Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

DEDUCING FAIRNESS PROPERTIES FOR UNITY PROGRAMS

Y.-K. Tsay September 1991
R. L. Bagrodia CSD-910069

Deducing Fairness Properties for UNITY Programs *

Yih-Kuen Tsay Rajive L. Bagrodia
vihkuen@ces,ucla.edu rajive Gcs.ucla.edu

July 31. 1991

1 Introduction

Fairness is an important class of properties concerning programs whose semantics are modeled as
scts of execution sequences. As each UNITY [CMS8S] program can be associated with a ser of
execution sequences, it is not unreasonable to talk about fairness properties of a UNITY program.

We provide three rules of inference that mav be used to deduce fairness properties of the form
“if p becomes true infinitely often then ¢ will also become frue infinitely often”™ (strong fairness)
or “if p eventually remains frue then ¢ will become true finitely often” (weak fairness) from a
UNITY program. The degree of generality of these inference rules is illustrated by some of their
special cases. We provide analogies to these rules that are expressible using the UNITY logic, The
paper also contains an example that demonstrates the use of the inference rules iz deriving a strong

fairness property for a UNITY program.

2 Deducing Fairness

We adopt the linear temporal logic formula “OCp” to denote “p becomes true infinitelv often”
and “COp” to denote “p eventually remains true {or p is eventually always true).” So. strong
fairness can be expressed in the form of “OCp = OCq” and weak fairness in “O0p = O&q." A
UNITY program is said to have a fairness property if each of its erecution sequence satisfies the
corresponding formula.

In the following presentation, we use the generic name M for an arbitrary program to denote a
function from program states to a well-founded set under <. M may involve auxiliary variables.

The first inference rule is Rule W-PROG of [MPS89) recast in the context of UNITY.

1 PAM=m)m— (M <m)Vg (M=<m) unless q

Theorem 03p = TOq

Proof. Consider any execution sequence of a program that has the properties in the premise.
Suppose p becomes true infinitely often in the execution sequence, but ¢ never becomes true from i-th
step. From (M < m) unless ¢, M will not increase from #-th step. From pA(M = m) — (M < m)vyg

"This research was partially supported by NSF under grant CCR 9157610 and by ONR under grand number
N00014-91-J-1605.

and that ¢ never becomes true from #th step. M will decrease after each occurrence of p. Sinee
there are infinitely many occurrences of p. M will keep decreasing from -th step. which conrradjcrs

the assumption that M is a well-founded function. End of Proof.

We next show two special cases of theorem 1.

If Mis defined such that M = 1if qis true and M = 0 if q is false. we can have

P g

OCp = GOy
Proof:

pPAG— gV g . implication theorem on p A ¢ = -q v gq.
PAM=1)(M<1)vyg . from the above and the definition of M. {1)
pPA-g—p . implication theorem on p A —=¢q = p.

DADg— g » tramsitivity on the above and the premise p v q.
PAM =0)— (M <0)vyg , from the above and the definition of M.

PAM =m)— (M <m)vyg .fromthe above and (1). (2)
(M < 1) unless q , from true unless q.

(M < 0) unless g . from —q unless q.

(M < m) unless q , from the above two.

The inference rule is valid , from the above, (2), and theorem 1.

If M is defined such that M = 1if pis trueand M = 0 if p is false, we can have

p = p, op unless ¢
OCp = 0O0g

~gA(M =m) = qV (M <m)V-p, ~p unless g
OCp = OCq

Theorem 2

Proof. Consider any execution sequence of a program that has the properties in the premise.
Suppose p becomes true infinitely often in the execution sequence, but ¢ remains false from i-th
step. From -p unless q and that ¢ remains false from i-th step, p must remain true from th step;
otherwise the occurrence of ~p followed by an occurrence of p will force ¢ to become frue. From
“gA (M =m) > ¢gv{(M < m)V-p and that p remains true while ¢ remains false from i-th
step, M will keep decreasing from 4-th step, which contradicts to that M is a well-founded function.

End of Proof.

If M is defined such that M = 1if ¢qis true and M = 0 if g is false, we can have

—q = —p, -p unless q
OCp = 0O0g

P pVyg
<COp = OOg

Theorem 3

Proof. Assume, from 4-th step. p remains true. This triviallv implies that p becomes true infinirels
often. From the premise. g will become true after each occurrence of p from é-rh step. whick implies

rhat ¢ will become true infinitely often as p does, End of Pronf.

3 Analogies in UNITY

The fairness properties described in the previous section cannot be expressed directly within the
UNITY proof system. In this section. we present a set of three rules. each of which is analogous to
the corresponding theorem in the previous section.

The closest analogy to theorem 1 in UNITY logic seems to be:

PAM =m)— (M <m)Vq, (M =<m) unless q
Hypothesis: true — p Conclusion: true — q

(The hypothesis of the conditional property may be moved to the premise. The form of rule as
presented is intended to reveal the similarity with theorem 1)

From true — p in F, we can deduce that at any point of the execution of program F. n
will eventually become true, which implies that P becomes true infinitely often in each execution
sequence of program F. So, the conditional property in the conclusion “roughly” says that if p
becomes #rue infinitely often in each execution sequence, then g will also become true infinitely
often in each execution sequence. Note that this property is weaker than the strong fairness

property of theorem 1.

Proof:
(M <X m) unless ¢ , from the premise.
~g unless g , from the antireflexivity theorem of unless.
=g A (M =% m) unless ¢ , simple conjunction on the above two.
PAM=m)rs (M <m)Vyg , from the premise,
PA-GA(M=m)—(gAM<m)vyg , PSP theorem on the above two. (1)
=g A (M < m) unless q ; equivalent to ~g A (M < m) unless q.
true — p , from the hypothesis.
“qAM <m) = (pA-gA(M <m))vgq , PSP theorem on the above two. (2)
PAGA(M =m)— (pA-gA(M <m)) Vg . cancellation theorem on (1) and (2).
PA-g— g . induction of the above. (3)
p=(pA—-qg)Vyeg , predicate calculus.
p—=(pA-g)Vy , implication theorem on the above.
pyq , cancellation theorem on the above and (3).
true — q , transitivity on true — p and the above.

Similarly for theorem 2,

gA (M =m) > gV (M <m)V-p, ~p unless ¢
Hypothesis: true — p Conclusion: true — g

Proof:

—p = true . predicate calculus,

—p e trie . implication theorem on the above,

true — p . from the hyporhesis.

p o= D . trausitivity on the ahove two,

—p unless g . from rhe premise.

- g . PSP thecrem on the above two.
TGqAM = m) = g vI{M < m) Vv oap . from the premise.

gA M =m) = {M<m)vyg . cancellation theorem on the above two.

(M <m)Vg={(-gAn(M<m)Vvyg predicate calculus.
“gA(M =m)— (ngA({M <m))vgq .substitution axiom on the above two,

g =g . induction of the ahove.

q— q _ . tmplication theorem on q = q.
TUE — , disjunction on the above two.
£ q disjunct the ab t

For theorem 3, we can have

pr— pVyg
Hypothesis: true — p A b,stable p A b Conclusion: true — q

where b is an auxiliary variable.

The hypothesis in the conclusion can deduce that p will eventually remain true [\is90].
Proof:

P A b unless false | from the hypothesis.

pr— pVvy , from the premise.

pAb~= pAbAg |, PSP theorem on the above two.
pAbAGg— g » implication theorem on p A bA ¢ = 4.
pAb— g , transitivity on the above two.

true — p A b , from the hypothests.

true — gq , transitivity on the above two.

4 An Example

In the following program, a resource res periodically becomes available and a request req is also
generated periodically but independently. When the resource becomes available, it remains available
until it is consumed by some request {not necessarily the request represented by reg). The request
req will persist until it consumes the resource res. We desire to show that if some request req
is generated and subsequently the requested resource res becomes available infinitely often. then
eventually the request will be granted. The UNITY program is as follows:

Program F
declare a.res: boolean.
horeq @ boolean.
P dnteger
initially a.es = false false
[boeq = false false

i

res,pri:= false,pri — 1 if res A req A (pri > 0)
res,req 1= false false if res A req A (pri = 0)

I pri= 0
assign = -y
[res:= true if ~res A
[b:==b
I regpri:= true.K if ~reqg A /* K is some positive integer */
1 res:= false if res A —req
[
i

end {F}

It can be shown that

invariant 0 < pri < K in F

(reg Ares) A{pri=k)w— (pri < k)V -reqin F

{pri < k) unless —req in F

From theorem 1, program F has the property QO(req A res) = OO-req. The request req will

eventually be granted if the resource res is available infinitely often.

5 Conclusion

Three inference rules that may be used to deduce fairness properties were described. Although the
fairness properties themselves cannot be expressed in the UNITY logic, the premise for eacl rule
defines conditions expressible in the UNITY logic that are sufficient to deduce the corresponding
fairness property. Such a premise may be used to indirectly specify strong fairness properties for

UNITY programs.

Acknowledgment

We thank Jayadev Misra and Ambuj Singh for their comments on an early draft of this paper.

References

[CM88] K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley,
1988.

[Mis90] J. Misra. Auxiliary variables. Notes on UNITY: 10-89, July 10 1990.

[MP89] Z. Manna and A. Pnueli. The anchored verson of the temporal framework. In J.WV.
de Bakker, W.P. de Roever, and Rozenberg G., editors, LNCS 354: Linear Time, Branch-

ing Time and Partiel Order in Logic and Models for Concurrency. pages 201-284. Springer-
Verlag. 1089,

