated at any step and the current values are guaranteed

to be lower bounds on the state probabilities of the clone states.

Let us rewrite Equation (3.15) as:

T T T T
of AT = .' e 3.16
@, p; T, QD,‘" Fe R b ( )
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which has the form of a linear system A x = b (with A = —Q7, 5, and x = T3 ).
Note that each diagonal element of A is the absolute value of transition rate out
of the associated clone state and the off diagonal elements are the ‘negated’ tran-
sition rates from one clone state to another clone state. Let A = [Dy — Ls — Uj]
where D, is a diagonal matrix and La and U, are lower and upper triangular

matrices respectively. The Gauss-Seidel iteration can be written as*:

x® = [(DA . LA)—IUA]x(k—l) + (DA _ LA)—lb

with x© = 0 (3.17)

A necessary and sufficient condition for the above iterative process to converge to
an unique solution is for the spectral radius p[(Da — Ls)'U,] to be less than
1 [BF88]. Since A and (Ds — La) are non-singular M-matrices, their inverses
are non-negative matrices, and (Da —La) and Uy form a regular splitting of
matrix A [Var62]. Therefore the spectral radius p[(Da — La)~1U4], is less than
1. Therefore the iterative process does converge to a unique solution. In the
following, we will show that the iterative procedure also has the other claimed

characteristics.
Lemma 3.1 The proposed iterative procedure converges from below.

Proof : Since the iterative process converges to a umique solution x*. From

Equation (3.17}, we have:

x* = [(DA—LA)_IUA] x* + (DA—LA)_lb

“In order to guarantee the claimed characteristics, a initial vector of zero is chosen. There
exist other initial vectors that can speed up the convergence rate but we have not been able to
show the claimed characteristics can be guaranteed with these other choices.
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Let e be the error vector at the kt* iteration. Then:
e — x* —x®
= (DA — LA)-IUA(X* - x("'l))
= (DA - LA)_IUA(EU‘_I))
In order to have convergence from below, we need e¥) > 0 for all k. Since

(Da — La)~! and U, are nonnegative matrices and the initial estimate is a lower

bound vector, it follows easily that e® > 0 for all k. O
Lemma 3.2 The proposed iterative procedure converges monotonically.

Proof : To show that we have an improved bound at each iteration, it is sufficient

to show that x(¥+1) — x{*) > 0 for all k. This can be easily proved by induction.

Basis : For k = 0. From Equation (3.17), we see that x(®) = 0 Also, we see

that x( = (Dy — La)"'b > 0. Therefore x() —x® > 0.

Induction : Assume x*+1) — x®) > 0 for k < n. For k = n + 1, we have:

x(n+2) _ x(n+1) — (DA _ LA)—IUA(x(rH-l) _ X(")) > 0
The inequality holds since (D, — La)™! and U, are nonnegative matrices. O

Lemma 3.3 The fized point of the proposed iterative procedure is a lower bound

on the ezact state probabilities of the clone states.

Proof : Let x' be the exact state probabilities vector for the clone states. We

have to show that X’ — x* > 0. Let b’ contain the ezact rates into the clone states

from states in Df 41!, Then:

Ax* = b
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t 1)

Ax =b

b'-b > 0

The above inequality holds because we computed b from lower bound state prob-

abilities for states in DI***. It is easily seen that:

x —x* = A™'b - A™1b

= AYb-b) >0

Since (b' —b) >0 and A-l1>0. o

To summarize, the algorithm for bound spread reduction for the clone states

in C; is as follows:

procedure Bound Spread Reduction for C;
begin
Let m¢, = 0
do
apply the iterative procedure embodied in
Equation (3.17);
while (specific tolerance is satisfied) ;

end

3.5.2 Bound spread reduction for the detail states.

Recall that in computing lower bounds for the state probabilities of the detail
states D;, we used upper bound failure rates (e.g. sum of the failure rates) and
lower bound repair rates (e.g: minimum repair rate) for the aggregates. Using the

procedure described in Section 3.5.1, we can obtain better lower bound estimates
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for the stationary state probabilities of the clone states. This in turn can be
used to generate tighter bounds on the aggregate transition rates out of the clone
states and thereby obtain improved lower bounds for the state probabilities of

the detailed states, D;.

Let us define the following notation:

r c’:,c’-c = transition rate from the clone aggregate ¢ to clone a, gregate
i G gL : g

k.
a =  sum of the lower bound state probabilities for all those states

we have generated so far.

Tek =  lower bound state probability vector for clone states in C; with

exactly k failed components.

Tmax =  maximum entry in vector Qps pm1.

Since we already computed lower bounds for the state probability of each clone
state, smproved lower bounds on the ‘repair rates’ between the aggregates can

be obtained as follows:
r(cf, 1) = MAX {minimum repair rate,

[mexl + (1 = @) 7erQps pr-i1} (3.18)

while an ¢mproved upper bound on the failure rate from aggregate cf to aggregate

™ is as follows:
r(cf,e™t = MIN {sum of all fatlure rates,

(merl) ™ {merQprpml + (1 - G)Tmax]} (3.19)

Equations (3.18) and (3.19) follow easily from considering the conditional

transition rates between aggregates based on upper and lower bounds conditional
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state probabilities. For example, in equation (3.18):
frep + (1 — )] gy

is a lower bound on the conditional state probability vector for states in Ck.

To summarize, the bound spread reduction algorithm for states in D; is as

follow:

procedure Bound Spread Reduction for D;
begin
Based on the rate matrix G5 in Section 3.4,
for each pair (c!,c/™") where ¢/, ™! € C;, compute the

improved clone aggregate repair rate

r(cl,¢™") by Equation (3.18);
for each pair (¢!, ) where d,c* € ¢;, compute the
improved clone aggregate failure rate
r(c!,¢¥) by Equation (3.19);
using the previous fixed point of 7p;, computed from the
multi-step bounding algorithm as a initial vector,
compute the improved lower bound state

probability vector of 7p,;

end

3.5.3 Bound spread reduction algorithm.

The above bound spread reduction procedure will give us improved lower bounds
on the state probabilities for detailed states in D; and clone states in C; corre-

sponding to step i of the bounding process. We can repeat the reduction proce-
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dure for detail states and clone states corresponding to steps i ~1,2—2,..., 1 of
the bounding process. Since we obtain a better bound for all states in bounding
step 1, we can go forward again and apply the multi-step bounding procedure
to obtain better state probability bounds for states corresponding to bounding
steps 2,3,...,7+1. The complete bound spread reduction strategy can therefore

be stated as follows:

procedure Bound Spread Reduction Algorithm
begin
forj=itoldo
begin
Apply the algorithm in Section 3.5.1 to reduce the
bound spread contribution for clone states in Cj;
Apply the algorithm in Section 3.5.2 to reduce the
bound spread contribution for clone states in Dj;
end
forj=j7+1toi1+1do
begin
Apply the multi-step bounding algorithm described in
Section 3.4 to obtain an improved lower
bound in D;;
end

end

Clearly this reduction strategy can be applied repeatedly to obtain better
availability bounds. Also, each time we apply the iterative procedure to improve

the lower bounds on the stationary state probabilities for the clone states, the
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initial vector for the clone state probabilities can be the estimated fixed point
solution vector from the previous iterative procedure. Since this estimated fixed
point solution vector is a lower bound to the exact solution vector, by using it as
a starting vector, we not only reduce the number of iterations but also preserve
the characteristics we proved in Lemma 5.1 to Lemma 5.3. The preservation of
the characteristics in Lemma 5.1 and 5.3 is trivial. In the following lemma, we
show that by using the estimated fixed point solution vector from the previous

iterative procedure, we preserve the monotonic convergence characteristic.

Let us define the following:

b = the vector of conditional rates from D;y; to C; computed using the

lower bound state probabilities 7 1i4..
i+1

Mokt = the vector of new lower bound state probabilities computed in the last
+1
step of the reduction strategy, where w;),,.. n 2 Tplip -
i+l i+1
b, = the vector of conditional rates from D;;; to C; computed using W’D"“ e

i+1

Lemma 3.4 Using the estimated fized point solution vector from the previous

iterative procedure, the monotonic convergence characteristic is preserved.

Proof : In the previous step of the reduction strategy we obtained improved lower
bounds for the detailed states in bounding step ¢ + 1. This implies that we have
improved lower bounds for the stationary state probabilities of states with Liy,
failed components, w;)L.. 41+ Based on these improved lower bounds, we can obtain

i+l
a new vector by which can be expressed as:

b, = b+b, where b, >0
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Similar to Lemma 5.5, we have to show x**1) — x®*) > 0 for all k. Again,
we prove this by induction. Let x(® = % where X is the estimated fixed point
solution from the previous iterative procedure. Basis : For k = 0. From (3.17),

we have:

_ 0) -
x) = [(DA—-LA) IUA] x( 4+ (Da —La) 'b;

= [(DA—LA)_IUA] X + (DA—LA)_lb -+ (DA—LA)_lbz

= % 4+ x + (Da—La) b,

Since x' > 0, b, > 0 and (Dj — La)~! > 0, therefore x{") — X > 0. Induc-

tion : Assume x*+1) —x®*} > 0 for k < n. For k =n + 1, we have:
X(n+2] - X(n+1) = (DA — LA)_IUA(X('H-I) — X(n)) 2 0

The inequality holds because (Dj — Ls)~! and U, are nonnegative matrices.

O

Lastly, let us estimate the cost of the bound spread reduction procedure after
the k** step of the bounding process. Let |D;| be the number of detailed states
during the j** step bounding algorithm, then the cost of one iteration of the

bound spread reduction procedure is:
k
o(D_ k;|D;l)
1=1

where k; is a constant multiplier which is a function of the number of non-
zero entries in the matrix D; and the number of iterations for the algorithm to
converge. In [SG85b], it is reported that the number of iterations often ranges
between 20 and 100. Since the starting probability vector is the estimated fixed

point solution vector computed from the previous step, the number of iterations
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to compute the new probability vector is also drastically reduced in most cases

for successive iterations.

Although this reduction strategy can be applied repeatedly, there are dimin-
ishing returns in successive iterations. It is of interest then to estimate when it 1s
better to repeat the bound spread reduction algorithm and when it is better to
generate more of the transition rate matrix corresponding to unexplored states.

This issue is discussed in the next section.

3.6 Decision criteria for backward iteration or forward

generation

Although tighter availability bounds can be obtained either going forward (i.e.,
by generating more of the transition rate matrix) and applying the multi-step
bounding algorithm or by going backward (i.e., reducing the errors accumulated
in the previous steps) and applying the bound spread reduction algorithm, the
computational cost and potential gain for these two choices are quite different.

For the multi-step bounding algorithm, we have to consider the following:

e computational cost for state generation.
e storage cost for the newly generated transition matrix.

¢ computational cost for evaluating steady state probabilities in the detail states.

For the bound spread reduction algorithm, the transition matrices were generated
in the previous steps, therefore the only cost is the computation cost of the bound
spread reduction process and the cost of retrieving the transition matrix from

secondary storage if they do not all fit in main memory concurrently.
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In order to decide which algorithm to apply, we have to also compare their
respective potential gains. We define the potential gain as the fractional im-
provement in the spread between the upper and lower availability bounds. For
the bound spread reduction algorithm, the potential gain comes from improved
bounds on the detailed states and clone states. In the forward direction, the po-
tential gain comes from the ability to obtain lower bounds for additional states.
Although we can apply the bound spread reduction algorithm repeatedly to re-
duce the errors, the potential gain for each successive application exhibits dimin-
ishing returns. On the other hand, going forward will require generating more
of the transition rate matrix. But since the distribution of state probabilities is
skewed these newly generated states may not make a significant contribution to

bound reduction.

Based on the above discussion, we see that the problem of making an optimal
decision is not trivial. One important requirement for the decision algorithm is
that the computation cost should be much less costly than the multi-step bound-
ing algorithm or the bound spread reduction algorithms themselves. Since we
always obtain improved bounds regardless of the decision, the worst possible ef-
fect is some inefficiency. Although finding an optimal decision algorithm is an
interesting theoretical issue, we conjecture that truly optimal decision algorithm
will be very costly to implement and finding the optimal decision algorithm 1s
beyond the scope of this dissertation. Nevertheless, a decision algorithm is re-
quired to implement the complete bounding methodology. The heuristic decision
algorithm we present is not meant to be optimal in any sense. It is a simple,
common sense heuristic which we have found to work well in practice. In the

following, we described this heuristic decision criteria.

57



Let us define the following notation:

ss() = difference between the upper and lower bound availability after the

i** application of the forward step algorithm.

sp(i) = difference between the upper and lower bound availability after the

#t* application of the bound spread reduction algorithm.

Se = current difference between the upper and lower bound availability.
g} = estimated gain if the multi-step bounding algorithm is applied.
% = estimated gain if the bound spread reduction algorithm is applied.

In deciding whether to apply the forward step algorithm for the (¢ + 1)t time,

we estimate the gain g} as follows:

g} — [S.f(i — 1) - sf(i)] Se (3‘20)

sg(z—1)

with the first term representing the fractional potential gain from the previous
application of the forward step algorithm. In essence, g} estimates that, if the
multi-step algorithm is applied, the gain will be the same fraction of the bound

spread as was achieved by the previous step.

The estimated gain for going backward after application of the j** bound

spread reduction bounding algorithm, g, is as follows:

- [Sb(j—l)-Sb(j)]S
=TG-

for j 21 (3.21)

with s5(0) = s.. The first term represents the fractional potential gain for the
previous iteration of the bound spread reduction algorithm and g, estimates that
the potential gain will have the same reduction ratio compared with the previous

application.
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In the following, we propose a simple heuristic algorithm for deciding the next
step in the procedure. The algorithm is applied after each forward step. Note
that one (backward) bound spread reduction is always applied before a decision

is made.

procedure decision algorithm
begin
Apply the bound spread reduction algorithm described in
Section 3.5.3 for one iteration;
Compute g} and g,;
while (g} < g;)
begin
Apply bound spread reduction algorithm described from
Section 3.5.3 once;
Compute g'f and g;;
end
Apply multi-step algorithm from Section 3.4;

end

In essence, the decision algorithm is biased toward reducing the accumulated
errors from the previous steps. By doing this, it also avoids the state generation
cost and the storage cost of the multi-step bounding algorithm. The decision
algorithm cost is clearly trivial. A detailed example in Section 3.8 illustrates the

application and effectiveness of the heuristic.

The global algorithm is as follows:

procedure Global Bounding Algorithm
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begin

1=1;

Based the one-step algorithm described in Section 3.3, generate
lower bounds on the stationary state probabilities for
states in Fy through Fy, and compute the system
availability bounds;

if (system availability bound is tight enough)

stop;

while ( system availability bound not tight enough) do

begin
t=1t+1;

Based on the multi-step algorithm described in Section 3.4,
generated the portion of the rate matrix
corresponding to Fr, and Fy, (with L; = H;_; + 1)
and compute the system availability bounds;

if (system availability bound is tight enough)

stop;

Apply Bound Spread Reduction algorithm described in
Section 3.5.3 and compute the system availability
bounds;

if (system availability bound is tight enough)

stop;
compte g} and g,;
while (g; < g,)

begin
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Apply Bound Spread Reduction algorithm
described in 3.5.3 and compute the system
availability bounds;

if (system availability bound is tight enough)

stop;

compute g} and g,;

end
end

end

Thus, this global bounding algorithm provides a method for piecewise gener-
ation of the transition matrix such that at each step, tighter system availability
bounds can be obtained. One important note is that the algorithm can be termi-
nated at any phase depending on the tightness of bounds required. This is due

to the fact that at all times, we have bounds on the system availability.

3.7 Partial state generation

In the previous sections, we developed an algorithm to compute bounds on the
steady state availability bounds of repairable computer systems. The algorithm
assuines a rate matrix generation process in which it is feasible to generate por-
tions of the matrix in chunks which correspond to sets of states of the form U, 7
for some I and H. The problem is that |F;| can be too large to be handled in
one step (e.g., model of a system with 100 components, |F1g| > 10°. When this
occurs, in one step of the computation procedure, D will have to be restricted

to a proper subset of states in F; for some z.). In this section, we extend the
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algorithm so that it can accommodate this generality.

Assume we want to compute lower bounds for the state probabilities of states
in {FoUF, U---U Fr} using the one-step bounding algorithm. Let G in Figure
3.1 be the original transition rate matrix. After applying cloning to all states in
{FL U---U Fi}, we obtain the transition rate matrix G; as depicted in Figure

3.11.

Assume that due to memory limitations, we can handle the portion of the
rate matrix corresponding to D = {.7-'0 U-er Fra U .7:,:}, where F,, is a proper
subset of Fy. Let F, = Fi — F; The corresponding transition rate matrix Gy 1s

depicted in Figure 3.12.

In order to compute lower bounds for the state probabilities of states in the
set D, we transform the rate matrix G; to G; (depicted in Figure 3.13). The
transformation has the following probabilistic interpretation. Assume initially
the system is in one of the states in D, whenever there is a transition from state
i in D to state j in F,, this becomes a transition from state i in D to state 7
in C, instead. Since we apply cloning to states in {F; U --- U Fr}, we guarantee

there is a one-to-one mapping to its clone state.

Let 7p, be the vector of stationary probabilities of states in D with rate
matrix G;. The following theorem indicates that the solution of the transformed

matrix provides lower bounds for the state probabilities of states in D.
Theorem 3.5 7p;g, < Tp/c,

Proof : The proof is given in the Appendix. O

We can now transform G to G4 (depicted in Figure 3.14) by exact aggrega-

tion. We aggregate all the states in F; for + > k and all clone states according
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to number of failed components. Since we apply exact aggregation, we have
TDjGy = TD/G,-

At this point, we can apply the theorem in Section 3.3 and replace the aggre-
gate transition rates by bounds. The final transition rate matrix, Gs is given in

Figure 3.15. It is easy to see that mp,g, < 7p/c-

With this modification, we overcome the partial state generation problem and

we also maintain the block Hessenberg property.

For the multi-step bounding algorithm, we may encounter the following two

situations:

1. we can generate all the ¥, from the previous step and perhaps states with

more failures.

2. we can only generate a proper subset of Fr.

We can apply the same transformations we used in the one-step bounding algo-

rithm to handle these cases. The modifications are:

1. Let }',: be the those states in Fr which are not in D. All transitions from
D to any states in F, are changed to transitions to the corresponding clone

states.

2. Apply upper and lower bounds transition rates for the aggregate and the

clone states.

It is easy to show that this modification provides a transition rate matrix whose
solution vector provides the lower bound steady state probabilities for the states

in D.
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For the bound spread reduction process, we see that to refine the errors for
clone states that have k or less failures, we have to have lower bounds for the state
probabilities for all the states with k + 1 failures. We can obtain lower bounds
on the state probabilities for the states with k + 1 failures using the multi-step
algorithm. Once we get the lower bounds on the state probabilities for the states
with k + 1 failures, we can apply the iterative refinement process as described in

Section 3.5.
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Figure 3.11: Transition matrix Gi.

65

Qoo Qo Qoxk-1 Qox| 0 - 0 0 Qon-1 @on
Qo @n Qg1 Gie| 0O - 0 0 Qi1 Q1,n
0 Qn Qa1 Gax| 0 - 0 0 Q2n-1 Q2
0 0 0
6 0 Qrk-1 Qx| 0 -~ O 0 Qikn-1 Qin
Quw 0 0 |Qu Qe Qg Qin1  Qin
0 0 0 |Qa Qi1 @2k Q2n-1 Qon
0 0 0 | 0 Qri-1  Qik Qrn-1 Qkn
0 0 6 10 0 Qi Qr+1n-1 Qik+1m
0 0|0 0 0 Qnn-1 Qnin




Qoo Qo1 Qog—1 Qor|Qox| 0 - O 0 0 | Qon1 Qon
Q10Qu Grk—1 Quar|Qrar| 0 - 0 0 0 - Qino1 Qin
0 Q2 Qrr—1 Qi |Q24v| 0 - 0 0 0 c Qan-1 @an
0 0 ~QuaiQuwl 0 [0+ 0 0 0 | Quat Qun
0 0 - Qurg—1 0 |Qruin| 0 - 0 0 0 | Qevn-1 Qrvn
Qo 0 - 0 0 0 Qi Que-1 Qe Qi |+ Qin-1 Cun
0 0 0 0 0 |Qu Qa1 Qaw Qupr |+ Q2n1 Q2m
0
0 0 0 0 0 |0 «Quac1 Qi 0 |- Qua-1 Qun
0 0. 0 0 0 [0 «Qrri-1 0 Quiprl Quin1 Qern
0 0 - 0 0 0 [0~ 0 Qrirh Qitr,ev| Qitn—1 Qitin
0o 0 - 0 0 0 0 0 0 0 1 Qun-1 Qnn
Figure 3.12: Transition matrix Gs.
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Qoo Qo1+ Qog—1 Qos| 0 -+ 0 0 Qopr |+ Qon-1 Qon

Q1011 Q-1 G1xr|0 - 0O 0 Qe |- Qin-1 Cin

0 Q- Q-1 Q2|0 - O 0 Qi | Qan1 Qan

0 0 - Qui1Qrw|0 - 0 0 0 | Qn-1 Qun

Qo 0 - 0 0 |Q1 Qa1 Qip Gipr | Qa1 Qun

0 0 - O 0 |Qun Qai—y Qo Qapr |- Qan1 Qa2n

0 0« 0 0|0 -Qui1 Quw 0 | Quaa Qua

0 0 " 0 O 0 "Qk”,k—l 0 Qk”,k” . Qk”,n—l Qk”,n

0 0 0 0 [0~ 0 QuirkQirrar Qrirn-1Qes1m

0O 0. 0 0|0« 0 0 0 | Qun-1 @nn

Figure 3.13: Transition matrix Gs.
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Qoo Qun Qoji—1 Qoxr | O 0 Qo Qon-1 Qon

Q1o Qu Qii-1 Qi | O 0 Q1 Qin-1 Gin
0 Qun Q2i-1 Qa2 | 0 0 Qax Qa1 Qan
0 0 Qri-1 Qww| 0 0 0 Qi'n-1 Qun

ro 0 0 0 . Tlk-1 Tik T1n-1 Tin
0 0 0 0 rn T2,k-1 T2k Tzn-1 Tan
0 0 0 0 0 Thk-1  ® Thin-1  Thn
0 0 0 0 0 0 Tk+1,k Tetln-1 Tksin
0 0 0 0 0 0 0 Tnn-1 .

Figure 3.14: Transition matrix Gy.
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Qoo Qo Qox-1 Qow {0 - 0 Qopxr Qon-1 Qon

QIO Qll Ql,k—l Ql,k' 0 - 0 Ql,k” Ql,n—l Ql,n
0 @Qn Qai—1 Q2w |0 - 0 Qape Q2n-1 Q2n
0 0 Qui-1 Quw |0 - 0 0 Qin-1 Qun
- 0 0 0 |e - + + + o+
0 o 0 0 [— - + + + 4
0 0 0 0 [0 « — o + 4
0 0 0 0 |0 - 0 - + 4
0 0 0 o [0 - 0 0 _ .

Figure 3.15: Transition matrix Gs.
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3.8 Example.

In this section, we will present an example to illustrate the application of the
bounding algorithm. This example incorporates the general bounding procedure

and a tight bound is obtained.

The example is a heterogeneous distributed database system as depicted in
Figure 3.16. The components of this system are: two front-ends, four databases
and four processing subsystems consisting of a switch, a memory and two proces-
sors. Components may fail and be repaired according to the rates given in Table
3.1. If either processors of subsystem A or B fail, they have a 0.05 probability
of contaminating both the database A and a. If either processors of subsystem
C or D fail, they have a 0.05 probability of contaminating the database B and
b. Components are repaired by a single repair facility which gives preemptive
priority to components in the order: front-end, databases, switches, memories,
processors set 1 and lastly processor set 2. (Ties are broken by random selec-
tion.) The database system is considered operational if at least one front-end
is operational, at least one database is operational, and at least one processing
subsystem is operational. A processing subsystem is operational if the switch,
the memory and at least one processor are operational. Also, this system is in
active breakdown mode, meaning that components fail even when the system is

non-operational.

In Table 3.2, we present the bounds on steady state availability for several
steps of the bounding procedure. We note that for each step, the bounds are
significantly tightened. In step one, we apply the one-step bounding algorithm
with detail states that have 0 to 2 failed components. In step two, we apply

the multi-step bounding algorithm for detailed states that have between 3 and 4
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front -and

processor A-l processor B-l processor {-1 processor D-1

mamory A mamory B mamory D

mamiory C
switah A switch B >—I switch C )—I switch D

processor A-2 processor B-2 processor C-2 processor D-2

S 8 8 9

database A database B database C database D

Figure 3.16: A fault-tolerant heterogeneous distributed database system.

failed components. In step three, we apply the bound spread reduction algorithm
described in Section 3.5.3 for states that have between 1 and 4 failed components.
In step four, we apply the multi-step bounding algorithm with detailed states that
have between 5 and 6 failed components. In step five, we apply the bound spread

reduction algorithm for states that have between 1 and 6 failed components.

In Table 3.3 and Table 3.4, we illustrate the individual contributions to the
bound spread reduction by the clone states and detailed states when the bound
spread reduction algorithm is applied. These data show that most of the contri-
bution is from the unclaimed reward of the clone states. In fact, the majority
of the gain comes from obtaining lower bounds on the clone states for which the

bound spread reduction is applied for the first time.

Table 3.5 shows details of the reduction in the spread of the availability bounds
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in step 3 of the global algorithm. The first two columns show the estimated gain
in each direction, the third and fourth colummns show the spread in the availability
bounds if we follow the decision algorithm. The last two columns show the spread
in the availability bounds if the decision algorithm is not followed. In the first
row, we observe that by applying the bound spread reduction algorithm, the
spread of the availability bounds is significantly reduced compared to the spread
of the availability bounds if the multi-step bounding (or forward) algorithm is
applied. In the second row, since the estimated gain g;, is greater than g}, we
apply the bound spread reduction algorithm again. The reduction in the spread
of the availability bounds is comparable in either direction, but since the cost of
forward generation is much more expensive, it pays to apply the bound spread
reduction algorithm. In the last row (which corresponds to the step 4 of the global
algorithm), since the estimated gain g} is greater than g,, we apply the multi-step
bounding algorithm and we obtain a significant reduction in the spread of the
availability bounds. One important note about the decision algorithm is that it
cannot get in an infinite loop in applying the bound spread reduction algorithm

because as defined in Equation (3.21), g, will eventually go to zero.
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Components

Mean Failure Rate

Mean Repair Rate

Front-end A 1/4000 2.1
Front-end B 1/8000 2.0
Processor A-1 1/500 2.5
Processor A-2 1/400 2.0
Switch A 1/750 2.7
Memory A 1/750 2.5
Processor B-1 1/450 2.3
Processor B-2 1/450 1.8
Switch B 1/625 2.6
Memory B 1/750 2.4
Processor C-1 1/600 2.3
Processor C-2 1/450 1.7
Switch C 1/625 2.6
Memory C 1/600 2.4
Processor D-1 1/450 2.1
Processor D-2 1/450 1.5
Switch C 1/600 2.1
Memory C 1/600 2.5
Database A 1/5500 2.5
Database a 1/5000 2.2
Database B 1/5000 2.5
Database b 1/4500 2.3

Table 3.1: Failure and repair rates(per hour).
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Step Algorithm Availability Spread in
Number applied (Upper Bound Availability
lower Bound) Bounds

1 one-step 0.986456955373 | 0.013543044282
0.999999999655

2 multi-step 0.990023127431 | 0.009976869598
(one application) 0.999999999029

3 bound spread reduction | 0.999995763421 | 0.000004224222
(applied twice) 0.999999987643

4 multi-step 0.999999246581 | 0.000000728630
(one application) 0.999999975211

5 bound spread reduction | 0.999999952345 | 0.000000000627
(applied twice) 0.999999952972

Table 3.2: Upper and lower bounds on steady state availability of the database

system.

total reduction of bound spread for step 3 | 9.9726 x 1073
contribution by clone states C; U Cy 8.2304 x 1073
contribution by detailed states Do U --- U Dy | 1.7422 x 103

Table 3.3: Contribution by clones states and detail states for step 3
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total reduction of bound spread for step 5 | 7.2800 x 1077
contribution by clone states C; U Cs 5.0818 x 10-8
contribution by clone states C3 U C4 5.8400 x 1077

contribution by detailed states Do U --- U D, | 3.5391 x 107°
contribution by detailed states D3 U Dy 7.3522 x 1078
contribution by detailed states Ds U Dg 1.6122 x 10~8

Table 3.4: Contribution by clones states and detail states for step 5

resulting resulting
g} % algorithm | spread in || algorithm | spread in
applied |availability applied |availability
bounds bounds
bound spread|5.6821x10~8|| multi-step [9.9764x10~3
reduction bounding
1.4962x10%[5.6788x10 ¢|bound spreadi4.2242x10~%|| multi-step [4.4781x107°
reduction bounding
1.1126x107%|1.0838x107%| multi-step [7.2863x10~7|bound spread|3.7822x107°
reduction reduction

Table 3.5: Ilustration for decision algorithm
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3.9 Conclusions.

In this chapter, we have developed a methodology for computing bounds on the
steady state availability of repairable computer systems. The method provides
an efficient way to overcome the large state space problem in evaluating steady
state availability of realistic systems. We showed that by modification of the
original model, bounds can be obtained with much less cost and also state space
cardinality was drastically reduced. Depending on the tightness required, the

user can tradeoff tightness of the bounds with computational effort.

The development in the chapter is couched in terms of models of repairable
computer systems and determining bounds on availability. However the meth-
ods appear to have promise for other applications. The important property of
availability models that was used was that the equilibrium state probabilities
were concentrated in very few states. It is reasonable to expect that this same
property will hold for example, in models of probabilistic protocol evaluation
[DC88, MS87] and load balancing. In the case of load balancing, there is pre-
sumably a policy for balancing the load on the resources in the system. Thus
we expect that a large number of possible states of the system will have “small”
probability since the scheduler will be biasing the system toward a small number

of preferred states.
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CHAPTER 4

GENERALIZATION FOR AVAILABILITY
BOUNDING METHODOLOGY

In Chapter 3, presented an algorithm to bound steady state availability based on
a Markov model of a system under study. To obtain these results, an assumption
was made that the transition rate matrix had a block upper Hessenberg form.
In this chapter, we extend these results to a Markov process whose rate matrix
has a general transition structure. We assume the original Markov process has
very large state space and we can only generate the portion of the rate matrix
corresponding to transition state 0 thru state I (this assumption may be due
to memory limitations for example). The objective is to bound the steady state
expected performance measure, e.g, steady state availability, given only the infor-
mation from the northwest corner of the transition rate matrix (transition rates
between state 0 to state I). Since the given transition rate matrix has general
structure, we do not guarantee that we obtain tight bounds in all situations. We
also discuss under what situations this bounding procedure will give an acceptable

performance bounds.
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4.1 Problem Definition

Given a continuous time homogeneous Markov process with a transition rate

matrix as follows:

q0,0 Q110 o dot go.f+1 ' GoJ
T10 q11 vt 4ul dii41 0 Qg
qro qgran 1 qLr qrr+1 0 4qrJ
G =
qr+1,0 9r+11 0 iy |9+ 0 9I+1,J
qriz0 qr+21 0 Qre1 | 9r42,04 o 9iR,J
| 40 qm - qir qrrvv -0 45J

We assume that we can only generate the transition structure of the original
Markov process from state 0 to state I (the northwest corner of the rate matrix).
Once we only know the transition rate submatrix, the objective is to bound the
steady state performance measure of the system, e.g., steady state availability.

We make the following assumptions about our model:

1. The underlying Markov process is irreducible.

2. The state space of the northwest corner of the transition rate matrix is

large.

3. The transition rate matrix of the northwest corner is sparse and has an

irregular transition structure, for example, it is not a diagonal rate matrix.

The reason for having large state space, sparsity and irregular transition structure
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is that performing a formal inverse on the northwest corner of the transition rate

matrix is computational prohibitive.

We approach this problem by modifying the transition structure outside the
northwest corner, and apply aggregation techniques to reduce the state space of
the problem and show that by bounding the aggregate transition rates, we can

obtain error bounds.
4.2 Approach

Let us construct another Markov process with transition rate matrix G:

G j = qi; i=0,1,...,1 j=0,1,...,J
Gi,J+1 = 0 i=0,1,...,1T

i, = 0 i=I+1,...,J, j=0,1,...,1
i = ¢; i=I+1,...,J, j=I+1,...,J
i J+1 = E:{':g i j i=I+1,...,J

darr; = [E;'T=I+1 W-'qz'.j] J(ZLlpm) 7=0,1,...,1

gsv15 = 0 j=I+1,...,J

QrsLge1 = — Li—o ity

where w; is the steady state probability of state 7 in the original model.
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The transition rate matrix for the modified process is:

Goo  Giai o+ Gog | doqsr cr Goy 0 1
o @1 o G | G o G 0
0
dro dra v Grr | drren o0 drg 0
G=1| 0 o 0 drarer v drns | Slioaig
0 0 <o 0 dreaasr 0 G2 Egl'zo qi+2.5
0 o --- 0 Grivr o 4ig Ef:o q7;
| Qurro Guria o o 0 e 0 Gr+1,041

Let #; be the steady state probability of state ¢ in rate matrix G. We can

establish the following theorem:

Theorem 4.1

¥ . .
o= ——— 1=0,1,...,J iff
Ek:()?rk
J
> #ilgi) = Fradiag forj=0,1,...,1
=141

Proof: We first prove the (=) part. From the balance equation for state J + 1,

we have:
J I
Y Erdegn = Fpa ) oy (4.1)
k=I+1 g=0

By construction, we have:

J I EY )
3 wd_ars) = _ T4 (E > rrqu,) (4.2)

k=I41 3=0 E. I+1 T \G=0k=I+1
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By rearranging terms, we have:
I J WJ+1
Z > Tk = Z Z Tkqk,; (4.3)
J=0k=I+1 E. I+1 T \j=0k=1+1
Since:
™ = =3 fOTi:O,].,...,J
E:i=0rk
Substituting them into Equation 4.3, we have:
! J 7T1+1
2D gk = Z Z Tqr s (4.4)
§=0 k=I+1 s—I+1 J=0 k=141
Canceling E§=o Y +1 Tk, 741 from both sides of the equation, we then have:

J
i1 = Z Tk (4.5)

k=I+1
Now, let us examine the balance equation of state J + 1. This equation will

hold if each of the individual local balance equations holds, namely:

J

> fegr; = frpdep; forj=0,1,...,1,
k=I+1

If we expand any one of the above equations, we have:

J S J
A Tr.]-{'-] ~ .
E TkQrj = J—?i:- ( Z Wka,j) for 3 =0,1,...,1
1

k=I41 =141 k=I+1

But since Equation 4.5 holds, it follows that each of the individual local balance

equations:
J
> kgr; = Faprdrpy forj=0,1,..., 1
k=T+1
holds.

For the (<) part. If we look at the balance equations for state 0 through

state I, we have:

I
Zﬁ',‘q,',j +ﬁ'_]+1(}]+1,j = 0 fOT' ] = 0,].,. .. ,I (4.6)
=0
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Since:

J

Z TeGk,; = T rs14741,5 for j=0,1,...,1 (4-7)
k=i+1

Combining the equations above with the balance equations for states I +1 to J,

we have:

I J
Z'fr;q;,j + Z 7‘r,—q,-'j = 0 forj=0,1,...,J (4.8)
1=0 i=I41

Since these balance equations for states 0 to state J have the same form as

the balance equations for state 0 to state J in rate matrix G, we conclude that:

Cw; = i=0,1,...,J

where C is a constant. Summing over 0 to J, we have:

J
Z‘ﬂ';:l

=0
therefore:
J
C = O w) and
k=0
J
T = ‘fr,/(Z’frk) fOTE'=0,1,...,J a
k=0

For the remainder of this chapter, let #;5 = #:/(X{_o 7&) to simply the notation.

Based on Theorem 4.1, we know that if we can bound #;g, we can bound

7;. In the following, we derive a bound for #;g. Let us construct the following

stochastic matrices GA‘;, k=0,1,...,1 from G, namely:
G, = G i=0,1,...,15=0,1,...,J
Gi; =0 i=I4+1,...,J,j=01,...,k—1k+1,...,1

Gig = GiIn =E§=oqz',j i=I4+1,...,J

Qi,j = éi‘j l:I+1,,J,]=I+1,,J
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do,0 Gi1 vt Gog| Qoyrr - Qog
1,0 Gig o GQur| Gt o Qg
. 41,0 dra -0 Grr| drrer o0 dna
G, =
EI .0 0 id oo 9§
7=049I+1,j qi+1,1+1 ©ogr+1,J
I ) 0 0 “ -
=0 2 e dreag+1 o0 Gr42g
I . .
2= O - 0 1 quren 0 Qi

Figure 4.1: rate matrix G,

Figure 4.2 illustrates a particular é;c, namely, rate matrix GA’;)

Let us define z; to be the steady state probability vector for rate matrix C;‘:,

i =0,1,...,I. We can establish the following theorem:
Theorem 4.2
1 I
‘ﬁ'qg - Zﬁ,—z,— where Zﬂ, =1
i=0 $=0
Proof: Based on Courtois’ result in [CS86]. D

From the above theorem, we can bound each individual state probability for
states ¢ = 0,1,...,]. But since we only know the transition structure in the
northwest corner, namely transitions between state 0 to state I. We do not
know other transition rates in matrix é:,z =0,1,...,I. In the following, we will
construct a new matrix CR;':' for each ¢ = 0,1,...,I and bound the steady state

probability vector z;.
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Let the transition rate in &} be as follows:

d; = i i=0,1,....,1 j=0,1,...,J
QA‘I‘+1,k = Q‘A'1+1,k

Cj;+1,j = é'I+1,j j=I+1,I+2,...,J

§liy = GptTitinde  i=T+2,143,....J

di; = @y i=I4+2,1+3,...,J0 j>i
‘j:'; = 0 otherwise

Figure 4.2 illustrate Gy,

do,0 diq - o do,1+1 o, I+2 s o
d10 Gia o G| duim 1,142 s g
drpo Gra o0 i) drim 41,142 e drg
éu I . . .
o - Yi=q+1; 0 - O qr+1,I+1 qr+1.I+2 0 qr+1J
FES - ~
0 0 - 0 | Xikoare;  drene o iy
I+2 .
0 o --- 0 0 Ej_.i:() qr+3,; -+ 4r+3.J
0 0 .- 0 0 0 e Gag

Figure 4.2: rate matrix Gy

Let ;¢ be the steady state probability of state 7 in rate matrix G. We can

show the following:

84



Theorem 4.3

Tac! > e for t,k=0,1,...1

k

Proof : Given that G is a transition rate matrix for a finite, irreducible continuous
time Markov chain G. Then G is uniformizable which means that G can be
transformed to a discrete time Markov chain with transition probability matrix
P which has the same stationary probability vector . This transformation is
achieved by:

P=1TI+4+X'G

where ) is greater than or equal to the largest absolute diagonal element of
G. Here, we uniformize the two rate matrices G, and G, into P, and P, with
A = max(Ay, A;) where A, (), ) is the largest of the absolute values of the diagonal

elements of G ((::';)

We define the following notation:

p:,j — the transition probability from state i to state j in P,.
p: ; = the transition probability from state 1 to state j in P,:.
r(z) = reward (either 0 or 1) for state 2.

Ti[r(i)] = one-step expected reward of P, given the present state is i, i.e.
Tilr(3)] = ZP.‘j r(7)
3

1

T, [r(:)] = one-step expected reward of P, given the present state is i, i.e.

To (@) = Y pi; r(i)
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R(i) = n-step (n—1 transitions plus initial position) accumulative reward for
P, given the initial state is ¢, i.e.

n—1
= Y T/[r(3)] forn=1,23,...

=0

and T,°[r(¢)] be an identity function.

R."(i) = n-step (n—1 transitions plus initial position) accumulative reward for
P, given the initial state is 3.
1{¢} = an indicator function equal to 1 if the condition ¢ is true, else 0.

In order to prove the theorem, it is sufficient to show that:

(T, - T, )R > 0 Vi and ¥n

Let f be any nonnegative function applied to state i of the Markov chain. For

any nonnegative function f:

J
(TI:"TJ:)f(i) = Z {i=7j} {P,kf + Z P,,If E P;,zf 1)}

J=i+2 I=I+1 I=j-1
Since:
p;,j—l = P;,k + E?;}+1 p;i,l j=I+2,...,J
Py = Py j=T42,...,J I=j,j+1,...,J

it follows that:

(T Tk Z 1{3—3}{P3k[ (k)“f(j“l)]+ Ji: P;',:[f(l)—f(j—l)]}

j=I+2 I=I+1

The (T — T} ) () will be greater than 0 if the following conditions are satisfied:

A%

f(2)
fG) = fGG+1) j=I+1,I14+2,....0-1

£() i=01,... Jand j=T+1,1+42,...,J
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Let f be R*(), then to prove the theorem, we have to show that the following

conditions are true:

RP (i) — R() i=0,1,....] j=I+1,1+2,...,J V¥n

RMj)—RrG+1) > 0© j=I141,1+2,....,J—1 V¥n

v
o

To prove the above inequalities, we assign the reward function for each state

as follow:
1 0<i<I

r(i) =

0 otherwise
Now we can prove the above inequalities by induction. Since the approach is
similar in each case, we only give the details for the case where ¢ = k and
j=I+1.
For n = 0, since R?(i) = 0 for any state ¢, the inequality holds.

Assume the inequality holds for n, we need to show:

RIFU(E) - RPF(I+1) = RPY(R) = {r(7 +1) + Py s BO(R)
+ i P}+1,1R;c"(l)}
= R (E) — {Prya B (k) + Sy P REQ) )
> RPH(k) — {praaRE(k) + Sy P BE(R)
= RU(R) - RE(R)

> 0 O

Now, given all rate matrices (;‘z, k=0,1,...,1, we can bound the aggregated

transition rates for states in I + 1,7+ 2,...,J by the following theorem:

Theorem 4.4 Given any rate matriz in the form of é;, k=0,1,...,1, we re-

place each non-zero transition rate Q:'J,z =I+41,...,J,7=0,1,...,Jandj <1 by
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a non-zero lower bound and each transition rates é:-:j,i,j =I+1,...,Jand j >t
by an upper bound. We can obtain lower bound steady state probabilities for states

i=0,1,...,1

Proof: Based on the result from [MSG89). ]

Since the original rate matrix has a general transition structure, we do not
guaranteed that this approach will always provide a tight bounds. But the ap-

proach will work well if:
1. the dimension of the northwest corner is large.
2. the density of the northwest corner is sparse.

3. the number of return states is relatively small.
4.3 Example

In this section, we illustrate the bounding methodology for a highly fault-tolerant
distributed system which is illustrated in Figure 4.3. This distributed system
consists of three sub-systems. Each sub-system is composed of a two-processor
module, two memory modules, two disk controller modules, and a disk array
system [PGK88] consists of three disks with a hot-standby. Due to the fault-
tolerant characteristics of disk array, whenever a disk failure occurs, the storage
system can still support 1/O requests although at a degraded performance mode.
We assume we have a hot standby disk in storage system such that we can rebuild
the information in the failed disk on the fly [ML90]. Components may fail and
be repaired according to the rates given in Table 4.1. If a processor fail, it has
a 0.01 probability to write some garbage in the memory module can cause both

memory modules to fail. The sub-system is considered failed when:
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{ interconnection network J——_

System A System B System C

]
H (L AR AR
Qe

! interconnection network I————

Figure 4.3: A highly fault-tolerant distributed system with module repair.

1. a processor module within a sub-system failed.
2. both disk controllers within a sub-system failed.
3. both memory modules within a sub-system failed.

4. two or more disks within a sub-system failed and,

This highly fault-tolerant distributed system is considered failed when:

1. two of the sub-systemns failed.

2. both interconnection networks failed.

Modules are repaired by a single repair service personnel which gives preemptive

priority to components in the order:

e processor module

disk controller

o disk

¢ memory module
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¢ interconnection network

Since we have a two-processor module, we only replace the module whenever
both processors within the same module fail. Also, when the number of failed
components in the system exceeds 10, the system manager assume the distributed
system is performing poorly in the degraded mode and he will call in an additional
repair service personnel. We assume the distributed system is in active breakdown

mode, meaning that components fail even when the system is non-operational.

Components Mean Failure Rate Mean Repair Rate
Processor 1/1000 2.5
Memory 1/1750 2.3
Disk Controller 1/1600 2.2
Disk 1/15000 2.2
Interconnection Network 1/6000 2.4

Table 4.1: Failure and repair rates{per hour).

In Table 4.2, we present the bounds when the transitions are generated in
detail for states up to k failures. As illustrated, the tightness of the bound is the

function of the details states we want to solve.
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k Availability | Availability
failures | Upper Bound | Lower Bound
0 1.0 0.99767591

1 1.0 0.99923523

2 0.99999998 0.99994371

3 0.99999932 0.99999211

4 0.99999878 0.99999643

Table 4.2: Availability bounds on highly fault-tolerant distributed system.
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CHAPTER 5

ALGORITHMIC APPROACH TO
BOUNDING THE MEAN RESPONSE TIME
OF A MINIMUM EXPECTED DELAY
ROUTING

In this chapter we present an algorithmic approach to bounding the mean re-
sponse time of a multi-server system in which the minimum expected delay rout-
ing policy is used, i.e. an arriving job will join the queue which has the minimal
expected value of unfinished work. We assume the queueing system to have K
servers, each with an infinite capacity queue. The arrival process is Poisson with
parameter A and the service time distribution on server i is exponentially dis-
tributed with mean 1/p;,1 < ¢ < K. Without loss of generality, we assume
fy > fiz > -+ > pg. The computation algorithm allows one to tradeoff accu-
racy and computational cost. and expected number of customers are computed
and the spread between the bounds can be reduced with additional space and
time complexity. Examples are presented which illustrate the excellent relative

accuracy attainable with relatively little computation.

5.1 Introduction

In this chapter, we are concerned with bounding the mean response time (and
thereby the mean number of customers in the system) of the minimum ezpected

delay routing policy (a natural generalization of the shortest queue routing pol-
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icy). The system under study has K servers, where K > 2. Each server has an
infinite capacity queue and service rates are exponentially distributed with rate
pi, i =1,2,..., K. Without loss of generality, we assume gq > p2 2 -+ 2 jix.
The job arrival process is Poisson with rate A. Upon arrival, the job will join
the queue with minimal expected unfinished work (the formal definition of the
routing discipline will be given later). In case of a tie, the job will join the server
with lowest index. If all the service rates are the same, then the scheduling policy

reduces to the classic shortest queue routing policy.

Joining the shortest queue is a natural way to balance the load in a multi-
server system and thereby achieve better system performance, i.e. mean response
time. One of the major difficulties in analyzing this kind of routing discipline is
the multidimensional nature of the state space, which is infinite in each of the K
dimensions and the lack of closed form solution. Most of the published results
are limited to the case where K = 2 with exponential interarrival and service

times.

We start with a brief review of the published literature on the shortest queue
routing problem. Kingman [Kin61], and later Flatto and McKean [FM77] studied
this problem with K = 2 via transform methods. They obtained an expression
for the mean number of jobs in the system expressed as an infinite sum which can
be simplified under a heavy traffic assumption. Cohen and Boxma [CB83] treated
a similar problem as a Reimann-Hilbert boundary problem and obtained a func-
tional representation for the mean number of customers in the system. Conolly
[Con84] studied the same model as in [FM77, Kin61] and proposed an approxima-
tion algorithm for evaluating equilibrium state probabilities via state truncation.

Rao and Posner [RP87] proposed an approximation algorithm to analyze a system
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with K = 2 and in which each server has a different service rate (heterogeneous
servers). An arriving job joins the server with smaller number of jobs (rather
than joining the server with minimum expected delay). The analysis approach
involves treating one of the queues has a bounded capacity so that the transition
rate matrix for the modified system can be expressed in a matrix-geometric form
[Neu81]. Grassman [Gra80] studied the same problem with K = 2 and solved
for transient and steady state behavior. Halfin [Hal85] studied the two servers
problem and used a linear programming technique to compute bounds on the
mean number of customers in the system. Blanc [Bla87] studied the join shortest
queue problem with arbitrary number of heterogeneous servers. He proposed an
approximation method which is based on power series expansions and recursion
which requires substantial computational effort. Nelson and Philips [NP89, NP90]
proposed an approximation for mean response time with X" homogeneous servers.
More importantly, the approximation allows general interarrival and service time
distribution. Avritzer [Avr90] studied a dynamic load balancing algorithm which
used threshold policy in an asymmetric distributed system. The result is only
applicable to two distinct servers and a small class of threshold sizes, no formal
proof is given on how to obtain performance bounds. None of the work cited

above treats more than two servers and simultaneously provides error bounds.

The major contribution of this chapter is a computation algorithm that (1)
allows more than K > 2 servers, (2} allows heterogeneous servers, (3) includes
scheduling based on queue length and service rate (thus, a generalization of join-
ing the shortest queue) and (4) provides error bounds. The bounding method-
ology also allows one to tradeoff accuracy and computational cost as will be

demonstrated.
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In Section 5.2, we define formally the queueing system we are analyzing. In
Section 5.3 and 5.4, we present Markov models which provide upper and lower
bounds on the mean response time and formally prove that these modified models
do provide bounds. In Section 5.5, we show how we can further reduce the
state space by lumping similar states. In Section 5.6, we present two numerical
examples and show that the bounds are indeed tight. Conclusions are presented

in Section 5.7.
5.2 Minimum Expected Delay Routing Model

We counsider a system with K > 2 servers, each with its own infinite capacity
queue and exponential service rate p;, ¢ = 1,2,..., K and gy 2 pp 2 --+ 2
k. The job arrival process is Poisson with rate A. Let n;(t) be the number of
customers in the i** server queue at time ¢. Let U;(t) = (1 4+ n;(t))/ i, which is
the expected unfinished work at the i** server if the new customer joins queue 1.
Define U*(t) = min{U;(t),i = 1,...,K}. Upon arrival of a job at time ¢, the
job will join a server j where U;(t) = U*(t). If a tie occurs, the job will join the
lowest index server in the set {j|U;(t) = U*(t)}. A special case of this routing
discipline is when all service rates are equal, and in this case it reduces to the
classic shortest queue routing problem. We can construct a Markov model, M,

for this queueing system with state space:
{s = [n,n2,...,nk]|n: 20, i=1,...,K}

Assume the system is stable; that is p = A/ K u: < 1. The steady state

probability vector for this continuous-time Markov model is the solution to:

G = 0 (5.1)

35



7e = 1 (5.2)

where 7 is the steady state probability vector, G is the transition rate matrix and

¢ denotes an appropriately dimensioned column vector of 1's.

We can transform this continuous-time Markov model into a discrete-time
Markov model via uniformization [Ros83] (the rationale behind this transfor-
mation is to facilitate the comparison of the original model and the modified
model). To express the one-step transition probabilities for this discrete-time

Markov chain, we need the following notation:

S = total state space of the original model, M.
= A+ ZE ]

U*(s) = min{Ui|U; = (1 + n)/pirt = 1,., K, 8 = [nq,n2, ..., nk]}

na(s) = set of servers in state s in which {U; = U*(s)}.

n*(s) = the lowest index for servers in set nq(s).

1{c} = indicator function for condition ec.

The one-step transition probabilities for a given state s = {n1,..., 7. .., ni) are:
s— s+e 1{i = n*(s)}hA (5.3)
s — S—é€ 1{n; > 0}hp; (5.4)
§— 3 1—h[A+ i H{n; > 0}pi] (5.5)

i=1

where s+e¢; is the state s with one additional customer in the ith queue. Also

note that:

1-— h[/\ + i l{n,- > O}u,-] = i 1{71,' = 0}[.&.'}1, (5.6)

i=1 i=1
Let P be the transition probability matrix for the transformed discrete-time

Markov chain, we can obtain the steady state probability, at least theoretically,
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by solving the following system of linear equations:
7P = #
e = 1 (5.7)

Of course, based on the state description, % is a K-dimensional vector which is
infinite in each dimension. The exact solution to this problem has thus far been

found to be intractable.

In general, the original problem does not possess a closed form solution and it
is impossible to solve the problem numerically due to its state space cardinality.
Since the Markov chain lacks special structure, techniques such as the matrix-
geometric methods do not apply in general. One natural way to approach this
problem is to construct another model that closely bounds the performance of the
original problem and at the same time, the modified model should have either
a known closed form solution or at least be efficiently evaluable by numerical

methods.

An important observation is that the motivation for using minimum expected
delay policy is to balance the workload among all servers in the systems. Consider
a system of two servers with equal service rate in which the current state is [5,1].
The purpose of using the routing policy is to balance the system as much as
possible, therefore it is reasonable to assume that a highly unbalanced state(e.g.,
[5,1]) has a much smaller probability mass than the balanced state (i.e., [3,3]).
This crucial insight provides the rational for constructing two modified versions
of the original model which can be shown to bound the mean response time of
the original system. In both cases we represent the exact behavior (transition
rates) for the most “popular” states. The number of states in the most popular

subset is a function of the accuracy demanded and computational cost one is
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willing to pay. When the system leaves this subset we modify the behavior of
the system in such a way that (a) the modified system has an efficient solution
and (b) the modified model behavior can be shown to bound the behavior of the

original model.

In the following two sections, we present two Markov models which can pro-
vide an upper bound and a lower bound mean response time. We also present

numerical procedures to efficiently solve these two modified models.

5.3 Upper Bound Model

In this section, we construct a modified Markov model, M,, which provides an
upper bound for the mean response time and mean number of customer of the
original model, M. For the upper bound model M,, we assume we have the same
system configuration, namely the job arrival process is Poisson with rate A and
system has K servers with service rates y;, 2 = 1,2,...,K,and py 2 ptp 2 --- 2
HE.

The upper bound model can be described as follows. There are two additional
model parameters for M,. First, we have a threshold parameter d which indicates
the degree of imbalance permitted between different servers’ queues (a formal
definition for d will be given later.) A job may depart from the system only if its
departure will not violate the maximum degree of imbalance permitted. If the job
departure would violate the threshold setting, the job restarts itself within the
same server. Intuitively, this mechanism forces a job to stay in the system at least
as long as in the original model and thereby increases the mean number of jobs in
the system. The rationale behind the threshold parameter is to generate a model

which has a state space which is a small subset of the state space of the original
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model. The second parameter is the artificial capacity, C; where 1 = 1,2,..., K
(again, C; will be precisely defined later) for each server. Whenever a job arrives
to the system and finds that each server has an integer multiple of C; jobs, each
server will put all jobs in its queue (except the arriving job) into a suspended
state and a new busy cycle is started. This busy cycle will end when all servers
complete all jobs except for the suspended jobs. The suspended jobs are then
released and can be served. Note that the definition here is recursive. During
the busy period following suspension of a set of jobs, the capacities C; can again
be exceeded, causing another set of jobs to be suspended. When a busy period
ends, only the set of jobs suspended at the initiation of that busy period are
released for service. The purpose of the C;,; 1 < 1 < K, is to create a matrix
with repetitive structure and based on that structure, we will be able to derive
an efficient numerical solution algorithm. The computation algorithm is based
on a partitioning of the state space of M, into {So U Sy ---} such that all states
in S;, ¢ > 0 satisfy the condition iC; < n; < (i+1)C; for = 1,..., K. Due to
the routing of arrivals and the constraint on departures, we can show that there
is only one transition from &; to S;41 and the transitions from S;;; to S; can only
go to one state in &;. This modification to the model should also increase the
mean number of jobs in the system compared to the original model since service
of a suspended job can only be resumed service when all the active jobs depart

from the system.

As an example, assume that we have a system with four homogeneous servers
and we let C; = 10, for i = 1,2,3,4. It is easy to see that Sp consists of all states
for which each queue has between 0 to 10 customers; S; consists of all states for

which each queue has 10 suspended customers, and has between 0 to 10 active
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customers and at least one queue has an active customer. Observe that the
only transition from Sy to S, is through state [10,10,10,10]. This is due to the
routing of arrivals. The only non-zero transitions from &; to &y are from states
[11,10,10,10], [10,11,10,10], [10,10,11,10] and [10,10,10,11] to [10,10,10,10].
This is due to the rule introduced in M, that suspended customers are only
served when the busy period (corresponding to states in ;) has completed. For
a heterogeneous server system, the value of C; has to be chosen to be proportional
to the relative service rate in the system to maintain the same structure for the

transition rate matrix.

An important point is that the parameters d and C; can be chosen to control
the extent to which M, behaves like the original model M, i.e. the larger d and
C; are, the larger the portion of the state space that has behavior identical to the

original model.

We define the following variables for M,,.

S, = total state space of M,, where S, C 5.
=+ K ]!
C; = [ﬁfCJ, i =1,2,...,K, where C is some positive integer such that
[‘::—ICJ > 1.
d = threshold setting where (C; — C + 1) <d < (.
Nmar(8) = max{ni|s = [n1,..., 74, ..., K]}

o
—
7]
S’
Il

smallest integer [ such that IC;—n; > 0 for all servers ¢, = 0,1,.. ., K

in state s. Note that [(s) is the depth of recursion of job suspensions
in state s.

We transform this continuous-time Markov model into a discrete-time Markov
chain with the same uniformization parameter k which we used in the original

model M. The one-step transition probabilities of the discrete-time Markov chain
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for a given state s = [n1,...,ni,...,n] are:

s— s+e 1{i=n"(s)}hA (5.8)

s— s—e  1{n; > 0}1{nma(s)—n; < d}1{ni—(I(s) = 1)Ci > 0} hpi(5.9)
$s— s l—h[A—i-f:l{n.- > 0}1{nmaz(s) — ni < d}

a 1{n; = (I(s) = 1)C; > 0}p] (5.10)

Note that for transition s — s—e;, the second indicator function reflects that

a job cannot depart if it violates the maximum degree of imbalance permitted.

The third indicator function reflects that job cannot depart if it is in a suspended

state. We are now in a position to formally compare the original (M) and the

modified Markov chain (M,) and prove that the mean response time of M, is an

upper bound of the mean response time of M.

5.3.1 Proof of upper bound mean response time

Our proof that the mean response time of the modified model is an upper bound
on the mean response time of the original model follows the approach in [Dij90].
Let T and T, be the one-step expectation operators of the original model M and
the upper bound Markov model M,,. That is for any non-decreasing function f,
we define T in terms of the one-step transition probabilities to be:

Tf(s) = D pls—s1f(s)

s'eS
T.f(s) = ) pls—s1f(s)
S'Esu
where p[s — §'] is the transition probability from state s to state s'.

Let R and R, be the mean response time of M and M, respectively. And let

N and N, be the mean number of customers in the system for M and M,. To
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show R < R, all we need to show is N < N, since the average arrival rate for
both models is A. Define the reward for state s as r(s) = i, n;. The mean
number of customers in the system can be expressed in term of the expected
reward function:

N = ) r(s)r(s) (5.11)

3ES

Let V(s) be the total expected reward over ¢ periods with one-step reward

function r when starting in state s. We have:
t
Vis) = 3 THr(s)]

k=0

with 7° being the identity function. By the Markovian property, we have:
Vis] = r(s) + TV r(s)]

Since both Markov models are irreducible (easily seen from their definitions),

steady state performance measures are independent of the initial state s, and we

have:
N=> r(s)m(s) = Jlim % V*s'] and (5.12)
3€S °°
No= X r(s)mls) = fim 2 Vo] (5.13)
3€Su >

By comparing the total expected reward over ¢ periods for both the upper

bound and original model and s € S, we have:

(VE=Vhs] = ru(s) = r(s) + (LY, =TV Ts]

= (T —-T)V sl + Tu(Vy™ = VIT)ls]

= Y THT, - TV )

u
k=0
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The last expression was obtained based on the recursive definition and V°(s) = 0
for all s. Now divide both sides by ¢ and take the limit as ¢ goes to infinity. We

can conclude that N < Ny if for all s € 8, and for t > 0:

(T.—T)V'[s] = © (5.14)

Based on the definition on the one-step expectation operator on the original
model M and the upper bound model M, we have the following relationship.

That is for any state s € &,:

(Tu=T)f(s) = gl{ni>0}(1{nmu(8)—ni = d}|
1{n;—(I(s) — 1)C;=0})p:h[f(s) — f(s—es)]

(5.15)

where symbol “|” is the logical OR operator. Substituting f(s) for V'(s), 1t

follows easily that Equation (5.14) will be satisfied if the following conditions are

satisfied:
V*[s] - V‘[s—e,—] > 0 fori=12,... . K;t>0; n; >0 and 5 € &,
(5.16)
Theorem 5.1
Vis] — Vi s—e] 20 fori=1,2,...,K;t>0; n;>0ands€S,

Proof: The proof is by induction on t. When ¢t =0, V%(s) = 0 for all s, therefore
the condition is satisfied. Now assume the condition is satisfied for ¢ = m. For

t = m + 1, we have in general':

K
V() — V™ (s—-¢) = {r(s) + Y Ahi{F = n(s)}V " (s tes)+

=1

1Note that the condition implies that in state s, there is at least one job in the i** queue.
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K
Yo 1{n; > 0}p;AV™(s—e;) +

=158

K
pih V™ (s—e;) + Z 1{nj=0},u,th"'(s)} -
j=1,g#i

K
{r(s—e;) + 3 AR1{j = n"(s—e)) VM (s —eitej)+

J=1

K
Z l{nj >0}u,-hV’"(s-—e.-—ej) +
J=1,5#4

l{n,-—l >0},u,-hV"'(s—e,——e,~) +

( i{: l{ndO};Ljh-Fl{n,‘—l-_—O}ﬂ;h) V"‘(.s—e,-)}

J=1ii

Grouping similar terms, we have:

Vi (5) V™t (s—¢) = { [r(s) — r(s—e.‘)] +

K
[Z M1 = n*(s)}V™(s+ej)—

i=1

K
SOARL{j = n(s—e)} V™ (s —eite;)

i=1

K
> Yn;>0}ush

J=1,5#

-+

V™(s—e;) — V"‘(.s—e,-—ej)jl +

,u,-hV"'(s—e,-) - l{n.- -1> O}Ju;hV"‘(s—e,-—e,-)

—l{n; —1= O}p;hV"‘(s - 6,‘):]
K
Y Un;=0}uh [V™(s) - V™(s—ei)
J=13#i
It is clear that the first [] term is greater than zero. By induction hypothesis, the
third, fourth, and fifth [] terms are greater than zero. It remains to prove that
the second [] term is greater than or equal to zero. To answer this question, we

break this term into four cases.
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For case 1, for state s, ¢ # n*(s) and for state s —e;, 1 #n*(s—e;), this implies

n*(s) = n*(s—e;) = j where j # 1, the second term is:

S AhL{j = n*(s))

J=1$J?"“

(V™ (s+e;) — V"'(s—e,—»l-ej)il > 0
Case 2: for state s, i = n*(s) and for state s — e;, i = n*(s — e;), the second

term is:

Ab [(V"‘(s-l-e;) —V™(s—e;+e)| = 0

Case 3, for state s, i # n*(s) and for state s — €;, i = n*(s — ¢;), the second
term is:
K
3O AR = (s)}V M (s4e;) — VT (s—eite)| = 0
=154
Case 4. For state s, ¢ = n*(s) and for state s — e;, ¢ # n"(s — ¢;). This case

is obviously impossible. D

5.3.2 Computational algorithm for solving the upper bound model

In this section, we will describe an algorithm for computing the mean response
time of the upper bound model. We define a partition of the state space of M,,
S, = UR,S; and S;NS; = B, Vi # j, where:

So = set of states with n; < Cj, 7 =1,2,..., K.
S; = set of states with :C; < n; < (1+1)C;, 7 =1,2,...,K and for 1 2 1.
Ps.s. = transition probability matrix from states in S; to states in &;.

[ ]

The transition rate matrix P, has the form depicted in Figure 5.1:
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Ps, s, Psys, 0 0 0

P.Sl S0 P51 S1 P-51 S2 0 0
Pﬂ = O P52,51 PSz,Asz P52,33 0
0 0 P, 83,52 P, 853,53 P, 853,84

Figure 5.1: Transition probability matrix for upper bound model.

This is a block tridiagonal transition probability matrix and therefore repre-
sents a generalized birth-death process. By aggregating each partition §;, we can
form a birth-death process. Next, we show how to obtain the exact conditional
state probability vector, given that the system is in partion S;. Once we have
this information, it follows easily that we can obtain the aggregate transition

probabilities exactly.

There are several important features of this upper bound model, M,. First,
there is only a single state in S; that has a non-zero transition probability into

any states in Si1, ¢ > 0. Let us call this state 3;(Cp). State s;(Cp) is:
5:(Co) = [n1,n2,...,nk| €ESi  where n; =(+1)C; V 3=1,2,... K

This follows from the rule used to assign an arriving customer to a server. Also,
there are K states from &; that have non-zero transition probabilities to states in
Si—1 Each corresponds to which server is the last to complete its “active” (non-
suspended) customers. where ¢ > 1. Let us call these states 5;(1), 1 <1 < K, 1 2

1. These states are:

s5i(l) = [ni,n...,nk] €S; where
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n = C1+1 and

n;, = 1C; for l#j and 1,j=1,2,..., K

This follows from the restrictions on departures in the upper bound model. The
following are easily seen to be the transition probabilities between 8i(Cyp) and

sim(1),1=1,2,..., K are:

3i(Co) — si(l) 1{l = n*(5:(Co))} AR
sipi(l) —  s(Co) wmh for 1=1,2,.. K

Another important observation is that the submatrices Ps, g for : > 1 are all
identical. We now consider how to compute the conditional state probabilities

P{s € 8|S} exactly. We first need the following result from [CS86]:

Theorem 5.2 Given a irreducible Markov process with state space S = {AU B}

and transition probability matriz:

Psa Pup
Pga Ppp

where P; ; is the transition probability sub-matriz from partition i to j. If Pg 4 has
all zero entries except for some non-zero entries in the ith column, the conditional
steady state probability vector given that the system is in partition A is the solution

for the following linear system of equations:

o T
() [PA,A +Pspee ] = 7|a

'fr'Me =1

T

where €] is a Tow vector 0 in each component except the it component which has

the value 1.
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We are now in the position to compute the conditional state probabilities on
each partition exactly. Without loss of generality, let us consider S;, for some

12> 1.

Lemma 5.1 Let Ps. s, be the transition probability matriz which is similar to

Ps, s, except for the following modification:

ﬁﬂi(co),si(co] = Psi(Co),8:(Co) + Ah (517)
ﬁu(i),a;(l) = Pl T uth  where l = n*(s.-_l(Co)) (5.18)
Doty = ik i=412,...,Kandj #I (5.19)

The solution for the following linear system of equations:

irP‘Sl'isl’ = ﬁ-
e = 1

provides the conditional steady state probability of state s given the Markov chain

is in some state in S;, that is:

#(8) = —-M— 3 i
(s) S 7 (5) VsES;

Proof: Let us partition the state space S, = {S; US|} where §; = UIZ,S; and
S = 8, — S.. There is only a single return state in S;, which is s;(Cp), from
states in S; . Based on theorem 5.2, the modification according to Equation (5.17)
provides the conditional steady state probability given the system is in S;. Now
partition the state space S; = {S} U §;} where S} = U}_{;S;. Note that there is

only one return state in &;, which is s;(n*(si—1(Co))). Again, based on theorem
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5.2, the modification according to equation (5.18) and equation (5.19) provides

the conditional state probability vector given the system is in state &;. O

Since we can compute the conditional state probabilities for each partition S;
exactly, we can exactly aggregate states in each &; into a single state s;,7 > 0.

The aggregate chain 1s depicted in Figure 5.2.

A A A A A
¢ agg ag agg agyg
\.Q/—
‘\ k
1) n [ [ [
agg agg ag99g agg agg

Figure 5.2: Aggregate Chain for upper bound model

,\0 = 'ﬁ'(
dagg = 7(8i(Co)) A b

K
Hagg — Z"'}(Si(l)) ur h

Solving this chain, we have:

N1
7(s0) = ll-l————’\ag‘;] (5.20)

Hagg —

-1 i-1
m(si) = [1 + M ] ( Ao ) (ﬁzﬂ) for 1=1,2,...
Hagg — Aagg Hagg Hagg

(5.21)

To obtain the mean number of customers in the the upper bound model, N,

let us define the following:

K
CQ - ZC.

i=1

#(s) = r(s)—iCy sSES;
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where 7(s) is the solution of the following Markov chain:

;r.psi'si = ;I:
f?g = 1
Then we have:
Ny = N(so)m(s0) + Y [N(s:) +iCa] 7(s:) (5.22)
=1

Since N{s;) = N(s;) for i # j and ¢,j > 1, we can simplify the expression above
and obtain the expression for N,:

No = N(so)r(so) + N(s:)(1 = n(s0)) + coxo_-““L)z-w(so)

(uayy — Aagg
(5.23)

From Little’s Result [Lit67], the upper bound mean system response time is:

5.4 TLower Bound Model

In this section, we construct a modified Markov model, M;, which provides a
lower bound for the mean response time of the original model, M. We first give
an informal description and motivation for the lower bound model. As for the
upper bound model, two additional parameters are used to specify model M,
namely, d and C;, ¢ = 1,..., K. A job may depart normally from the system only
if the departure does not violate the maximum degree of imbalance permitted.
If a job departure violates this threshold setting, the system will go into a full
service mode. In this mode, the system behaves like an M/M/K system with

a special service discipline; specifically, if there are j customers (where j < K)
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in the system, these j customers will be executing on the j fastest servers. If
there are more than K customers in the system, then the system behaves like a
regular M/M/K system. The system will operate in this mode until the next idle
time and then it will start behaving like the original system again. Also, when
a job arrives and finds that the system has C; customers, where Cy = vk Ci
the system will again operate in a full service mode until the system goes idle
and then it reverts back to its original behavior. Intuitively, these modifications
will yield a lower bound on mean response time. Since the modification are
idealization in which either the model behaves exactly as the original model or
the best possible service rate is delivered. While this is intuitive we will also
formally prove that the modified model M; yields a lower bound on the mean
response time. Of course, it is intended that d and Cj,i = 1,2,..., ) be chosen
large enough so that most of the time, M; behaves like the original model. On
the other hand, to be able to solve the model efficiently, we would like to keep

these parameters small.

5.4.1 Proof of lower bound mean response time

In order to facilitate the comparison between M and M, we organize the state

space for model M using the following notation:

N; = set of states with exactly 7 jobs in the system, where: = 0,1,...

¢ = {MUMU-Ng,)

Qi; = submatrix containing transition rates from states in A to states in
N;

Qig = submatrix containing transition rates from states in A; to states in G
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Figure 5.3 illustrates the form of the transition rate matrix for model M when

states are ordered according to the number of customers in the system.

Qoo Qog 0 0 0
Qgo Qgg Qg.cpn 0 0
0 Qcyng || Qojrrepir Qoptrop2 0
0 0 Qc,r20,41 Qopr2cp+2 Qopi2,0043

Figure 5.3: Transition rate matrix for M.

Using the state replication technique from [MSG89], it is easy to show that
we can transform the model M into another model, M, by duplicating states in
G without perturbing the expected number of customer in the system. Let us
call the duplicated set of states G'. The transition rate matrix My, which results

from the duplication of states in G, is illustrated in Figure 5.4. More Formally,
if?:
(70, 55, ®5]

is the steady state solution for model M, the steady state probability vector for
model M, 1s:

i

R where 25 =, +

Note that there is a one to one mapping between states in G and states in

G and Qg g = Qgg, Qoo = Qgrp and Qc, 116 = Qc,+1,¢- Starting from an

2to simply notation, we use T, g to represent steady state probabilities for states other than
state 0 and states in G
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— Qoo Qog 0 0 0 0
Qoo Qg 0 Qg.cr+1 0 0
Qgo 0 Qoo Qoo 0 0

0 0 || Qcyrrer Qojniepn Qoptiop42 0
0 0 0 Qepv2c1 Qojv20,+2 Qopra,0p43

Figure 5.4: Transition rate matrix for ;.

empty system, only states in G are visited until the number in system exceeds Cy.
When the number in system falls to C; again, states in G’ will be visited rather
than states in G until the system goes idle. At this point the described behavior
repeats. Intuitively, the idea is that if Cy is large enough, the number in system
only rarely exceeds Cy and therefore most of the time, M; behaves exactly as the

original model M.

Although the states in G are more popular that other states in the model, there
are still a large number of states in G which have low steady state probability, for
example, those states with large imbalance in queue length. With this in mind,
let us partition G into two sets of states, G; and G, where G, contains all those
states that satisfy the threshold setting d, and G, = G — G;. Based on the results
from [L.M90], transitions from G; to G, can be transformed to transitions from &,
to the corresponding states in G’ (since there is a one to one mapping between
states in § and G') without perturbing the mean number of customers in the

systems. Formally, the steady state probability vector for model M, is:

I
5.
do,
+
8.
I
-
o
+
J:I

" "
Eo,ﬂgl,igﬂ;.g] where mg
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The transition rate matrix for this new model M, is illustrated in Figure 5.5.

[ Qoo Qo 0 0 0 0
Qoo Qo | Yoo Qoo 0 0
Qgo 0 Qoo Qoo 0 0

0 0 || Qcyrre Qoptroper Qoprreg+2 0
0 0 0 Qcye20+41 Qopr2.0p+2 Qop+2,0,48

Figure 5.5: Transition rate matrix for M,.

Now, (conceptually) we apply exact aggregation [Cou77] to states in G’ and
to states in N; for i > C;. That is, we aggregate all states with equal number
of customer into a single state. Denote the aggregate state corresponding to :
customers in the systems as a; and let g; ; be the aggregate rate between aggregate
state 7 and j. The transition rate matrix for this model Mg, is illustrated in Figure

5.6.

We are now in a position to compare model M (which has the same expected
mean number of customers as the original model, M) to the lower bound model
M; since they have similar transition structure. Note that in the lower bound
model M;, the system operates in the full service mode when it is in states a;,

¢ > 1. That is®:

- ity 115 (5.25)

3To simplify notation, we use notation ao (a state with no customers in the system) and 0
interchangeably
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Qoo Qo 0 0 0 0

levo Q(&.Gl le.ﬂl QGhaz QGuﬂa Qal,m

Ga1 0 0 Bay 4, Ha, a2 0 0
0 0 Gay,ay  YGazaz  Yaz,as 0
0 0 0 gﬂa a2 gaa 203 gﬂa,ﬂi

Figure 5.6: Transition rate matrix for M.

It is clear that these aggregate rates g, .. in M, are upper bounds for aggregate

transition rates g, q,_, in Ms.

Again, to facilitate a formal proof that M; provides a lower bound, we trans-
form the two continuous time Markov modes, M3 and M;, into discrete-time
Markov chains with the uniformization parameter h. We can then apply the
same approach as in Section 5.3.1 to show that the expected number of cus-
tomers in the system for model A4 is less than the expected number of customers
in model M. Based on the difference of the one-step expectation operator T; (for

model M) and T, we need the following conditions to hold:

Viai_1) —Via) < 0 i>landt>0 (5.26)

Theorem 5.3

Vi{ai_y) — Via;) €0 i2>landt >0

Proof: Let us pick any i, where i > 1. Again, the proof is by induction. When

t = 0, the condition is clearly satisfied. Assume the condition holds for t = m.

115



For ¢ = m + 1 we have in general:

V™ (aisy) — V' (a) = {r(aicn) + ABV™(@0) + Gaiyaio RV ™ (aiz2)+
+ (1 ’\ + ga.‘-1.ﬂi—2)) Vm(ai-—l)} -
r(ai + ARV™ (a,'+1) + ga.',ai_1hvm(al'—l)+

+ (1 h(A + 9a;0:-, )) Vm(ai)}

——

Since the following inequalities hold:

Gaic1aica S YGaieioy
[1 - h(’\ + gai_l,a.‘-z)] > [1 - h()\ + Yai0is )]

h(Gaisais ~ Jaicraia) = [1 —h(A+ gﬂi—l‘ﬂi—z)] - [1 —h(A+ 96.'.(!.‘-1)]
By rearranging terms, we have:

Vi (i) = V™ (@) = [r(aio) = rla)] +
AR [V™(a;) — V™ aiq)] +
(Jai-r,ai-a) [V (@ic2) — V7 (@im1)] +
(Jasiaicr — Gaios ai—a) B [V (@ic) = V7 (@iz1)] +

(1 —h(A+ Jaraia)) [V (@i1) — V™ (a;)]

The first {] term is less than zero, the fourth [] term is equal to zero. By the

induction hypothesis, the second, third and fifth [] terms are less than or equal

to zero. O

5.4.2 Computational algorithm for solving the lower bound model

In this section, we describe an algorithm for computing the mean response time

in the lower bound model M;. Let Sy = {no U G;}. Again, the transition rate
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matrix is depicted in Figure 5.7:

[ Qo Q| © 0O 0 0
Qoo Qg | Qo Q6o Qs Q6
oo 0 | 9« Yoy O 0
0 0 || 90a; Yazar Yazas O

0 0 0 Gayar Yasas  Yana

Figure 5.7: Transition rate matrix for lower bound model.

Observe that if we know the conditional state probabilities for states in S,

we can aggregate Sp as a single state, sg, and we will have an efficient algorithm

to compute the mean number of customer in the system. Based on Theorem 5.2,

Noted that there is only a single return state to S from states outside Sp, and

based on Theorem 5.2, the state probabilities conditioned on the system being in

8y can be obtained by solving the following system of linear equations:

7:5(50) [QSD,SU + (

Cf-l-l

Z QSO'N" Q) Qg'] = 0

=1

'?I:(So) e = 1

where 7:?'(50) is the steady state probability vector given the system is in So. We

can now apply exact aggregation and the aggregated process is depicted in Figure

5.8.

The transition rates for the aggregated chain are:

Gooa; = 7(S0)Qso.n:E

i=1,...,Ci+1
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OIONONOEAONZNEE

Figure 5.8: Aggregate Chain for lower bound model

Yaiaisy = A 121
g;lvso = Ml
Yy b i=23,... K
Jasaimy =
Ty otherwise

where p* = TK | p.

Solving the chain, we have:

C!-I—l H Cf+1
W(SU) = 1+ Z Z[As E gm,a, Hgap, ay_ 1 1]+
i=1 j=1 k=j
A cf+1 Cr+1 Crtl -1
8 —3 = * -1
s W DI LA O DR PG | [Ny
J=1 k=3 k=j
(5.27)
CI+1
W(a‘) = SO Z[Aim} Z gan #j kH ga,,,a;, 1 t= 1) T ’Cf—l_]‘
=2
(5.28)
A Cf-[-l Cf-l-l C!+l
ﬂ-(ai) = 77(30 s -1 Z [)\Cri-l I Z gag,a‘, H gak Gk 1
” k—J
i=Cst2,... (5.29)

To obtain the mean number of customers in the system, N; and the mean

response time Ry, let

]\:T(Sg) = Z r(s)7(s)

s€Sp
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Then we have:

N = .-’V(SU)TF(SQ)—}-iiTF(a,‘) {5.30)

=1

Rg = lrJ/A (5.31}
5.5 Further State Space Reduction

In the previous sections, we discussed the methodology to construct an upper
bound model M, and a lower hound model M;. The computational costs in

solving the models are:

1. obtaining the conditional state probabilities in Sp and Sy,
2. obtaining the steady state probabilities of the aggregated process and,

3. obtaining the performance measure, e.g., expected response time or ex-

pected number of customers.

The larger the state space cardinality of S;, the more accurate are the results
obtained. In this section, we discuss how we can reduce the state space of &; by

lumping similar states.

Kemeny and Snell [KS60] studied under what conditions an aggregated pro-
cess is still Markovian. The condition for a Markov process to be lumpable with
respect to a partition {PoU Py U -}, where P; N P, = 0, is that for every pair
of sets P; and P;, rp, has the same value for every state & € P; where:

Tep; = ST for k€ P;
1eP;

‘We can apply this notion to onr minimum expected delay routing problem.
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Let J be the number of distinct types of servers in the model where two servers
are of the same type if and only if they have the same service rate. For any state

s define the following mapping:

f:s — {lli=1,2,...,J}

where:

l; = is a set of tuples (ai;, Bi;)

o = is a queue length for a server of type ¢ that appears in state s

Bi; = is the number of servers of type ¢ that has queue length «;; in state s

We define a partition of the state space S, (or 8;) by specifying that s;,s2 €

Su(or &) are in the same partition if and only if f(s1) = f(s2).

For example, assume we have a four server system with gy = po =4, 3 =3
and g4 = 2. There are three distinct types of servers and J = 3. We can group
states such as s, = [3,4,2,1] and state s; = [4,3,2,1] into the same partition

since the /;,7 = 1,2, 3 for both states are:
h = {(4,1),3,1)}
h=1{(2,1)}
I ={(1,1)}

It is not difficult to see that the condition for lumpability is satisfied and we can

greatly reduce the state space of the model that needs to be solved.

5.6 Numerical Examples

In this section, we present two examples to illustrate the bounding algorithm.
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The system we consider in our first example consists of four homogeneous
servers. To vary the system utilization p from 0.1 to 0.9, we fixed the input
arrival rate at 4.0 and vary the service rates for all servers. For this example, we
set d = 4. For p = 0.1 to 0.7, we set C; = 7, for p = 0.8, we set C; = 9 and for
p = 0.9, we set C; = 10. Table 5.1 illustrates the upper and lower bound mean
response time as a function of system utilization. Percentage error* is defined to

be Bu=fi ¥ 100%. Note that the bounds are very tight.

RutHi
System | States [Response TimeResponse TimeSpread of|Percentage

Utilization|Generated| Upper Bound | Lower Bound | Bounds | Error
0.1 175 0.100074 0.100074
0.2 175 0.201692 0.201692
0.3 175 0.309557 0.309557
0.4 175 0.431429 0.431429
0.5 175 0.579080 0.579068 0.000012|0.00103 %
0.6 175 0.773178 0.772967 0.000211{0.01364 %
0.7 175 1.061225 1.056777 0.004448 (0.21000 %
0.8 245 1.569928 1.554950 0.014978 (0.47931 %
0.9 280 2.867803 2.752649 0.115154(2.04883 %

Table 5.1: Homogeneous servers system

The second system we consider has four heterogeneous servers with p; =
10,4t = 9,13 = 8 and py = 6. To vary the system utilization from 0.1 to 0.9,

we fix the service rates for all servers and vary the input arrival rate. We set

4if the spread in bounds is less than < 10¢, we leave the entries for the spread of the bounds
and percentage error blank.
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d = 6 and for p = 0.1 to 0.7, we set C =< 9,8,7,5 >. For p = 0.8 to 0.9, we
set C =< 12,11,10,8 >. Table 5.2 illustrates the upper and lower bound mean

response time.

System | States [Response TimeResponse TimeSpread of[Percentage
Utilization|Generated| Upper Bound | Lower Bound | Bounds | Error
0.1 30895 0.103573 0.103301 0.0002720.13148 %
0.2 3095 0.107718 0.107435 0.00028310.13153 %
0.3 3095 0.113167 0.1128359 0.000308 |0.13627 %
0.4 3095 0.120737 0.120305 0.000432|0.17922 %
0.5 3095 0.131729 0.131086 0.000643 |0.24466 %
0.6 3095 0.148537 0.147701 0.000836 10.28221 %
0.7 3095 0.176870 0.174620 0.002250 |0.64013 %
0.8 6410 0.230285 0.225782 0.004503 |0.98735 %
0.9 6410 0.391237 0.372385 0.018852|2.46876 %

Table 5.2: Heterogeneous servers system

To illustrate the tradeoff between computational cost and accuracy of the
bounds. Let us consider the homogeneous queueing system in the first example.
By fixing the system utilization at 0.9 and increasing the number of states gen-
erated, we see the improvement of the bounds in mean response time. The result

1s 1llustrated in Table 5.3.
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a.
)

States |Response Time|Response Time|Spread of|Percentage

Generated|{ Upper Bound | Lower Bound | Bounds Errors

417 175 3.157382 2.487368 0.670014 |11.86968 %
4/ 9 245 2.927385 2.624671 0.302714 | 5.45228 %
4(10 280 2.867803 2.752649 0.115154 | 2.04883 %
5112 518 2.790852 2.760358 0.030494 | 0.54932 %

Table 5.3: Computational Cost vs. Accuracy

5.7 Conclusions

Joining the shortest queue load balancing is appealing not only due to it’s sim-
plicity in implementation, but theoretically difficult to analyze. Since the arrival
process is state dependent and no close-form solution exits in general. Also due to
the fact that each servers has an infinite capacity queue, the state space cardinal-
ity of the Markov model is infinite and it becomes impossible to generate all the
states space to analyze the Markov model numerically. In this chapter, we have
presented an approach to bound the mean response time and the mean number
of customer of minimum expected delay routing policy, which is a generalization
for join the shortest queue routing policy. Since the original model has infinite
state space and without closed-form solution, We showed that by constructing
two modified models with finite state space, M,, and M;, upper and lower bound
mean response time and mean number of customers in the system can be ob-
tained with much less cost. The algorithmic approach provides the flexibility to

tradeoff computational resources and tighter bounds.
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CHAPTER 6
CONCLUSIONS

The study presented in this dissertation was motivated by our interest to evaluate
Markov chain models with very large state spaces. In particular, we concentrated
on the study on dependability analysis of highly fault-tolerant computer systems,
whose Markov models usually have large state space cardinality. We also studied
the performance of a load balancing algorithm which use minimum expected
delay for routing job to service centers. The corresponding Markov model has an

infinite state space.

In chapter 2 of this dissertation, we proposed a methodology for computing
bounds on the steady state availability of complex computer systems. We assume
the original Markov model to have a block upper Hessenberg form. The bounding
methodology allows us to generate part of the transition rate matrix at each step

and at each step, tighter bounds on the steady state availability can be obtained.

The block upper Hessenberg assumption in chapter 2 implies that the proba-
bility of two or more components becoming operational from failure in an interval
of length At is o(At). This is clearly not the case for the system where several
components form a module which is considered to have failed if certain specified
combinations of components are failed. In this case, the repair process will re-
place the module as a whole and thereby the upper block Hessenberg assumption
will not hold. With this in mind, we presented a generalization of the bounding

methodology in chapter 4 for system dependability analysis on a Markov process
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that has a general transition structure. Since the Markov process has a general
transition structure, tight bounds cannot be guaranteed in all cases (unless most
of the interesting states are generated, which sometimes may be prohibitive due
to memory limitations). We also discussed under what situations we can have

reasonable error bounds.

For parallel (or distributed) computer systems, we need to evenly utilize all
the system resources in order to achieve an acceptable performance. One way
to evenly utilize system resources is by using some form of load balancing al-
gorithm (e.g., join the shortest queue algorithm). In chapter 5, we presented
an algorithmic approach to bound the mean response time and mean number
of customers in a load balancing algorithm which uses minimum expected delay
routing policy. This kind of load balancing algorithm is a general case of the
join the shortest queue algorithm. The bounding algorithm provides flexibility

to tradeoff computational costs and accuracy.

We can pose the following question: Where does this research go from here?
It is the author’s opinion that as we build larger and more complex computer sys-
tems, formal performance evaluation and prediction are extremely necessary in
the design process. The advantages of using analytical modeling are precision and
cost effectiveness. Also due to the advance in computer technologies, we are now
able to analyze much larger models. However, the models state space typically
grows exponentially with parameters such as number of servers, number of cus-
tomers, etc. Due to this explosive growth, computing power will not grow rapidly
enough to solve the problem. However, some models have intrinsic properties that
we can exploit. For example, a model might be nearly completely decomposable.

In this case, we can apply decomposition technique [Cou77] or iterative aggrega-
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tion and dis-aggregation techniques [Tak72] to analyze the Markov model. On the
other hand, some models have an inherent skewness property. That is the steady
probability mass is concentrated in small subset of states rather than distributed
uniformly over the total state space. In this case, we need to study further the

following;:

1. determination of the most “popular states”.

2. specification and generation of an irreducible Markov process based on these

popular states.

To automate the steps describe above for general application is certainly not
trivial. After we generate the model, we need techniques to proof bounds on
performance measure. We believe approaches such as Markovian proof technique
[Dij90] or sample path analysis [Sto83] are the powerful tools to prove the per-

formance bounds.

Pertaining to possible extensions to this research, the author believes that it
is theoretically interesting to generalize the bounding methodology to a Markov
process with general transition structure as well as general reward rates. Al-
though the bounding methodologies presented in this dissertation are couched
in terms of availability models and load balancing model, the approach appears
to have promise for other applications. As we stated before, many applications
possess the skewness property. For example, it is reasonable to expect models for
probabilistic protocol evaluations [DC88, MS87] to have this kind of characteris-
tic. One possible extension is to investigate how to choose the parameters d and
C; such that we can a prior predict the error bounds. Another possible extension

for bounding mean response time of load balancing algorithm is to relax some
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conditions, e.g. by allowing general interarrival and/or service distribution.
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APPENDIX A

Proof for Theorem 3.4

Theorem 3.4 7p;c, < 7pjc,

Proof : Given that G is a transition rate matrix for a finite, irreducible
continuous time Markov chain G. Then G is uniformizable which means that §
can be transformed to a discrete time Markov chain with transition probability
matrix P which has the same stationary probability vector = [Ros83]. This

transformation is achieved by:
P=1+X'G

where A is greater than or equal to the largest absolute diagonal element of
G. Here, we uniformize the two rate matrices G; and Gy into P and P; with
A = maz(Az, A3) where A (A3) is the largest of the absolute values of the diagonal

elements of Gy (G3).

We define the following notation:

Dij = the transition probability from state i to state 7 in Ps.
N y
D; ; = the transition probability from state i to state j in Ps.
47 p
di j = pii- Py
(%) = reward (either 0 or 1) for state 3.
Talr(z)] = one-step expected reward of P, given the present state is 1, i.e.

Tolr(D)] = > pii 7(j)
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Ta[r(é)] = one-step expected reward of P5 given the present state is ¢, i.e.
L] = X5y r)
3

RE(D) = k-step (k — 1 transitions plus initial position) accumulative re-
ward for P, given the initial state is ¢, i.e.
k-1
RiE) = 3 T'[r(3)] for k=1,2,3,...

=0

and T?[r(z)] be an identity function.

RE(2) = k-step (k — 1 transitions plus initial position) accumulative re-
ward for P; given the initial state is 2.
1{c} = an indicator function equal to 1 if the condition ¢ is true, else 0.

Based on the results in [Dij88b, Dij90], expected reward for G, is greater than

or equal to the expected reward for Gs iff:

(T, — T3)RE(G) > 0 Vi and Yk

Let ¢ be a 1 — 1 mapping from D to C which maps each state sp € D to the

corresponding state s¢ € C.

Let f be any nonnegative function applied to state ¢ of the Markov chain.
Since the only difference between G; and Gj is in the rates out of d', then for any

nonnegative function f:

(T, - T5)f(5) = 1{i= d’}{ S pwapf(sp) + para f(d) + 3 pavacf (@)

speED a;CA
- Z p:i',spf(‘sD) - p:f’,d’f(d') - Z p:i‘,acf(sc)
sp€ED sg€eC
- Z p::i’,a,'f(a")}
ai€A
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Since

Pard? = Par g

Pd'a; = p:l",a.' v a; € A
'

pd",D 2 pd’,sp V Sp € D

it follows that:

(T - T5)f(5) = 1{s =d'}{ > duapflsp) + 3 dd'.scf(sc)}

spED sceC

Since by construction of G5 from Gy,
dosp = — Ao gsp) VspeD

we have:

(T - Ta)f(i) = {i=d} { > daaplflsp) - f(¢(SD))]}

sp €D
A sufficient condition for the above expression to be greater than or equal to

0 is:
[f(sp)— f(s¢)] =2 O Vsp € D and s¢ = ¢(sp)
Letting the function f be R*(z), then the condition:
(T, — Ts)RE(i) > 0 Vi, k
is satisfied if:
RE(sp) — RE(sg) 20 Vsp € D and Yk

where s¢ = ¢(sp).
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The above sufficient conditions can be easily proved by induction, for each

choice of sp € D and s¢ = ¢(sp).
For k = 0, since R3(7) = 0 for any state i, the inequalities hold.

Assume R¥(sp) — RE(s¢) > 0 for k < n. For k =n + 1 we have:

Ryt'(sp) — Ry (sc) = {T(SD)+ 3" PapinB3(iD) + popa B3 (d)+

in€ED
Z pﬂD,ﬂiR’;(a’i)

a; €A

- T(SC) - Z psc-fcRg(iC) - pSC.d'Rg(d’) -
tceC

Z pﬂc,aiR;(ai)}

a;€A

Since we want to bound the stationary state probabilities for states in D, we

assign the following reward:

1 r = 8p
r(z) =
0 otherwise

and based on the construction of G, we have:

Pspd® = DPscd
Popai = Prcai Vsc = ¢{sp) and Va; € A
Pepip = DPsciic Vse = ¢(sp) and Yic = ¢(ip)

it follows that:

ip€D
0 0

Ry (sp) — R3*'(s¢) = r(sp) + {Z Psp,ip[R'é'(iD)-Rg(ﬁﬁ(ib))]}

v
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APPENDIX B

Proof for Theorem 3.5

Theorem 3.5 mp/g, 2 Tp/G,

Proof : We use the approach similar with the above theorem. Again, we

define the following notations:

Dij = the transition probability from state i to state j in Ps.

p:,j = the transition probability from state ¢ to state j in Fs.

di; = Pij Pije

(1) = reward (either 0 or 1) for state 1.

Tar(d)] = one-step expected reward of P, given the present state is 2.

T3r(d)] = one-step expected reward of P; given the present state is <.

Rp(i) = m-step (mm — 1 transitions plus initial position) accumulative re-

ward for P, given the initial state is 7 and T [r(z)] be an identity

. function,

R7 (1) = m-step (rn — 1 transitions plus initial position) accumulative

reward for P; given the initial state is 2.

Again, the expected reward for G, is greater than or equal to the expected

reward for G; iff:

Let f be any nonnegative function applied to state : of the Markov chain.

Since the only difference between Gy and Gy are the rates from D to .7-',: in Gq
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are change to the rates from D to C; in G3. For any nonnegative function f, we

have:

(T2 — T3) f(7)

k-1
e f;}{p;,,—f(z’) + 30 pisf(G) —piaf(i) = 2, P;,,-f(j)}
I=0

¢Fx JEF:

k=1
= ; 1{i € J-‘:}{ S opif(5) - X P:-,jf(j)]

1 jec;
Since by construction of G3 from G;,we have a 1-1 mapping function ¢ which

maps a state in {F; UF, U---U Fi} to a state in {C; UC, U -+ Ci}. It follows

that:

k-1
(- Ts)f(i) = 3 i€ A} { Z; {pi(f(3) - f(¢(j))}}
i=0 jeF,

The sufficient conditions for the above equation to be non-negative are:
[f@) =G > 0 Vi€ Fy, i = o(i) €Ci
Letting the function f be R™(i), then the condition:
(T3 — To) R (i) 2 0 Vi, m
is satisfied if:

RI'(i) — R™(5) > 0 Vi€ Fp, j=d()€C, and Ym

The above sufficient conditions can be easily proved by induction. For each
choice of i € | and j = ¢(i) € C.
For m = 0, since R9(:) = 0 for any state ¢, the inequalities hold.

Assume RJ'(1) — RP*(j) > 0 for m < n. For m = n + 1, we have:

Ry - RyT() = {f(i)+p,-.;R?(i)+ ; pi.R3(s)
a€Fr
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+ Z Pi.ng('s)

se{fk+1U"-Ufn}
—r(3) = pisR3(G) — D piaR3(s)

2€Cy_)

- X p,-,,R;‘(s)}

3e{j:k+1 U"fn}

Since we want to bound the steady state probabilities in D = {FU---UF;},

we assign the following reward:

1 ieD
r(i) =

0 otherwise

and based on the construction of G;, we have:
Pis = Pjs for § = ¢(2) and Vs
it follows that:

R3TY(i) - B3Y(G) = r(D)+pi {R’z‘(i)—RE‘(J')}+{ Z(RE(S)—R2(¢(S)))}

s€F,
RFF1 (&) - RY(5) = 0
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