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Abhstract

Queries are one of the most importaut parts of any modeling systewn as it is through
queries that users express which “resutrs™ of the model thev desire. Unfortunately,
these queries are very dependent on the exaer model beine sticdied. This dependence
of query on model can make specifving o query a painful process that has to be repeated
for each query on every wodel studied, Tlie nsual remedy ro this problem is to provide a
very specific language for any anticipated queries. rather than @ general language. This
approach has the drawback, particularly for tronsient analvsis, that it is very difficult
to anticipate those queries that will be necessary, This paper describes a flexible high
level query language which greatly simplifies the process of expressing queries. With
this language, a user is casily able to specify the pattorns of stares which form the basis
of any query, along with a weieht or reward associated wirh that pattern. Further, we
show Low to optimize these queries and trauslate them into o proeedural programming
language such as C for eficient execntion,

*This work was supported by a MICRO grant fron ihe University of California and the Hughes Aircraft
Company, by an NSF-CNP’q Cooperative Nesearch Grant INT 8302183 and by an equipment grant from
Digital Equipment Corporation.



1 Introduction

In the past, most Markov chain tools have largely 1enored the 1ssue of a language for querying
the results. This paper describes a new guery langnage for Markov chains, including queries
for transient measures. This query laugnage s heing developed as part of a system for gen-
erating and analyzing Markov chaius, This svstem compiles these queries into computation
procedures which efficiently turn raw numerical data into useful results.

The most common approach in the past for huilding Markov chain tools is building a
specialized package sucli as SAVE [GOYASG] for solving reliability aud availability models.
This type of tool Lias a very convenient interface for specifie types of models. The disad-
vantage 1s a lack of flexibility, SAVE lias a fixed sct of tvpes of analysis measures and only
certain types of queries are allowed. Other tools sneh ax SHARPE [SAHN8T7] and ARIES
[MAKAS2] are similar in that a particnlar restrictive <ot of ¢neries and model constructs are
provided.

A much more general approach has heen taken by Sauders and Mever [SAND91] based
on stochastic activity networks, a very general form of Petri nets. They consider a variety of
measures along with a general way of assigning rewards to individual states. One limitation
with Sanders and Meyver is that the actual langnage hased ou Petri nets becomes unwieldy as
the models hecome complex. The other limitation s that Sanders and Meyer only provide
queries on ecach individual Markov chain state and do ot support queries dealing with
sequences of states. Sequences and more generally patterus of states are the most natural
way of requesting measnres related to the ocomrence of trausitions. Later in this paper
several examples are presented to show Low usetul this feature 3s.

1.1 Types of Analytical Measures

In this section, a mathematical deseription of e different types of numerical analysis mea-
sures is reviewed. We deal with svstems cach of which can be modeled by a continuous time
Markov chain {X(#),# > 0}. A reward rare function #(#) is defined to be the instantaneous
rate at whiclh reward is being acommmlated at tise t0 The total reward R(t) accumulated
during the time interval [0.4] is the integral of »(#).

R(t) = /Ot r(u)du

A very general measure of this rype. Y{=.1). is called the disrribution of total reward



Y(s,t) = P[R(t) < 5X(0)]

As an example of this type of measure, consider a queuncing wmodel with several servers
working at different rates. Depending on tlie arrival process and on the scheduling discipline
used, a subset of the scrvers may be providing service at any given time. Let the reward
rate at time t, r{t), be the s of the service rates of all servers providing service in state
X(t). The distribution of total reward Y(s.#) is the probability that at most s units of
service are provided during the time iuterval [0.7] starting with some initial state probability
distribution for X (0).

Another type of measure vestricrs the set of reward rates to he either zero or one. In this
case a function #(t) 1s defined analogons to the function #{#) except that the range of 7(t)
is restricted to 0 or 1. Given a subset of states @ of the Markov chain which are assigned a
reward of 1, three subtypes of queries can be identified: (a) the time spent while X (¢) € Q
in [0,%}, (b) the minimum time ¢ such that X(#) € Q. or (¢) the munthber of visits to any state
in 2 in [0,t]. The random variable RUt). representing the total time spent in states with
reward 1, is

. t
R(t) = [ 7(u)du
Jo
The distribution of cumulative time O{s 1) is
O(s.t) =P [’f?(t) < X ()]

As an example application. consider a reliability model where each state is either operational
(reward 1) or non-operational (veward 0). The distribution of cumulative (operational) time
is the (numerical} distribution of total reward.

The random variable T, representing the thue nutil a selected state (reward 1) is entered
for the first time, is called the first passage tine.

T = il}f{f‘(t) = 11.X{0)}
The distribution of first passage time F(#) ix

F(t)y = P[T <X}



In a reliability mnodel the measure F{t) {typically known as svstemn reliability) could be used
to find the probability of a svstem not haviug a failnre within a time interval of length ¢
given X(0).

The last measure in this category, distribution of munber of events is slightly different
from the previous cases in that it nses impulse rewards vather than reward rates. Impulse
rewards differ from reward rates in that thev ave acenmulated at a single time instant as
opposed to a reward rate which 1s accumulated over time, An iiipulse reward of 1 is earned
for each occurrence of the specified patterns', c.g.

pattern = s : a reward of 1 is carned cacly time stare s 1s visited

pattern = x,y where P(x),Q(y) : a reward of 1 i carned for each transition from a state
satisfying a predicate I to a state satisfving predicate

If 7%(1‘) is the random variable cqual to the munher of such patterns observed in (0, ),
then A (%, %), the distribution of number of events viven V{0)

N(k,t) = P [R(t) < F|X(1)]

In a reliability model, thie probability of two or less fatlires ina time mterval of length ¢ 1s
an example of this type of measure.

The third group of measures, involving mean reward and mean number of events, are

E[R(t)] and E[R(t)]. respectively.

The last group of measures consists of measures at a specific point in time. Let P;(t)) =
P[X(t) = 71X(0)] and let Z; be the veward assoctated with Markov chain state j, then F(¢),
the transient point reward is

F(t) = 3. ZP,()

while &, the steady state reward is

5= Jin 2,00
3

LA full, formal description of pattern specifications is given in the next seetion



MEASURE PRF TIME THRES BOUND INIT

d total reward X % X X X
d_cumulative_ time X X X X X
d _first passage X X X X
d number events X X X X X
e total reward X X X X
e cumulative time X X X X
e first passage X X X
e _number events X X X X
point reward X ¥ X X
steady_state X X

Figure 1 Supported measnres

For each of the types of measures deseribed above. a complete specification requires
additional parameters. A pattern veward function or o scguence vewerd function 1s required
which specifies when and in what amounts rewards are carned. The pattern or sequence
reward function defines the functious »(#). #{4). or Z; used in the above analysis measures and
1s discussed in the next section. Depending on the analvsis measure, additional arguments
may be required including an initial state probability distribution. a time interval, an error
bound, and a tlireshold value. The different measnres we sapport and their arguments are
shown in Figure 1. The column MEASURE is the guery name of the different types of
numerical measures discussed carlier in this section. These query names will be used in
queries to choose which numerical results are desrived. By convention, those measures whose
names begin “d." arce distributions wlile those whose names hegin “e.” are expectations.
The other columns represent whicli argrunents are required for cach of these measures. The
column labeled PRF refers to whether a Pattern Reward Function (described in the next
section) 1s required. The colimnms labeled TIME, THRES, BOUND, and INIT, refer
to whether of not a time horizon. a threshold valae. an crror bound, and an initial state
distribution, respectively are required.  As an example. the expected first passage time
(efirst_passage) requires a pattern reward funetion. an error hound, and an initial state
distributiow.

The remainder of the paper describes our Markov chiain guery system. The next sec-
tion deseribes the high level query langnage in which (ueries are expressed. Section three
describes how this query language can be translated into a form that can then be executed
in a procedural programining langnaee. Section torr describes Lhow several of the numeri-
cal algorithms evalnate queries and concentrates on ~everal optimization techniques which
are 1mportant in providing cfficienr evaination of (ueries. The last section presents our
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conclusions.

2  Query Language

The rewards and target patterns of a query are specified i a pattern reward function each
of which has a name and is composed of one or more clanses?. The name of the pattern
reward function is used to group the clanses of a single function together. A complete query
also must refer to a pattern reward frnction by its name. Each clause of a pattern reward
function assigns rewards to patterus of states. For now. pattern reward functions with just
one clause are considered. The general structure for cach clanse of a pattern reward function
is

patternmame(LPattcrn _crpression) vields Reward where Predicates

Intuitively, the meaning of this clanse is that the veward Remward is assigned to any sub-
sequence of states matcling the pattern represented in Pattern_erpression and satisfying
the predicates in Predicates. Another more general form for the pattern reward function is
known as the sequence reward function aud has the form

pattern_name(Scquence capression) where Predicates

The pattern expression portion of a pattern reward finetion clause is a regular expression
of pattern states using a comma =, for the concatenation operator, plus (“47) for the alter-
nation operator, and star (**") for the transitive closnre operator. The sequence expression
of a sequence reward function is also a regutar expression using the same operators, but
allows a reward R to be attached to a pattern state S with a colon, i.e. §: R. Regular
expressions were chosen for the pattern or sequence reward function for several reasons. The
first is that the regular expressions can ultimatelv be converted to a deterministic finite
state automata for efficient calculation. The determinisi keeps the computational complex-
1ty from getting even more extensive. There are other. more powerful grammars that are
also deterministic such as deterministic context froe grammars. The advantage that regular
expressions provide that other deterministic gramtars do not, is the compact and natural
representation that regular expressions provide for dealing with sequences of states. Qther
large classes of deterministic languages require a specification either as a finite state machine
(e.g. a deterministic pushdown automataj or via a sct of production rules.

*The BNF for the language is given i appendix A



The pattern states in the regular expression will match any Markov chain states that
satisfy the specified predicates. In the case of seqnence reward functions, these pattern
states also include a reward that is caried as the sequence of Markov chain states matches
the pattern. For example,let Sy, ..., 5, be asct of “state variables” called pattern states to be
used in a pattern expression and let £, ..., P, he predicates on these pattern states. Py(S)
effectively defines a set of Markov chain states: naimelv those states that satisty predicate P.
Thus, if Markov chain states s;, and s, ave the only two states which satisfy predicate Py(S),
then the regular expression ST is equivalent to (s, + 5,1 (and not 57, + s7,). The simplest
example of a pattern expression would be §y. the patrern expression with only one state. The
pattern expression 9y is useful for steady state queries or transient point probability queries.
Other queries, especially queries about reliabilitv models, are oftenr based on transitions
between Markov chain states. The pattern expression. (S7..53). consisting of two pattern
states would be needed for queries about failures. Two predicates would be provided to
make pattern state S| match operational states and to make pattern state S; match non-
operational states. Rewards in a scanence reward fction are specified by a colon, “”,
and a numerical reward value after the pattern state, The simplest non-trivial example of
a sequence expression would be (8§ @ 0+ 5, : 117 the sequence expression consisting of any
sequence of pattern states S aud S, where the pattern states Sy are assigned a reward of
1. The reward for any pattern state whose reward is nnspecified is zero. Thus the previous
sequence expression can be rewritten (S; 4 5, 0 1Y, Other examples of pattern and sequence
expressions are given later i this section.

Pattern and sequence reward function are not specific to one analysis measure and in
general can be reused in multiple queries. Therefore it is desirable that the modeling system
allow the user to give the pattern reward function a name and reference it in a query by
name. For example, given a pattern or sequence reward tnnetion. one might ask for the time
until the first occurrence of a nonzero reward, a conut of the mmumber of occurrences of the
pattern, or the expected total reward ecarned with this pattern in an interval of time. More
specifically, a reward structure for connting the munber of failures {in a reliability model) can
be used 1 different queries to calculate the expeeted munber of failures, or the distribution
of the number of failures. or even the distribution of first passage time to failure.

The predicates of the pattern or sequence reward fimiction clause form a system of con-
straints that the pattern states of the pattern or sequence expression must satisfy to earn
rewards, While the pattern or sequence expression expresses temporal relationships between
different pattern states, the predicates map the pattern states to sets of Markov chain states.
These predicates are not limited to just one argmnent. hut ratlhier may have two or more
arguments. This will be shiown to he useful for queries most casily expressible in terms of
transitions (a sequence of two states). As an example consider a reliability model where the
user is interested in the unmber of processor failnres. A processor failure is defined as two
adjacent states where the latter state has one additional failed processor than the former.
The two adjacent states can be expressed ju a pattern expression as (57, 53). The predicate



Cpu #1 Cpu #2 Cpu #3

Network

Figure 2: Computer Reliability Model

P(5,,S5;) on both §) and 53 can be used to easily express the correct relationship.

1. P(5.1,52):-

2 failed processors(S_1,X_1).
3. failed_processors(S_2,X_2),
4 X2is X1 + 1.

Lines 2 and 3 bind X .1 and X _2 to the number of failed processors in states S_1 and S.2
respectively, while line 4 verifies the appropriate condition. More details on reward functions
are given in the next section.

So far, only pattern or sequence reward functions with one clause have been considered.
There is an additional issue wheu pattern or sequence reward functions with multiple clauses
are used; namely, consistency. Two clauses are defined to he incousistent if there exists some
sequence of states such that the two clauses generate distinet nonzero rewards for the same
subsequence. Thus a clause that assigns a reward of 1 to a state S; and another clause
that assigns a reward of 2 to the same state §; are iucounsistent. It will be shown that any
inconsistency between clauses will be discovered in the process of transforming the query for
efficient processing. (This is discussed 1u section 3}, Thus part of the translation process is
consistency checking.

2.1 Examples

Now some comiplete pattern and sequence reward functions will be examined. The first
example concerns a reliability model of a repairable computer svstem.  Assume that the
system has three processors. two disks. and a bus connecting them. Each component will fail
at some {exponential) rate, and cacl failed component will he repaired at some (exponential)
rate. This model is shown graphically in Fignre 2. The system is operational if one disk,



one processor and the bus are all operational. The state of this system is represented by the
number of operational components and the total number of components of each type. Thus
the state for the system in complete working order can be described by the set of 2-tuples
[[cpu, 3/3], [bus,1/1], [disk,2/2]] where the [epte,3/3] means that all three of the cpus are
operational. If one cpu were to fail, the cpu state would be [cpu, 2/3]. The operational and
non-operational states can be defined by the following predicates:

operational([[cpu,C/C_0],[bus,B/B_0],[disk.D/D 0]]) :-
C >0,
B >0,
D>o.

non-operational{[[cpu,C/C_0|,[bus,B/B.0].[disk.D/DO]}) :- C
non-operational([{cpu,C/C.0],[hnus.B/B 0], [disk,D/D 0] :- B
non-operational([[cpu,C/C_0],{bus.B/B0].[disk.D/D0]]) :- D

0.
0.
0.

il
i

We have chosen to use logic programming in the form of Prolog [CLOCS7] as the language
for the predicates. In Prolog, cach rule {or clause) is expressed as head :- body, where the
“:-” operator means “if”. Another feature of Prolog is that tokens beginning with a capitol
letter are variables while tokens beginning with a small letter are constants. Thus, the
operational() predicate states that a system state is considered to be operational if C, the
number of operational processors, D. the number of operational disks and B, the number
of operational network buses are all positive. Similarly, the non-operational() predicate
says that the system is not operational if C, the number of operational processors, or B, the
number of operational buses, or D, the number of operational disks, is 0. The operational()
and non-operational() predicates can now be used in a pattern reward function. This can
form the basis of a query to find for example. the distribution of cumulative operational
time. For this query, a pattern expression consisting of two pattern states is necessary. A
reward rate of one will be assigned to any state that satisfies the predicate operational()
and a reward rate of zero will be assigned to any state that satisfies the predicate non-
operational. The sequence reward function is as follows:

cumulative-operational( (S:1 + T)* ) where
operational( S },
non-operational{ T ).

For this sequence reward functious, the simpler representation as a pattern reward function
can be used which does not explicitly specify the states with zero reward. Thus the above
sequence reward function can be rewritten as:
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Figure 3: Computer Pertoriance Model

cumulative-operational( S ) yields 1 where
operational( S ).

Besides the simpler pattern expression, the reward rate is specified as 1 in the “yields 17
portion of this clause®. The simpler pattern reward function suffices for many queries and
will be used throughout the rest of the paper except where noted. The more complex form
is sometimes required as will be illustrated by several examples in section 2.2,

Using the same systern model, the nunber of svstem failnres rather than the cumulative
operational time might e desired. A systein failure is a subsequence of two states, the
first of which satisfies the operational(} predicate and the second of which does not. An
{(impulse) reward of one will be assigned to caclh such subsequence. This type of reward
function is typical of queries such as the distribution of the number of failures in an interval.
The pattern reward function for this 1s as follows:

count-fatlures(S,T} yields 1 where
operational( S ),
non-operational( T ).

The last example in this section is a pattern reward function for throughput in a computer
performance model. The model is of a simple time sharing system, consisting of some
terminals, one processor, and two disks. There will he a munber of jobs circulating among
the different resources acquiring service, A service completion will be considered to be a
departure of a customer from oue of the disks. The state of the system will be represented as
a four-tuple consisting the number of customers at the terminals, the number of customers at
the cpu, the number of customers at the first disk. and the munber of customers at the second

3Section 3 gives the fornal deseriplion of row this elause is transformed into a deterministic finite state
automata with output.
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disk. Thus a system with two customers at the terminals, and one customer waiting at the
second disk would be represented as [[ferin, 2], [epu. 0) [disk1.0], [disk2,1]]. This model is
shown graphically in Figure 3.

completion([[term,T1],[cpu,C],[disk1.D1].[disk2.D]]. [[term. T2][cpu,Cl[disk?,D2],[disk2,D]}) :-

D2 =D1 -1,
T2 =T1 + 1.
completion([[term,T1],[cpu,C],[disk1,D],[disk2,D1}], [[term, T2][cpu,Cl[disk1,D],{disk2,D2]]) :-
D2 =D1 -1,
T2 =T1 + 1.

throughput(S,T) yvields 1 where
completion( S, T).

Note that there are two clauses in tlhie completion() pattern reward function. The
first clause says that a completion occurs when a customer departs diskl and arrives at
the terminals. The second clause says that a completion also occurs when a customer
departs disk2 and arrives at the tcrminals. Note also that the predicate completion()
takes two arguments aud is satisfied only when the two states are related to each other
i a specific way. This is a much more ditfenlt implementation problem than the other
two queries, because the completion() predicate induces many different classes of states,
roughly one for each pair of related states that satisfv the predicate, A sequence of states
such as [[term, 0], [epu, 0, [disk1, 0], [dish2,2]] — [[term 1) [epue 0], [diskl, 0], {disk2,1]] —
[[term, 2], [epu, 0], [diskl, 0], [disk2,0]] for example has two service completions in succession.
Thus care must be taken to recoguize that the state [[form 1], [epu, 0], [diskl, 0, [disk2, 1))
not only ends the first scrvice completion, but it also hegins the second.

2.2 Complete Queries

Now the pattern reward functions can be used i complete queries mcluding the specific
analysis measure desired. We give several examples of the types of queries that can easily
be accommodated by our systemi. The first one continnes the example computer reliability
model with repair used in the previous section and shown in Fignre 2.

The state of the systen is described as a three-tuple, {[epu, C/Cy], [bus, B/ By, [disk, D]/ Dy]]
where C stands for the number of operational processing elements out of Cy total, D stands
for the number of operational disks out of Dy total. and B stands for the number of opera-
tional buses out of By (zero or one) total. The initial state of the system i1s represented as
[[epr, 3/3], [bus, 1/1], [disk,2/2]] meaning that all three processors are operational, both disks
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are operational, and the bus is operational. The state of the system will evolve according to
the sequence of component failures and repairs.

Two queries will be applied to this model. The first query is to find the (numerical)
distribution of cumulative operational time O(s, 1), over the interval [0,¢] which is P[R(t) <
s] where s < t. Expressing the query is quite simple.

Q_1(8) yields 1 where
operational(S).

operational({[cpu,C/C_0],[bus.B/B 0], [dlisk.D/D_0]]) :-
C >0,
D > 0,
B> 0.

g S i

d_cumulative_time(Q_1,10.9,1e-6, [[1.0.[[cpn.3/3].[bus,1/1][disk.2/2]]1]).

Lines 1 and 2 define the pattern reward fuuction for this query. In this case, all operational
states regardless of context are assigned a reward of one. Lines 4 through 7 give the defimtion
of an operational state, in this case, a state with at least one processor, one disk, and the
network all operational. Finally, line 9 is the actual query. The exact result desired is the
probability that the system is operational for at most 9 units of time in an interval of length
10. This type of query is listed in the table in Figure 1 as “d_cmmnulative_time” and requires
5 arguments, a pattern reward function, a time horizow, a threshold. an error bound, and an
initial state distribution. The first argument of the query is the name of the pattern reward
function, Q_1 in this case. The next two arguments are the time horizon ¢ = 10 and the
threshold value s = 9. The fourth argument. le-G, is the error bound for the calculations,
and the final argument in the initial state distribution where with probability 1.0 the system
starts in the state where all components arve operational.

A second example is the calenlation of the distribution of the number of failures in an
interval [0,#]. Specifically, a reward of one is generated if an operational state is followed in
sequence by a non-operational state. This query can he expressed as follows.,

Q-2(5.1,52) yields 1 where
operational(S5_1),
non-operational(S_2).

non-operational([[cpu,0/C_0],[bus,B/B_0].ldisk.D/D_0]]).
non-operational([[cpu,C/C.0],[bus.0/B_0].[disk.D/D_0}}).

D Rk
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7. mon-operational({[cpu,C/C.0],[bus,B/B_0] [disk,0/D_0]]).
8.
9. d_number_events(Q._2,10,2,1e-6, {[1.0.[[cpu.3/3].[bus.1/1],[disk,2/2]]]])).

In this example, line 1 defines a pattern consisting of two states represented by S_1 and 5_2.
Lines 2 and 3 give the conditions on those states for the assigninent of the reward, 1.e. state
S_1 must be operational and state $.2 must not he operational. Since the predicate opera-
tional() was defined in the previous cxample, only the predicate non-operational() has to
be defined. The non-operational() predicate could be defined more simply as the logical
complement of the operational predicate, but it is clearer to give the explicit definition.
Lines 5, 6, and 7 define the three different cases of the predicate non-operational(). Line
5 defines the case where the number of operational processing elements is zero, line 6 defines
the case where the number of operational huses 1s zero. and line 7 defines the case where the
number of operational disks is zero. Finally line 9 calls the mumerical routine to calculate
the distribution of the number of events. In this specifie call, the probability that there are
2 or less failures during the interval [0,10] is required with an error bound of le-6. Pattern
reward function Q_2 defines the events, 10 is the time horizon, 2 is the threshold on the
number of events, le-6 is the error bound, and the initial state distribution is the same as
before.

The next example is the performance model from the previous section and shown in
Figure 3.

Q-3(S.1,5_2) yields 1 where
completion(S_1, 5_2).

1

2

3

4. completion([[term.T1],[cpu.C],[diskl.D1].[disk2.D]]. [[terns, T2)[cpu,Cl,[disk1,D2],[disk2,D]}) :-
5. D2 =D1 -1,

6 T2 =TI1 + 1.

7. completion([[term,T1],[cpu,C].[diski,D].[disk2.D1]}. [[terin. T2][cpu,C],[disk1,D],[disk2,D2]}) :-
8 D2 =DI — 1,

9. T2 =T1 4+ 1.

10.
11. e_number_events(Q_3,100,1e-G, [[1.0,[[tcrm.3].[cpu.0].[disk1,0],[disk2,0]]]]).

The pattern reward function, Q.3, defines a pattern ou two states, S_1 and S_2. However,
unlike the last query where the states were not directly related, in this query, S_1 and 52 are
directly related by the predicate completion({). Lines 4 through 9 are a (repeat) definition
of a service completion. Line 11 calls the numnerical caleulation for the expected number of
events which with the arguments Q_3. the pattern reward function, 100, the time interval,
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and le-6, the error bound, and finally the initial state distribution with a total of three
customers all at the terminals with probability 1.0.

The last example is a simple performability model that uses a sequence reward function.
In this system there are two processors that fail and can be repaired. Customers arrive at
some rate and enter a queue for service. Depending on Liow many processors are operational,
zero, one, or two of the customers in the queue can be receiving service. The state for this
system can be of the form [cpu, Nq, Up/Totel] where Ng is the nwumber of customers in
the queue, Up is the number of operational processors, and Total is the total number of
processors. Thus a completely operational systeumn with two customers in the queue and
receiving service would be represented as [epu, 2,2/2]. The measure desired from this system
is the distribution of thic total service supplied to cnstomers hefore both processors fail.

Q_4( (5.0 + S_1:1 + §2:2)* S_3 S_4* ) where
ratezero(5.0),
rateone(S_1),
ratetwo(5.2),
failed(S_3),
any{S._4).

ratezero([cpu,0,X/Y]):- X > 0.
rateone([cpu,1,X/Y]) - X > 0.
. ratetwo([cpu,N.X/Y]):- N > 1. X > 1.
. failed{[cpu,W.0/Y]).
. any(X).

© 0o Ok L
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. d_total_reward(Q_4,10,12,1e-6.[{1.0,[cpn,0.2/2]]}).

To express this measure, we need a sequence expression with four pattern states as shown
in lines 1-6. The first part of the sequence expression. (S0 + 51 : 14 52 : 2)«, allows
any initial subsequence of Markov chatu states with one or two processors operating. During
this period, reward is accumulated according to how many of the processors are providing
service. The remainder of the sequence expression, $_3 S 4% allows any sequence of states
after a failed state but provides no more reward. Lines 8-12 give the predicates for this
query. The predicate, ratezero(). in line 8 is satisfied by any state with 0 customers in
the queue but at least one operational processor. Lines 9-11 are similar and need no further
explanation. Predicate any() in line 12 is satisfied by all states. Line 14 provides the call
to the actual numerical solution routine.

The query language only provides the means for the user to express what is desired. Each
query then has to be translated to a form that can be efficicutly executed. The next section
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shows how to translate pattern reward functions into a type of finite automata with output.
Such finite state automata are called Mealy machines [HOPCT9]. The Mealy machine is
then used by different numerical analysis routines to compute the final query results.

3 Translation to a Mealy Machine

In this section it is shown how to convert a pattern reward function into a type of finite
state automata called a Mealy machine. Translating a sequence reward function is similar
and is omitted for conciseness. Once the translation is accomplished, one effectively has an
implementation of the query language since numerical results can be computed given a Mealy
machine. The simpler problem of converting a single clause of a pattern reward function into
a Mealy machine is first examined., After that. the general problem of converting pattern
reward functions consisting of several clauses to a Mealy machine 1s studied.

With each transition of the Markov chaiu, an output is generated as a function of the
sequence of states leading up to and including the current state. It is shown that this
output function can he represented by a type of finite automnata with output. Each state
of the automata will correspond to an equivalence class of initial sequences of states of
the Markov chain. This type of abstract machine has heen deseribed in the literature (see
[HOPCT79] for example) and is called a Mealy machine. A Mealy machine is a six-tuple
M =(Q,2,A,8, ) q) where @ is a sct of states, ¥ is the input alpliabet (i.e. Markov chain
states), ¢p is the initial automata state, and é is a function which maps @ x ¥ into Q. These
attributes are identical to those in a deterministie finite automata. In addition, A is a set
of machine outputs and A maps @ x T to A, that is AM¢,s)Vq € Q,Vs € T gives the output
associated with the transition from state ¢ on input s. We define 8(sy85 - - - s, ), the multistep
transition function to be equal to 6(4(- -+ (8{sy), 82).- ). 5,,). For simplicity, assume that the
rewards A are all integers and define ¢; to be the vector of all 0's except for a 1 in the it
position. Similar to é, A(sys; -+ s, ), the multistep owtprt of machine Af in response to mput
5182+ - 8y 18 defined to be €xggy o1 F Crigrisat T O rosn) WHOTC @, g1, -+ 4 ¢ 18 the sequence
of states such that &8(qi_q1,5;) = ¢ for 1 <7 < n. The reward from an output sequence
is just the vector containing the number of times each different output value occurs in the
output sequence. Thus the output sequence 1, 2, 1, 3 would have a reward vector of (2,1, 1]
associated with the reward levels [1,2,3]. In the special case where there is one distinct
non-zero reward, the vector has onlv one componeut. Other simplifications are possible
depending on the type of numerical analysis or type of niecasure and these variations will be
discussed in section 4.

As a simple example of a Mealy machine, cousider the reliability model from the previous
section. One pattern reward function given for this model was
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Figure 4: Mealy machine for identifying operational states

cumulative-operational(S) yields 1 where
operational( S ).

Let £, be the set of Markov chain states that satisty the operational() predicate, and ¥ be
the set of Markov chain states that do not satisfv tlie operational() predicate. The Mealy
machine M for this reliability example would cousist of only oue state as the output does not
depend on the history at all. The entire machine wonld be A = ({go}. EyUE,, {0,1},4, A, g0)
where §(go,ws) = 8(qgo,wy) = o for all w, € S, and wy € 5 and where A go,wo) = 1 and
)\(qo;‘-‘-’f) = 0.

It 1s usually easier to understand Mealy machiites represented graphically than in terms of
symbols. The graphical notation is similar to that used for finite automata. Each (machine)
state ¢ € @} is represented by an ellipse (usually a cirele) and each transition is represented
by an arrow from one state to another. Each arrow is labeled by the Markov chain state
o € T that causes the transition plus the reward accumulated becanse of that transition.
Thus, a transition out of a state ¢y labeled w;/1 wonld output a reward of one if a Markov
chain state ¢ € ¥y occurred while in machine state ¢y, A trausition labeled with just a
Markov chain state {i.e. no reward designation) is assumed to have a reward of zero. The
pattern reward function for computing the cumulative operational time is shown graphically
in Figure 4.

A slightly more complex reliability example is to count the number of failures. A failure
is a transition from a state which is up (operational) to a state which is down. In this case,
the reward is not determined completely by the current (Markov chain) state, but rather
the current state and the immediately preceding state. The pattern reward function for this
example was given in the previous section as

count-failures(S,T) yields 1 where
operational( S ),
not-operational{ T ).
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Figure 5: Mealy machine for counting the number of failures

Two automata states are needed for this machine. State ¢ will represent the case where the
last Markov chain state was up, and state ¢, will represent the case where the last Markov
chain state was down. The system being modeled has the saine Markov chain states as
before, ¥ U X,. The Mealy machine for this query will be ({go. 1}, £5 U 0, {0,1},6, A, q0)
where é(go,ws) = qo,8(qo,wyr) = @1, 6(q1.we) = qu.&{q1.wy) = ¢1. The output function A
for this query 1s Aw,, qo) = 0, Mwys, o) = 1, Awa, 1} = 0. A{wy,qn) = 0. It 1s easy to see
that the reward for this query with the input, [o.0,. 03] with oy € &, and 02,05 € Ef 13
equal to 1 with this query whereas it was equal to 2 with the previous one. The graphical
representation of this query is shown in Figure 5.

In the remainder of this section we present a detailed description of the translation of
pattern reward functions to Mealy machines including tlie case in which there are several
pattern reward function clauses.

The first step in building a Mealy machine from a pattern reward function clause is to
create a nondeterministic Mealy machine from each clause of the pattern reward function. A
nondeterministic Mealy machine is a Mealy macline that allows e-transitions (a transition
with no input) and also allows two different transitions on the same input. To translate a
clause of a pattern reward function to a nondeterministic Mealy machine, treat the pattern
expression as a nondeterministic finite automata with one extra transition. This extra tran-
sition goes from the initial state of the antomata back to itself and can occur on any Markov
chain state. Consider the pattern reward clause recover()

recover(S,T,U) yields 1 where
operational( S ),
non-operational{ T ),
operational( U ).



Figure 6: Correct nondeterministic machine
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Figure 7: Correct deterministic machine

This clause can be translated to the nondeterministic machine shown in Figure 6. The
machine illustrated in Figure 6 can be converted to an equivalent deterministic one by
extending known algorithms [AHO74, HOPC79] to deal with the machine output. The basic
construction is to deal with sets of states rather than individual states. Thus there would
be a deterministic transition from state {0} to state {0,1} on entering a Markov chain state
w, since there is a transition from automata state § back to itself and from automata state
0 to automata state 1 when the input is w,. The complete deterministic Mealy machine for
this pattern reward clause is shown in Figure 7.

3.1 Translating multiple clauses

We now consider how to compile two pattern reward function clauses, each represented by a
Mealy machine, into one machine. This process can he repeatedly applied to combine three
or more machines together. We represent a state in the cross-product machine as a 2-tuple,
(qf,q7) where g is the state ¢; from the first machine and ¢? is the state g; from the second
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machine. Each transition in this machine is applied to both the elements of the tuple. If
the rewards from the two machines are the same, that value is the combined reward. If one
of the rewards is zero, the non-zero vahie is used. If the rewards are distinct and nonzero,
then the two clauses must be inconsistent. More formally, let Ay = (Q1, X, Ay, 61, M, ¢d)
and let M; = (Q2, 5, A2, 62, A2, ¢8). We will define Af = My x M, = (Q1 X Q2,E,A, U
Aihéa/\a (q(l)vqg)) where 5((9‘13(12)3‘7) = ((51((1’1,0'),(52((]2,0)) and where Q€ Ql':Q'Z € QZa and
o € X. Since the reward functions A; for the individual machines for the same sequence are
either supposed to be the same or at least one of them must be zero, the reward function
Alo, (g1, q2)) = max(A{o,q1), A2(0,q2)). The new machine M, in effect, steps through both
machines simultaneously. Any inconsistencies in the query will be manifest at this point
as two or more of the rewards having unique nonzero values, which is easily detected and
signaled to the user.

As an example of this construction, cousider again a reliability model with three states,
operational, degraded, and non-operational (with, for simplicity, no transitions from the
operational state directly to the non-operational state). One pattern reward function on this
model may consist of the following two clauses.

fail(5,T) yields 1 where
operational{ S ),
degraded( T ).

fail(S,T) yields 1 where
degraded( S ),
non-operational( T ).

This pattern reward function counts the sum of transitions from operational to degraded
mode and from degraded mode to non-operational. The Mealy machine corresponding to
the combination of these two clauses is shown in Figure 8 where v (for up) is used to represent
an operational Markov chain state, d 1s used to represent a degraded Markov chain state,
and D (for down) is used to represent a non-operational Markov chain state. Note that
the example sequence of states operational — deqraded —+ nonoperational would satisfy both
clauses of the fail() reward function since the transitiou operational — degraded satisfies
the first clause, while the transitiou degraded — nonoperational satisfies the second. This
sequence 1s assigned the correct reward by the combined machine. To make this clearer, the
path for this example sequence is highlighted in Figure 8. It should also be clear that x is
associative, so that (M x M) x My = My x (M, x M3} = M, x M, x M;, and states can
be represented as (¢, ¢2, ¢3) rather than ((¢d,¢2), 43} or (q, (45, q3)).
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d- {00,01,20,21}

Figure 8: Correct combined deterministic machine

3.2 Minimization

We would like to be able to minimize this machine for fast exeention and to minimize storage
requirements. To do this, we extend the usual algorithms [HARRGS] for minimizing finite
automata to deal with the machine output as follows. We define two states p and ¢ to be

equivalent with respect to machine Af, written p 4 g, if the output from machine M started
in state p is the same as the output from machine Af started in state ¢ for any string of input.
We will write this as p = ¢ when there will be no confusion as to the machine. The operator
= 1s an equivalence relation and defines a partition over the sct of states. Each equivalence
class forms a state in the new minimal machine. Thus by finding the equivalence classes, the
minimal machine is found. A state p is distinguishable from a state ¢ if states p and ¢ are
not equivalent, that is if there exists an mput sequence 2 such that 5\(1),;1‘) # 5\(q, z). The
algorithm is initialized by marking all pairs of states that are distingunishable by a sequence of
length one as distinguishable and all the othier states as unknown, that is if A(p,a) # (g, a)
for some a, then states p and ¢ are distinguishable. Next for each pair of states r and s that
are not already known to be distinguishable, the pairs of states t = 8{r,a) and v = é(s, a) for
each input symbol @ are considered. If states # and u have heen shown to be distinguishable
by some string x, then r and s can be distinguished by some string ax. If states t and u
have not been shown to be distinguishable, then the pair (7, s} is placed in a list associated
with (¢,u). At some future time, if the (£, u) entry is found to be distinguishable, then each
pair in the list associated with (#,u) is marked as distinguishable. This process is repeated
until a pass is made through all the pairs of states without finding any new pairs to be
distinguishable. At this point, the algorithm is complete and the new states are the sets of
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1. initialize unknown| ], distinguishable] ]

2. done := false

3. while not done begin

4, done := true

5. for each pair (r,s) € distinguishable[ ]

6 for each a € ¥ begin

7 let t =6(r,a),u = 6(s,a)

8 if (t,u) € distinguishable[ | begin
9 done := false

10. move (7, s) to distinguishable[ | from unknown][ ]

11. for each pair linked to (r, s) move to distinguishable[ ]
12. end else

13. link (r, s) to (t,u)

14. end

15. end

Figure 9: Algorithin for minimizing automata

indistinguishable states. This algorithm is stunmarized in Figure 9.

4 Markov Model Solution

This section describes the calculation of the response to a query. Starting with a description
of a continuous time Markov chain X{#) and a query, it is shown how to evaluate that
query on the given Markov chain description. The first step is to generate the Markov
chain transition rate matrix as is described for example in [BERS90]. For our purposes
here, the only important point is that this procedure creates a list of transition rates in
the form of triples, (5;, 5;, R;;), each of which represents a transition from state 5; to state
5; that occurs with a rate of R;;. It is useful to be able to normalize this transition rate
matrix into a transition probability matrix where the time between any two transitions is
exponentially distributed with the same mean. This can be done by a technique called
randomization {or uniformization) [GROS84]. If @ = {g¢;} is the transition rate matrix
and A > sup; | ¢i |, then results for the matrix @ can be obtained from the transition
probability matrix P = Q/A + I. In the randomized Markov chain, each state has the
same exponential holding time distribution. For mneasures over au interval of time (0, ), the
solution is obtained by conditioning and then unconditioning over the number of (Poisson
distributed) transitions that occur in {0,4). Thus the reward from a query represented by a
function f(-)



All of the measures described in this paper can be expressed by the proper choice of the series
of functions f,(-). For example, if it is desired to compute F(t) = w(t), the time dependent
state probability vector, then set f,(x) = z. Note that as long as f.(-) is bounded above by
f forn > N,

N o—At(py R
Ft)y = ZE.WL_,)...f,,( Py+ Y 751 £y PR
" n=N41 .
N e_Af(At) ” _M(Af)"
< r;)"ﬁ“m”“”f( 7(0)P") +fn;+1T
N —At A" i N E—Ar .
< n=06_?5!_.__,)__,fn(77(0)P")+f 1__;)“_75!—)]

Thus the error due to truncating the infinite scries can be bounded (if the f,(-) can be
bounded) and by choosing N large enough, the error term can be made arbitrarily small.
Before describing the functions, f,.(+), a new Markov chain derived from P must be defined
which is a function of P and also the query to be evaluated.

A new Markov chain is produced by incorporating the reward level and the state of the
finite automata (derived from the pattern reward function as described in the previous sec-
tion) into the transition probability matrix P. The finite state automata will be represented
by the two functions, &, the automata transition function, and A, the antomata reward func-
tion. The original Markov chain, the antomata transition function, and the accumulated
reward vector! are combined into a new Markov chain with states (4,5, I\) where A is an
automata state, S is a Markov chain state, and K is a reward vector. Since the holding
time distributions of all states in the randomized Markov chain are the same, the reward
vector K can be interpreted as giving the number of occurrences of each different reward
rate. Let p(S;, S;) be the transition probabilities in the original (randomized) chain and let
é: be a vector of all 0’s except for a 1 in the /' position, then define P to be the transition
probability matrix having the following structurc

p[8, 5] i 8(4,5) = A4"and K=K+ Exr(ar,s")
0 otherwise

4For simplicity, it is assumed that rewards are restricted to non-negative integers
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Figure 10: Conceptual Markov chain with automata state and rewards

In general, we need to compute the probabilities that a certain level of reward is accumulated
by the sample paths of this Markov chain. This will be collected iteratively in a vector of
three dimensions X"( A4, S, I_x;) where A is the automata state, S is the Markov chain state, K
is the vector of accumulated rewards, and n is the iteration nuumber. We can now iteratively

define

X™1(A,5,K) = X"(A,S, K)P
X% Ao, So, xag,50)) = 1
X°%A, S, I?) = 0 for all other 4, § and K

where Ag and S are the initial automata state and the initial Markov chain state respectively
and A(Ag, So) is the Mealy machine initial output.

These relationships are shown graphically in Figure 10. Figurce 10 shows only part of the
Markov chain but should serve to illustrate the concept. Each state in the Markov chain
is listed as a triple (A, S, K) where S is the current Markov chain state, A 1s the current
automata state, and K is the current reward vector. For simplicity, the rewards in this model
are restricted to 0 or 1 and so the reward vector I is shown as a scalar value for the number
of 1’s. The column titled Markov Chain gives the Markov chain transitions and their rates.
The number in parentheses is the (randomized) transition probability. Thus, the first entry
in the table
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2,5,2.0 (0.4)

represents a transition from Markov chain state 2 to state 5 at a rate of 2.0, or equivalently
a probability of 0.4. The column labeled Transition represents §, the automata transition
function. Finally, the column labeled Reward contains the representation of A, the reward
function. To find a transition from the combined Markov chain state (0,2,2), the Markov
chain transition table is searched for transitions out of Markov chain state 2. Two transitions
are found, one to Markov chain state 5 at rate 2.0 (probability 0.4) and one to state 7 at rate
3.0 {probability 0.6). The automata transition has to be accounted for in each of these two
transitions. In the case of the transition to Markov chain state 7 while in automata state
0, the automata transition table shows the next automata state is 1. Finally the reward 1s
given in the reward table as 1 for a transition to Markov chain state 7 while in automata
state 0. Thus there is a transition from combined state {0,2,2) to (1,7,3) where the reward
3 is just the old reward plus the reward output of 1. Other transitions are similar.

Now we describe how the f,,(-)’s are determined. For the following examples assume that
there are K + 1 different levels of reward that can be earned. Let ¥ = (ry,r2,...,7K+1)
be the vector containing these reward levels such that vy > -+ > rg > rgp1 2 0. Let
k= (k1,ka, ..., kx41) be the vector with & equal to the number of visits to a state with
reward rate r;. Recall that X"(A, S, Iz) is a vector computed over sequences of Markov chain
states of length n + 1 and that due to randomizatiou, the time spent in each state of the
sequence has the same distribution. Therefore, in an interval of time (0,¢) with n transitions
(and n + 1 Markov chain states), the expected time in each state is ¢/(n + 1). Multiplying
the reward for each state by the time in each state and by the probability of each state gives
the f.(+)’s to compute the expected reward.

FAX (4,5, B)) = (B ) X7 (a5,

a.s,

The second example illustrates the functions to compute the distribution of total reward,
Y(R,t) = P[R(t) € R]. The derivation of the functious f,(-) for this measure is included
for completeness; for additional details, see [DESO89]. Let ¢ = (¢y,...,(x+1) where (; is the
sum of the lengths of intervals of reward r;. Then the total reward earned is R(t) = 7 5
For a Markov chain state sequence of n transitions (i.e. n + 1 states), let the intervals of
time spent in each state be denoted by ¥;,1 < ¢ < n+ 1. Due to the fact that these Y¥;’s are
exchangeable [DESO89], we can assume that the first k; intervals are of reward r;. That is,

G o= Y+t Y
CZ = ]/’-\'1+1+.-.+1’kl+k2
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CK = Y}“1+'-'+kx_1+1 + -+ Yk1+---+kx
(k+1 = Yiqodkgetrrs -+ Yopa

Let Uy,...,Un41 be independent and identically distributed random variables uniform on
(0,%) and let U(k), 1 < k < n +1 be the kth order statistic (i.e. Uxy 1s the kth smallest of
the U;). The above equations can be rewritten

G = Uy
(2 = U(k1+k2)—U(k1)

Ck = Ulpgtothse) = Ulhoitotbner)
(k41 = t=Ulkr+- +kg)

Defining n; = Y, k; for 1 < j < K, we may write

K
t|n k = Z i — TiH1 U(n_,) + TK+1t

7=1

where R(t|n, k) is the reward accumulated in the interval (0, t) given n and k. We can also
write

K
P [R(t) < Rln, k| = P |3(rj = 7j41)Un;) < R — it

=1

In order to determine this probability, we need to find the distribution of a linear combination
of order statistics from a uniform distribution on (0,¢). Now define

§=R—rgt

and, for 1 < ¢ < K, define
$; =1t —rgqt

Let

m = the largest index ¢ such that R < rjt
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Then a theorem of Weisberg [DAVI81] says that

K m g(k- 1)( ‘)
P |3 (rj=ris1)Upmpy S 5[ =1- Eﬁ

j=1 =1
where g* )(:c) is the k' derivative of the function
(¢ —8)"

9i(z) = [ (= — 80
{#1

Note that there is a small problem when any of the k; are zero. To deal with this, let I(%, %)

be the index of the i** nonzero k; and let m(k) be the largest index i such that R < Tyt
Then

(k) ( i(k i) 1)

fa(X™(4, S, I?)) = Z X“(a,s,fé) 1 — Z I,y (Sr(iz,.'))
o (Rgy— 1)

.
a,s,k

The last example is the distribution of cumulative time, which is a special case of the
distribution of total reward in whlch the rewards r; are restricted to either 0 or 1. This
restriction allows the reward vector k to be represented as a scalar k, the number of times a
reward of 1 is accrued. This reduction of the vector k to the scalar k can be done whenever
there are only two distinct reward rates. The functions (see [DESO86]) f.(-), with R and ¢
the threshold and the time horizon as before, are

Fu XA, S, 8) = 3 X"(a, s, k) g(’:)(?)i(h?)n_i

a,s,k
Summary

For the numerical solution, the Markov chain triples, the automata transition function triples,
and the automata reward function triples are sent to the backend solver along with (as
needed) an initial state, a time horizon, an error bound and a threshold. The backend
solver solves the query on the given Markov chains and returns the results. The pruning
and aggregation techniques that are used by the backend solver to reduce computation and
storage size requirements are described next.
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4.1 Aggregating and Pruning

X"*(A,S, I;:'),n = 0,1,2,... represents results from possible sample path sequences. There
are two approaches to optimization in processing these sequences: aggregating and pruning.
Pruning consists of eliminating from current and future consideration certain sequences of
states. Pruning provides savings not only for the sequences removed from consideration,
but also for all possible continuations of these sequences. These savings can be quite large.
Sequences are pruned usually for one of three reasons. The first is that the sequence has
irrevocably failed to match the pattern. In this case, there is no reason to continue exploring
sequences derived from this pattern. The second reason is that the sequence from this point
on will always match the pattern. This occurs for example, in first passage time queries.
After the first occurrence of the pattern of interest, it is unnecessary to generate alternative
continuations of the sequence. The third and final type of pruning is applied when the
probability of a sequence becomes insignificant. Since the probability of occurrence of a
sequence is the product of the state transition probabilities that appears in the sequence,
the sequence probability gets smaller as the sequence grows. If the probability of a sequence
gets sufficiently small (e.g., relative to other sequences) as to not significantly affect the final
query result, that sequence can be pruned. Criteria for determining when the probability of
a sequence is sufficiently small are discussed later in this section.

Another approach to saving on calculations is aggregation. While pruning consists of
eliminating certain sequences entirely, aggregating consists of combining equivalent sequences
of states. By combining sequences of states, only one set of calculations, rather than two or
more, need to be done from the point where the sequences are aggregated. This method can
also save much computation. Both pruning and aggregating are performed when actually
evaluating a query.

Aggregation of States

Aggregation consists of lumping together sequences that are equivalent. This has already
been briefly described earlier in this section, as part of the definition of X"(A4, S, k) Each
entry X"(q, s, k) is the sum of the probabilities of many sequences. If (") is a sequence of
n Markov chain states, P[z(")] is its probability, and 5(2(")) is the Mealy machine multistep
transition function, then

X(ask EP[z("l)]whereé(("”)-aa,nd)\(("l ):E

zin=1)g

The level of aggregation in X™ above is appropriate for computing the distribution of total
reward and also transient point probability.
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In other types of measures such as expected total reward, expected cumulative time,
expected first passage time, and expected number of events, the X™’s can be further aggre-
gated. We look specifically at expected total reward, but the other cases are similar. Let
{Y'(¢#),t > 0} be a Markov chain and let {X(t),? > 0} be the Markov chain whose state space
is the set of all (A, S) where A is an automata state and S is a state of the Markov chain
Y(t). Assuming that X(t) can be randomized, let {N(t),t > 0} be the counting process
of the underlying Poisson process and let {T,,,n = 1,2,...} be the times of occurrence of
the Poisson process. Let A(:) be the automata output function as earlier. Then following

[GROS84]
B[ Mxeyw] = 3 E[[ Ax@)dlNE =) POVE) =)

n=0

2 AMX (TN Tjwn — THIN(t) =

= Y. Y EMX(T))Tje1 — T)IN() = n] P(N(t) = n)

o0 n

= 3 Y ENX(T) BTy - TIN() = n] P(N(t) = n)

n= 0;—0

= Z;E;E[A D) POV(E) = n)
ZE[)\

X, e M(A
J—D

= 2

nz=0

Examine the term ¥7_o E[A(X(T}))]

n!

The term 37_o A(X(7})) is just the sum of the rewards at each step of the Markov chain
which is {7'- E)

5 [z »\cxm-))] S SYE X6,

7=0 a8 |

Finally we get

t T rn 7
T N X )

fu(X™(A, S, K)) =

28



From the structure of the functions f,(-) it is easy to see that it is not necessary to store
the distribution of %. Since the rewards depend only on the weighted average of the reward
vector k. So only the weighted average need be stored instead of the whole distribution.
Thus X"(a, s, k) can be stored in aggregated from as X"(a, s).

X™(a,s) = S (k- )X (a,s, k)

-

k

X"(a,s) can be iteratively calculated as the product of X}'(a,s), the probability of being
in automata state a and Markov chain state s at iteration n, and X[(a,s), the reward
associated with a, s, and n

X:H(a',s'): Z X:(a,s)p(s,s')

a,s
§(a,s")=a’

XnH (d',s') = z [)\(a, s) + X, (a, )X (a, s)p(s, 3')]

a,s
8(a,s")=a’

where §(a,s) and A(a,s) are the Mealy machine transition function and output function,
respectively and p(s,s’) is the uniformized probability of a Markov chain transition from
state s to s’

The last measure is steady state reward. In this case, the automata state e is unnecessary
since the reward rates can be computed from the steady state probabilities. For example, if
the throughput T', defined as the sequence of Markov chains states s;s2, was desired from a
model, it could be computed as

T = 71‘1?"[31,32]

where 7 is the vector of steady state probabilities, #; is the steady state probability of state
1, and r[sy,sz] is the transition rate from state s; to s;. Other steady state queries are
computed similarly. In terms of the functions f,(-), let fi(:) =0for 0 < ¢ < N and

Fu(XN(s)) = %w- XM (s))

where || XV (s) — XV-1(5)|| < e.
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Pruning of States

Each element of X"(a, s, Ié) contains the probability of the augmented Markov chain being
in state (a,s,k) after n transitions. Our experience has shown that these probabilities
X"(a, s,i-c.) typically have a range of many orders of magnitude for even moderately sized
n. There are two reasons for this behavior. First, there is typically a range of values along
each row of the matrix describing the Markov chain. As n gets large, there is some small
probability that a sample path of the Markov chain may traverse all the unlikely states.
Consider a Markov chain where each row has only two non-zero elements, 1/4 and 3/4. A
sequence that takes the lower probability (1/4) transition at each opportunity will be almost
4 orders of magnitude less probable than the the sequence that takes the higher probability
transitions after only 8 steps. As the transition probabilities typically exhibit a much larger
range of probabilities than from 1/4 to 3/4, this problem is greatly increased. The second
reason that the range of X"(a,s, E) tends to be great is that for many applications the low
probability sequences are often much less likely to be aggregated than other sequences. This
can be see by looking at a simple reliability example with repair. The system being modeled
can be in one of two states, operational represented by a reward of 1 or non-operational
represented by a reward of zero. Looking at this system for 10 steps will generate up to
210 = 1024 different reward sequences. These reward sequences can be aggregated into 11
different buckets, each representing one of the possible number of operational states (from
0 to 10) in the reward sequence. The number of sequences aggregated into each bucket, 10
choose ¢ (15C;) in the :th bucket, is shown in the following table.

bucket 0] 1 2 3 4 5 6 71 8 9110
number || 1 | 10 [ 45 | 120 | 210 | 252 | 210 | 120 | 45 | 10 1

It is clear that the number of sequences aggregated into each bucket varies considerably.
Typically the low probability states are the ones with the small numbers of operational states
which also are aggregated with few other states.

=

If those states of X™(a, s, k) with extremely small probability are pruned from further
calculation, a savings in both computer memory and processing time would result with little
change in the final results. Further, since the probabilities of the sequences being pruned
are known, the total discarded probability would be an upper bound on the error introduced
due to pruning.

In addition to the error introduced by pruning, there is also a truncation error introduced

by truncating the infinite summation in randomization at some finite N. Thus if P(> N)
is defined to be the probability that more than N events of a Poisson process with rate A

30



occur in time T'

P(> N} = i

then given some ¢ and given some bound f on the functions f,(-), N{e) can be chosen so
that the truncation error due to randomization is less than e.

N(e) = min (P(> N) < ¢/f)

In order to keep the sum of the pruning error and the truncation error less than ¢, a
portion of €, say e€,, can be allotted for the pruning error and the remainder, ¢, = € — ¢, for
the truncation error.

In order to bound the error due to pruning, we divide a computation up into basic com-
putation steps. Each basic computation step takes one combined Markov chain state triple
(A, S, I{;) and finds a new state that can be derived from it. Thus Figure 10 (discussed earlier)
shows two basic computation steps. Given a time 7', a limited number of basic computation
steps can be executed (depending on the speed of the computer), say Z(T). Thus in time T,
any sequence with probability less than e,/ Z(T") cannot cause the total accumulated error
from pruning (in time T') to be greater than ¢,. Unfortunately, a computation may not be
finished with respect to the truncation error within time T'. Since the exact amount of prob-
ability pruned is known, and is less than the total pruning error allotment, the computation
can be continued at the users option with the remaining pruning error allotment.

One final problem is that meeting the pruning error allotment might mean that additional
terms of the randomization summation have to be computed, possibly as many as N(e) —
N(e) extra terms. The number of extra terms, if any, is likely to be small for two reasons.
First, from the formula above it can be seen N(e) increases slowly as e gets smaller in
the typical area of interest; specifically when ¢ is near zero. Secondly, at any point in the
calculation it is known exactly how much probability has been pruned, and therefore the
calculations can often be curtailed before N(¢;). For example, if €,/2 probability has been
discarded due to pruning, the summation can be truncated after N(e, + €,/2) iterations.

5 Conclusion

We are in the process of implementing this system. We currently have the language translator
which generates the Mealy machine and the following solvers: distribution of cumulative
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time, expected total reward, expected cumulative time, transient point reward, and steady
state analysis. With the exception of the distribution of total reward, the remaining solvers
will not be difficult to add on to the existing base, and we are currently doing so.

We have shown how Markov chain queries can be represented in a very high level language.
We have shown how this language can be converted into a form that can be efficiently
executed in a procedural language such as C. Finally, a number of examples were shown to
demonstrate how the language is used.

A BNF for the Pattern Reward Function

The BNF for the pattern reward function language is described below. Left and right angle
brackets { < and > ) are used to denote nonterminals while italics denote terminals. For
simplicity <identifier> and <number> are not defined but take on their usual meaning.

<reward function> ::= <reward_clauses>

<reward.clauses> ::= <reward_clause> |
<reward._clause> <reward.clauses>

<reward_clause> ::= <identifier> ( <pattern> ) where <predicate list> . |
<reward_clause> ::= <identifier> { <simple_pattern> ) yields <number> where <predicate list> .

<pattern> ::= <identifier> |
<identifier>:<number> |
( <pattern> ) |
<pattern> * |
<pattern> + <pattern> |
<pattern> , <pattern>

<simple pattern> ::= <identifier> |
( <simple.pattern> ) |
<simple_pattern> * |
<simple pattern> + <simple_pattern> |
<sunple pattern> , <simple_pattern>

32



<predicatelist> ::= <predicate> |

<predicate> , <predicate list>

<predicate> ::= <identifier> ( <identifier list> )

<identifier list> ::= <identifier> |

<identifier> , <identifier list>
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