Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

CONCURRENCY CONTROL AND REMOTE SHARING
FOR A REPLICATED COLLABORATIVE ENVIRONMENT

E. H.-Y. Wu September 1991
CSD-910065

UNIVERSITY OF CALIFORNIA
Los Angeles

Concurrency Control and Remote Sharing
for a Replicated Collaborative Environment

A thesis submitted in partial satisfaction of the
requirements for the degree Master of Science
in Computer Science

by

Elsie Hung-Yun Wu

1991

TABLE OF CONTENTS

1 Introduction i i it e e 1
2 Related Work e 5
2.1 coSARA Database Management and Data Sharing 5
2.2 Consistency and Concurrency Control 6

3 Proposed coSARA Concurrency Control 9
3.1 Dependency Detection with Locking (DDL) 10
311 TheModel. e 10

3.1.2 DDL Conflict Detection with No Message Loss 13

3.1.3 DDL Conflict Detection with Message Loss 16

3.2 Proofof Concept e 17
3.3 DDL with WYSIWIS 21
3.4 DDL Transactions o o it v v it e e e e e e e 22
35 ComplexObjects 26
3.6 Recoverability and Transaction Abort 28
3.7 DDL Optimization 0 0 v it v ittt et e e 29
38 Overhead of DDL it i 30

4 DDL and Remote Sharing: The Implementation 32

4.1 Properties of Objects o 32

4.2 Properties of Operations e 39
4.3 DDL Locking Enforcement 44
4.4 DDL Conflict Resclution v 45
4.5 Network Support for Updating Remote Replicas 48
5 Conclusion e e e e 53
51 ExtensionstoDDL oo 53
5.2 Extensions to Communication Support oL 54
5.3 Extensions to coSARA Object-World Database Management 54
A Scenarios of Conflict Resolution 56
A.1 Scenario of Update Conflict Resolution 56
A.2 Scenario of Lock Conflict Resolution 59
References 0 i e e e e e e 61

11

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

4.1

4.2

4.3

4.4

4.5

4.6

4.7

LIST OF FIGURES

Operations of DDL with a Single Object 13
DDL Detects Concurrent Updates 15
DDL Conflict Detection with Message Loss 16
Possible Transmission Scenarios oo i v i e 18
Starting Point for Update 18
Messages Out of Sequence oL, 19
Independent Updates with n Updating Sites 20
Lost Updates with n Updating Sites 21
Transactions with Dependency Detection Algorithm 22
Impact of WYSIWIS on Transactions 23
Tree Locking and Intention Locking 26
CLOS Definition for Class Counter and Method Increment 39
Method Increment Which Updates All Replicas 39
The Broadcast Version of Increment 41
The :after Method of Increment 42
The Non-broadcast Version of Increment 42
DDL Locking Enforcement o oo 44
Using Copy-In-Place to Resolve Update Conflicts 47

itl

4.8 Updating Remote Replicas with No Broadcast 49

4.9 Updating Remote Replicas with Broadcast 50
4.10 Updating Remote Replicas with Broadcast on LAN Only 51
A.l1 The “workday” and “calendar” Objects 57
A.2 State of “Tuesday” at Time of Update Conflict 58
A.3 Window Notifying Users About the Update Conflict 58
A.4 Window Notifying Users About the Lock Conflict 59

v

ACKNOWLEDGEMENTS

I wish to express my most sincere gratitude to my committee chair, Professor Gerald
Estrin, for his guidance, encouragement, and insightful comments during the course of my
studies. He has given me the opportunity to grow and helped me in the process. He is the
best advisor, in all aspects of life, one can ever hope to find. I wish to thank Professors Mario
Gerla and Richard Muntz for serving on the thesis committee. I have gained tremendously
from their teaching. I am indebted to Steven Berson, Yadran Eterovic, and Ivan Tou whose
wisdom and constructive criticism have been invaluable. I wish to express special thanks to
Steven for painstakingly helping me with TCP/IP and numerous other aspects of my thesis.

I would like to thank my grandfather and my parents for their love and support through-
out the years. I would never have made it this far without their sacrifice. Much credit goes
to Charles and Terry for their emotional support. Finally, special thanks goes to Eric who
made this experience most enjoyable.

This research on collaborative design environments has been supported, in part, by the
Defense Advanced Research Projects Agency, Hughes, Interactive Development Environ-
ments, IBM, NCR, Perceptronics, Sun Microsystems, TRW and the University of California
through its MICRO Program.

ABSTRACT OF THE THESIS

Concurrency Control and Remote Sharing
for a Replicated Collaborative Environment

by

Elsie Hung-Yun Wu
Master of Science in Computer Science
University of California, Los Angeles, 1991
Professor Gerald Estrin, Chair

Database consistency is of major importance in cooperative systems. To provide sharing
at the What You See Is What I See level, and to minimize time spent on remote data access
and delay due to network traffic, many systems use data replication. A serious problem
in this context is how to maintain mutual consistency while providing the high degree of
concurrency required of cooperative systems.

When users are collocated and are working on the same network, mutual consistency
can be preserved by taking advantage of the built-in broadcast facilities which guarantee
that every site will see the same sequence of updates. The responsiveness and richness
of face-to-face communication further enhance the coordination of data access. However,
circumstances may require cooperative sessions to span several networks, hundreds of miles
apart. Since users could then no longer negotiate for data access synchronously, several users
might seek to update the same data item simultaneously, leading to update conflict. When
data packets must go through bridges and gateways, inconsistency due to network failure
is not unlikely. In this paper, a model is proposed to detect all inconsistencies caused by
lost messages, messages received out of sequence, and multiple independent updates on a
common data version, Because it treats lock requests and releases as updates on the data
item, it is also able to detect lock conflicts. A key feature of this protocol is its ability to
provide a transparent interface across all modes of data sharing — on the same network or
on interconnected networks; cooperatively without locking or coordinated with locks. The
only noticeable difference lies in the means of conflict resolution.

vi

CHAPTER 1

Introduction

“Until recently, computer-based collaboration between geographically dispersed users has
been limited primarily to electronic mail” [LANT86]. Inherently, electronic mail imposes sig-
nificant delays on any group discussion, thus impeding productivity of cooperation. Even
though multimedia conferencing and FAX are available to speed up the process of cooper-
ation, they are limited by the lack of editing capabilities. To support more efficient and
effective cooperation, researches have begun in areas of Computer-Supported Cooperative
Work (CSCW). The goal of CSCW is to provide real-time, interactive, and distributed com-
munication among users, regardless of the physical distance between them [ELLI91]. There
is a fundamental need for computer-based conferencing systems which enable conferees to
exchange and manipulate graphical and textual data via computers, and to coordinate their
interactions through teleconferencing support.

Database consistency is of major concern in such cooperative systems. Users must be able
to share data without corrupting the data. To provide sharing at the What You See Is What I
See (WYSIWIS) [FOST86] level and to minimize time spent on remote data access and delay
due to network traffic, many systems use data replication. A serious problem in this context is
how to maintain mutual consistency while providing the high degree of concurrency required
of cooperative systems. The advantage of replicated cooperative systems over conventional
replicated systems lies in the users’ ability to coordinate data access, hence reducing the
possibility of update conflict.

coSARA (collaborative System ARchitects’ Apprentice) is a specialized cooperative en-
vironment for computer system designers [MUJI91]. The motivation for its predecessor -
UCLA System ARchitects’ Apprentice (SARA) [ESTR86] - rose from the increasing com-
plexity of computer systems. Its goal was to investigate the extent to which computer-based
tools could extend the capability of computer system designers in realizing intended sys-
tems. For this purpose, SARA research created an environment needed by system designers
and analysts, adding to it computer support for design methods used throughout the design
process. Although this was a very powerful concept, it had its limitations, for it supported
only interaction between individual designers and the system. Collaboration among design-
ers was supported through a centralized file system. As computer systems become more
complex, the support for effective teamwork and for designers to collaborate interactively
on the design is essential. The concept of SARA has therefore been extended to a design

environment for a team of designers collaborating interactively through computer systems
to produce a desired system. This collaborative environment is coSARA. The original ap-
proach of SARA, an interactive design aided by computer systems, is retained and extended
to facilitate collaboration.

The ideal coSARA can be described as follows: A group of designers collaborate inter-
actively in a conference style setting. The location of the designers is not important — these
designers can be sitting round-the-table in a conference room or can be located remotely
from each other, forming a “virtual” table with other designers. Rather, the method of
collaboration is the key issue. Each designer has at his/her disposal an interactive display.
When a designer joins an ongoing meeting, this designer can view the same objects on his/her
display as other designers present at the meeting. These data objects can be modified by
one designer at a time, while the changes will be reflected, as they are made, on the dis-
plays of other designers who have also joined this ongoing meeting. In other words, data
are displayed in a “WYSIWIS” fashion, assuming that the designers are looking at the same
object.

In the current coSARA environment in which users are collocated and are working on the
same local area network, data consistency is preserved across all sites at all times by forcing
all participating sites to listen to the same broadcast channel. Upon receipt of a broadcast
message, each site processes the data according to the message. All sites receive and execute
updates in the order in which update messages are put on the broadcast channel. At most
one update message can be on the broadcast channel at any given time. As a consequence
of these conditions, consistency is guaranteed. An added advantage to this purely face-to-
face collaboration environment is the responsive and richness of face-to-face communication.
Such communication is rich in that many unspoken thoughts may be displayed via gestures
and facial expressions. These qualities further enhance the coordination of data access and
reduce the chance of users corrupting each other’s data.

However, the assumption that all collaborators are collocated is too restrictive. Indeed,
a collaborative session may span several networks, hundreds of miles apart. In such an envi-
ronment, coordination of data access can be done with the aid of multimedia conferencing,
though, because of the geographic distance, the response is subject to delay. Since users
could then no longer negotiate for data access synchronously, several users might seek to
update the same data item simultaneously, leading to update conflicts. Further, since data
packets would have to go through network bridges and gateways, we could no longer take for
granted that all updates will be received and hence executed in the same order at all sites.
Means must be provided to maintain database consistency while supporting the high degree
of sharing necessary in a cooperative environment. When update conflicts do arise, means
must be provided to aid conflict resolution.

Database management in the coSARA environment is different from that in conventional
database systems. First, data in coSARA exist as objects; they have prescribed encapsulation

and inheritance properties [DITT86, DIED89, NIER89]. As such, data can be structured as
complex objects, hierarchically containing other (possibly complex) objects. Each complex
object may be accessed as one entity, or as separate entities each being an object component.
Therefore, coSARA database management must support sharing and locking of complex
objects.

Second, to reduce the amount of remote data access, data objects in coSARA are repli-
cated on demand. There is a tradeoff between full-replication and replication on demand. If
the space of shared data is large, then full-replication reduces network traffic. However, the
amount of memory needed at each site is significant. The argument used at coSARA, and a
valid one, is that special users of the coSARA environment — the tool designers — should be
given the flexibility to choose the scheme they want to use. If they believe that replication
on demand is more appropriate for the tool, then they can replicate data objects on demand.
On the other hand, if they prefer full-replication, then the tool can be built in such a way
that when it is started, it automatically gets a copy of all existing objects, thus working with
a fully replicated database. This flexibility is unique to the coSARA implementation.

Third, to maintain database consistency, each update is broadcast to all sharing sites.
In coSARA, this is done by broadcasting the name of the update function and its argu-
ments instead of broadcasting the output of the update. There is a tradeoff between the two
schemes. By broadcasting the output, we could ensure that the database is consistent even
in failure (by majority vote). In addition, if the update function requires extensive compu-
tation and generates relatively little output, then it would be more efficient to broadcast the
output, instead of having each site independently compute the result. However, since data
in coSARA are highly graphical, each update is likely to generate voluminous output, hence
network traffic. By broadcasting the function name and its arguments, less data needs to be
transmitted per update. This allows us to take advantage of the datagram service and its
ability to adapt to network failures and congestions [TANES9)].

Fourth, coSARA is an environment for system designers. Transactions operating on
these objects might last an arbitrarily long time. Although we would reasonably limit any
coSARA collaborative session time to be less than an eight-hour work day, it is undesirable
for one user transaction to have exclusive access to a large, complex object (and hence its
components) for such an extended period of time. coSARA needs to support long-duration
transactions while maintaining a high degree of sharing.

Finally, the goal of coSARA is to provide object sharing on a WYSIWIS level, regardless
of the physical distance between coSARA users and whether locking is used to restrict ac-
cess. Hence, all updates — including those locked for exclusive access — must be immediately
broadcast to other participating sites, so as to maintain the same view at all sites. Con-
ventional locking protocols have no provision to allow reading of dirty data for WYSIWIS.
Means must be provided to support locking while preserving the WYSIWIS notion.

In this paper, I propose a model which guarantees to detect all database inconsistencies
caused by lost messages, messages received out of sequence, and multiple independent up-
dates on a common data version. It treats lock requests and releases as updates to the data
item; therefore, it detects lock conflicts in the same manner. A key feature of this protocol is
its ability to provide a transparent interface across all modes of data sharing — on the same
network or on interconnected networks; cooperatively without locking or coordinated with
locks. The only noticeable difference lies in the means of conflict resolution.

This paper is organized as follows. Chapter 2 describes the current configuration and
status of coSARA and briefly surveys previous research on consistency and concurrency
control for replicated or cooperative systems. Chapter 3 describes the proposed consistency
detection model and proves that the model detects all update and lock conflicts caused by
lost messages, messages received out of sequence, and multiple independent updates on a
common data version. Chapter 3 also discusses how this model deals with the characteristics
(e.g., WYSIWIS, richly hierarchical data structures, long-lasting transactions) that make
coSARA database management unique. Chapter 4 describes the implementation of this
model in coSARA, and how updating of remote sites is supported. Chapter 5 concludes this
paper with presentation of open issues and recommended future directions.

CHAPTER 2

Related Work

2.1 coSARA Database Management and Data Sharing

As mentioned earlier, data in coSARA exist as "objects“ and are replicated on demand.
The coSARA "object-world“ is the set of operational primitives that support the manage-
ment and the sharing of these data objects. The current implementation of the coSARA
object-world has three functionalities. First, it is the database of objects. This database is
common to all the designers, such that design objects created by designers and design ob-
jects provided by the system can be shared and easily modified by all collaborators through
a uniform interface. To ensure that all objects can be shared across sites and stored in
the persistent database, each coSARA object has a unique and immutable identifier (the
"storable-id“) used for internal references. To the user, each object is identified by its type
and name (the "storable-name“). To ensure that each object can be correctly accessed at any
time and from any site, there is a one-to-one mapping between each object and its identifier.

Second, the object-world provides a set of primitives to create, access, save, and delete
objects in the database. This set of operational primitives differs from the conventional
database primitives in the sense that replication on-demand must be supported. When an
object is created, all collaborating sites must know about its existence and its whereabouts
so that, when desired, it can be easily accessed and replicated. When an object is saved,
measures must be taken to ensure that it can be later retrieved from any other site, regardless
of its physical location. When an object is deleted, measures must be taken to delete all
replicas of the object, regardless of their whereabouts, and to remove all references to the
replicas.

Third, the object-world provides a set of facilities to support communication between
collaborating sites and propagation of updates on a local area network. It manages the
creation and deletion of communication sockets [COMESS8]. It handles the sending and
receiving of messages between any two sites, as well as the broadcasting of messages on the
local area network. Any two sites can communicate through TCP/IP datagrams or stream
connections [COMERS8], requesting information on objects, announcing the creation of new
objects or deletion of obsolete objects, etc.

Note that three important functionalities were missing in the implementation of the

coSARA object-world prior to this thesis work. First, no facilities were provided to ensure
the consistency of the database. Second, no facilities were provided for concurrency control.
Third, no facilities were provided to broadcast on interconnected networks. Unless the
first two are provided, database consistency is vulnerable to site or network failure and to
uncoordinated access to the same data object by more than one user. Hence, users are
likely to work unknowingly with an inconsistent database. Unless the third functionality is
supported, users cannot share data across interconnected networks and hope to maintain the
same view of the database at all times.

The coSARA object-world is built on Common Lisp Object Systems [KEEN89, STEE90]
— an object system integrated in Common Lisp [STEE90].

2.2 Consistency and Concurrency Control

Concurrency control is the means provided by any DBMS to prevent uncoordinated access
to the same data item by more than one user [KORT86, BERN87, ULLM88). In a face-to-
face cooperative environment, such coordination of data access is simplified by the human
interface — through delegation of tasks and responsibilities and through active negotiation.
When users are not collocated, on the other hand, the ability to actively negotiate for object
access 1s reduced. Hence, concurrency control must be provided to allow users to perform
tightly coupled activities without tripping over each other.

Conventional locking protocols have often been criticized as overly restrictive for coop-
erative environments. A lock is an access privilege to a single item that must be placed
on the item before reading or writing it. If a user program tries to lock an already locked
item, the program is blocked and may not continue until the lock is released. While any
number of transactions can hold a read-lock on the same item at the same time, write-
locks are exclusive. In other words, when some transaction holds a write-lock on an item,
no other transaction can obtain either a read- or a write-lock on the item. This exclusion
is undesirable for coSARA since participants must be able to share the same view on the
database, including those data items locked for exclusive read/write privileges, in a WYSI-
WIS fashion. Also undesirable is the overhead in obtaining the lock, especially if the data
is already locked. Yet a third problem is with the granularity of locking: The larger the
granule, the less sharable. This is particularly noticeable when hierarchically structured
complex data items, as those in the coSARA environment, are to be shared. Finally, when
locks are grouped into transactions, there is the complication of long-lasting transactions. If
these transactions are allowed to lock large, complex objects for an extended period of time,
sharability is significantly reduced.

Also undesirable for groupware concurrency control are the floor passing strategies. Their
flaw is that at most one person can be active at any given time. All other users wait to update

any object until the control of the floor is changed. This is unnecessary and inappropriate for
coSARA, where users are allowed to simultaneously work on different pieces of the project
during a collaborative session. By limiting the number of active users to one at any given
time, productivity is significantly hindered. Performance is worse when remote users are
involved in the cooperative process, for floor access negotiation (or even floor passing) will
suffer from network traffic.

Dependency-detection by Stefik, et al. [STEF87] is more appropriate for cooperative
environments because it allows simultaneous threads of progress. Data are labeled by a
stamp describing the author and the time of change. Every request to change data broadcasts
the new data, its stamp, and the stamp of the previous version of the data on the originating
machine. Upon receiving the update request, each site first checks whether the stamp on
the previous version of the data item at the originating site matches the current stamp on
the local replica of the data item. If so, the update is processed and the local replica of
the data item gets a new stamp from the update request. If the two stamps are different,
a "dependency conflict® is signaled, with conflicts resolved by the users. The advantage
of this scheme is that non-conflicting operations are performed immediately upon receipt,
yielding good response. There are two disadvantages to this scheme. First, it reports all
conflicts. Consider, for example, a scenario with sites A and B, both holding a replica of
object O1. When a site updates O1, it sends the result of the update to the other site. Thus,
the two replicas are always kept in agreement (assuming no network failure). Suppose now
that Site A updates object O1 thrice, but Site B only receives the result of the first and the
third update, in that sequence. When B receives the result of A’s third update, it reports
an update conflict because the stamps on the previous states of the replicas fail to match.
It fails to recognize that the result of A’s third update actually reflects the result of the
second update. If B had recognized that fact and simply ignored the mismatched stamps,
then the two replicas would again be in agreement {of course we have to assume that the
result of A’s second update is not needed anywhere else). In other words, this scheme fails
to recognize optimization possibilities for it reports conflicts even for scenarios that could
otherwise be automatically resolved. The disadvantage to this scheme is that when remote
users are present, conflict resolution may not be easily achieved. This is true with all conflict
detection schemes where the semantics of the operation are unbound.

The version vector approach proposed by Parker, et al. [PARK83] also compares stamps
on replicas of the data item to detect conflict. Unlike the dependency detection model which
uses a simple (author, time) pair as stamp on the data item, the version vector approach
uses a set of n (site, version} pairs — called the "version vector” — on each data item, where
n is the number of sites holding a replica of the data item. Each time an update on the
data item originates at site S;, the version number associated with site S; in the data item’s
version vector is incremented by one. By definition, two version vectors (of the same data
item) are compatible when all n (site, version) pairs of one vector is at least as large as
all n (site, version) pairs of the other vector. Then, the data item is mutually consistent
across all sites when one vector is at least as large in every vector component as any other

vector in any site with a replica of the object. The replicas conflict otherwise. Whereas the
dependency detection model reports conflict when two previous stamps fail to match, the
version vector approach goes a step further to determine if one replica is an earlier version of
another replica. If so, the site with the earlier version can simply obtain a later version, with
no loss in semantics. The advantage of the version vector approach over the dependency
detection model is precisely its ability to discriminate earlier versions from incompatible
versions. However, this scheme is not without flaws. First, when the size of the data item
is small but the number of sites holding a replica of the data item is large, a significant
portion of the storage would be used for version vectors. Second, as updates are broadcast
to other sites, the amount of encoding and decoding to be done on version vectors may
hinder performance. Third, since an update broadcast in coSARA is done by broadcasting
the function name and its arguments, where each argument contains a version vector, the
amount of data to be transmitted for each update can easily exceed the allowable datagram
size of 1500 bytes [COMESS], causing packet fragmentation, and making update broadcast
less efficient.

There are also proposals which improve response time by having each site process the
update as it is received. If it is later detected that the updates were conflicting, or executed
out of order, the effects will be reversed, and updates re-executed in the correct order. dOPT
(distributed operation transformation algorithm) is a scheme which detects such update
conflict [ELLI90]. It proceeds without locking or rollback. When conflicts are detected,
transformations are performed to reverse incorrect side-effects and to guarantee consistency.
The approach relies upon application-specific semantic knowledge of the desired outcome of
concurrent operations. Although this scheme would significantly improve the response time,
it degrades the notification time, since all updates must be checked for conflicts before it can
be processed at the receiving sites. Further, it is inappropriate for coSARA whose output
is WYSIWIS and mostly graphical. It is highly undesirable, if not impossible, to have to
"reverse® any graphical output from previous operations. This algorithm works for GROVE
[ELLI90] because it is a text editor, with simple editing operations that can be performed
in a relatively short period.

In summary: Conventional locking protocols are overly conservative and unable to sup-
port WYSIWIS. Overhead incurred in obtaining the locks may significantly degrade system
performance. Floor passing strategies are inappropriate for coSARA because they limit the
number of active users to one at any given time. A dependency detection protocol is more
appropriate for cooperative environments because it allows simultaneous threads of progress.
However, user intervention may not be the most eflicient means of conflict resolution, par-
ticularly when remote users are present. The version vector approach is attractive not only
because it allows simultaneous threads of progress, but also because it discriminates be-
tween earlier versions and incompatible versions. However, the amount of data to be stored,
encoded, transmitted, and decoded may insignificantly degrade performance. Finally, algo-
rithms which require that side-effects be reversed in case of conflict are inappropriate for
coSARA whose output is highly graphical.

CHAPTER 3

Proposed coSARA Concurrency Control

In the coSARA object-world, data objects are replicated on demand. By storing copies
of the object at client sites where they are needed, we reduce the network and performance
overhead that may otherwise be incurred with frequent remote access. By replicating the
object on demand (only at sites needing the object), storage is more efficiently utilized.
The tradeoff is that to maintain mutual consistency across sites, all replicas of the object
must agree on one current value eventually. This means changes to any one replica must be
propagated and processed, eventually, at all other sites, in an order which ensures all replicas
to achieve the same final value. We define coSARA object-world consistency to be the state
in which all replicas of the object agree.

The order in which changes are processed is of major importance in preserving database
consistency. Conservatively, all changes should be received in the same order at all sites.
A relaxed protocol would require that only interrelated changes be processed in the same
order at all sites. When users are working on the same Ethernet network, this order is
easily maintained since only one message can be on the broadcast channel at any time, and
all messages will be received in the same order at all sites. When users are working on
interconnected networks, however, messages may be received out of order and hence special
means must be taken to determine the proper order in which changes are to be processed.
Needless to say, because of management complexity, it is undesirable to use one data sharing
protocol when users are working on the same network, and a second one when users are
working from different networks. Further, because a Collaborative Design Environment
(CDE) user may join or leave an on-going session at any time, it is also undesirable to
force other users to re-initialize their work space every time a participant joins or leaves the
session, in order to determine the proper protocol to use. Such a re-initialization is bound
to cause a drop in productivity.

Another means to preserve database consistency is to restrict data access to qualified
users by concurrency control (e.g., locking). But concurrency control protocols alone will
not achieve database consistency in a distributed environment, for the order of message
processing still determines the final data values at each site. In coSARA, locking facilities
should be provided to CDE users to coordinate access to data items. Users have the freedom
of choosing to work cooperatively without locks or in coordination with locks. In either case,
update or locking conflicts should be interactively negotiated, for users are the only ones

who have the semantic knowledge to determine the correctness of the database. Although
special processing is needed to check for lock conflicts when locks are used, it is undesirable
to have to change database interface as a session needs change. Hence, the concurrency
control protocol to be used must support both modes of sharing, and provide a transparent
interface regardless of locking.

In short, all modes of data sharing — on the same network or interconnected networks;
cooperatively without locking or coordinated with locks — must be available to users. It is
the users’ responsibility to choose the one most appropriate to the session. The mode of
sharing and the interface thereof should be transparent to the users. The only noticeable
difference should lie in the means of conflict resolution. When users are collocated, face-to-
face negotiation should be sufficient. When users are geographically dispersed, other types
of communication (e.g. multimedia conferencing facilities, FAX, e-mail) may be needed.

3.1 Dependency Detection with Locking (DDL)

The model we propose here is a modification to the dependency detection model proposed
by Stefik, et al. [STEF87], extended with locks and treating lock requests and releases as
updates. We have chosen to expand on this model for its simplicity. Little data needs to
be stored, encoded, transmitted, and decoded per update broadcast. Although this model
is unable to recognize optimization possibilities, as pointed out in Section 2.2, this is a cost
we can tolerate since recent technology has made networks quite reliable [TANES9).

Because the new model (henceforth referred to as DDL for Dependency Detection with
Locking) treats lock requests and releases as object updates, it is able to detect lock conflicts
in the same manner as update conflicts are detected in the original dependency detection
model. Further, this protocol can be used to support all modes of sharing with a uniform,
transparent interface. In what follows, we will present the model of DDL, how it deals with
locks and transactions, how it supports WYSIWIS, how it facilitates locking of hierarchically
structured objects, and its overhead. Most importantly, we will prove that it will detect all
update and lock conflicts which may occur in the coSARA object-world.

3.1.1 The Model

For our system configuration, we allow any number of active client sites, each running
the CDE client software, and each holding replicas of all objects to be shared. The clients
can be on the same network or different networks connected by bridges or gateways. Each
site knows the existence of all other sites, and can communicate with all others via message
broadcast.

10

A class DDL is defined with two attributes: The first contains the stamp of the last update
on an object of class DDL; the second contains all the locks and warnings (the notion of
warnings is discussed in Section 3.5) held on the DDL object. All objects in coSARA are of
class/subclass DDL. This requirement ensures that all objects will inherit these attributes
and are able to use any function defined in support of the DDL concurrency control and
data sharing.

To preserve coSARA object-world consistency in the current implementation of CDE
(where all users are assumed to be working on the same network), when an update is per-
formed on an object, all replicas of the object are updated accordingly at all sites. This
update is performed by means of network broadcast [COMES8, TANES9]. The method of
update is broadcast to all sites holding a replica, along with the ID of the object to be up-
dated. This object ID is generated when the object is created, and is unique for all sites at all
times. All replicas of the object will have the same object ID. The advantage to broadcasting
the method of update instead of the result of the update is that there is potentially less to be
encoded/decoded by broadcasting the update method and each site does the computation
independently.

In the DDL Model, each object is stamped with a unique update stamp which identifies
the last update performed on the object. This stamp is generated by each client site indepen-
dently with the aid of a local state counter. With every update, a new stamp is generated,
with the value of the state counter attached to the name of the client site. The counter is
then incremented, to be used for the next message. This guarantees that all update stamps
are unique at all times, across all sites. Note that this method of stamp generation requires
no clock synchronization by the client sites. No site needs to depend on another site for its
stamp creation.

Each update message contains four essential pieces of information: the ID of the object
to be updated, the update function to be performed on the object, the stamp of the pre-
vious update performed on the object, and the stamp generated for the new update to be
performed. Each update is immediately processed at the originating site by first changing
the value of the update stamp on the object. This is assumed to be an instantaneous pro-
cess since it is merely updating a local replica of the object. It then updates the object and
broadcasts the update request to other sites. When another site receives the update message,
it compares the stamp of the previous state as shown in the update request with the stamp
on its local copy of the object. If the two stamps agree, then the update depends on the
same previous state as that currently available locally. Only when the two stamps agree can
it proceed to update the object according to the update request. If the two stamps disagree,
then the originating site must have processed the update on a different state of the object
than what is available locally at the receiving site. Such update conflicts are immediately
reported at all client sites, so users can resolve the conflict interactively.

Lock requests and releases are treated as object updates in DDL. This is appropriate

11

because all lock information is actually stored in the objects. Whenever a lock is granted or
released, the information in the object will be changed, hence the object is updated. Because
lock requests and releases are processed as object updates, they too must be broadcast to
other sites for database consistency. In addition, the object will obtain a new stamp to
reflect the change. Indeed, when a client site wishes to obtain a lock on an object, it first
checks the local copy of the object for lock/warning conflict. If no conflict is detected, it
updates the object with a new update stamp; then it optimistically grants itself the lock by
changing the lock information in the object. The lock request is then broadcast to other sites
with the ID of the object to be locked, the type of lock requested and the lock requester, the
stamp of the previous update performed on the object, and the new update stamp. When
another site receives the update message (which is actually a lock request), it compares the
previous update stamp as shown in the update request with the stamp on the local copy of
the object. If the two match, then the update depends on the same previous state as what is
currently available locally. Further, we can deduce that since no lock/warning conflicts were
detected at the originating site, none would be detected at this local site. The update is
then processed by recording the lock on the object, with the lock held by the site which sent
the lock request. Had the stamps failed to match, a conflict would be reported and update
aborted. Lock releases are processed in a similar fashion, although no lock/warning conflicts
need to be checked before removing the lock information from each replica.

The requirement that all coOSARA objects must be of (sub)class DDL is essential in
making the mode of data sharing transparent for three reasons: First, with the update
stamp attached to each object, we can detect update conflicts (including those from lock
requests and releases). This is a way to ensure that all updates for a particular object will
be processed in the same order at all client sites, regardless of the network configurations.
When they are not processed in the same order, conflicts are reported and resolved by
human intervention. Second, by making all objects of (sub)class DDL, no special processing
is needed in making an object lockable, hence, locking can be readily enforced. Finally, with
the lock information stored in each object, the lock requests can be processed as updates,
and hence, conflicts caused by lock requests will be detected as usual.

It is important to note here that conflicts will be detected only on a per object basis. As
long as updates on each object are done in proper sequence, no conflict will be detected. A
sequence of updates on different objects can be performed in different orders at each site as
long as the updates on each object is performed in the same order at each site. This is so
because only the stamps for the particular object being updated are compared for update
conflicts. The advantage is that independent threads of progress can proceed at the same
time. The disadvantage, however, is that if the update depends on multiple objects (as
do transactions), this method will prove to be insufficient. This notion will be explored in
Section 3.4.

DDL is considered optimistic because the originating site always assumes itself to be
the only site making the update or requesting the lock on that particular object. It also

12

¥-3 no lock -3 ¥-3 no lock

write-lock

wzite-lock A-22 seshungeisnanasansnanies was A-22 granted to A

Be22 nelusurerenrrsnnanasnnsgenann a2z irelosx

A-22 -> B-17

B8-17 najsazfSanasnasnsan vesasmasmanm B-17 A=23 =n

Y

{a}) time {b}

Figure 3.1: Operations of DDL with a Single Object

assumes the local information to be accurate (e.g., in checking for lock/warning conflicts
when requesting a lock). This is done to improve both the response time and the notification
time. The tradeoff is that when conflicts are later detected, users must interactively negotiate
to resolve them.

DDL guarantees that, from a consistent database state, if any update message is lost,
whether it be a normal update, or a lock request/release disguised as an update, the conflict
will be detected. This is because the lost messages will cause at least a subset of the clients
to remain in a backward state. When new update messages are received, the clients in the
backward state will not be able to match the stamps, and thus report conflicts. Further,
DDL will detect any conflict resulting from concurrent yet independent updates at different
sites. This is detected because each originating site will be at a more forward state than
what is expected of it by other originating client sites. Finally, if there are no conflicts, then
DDL guarantees that the database will eventually assume a consistent state again.

In the examples that follow, we assume all active clients to have replicas of all objects
being updated. This is not always the case since object-world replication is done on-demand.
However, the result would still be the same, for each site knows which objects exist on which
sites, and update messages are broadcast only to sites holding replicas of the object being
updated. Hence, all replicas of the object will be updated accordingly, and sites without
a replica of the object will not be informed of the update. When conflicts are detected,
they will be detected only by a subset of sites holding the replica of the object, but will be
reported at all sites with the object.

3.1.2 DDL Conflict Detection with No Message Loss

Figure 3.1 shows how updates and lock requests are processed in DDL. Two client sites
A and B are running, each with a replica of object O1 which is currently being updated.
These two sites can be located on the same network or networks connected by bridges or

13

gateways. In Figure 3.1a, both sites A and B agree on the initial state of Y-3, where Y is
the name of the client site which initiated the last update on O1, and 3 is the value of Y’s
state counter when the update stamp was generated. When Site A wishes to update Ol,
it first checks for locks placed on O1. If there were any read-locks or a write-lock held by
a site other than A, Ol cannot be updated. Let’s assume for now that there are no locks
on Q1. A then changes the update stamp on Ol from Y-3 to A-22, where 22 is the current
value of A’s state counter. To ensure all update stamps to be unique, A’s counter is then
incremented to 23 for the next update. A proceeds to update O1 as planned and broadcasts
the update request to other sites, in this case, only B. The update request contains not only
O1’s object ID, but also the update method, the previous stamp of the object (Y-3), and
the new update stamp (A-22). When B receives the update request, it compares the state
of the local copy of object O1 with the previous state of the object according to the update
request. Since B’s copy of O1 has not been updated since Y-3, the two stamps match and
B proceeds to update the object according to the request. To reflect the update, B changes
the stamp on its copy of O1 from Y-3 to A-22. The two sites now have a consistent state
with respect to Ol. An update by B will be processed in the similar fashion, with a new
update stamp B-17. When A receives B’s update request (with O1’s object ID, the update
method, previous stamp of A-22, and new stamp of B-17), A finds the local copy of O1 to be
in the same state A-22 as required by B’s update request. It therefore updates the object by
changing the stamp on the local copy of O1 from A-22 to B-17, and updates Ol according
to the update request. Once again, the state stamps on the two copies of the object match,
and indeed, the two replicas agree.

Figure 3.1b shows how lock requests are processed in DDL. Recall that lock requests
and releases are treated as object updates since the lock information is stored as part of
the object. From a consistent initial state of Y-3, user Ul on Site A requests a write-lock
on object O1. Site A first checks with the local copy of O1 that the write-lock would not
conflict with any lock already placed on O1. In this case, no lock conflict is detected. A then
optimistically grants itself the write-lock, and updates the state of O1 from Y-3 to A-22. The
lock request is broadcast to B with the object ID of O1, the write-lock mode, lock requester
U1, the previous stamp on the object Y-3, and the new update stamp A-22. Upon receiving
the lock request, B finds the local copy of O1 to be in the same state Y-3 as required by the
lock request. With the previous states matching, we deduce that since no lock conflicts were
detected by the originating sites, none will be detected at B. B therefore records in O1 that
a write-lock has been granted to A and changes the update stamp from Y-3 to A-22. Until
A releases the write-lock, B will not be able to update O1, although all updates on O1 from
A will be processed in the same fashion as described above.

A good update conflict detection algorithm should be able to detect conflicts caused by
concurrent updates generated on the same object version. Figure 3.2 shows how this is
achieved in DDL. In Figure 3.2a, sites A and B independently decide to update object O1
from an initial consistent state of S1 (stamps generated in the same manner as before). Site
A updates the state stamp on its local copy of O1 from S1 to S2, while Site B updates the

14

sl st

51

no leck no lock no lock
52

uy
EL to A

s3
RL to B

52
s
RL to A

c sssanas c
| | Y

time (b} time {c)

Figure 3.2: DDL Detects Concurrent Updates

state stamp on its local copy of O1 from S1 to S3, both occurring instantaneously. Both sites
then broadcast their update messages to the other. When A receives B’s update message, it
reports an update conflict, because B’s update request assumes a previous state (S1) different
from what is available at A (S2). Similarly, B reports an update conflict when it receives A’s
update request which also assumes a different previous state (S1) than what is currently in
B’s database (S3). Because lock requests and releases are treated as object updates, conflicts
will also be detected if the updates are actually lock requests, as shown in Figure 3.2b. A
requests a read-lock on O1 while B requests a write-lock. Both sites optimistically change
the state stamp on the local replica of the object and each grants itself the lock. When B
receives the lock-request from A for a read-lock, B reports a conflict since A’s update request
assumes a different previous state (S1) of O1 than what is available locally (S3). Similarly, A
reports a conflict since it too is at a different state (S2) than what is required by B’s update.
Indeed, conflict is reported not for the conflict in lock types, but for the conflict in update
dependencies.

Certainly, reporting conflict on the mere basis of state stamp mismatch is too conser-
vative, for if two sites concurrently request read-locks on the same object, there is no need
to report update conflict, for read-locks are compatible. This notion is illustrated in Fig-
ure 3.2c. Indeed, the model can be optimized if sites A and B recognize this compatibility
and resolve the conflict automatically without human intervention. Such optimizations will
be discussed in Section 3.7.

Our examples here assume only two active client sites. The result can be easily extended
to configurations with more than two sites. Suppose N sites are running, two of which
independently and concurrently generate updates X and Y based on the same object state.
When each site broadcasts its update request (or lock request) to the other N-1 sites, a
subset of the N sites is bound to process message X first, while the rest process message Y
first. When these sites process the other messages, they will detect the conflict. In fact, the
more active sites there are, the more rapidly the conflicts will be detected.

15

51

52 sqdusnsnvewveveraPronuuns 52 spuwisavissseses

52 aques S2 wis

--------- nausesmn 53

5 {a) sd eda sanms
tine Y c time {c)

time (b}

Figure 3.3: DDL Conflict Detection with Message Loss

3.1.3 DDL Conflict Detection with Message Loss

Update conflicts often result from lost update messages, because message loss causes
some sites to remain in a backward state while others are properly updated. Figure 3.3
shows how DDL detects conflicts in the presence of message loss. In Figure 3.3a, an update
message from A is lost during transmission. Although A has properly updated its local copy
of the object and the object state (from S1 to S2), B’s copy of the object remains unchanged
in S1. When B later updates this object, it assumes the local information to be correct
and performs the update on the backward state S1 of the object. B’s update request will
be broadcast to other sites with S1 as the previous state of the update. A will detect the
update conflict since A’s local copy of the object is not at state S1, but rather at state
S2. This conflict will be reported by A to all the other sites, awaiting human intervention.
Conflict would also be reported if the lost message was a request for a read-lock by A. In
that case, A would optimistically assume that it has a read-lock on the object, although B
has no knowledge of the read-lock. When B broadcasts an update request, A will notice that
the previous states of the object at the two sites do not match and report the conflict. This
is true even if B’s update request is actually a lock request for a write-lock on the object.
Hence, regardless of the type of message that is lost, DDL will report the conflict when the
previous state of the update fails to match the state of the object locally available.

Conflict will also be detected when more than one message is lost, as illustrated in
Figure 3.3b. In this case both sites have updated the state of the local copy of the object,
although neither knows about updates made by the other site. When finally an update
message is successfully transmitted, the update conflict will be detected because the previous
states at the two sites do not match. Indeed, regardless of the number and type of messages
lost, DDL will eventually detect the conflict.

As pointed out in the last section, reporting conflict merely on the basis of state stamp
mismatch is too conservative. Indeed, as shown in Figure 3.3c, this is not always necessary.
Here, Site A makes two consecutive updates, the first of which is lost during transmission.
B detects and reports the conflict when it receives the second message. If the intermediate

16

values of the object is not used by B, then it may be more efficient if B can simply copy
the final value of the object from A. This inefficiency is more noticeable if the lost update
is initiated by A which has a write-lock on the object. The next update by A would be
reported as conflict by B because the previous states fail to match. It would certainly be
more efficient if B could recognize that A has the write-lock and obtain the most recent copy
of the object from A instead of reporting update conflict and awaiting user intervention.
Such optimization will be discussed in Section 3.7.

As shown thus far, DDL is able to detect update conflicts for a wide range of sharing: with
users working on the same network or on interconnected networks; in a cooperative model
(no locks) or with updates coordinated by locks. Each update is done by optimistically
assuming the local information to be accurate. However, the protocol is very conservative in
that it reports all conflicts to the users instead of trying to resolve the conflicts itself with
whatever knowledge it has on the current state of the database.

3.2 Proof of Concept

The goal of this proof is to show that all and nothing but update conflicts will be de-
tected by DDL. Recall that DDL is a conservative protocol which requires all updates to be
processed in the same sequence at all sites. This forces all replicas of each object to even-
tually agree, hence preserving database consistency. It reports an update conflict whenever
S, # Sq, where S, is the previous object state at the source site and S, is the previous object
state at a particular destination site. We will therefore prove that conflict occurs iff S, # Sa.

We divide the proof into two parts:

Pl1: if conflict occurs then S, # Sq4.

P2: if S,+# Sathen thereis a conflict.

We will prove each part by contradiction by showing that it is impossible to have a frue
condition and a false consequence in each part. We assume m participating sites, n of which
update the object (n < m). Updates from the n sites can be interleaved in any order (an
update may follow either from an update by any of the other n — 1 updating sites or from
a previous update by the same site). Further, we make the simplying assumption that a
message is either correctly received or not received at all. Hence, four message transmission
scenarios are possible, as shown in Figure 3.4. In the first scenario, all updates are received
and processed in the same sequence at all m sites; hence, all replicas of the object agree
when transmission and updating is completed. This scenario is conflict-free by definition.
In the second scenario, sequential update messages have been re-ordered by networks and

17

in sequence (1)
received < out of sequence (shuffled by network) @

message independent updates on the same version (3)

not received (4)

Figure 3.4: Possible Transmission Scenarios

Ul u2
50 50
(S0, 81)
(81, 82)
(S0, 83)
{s0,51)
Y (51,52)

time

boldface indicates the source of the update.

Figure 3.5: Starting Point for Update

gateways. The m sites therefore process updates in varying sequences depending on the order
of arrival. In the third scenario, multiple sites independently update the same version of an
object, thus creating multiple versions of the same object. Such divergence will prevent the
database from becoming consistent again. Finally, in the fourth scenario, one or more update
messages are lost during transmission; therefore, not all sites receive all updates. The last
three scenarios are conservatively assumed to cause update conflicts which must be resolved
through human intervention. The first three scenarios constitute all possible scenarios when
all messages are received — sequential version update messages are received in the correct
sequence, sequential version update messages are received out of sequence, and concurrent
version update messages are generated. Since a message can either be received correctly or
not at all, the four scenarios make up the set of all possible message transmission scenarios.

To prove P1, we assume that there is a conflict and that S, = S4. As shown in Figure 3.4,
only Scenarios 2, 3, and 4 cause update conflicts. Let U be the set of n updating sites
{U1,Us,...U,}. Let R be the set of non-updating sites {Ry, Ry, ...Rn_n}. We assume that
all m sites initially agree on a consistent object state of Sy. Consistent with Scenario 1, we
assume that no two sites will independently update the same version of the object (this is
considered in Scenario 3). Hence, each updating site U; € U must receive all previous updates
on the object from all other sites in U before it proceeds to update the object; otherwise
multiple versions of the object would be created, as shown in Figure 3.5. Here, Sites U,
and U, initially agree on state Sp. U; updates the object from S to S; (as represented by
the pair (So,S51)) and then from S to S;. (The boldface type on (So,S3) in Uy’s column

18

Ul Uz Ui Un R1 Rj R {m-n}

s0 50 50 50 s0 S0 s0

{80, 8a)

{50, 5a) {50, sa) {50, 5a) {$0,5a) (50,8a) {s0,sa)
(Sa, Sb)

{Sa, sb) {5a,sb) (Sa, Sb) (Sa, sb)
{Sb, 8¢)

{Sb, 5c) {Sb, Sc) {5b, s¢) (5b,5¢c) (sb, S5c) {5b, 5c)

(sa, Sb) (Sa, Sb}
| boldface indicates the source of the update.

time (si,5j) = (previous stamp, new stamp)

Figure 3.6: Messages Out of Sequence

indicates that update (Sy, S1) is generated by Uy). If U proceeds to update the object before
all previous updates on the object from all other sites are received, then it will update the
object from Sy to some other state S3. Hence, two versions of the object are created. This
is considered as concurrent update on the same object version, and will not be considered
now. It wil be considered when proving Scenario 3.

Further, since the correct update sequence is determined by the updating sites, an up-
dating site detects conflicts only when it is receiving updates from other sites, not when it
is updating the object. Suppose that the object is updated from state S, to Sy, and then to
S., where S, and S, are generated from any site(s) in U and S. is generated by any site in
U — U;. If U; has a current object state of S, and it receives update S, before S;, as shown
in Figure fig:poc3, then S, # S4 since S, requires a previous state of S, = S, but U; has
a previous state of Sy = S,. This contradicts the assumption that S, = S4. If U; had a
previous update state Sy other than S,, say S, then update S, must also be received out
of sequence. Again, S, # Sy, contradicting the assumption. Similarly, a non-updating state
R; € R must follow the update sequence set up by the updating states. If R; has a current
update state of S, and receives S. before S;, then again S, # Sy since S, requires a previous
object state of S, = S but R; has a different previous state Sy since it has not yet received
Sp. Since the assumption S, = Sy 1s invalid, P! must be true for Scenario 2 for any n.

In Scenario 3, we have n sites which independently update the same version Sy of the
object, and m — n sites which also have version Sy of the object but do not update the
object. Let U be the set of updating sites {Uy,Us,...U,}. Let R be the set of non-updating
sites {R), Rz,...Ru_n}. Each Uy € U updates the object from the consistent initial state
of Sy to Six. Hence, the set of update states § = {S1,53,...5,} corresponds to the set of
updates generated by each site Uy € U, as shown in Figure 3.7. In other words, each U; € U
has a current object state of S; € S, and each S; expects a previous object state of Sg.

19

Ul Uz vi uj Un Rl Rh R(m-n)

50 s0 s0 s0 50 s0 s0 50

(s0,81) (s0,82) (s0,s8i) (s0,8]) (S0,Sn)
(0, 81)

time

boldface indicates the scurce of the update.

Figure 3.7: Independent Updates with n Updating Sites

When Uy receives update S; from site U, S; requires a previous object state of S, = Sq.
However, since Ui has updated the object from Sp to S, the object available at Ui has state
Si = Sk. Therefore, S, # Sy, contradicting the assumption that S, = S,. Similarly, each
non-updating site R € R has an initial state of So. With the first message it receives from
S; € S it updates the object from Sp to S;. Upon receiving another message S5; € § — 3,
it tries to update the object from S; to S5;. However, S; expects a previous update state
of §, = S, whereas the state of the object at R, has been updated to Sy = 5;, again
contradicting the assumption that S, = S4. Hence, PI is valid for Scenario 3.

In Scenario 4, because each update is immediately performed on the source site without
network transmission, an updating site U; € U will only detect lost messages when it 1s not
updating. Suppose the object is updated from state S, to Sy, and to S., where S, and $; are
generated by any updating site(s) in U and S, is generated by any updating site in U — U;.
If U; has a current object state S, and update S, is lost, then when S, is processed at U;, we
would find S, # Sy since S, requires a previous state of S, = Sp but U; has a different state
of Sg = Sa, as shown in Figure 3.8. This contradicts the assumption that S, = Sq. If Uj;
has failed to receive S, as well, then when S. is processed by U,, we would again encounter
S, # Sy since the object was never updated to S; and then to S,. This contradicts the
assumption for P1. Similarly, a non-updating site R, € R must receive all updates in the
same sequence as the object was updated. If a non-updating site Ry fails to receive update
Sy, then when S, is processed at Ry, it would find that S, # Sg since 5, = Sp but Sg = S,.
Same thing could be said if both messages S, and S, were lost, again contradicting the
assumption that S, = Sy and validating PI for any n.

P1 can be proven for Scenario 2 even if ¢ > 1 update messages are processed out of
sequence at site Y, Y € U U R. The first update message S;4; that is processed at Site Y
will expect a previous object state of S, = S, which is not yet available since update S;
(and possibly some messages proceeding it, e.g., Sz_1, Sz—2) has not yet been processed at
Site Y, hence, S, #£ S4. Similarly, P1 can be proven for Scenario 4 for any number ¢ > 1 of
lost updates as long as a later update Sp41 is eventually received at Site Y. When 5;4, is
processed, it expects a previous state S, = S, which is not available at Site Y because the
update S, (or some messages proceeding it) has never been processed at Y. Again, S, # S4

20

Ul uz Ui un Rl Rh R{m-n)

50 50 50 50 80 50 50
(Sc, Sa)
(So, Sa) {50, 5a) (S0, Sa) {So0, Sa) {50, 5a) Ej
(8a, 3b)
{5a, Sb) (Sa, 8b) [j (5a, 5b) [] E]
(Sb, Sc)
{Sb, 5¢) {sb, Sc} (Sb, Sc) {58b, S¢) {sb, sc) (5b,5c) {Sb, 5c)

£ ime

O where the lost message would have appeared
if it weren’t lost

boldface indicates the scurce of the update.

Figure 3.8: Lost Updates with n Updating Sites

and P1 is proven.

To prove P2, we assume that S, # Sg and that there is no conflict. Since Scenario 1 is
the only scenario which is conflict-free, we will only consider Scenario 1. Suppose update
S(m) 1s initiated by Site U;inU from a previous state of Si(), then the previous object state
of update Sj() is S, = Sin). Since all messages are received correctly and in order, then
Si(n) must be processed immediately before Sj(m) at all sites Y, where Y € U U R, making
the previous object state of Sy = Si(n) at Site Y. Again, since all updates must be processed
in the same order at all sites, Sj,») must be processed immediately following S;,). Hence,

S, = 5;. This contradicts the assumption that S, # Sg and validates P2.

Since both PI and P2 have been proven for any n, then it must be true that conflict
occurs iff S, # Sq. In other words, DDL detects all and nothing but update conflicts.

3.3 DDL with WYSIWIS

As mentioned earlier, conventional locking protocols are overly restrictive for cooperative
environments. The nature of write-locks inherently prevents WYSIWIS; updates are not
propagated until committed. To solve this problem, we require dirty-read to be supported
in coSARA even if the object is locked for exclusive write access. By dirty-read, we refer to
the reading of uncommitted data by a transaction other than the lock holder. All updates
are immediately broadcast to other sites holding the replica, as if there is no locking. Hence,
the same copy of the object will be seen at all sites as it is updated. This requirement has
no impact on the operations of DDL which broadcasts all updates as they are performed.

21

No Locks 51

No Locks

T1 WLOCK C1 g2 WLOCK €1 T2

UNLOCK Cl g3 UNLOCK C1

WLOCK C1 g4 WLOCK €1 T2
T2

UNLOCK Cl g5 UNLOCK €1

Figure 3.9: Transactions with Dependency Detection Algorithm

However, even in a cooperative setting, a user may wish to work on ideas privately. In
coSARA, this can be done through the tools. If the global variable private is set to irue,
then the list of existing sites (or sites with a particular object) is masked such that the tool
is made to believe that only one site (the local site) exists. Thus, update messages will not
be broadcast to other sites. Once the work space is made public (if ever), the site list will
be unmasked and made known to the tool, so that all private objects would be broadcast
to all other sites in their final private state. To ensure that objects can immediately be
broadcast to all other sites, they need to be created with storable-names and storable-ids (as
usual) even if they are made while the work space was private. Because this masking and
unmasking of site information is done by the tools, it will not affect the operations of DDL.
Indeed, all updates will be broadcast to the sites known to the tool, as before.

3.4 DDL Transactions

A transaction is a single execution of a program. It is often made up of a sequence
of queries and updates to the database. The goal of transactions is to make a complex
operation appear atomic - it either occurs in its entirety, or none at all. For this reason, a
transaction is normally considered as both the unit of concurrency and the unit of recovery for
database applications [SKAR89]. In non-distributed databases, multi-file consistency can be
maintained by using transactions that obey two-phase locking. In a distributed environment,
where copies of the object reside on different machines (or even different networks), two-phase
locking is no longer sufficient, for the order in which transactions are processed is at the risk
of race conditions [ULLM88]. DDL, with its state stamps, ensures all transactions to be
executed in the same order at all sites, as illustrated by Figure 3.9. Here, two transactions
T1 and T2 are initiated by Site A, both transactions updating only object O1. Because
T1 is initiated before T2 at site A, and because transactions are atomic, T2 cannot start
execution until T1 is completed. Hence, T2’s updates must depend on states generated
by T1’s updates. Since the update requests are broadcast to other sites, this dependency
dictates all T1’s updates to be executed before T2’s at all sites. Consider, for example, what

22

51 WLOCK ©1
57 WLOCK ©2
531 write D1 <- 0 52 WLOCK OZ
54 write 02 <- read 01 + 3

55 write Q1 <= 3

56 wrlte 02 <- read Ol + 5

51 WLOCK ©1

53 write 01 <- 0
55 wWrite 01 <- 3
54 write 02 <- read Cl + 3

S6 write 02 <- read Ol + 5

{2}

time

T1.1 51 WLOCK O1
T1.2 52 WLOCK 02 T1.1 S1 WLOCK O1
T1.3 g3 write Ol <~ 0 T1.2 52 WLOCK D2

T1.4 54 wrlte 02 <- read Cl1 + 3

Ti. $3 wrlte 01 <= 0

T1.5 g5 write Ol <- 3

Ti. 55 write 01 <- 2

r1.6 S6 wrlte 02 <- read Ol + &

T1. 54 write 02 <= read 01 + 3

@ e o W

T1. $6 write 02 <- read O1 + §

 J
time {b)

Figure 3.10: Impact of WYSIWIS on Transactions

would happen if, at site B, T2’s lock request is processed before T1’s updates. T2’s request
for write-lock depends on a previous O1 state of $3. But because T1's updates have not yet
been processed, the current state of B’s copy of O1 remains at state S1. We have detected a
conflict. Indeed, if transaction Ti is executed before Tj at the originating site, then the state
stamps of the object require Ti’s updates to be executed before Tj’s at all sites. Otherwise,
conflicts will be detected due to mismatch of state stamps on the object. This is a secondary
effect resulting from the requirement that all updates on an object must be executed in the
same order at all sites.

In all previous examples in which only one object is being updated, WYSIWIS is easily
supported by DDL by broadcasting all updates as they are processed. Conflicts are detected
when updates are processed out of order. This is not sufficient when multiple objects are
being updated by a transaction. Consider Figure 3.10a in which only one transaction T1
is active. T1 is initiated by Site A and operates on two objects O1 and O2. Notice that
according to A, three updates have been performed on object O1, i.e., S1, 83, and S5, in that
order. Three updates have also been performed on 02, those being S2, S4, and S6, in that
order. When the update requests are received by Site B, although updates for each object
are still performed in the same order as on Site A (S1-53-55 for object O1 and 52-54-56 for

23

object O2) the database is inconsistent. Because messages are received out of order at site
B, update S4 reads a different value of O1 (01=3) than what is read by Site A (01=1) for
the same update. This causes the final value of O2 to be inconsistent at the two sites. This
conflict would not be detected by the DDL model as described thus far, for read operations
are not stamped with previous state of the object, and inconsistencies due to out-of-sequence
read-operations are not detected.

This problem is attributed to WYSIWIS because if we could delay the broadcasting of
updates until after transaction commit, this problem would not have surfaced. But such
delay would prevent WYSIWIS which requires all updates to be immediately visible to
other sites. A possible solution is to broadcast the output of update instead of the method
of update. However, this solution is undesirable since coOSARA outputs are highly graphical
and broadcasting such output would mean a lot of encoding and decoding at each site.
The solution we propose here is a modified version of DDL. Recall that in DDL, the stamp
generated for each update is dependent on the name and the state counter of the originating
site. In checking for update conflicts, the previous state of the local copy of the object is
compared with the previous state of the same object that is required of the update. We
modify this model so that the stamps generated are dependent on the site name and the
transaction counter. Each update in the transaction is stamped with the name of the site
and the value of the transaction counter. At the receiving site, a separate counter is kept
to record the value of the transaction stamp of the last update successfully processed. The
updates are processed in increasing order of the transaction stamps. Any updates processed
out of order will be reported as conflicts. At the originating site, the transaction counter
is an attribute of the tramsaction. It is initialized to 1 as the transaction is created, and
is discarded as the transaction terminates. Like the state counter, the transaction counter
is incremented with every update message generated for that transaction. At the receiving
site, a separate transaction counter is maintained for each active transaction. The value of
the receiving transaction counter is initialized to 1 upon receipt of the first update message
from that transaction. The value is incremented according to the transactions stamp of the
last update from that transaction. If the transaction stamp of next message to be processed
is not the immediate next integer following the value of the transaction counter, then the
updates from that transaction are being processed out of order, hence conflict is detected.

This idea is illustrated in Figure 3.10b. Transaction T1 is initiated by Site A. A trans-
action stamp is attached to every transaction update. At the receiving site, upon receiving
the first update from transaction T1, a transaction counter TC is created for transaction T1
with the initial value of 1. For each transaction update received in order, TC is incremented
to identify with the transaction stamp on the last transaction update processed. When the
next transaction update to be processed has a different value than what logically follows the
value of TC, then conflict is reported. In Figure 3.10b, this occurs when TC expects a value
of 4, but the transaction update has a value of 5. Thus, transactions must be processed in
the same order as in the originating site.

24

With this modification, we can still detect all update conflicts as we did with the original
DDL (e.g., conflict due to concurrent updates, lost updates, or lock conflicts). The overhead
is in maintaining the transaction counters at each receiving site. Assuming N sites, for
each transaction generated, N-1 receiving transaction counters are needed, one at each N-1
receiving site. Depending on the number of active transactions from each site, this number
may be much larger.

There are several issues regarding coSARA transaction management we must deal with:
Should transactions be shared as are other coSARA objects? Should transactions owned
by the same user be able to share locks? Should transactions be able to survive session
shutdown? How does DDL deal with these issues?

As pointed out earlier, the goal of transactions is to make complex operations appear
atomic. It is therefore necessary to require that transactions not be disrupted during its
execution. To this end, a transaction should be managed only by one user and one tool.
The only time a tool may need to know about the transactions of another tool is during lock
negotiation. Even for this purpose, only the transaction ID is needed. Hence, transactions
need not be shared among users. This has no impact on the operations of DDL which deals
with transactions only in terms of transaction counters used to generate DDL update stamps.

In a case where a user is running two tools, each of which owns a transaction, it is not per-
missible for the two transactions to share locks (although read-locks are always compatible),
because one transaction may corrupt data that the second transaction is using, even though
the two transactions are owned by the same user. Because of this restriction, it is possible
that these two transactions may be involved in a deadlock. In this case, the user is expected
to resolve the deadlock with the aid of the Lock Browser. Again, this requirement has no
impact on the operations of DDL which indiscriminately checks for lock conflict based on
the lock type, not the locking transaction (with the exception that if a transaction holds the
only read-lock on an object, the same transaction can upgrade the read-lock to a write-lock).

The issue with a transaction’s ability to survive session shutdown is mainly concerned
with uncommitted data and unreleased locks. In other words, if a session is shutdown
before the transaction is terminated, should data be committed automatically? Should locks
be released? Although it is desirable to have precautionary measures against accidental
shutdown, it is undesirable to commit any data without user’s consent. It is possible that
the user indeed wishes to discard the uncommitted data. On the other hand, any locks
left unreleased by the session should be released so that other users can access the objects
without mediator intervention.

25

Figure 3.11: Tree Locking and Intention Locking

3.5 Complex Objects

Objects in coSARA are richly hierarchical. It is highly undesirable to allow one transac-
tion to lock the entire complex object, for it significantly degrades sharability. In coSARA, we
have chosen to implement the intention-locking protocol which supports the locking of sub-
trees and uses warning to prevent other transactions from locking the same object [ULLM88].
In this section, we will discuss the pros and cons of this intention-locking protocol, and we
will discuss how DDL can be implemented in this protocol.

The most rudimentary locking protocol for hierarchically structured objects is the “tree-
locking.” Except for the first object to be locked in the tree structure, no object can be
locked unless the same transaction has a lock on the parent. Once an object has been
locked, the lock on the parent can be released. In this protocol, a lock on an item implies a
lock on all of its descendents. An example clarifies this concept. Consider the hierarchically
structured objects in Figure 3.11. Transaction T1 first locks object B. By locking B, it
implicitly possesses the lock on all of B's descendents. If it is later determined that T1 no
longer needs to lock all of B’s descendents, but it only needs C, then T1 can lock C and
release its lock on B. This way, other transactions can lock other descendents of B, increasing
sharability. A major problem with the tree-locking protocol is that an object may be locked
twice by different transactions. Consider our example in Figure 3.11 again. Transaction T1
has a lock on B and transaction T2 has a lock on A. Since a lock on an object implies a
lock on all of its descendents, B (and all its descendents) are actually locked twice, by both
transactions T1 and T2.

To avoid this conflict, the intention-locking protocol [ULLMS88| requires that the trans-
action place a “warning” on all its ancestors before locking the object itself. A warning on
an item prevents other transactions from locking the object but it does not prevent other
transactions from also placing a warning on the object or from locking some descendent of A
that does not have a warning. A transaction that obeys the intention-locking protocol must
first place a lock or warning at the root. It proceeds down the tree until it reaches the object
it wishes to lock. The transaction cannot place a lock or warning on an item unless it holds
a warning on its parent. When the transaction is ready to commit, it releases the lock on
the object and warnings or locks on its ancestors. The protocol requires that no transaction
can remove a lock or warning on an object before it releases all locks and warnings on all

26

of its descendents. Finally, to ensure serializability, the protocol requires that all unlocks
follow all warnings and locks. Again, let’s clarify this with an example. To update B, T1
must first place a warning on A, then lock B. Another transaction T2 can update E by also
placing a warning on A and then locking E. The two warnings do not conflict since warnings
are compatible. Because locks and warnings do conflict, no transaction can lock A while T1
and T2 have warnings on A. Since all locks must start with warnings on the ancestors, no
object in this protocol can be locked twice.

To support such data-sharing in both the locking and non-locking modes in coSARA, we
require that an object can be updated if and only if the updating transaction has a write
lock (explicit or implied from a locked ancestor) on the object or no transaction has a lock
or warning on the object and no transaction has a lock on any of its ancestors. To see how
this works, consider the following scenario (again using Figure 3.11). Transaction T1 has
warnings on objects A and B, and it has a write lock on D. Since T1 is the only one to have
a write lock on D, it is the only transaction that can update D. On the other hand, since
no transaction has a lock on C or any of its ancestors (although T1 has warnings on A and
B), any transaction can update C. If a second transaction T2 has a warning on A and a
read-lock on E, then no transaction, including T2, can update E or any of its descendents
until either T2 releases its read-lock or upgrades it to a write-lock. In the former case, any
transaction can update E, F, and G. In the latter case, only transaction T2 can update E and
its descendents. The reason that updates are not allowed on an object with warnings is the
same as that for disallowing locking of an object with warnings it may modify the semantics
of the relationship between the parent object and any locked descendents. For example,
while transaction T1 has warnings on A and B and a lock on D, it is highly undesirable for
another transaction T3 to, say, delete the connection from B to D, or even from A to B.
Hence, no update should be performed on objects with warnings.

Warnings should be implemented in the same fashion as lock requests and releases in
DDL in the sense that it should be treated as an object update, with a new DDL update
stamp on the object. In fact, the warnings can be stored in the same attribute as locks
on the object. A valid question at this point is whether we can represent warnings as
read-locks internally. After all, read-locks are compatible with read-locks, just as warnings
are compatible with warnings. For DDL, the answer is no. Read-locks are semantically
different from warnings in the sense that a read-lock on an object implies a read-lock on
each of the object’s descendents. Hence, logically no other transaction should be able to
update an object (or its descendents) with a read-lock. However, if we were to represent
warnings as read-locks, then no scenario would satisfy the second condition (defined in the
last paragraph) to update an object. In fact, if we were to represent warnings as read-locks,
then for a transaction T1 to acquire a write-lock on D in Figure 3.11, T1 would effectively
have to have read-locks on A and B. Say transaction T4 now wants to update C. It cannot do
s0 because it doesn’t have a write-lock on C (i.e., it cannot satisfy the first condition), and
there is a lock on B (i.e., it can’t satisfy the second condition). In other words, to update on
object, a transaction must have a write-lock on it. This fails to meet the requirement that

27

DDL must support data-sharing regardless of presence of locks. Hence, warnings must not
be treated as read-locks in DDL.

Consideration has been given to the possibility of providing both tree-locking and intention-
locking protocols in coSARA. However, this is undesirable for two reasons: First, as pointed
out earlier, tree-locking does not prevent two transactions from effectively locking the same
object. Second, in the presence of both protocols, lock enforcement can be quite difficult
since the lock manager would have to recognize two semantically different locking schemes.

3.6 Recoverability and Transaction Abort

In the current implementation of DDL, objects are saved when a transaction is ended,
when the collaborative session is terminated, or upon user demand. This is by no means
sufficient, especially if we wish to allow transaction abort or support failure recovery. A
very important issue regarding transaction abort in a collaborative environment such as
coSARA is the duration of transactions. In the case of coSARA, transactions may last
an arbitrarily long time, up to the duration of the eight-hour collaborative session. It is
therefore undesirable for a user to mistakenly abort a transaction that may have lasted
several hours. Even though up-to-date replicas may have once existed on other sites during
the collaborative session, these replicas would also be undone as the transaction aborted.
Failure recoverability is important for the same reason, with the added disadvantage that
updates not made by transactions may never have been saved.

Two of the most common protocols that guarantee recoverability and avoid cascading roll-
back are strict two-phase locking and strict timestamp-based concurrency control [ULLM88].
Both protocols perform all updates in the workspace. A transaction cannot write into the
database until it has reached its commit point. Thus, cascading rollback is prevented since
reading of uncommitted data is not permitted. Both protocols keep a “log” of all the changes
made to the database and the status of each transaction. After the transaction has commit-
ted, a record is written into the log, which is copied to stable storage; and then the value
is written into the database itself. When a system failure occurs, a re-do algorithm is exe-
cuted which examines the log and restores the database. Although both protocols are quite
reasonable for conventional databases, they cannot fulfill ccSARA’s needs. For one thing, it
requires all the updates to have been made by transactions. This is not always appropriate
in the collaborative context which does not require the use of locks or transactions. Second,
because dirty-read is disallowed, WYSIWIS cannot be supported by these protocols. Be-
cause of these two special needs of the coSARA database, other protocols must be sought to
support transaction abort and aid in recoverability.

Recoverability is easier to achieve than to support transaction abort. First, to recover
from a multi-site collaborative session is easy if we assume independent site failures. The

28

failed site can simply obtain an up-to-date copy of the database from a peer collaborative
session. All locks held by transactions from the failed session at the time of the crash must
be released by the system so that other sites in the session can access the objects before the
failed site recovers. Users must negotiate to determine if uncommitted transactions should
be committed.

To recover from a single-site session is a little more complex since the database may
not have an up-to-date copy of the objects and no other site holds a replica of the objects.
A reliable but expensive method is to have periodic snapshots of the system which are
taken independent of session and transaction status. The snapshots don’t need to be of the
entire coSARA object-world, just of the objects modified since the last save. This is easily
accomplished since we can simply have a “dirty-bit” on every object and take snapshots only
of the objects whose “dirty-bit” has been set. If the time interval between periodic snapshots
is short, this scheme ensures recoverability with or without locks and transactions.

To support transaction abort is complex since coSARA’s requirement of WYSIWIS ne-
cessitates dirty-read and often leads to cascading rollback. A simple solution — by no means
optimal - is to take advantage of user collaboration and take periodic snapshots of the object-
world, independent of session and transaction status. When a transaction is aborted, users
can then negotiate on the rollback point. They can choose to retreat to the object-world
state provided by a snapshot, or they can retreat to the previous commit-point. This scheme
requires frequent snapshots and hence may be memory expensive. Since not all objects may
be stored at all sites (recall that coSARA supports replication on demand), this process may
have to be done by the centralized object-world database server. The server can obtain a
copy of the global-directory, gets a copy of each object from a storing site, and saves a snap-
shot of each object in the database. Fortunately, because the role of the centralized database
server is minimal, this process should not cause a big CPU overhead. Earlier snapshots can
be deleted if users agree that the snapshot is obsolete. At the end of the collaborative session,
these snapshots can be purged since all transactions must be terminated and we no longer
need to be concerned about transaction abort or cascading rollbacks.

3.7 DDL Optimization

As pointed out in Sections 3.1.2 and 3.1.3, there are times when reporting update conflict
may not be necessary, particularly if intermediate updates are not needed by the receiving site
or if lost messages are those generated for a locked object by the lock holder. Unfortunately,
this is not as simple as it may seem. Consider the example in Figure 3.2c. Although it
is possible for DDL to detect that read-locks are compatible and to proceed to grant the
locks to both sites without reporting lock conflicts, the problem is how to assign a consistent
update stamp without disrupting DDL. (Recall that if no conflicts are reported, then DDL
guarantees that eventually all sites will agree.) If Site A assumes B’s update stamp (S3) while

29

B assumes A’s update stamp (52), then both sites remain inconsistent. If DDL arbitrarily
assigns a new value for the update stamp, how do we make sure all copies of the object
receive this new stamp? We can certainly force all sites to assume the stamp of a previous
consistent state, but this is difficult to determine since intermediate update messages may
have been lost.

We face a similar problem if we consider the example in Figure 3.3c. In this case, if B
could recognize the fact that Site A is the only site updating the object (e.g., A has the
write-lock), and B does not need any intermediate values of A’s updates, then it would be
more efficient if B simply assumed A’s updates as accurate. The flaw is that a third site
may also be making updates to the object. B has no way of knowing which of the updates
is accurate. If B simply assumes the values from another site, A or C, although no conflicts
will be reported by B, conflicts are sure to surface later on another site. Hence, by having
B assume another site’s value, conflicts will be detected later, when it is more difficult to
resolve.

One optimization we can do is to set up message buffers at each site. With each update
message received, DDL first checks to see if the message can be processed immediately
without causing a conflict. If so, the message is immediately processed. If not, we put the
message on a timed queue. As new update message X arrives, if the message is processed
without causing a conflict, DDL tries to process other messages that were delayed (and
hence put on the queue) because X was not yet processed (i.e., updates that depended on X).
Periodically, the messages on the queue will be checked for time-out. If the update message
has been on the queue longer than the allowed time-out, then either messages have been lost
or concurrent updates took place, hence conflict is reported. With this scheme, scenarios
as shown in Figure 3.10b would not cause conflict at Site B if updates T1.4 arrives before
time-out expires for update T1.5.

3.8 Overhead of DDL

The time it takes in resolving conflicts is a major overhead of DDL. Most of this overhead
is incurred when users are working on different networks connected by bridges and gateways.
When users are working on the same network, it is very likely that all update messages will be
received in the same order at all sites, hence no conflicts would be reported. However, when
users are working on interconnected networks, every message processed out of order requires
user intervention. With the aid of message buffers, this may be made less cumbersome.

The time overhead in negotiating for locks can be reduced in coSARA by using a lock
browser which displays all current locks and their lock owners. When too much time is spent
on negotiating object access, participants should reconsider the division of labor within the
group in an attempt to reduce the number of conflicts.

30

Storage overhead in DDL is incurred: by storing the value of the previous update stamp
and the lock information with every object; by storing the transaction counter as an attribute
of transactions; by maintaining one transaction counter per site per active transaction; and
most of all, by maintaining a message buffer at every site.

Network overhead in DDL is caused by broadcasting updates before the update is com-
mitted. This is a necessary cost since we want to support WYSIWIS,

31

CHAPTER 4

DDL and Remote Sharing: The Implementation

To appreciate the implementation of the coSARA database - the “object-world” — and the
remote sharing capabilities, one must first understand the underlying properties of coSARA
objects and the operations performed on these objects. As mentioned earlier, data in the
coSARA object-world exists as objects, and as such, they have prescribed inheritance and
encapsulation properties [DITT86, DIED89, NIER89). In this chapter, we will first describe
how object-world objects and operations behave. We will then describe how DDL update
conflicts are detected, how locking is enforced, and how conflicts are resolved. Finally, we
will illustrate how remote data sharing is supported.

4.1 Properties of Objects

To ensure that all coSARA objects can be shared across sites and stored in the persistent
database, each coSARA object has a unique and immutable identifier. To be exact, this
identifier is unique across all sites, at all times, and is immutable regardless of the changes
made on the object. This identifier is used only for internal references. To the user, each
object is identified by its name and type. Therefore, to ensure that each object can be
correctly accessed at any time and from any site, there is a one-to-one mapping between
each object and its identifier. This is done by defining all coSARA objects to be of class or
subclass transmitiable:

(defclass transmittable ()
((storable-id :type string
:initarg :storable-id
:reader storable-id)
(storable-name :type string
:initarg :storable-name
:reader storable-name)))

All objects of this transmittable class has two attributes - the “storable-id” and the “storable-
name.” The former contains the unique and immutable identifier and is generated by the
object-world function call

32

(unique-sym).

The latter contains the name of the object as specified by the user. In short, each transmit-
table object is created with a system-generated identifier and a user-specified object name.
Consider, for example an object class counter which is defined by

(defclass counter (transmittable)
({(value :accessor value :reader value :initform 0)))

The counter class has one attribute value which contains the current value of a counter
object. This attribute has an initial value of zero and its value can be accessed by “value.”
By making it a subclass of transmittable, it inherits the “storable-id” and “storable-name”
properties. Note that the only part of this definition that is related to the object-world is the
superclass transmittable. There is multiple inheritance in coSARA, so that the transmittable
class may be one of several superclasses from which the counter class inherits its properties
and behaviors. When an object of class counter is created by

(setf c1 (make-instance ’counter :storable-name “counterl”))

the variable cI points to an object of type COUNTER, initialized with storable-id "RA .surya-
123456,” storable-name ”counterl,” and the counter value 0. Note that the storable-id is
generated by the coSARA object-world automatically, and the storable-name receives the
user-specified value.

However, this is not sufficient for objects to be shared and stored. Each object must have
an ASCII representation by which it is transmitted between sharing sites and saved in a
persistent database. This ASCII representation contains the object class, its storable-name,
storable-id, all attributes of the object and the associated attribute values. This ASCII
representation is generated by calling function send-object with the object. For example, by
calling function send-object with object ¢li, we obtain c1’s ASCII representation

“(COUNTER \“c1\” \“RA.asa-105558\" (VALUE. 0))”

where the fourth element of this string contains the counter attribute VALUE and its current
value of 0. It is this ASCII representation of the object that is transmittable across sharing
sites and stored in the database. Upon receipt of the object’s ASCII representation, whether
from another site or from the database, each site parses the string, interpreting the first
element of the string as the object type, the second element as the object storable-name,
the third element as its object storable-id, and all other elements as pairs associating each

33

attribute with its attribute value. Therefore, for an object to be transmitted from one site to
another, we first encode it in its ASCII representation by calling function send-object at the
sending site. Then at the receiving site(s), this ASCII representation is decoded accordingly,
with a replica of the object created based on the type and attributes of the object.

Let’s consider a more complex example in which data objects are hierarchically struc-
tured. We have the following class definition for a binary search tree:

(defclass btree (transmittable)
((key :accessor key :initform 0}
(left :accessor left :initform nil}
(right :accessor right :initform nil)))

An object of this class has three attributes (besides those inherited from its superclass
transmittable), one for the key value of the node, one for its left subtree, and a third for the
right subtree. We can create an object of this class, assigning to it storable-name “root” and
key value 15:

(setf root (make-instance *btree :storable-name “root”))
(setf (key root) 15)

Again, we can get the ASCII representation of this object by calling function send-object.
We get

“(BTREE \“root\”
\“RA.asa-105558\"
(KEY . 15)
(LEFT . NIL)
(RIGHT . NIL))”

Again, the first element of the string is the class of the object. The storable-name and
storable-id follow as the second and third element of the string. The storable-name is specified
by the user while the storable-id is generated by the object-world (in this case, we assume a
value of “RA.asa-105558.") The remaining three elements are (attribute, value) pairs, one
for each of the three attributes of class btree. Note here that function send-object is smart
enough not to encode the attributes class btree inherited from class transmittable. After
all, these attributes are already encoded as the second and third elements in the ASCII
representation.

34

A pointer to a transmittable object is encoded as a call to function read-object with the
storable-id of the referenced object as its argument. What read-object does is that it uses
the given storable-id to locate a replica of the object in the local database and returns a
pointer reference to the local replica. Since storable-id is a unique and immutable property
of the object, it guarantees to return the correct replica. If it fails to find a replica of the
object from the local database, it requests an ASCII representation of the object from a site
which does hold a replica. When that also fails, it reads it from the persistent database. An
example will clarify this. We first create two more nodes in this binary search tree:

(setf node-1 (make-instance ’btree :storable-name “left”))
(setf node-2 (make-instance ’btree :storable-name “right”)}
(setf (key node-1) 10)

(setf (key node-2) 20)

(setf (left root) node-1)

(setf (right root) node-2)

Thus, the left subtree contains a search tree with key value 10, while the right subtree
contains a search tree with key value 20. Neither of these subtrees contain pointers to other
subtrees. When object root is encoded by send-object, we get

“(BTREE \“root\”
\“RA.asa-105558\”
(KEY .15)
(LEFT . (read-object :d \“RA.asa-105560\"))
(RIGHT . (read-object :id \“RA.asa-105561\"}))"

where string “RA.asa-105558” and similar ones are the unique identifiers of the objects. So
the ASCII representation of the root indicates that the key is (still) 15, but the left and
right subtrees now have a value which is a function call to read-in the correct subtrees. At
the receiving site (or when the object is read-in from the persistent database), the construct
function will be called to construct the object from its ASCII representation. When it
encounters an (attribute, value) pair where the value is a call to read-object, it evaluates
the function call with the given storable-id and fill in the proper value for the left and right
subtrees. This will occur recursively, so if node-1 and node-2 have their own subtrees, these
will all be read in all the way down to the leaves.

The reason that we encode the pointer as a function call to read-object instead of the
ASCII representation of the object being pointed to is an important one: We should always
use the local replica of the object whenever possible. This can be achieved by calling read-
object. If we instead encode the pointer with the ASCII representation of the object being
pointed to, then a new replica of the object is created even though a replica may already

35

exist at that site. Worse yet, pointers that logically point to the same object may not do
so physically. An example clarifies this concept. Consider the following class definition and
sequence of operations.

(defclass person (transmittable)
((child :accessor child :initform nil}))

(setf baby (make-instance ’person :storable-name “baby”))
(setf dad (make-instance ’person :storable-name “daddy”))
(setf mom (make-instance ’person :storable-name “mommy”})
(setf (child dad) baby)

(setf (child mom) baby)

Note that person objects mom and dad point to the same child object baby. Encoding them
properly, we would have

“(PERSON \“baby\” \“RA.asa-105562\" (CHILD . NIL))”
“(PERSON \“daddy\”

\“RA.asa-105563\"

(CHILD . (read-object :id \“RA.asa-105562\")))”
“(PERSON \“mommy\”

\“RA.asa-105563\"

(CHILD . (read-object :id \“RA.asa-105562\"}))”

Suppose that a second site which does not hold a replica of objects baby, dad, and mom now
requests a replica of dad. It gets the ASCII representation for dad, creates a new person
object, assign the new object the same storable-name and storable-id as that in the ASCII
representation of dad it received from the first site, and evaluates the call to read-object
for its child attribute. Since the second site does not have a replica of object “RA.asa-
105562,” function read-object proceeds to obtain a replica from the first site. This request
is responded by the first site with the ASCII representation for baby. Upon receiving the
ASCII representation for baby, the second site creates a new person object and assigns it
the same storable-name and storable-id as that in the ASCII representation of baby. The
child attribute of baby is set to NIL, just as dictated by the ASCII representation. Now the
second site has a replica of dad and a replica of baby, with the child of dad pointing to baby.
Suppose now the second site requests a replica of mom. It receives the ASCII representation
for mom and once again evaluates the call to read-object to fill in the child attribute. This
time, since there is a local replica of object “RA.asa-105562,” read-object returns a pointer
to the local replica. Therefore, replicas of mom and dad on the second site also point to the
same baby object. Any changes made to the child of dad would be reflected in the child of
mom since they refer to the same child.

36

If, instead of encoding the pointer to object baby as a call to read-object, we encode it
with the ASCII representation of baby, then two replicas of baby will be created at the second
site, one from reading in dad, and a second from reading in mom. In fact, dad and mom
would be pointing to different objects, although both objects have the same attributes. This
means that changes made to the child of dad would not be reflected in the child of mom.
This changed the semantics of the operations. Further, the fact that these two objects share
the same storable-id violates the requirement for one-to-one mapping between each object
and its identifier. Therefore, pointers must be encoded as calls to read-object to ensure
correctuess of the operations.

The behavior we have described thus far for objects in the object-world is precisely the
behavior we exploit to create, encode, and store DDL objects. The DDL class is defined as

(defclass DDL (transmittable)
((ddl-stamp :accessor ddl-stamp :initform nil)
(ddl-locks :accessor ddl-locks :initform nil)))

In other words, all objects that are of class or subclass DDL will inherit attributes “storable-
id” and “storable-name” from the transmittable class and will have attributes “ddl-stamp”
and “ddl-locks” from the definition of class DDL. Attribute “ddl-stamp” is used to record the
stamp of the last update performed on the object. Attribute “ddl-locks,” on the other hand,
keeps track of all read/write locks placed on the object as well as warnings from tree-lock
(as discussed in Section 3.5). The initial value of attribute “ddl-stamp” is NIL to indicate
the fact that there has yet been no update on the object. The initial value of attribute
“ddl-locks” is also NIL since all DDL objects are created with no locks. For example, if we
were to define a new class ddl-counter which is a subclass of DDL

(defclass ddl-counter (ddl)
((value :accessor value :reader value :initform 0)))

and create a new object c2 of class ddi-counter by
(setf ¢2 (make-instance 'ddl-counter :storable-name “counter2”))

Then object c2 would have five attributes — storable-id, storable-name, ddl-stamp, ddl-
lock, and value — with attribute values “RA.surya-123457,” “counter2,” NIL, NIL, and 0,
respectively. Its ASCII representation appears as

“(DDL-COUNTER \“counter2\”

37

\“RA.surya-123457\"
(DDL-STAMP . NIL)
(DDL-LOCKS . NIL)
(VALUE . 0))”

It is worth emphasizing here that the only difference between a class definition in DDL
and a class definition in the Common Lisp Object Systems (CLOS) is the reference to the
superclass DDL. Hence, a user who is familiar with CLOS can take advantage of the object-
world functionalities without much effort.

Before leaving this section, we must discuss how each site manages its local database.
Each site has two directories: the “global-directory” and the “local-directory.” The “global-
directory” has an entry for each object in the collaborative session and keeps track of the
sites that contain a replica of the object. The “local-directory,” on the other hand, has
an entry for each object for which the local site holds a replica. The entry contains the
storable-id (or name and type) of the object, and a pointer to the object. The relationship
between these two directories is as follows: When an object is referenced, the local site first
looks for it in the local-directory. If it finds it in the local-directory, the local replica is used.
Otherwise, it looks at the entry for the object in the global-directory and gets the list of
sites which do hold a replica of the object. It then requests a replica of the object from one
of these sites. If it fails to find an entry for the object in the global-directory as well, then
it searches for the object in the persistent database.

When an object is created or loaded from the persistent database, the local site enters
the object identifier into the local directory. If the object has a name, the name and class are
also entered. This information is updated in the global-directory by inserting a new entry in
the global-directory which contains the identifier (and name and type, if any) of the object,
and indicate that the local site has a replica (and the only replica) of the object.

It is not sufficient to update this information in the local site. We must inform all other
sites that the local site has a replica of this object. This is achieved by making the global-
directory a transmittable object. Therefore, when the local site updates its global-directory,
as described above, all remote sites receive a message so that they also update their global-
directories. In the future, if any of the remote sites needs a copy of the object, it will look
it up in its global-directory, and obtain a replica from a site currently holding the replica.

If a site requests an object from a remote machine, only the local-directory entries have

to be created. The global-directory site list for this object has to be updated to include this
new site.

38

(defclass counter ()
((value :accessor value :initform 0)))

(defmethod increment ((c counter))
(setf (value c) (+ 1 (value ¢)})

c)
Figure 4.1: CLOS Definition for Class Counter and Method Increment

(defclass counter (ddl)
((value :accessor value :initform 0)))

(defbroadcast increment ((c¢ counter))
(setf (value c¢) (+ 1 (value c)))

c)
Figure 4.2: Method Increment Which Updates All Replicas

4.2 Properties of Operations

Now that we understand how coSARA objects are stored and encoded, we must illustrate
how operations on these objects are performed, and how updates are broadcast to other
sharing sites in order to maintain a consistent view of the database across all sites. Let us
begin by looking at how functions are defined in CLOS. Lines 1 and 2 in Figure 4.1 contains
the CLOS class definition for class counter, as we have seen earlier. The increment method
in Figure 4.1 is a function defined on all objects of class counter. It takes as argument an
instance of the counter class and adds one to the current value of the counter instance. The
return value of the function is the counter argument itself. Suppose we have an instance of
class counter, let’s call it “c1,” whose current value is zero. By applying

(increment (increment cl}),

the value of ¢1 is incremented to two.

But merely incrementing the value of the counter object at the site which issued the
increment request is not sufficient for the coSARA object-world. All replicas of the object
should be incremented to preserve database consistency, regardless of the location of the
replica. The definition of the increment function which achieves this “global update” is
shown in Figure 4.2. Notice that the only difference between the definition of increment
in Figure 4.1 and that in Figure 4.2 are the words “defmethod” and “defbroadcast.” This
simplicity is the result of a special feature of the transmittable class — the defbroadcast
macro. Functions defined with defbroadcast operate on all replicas of a transmittable object,

39

regardless of where the replica is located. Since class counter in Figure 4.2 is a subclass
of ddl and since dd! is a subclass of transmittable, all instances of counter are transmittable
objects.

When the code written with defbroadcast is macro-expanded, three functions are gen-
erated. The first function contains the code that implements the required functionality at
the source site (the site which issued the function call). The second function generated by
the defbroadcast macro is an “:after” function to the first function. In CLOS, each “:after”
function is associated with a primary function and is executed immediately after the primary
function runs to completion. Since the first function is run at the source site, so is this :after
function. The goal of the :after function is to inform other sites of the change in object
state. It does so by transmitting to other sites a TCP/IP datagram message which contains
the function call and argument(s) to the function call. The function executed at the remote
sites is the third function generated by the defbroadcast macro. It is a plain function that
implements the required functionalities of the original code. The reason that we differentiate
between the first function and the third function is because the third function does not have
the side effect of broadcasting the function call as does the first function. In other words,
the :after function generated by defbroadcast is only executed at the source site when the
first function runs to completion. It is not executed at any of the remote sites. If the :after
function were to run on the remote sites as well, then the system would go into an infinite
broadcast loop.

There is another problem that can cause extra (though not infinite) messages to be
broadcast. This happens when one broadcast function calls another broadcast function.
The source site must be smart enough to announce only the first function call and not
the second function call. Otherwise, all remote sites will perform the second operation
twice. Further, upon receiving the first broadcast message, a remote site executes the “non-
broadcast” version of the function, which contains a call to the nested broadcast function.
The second broadcast function has to be smart enough not to broadcast to other sites since
other sites are independently executing that function as a result of the first function. This
problem is dealt with by having a dynamically scoped variable named *sync* which is set to
true if a broadcast function is currently being executed. The dynamic scoping means that
the variable can be referenced anywhere as long as its binding is currently in effect.

Another problem is that a single function call may require several arguments. but not
all arguments exist at all sites. If a function of this nature is going to be executed, a remote
site may try to apply the “non-broadcast” function to some objects that do not exist on that
site. Function send-args solves this problem by making sure all arguments to the function
call have the same site list. If a site does not have a replica of each argument to the function
call, a replica of the object is sent.

To understand all of this better, the macro-expanded code for increment is shown below.
Figure 4.3 contains the function to be executed at the source machine. Figure 4.4 contains

40

(defmethod increment ({(c counter))
(let+ ((args (list c})
(local—stamps (cons ‘list (mapcar #’get—ddl—stamp args))))
(if *syncx
(progn
(setf (value c) (+ 1 (value c)))
(setf ret—val c))
(let ((*sync+ nil))
{declare (special xsyncx))
(setf *syncx t) 10
(send—args (flatten—out (list (get—id c))))
(setf (value c) (+ 1 (value c})))
(setf ret—val c)))
(setf xddl—stamp—beforex local—stamps)
(setf xddl-stamp—after+ (cons ’list (mapcar #’get—ddl—stamp args)})
ret—val))

Figure 4.3: The Broadcast Version of Increment

the :after function which is to be executed at the source machine immediately after the
primary increment runs to completion. Finally, Figure 4.5 contains the version of increment
{0 be executed on the “remote machine” when the message generated by the :after function
in Figure 4.4 is received.

When increment is called with counter object c¢1, the function shown in Figure 4.3 is
called at the source site. First, the DDL stamps on the arguments are recorded (as shown on
Line 3). In this case, increment has only one argument, the counter. Then it evaluates the
dynamic scoping variable *sync* to determine if it is already within the scope of a broadcast
function. If so, the statements of the original increment function are executed (Lines 6 and
7). Otherwise, variable *sync* is set to true before the statements are executed (Lines 8 to
13). After all the statements have been executed, the values of the DDL stamps before and
after the update are assigned to global variables *ddl-stamp-before* and *ddl-stamp-after™
for latter references (Lines 14 and 15).

Several things are worth noting here. First, the original increment function as shown in
Figure 4.2 returns a pointer to the counter argument to the calling function. To preserve the
semantics of the code, the value returned by the last statement of the defbroadcast function
(as shown in Figure 4.2) is assigned to the local variable “ret-val” (Lines 7 and 15). Then at
the end of the macro-expanded increment, this variable is used for the return value (Line 18).
Hence, the semantics of the increment function is preserved.

Second, Lines 8 to 13 are executed only if the dynamic scoping variable *sync* is false at

the start of the function call. Recall that *sync* is true if the function is within the scope
of another broadcast function. We know that if Line 8 is executed, it must mean that we

41

(defmethod increment :after ((¢ counter))
(when (not *syncs)
(with—scheduling—inhibited
(announce—update
(ow—update—socket *ow#)
(format nil
" (propagate-update “s “s”s)"
(package—name xpackage#)
(get—dests (flatten—out (list (get—id c))))
(cons ’nb—increment 10
(append (list *ddl—stamp-—before+
*ddl—stamp—afters
xcurrent—transaction*
(storable—name #*sessionx))

(list (encode—all c)))))))))

Figure 4.4: The :after Method of Increment

(defmethod nb—increment (ddl-before ddl-after transaction session (c counter))
(letx ((args (list c))
(local-ddl—-stamp (mapcar #’get—ddl—stamp args)})
(if (equal ddl-before local—ddl-stamp)
(let ((*current—transaction* nil))
(declare (special xcurrent—transactions))
(setf xcurrent—transaction* transaction)
(if *syncx
(progn (setf (value c) (+ 1 (value c)))
(setf ret—val c)) 10
(let ((¥syncx nil))
(declare (special *syncs))
(setf *syncx t)
(setf (value ¢} (+ 1 (value c)))
(setf ret—val c)))
(do ((x args (cdr x)) (y ddl—after (cdr y)))
(null x))
(when (typep (car x) ’ddl) (setf (ddl-stamp (car x)} (car y))))
ret—val)
(error "Update Conflict Detected™%"})}) 20

Figure 4.5: The Non-broadcast Version of Increment

42

were not originally in the scope of a broadcast. But since the increment function is defined
with defbroadcast, and we are currently in the scope of increment, then we must have just
entered a broadcast scope. Therefore, we must mark this fact by setting *sync* to true
(Line 10) so that other broadcast functions that may be called in this scope would no longer
be broadcast. Further, Line 11 calls send-object to ensure all arguments to the function call
have the same site list. If a site does not have a replica of the object, a replica is sent.

In Figure 4.4, we have the code to be executed on the source site after the primary
increment function (Figure 4.3) runs to completion. We first check to make sure that we
are not in the scope of a broadcast. Because the :after function is not inside the scope of
the primary function, the *sync* variable here has the value of the calling function (not the
primary increment function). If the calling function were a broadcast, then *sync* on Line 2
would be evaluated to true. On the other hand, if the calling function weren’t within the
scope of broadcast, *sync* would be evaluated to false. If it is the case that *sync* is false,
then we must broadcast the function call so that all replicas of the object would also be
updated. Indeed, that is exactly what we do on Lines 2 to 15. Here, a message is generated
to announce the function call, and this message is sent by function announce-update through
the designated “update-socket.” This message (as shown on Lines 7 to 15) contains a call
to function propagate-update, with the function package name, the list of sites who should
process the message, and a function call. This function call is encoded in string with the
name of the non-broadcast function to be called at the remote site (“nb-increment”), the
DDL stamp of the counter object before the update, the DDL stamp of the counter object
after the update, the transaction which requested the update, the session which owns the
updating transmission, and finally the ASCII representation of the counter object that was
used as argument in the call to increment. The sites which are expected to process the
function call are those which store replicas of the counter argument, as shown on line 9.
This message is sent by function ennounce-update to all sites in the collaborative session.

Notice how the primary function and the :after function work together. In the primary
function, if it is determined that the function call must be announced to other sites, send-
object is called to ensure all arguments to the function call have the same site list. Then in the
:after function, we assume that all sites which will execute the function call have a replica
of all the arguments it needs, and simply announce the function call to the appropriate
sites, with no checking done. In addition, the values of the DDL stamp are put into the
global variables *ddl-stamp-before* and *ddl-stamp-after* by the primary-function and are
retrieved from these global variables by the :after function, which later sends the information
to other sites for consistency check.

The reason that the function to be executed at the remote sites has a different name
(“nb-increment” instead of “increment”) is because function increment has an :after function
which is automatically executed and which causes the function call to be broadcast. We do
not want the remote sites to broadcast the function call as well. Hence, a different function
name is used.

43

(defddl counter ()

((value :accessor value :reader value :initform 0)))

(defmethod (setf value) :before (value (object counter))
(if (confirm—lock object xcurrent—transactions :write)
(setf (ddl-stamp object) (unique—sym))
(error "Update Request Denied")))

Figure 4.6: DDL Locking Enforcement

Function nb-increment in Figure 4.5 is simpler. Each site on receiving a propagate-update
message, will check the site list. If it is on the site list, it executes the function call. In this
case, the function call is nb-increment. Within the function nb-increment, the DDL stamps
on the local replicas of the arguments are compared with those on the source site before the
update (Line 4). If the stamps match, the statements of the original increment are executed,
with the final stamps on the local replica of the argument set to those indicated in the update
message (Lines 8 to 19). On the stamps fail to match, then update conflict is signaled.

4.3 DDL Locking Enforcement

Enforcement of locks in DDL are done automatically with the defddl macro, as shown in
Figure 4.6. Let’s use our counter example again. Instead of defining the counter class with
defclass, a new macro defddlis defined. When a class is created with defddl, it automatically
becomes a subclass of ddl (and hence a subclass of transmittable. Since attribute values in
CLOS can only be changed with attribute “accessors,” the defddl macro sets a trap on all
attribute accessors (Lines 4-7) which checks for lock access by calling function confirm-lock
on the object before the attribute value is changed. Hence, if the a transaction tries to update
an object that is locked by another transaction, read or write, the access is denied.

Locking enforcement for complex objects is a bit more complex since an object may be
implicitly locked because its ancestor is locked (as discussed in Section 3.5). What must be
done, therefore, is to modify confirm-lock so that it checks for lock access on the object and,
if necessary, it goes up the object hierarchy either until it finds an ancestor object that is
locked or until it reaches the root of the hierarchy. Recall from Section 3.5 that an object can
be updated if and only if one of two conditions is satisfied: either the updating transaction
has a write lock (explicit or implied from a locked ancestor) on the object or no transaction
has a lock or warning on the object and no transaction has a lock on any of its ancestors.
Hence, confirm-lock must first check to see if the object itself is locked or has a warning.
If it is locked by the updating transaction, then access is granted. If the object is locked
by another transaction or if there is a warning on the object, then access must be denied.
If there is neither lock nor warning on the object, confirm-lock must search for clues the

44

object’s ancestors. If it finds that the calling transaction has a lock on any of its ancestors,
then it can proceed to update the object. If, instead, it finds that another transaction has a
lock on the object, or one of its ancestors, then it must give up. If confirm-lock fails to find
any lock on the object’s ancestors, then it is assumed to be updating in a cooperative mode
(without locks). Therefore, access to the object can be granted.

4.4 DDL Conflict Resolution

Two types of conflicts can be detected by DDL: update conflicts, and lock conflicts.
The former are conflicts discovered with the mismatch of DDL update stamps. The latter
are conflicts detected when one client session requests for an incompatible lock or tries to
update an object what is already locked by another client session. Means must be provided
to help users to resolve such conflicts whenever possible. A key difference between these
two classes of conflict is that when update conflicts occur, the values of the object replicas
may vary from site to site. This is not true with lock conflicts. If the lock conflict has been
caused by sequential update messages received out of sequence, by lost lock requests, or
concurrent update on the same object version, then the conflict would have been detected
by the mismatch of object stamps and indeed treated as an update conflict. Users must
intervene to resolve the conflict. This is reasonable since in order to resolve such conflicts,
knowledge of the semantics of the operation is needed. Conflicts that are caused by one user
trying to obtain an incompatible lock on an object already locked by another user or by one
user trying to update an object which is locked for read/write by others, do not cause a
mismatch in update stamps since the checking for object access is done at the local site, and
is not propagated to other sites until access privilege is granted. With this in mind, we will
now discuss the conflict resolution support provided in coSARA.

When an update conflict is detected, all users holding a replica of the object are notified
about the object in conflict, the operation that caused the conflict, the user that requested
the operation to be performed, and the site that detected the conflict. At this point, the
coSARA object-world would collect as much information as possible on the state of the
object replica at each site. It would group these sites by the state of their object replica.
Sites with matching replica states are in the same group. There can be as many groups as
there are sites holding a replica. Replicas are also compared against each other to determine
the set of attributes whose values are in conflict.

This information is presented to all users holding a replica of the object. Only those users
are expected to participate in the conflict resolution process. With this information, users
are expected to negotiate, through face-to-face communication or multimedia conferencing
facilities, on a “correct” version of the object. When the decision is made, the coSARA
object-world will be notified about the location of this “correct” version and will update all
replicas of the object with the attribute values found in this “correct” version. If the users

45

involved cannot agree on an existing version, one user can manipulate an existing replica
to get the desired attribute values. Then the coSARA object-world will update all other
replicas with the attribute values found in this hand-coded version. When all replicas are
finally updated with the correct attribute values, we would again have a consistent state. A
scenario of the conflict resolution process is presented in Appendix A.l.

At the database level, “copy-in-place” is used to update the “incorrect” replicas. This is
to ensure that all pointers previously pointing to the “incorrect” replica of the object would
be kept. This is achieved by requesting the site with the “correct” replica to send to all
other sites the ASCII representation of the object. When this is received, each site extracts
the attribute values from the ASCII representation (including the DDL update stamp and
the lock entry) and updates the local replica of the object accordingly. When this is done,
all replicas will have the same attribute values and the same DDL update stamp, yielding
consistency. Recall (from Section 4.1) that when an attribute contains pointers to other
DDL objects, its ASCII representation is a call to function read-object with the storable-id
of the referenced object as its argument. What read-object does is to find the object in the
database with the given storable-id. Since storable-id is a unique and immutable property of
the object, it guarantees to return the correct object. The example in Figure 4.7 illustrates
this technique. Initially, sites A and B both have a replica of object O1 which agree on the
value 1 and “children” elements O2 and 03, as shown in Figure 4.7a. Site A updates object
01 with a new value of 10 and adds a newly created object O4 to O1’s list of “children”,
as shown in Figure 4.7b. It also assigns new values to O1’s “children” elements O2 and
03. Because of these changes, objects 01, 02, and O3 all have a new DDL update stamp.
However, these update messages were not received by B. After the update conflict is detected,
A and B agree to use A’s version of Ol as the correct version, and B requests the ASCII
representation of A’s version be sent to it:

«(TREE \“01\”
\“RA.asa-105570\"
(DDL-STAMP . \“S3\”)
(VALUE. 10)
(CHILDREN . (list (read-object :id \“RA.asa-105571\")
(read-object :id \“RA.asa-105572\")
(read-object :id \“RA.asa-105573\"))))

For simplicity, we have assumed objects 01, 02, 03, and 04 to be of class tree, a variation
of class btree as defined in Section 4.1. Further, they have storable-ids “RA.asa-105570,”
“RA.asa-105571," “RA.asa-105572,” and “RA.asa-105573,” respectively. When this is re-
ceived, Site B changes the attribute values of its replica of Ol accordingly, setting Ol’s
“ddl-stamp” attribute to “S3” and O1’s value to 10. For the “children” attribute, it calls
function read-object with the given storable-ids. Since objects “RA.asa-105571" (0O2) and
“RA.asa-105572" (03) exist locally, the local replicas of these objects are used. Since object

46

0l

value = 1
children

value = 3
hildren = nil

(a) Sites A and B before the update conflict

value = 10

childre

value 7

value =
children = nil

children children

(c}) Site B after conflict resolution

Figure 4.7: Using Copy-In-Place to Resolve Update Conflicts

47

ol

value = 1
children

value = 2
children = nil

value
children

(b) Site A before conflict resolution

ol

value = 10

children

value
children

(c) Site B after conflict resolution

Figure 4.7: Using Copy-In-Place to Resolve Update Conflicts

47

“RA.asa-105573" was newly created at Site A and does not exist at site B, its values are
copied over from Site A. The resulting O1 at Site B is shown in Figure 4.7¢c. Note that there
are differences between A and B’s replicas of 02 and 03. However, this is not a problem
since these differences will be resolved later, independently, when these two objects are read
or updated.

The scheme used to resolve a lock conflict is much simpler. When the lock conflict is
detected, the user who initiated the conflicting operation (whether it is a incompatible lock
request or a request to update an object locked for read/write by another client session) is
notified about the types of locks currently held on that object, and the lock owners. With this
information, the user can either choose to give up the operation or to re-try. In the former
case, the program is interrupted at the site which requested the lock. In the latter case,
the user who initiated the conflicting operation and those who currently hold the locks can
negotiate, through either face-to-face communication or multimedia conferencing facilities,
for lock access. If the current lock holders agree to release their locks, then the user is given
a second chance to perform the operation. Appendix A.2 presents a scenario of lock conflict
resolution.

4.5 Network Support for Updating Remote Replicas

The current scheme of forcing all participating sites to listen to and to transmit on
the same broadcast channel would not work when the collaborative session spans several
networks. This is because, as a general rule, the Internet protocol restricts broadcasting
to the smallest possible set of machines [COMESS8]. Since all updates are broadcast as
datagrams in coSARA, this restriction means that no client sites on one network can hear
any update messages from another network. Means must be provided to send these update
messages to all sites, regardless of their physical locations.

In an effort to implement the most efficient data sharing possible, we have investigated
several schemes of packet transmission. A major requirement of the protocol is that it
efficiently transport messages between any two client sites on two different networks without
degrading the performance of the update broadcast in the purely face-to-face scenario. The
simplest but also the most inefficient implementation is to simply send a separate update
message directly to each site, as shown in Figure 4.8. This protocol is inefficient at best in
the purely face-to-face scenario. Even when all collaborating sites are located on the same
network, a separate update message must be sent to each site. Because messages are sent
to each site individually, race conditions are likely to occur when more than one site wishes
to transmit messages on the network. This removes the guarantee that all sites will receive
messages in the same order and therefore increases the likelihood of database inconsistency
due to messages being processed in varying sequences at different sites. The advantage of
this scheme is that since all update messages are sent individually, it avoids the problem of

48

LANAI

M nsseussaunanvinan

SURYA - workstation
m gateway, fille-server

"8t packet transmission

Figure 4.8: Updating Remote Replicas with No Broadcast

a single point of failure and is more robust.

A more efficient method is to have a designated network broadcast server (NBS) on each
network. Although each site is responsible for sending each update message to all NBSs on all
networks, there is only one NBS at each network that is responsible for relaying the messages
it receives from other networks to sites on its own network via broadcast. Whenever a new
site joins the collaborative session, it first checks to see if there is another coSARA client site
on the network on which it resides. If not, it elects itself to be the designated NBS for that
network, and notifies all other sites of this information. Henceforth, all update messages
will be broadcast on the local area network where the source site resides, and individually
sent to each NBS (except the NBS of the network where the source site resides, of course).
Upon receiving such update messages from other networks, each NBS broadcasts the update
message on its own network. In this manner, the update message is effectively broadcast on
all networks on which a collaborative site resides. An example will clarify this point. We
have three interconnected networks — Net-1, Net-2, and Net-3. Site RA logically resides on
Net-1 and is in fact the file-server for Net-1. RA also serves as a network gateway between
Net-1 and Net-2. As a gateway, it listens to both networks to which it is attached. As
a file-server, it can only broadcast messages on the network on which it logically resides.
Similarly, OAHU logically resides on Net-3 and is the file-server for Net-3. It serves as a
network gateway between Net-2 and Net-3. Suppose we initially have site SURYA in the
collaborative session. Since it is the only site running on Net-1, it designates itself as the
NBS for Net-1. Site RA joins the collaborative session. It knows that it resides on the Net-1
and that SURYA is the designated NBS for that network. Any update message originating
from SURYA is broadcast on Net-1. And since there are no remote NBSs, no other update
messages are sent. Similarly, RA broadcasts its updates on the Net-1. Again, since there are
no remote NBSs, no other update messages are sent from RA. Since both sites actively listen

49

- workstation
m gateway, file~server

saeme packet transmission

Figure 4.9: Updating Remote Replicas with Broadcast

to the broadcast channel on Net-1, their databases will both be brought up to date with each
update message. Now, OAHU from Net-3 joins the collaborative session. Since it is the first
site on Net-3 to join the session, it designates itself to be the NBS for Net-3. Both SURYA
and RA are notified of OAHU’s presents and its status as the NBS for Net-3. And from the
object-world server, OAHU knows that SURYA is the NBS for Net-1. When SURYA updates
an object, it now broadcasts the update message on Net-1 and sends the same message to
Net-3’s NBS, in this case, OAHU. RA hears the update message from the broadcast channel.
When OAHU receives the message from SURYA, it broadcasts the update message on Net-3
and updates accordingly. If there are no network failures, all three sites would now have an
up-to-date copy of the object. On the other hand, when OAHU updates the object, it first
broadcasts the update on its own network, and then proceeds to send all NBSs (excluding
the NBS for the network on which it logically resides) a copy of the update. Since SURYA
is the only other NBS, OAHU sends a copy of the update to SURYA. Upon receipt of this
update, SURYA relays this update to all other sites on the Net-1 by broadcasting it. Once
again, all three sites would then have an up-to-date copy of the object.

This protocol as described above seems to be relatively efficient. The number of messages
sent for each update equals the number of networks with coSARA collaborative sites. How-
ever, it has several problems. Consider the following scenario. LANAI on Net-2 now joins
the collaborative session. And because it is the first site on Net-2 to join the collaborative
session, it elects itself to be the NBS for Net-2. TITAN on Net-3 joins the session as well.
Since Net-2 already has an NBS, TITAN does not need to become an NBS. When TITAN
updates an object, it broadcasts the update on Net-3 and sends a copy of the update to each
of the NBSs on other participating networks, in this case, SURYA and LANAI Upon receipt
of the update message, both SURYA and LANAI broadcast the update on Net-1 and Net-2,
respectively. Now comes the problem: Since RA is a gateway and hears messages on both

50

LANAI

TITAN

- workstation
S gateway, file-server

""" packet transmission

Figure 4.10: Updating Remote Replicas with Broadcast on LAN Only

Net-1 and Net-2, it will receive the update twice, once on Net-1, once on Net-2. Similarly,
OAHU will receive the update twice, from Net-2 and Net-3. In other words, means must
be taken to filter duplicate messages. One way to do this is to require each client site to
announce a network address when it joins the collaborative session and require that client
site to listen to broadcast messages on that network only. This is also the network address
this site must use to determine if it needs to become an NBS. In our example, if we had
required OAHU and RA to listen exclusively to Net-1 and Net-3, respectively, this problem
would not have occurred.

There are two major disadvantages to this scheme. First, the NBS may become the
bottleneck for update broadcast from remote networks. This is especially undesirable when
the participating users are actively updating the database. This would cause messages to
be lost and processed out of sequence. Second, the NBS is the single point of failure for
the network. If the NBS fails, all client sites on that network would also fail — undesirable
indeed.

The model we implemented in coSARA for remote updating is a compromise of the
two schemes discussed above. When a site joins the collaborative session, it announces
its network address. With this address, and the network address of all other sites in the
collaborative session, the new site determines which sites are “remote” in the sense that
they are not on the same network as itself. When it updates an object, it broadcasts the
update on the local network and sends a copy of the update message directly to each of the
“remote” sites. Figure 4.10 clarifies this scheme. We have six sites. SURYA, ASA, and RA
announce Net-1 as their network; LANAI announces Net-2 as its network, and TITAN and
OAHU uses Net-3. Whereas SURYA considers LANAI, OAHU, and TITAN as its remote

51

peers, OAHU considers LANAI, RA, SURYA, and ASA as its remote peers. When OAHU
updates an object, it broadcasts the update message on Net-3, and sends a copy directly
to each of its remote peers. Hence, TITAN receives the update from OAHU’s broadcast on
Net-3; LANAIL SURYA, ASA, and RA receive the update from OAHU directly. Similarly,
when SURYA updates an object, it broadcasts the update message on Net-1 and sends a
direct copy to LANAI, OAHU, and TITAN.

There are several advantages to this scheme. First, the performance of this scheme in a
purely face-to-face collaborative session is no worse than the performance of a pure broadcast
scheme. Second, there is no single point of failure or bottleneck for packet transmission.
Third, the sites which serve both as file-servers and gateways will not receive duplicate
copies of the update. Its disadvantage is of course its inefficiency as compared to the pure-
broadcast scheme.

Although the examples here contain only local area networks on the UCLA Computer

Science Department Network, this model would also work with networks outside UCLA
Computer Science Department (e.g., DARPA, Perceptronics).

52

CHAPTER 5

Conclusion

In this paper, a model DDL is proposed to detect all inconsistencies caused by lost mes-
sages, messages received out of sequence, and multiple independent updates on a common
data version. Because it treats lock requests and releases as updates on the data item, it
is also able to detect lock conflicts. A key feature of this protocol is its ability to provide
a transparent interface across all modes of data sharing - on the same network or on in-
terconnected networks; cooperatively without locking or coordinated with locks. The only
noticeable difference lies in the means of conflict resolution. When users are collaborating
in a face-to-face setting, coordination and negotiation for data access can be easily achieved
through social interaction. When users are located remotely from each other, coordination
and negotiation can be done with multimedia conferencing facilities, FAX, or electronic mail.
To make the negotiation process a little smoother, tools are provided in this environment to
aid conflict resolution, whether it is conflict caused by lost messages, messages received out
of sequence, multiple independent updates on a common data version, or lock conflicts.

In the following sections, we present some of the remaining issues in providing consistency,
concurrency control, and remote-sharing to a replicated cooperative environment.

5.1 Extensions to DDL

DDL detects and reports all update conflicts. However, there are times when reporting
an update conflict may be unnecessary, particularly if intermediate updates are not needed
by the receiving site or if lost update messages are those generated for a locked object by
the lock holder. In both cases, the update conflict can be easily resolved by replacing the
corrupted replica with a replica from a site which is known to be uncorrupted. Since DDL
relies on user intervention for conflict resolution, it is desirable to remove that burden from
users whenever possible and to modify DDL to detect and resolve such update conflicts
automatically.

Because coSARA supports sharing at the “WYSIWIS” level, conventional protocols
which avoid cascading rollbacks fail to work in the coSARA object-world. Because updates
do not need to be issued by transactions, the coSARA object-world cannot employ existing

53

protocols such as strict two-phase locking to guarantee failure recoverability. Although we
can minimize data loss by taking frequent snapshots of the database, this is neither efficient
nor sufficient. Means should be provided to guarantee recoverability in such a replicated
cooperative environment.

5.2 Extensions to Communication Support

The current coSARA implementation allows only one client session per machine. This
is because each client now maintains its own set of open sockets (say, S0, S1, 52, with port
numbers PO, P1, P2, respectively). All clients in the collaborative session communicate on
the same port numbers (PO, P1, P2), regardless of their physical location. To have multiple
clients on one machine means each of the clients on the machine must maintain a set of open
sockets using the same port numbers. This is not allowed since each machine port can only
be opened once at any given time. Hence, in a configuration with one machine and many
X-terminals, only one client can exist, since X-terminals must rely on the machine for its
database and communication services. One possible solution is to have one communication
server (CS) per machine, such that only the machine CS maintains the set of open sockets
on the designated ports. All incoming messages would first be received by the machine’s
CS, before being transmitted to individual client sessions. All outgoing messages would be
addressed to the CS which in turn would put the messages on the designated ports. Hence,
the clients would have no knowledge of the ports through which they are communicating;
only the CS that is processing messages would have such knowledge.

In our current implementation of the coSARA object-world, we assume all collaborating
sites to be on Internet, running TCP/IP, using the same hardware configuration, and run-
ning the UCLA CDE software. This assumption is too restrictive. It is highly likely that
collaborating users are working on a heterogeneous hardware base, spanning interconnected
heterogeneous LANs. With a heterogeneous hardware base, we must make sure that faster
machines do not drown slower machines in update messages. With a heterogeneous network,
we must consider the impact of varying transport speed on coordination and negotiation.

5.3 Extensions to coSARA Object-World Database Management

In our current implementation of the coSARA object-world, data objects are stored in
UNIX file format on our file-server RA. This means that all collaborative sessions must
communicate to a centralized database server located on RA (or a machine on RA’s local
area network). This can be expensive in its performance when users are working remotely
from a different network. It would be better if users could have “local” persistent databases
on the machines where they work, and at the end of a session, be able to merge the individual

54

persistent databases. Of course, there are other issues that would have to be dealt with in
merging the individual databases.

55

APPENDIX A

Scenarios of Conflict Resolution

A.1 Scenario of Update Conflict Resolution

Setting: The coSARA group has a computerized group calendar shared by all group mem-
bers to schedule group meetings. This calendar program is run continuously on the machine
display of all group members. Meetings are scheduled no more than 5 working days in
advance.

The calendar program operates on five shared objects of class “workday.” Each “workday”
object comsists of 10 attributes, one for each hour from 8:00am to 6:00pm, as shown in
Figure A.l. Associated with each attribute is a flag for objection. The flag is initialized to
F (for false). When a user issues an objection to a scheduled appointment, this flag is set
to T (for true). The five “workday” objects correspond to the five workdays of the week,
from Monday to Friday. Figure A.1b is the window used by the calendar program. Each
user has this calendar window displayed on his/her screen. It has five buttons, one for each
“workday.” When a user clicks on one of the calendar buttons with a mouse button, the
corresponding “workday” object is displayed on the screen. The calendar program allows
three operations:

schedule-appointment. workday, time, business.
cencel-appointment: workday, time.
object-appointment. workday, time.

All three operations change the value of the “workday” argument. Since “workday” objects
are shared, changes on one replica will be reflected on all replicas. Operation schedule-
appointment records the appointment business in the appropriate attribute of the given
“workday” object. Operation cancel-appointment erases the appropriate attribute value of
the given “workday” object. Finally, object-appointment sets the “objection” flag from F to
T. For simplicity, we assume all appointments to be accepted unless a participant objects to
it. Further, we assume that at most one appointment can be scheduled for each hour.

Characters: There are four members in the current collaborative session:

56

object workday

time business obj
8:00am
9:00am
10:z00am calendar
11:00am Monday
12:00pm Tuesday
1:00pm Wednesday
2:00pm Thursday
3:00pm Friday
4:00pm (b)
5:00pm

{a)

Figure A.1: The “workday” and “calendar” Objects

Dr. Estrin is in his office at 3732E BH, logged in from machine Lanai.
Ivan is working in 3770BH, logged in from machine Asa.

Steven is working in 3770BH, logged in from machine Sol.

Yadran is working in 3770BH, logged in from machine Surya.

Act 1: Dr. Estrin is trying to schedule a group meeting for Tuesday at 10:00am. He makes
an entry in the calendar program:

schedule-appointment Tuesday 10:00am group-meeting.
This change is reflected on everyone’s calendar program.

Steven, having made prior engagements for that time, objects to the meeting time:
object-appointment Tuesday 10:00am.
This change is also reflected on everyone’s calendar program.

Seeing an objection to the scheduled group meeting, Dr. Estrin cancels the appointment for
Tuesday:

cancel-appointment Tuesday, 10:00am.
Everyone’s calendar is updated, except for Ivan whose machine is having a problem with the
Ethernet connection.

Dr. Estrin schedules the meeting for Tuesday at 4:00pm:

schedule-appointment Tuesday 4:00pm group-meeting.
Everyone receives this update, including Ivan. But since Ivan’s calendar program failed
to receive the cancellation notice for the Tuesday 10:00am meeting, an update conflict is
detected. The state of Ivan’s “Tuesday” object at this time is shown in Figure A.2b. The

57

Tuesday Tuesday

8:00am 3 8:00am F
9:00am F 9:00am F
10:00am F 10:00am group-meeting
11:00am F 11:00am F
12:00pm F 12:00pm F
1:00pm F 1:00pm F
2:00pm F 2:00pm F
3:00pm F 3:00pm F
4:00pm | group-meeting F 4:00pm F
5:00pm F 5:00pm F
{a) (b}

Figure A.2: State of “Tuesday” at Time of Update Conflict

Update Conflict Detected for Tuesday
Cperation: schedule-appointment
Issued by: estrinRlanai
Detected by: ivan@asa
Inconsistent Attributes: 10:0Cam, 4:00pm

Site Groups: ("Lanai"™ "Surya"™ "Sol") ({"Asa")

Figure A.3: Window Notifying Users About the Update Conflict

state of everyone else’s “Tuesday” object at this time is shown in Figure A.2a. Therefore,
everyone is notified about the update conflict, with a window popping up on their screen, as
shown in Figure A.3.

Dr. Estrin gets on the speaker phone with the group members in 3770BH.

Dr. Estrin : Ivan, what do you have scheduled for Tuesday at 10:00am?
Ivan : The group meeting.

Dr. Estrin : Hmm. That has been changed. What do you have scheduled for Tuesday at
4:00pm?

Ivan : Nothing according to the calendar.
Dr. Estrin : Is Tuesday at 4:00pm OK for everyone?

Yadran : Actually, no. I promised to take Sebastian to the Chocolate Factory at that time.
How about Tuesday at 2:00pm?

58

Access Denled for Wednesday
Operation: schedule-appointment
Issued by: yadran@surya
Lock Holder: ivan@asa for WRITE

Figure A.4: Window Notifying Users About the Lock Conflict

Everyone present agrees that is a good time for the group meeting.

Dr. Estrin : Let’s do it.

Steven : I'll change the calendar.

Steven hand-codes his copy of the Tuesday calendar, removing the entry for Tuesday 4:00pm
and adding an entry for Tuesday at 2:00pm.

Steven : Ready.

Ivan : OK, here it goes.

Ivan enters the site name “Sol” at the prompt. Now everyone sees the meeting scheduled for
Tuesday at 2:00pm.

A.2 Scenario of Lock Conflict Resolution

Act 2: Ivan has the group calendar’s Wednesday entry locked for write. Yadran needs to
schedule his dissertation defense dry-run on that Wednesday:

schedule-appointment: Wednesday, 10:00am.
But Yadran receives an error message, as shown in Figure A .4:

Yadran : Ivan, what are you doing with the Wednesday calendar?
Ivan : Oh, I had it locked to record my next vacation. Do you need it?

Yadran : What do you think is more important, your vacation or my defense? Ha. Justs
kidding. Please release the lock when you are done.

Ivan releases the lock.

59

Ivan : OK. I have released the lock.

Yadran trys schedule-appointment again. This time, access is granted. Two weeks later, Mr.
Yadran became Dr. Yadran.

60

|[ABDESS]

[BANNO90)

[BERNS1]

[BERN84]

[BERNS87]

[BERTS7]
[CASN9O]

[CERI84]

Bibliography

Abdel-Wahab, H.M., Guan, S., Nievergelt, J. Shared Workspaces for Group Col-
laboration: An Experiment Using Internet and UNIX Interprocess Communica-
tions, IEEE Communications Magazine, November 1988, pp.10-6

Bannon, L.J., Schmidt, K. CSCW, or What’s in a Name? by personal commu-
niation, June 1990

Bernstein, P.A., Goodman, N. Concurrency Control in Distributed Database
Systems, Computing Surveys, Volume 30, No. 2, June 1981

Bernstein, P.A., Goodman, N. An Algorithm for Concurrency Control and Recov-
ery in Replicated Distributed Databases, ACM Transaction on Database Systems,
Volume 9, No. 4, December 1984, pp.596-615

Bernstein, P.A., Hadzilacos, V., Goodman, N. Concurrency Control and Recovery
in Database Systems, Addison-Wesley, 1987

Bertsekas, D., Gallager, R. Data Networks, Prentice Hall, 1987

Casner, S., Seo K., Edmond, W., Topolcic, C. N-Way Conferencing with Packet
Video, Proceedings of the Third International Workshop on Packet Video, March
22-3, 1990

Ceri, S., Pelagatti, G. Distributed Databases: Principles And Systems, McGraw
Hill, 1984

[COMES8] Comer, D., Internetworking with TCP/IP, Prentice Hall, 1988

[CROW90] Crowley, T., Milazzo, P., Baker, E., Forsdick, H., Tomlinson, R. MMConf: An

[DAVIS9]

[DIED89)

Infrastructure for Building Shared Multimedia Applications, Proceedings of the
Conference on Computer-Supported Cooperative Work, October, 1990

Davidson, S.B. Replicated Data and Partition Failures, Distributed Systems, ed.
Mullender, ACM, pp.265-92, 1989

Diederich, J., Milton, J. Objects, Messages, and Rules in Database Design,
Object-Oriented Concepts, Databases, and Applications, ed. Kim and Lochovsky,
ACM Press, 1989, pp.177-98

61

[DITTS6]

[ELLIS0]
[ELLI91]

[ESTR36)

[FORSS5]

[FOST87]

(GREES9]

[GREE91]

[GREIS6]

[GREIS7)

[JAJO89)

[KEENS9)

[KNIS90]

Dittrich, K.R. Object-Oriented Database System: The Notions and Issues, Pro-
ceedings of the 1986 International Workshop on Object-Oriented Database Sys-
tems, ed. Dittrich and Dayal, IEEE Computer Society Press, 1986

Ellis, C.A. A Model and Algorithm for Concurrent Access Within Groupware,
by personal communication, October 1990

Ellis, C.A., Gibbs, S.J., Rein, G.L. Groupware: Some Issues and Experiences,
Communications of the ACM, January 1991, pp. 39-58

Estrin, G., et al. SARA (System ARchitect’s Apprentice): Modeling, Analysis,
and Simulation Support for Design of Concurrent Systems. IEEE Transaction on
Software Engineering, February, 1986

Forsdick, H. Exploration into Real-time Multimedia Conferencing Proceedings of
the Second International Symposium on Computer Message Systems, September
1985, pp.331-347

Foster, G. Collaborative Systems and Multi-user Interfaces: Computer-Based
Tools for Cooperative Work, PhD dissertation, Computer Science Division, Uni-
versity of California atBerkeley, Report No. UCB/CSD 87/326

Greenberg, S., Chang, E. Computer Suport for Real Time Collaborative Work,
Proceedings of the Conference on Numberical Mathematics and Computing, Win-
nipeg, Manitoba, September 1989,

Greenberg, S. Computer-Supported Cooperative Work and Groupware: an In-
troduction to the Special Issues, International Journal on Man-Machine Studies,
1991, pp.133-141

Greif, 1., Seliger, R., Weihl W. Atomic Data Abstractions in Distributed Collab-
orative Editing System, Proceedings of the 13th Annual Symposium on Principles
of Programming Languages, pp.160-172, 1986

Greif, 1., Sarin, S. Data Sharing in Group Work, ACM Transactions on Office
Information System, April 1987, pp. 187-211

Jajodia, S., Mutchler, D. A Pessimistic Consistency Control Algorithm for Repli-
cated Files which Achieves High Availability, IEEE Transaction on Software En-
gineering, Volume 15, No.1, January 1989, pp. 39-46

Keene, S.E. Object-Oriented Programming in Common Lisp, Addison-Wesley,
1989

Knister, M.J., Prakash, A. DistEdit: A Distributed Toolkit for Supporting Mul-
tiple Group Editors, Proceedings of the Conference on CSCW, October 1990, pp.
343-55

62

[KORTS6)

Korth, H.F., Silberschatz, A. Database System Concepts, McGraw Hill, 1986

[KUNGS81] Kung, H.T', Robinson, J. On Optimistic Methods for Concurrency Control, ACM

[LANTS6]

[MUJI91]

[NIERS9]

[PARKS3]

[PATT90]

[POPE90]

[SARISS)

[SCHOS8Y)

[SILBS0]

[SKARS9]

[SON89]

[STEES0]
[STEF87]

[TANES9]

Transaction on Database Systems, Volume 6, No. 2 June 1981 pp.213-226

Lantz, K.A. An Experiment in Intergrated Multimedia Conferencing, Proceedings
of CSCW ’86 Conference on CSCW, Austin, 1986, pp.267-275

Mujica, S.T., A Computer-based Environment for Collaborative Design, PhD dis-
sertation, UCLA Computer Science Department, 1991

Nierstrasz, O. A Survey of Object-Oriented Concepts, Object-Oriented Concepts,
Databases, and Applications, ed. Kim and Lochovsky, ACM Press, 1989, pp.3-22

Parker, D.S., et al. Detection of Mutual Inconsistency in Distributed Systems,
IEEE Transactions on Software Engineering, May 1983, pp.240-247

Patterson, J.F., et al. Rendezvous: An Architecutre for Synchronous Multi-user
applications, CSCW ’90 Proceedings, October 1990, pp. 317-28

Popek, G.J., et al. Replication if Ficus Distributed File Systems, IEEE Technical
Committee on Opreating Systems, Volume 4, No. 3., 1990

Sarin, S., Greif, I. Computer-based Real-Time Conferencing Systems, Computer-
Supported Cooperative Work: A Book of Readings, Morgan Kaufmann Publishers,
Inc., San Mateo, California, 1988, pp.397-420

Schooler, E.M., Casner, S.L. A Packet-switched Multimedia Conferencing Sys-
tem, ACM SIGOIS Bulletin, January 1989, pp.12-22

Silverschatz, A., Kedem, Z. Consistency in Hierarchical Database Systems Jour-
nal of the ACM Volume 27, No. 1, January 1980, pp.72-80

Skarra, A.H., Zdonik, S.B. Concurrency Control and Object-Oriented Databases,
Object-Oriented Concepts, Databases, and Applications, ed. Kim and Lockovsky,
ACM, pp. 395-422, 1989

Son, S.H., Argrawala, A.K. Distributed Checkpointing for Globally Consistent
States of Databases, IEEE Transaction on Software Engineering, Volume 15, No.
10, October 1989, pp. 1157-1167

Steele, G.L., Jr. Common Lisp: The Language, 2nd Edition, Digital Press, 1990

Stefik, M., Foster, G., Bobrow, D.G., Lanning, S., Suchman, L. Beyond the
Chalkboard: Computer Support for Collaboration and Problem Solving in Meet-
ing, Communications of the ACM Volume 30, No. 1, pp.32-47, 1987

Tanenbaum, A.S. Computer Networks, Prentice Hall, 1989

63

[TOMLS9)

[TRAIS2]

[ULLMS8S]

[WALP91]

[WOLF87]

Tomlinson, C., Scheevel, M., Kim, W. Sharing and Organization Protocols
in Object-Oriented Systems, Journal of Object-Oriented Programming, Novem-
ber/December 1989, pp.25-36

Traiger, I.L., Gray, J., Galtieri, C.A., Lindsay, B.G. Transactions and Consistency
in Distributed Database Systems, ACM Tansactions on Datbase Systems, Volume
7, No. 3, September 1982, pp.323-342

Ullman, J.D. Principles of Database and Knowledge-Base Systems, Volume I,
Computer Science Press, Maryland, 1988

Walpole, J., Yap, M. Concurrency Control, Version Management and Trans-
actions in Advanced Database Systems, Oregon Graduate Institute Technical
Report No. 91-009

Wolfson, O. The Overhead of Locking (and Commit) Protocols in Distributed
Databases, ACM Transaction on Database Systems, Volume 12, No. 3, September
1987, pp.453-471

64

