Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

METHODOLOGY FOR CONSTRUCTING OPTIMAL
MULTI-LAYERED NEURAL NETWORKS

M. Kayama September 1991
CSD-910068



Methodology for Constructing Optimal Multi-layered Neural
Networks !

Masahiro Kayama
Hitachi Research Laboratory, Hitachi Ltd.

ABSTRACT

The determination of the optimal number of hidden units, which gives the
minimum structure and the maximum generalization ability to a multi-layered
neural network, is discussed.

First the generalization ability of the network, trained by the back
propagation algorithm (static back propagation, SBP), is simulated with
various numbers of hidden units. With the aid of these results, the
relationship between the generalization ability of the network and the number
of hidden units is investigated and a simple representative model is established.

Then this relationship is carefully simulated again using networks trained
by the back propagation algorithm, where suitable random numbers are added
to original training data (dynamic back propagation, DBP). This suggests that
the generalization ability of a network is determined by superposing two kinds
of capability of the network, i.e., the essential capability which depends on just
the number of hidden units and the sleeping capability, included in the
essential capability, which does not contribute to mapping. By comparing the
simulation results obtained by two different training methods, a more precise
model of the relationship between the generalization ability and the number of
hidden units of the network is developed.

Finally the determination of the optimal number of hidden units is
investigated and a suitable algorithm is proposed. This algorithm is shown to
estimate the optimal number of hidden units.

Key words : neural network, multi-layered model, hidden units,
generalization ability, optimization

1" “This research was conducted based on the ideas come upon in Hitachi Research Laboratory



1. Introduction

One of the major problems of multi-layered neural networks is that an
optimal construction of the network is unknown. If network size is too small,
training does not converge because of insufficient network capacity. If it is too
large, computational intensivity has to be increased, which causes either large
scale or slow response of the network. This demerit is especially serious when
the neural net algorithm is installed in certain machines or software products,
because they become either large and expensive, or of low quality.

Accordingly, from a practical viewpoint, determining the optimal
network structure is very important, however, unfortunately there are few
algorithms for it. Thus the optimal network has often been determined by
repeating simulation with various structures of networks, which is quite time
consuming. Among several tasks included in designing neural network
structures, such as numbers of layers and units of each layer, determining the
optimal number of hidden units seems to be the hardest and the most
interesting problem. So far, few methods have been reported for it.

Xue et al. [1] proposed a method using the rank of a weight matrix
between input and hidden units. According to their paper, the rank calculated
by a singular decomposition method (SVD) gives an optimal number of hidden
units. But this method is effective only when the number of hidden units is
smaller than that of the input units, that is, when input information is
condensed at hidden units. For example, the method cannot be applied to a
one input, one output network which approximates a non-linear function,
because the rank is always 1 in this case. Ash [2] reported the dynamic
creation of hidden units. In his method, starting from a small number of
hidden units, other hidden units are dynamically created during learning until
the network error converges to a desired value. But this process also takes
much calculation time, particularly when the optimal network consists of
many hidden units. Therefore a more general and deterministic algorithm is
needed, which easily gives the optimal number of hidden units.

The author et al. also proposed how to determine the optimal number of
hidden units by a linear regression analysis [3]. In our method, by using a
trained network, the outputs of hidden units corresponding to the training
inputs were analyzed statistically and separated into linear and non-linear
components. The number of hidden units corresponding to the sum of non-
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linear components was recognized as an optimal one. This method is
applicable to any multi-layered neural network. Additionally, the number of
hidden units can be deterministically obtained by just once of training. But, as
mentioned in the following sections in detail, the number of hidden units
obtained by this method gives the minimum number of hidden units for
convergence of training. The generalization ability of the network with this
number of hidden units is somewhat lower than the maximum ability.
Therefore this result is not sufficient.

In this report, a methodology for constructing multi-layered neural
networks with the minimum number of hidden units, which gives the
maximum generalization ability is discussed. First the relationship between
the number of hidden units and the generalization ability is carefully simulated
with networks trained by the back propagation algorithm{4] (static back
propagation, SBP), and a simple model describing the relation is established.
Then improvements of the generalization ability by the back propagation
algorithm, where suitable random numbers are added to the original training
inputs[5] (dynamic back propagation, DBP), is also simulated to evaluate two
effects on the generalization ability, i.e., the effect of the number of hidden
units and the training method, independently. With these results, the
developed model can be modified into a more accurate one. Finally an
algorithm for determining the optimal number of hidden units is presented.

2. Networks for experiment

It has been proven that any non-linear function can be approximated by a
one-hidden layered neural network{6][7]. Moreover, the method developed
for a one-hidden layered network can be easily extended to a multi-hidden
layered network. Therefore, in this paper, the investigations are limited to
one-hidden layered networks.

Two feedforward neural networks are used in the following simulations
as shown in Fig.1. The network of Fig.1(a) for character recognition is
mainly used for simulation, and consists of 25 input units, receiving a value of
each pixel (1 or 0), several hidden units, and 26 output units corresponding to
clusters from A to Z. Fig.1(b) is the network for number recognition used in
our previous research[3] at Hitachi Research Laboratory, whose results are
compared with those of the character recognition network. The network has
12 inputs which receive each feature value obtained from a number image
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such as a length between each boundary and the nearest pixel from it, several
hidden units, and 10 output units corresponding to 10 clusters from 0 to 9. In
these two networks, the input and hidden layers have a bias unit.

3. Relationship between generalization ability and numbers of
hidden units

First let's discuss the relationship between the generalization ability and
the number of hidden units, using a network of Fig.1 (a) trained by the SBP.
The database for training consists of 26 data sets (A ~ Z), while data for
evaluating generalization ability are created by reversing several pixels of
original training data as shown in Fig.2. The recognition rate (the
generalization ability) were evaluated by using 50 testing data for each
character, where reversed pixels were determined randomly, totally 1300 data
for each network and Hamming distance. The convergence accuracy of
training is within 1% error of full scale against each training output (desired
output). That is, training is completed when the following equation is
satisfied.

¥ (ti-0i)’< (1/2)%(0.01)*n 1)

i=1

ti : desired output of i-th output unit

o0i : network output of i-th output unit
n : number of output units

Three networks with the same number of hidden units are used in the
evaluation. The initial weight values of them are different.

Fig.3 shows the recognition rate plotted against the number of hidden
units. The Hamming distance is the space distance between the testing data and
the original training data given by the number of reversed pixels. In the
figure, we observed two different regions. The recognition rate increases
with the number of hidden units when the number of hidden units is small
(region 1). Then it becomes almost saturated and increases only slightly with
the increase of the number of hidden units (region 2). Though this behavior is
independent of Hamming distances of the testing data, the number of hidden
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units at which saturation occurs is larger when the Hamming distance is large.
That is, when the Hamming distance is 2, the recognition rate is saturated at
almost 14 hidden units, while it is saturated at 22 hidden units when Hamming
distance is 6. When the Hamming distance is 2, the recognition rate is
completely saturated at 30 hidden units.

Fig.4 also shows the recognition rate plotted against the number of hidden
units obtained from the network of Fig.1 (b). In this simulation, the database
for training consists of 100 data sets (10 for each number), which were
selected as representative ones for each number, while the database for
evaluating the recognition rate consists of 1430 data sets collected from a
practical number recognition system. In Fig.4, similar behavior is observed
as the Fig.3, that is, the recognition rate of the networks with 4 hidden units is
rather small, while it is almost constant in the case of more than 6 hidden
units. These relationships between the recognition rate and the number of
hidden units are found to be quite general and independent of the applications.

These simulations can be schematically illustrated as shown in Fig.5. Nc
is the minimum number of hidden units which can lead to convergence subject
to the given convergence accuracy. "Noise" indicates the space distance such
as the Hamming distance between the training data and the data to be
generalized. As mentioned above,

(1) The generalization ability increases with the increase of the number of
hidden units, then almost saturates;

(2) The number of hidden units at saturation is larger when the noise is large,
which is plotted on the critical curve against the amplitude of the noise.

The optimal number of hidden units, Nt, seems to be given by Nc plus Na,
which is the additional number of hidden units determined by the amplitude of
the noise to saturate generalization ability.

Then the mechanism for this interesting behavior is considered. Fig.6
illustrates the information flows in the network. The boxes show the
hyperspace created by each layer, whose sizes indicate the number of its units.
The maximum space distance between training data and data to be generalized
is represented by the radius of a circle around the training point. This circle
is designated the mapped circle. To obtain an accurate generalization, it is
necessary to keep the mapped circle within the boundaries of its cluster.
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We now consider how the number of hidden units influences the
relationship between the locations of the mapped circle and cluster boundary
by information transformation through the input and hidden layers. Though
the shape of each mapped circle is deformed by information transformation,
all of them are described by circles schematically in Fig.6. In networks where
the number of hidden units is smaller than the number of input units,
information is condensed by the transformation from input to hidden units. In
Figs.6 (a) and (b), in which information of the input layer is not condensed so
much, the mapped circle can stay in its cluster, while in Fig.6 (¢) with a high
rate of information condensation, parts of the mapped circle cross the
boundary and some information necessary for generalizing is lacking, which
causes a misrecognition.

Fig.6 (b) has a slightly smaller number of hidden units than Fig.6 (a).
However, it has enough of them to maintain the relationship between each
mapped circle and corresponding cluster boundary. Therefore the
generalization ability is not affected.

When the number of hidden units is too small, in Fig.6 (c) for example,
several parts of the circle cross the boundaries with the decreasing number of
hidden units. This results in misrecognition. The generalization ability, thus,
decreases with the decrease of the number of hidden units in region 1.

Exceeding Mapped Circle

(Misrecognition Region) Cluster Boundary

Training Point

Mapped Circle
(Case of Small Noise)

Mapped Circle
Case of Large Noise)

Fig.7 Relationship between Cluster Boundary and Mapped Circles
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The amplitude of noise can also be represented by the radius of a circle in
the input space. According to Fig.7, the smaller the radius, the less the
mapped circles cross over the boundaries. So information condensation does
not greatly deteriorate the generalization ability so much when the radius is
small. This means that the number of hidden units at saturation is larger with
more noise.

4. Improvement of generalization ability by dynamic back
propagation

The adding of appropriate random numbers to the training inputs has
been reported to be effective to improve the generalization ability of the
network[4]. This training method contributes to preventing cluster boundaries
from approaching each training point. Therefore the generalization ability is
expected to be improved. In this section we discuss this method (DBP) to
obtain a more accurate model describing the relationship the between
generalization ability and the number of hidden units. When the training input
vector is as in Fig.8 (a), the actual training input is modified as shown in Fig.8
(b) by adding random numbers of amplitude R. In this simulation, R is started
at 2.0, and uniformly decreased to 0 with the number of training epochs. The
total number of training epoch is 260000.

Fig.9 shows the recognition rate plotted against the number of hidden
units of the network trained by the DBP. The dotted lines indicate the result
for the network trained by the SBP, as shown in Fig.3. By this trained
method, the recognition rate is improved, and three notable regions are found
in it. The recognition rate increases with the number of hidden units (region
1); then it is almost saturated (region 2); and finally it is completely saturated
(region 3). Compared with the SBP results, the recognition rate of the
network trained by the DBP is uniformly improved, independent of the
number of hidden units, when the number of hidden units is not too large.

This behavior can be explained by the simple model shown in Fig.10. In
the figure, network ability for mapping is determined by superposing two
factors; the essential capability and the sleeping capability. The essential
capability is determined by the number of hidden units, while the sleeping
capability is the measure of the amount of non-working capability included in
the essential capability. The sleeping capability is caused by unbalanced
mapping in the hidden layer for each cluster and reduces the total
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generalization ability. The generalization ability of networks can be given by
subtracting the sleeping capability from the essential capability. In Fig.11 (a),
for example, there is extensive mapping for data around training point C, but
mapping is insufficient for data around training points A and E. The hatched
area around training point C is unnecessary for generalization. This makes
some of the essential capability meaningless (sleeping), while necessary
information for generalizing data close to A and E is missing in the hidden
layer.

The essential capability increases with the number of hidden units, which
is consistent regardless of training methods, SBP, DBP, or others. However,
too much capability is unnecessary when the distance between training data
and data to be generalized is small. Therefore it is saturated at some number
of hidden units which is determined by this distance.

The sleeping capability cannot easily be evaluated quantitatively and can
take on various values depending on the network. According to the
simulations of Figs.3 and 9, it appears to be as shown in Fig.10 (b).
Increasing the number of hidden units slightly and probablistically contributes
to moving the cluster boundaries far from training points. Therefore the
average of the sleeping capability increases gradually with the number of
hidden units. The sleeping capability can be 0, if the unbalanced mapping can
be completely excluded and hidden units fit each training input safely. DBP
contributes to excluding this unbalanced fitting, and makes the fitting area of
each training point as in Fig.9 (b). But actually it can not work perfectly
unless the amplitude of the random numbers added to the training inputs is
decreased during infinite training time. The sleeping capability is supposed to
be excluded like Fig.10 (¢). Consequently the results of Fig.3 can be obtained
by superposing by Figs.10 (a) and (b), while Fig.9 can be obtained by
superposing Figs.10 (a) and (c). In both cases, these models can explain the
existence of different regions of the relationship between the generalization
ability and number of hidden units without contradiction.

When the distance between training and testing data is small, the
generalization ability may be saturated at the maximum value. When the
Hamming distance is 2 in Figs.3 and 9, for example, it is completely saturated
at a small number of hidden units.

5. How to obtain the optimal number of hidden units
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In this section, the methodology for determining the optimal number of
hidden units is discussed. The above investigation suggests, from a view point
of generalization ability of networks, that the larger the number of hidden
units, the better, unless the sleeping capability of the network 1is not
completely removed. But in the region 2, the improvement of the
generalization ability is very small compared with the increase in the network
scale.

On the other hand, if it is possible to exclude the sleeping capability
perfectly by improving training method, the boundary number of hidden units
between regions 1 and 2 (Np) is recognized as optimal, where the network has
the minimal structure and has the maximum generalization ability.

Accordingly, evaluating Np is meaningful and important when
determining the number of hidden units. We now consider how to obtain Np.

From Figs.3, 4, and 10, Np is given by Nc plus Na. We already
suggested an effective method for obtaining Nc using a linear regression
analysis [3]. This method consists of following general steps;

(1) Create a trained network which has a sufficient number (initial
number, m) of hidden units.

(2) Input the training data into the network again and detect the output of
the hidden units.

BG)i->u.

(4) Approximate the output of i-th hidden unit by a linear combination
of other outputs, Yi+1 ~ Ym, which is Yi*, using linear regression analysis.

(5) The ratio of Y represented by the other outputs, Ci, is calculated
using a multiple regression coefficient between original output Yi and
estimated output Yi*.

6) i+1 > i.

(1) If (i # m), then go to (4).

(8) Nc=m - (C1+C2+ ..... +Cn-1).

m ; initial number of hidden units except a bias unit

In the network of Fig.1 (b), training dose not converge within 1% of full
scale of the desired output unless the network has at least 4 hidden units. So 4
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is the minimum number needed for convergence. Fig.12 shows the Nc
estimated in the network of Fig.1 (b) with 4, 6, 8 and 10 initial hidden units.
In the case of 4 hidden units, Nc's are from 3.0 to 3.4, while in the case of
more than 6 hidden units, they are around 4, and almost independent of the
initial numbers of hidden units. This suggests that at least 4 hidden units are
necessary for convergence of the network, which is in accordance with the
above simulation results.

By this method, Nc is estimated quantitatively, however, evaluating Na
can be difficult. In the following investigation, we suggest a simple method to
obtain Np, which is applicable to a network whose output consists of binary
signals (binary network) for classification.

In the network of Fig.1 (a), the input and output signals are either 1 or 0.
Therefore the outputs of the input and output layers are binary. Also, in a
classification problem, where training data are binary, most hidden units work
in their saturation regions, whose outputs corresponding to the training inputs

Nc

S = N W A Y ] 00 O

| | | l
4 6 8 10

Initial Number of Hidden Units

Fig.12 Minimum Number of Hidden Units for Convergence of Training
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are about 0 or 1. Tables 1 and 2 show the output of the hidden units against
each training input from A to Z, in cases of 10 and 25 hidden units. In the
tables, "I" , "O", and "." mean that the output of the hidden unit is larger than
0.7, smaller than 0.3, and between 0.3 and 0.7, respectively. When output is
"I' or "O", the corresponding hidden unit is assumed to move into its
saturated region. According to both table, 88.5% and 86.6% hidden units
move into their saturation regions in the cases of 10 and 25 hidden units,
respectively. Therefore the network of Fig.1(a) can be recognized to be
approximately a binary network.

When the output of each unit is either O or 1, the layer consisting of n

units can represent 2" different states. Assume that in the case of a binary
network, the amount of information represented by each layer including n

units is also 2". According to this assumption, the input space of Fig.1(a) can

represent 22° (=33554432) states. Also, if the Hamming distance of the test
data is I, the number of states represented by this distance from each training
input, Si, without considering duplicated regions, is

Si =N #nCi 2)

N: number of training data (number of clusters)
n : number of input units

When the Hamming distance of the test data is k, the total number of states
corresponding to the entire mapped circles, Sroral, is

h
Stotal= Si (3)

i=0

The minimum number of units which can represent all the mapped circles, m,
is

2M > Stotal

2N#* ) nCi 4)

h
i=0
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m = log,(N * i n Ci) (5)

i=0

Fig.13 shows the critical curve calculated by eq.(5) where Nt was
obtained by Fig.9. We found, in Fig.9, that Np was 13, 18, and 20, in the case
of 2, 4, 6 hidden units, respectively. When the Hamming distance 4 is
relatively small, they are in accordance with each other, however, when A is
large, the number of hidden units obtained with the critical curve become
large. The reason of this difference seems to be the duplicated regions; that is,
regions included in several mapped circles are counted twice or more.
Therefore Stotal evaluated by eq.(3) seems to be much larger than the actual
value, Sact, when 4 is large.

Sact can be estimated accurately by the following algorithm, but with an
enormous CPU time;

(Hi->1,0-> Sacr.
(2) if i exists within the # Hamming distance for at least one among all
training inputs,
Sact+1 -> Sact.
3 i+l > 1.
4)i<2% goto(2).
(5) Sacc is the total number of states.

The obtained Sacr values are shown in Fig.14 with the results of Fig.13
(dotted line). When the number of hidden units is less than 5, the effect of the
duplicate regions on the critical curve is found to be very small. But when it
is larger than 5 or 6, the effect cannot be neglected. In this case Sacr gives a
more appropriate number of hidden units. From Figs.13 and 14, this simple
method is confirmed to estimate the optimal number of hidden units.

6. Conclusion

The quantitative relationship between generalization ability and the
number of hidden units of the multi-layered neural networks was modeled,
and the determination of the optimal number of hidden units was investigated.
The following conclusions were reached.
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1. The relationship between generalization ability and the number of hidden
units can be represented by a simple model using two kinds of network
capabilities: the essential and the sleeping capabilities. The generalization
ability of the network is determined by subtracting the sleeping capability,
which does not contribute to the mapping, from the essential capability, which
depended on just the number of hidden units.

2. In the network trained by SBP, where the sleeping capability is large, the
generalization ability increases with the number of hidden units (region 1),
and then almost saturates (region 2). On the other hand, in the network
trained by DBP, where most of the sleeping capability is removed, the
generalization ability is improved. It increases with the number of hidden
units (region 1), then almost saturates (region 2), and finally, completely
saturates (region 3). In both cases, the number of hidden units at saturation
became larger with the distance between the training data and the data to be
generalized.

3. To evaluate the optimal number of hidden units which provides the
minimum network structure and the maximum generalization ability,
estimation of the boundary number of hidden units between regions 1 and 2 is
important. For this, estimating the number of states which should be mapped,
out of the entire input space was found to be effective. This idea was applied
to a binary network, which handles binary inputs and outputs, and its
effectiveness was confirmed.

In future studies, we will extend this idea to general networks.
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