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Abstract

One of the main approaches to application-transparent error-recovery in
multicomputers i8 based on coordinated checkpointing of interacting sets of processes.
This approach does not require logging of messages or transmission of special
bookkeeping information with each message. Hence, the performance overhead for fault
tolerance during normal operation is minimized. The main disadvantage of previously
published schemes based on this approach is the requirement of synchronous
checkpointing — while processes are being checkpointed to stable storage, their normal
execution has to be suspended. We propose a new distributed checkpointing and
recovery scheme, based on asynchronous coordinated checkpointing of interacting sets of
processes, which allows processes to proceed with normal computation during
checkpointing. Disruption to normal computation and the performance penalty are thus
minimized. At each node, checkpointing involves copying the changed process state to
local volatile storage followed by resumption of normal computation while the
interacting set is identified and checkpointed into stable storage. An enhanced virtual
memory system is used to determine which part of each process state has been modified
since the last checkpoint and minimize physical data movement during checkpointing.

Index Terms: Checkpointing, distributed error recovery, distributed systems, fault tolerance,
transparent recovery.
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I. Introduction

Multicomputer systems, consisting of hundreds or thousands of processors interconnected by point-
to-point links, are now technologically and economically feasible [7, 18,26]. Such systems can achieve
high performance at a low cost by exploiting parallelism. Even for *‘general-purpose’” applications, the
reliability requirements of large multicomputers, impiemented with thousands of VLSI chips, can only be
met by using fault tolerance techniques [23]. Thus, the system must be able o detect errors, recover a
valid system state, and continue normal correct operation [15]. Since the goal of multicomputers is to
achieve high performance, the fault tolerance scheme must not slow down the system significantly, even
with applications that are ‘‘communication-intensive’” (exploit fine-grain parallelism). Given the
complexity of application software for large multicomputer systems, it is highly desirable to use a fault

tolerance scheme that does not add to this complexity, i.¢., a scheme that is application-transparent.

We present a new application-transparent low-overhead fault tolerance scheme which allows the
system to recover from multiple simultaneous process failures. The scheme involves periodically saving
the state of processes in stable storage [13] (checkpointing) and rollback to the last saved state when
recovery is necessary. While the use of checkpointing and rollback for error recovery in distributed
systems is not new [15, 14], most of the earlier general-purpose schemes were suscepiible to the domino
éffect which, in the worst case, can cause all processes in the systems to roll back to their initial state [15].
The scheme presented in this paper follows the coordinated checkpointing approach|[1,9,12,23,24] to
application-transparent recovery which is immune from the domino effect. Multiple processes are
checkpointed *‘simultaneously’’ (during a single checkpointing session) so that their saved states are

consistent [5] and the domino effect cannot occur during recovery.

In previously proposed recovery schemes based on coordinated checkpointing the processes being
checkpointed are blocked during the entire checkpointing session[12,23, 24]. This periodic synchronous
checkpointing disrupts normal system operation and results in significant performance overhead. The key
innovative feature of the asynchronous recovery scheme proposed in this paper is the use of volatile
checkpoints to minimize disruption to normal operation due to checkpointing. A volatile checkpoint is
simply a copy of the process state in the node’s local volatile memory. Checkpointing begins with
copying the changed state of a process to local volatile storage, after which the process may resume
normal computation. As discussed in Section X, volatile checkpoints allow much of this local copying to
be avoided through the use of a slightly modified virtual memory system. The rest of a checkpointing
session involves identification of the set of processes that are to be checkpointed ‘‘simultaneously’ and

transfer of the volatile checkpoints to stable storage (e.g., disk nodes[23]). Thus, the process is



suspended during only a small fraction of the time it takes to complete a checkpointing session.

The proposed scheme uses checkpointing and recovery algorithms that involve only as much of the
system as is necessary: a set of processes that have interacted, directly or indirectly, since their last
checkpoint [1, 12,24]. There is no need for system-wide central coordination. Processes which are not
part of this interacting set do not participate in checkpointing/recovery and may continue to do useful
work, Unrelated checkpointing and recovery sessions do not interfere with each other, while the actions
of related sessions are properly coordinated. Checkpointing results in the saving of a consistent snapshot
of the states of an interacting set of processes in such a way that a valid global checkpoint of the system

state is maintained in stable storage [3, 23, 24].

This paper presents a complete fault tolerance scheme. The proposed error recovery technique is
used in conjunction with practical, low overhead, error detection mechanisms. Instead of using standard
communication protocols for implementing reliable communication [20, 12], detection and recovery from
errors in communication is part of the proposed fault tolerance scheme — simpie special purpose
hardware [23] is used to handle communication errors without the need for message acknowledgements or
for sending check bits with each message. Furthermore, no ‘‘book-keeping’’ information (e.g.,
dependency vectors [20]) is sent with normal messages and there is no need 10 maintain extensive logs in

parallel with normal operation, as required by message logging techniques [20, 11].

Several basic concepts and assumptions used in this paper are described in Section II. Section III
presents definitions which are used in discussing distributed recovery. It also includes an overview of the
basic approaches to application-transparent distributed recovery schemes and motivates the use of
schemes based on coordinated recovery of interacting sets of processes. The error detection mechanisms
used are described in Section IV. Section V includes a high-level abstract description of coordinated
checkpointing and recovery of interacting sets and proves the correctness of the approach. The technique
for identifying interacting sets of processes is described in Section VI, followed by a discussion of
synchronous process-level checkpointing in Section VII[24]. Asynchronous process-level checkpointing
is presented in Section VIII, followed by a description of recovery from errors using previously saved
checkpoints in Section IX. Techniques for minimizing data movement during checkpointing by using an
enhanced virtual memory system are outlined in Section X. An appendix contains a list of the various

message types and their contents.
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Figure 1: A multicomputer.

II. Basic Concepts and Assumptions

The target systems is a multicomputer consisting of hundreds of nodes which communicate via
messages over point-to-point links. Each node includes a processor, local memory, and a communication
coprocessor. The nodes operate asynchronously and messages may have to pass through several
intermediate nodes on their way to their destinations. The system is used for ‘‘general purpose’
applications which have no hard real-time constraints. Errors can occur at any time as a result of

hardware faults in the nodes or in the communication links.

Processes in the system communicate using virtual channels (2, 16], i.e., if processes on two nodes
that are not immediate neighbors need to communicate, a logical circuit is set up from the source 10 the
destination by placing appropriate entries in the routing tables of each intermediate node along the way.
Once the path is set up, there is very little routing overhead for packets sent through the circuit and FIFO
ordering of these messages is maintained. The connectivity of the system is high so that the probability
of the system partitioning due to the failure of a node(s) is low enough so that it is reasonable for

partitioning to cause a crash.

As discussed in Section IV, we assume that the nodes are self-checking and are guaranteed to signal
an error to their neighbors immediately when they send incorrect output [22]. Hardware faults either
cause a node to generate an error signal or cause an error in transmission.

The error recovery scheme is based on the existence of stable storage [13] where checkpoints can be

safely maintained. Such stable storage may be implemented as mirrored disks. Some of the nodes in the



system, which we call disk nodes, are connected to such *‘reliable’ disks. We assume that a failure of the

disks themselves or of the disk nodes causes a crash (i.e., an unrecoverable error),

Processes are checkpointed periodically and rolled back to a previous checkpoint if an error is
detected. The state of a process involved in checkpointing and recovery is the contents of all of the
memory and registers used by the process. This includes some system tables, such as the list of all the
virtual circuits currently established to and from the process. The state of a process changes as a result of

local computation, the transmission of a packet, or the receipt of a packet.

In the proposed scheme, the unit of checkpointing and recovery is a set of interacting processes
rather than individual processes, individual nodes, or the system as a whole[9,12]. Informally, an
interacting set of processes is the set of processes which have communicated directly or indirectly since
their last checkpoint. As will be discussed further in sections III and VI, if all messages in the system are
“*flushed’’ to their final destinations and no messages are lost(23,24], it is possible to partition the
system into a collection of disjoint interacting sets of processes. Since there has been no communication
between processes in different sets since their last checkpoint, a checkpoint of a process in one interacting
set is consistent with both the checkpoint and the current state of another process which is in some other
interacting set. Hence, different interacting sets may be checkpointed and recovered independently and a

consistent global state {checkpoint) is always maintained.

Since each node can be time-shared between multiple processes, it may have to participate in
multiple simultaneous checkpointing and recovery sessions. Hence, it is not advisable to implement
checkpointing and recovery as part of the kemel. Instead, whenever checkpointing or recovery of a
particular process is initiated, the kemel spawns a special handler process that performs the necessary
operations. The handler can suspend the process, manipulate its state, and allow it to resume normal
operation. In the rest of the paper we will often discuss the actions of participants in checkpointing and
recovery sessions. These ‘‘participants’’ are really the handlers corresponding to the processes being

checkpointed or recovered.

ITI. Application-Transparent Distributed Error Recovery

Application-transparent error-recovery can be implemented using checkpointing and rollback: the
states of processes are periodically saved (checkpointed) and previously saved process states are restored
in order to recover from errors [15]. Stable storage (disk nodes) are used to save process states since it is

assumed that all the data (state) in the local memory of a node will be lost if the node fails.

The interactions between processes must be taken into account by the checkpointing and rollback

scheme. Specifically, if there is an error that forces the state of some of the processes to be restored to a



previously saved states, we must ensure that the restored states are consistent [S] with each other as well
as with the states of all the other processes in the system. It must be the case that following recovery the
execution of the system correspond to a possible execution that could have occurred in a fault-free

system.

Def. 1: For a process p, let Buddies ( p ) be the set of processes in the system such that ¢ € Buddies (p)
if, and only if, process p has either sent a message to g or received a message from g since the

last checkpoint of p.

Note that in general ¢ € Buddies (p) does not necessarily imply that p € Buddies(q). For example, a

message may have been sent by p but not yet received by q.

Def. 2: The interacting set with respect to process p, Inter (p ), is the set of processes containing all
processes ¢ such that either (1) ¢ € Buddies(p ), (2) 3 a process p,, such that p, e Inter (p,)
and ¢ € Buddies (p),or(3) g =p;.

Inter (p ) is the set of processes that may be affected (directly or indirectly) by messages sent by p, since
the last checkpoint of p,; or which have produced messages which may have affected p, directly or

indirectly. Note that, in general, p, € Inter (p,) does not necessarily imply that p, € Inter (p,).

Def. 3: Two processes, p and g, where g € Buddies (p), are said to be buddy-consistent if, and only if,

their states reflect the same number and content of direct message exchanges betweenp and g.

Note that if g € Buddies(p) and p and ¢ are buddy-consistent, then it must be the case that

p € Buddies (¢). The definition implies that no messages between p and g are either lost or duplicated.

Def. 4: A set of processes, CPS, is said to be consistent, if, and only if, the following conditions hold:
(1)if p € CPS then q € Inter (p) implies g € CPS, (2) for every pair of processes in CPS,
p e CPS and g € CPS, one of the following three conditions holds: (2.a) ¢ & Inter (p) and
peinter(g), 2b)p and g are buddy-consistent, or (2.c)3 a sequence of processes
PPz Pm)» Where ¥ i, 1<i <m, p;e CPS, such that {p,p,} as well as {p,.q} are
buddy—consistent and V' j, 1<j <m, {p;,p;,,} are buddy —consistent .

If the system is fault free and all messages in transit throughout the system are flushed to their final

destinations, all the processes in the system form a consistent process set (CPS). Note that a single

process, p , for which {p } = [nter (p) is a consistent process set.

Def. 5: Two processes are said to be consistent if, and only if, there exists a consistent process set of

which both are members.

Def. 6: A set of processes, DCPS , is dynamically consistent if, and only if, the following holds: if the



execution of all processes in DCPS is blocked and all messages are flushed to their final

destinations, all the members of DCPS form a consistent process set.

Def. 7: Two processes are said to be dynamically consistent if, and only if, there exists a dynamically

consistent process set of which both are members.

If processes are checkpointed independently and rolled back independently when an error is
detected, the state of the recovered process may not reflect messages that have been sent to it by other
processes or the fact that it has sent messages to other processes before it failed. Thus, following
recovery of a process, the set of all the processes in the system may no longer be dynamically consistent.

This can lead to incorrect execution and erroneous results.

Process A C €

/ failure

-

g}

Process B € €
time — N~ checkpoint

Figure 2: The domino effect. Process B fails and is rolled back to its latest checkpoint.
Since B will later expect a message from A, A must also be rolled back, requiring B
10 roll back to a previous checkpoint. In this case, the entire system must roll back to
its initial state.

The goal of distributed error recovery schemes is to restore the system to a state where all processes
in the system form a dynamically-consistent process set. This can be accomplished by keeping multiple
checkpoints of each process and tracking dependencies between each process p, and processes in
Buddies (p). If process p is rolled back, any process ¢ € Buddies(p) where {p,q} are not
buddy —consistent must also be rolled back. This procedure is applied recursively to all the members of
Inter (p), and may cause multiple rollbacks of a single process to successively earlier checkpoints. In the
worst case, this domino effect can cause all the processes in the system to roll back to their initial states

(see Figure 2), thus losing all computations done so far [15].

There are two basic approaches to avoiding the domino effect in distributed checkpointing and
rollback schemes:
I) Message logging, where messages as well as process states are saved in order (o allow the state of a
restored process to be ‘‘adjusted’” so that it is consistent with other processes in the

system [4, 11, 19,20,21].



II) Coordinated checkpointing, where processes are not checkpointed independently but are, instead,
checkpointed in a coordinated way with some or all of the other processes in the system such that if
recovery is necessary the restored states are guaranteed to be consistent [1, 12, 23, 24].

In the next two subsections we discuss these two approaches and motivate the choice of the second

approach for error recovery in high-performance multicompuiers.

A. Message Logging

With error recovery techniques based on message logging, process states are checkpointed and
recovered independently. In addition to saving process states, interprocess messages are also saved
(logged). When a process state is restored from a previous checkpoint, messages are ‘‘played back’ to

the process in order to bring it to a state that is consistent with the rest of the system [11, 20, 21},

A major problem with the use of message logging techniques for high-performance muiticomputers
is the amount of data that may be transmitted between processes (and thus will have to be logged) in
applications that exploit fine-grain parallelism. Specifically, it is expected that some applications may
require each process to send a short message of, say, eight bytes every 100 instructions [6, 10]. Consider
a system with 512 20 MIPS processors. For this communication-iniensive application, each one of these
processors will send 200,000 messages (1.6 mega-bytes) per second. Thus, approximately 820 Mbytes
per second are transmitted in messages throughout the system. Logging this much information to disk is
a major problem since, given modern disks with a bandwidth of 4 Mbytes per second, more than 200 disk
drives will have to be dedicated to logging messages. This problem is exacerbated by the use of faster

PTOCESSOTS.

An additional problem with message logging techniques is that they require bookkeeping
information (dependency vectors, sequence numbers, etc) to be transmitied with each message, thus
increasing the load on the communication network and making the send and receive operations, which
have to manipulate this bookkeeping information, more cohplex. This information must also be logged
to disk, further decreasing the network bandwidth available to the application and increasing the number

of disks required to support message logging techniques.

There are techniques that allow message logging to be used without logging each message to stable
storage [21]. However, with these techniques messages are temporarily logged in local memory, quickly
filling up the local memory with the volatile message logs, thus interfering with normal processing. The
need to log messages, even if just temporarily in local memory, increases local memory bandwidth
requirement and may slow down processing due to conflicts in accessing local memory. In addition,

these techniques require logging at least some sequence numbers to stable storage. Furthermore, as with



most message logging techniques, there is extra complexity, performance overhead, and network
bandwidth overhead for keeping track of dependencies. A technique for simplifying and speeding up
dependency tracking has been proposed in [19]. Unfortunately, there is a high cost associated with this
technique during normal operation since it requires recomputing a past state of a process in order to

update the checkpoint on stable storage.

One of the disadvantages of message logging techniques is that they require the application
processes to be deterministic, i.e., given a process state and a sequence of inputs (message log), the
process must generate the same outputs [20]. On the other hand, techniques based on coordinated

checkpointing do no place any such restrictions on the behavior of application processes [12,23].

Finally, message logging schemes assume reliable message transmission and thus require messages
to be acknowledged and check bits to be transmitted with each message. As will be discussed in
Section IV and Section VII this overhcad may be avoided if the second approach to application-

transparent error recovery is used.

B. Coordinated Checkpointing

Barigazzi and Strigini [1] have proposed an error recovery procedure for multicomputers that
involves periodic saving of the state of each process by storing it both on the node where it is executing
and on another backup node. The critical feature of this procedure is that all interacting processes are
checkpointed together, so that their checkpointed states are always consistent with each other. Therefore,
the domino effect cannot occur and it is sufficient to store only one ‘‘generation’’ of checkpoints. The
scheme presented in this paper uses this idea of checkpointing and recovering dynamically changing sets

of interacting processes.

With the recovery scheme described in [1] a large percentage of the memory is used for backups
rather than for active processes. The resulting increased paging activity leads to increases in the average
memory access time and the load on the communication links. This load is also increased by the required
acknowledgement of each message and transmission of redundant bits for error detection. The
communication protocols, which are used to assure that the message ‘‘send’’ and “‘receive’’ operations
are atomic, require additional memory and processing resources for the kemnel. Thus, performance is
significantly reduced relative to an identical system where no error recovery is implemented. The scheme
proposed in this paper eliminates the requirements for atomic message transmission and provides the
ability to save the checkpoints on disk, where they need not have a detrimental effect on system

performance.

The idea of checkpointing and recovering interacting sets of processes is extended in [23] to
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checkpointing and recovering the entire system (global checkpoints). That scheme does not have the
disadvantages discussed above of the scheme in [1]. The problem with the global checkpointing
technique is that checkpointing is expensive since it requires saving the state of the entire system. Thus,
for performance reasons, the time between checkpoints is relatively long (possibly tens of minutes).
Hence, the system can only be used for ‘“‘batch applications,”” such as large numerical computations,
where the possibility of losing minutes of computation during recovery is an acceptable price for the

resulting low overhead (a few percent [23]).

The global checkpointing technique has been extended to perform checkpointing and recovery of
sets of interacting processes rather than of the entire system{12,24]. This extension (see sections VI
and VII) reduces the disruption to normal operation since it usually involves only a subset of the
processes instead of the entire system. However, as in [23], these improved coordinated recovery
schemes still involve synchronous checkpoint sessions, where all members of the interacting set being
checkpointed suspend normal execution for the duration of the checkpoint session. In the worst case, all
processes in the system may be in a single interacting set and all normal computation in the system has 1o
be suspended for the duration of the checkpoint session. In this paper we further enhance the coordinated
checkpointing technique by using local volatile checkpoints on each node to make the checkpoint session
asynchronous with respect to normal processing. This new technique minimizes (nearly eliminates) the

time during which normal process execution is suspended.

IV. Error Detection

As previously discussed, errors in the system may be a result of node failures or failures in the
communication links. We assume that the nodes are self-checking and produce an error indication

whenever their outputs are incorrect [17,22].

In most systems, errors in message transmission are detected by including with each message check
bits, which the receiver uses to determine whether the contents of a message has been corrupted. Lost
messages are detected by protocols that involve acknowledging each messages as well as transmission of
sequence numbers with each message [25]. The disadvantage of these techniques is that they involve
transmission of redundant bits and thus ‘‘waste’” communication bandwidth. Since the probability of an
error in transmission is low, it is wasteful to check the validity of each message or packet independently.
Instead, as proposed in [23], each node has two special purpose registers for error detection associated
with each of its ports. One of these registers contains the CRC (Cyclic Redundancy Check) check bits for
all the packets that have been sent from the port. The other register contains the CRC check bits for all
packets received. These special purpose registers are linear feedback shift registers (LFSRs) and their
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contents are updated in parallel with the transmission of each packet [8].

In order to check the validity of all the packets transmitted through a particular link, each node
sends to its neighbor the contents of the LFSR used for outgoing packets. The neighbor can then compare
the value it receives with the value in its LFSR for incoming packets and signal an error if it finds a
mismatch. If packet switching is used, all the links in the system must be checked in this way before
committing to a new checkpoint. Otherwise, the state of a node corrupted by an erroncous message may
be checkpointed and later used for recovery. With virtual circuits, LFSRs at each node are used to
accumulate signaturcs of the packets transmitted through each incoming and outgoing virtual circuit.
Communication between processes in the interacting set can be checked, without checking all the links in
the system, by performing ‘‘end-to-end’” checks on all the virtual circuits between processes in that set.

The packets used to coordinate the creation of checkpoints and for error recovery must be verified
before they are used. Hence, for these packets, an error detecting code is used and redundant bits are
transmitted with the packet. Thus, there are two types of packets in the system: normal packets that do
not include any information for error detection, and special control packets, called fail-safe packets, that
are used only for transmitting information between handlers and which include a sufficient number of
redundant bits to detect likely errors in transmission. The fail-safe packets are either error-free or the

error is easily detectable by the receiving node.

V. Using Interacting Sets for Checkpointing and Recovery

The proposed error recovery scheme is based on checkpointing consistent states of interacting sets

of processes. More precisely, the following procedure is performed:
Procedure Chkp:
1) When a process p is checkpointed, all processes in Inter (p) (Def. 2) are aiso marked for
checkpointing.
2)  All messages sent by processes in /nter (p) are flushed to their final destinations.
3) The actual checkpointing is then performed.

Lemma 1: Assuming that the system is fault-free, the set of processes P =Inzer(p), which is

checkpointed as described by Procedure Chkp, forms a consistent process set.

Proof: Consider g;€ P and q,e€ Inter(q;). Based on condition(2) of Def. 2, this implies
g€ Inter (p) so condition (1) in Def. 4 holds.

Assume p,e P and p,e P. There are tree cases to be considered: (1)p,e Buddies(p,),
(2) p, € Buddies (p4), or (3) py& Buddies(py) and p, ¢ Buddies (p;). The case when both (1) and (2)
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hold is covered by the discussion of either one.

If p,e Buddies(p ), since the system is fault-free and messages from p, and p, have been flushed to
their final destinations, it must be the case that the state of both processes reflect the same message
exchanges between them and thus they are buddy-consistent (Def. 3). Similarly, condition 2.b in Def. 4
holds starting with p, € Buddies (p ;).

It remains to show that condition 2.c in Def. 4 holds when p, € Buddies(p,) and p, ¢ Buddies{(p ). By
condition (2) in Def. 2, there is a sequence of processes (xy,x ~~- X,) Where V i, 1Si<m, x; € P
such that x, € Buddies (p), p ;€ Buddies(x,,), and V j, 1£j <m, x;,; € Buddies(x;). Based on the
above argument, the members of each adjacent pair of processes in the sequence (p,x 1, X2, ** X, P 1) are
buddy-consistent. Similarly, there is a sequence (p,y(,¥2,- -~ YxP2) Where V i, 1Si Sk, y; € P and
the members of each adjacent pair of processes are buddy-consistent. Hence, using the sequence

(X1, """ XmoP Y1 " Ym)s condition 2.c in Def. 4 holds forp, andp,. O

Lemma 2: If every time a process p is checkpointed, its entire interacting set P =/nter (p) is also
checkpointed as described in Procedure Chip, then the set of all checkpointed processes (all

the processes in the system), W, forms a consistent process set.

Proof: Since W includes all the processes in the system, condition (1) in Def. 4 is satisfied. Consider
two processes in the system checkpoint p, and p,. If both processes were checkpointed together, then, by
Lemma 1, they satisfy condition (2) in Def. 4. Assume p,c P andp,e P. If p; € Inter (p ), then, based
on Def. 2, p € Inter (p). Since this contradicts p, ¢ P, it must be the case that p, & Inter (p (). Using the
same argument, reversing the roles of p, and p,, it must also be the case that p & Inter (py). Hence,

condition (2.a) in Def. 4 holds. O

Based on Lemma 2, when an error occurs, we can restore a consistent system state by discarding all
messages in transit and restoring all processes to their checkpointed states. However, in order to reduce
the impact of recovery on system operation, it is desirable to reduce the number of processes that have to
be rolled back. When an error is detected, all the processes that could have been affected by the error are
identified. The sets of processes that have interacted with the affected processes since their last
checkpoint are determined, and the states of all these processes are rolied back to that last checkpoint.
The rest of this section shows that if this procedure is followed, following recovery, all the processes in

the system form a dynamically consistent process set.
The recovery operation proceeds as follows:

Procedure Rback:
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1) A process p is marked for rollback.
2)  Any process g, s.t. p € Buddies (q) is marked for rollback.
3) Foreach ¢, all processes x € Inter (¢ ) are marked for rollback.

4)  All messages in transit sent from processes marked for rollback are discarded from the

network.,

5)  All processes marked for roliback are restored to their last checkpoint and normal operation is

resumed.

Def. 8: If process p is marked for rollback, we denote by Recov (p) the entire set of processes which

must be rolled back, as determined by Procedure Rback.

Lemma 3: If the most recent checkpoints of all the processes in the system form a consistent process set
and Procedure Rback is performed for some process p, all the processes running on the
system, R, (as opposed to their checkpointed states) form a dynamically consistent process

set.

Proof: Since R includes all the processes in the system, condition (1) in Def. 4 is satisfied. Consider
two processes p and p,. If both processes are in Recov (p), they are recovered together from their last
checkpoint. Hence, by assumption, both processes are in the same consistent process set. Thus,
condition (2) in Def. 4 holds.

Consider the case when p, e Recov(p) and p,¢ Recov(p). Assuming that the system was fault-free
prior to the rollback, all processes in the system were in a dynamically consistent process set. Hence, if
all messages were flushed to their destinations, one of the clauses in condition (2) of Def. 4 must have
held for p; and p,. The rollback, that did not involve p, and p,, could not change the situation if
condition (2.a) or(2.b) of Def 4 held. If condition(2.c) of Def.4 held, the sequence
(P1pX1.Xp ** 2 Xy, Do) Where consecutive processes are buddy-consistent could not have included any
process in Recov (p). If the sequence did include a process in Recov (p ), then both p, and p, would be in
Recov(p). Thus, condition (2.c) in Def. 4 must still hold for p, and p,.

Assume p, € Recov(p) and p, & Recov(p).

Consider the possibility that p, € Inter (p,). 1f p, was added to Recov (p) in Step (2) of Procedure Rback,
p o€ Inter (p,) implies p, e Recov (p) — a contradiction. If p; was added to Recov(p) in Step (1) or (3)
of Procedure Rback, 3 q € Recov(p) s.t. py € Inter(q). Inthis case py e Inter (p ) implics p; € Inter (q)
which implies p, € Recov (p ) — a contradiction. Hence, it must be the case that p, & Inter (p,).

Since p, & Inter (p ), if p & Inter (p), then condition (2.a) in Def. 4 holds, and the proof is complete.
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It remains to consider the case p,e Inter{p,). Based on Def.2, 3 a sequence of processes
(X1.X5, """ X,) Where x|e Buddies(p,), p; € Buddies(x,,), and x;,, € Buddies(x;) V je[l.m). At
some point in this sequence the ‘‘boundary’ between processes outside Recov{p) and processes in
Recov{p)is crossed, i.e.,, 3z € Recov(p) y e Recov(p), where z € Buddies(y). Since y & Recov(p), it
must be the case that y ¢ Buddies (z). Hence, the only interaction between y and z is a message in transit
from y to z. If all messages are flushed to their destinations, the message from y will arrive at z and

{y, z} will become buddy-consistent. At this point, condition (2.c) in Def. 4 will hold. O

Theorem 1: If Procedure Chip is used for checkpointing and Procedure Rback is used for recovery, all

processes in the systém will form a dynamically consistent process set following recovery.
Proof: Directly from Lemma 2 and Lemma 3. O

The rest of this paper can be viewed as describing techniques for efficient implementation of the

procedures described above.

V1. Identifying Dynamic Interacting Sets

In the previous section we showed that checkpointing and recovering interacting sets of processes
can be the basis of an error recovery scheme. It remains to show how these high-level abstract procedures
can be translated into a practical scheme. Checkpointing and recovery sessions require coordination.
This is accomplished by a coordinator handler that is dynamically determined as part of each session.
The mechanism for identifying the participants in checkpointing and recovery sessions and for selecting

coordinators will be described in this section.

An interacting set of processes forms a communication graph where there is a vertex for each
process and each arc indicates that communication has taken place between the two processes it connects.
The communication graph can be transformed into a communication tree by designating one of the
vertices as the ‘‘root process’ or coordinator. All vertices which have arcs connected to the root
(‘“children”’ of the root) are called first-level processes. Processesfvertices which have no children are
called leaves. The communication tree is the fundamental unit around which our algorithms are

structured.

When checkpointing or recovery is initiated, the kemel spawns a handler process that performs the
necessary operations. A handler initiated as a direct result of a *‘checkpointing timer’” triggering or an
error being detected begins its operation assuming that it will be the coordinator of a checkpointing or
recovery session. In order to enable such a handler to form a communication tree, the system (hardware

and/or software) must maintain, for each process p , dynamic communication information which is the list
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of processes with which there has been direct communication since the last checkpointing session (i.e.,
Buddies (p)) [1]. This list is called a first-level list since, if the process becomes a coordinator (and root

of a communication tree), the processes on this list are the first-level processes mentioned above.

The coordinator initiates formation of a communication tree by sending CHECKPOINT or
ROLLBACK messages to all the processes on its first-level list. These processes are then placed in either
a ‘“‘checkpointing’’ or ‘‘recovering’’ state, handler processes are spawned for them, the handlers send
CHECKPOINT/ROLLBACK messages to all their first-level processes (except for the parent process), and
s0 on. A process that is already part of the tree informs the sender that it will not be its child. A process
is a leaf process of a communication tree if it has communicated only with the process that sent it a
CHECKPOINT/ROLLBACK message, or processes that are already part of the communication tree. Each
leaf process informs its parent that it is its child and that it is a leaf. Each non-leaf process waits for
confirmations/denials from the roots of all its subtrees and then sends a confirmation acknowledgement to
its parent. This level-by-level process continues back up to the root process. When the final
acknowledgement is received by the root process, the communication tree is complete - the interacting set

has been found. All stages of the algorithms described later proceed in this step-wise fashion.

1t is possible for several processes within an interacting set to initiate checkpointing and/or recovery
sessions simultaneously. Due to the stepwise confirmation/denial process it is possible to create a correct
and consistent communication tree by ‘‘disassembling’’ all but one of the subtrees and incorporating their
members in the single *‘winning’” tree. This is described in the next section where synchronous process-

level checkpointing is discussed.

VIIL. Synchronous Process-Level Checkpointing

In this section we summarize the checkpointing algorithm presented in [24]. Checkpointing is
triggered by a ‘‘checkpointing timer,”” which causes the kernel to spawn a handler process. This handler
begins its operation assuming that it will coordinate a checkpointing session for the interacting set of the
process with which the timer is associated. In synchronous checkpointing, once a process becomes
involved in a checkpoint session it does not execute again until its checkpoint has been commitied to

disk. Checkpointing each process involves the following basic steps:
1. The process is halted. A handler process, that will participate in the checkpointing session on
behalf of the halted process, is initiated.

2. The portion of the process state that is not in memory (e.g. contents of registers) is stored in

dedicated buffer area in local memory.
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3. The process state in memory (or, as discussed in Section X, just the modified pages) is sent to stable

storage.

4. The interacting set/checkpoint tree is found. The communication channels between processes in the
interacting set arc flushed and any packets flushed from incoming channels are sent to stable storage

as part of the checkpoint state.

5.  Once all the checkpoint states, including flushed packets, of all the processes in the interacting set
have been written to stable store, those states are committed and the handlers terminate. Processes

then resume normal operation.

If the checkpointing session is triggered by the timer of process X, the checkpoint coordinator,
CCy, is responsible for sending process X's state to disk; finding the current interacting set (checkpoint
tree) by sending CHECKPOINT messages (markers with error detections bits) 1o all first-level processes
Y (as defined in Section VI); and checking for communication errors on all channels from processes Y to

process X (as described in Section 1V).

Any process, Y, receiving a CHECKPOINT message will be suspended and checkpoint handlers
(CHy) will be started up in its place. This handler is responsible for copying Y's state and sending it to
disk; sending CHECKPOINT messages to all first-level processes except for the coordinator/parent; and
checking for any errors on all of Y’s incoming channels (virtual circuits). This continues until leaf
processes are found — processes which have communicated eonly with the sender of the CHECKPOINT
message received OR which have communicated only with processes already part of the tree. The
checkpoint handler for each leaf process then sends a CH_ACK message (marker with error detections
bits) to its ‘‘parent’’. Any handler receiving a second, or more, CHECKPOINT message (i.e. already has
a ‘‘parent’” in the checkpoint tree) receives and sends a marker and checks for communication errors but

denies child status of that handler.

Once a parent of a leaf process receives CH_ACK messages from all it’s children, a CH_ACK
message is sent to its parent, and so on. When CCy receives CH_ACK messages from all processes to
which it sent CHECKPOINT messages, the entire interacting set has been found. Thus, CHECKPOINT
and CH_ACK messages serve the purpose of flushing messages to their destinations, carrying error

detection bits from one end of a channel to the other for comparison, and finding the interacting set.

Once CCy receives CH_ACK messages from all its first-level processes, it sends a CH_FOUND
message down the tree, thus notifying the handlers that all messages have been flushed to their
destinations and message queues can now be sent to disk. Once the message queues have been saved on

disk, CH_DONE messages are sent from the leaf processes to their parents, and so on. When CCy
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receives CH_DONE messages from all its children, it ‘‘knows’' that the process states of all the processes

in the tree have been written to disk.

CCy commits all processes to the new checkpoint by directing its disk node to commit to the new
checkpoint of X and destroy X’s previous checkpoint. When the disk node acknowledges this operation,
CCy sends CH_COMMIT messages down the tree. CH_RESUME messages are sent up the tree after
each handler commits its process’ state to disk. Each handler which sends a CH_RESUME flags its
process as ‘‘runnable’’ and terminates. CCy terminates last. Processes cannot participate in or initiate
new checkpointing sessions until they receive the CH_RESUME message. The first-level list for a
process (which contains the dynamic communication information) is cleared by its handler upon

receiving the CH_RESUME message.

A. Concurrent Invocations of the Algorithms

As mentioned in Section VI, it is possible for several processes within an interacting set to initiate
checkpointing and/or recovery sessions *‘simultancously’”. To solve this problem a single coordinator is
deterministically chosen to coordinate the session. To this end, CHECKPOINT and ROLLBACK
messages contain checkpoint/recovery coordinator IDs and all handlers locally store their current
coordinator ID. Since there is a total ordering of node and process identifiers, a process receiving
CHECKPOINT or ROLLBACK messages originating from different coordinators can pick the
coordinator with the *‘largest”” ID. However, ROLLBACK messages always win over CHECKPOINT
messages regardless of the coordinator ID. Specifically, a ROLLBACK message will cause a
checkpointing handler to immediately stop all activities related to checkpointing and join the recovery
session. Since the first-level list is not cleared until the process has compieted all phases of a
checkpointing session, the recovery session is guaranteed to include all the handlers in the ongoing
checkpointing session that may otherwise be waiting indefinitely for checkpointing-related responses. If
a change in coordinator or session type is made then the handler propagates this decision to its first-level
processes by resending CHECKPOINT/ROLLBACK messages with the new coordinator ID. Eventually

the winning coordinator will *‘flush out’” all remnants of the losing scssion.

VIII. Asynchronous Process-Level Checkpointing

The key feature of asynchronous checkpointing is that interruption of normal processing is
minimized: the normal execution of a participating process is suspended only as long as it takes to copy
its state in local memory (see Section X for further optimizations). Each process in the interacting set is

“‘checkpointed”’ in local volatile memory and then resumes normal operation while the volatile
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checkpoints are copied to stable storage. Until Section VII1.4 we assume that a process will participate in
only one checkpoint at a time - that is, a process may not start or join a second checkpoint session until

the first one is committed to disk. Checkpointing each process involves the following basic steps:

1. The process is halied. A handler process, that will participate in the checkpointing session on

behalf of the halted process, is initiated.

2. The portion of the process state that is not in memory (e.g. contenis of registers) is stored in

dedicated buffer area in local memory.,

3. The process state in memory (or, as discussed in Section X, just the modified pages) is copied to the

dedicated buffer area for later transmission to stable storage.

4.  The communication channels to/from neighbors are flushed and any packets flushed from incoming

channels are included in the local volatile checkpoint in local memory.
5.  The process resumes normal operation,

6. The handler continues to participate in the checkpointing session. Specifically, in identifying the

entire interacting set and committing the coordinated checkpoint to stable storage.

Implementation of the above steps is straightforward if the first-level list of each process is fixed,
i.e., if the set of processes that each process interacts with between checkpoints is static (predetermined).
Under these conditions, as described in the next subsection, the interacting sets are static and the
algorithms for synchronous process-level checkpointing (Section VII) can be used here with little

modification.

In most systems the interacting sets will be different for each checkpointing session. Specifically,
an interacting set S containing some process P, grows with time since P was last checkpointed as more
processes that are not members of S communicate with processes that are in §. A critical step in
synchronous process-level checkpointing is identification of the entire interacting set so that all messages
between members of the set are flushed to their destinations [24] (see Section VII). As will be shown in
Subsection VIIL2, this problem is more difficult to deal with when asynchronous checkpointing is used
since members of the interacting set resume normal processing (i.e. sending messages) before the entire

interacting set is identified.

A. Asynchronous Checkpointing of Static Interacting Sets

If it is statically determined which processes are in an interacting set, creating a checkpoint tree is a
simple operation. When the handler process receives a CHECKPOINT message, it sends CHECKPOINT

messages to all first-level processes, sends a CH_ACK message to it’s parent handler (unless it is the root
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handler), and then waits for CH_ACK messages to arrive from each first-level process. Since all the
immediate neighbors (the first-level processes) are known (predetermined), once all the expected
CH_ACK messages arrive, it is known that all messages on both incoming and outgoing virtual circuits
have been flushed to their destinations. At this point, the volatile checkpoint state is complete and
consistent with the checkpoint state of other processes in the interacting set for the current checkpointing

session,

Once a handler receives the CH_ACK message from all its first-level processes, it completes the
volatile checkpoint in local memory and the process can resume normal operation. The handler is now
free to send, or finish sending, its process’ volatile checkpoint to stable store. When the handler of a leaf
process finishes this task, it sends a CH_DONE message to its parent handler. A handler of non-leaf
processes sends the CH_DONE message to its parent only after it finishes sending its process’ checkpoint
to stable store gnd it receives CH_DONE messages from all of its first-level processes. After sending the
CH_DONE message, a handler waits for a CH_RESUME message. When the CH_RESUME arrives, the
handler directs its disk node to commit to the most recent checkpoint and forwards the CH_RESUME
message to to all its first-level processes. The root handler sends the CH_RESUME message as soon as
it receives CH_DONE messages from all its first-level processes and confirms that its disk node has
committed to its most recent checkpoint. In final phase of the checkpointing session the leaf handlers

send a CH_RESUME_ACK 1o their parents and are ready to participate in a new checkpointing session.

The key difference between the algorithm above and the synchronous algorithm [24] is that the
algorithm presented here allows processes can begin normal execution long before the checkpointing
session is complete (see Section X). Since the interacting set is static, the algorithm can avoid one round
of messages through the tree which are used in {24] to determine which processes are members of the tree
(in [24] CH_ACK messages are forwarded from the leaf nodes to the root, and CH_COMMIT messages

are sent back to the leaf nodes before the leaf nodes can send the CH_DONE messages to the root).

The rounds of messages can be related to the six basic steps described above, as follows: The
CHECKPOINT messages initiate Step 1. From this point on, checkpointing activities are performed by
the handlers. Steps 2 and 3 are initiated before receiving CH_ACK messages. Step 4 can be completed
once all CH_ACK messages are reccived. Once Steps 2-4 are complete, the process resumes normal
operation (Step 5). The remaining rounds of messages are all part of Step6 — completion of all

activities related to the checkpointing session by the checkpointing handler.
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B. Asynchronous Checkpointing of Dynamic Interacting Sets

In this environment the checkpointing scheme is more complex since new processes may join the
interacting set in the middle of a checkpointing session (a process P, which is not a member of an
interacting set S, joins § by communicating with some process P, which is a member of S). In this
section the problems caused by dynamically changing interacting sets are described and solutions are

proposed.

An important difference between the asynchronous algorithm for dynamic interacting sets and both
the synchronous algorithm[24] and the asynchronous algorithms for static interacting sets
(Subsection VIII.1) is the use of CH_ACK messages. Just as in the algorithm for static interacting sets,
the CH_ACK message is sent immediately to the parent (the sender of the CHECKPOINT message) to
allow that process to take a volatile checkpoint and resume normal operation without further deiays.
However, since the interacting set is dynamic, receiving the CH_ACK message from all known first-level
processes is not sufficient to ensure that all incoming circuits are flushed [24]. Hence, a new message
type must be used to notify the coordinator when the entire interacting set is found. The SUBTREE
message is used for this task. When a node which receives a CHECKPOINT message determines that it
is a leaf node, it responds to its parent with a SUBTREE message as well as a CH_ACK message.
SUBTREE messages are forwarded step-by-step to the root (the coordinator). When the root receives

SUBTREE messages from all its children, it ‘‘’knows’’ that the entire interacting set has been found.

With asynchronous checkpointing a checkpointing session begins when the coordinator decides to
take a checkpoint and ends when the checkpoints of all members of the interacting set are committed in
stable storage. The interacting set may change during a checkpointing session under two conditions:

Case 1 — A process P; in S sends a message M to a process P, which is possibly outside S .

Case 2 — A process P, which is possibly outside § sends a message M to a process P; whichisin§.
The statement ‘‘process P; is in § ** means that a volatile checkpoint of P; has been taken but P; has not
yet been informed that its checkpoint is committed in stable storage. When P; sends or receives the
message M to/from P, it does not know whether P, is in the interacting set. All it knows is that there

has not been any prior direct communication between P; and P, since the last checkpointing of P;.

Consider Case 1. If it tums out that P, is not a member of S, the fact that a message was sent 1o it
after the volatile checkpoint of P; has no effect on the checkpointing session of §. In this case, the
checkpointing session can safely end by committing to the state of P; prior to sending M. On the other
hand, if P, tums out to be a member of S, and is informed of its participation in this checkpointing

session after receiving M , the checkpoint of P, will not be consistent with the state of P; prior to sending
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M (i.e., following recovery we would end up with P; in a state prior 1o sending M and P, in the state
after receiving M resulting, effectively, in duplicate transmission of M). In this case we would like to

“*adjust’’ the checkpoint of P; so that it corresponds to the state of P; after sending M.

Similarly, consider Case 2 above. If it tums out that P, is not a member of §, the fact that M was
received from it after the volatile checkpoint of P; was taken has no effect on the checkpointing session
of §. The checkpoint of P; should not contain M or state changes to P; as a result of M. On the other
hand, if P, turns out to be a member of S, and is informed of its participation in this checkpointing
session after transmitting M, the checkpoint of P, will not be consistent with the state of P; prior to
receiving M (i.e., following recovery we would end up with P; in a state prior to receiving M and P, in
the state after transmitting M resulting, effectively, in the loss of message M ). In this case, we would

like to “‘adjust’’ the checkpoint of P; so that it corresponds to the state of P; after receiving M.

Both of the problems above can be solved by preventing processes from restarting normal operation
until the entire interacting set is defined. This means that, after the volatile checkpoint is taken, a process
P; will not run, send messages, or reccive messages until it receives a (CH_COMMIT) message (sce
Section VII) which is broadcast from the checkpoint coordinator to all members of the interacting set.
During the time that the process P; is ‘‘frozen,”” messages destined to it may arrive at its node. These
messages are buffered and tagged with the identifiers of their senders. If the sender P is part of the
interacting set, the channel from P; to P; is flushed immediately after P, joins the checkpoint session and
before P; reccives the CH_COMMIT message (see Section VII). Flushing involves sending a
‘‘marker’’ [5] (CHECKPOINT or CH_ACK message, see Section VII) from P, to P;. This marker
causes all messages from P stored in the buffer since P; joined the checkpointing session to be included

with the checkpoint of P;.

The solution of blocking processes until the interacting set is defined is simple to implement but
may be undesirable since it involves temporary interruption of normal processing. Ideally, the system
should allow processes that are taking part in a checkpointing session to continue normal processing
immediately after taking a volatile checkpoint. This requires more complex send and receive operations
during the interval in which the process would be blocked if the simple scheme above is used.
Specifically, during this interval every message received by P; from a process P; that is not known (by
P;) to be part of the interacting set, must be copied to a holding buffer in addition to being nomnally
received by P,. If it is later discovered that P, is, if fact, part of the interacting set, messages from P,
that are in the holding buffer must be incorporated in the checkpoint of P;. This solves one of the

possible problems with dynamic interacting sets (Case 2 above).
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The other part of the problem with dynamic interacting sets (Case 1 above) is more difficult to solve
without introducing the possibility of blocking the process until the interacting set is identified. The
problem is how to handle the situation where a process P;, which is part of the interacting set, initiates
communication (sends a message M) with a process P, which is possibly not part of the interacting set.

Three possible solutions have been considered:

A. Incorporate P, in the interacting set, forcing it to checkpoint before receiving M. This can be done

by P; sending a CHECKPOINT message to P, before sending M.

B. Send the message M and, if P, tumns out to be part of the interacting set, ‘*adjust’” the state of P,

before completing the checkpointing session to reflect the fact that M has been sent.

C. Block the sending of M to P, but allow P; 1o continue executing (assuming the send executed by

P; is a non-blocking asynchronous send).

Solution A is undesirable because P, may have already sent a SUBTREE message to its parent
informing it that its subtree is complete. This is a problem especially when P, is actually outside of the
interacting set (i.e. has not communicated with any process in the interacting set except through message
M). In such a case P; has, by sending a CHECKPOINT message to P, actually expanded the interacting
set by P, and all processes with whom P, has directly or indirectly communicated. Hence, P, had
falsely informed its parent that its subtree was complete and, if the checkpoint coordinator sends the
CH_COMMIT message before P; can correct this misinformation then, if the checkpoint session is
allowed to complete the checkpoints will be inconsistent. Also, in the worst case, the interacting set can

continue to expand in this manner indefinitely.

Solution B suffers from a similar problem as solution A. In order to ‘‘adjust’’ the state of P; to
reflect the fact that M has been sent, P; s handler must suspend P;, take a new volatile checkpoint of P;,
and resend CHECKPOINT messages as before, although the interacting set may be expanded by the
processing activities that P; has undergone since the previous volatile checkpoint was taken. Effectively,
P,’s checkpoint has been restarted and it can not be guaranteed with this policy that it, or some other
process in the interacting set, will not restart again and hence, in the pathological case, the checkpoint
may never finish.

In solution C the sending of M to P, is blocked but P; is allowed to continue executing, unless the
send executed by P; is a blocking send, in which case P; must be blocked. If the send is non-blocking,
then P; can continue exccuting but any messages to P, will not be sent. The blocked message(s) to P,

can be sent as soon as it has been determined whether P, is part of the interacting set, i.c., when F;
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receives either a CH_COMMIT message from its parent or a CHECKPOINT message (with matching
checkpoint coordinator ID) from P,. In the latter case P; must send a CH_ACK message to P, prior to
sending any of the blocked messages. This solves the second part of the problem (case 1 above) with

dynamic interacting sets in asynchronous checkpointing.

C. Handling Coordinators With Different IDs

Since timers are used to initiate checkpoint sessions, it is possible for more than one process in a
single interacting set to *‘simultaneously™” start a checkpointing session. Hence, a process P;, involved in
a checkpoint § with coordinator B, may receive a CHECKPOINT message from process P, with a
different coordinator ID. This different coordinator may ‘‘win’’ or ‘‘lose’’ relative to P;’s current
coordinator (as described in the Section VII) and P, may possibly be outside or inside the interacting set.
Hence, there are four cases that need to be handled:

1. P, is not a first-level process of P; and P,’s coordinator loses to P;’s coordinator.
2. P, is not a first-level process of P; and P, ’s coordinator wins over P;'s coordinator.
3. P, is a first-level process of P; and P, ’s coordinator loses to P;’s coordinator.

4. P, is a first-level process of P; and P, ’s coordinator wins over P;'s coordinator.

For cases 1-2, the CHECKPOINT message from P, is stored in the holding buffer that the handler

for P; wili maintain for messages from P,. Handling of this message is delayed until P; receives either

(a) a CHECKPOINT message from P, with coordinator ID B. This implies that P, is actually part of
the interacting set and the previously sent CHECKPOINT message had a losing coordinator ID.

(b) a CHECKPOINT message from some other, first-level process of P;, with P, ’s winning coordinator
ID. In this case P, is part of the interacting set and had previously sent a CHECKPOINT message
with a winning coordinator ID. P,'s coordinator did not *‘flush out”” P;’s coordinator earlier
because P, is not a first-level process of P; and we do not want to expand the interacting set

unnecessarily, as discussed in the previous subsection.
(¢) a CH_COMMIT message from P;’s parent. In this case P, is actually outside the interacting set.

In (a) and (b) P, is allowed to join the checkpoint and the losing coordinator is ‘‘flushed out’” as
described in Section VIL. In(a) P; sends a CH_ACK to P, and removes the previous CHECKPOINT
message from the holding buffer. In(b) P; sends a CH_ACK message (with P, 's coordinator ID) to P,
and sends CHECKPOINT messages with the new coordinator ID to its previous parent and children.
In (c) it is possible to either reject or join P, s checkpoint session. This choice will be discussed in the

next section where we show how to involve processes in more than one checkpoint at a time.
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For case 3 (P,’s coordinator is the loser), P,’s coordinator is ‘‘flushed out’” by sending a

CHECKPOINT message to P, with P;'s coordinator ID, B.

For case 4 (P,’s coordinator is the winner), P; becomes P,’s child. P; sends CHECKPOINT

messages with the new coordinator ID to its previous parent and children.

D. Handling Multiple Checkpointing Sessions

In this subsection we relax the previously stated assumption that a process will not participate in

more than one checkpointing session at a time.

A second checkpointing session may not be joined until the interacting set has been found for the
first checkpoint session since it is only at that time that a checkpoint handler can be sure that the two
checkpoints are actually for two different interacting sets. When a checkpoint coordinator has received
SUBTREE messages from all its children or when a checkpoint handler has received a CH_COMMIT
message, then the handler/coordinator examines all holding buffers for outstanding CHECKPOINT
messages with (losing) coordinator IDs. At this time the handler for some process P; must reply to the
sender of any such CHECKPOINT message(s), P,. P; has the choice of rejecting the checkpoint or
joining the checkpoint as a leaf process. It should be noted that the checkpoint session headed by the
losing coordinator ID has effectively been ‘‘on hold”’ as it cannot proceed (o the commit phase until all

CH_ACK and SUBTREE messages have been received.

Once P;’s interacting set has been found and P, is not part of it, P;’s handler can reject P,’s
checkpoint. At this time P;’s handler can send a REJECT_CHECKPOINT message to P, and then
complete it’s own checkpoint. The REJECT_CHECKPOINT message is propagated by £, to the rest of

it’s checkpoint tree, erasing all traces of the checkpointing session.

An altemative course of action is for P; to join P,’s checkpoint as a leaf process by sending a
CH_ACK message to P,. P, will now be P;’s parent for this checkpoint. Despite the fact that P; has
been executing while P;'s handler has been performing checkpoint duties, P; need not ke another
checkpoint (copy a new state in volatile memory) in order to join P,’s checkpoint. This is because
process P; has not been allowed to expand the interacting set. Specifically, it has not been allowed to
send messages to P, (directly or indirectly). Therefore any messages received from P, werc sent
regardless of any post-checkpoint state activities of P;. Hence, the only new (changed) checkpoint state
of P; that needs to be sent to disk are all messages sent by P, to P; prior to P, sending the

CHECKPOINT message.

At this point P;’s handler treats the second checkpoint just like any other except that it must ensure
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that P;’s first checkpoint is committed to disk before P;’s second checkpoint. This is accomplished by
simply not sending a CH_DONE message to P, until the first checkpoint has been committed (a
CH_RESUME is received).

IX. Recovery

Recovery scssions are initiated when an error is detected. If there is a mismatch between the two
signatures at the ends of a virtual circuit, a single interacting set needs to be rolled back — the set
containing the two processes on either end of the virtual circuit. When an error in a node’s outputs is
detected by a neighboring node[22], recovery may involve more than one interacting set since all
processes which were executing on the node and their interacting sets must be rolled back. If any
messages were in transit on the node at the time of failure, recovery will be initiated when the signature

mismatch is later detected.

A. Recovery From Communication Errors

The algorithm for recovery from a communication error is similar in structure to the synchronous
checkpointing algorithm, where recovery coordinators and handlers replace their checkpointing
counterparts. When a signature mismatch is detected, the kemel initiates rollback by spawning a
recovery coordinator process. A recovery tree is created by propagating ROLLBACK messages which
are acknowledged by RE_ACK(CHILD/NOT_CHILD) messages just a8 CHECKPOINT and CH_ACK
messages are used. Unlike checkpointing, no signature comparisons are made, and all messages which
are flushed to their destinations are discarded (this takes care of the recovery livelock problem discussed
in [12]). For each process Y in the interacting set, the associated recovery handler RHy requests the
process’ state from the appropriate disk node after all expected RE_ACK messages have arrived. When a
handler receives its entire process state and associated message queue as well as RE_DONE messages
from all its children, it sends a RE_DONE message to its parent. When the recovery coordinator receives
its checkpointed state and RE_DONE messages from all its children, it sends RE_RESUME messages (o
it’s children, marks its associated process ‘‘runnable’”, and terminates. Upon receipt of a RE_RESUME,
RHy terminates and process Y resumes normmal processing. No ‘‘commit” or ‘“‘resume

acknowledgement’’ phases are needed.

B. Recovery From Node Failures
When a neighbor detects that a node is faulty, node-level recovery is initiated. We assume that

there is some reconfiguration algorithm that supplies the recovery algorithm with destination node('s) 1o

which processes are to be restored. Since no information is available from the failed node(s), recovery
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trees must be constructed based on information available outside the failed node(s). An additional phase
is added to the general structure of the algorithms to collect the missing information — namely, the first-
level lists (see Procedure Rback in Section V). In this phase, each neighbor which has detected the node
failure starts up a Recovery Initiator Process (RIPy where Y is the node ID on which RIPy is running).
The main tasks performed by this process are: determining which processes were on the failed node(s);
determining the first-level list for each failed process; and starting up Recovery Coordinators (phase two}

for each failed process. Phase two is identical to recovery from communication errors.

In order to determine which processes were on the failed node we require that the immediate
neighbors of each node keep track (a list} of all processes running on the node. It should be noted that the
disks must have lists of all processes in the system (the union of all the disk server process tables see
Figure 3 in the next subsection). Hence, if multiple nodes should fail simultaneously we can determine
which processes are still in existence on the system and hence, which processes have failed. After
determining which processes have failed, RIPy needs to get information equivalent to first-level process
lists, for each failed process, before tree construction can begin. This is done by broadcasting
RECOVERY messages (containing the failed process list) to all working nodes in the system. Each node
returns a ‘FIRST-LEVEL message’’ which contains a list of processes on that node who have
communicated directly with processes on the failed node. With this information all the required recovery

trees can be constructed and recovery can proceed as in the previous subsection.

C. Handling Failures during Checkpoint Sessions

As discussed in Section VIL1, a recovery session always has precedence over a checkpointing
session, Specifically, checkpointing handlers stop all checkpointing activity immediately upon receiving
a ROLLBACK message, and join the recovery session. Hence, for example, if the checkpointing
coordinator receives a ROLLBACK message while waiting for CH_DONE messages from its children, it
will never send a CH_COMMIT but rather, it will immediately forward the ROLLBACK message 1o all

its children.

On each disk node there is a disk server process that saves and restores checkpoints from the disk.
The server process maintains a table with information regarding the status of the checkpoint of each
application process whose state is stored on the disk (see Figure 3). Normally, a process using the disk
for checkpoint storage has at most one entry, or checkpoint. During a checkpoint session, a second entry
is made as the new checkpoint state begins to arrive at the disk node. This entry in the process table is

invalid until the last state packet is received.

For each process in the system there is a version variable stored on the node where the process is
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Disk Server Process Table

PID |Valid | New | Current CCid Disk Address Pointer
A) | F 1 0 B
B)| F 1|0 N
0 1 ‘/
Ol rF 1 |0 B \
1 1 s)
Dy | rF 1|0 A

Figure 3: The process lable maintained by the disk-server process running on the disk node.
A) shows an entry for process F between checkpoint sessions. Process B was F’s previous
checkpoint coordinator and the disk address field points to the location on disk where F's
state is stored. B) shows process F in the midst of a checkpoint session which is coordi-
nated by process A. In C) F has two valid process states on disk and, in D), the newest
state has been committed to.

executing[23]. If an error is detected and recovery is necessary, this variable is used to determine which
version of the process checkpoint on disk should be used. The version variable has three possible values:
known, old, and unknown. During normal operation, the version is always ‘‘known’’, meaning that there
is only one valid checkpoint saved on disk. When the handler begins sending the new checkpoint state of
a process to disk, the value of the version variable changes to ‘‘old’’. When the message queue is sent to
disk, the handler changes the version to *‘unknown’’ and waits for a CH_COMMIT message. When the
CH_COMMIT message is later received the handler sends a COMMIT message to the disk node and
waits for an acknowledgement. When the acknowledgement is received, the version is changed back to

“known’’.

The version variable associated with the checkpoint coordinator never changes since the version is
always ‘‘known’’, i.e., there is never more than one valid checkpoint state on disk. This means that the
entry in the process table associated with the checkpoint coordinator never passes through step C in
Figure 3, but moves directly from B to D. Thus the entire interacting set is actually committed to the new
checkpoint when the checkpoint coordinator’s entry in the disk server’s process table changes from B to
D. This makes the checkpoint algorithm robust to failures. If any or even all processes in the interacting

set fail, recovery coordinators can look at the disk entry for the process being recovered — if there are
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two valid states for that process then the coordinator’s disk entry is used to determine which state to roll
back to. If the coordinators entry has two states on disk, one valid and one not, then the process rolls
back to its older checkpoint, while if there is only one valid entry the the process rolls back to its newer

checkpoint.

X. Minimizing the Cost of Checkpointing Using the Virtual Memory System

Asynchronous process-level checkpointing is amenable to several optimizations that can
dramatically decrease the amount of data that must be moved during checkpointing as well as the local
memory space needed for the volatile checkpoints. The key to these optimization is to use an enhanced
virtual memory system. This system will help the scheme in two ways: 1) it will identify the pages that
have been modified since the last checkpoint and thus eliminate the need to checkpoint pages that have
not changed, and 2) it will allow the volatile checkpoint to be taken by simply copying page table entries
without actually moving data in local memory unless it becomes necessary.

The first optimization requires adding a special ‘‘dirty bit’’ in each entry in the page table. This
dirty bit is cleared when a process is checkpointed and is set whenever there is a write to the page. When
a page is first allocated, is is marked as “‘dirty.”” During checkpointing, only dirty pages that are in local
memory need to be physically copied to stable storage for checkpointing. Pages that are *‘clean™
according to this special dirty bit have not changed since the last checkpointed and are included in the
new checkpoint in stable storage using simple pointer manipulation there (there is not need to move the

page from the physical location in stable storage where it was stored for the previous checkpoint).

In standard virtual memory systems, page table entries include control bits that mark the page as
read-only, read-write, execute-only, etc. The time to take the volatile checkpoint as well as the space
required for it in local memory can be cut dramatically by adding another type of page: copy-on-write [3].
Taking a volatile checkpoint involves copying the page table entries of resident dinty pages and marking
the corresponding entries in the page table of the process being checkpointed as copy-on-write. As long
as the process does not actually attempt to write into the page, the page will nor be copied to the volatile
checkpoint area in local memory. Instead, as long as the process is only reading the page, the
checkpointing handler, that is copying the page to stable storage, and the process using the page for
normal processing will share the page. If the process tries to write to the page, a special page fault will be
triggered and the page will be copied to a different location in memory. On the other hand, if the
checkpointing session completes before the process attempts to write to the page, the page table entry is
restored to its previous value and any writes by the process will not trigger a page fault. It should be

noted that this very promising optimization can only be used with asynchronous checkpointing. Previous
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checkpointing techniques block process cxecution until checkpointing is complete so that “‘sharing’” of

pages between the process and the checkpeinting handler is meaningless.

In a typical system pages containing code are usually read-only, loads are more frequent than stores,
and that a checkpointing session is expected to take significantly less time than the interval between
checkpoints. Based in these facts we expect the optimizations described above to significantly reduce

both the time to take a volatile checkpoint and the time to commit the checkpoint to stable storage.

XI1. Conclusions

We have presented a ncw distributed error recovery scheme for multicomputer that minimizes
disruptions to normal processing due to checkpointing. The scheme is based on coordinated volatile
checkpointing of interacting sets of processes followed by copying of the checkpoints to stable storage
““in the background’’ involving minimal interference with normal computation. The scheme is integrated
with an efficient error detection mechanism that avoids the need for message acknowledgements,
transmission of message sequence numbers, and transmission of check bits with each message. The
scheme can recover from multiple node failures, lost messages, and corrupt messages. Multiple
checkpointing and recovery scssions may be active in the system simultaneously operating independently

if possible and merging correctly when necessary.

We have shown that message logging is not an appropriate error recovery techniques for high-
performance multicomputers in which fine-grain parallelism is exploited. On the other hand, the
proposed asynchronous process-level checkpointing is amenable to highly-effective optimizations that
can be supported with relatively small enhancements to a conventional virtual memory system. With
these optimizations, a volatile checkpoint can be taken by only a few dozen instructions without
physically copying even a single page in local memory. Hence, the disruption to normal processing will
last, at most, tens of microseconds. The amount of data that has to be sent to stable storage is minimized
and consists only of pages that have been modified since the last checkpoint and are resident in local
memory when the checkpointing session is initiated. Using the proposed techniques, it is possible to
implement a highly reliable, general-purpose, large multicomputer system in which the fault tolerance

characteristics involve minimal performance overhead and are completely transparent to the user.
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Appendix: Message Types and Their Contents

CHECKPOINT and CH_ACK:
SenderlD, ReceiverID
Checkpoint Coordinator ID (CCjy)
Virtual Circuit signature which is denoted as Ssig[receiver] (kept by Sender) or Rsig[sender] (kept

by Receiver)
CH_ACK also has Child/NotChild flag

SUBTREE, CH FOUND,CH_DONE,CH_COMMIT, and CH_RESUME:
SenderID, ReceiverlD, CCy,
RECOVERY:

SenderNodelD, ReceiverNodelD
Recovery_Initiator_Process ID (RIPid)
Failed Node ID  (i.e. a unique error code)
List of processes which were running on the failed node
FIRST LEVEL:
SenderNodelD, ReceiverNodelID
Recovery_Initiator_Process ID (RIPid)
for processes X = X1, X, ... Xy where N is the number of processes which were running on the

failed node:
ProcessList(X) = ProcessIDs (node,task,process) of processes which sent or received messages from

X
ROLLBACK and RE_ACK:

SenderID, ReceiverIlD
Recovery Coordinator ID (RCid)
VERSION (known, old or unknown)

VERSION:

SenderID, ReceiverlD
VERSION (known, old or unknown)

RE DONE, RE RESUME, and RE_RES_ACK:
SenderID, ReceiverlD
VERSION _REQUEST:

SenderID, DISK_SERVER ID
Checkpoint Coordinator 1D
VERSION REQ ACK:

DISK_SERVER ID, ReceiverlD
Checkpoint Coordinator ID
VERSION (known, old or unknown)
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