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Abstract

In this paper we present an algorithmic approach to bounding the mean response time of
a multi-server system in which the minimum ezpected delay routing policy is used, i.e. an
arriving job will join the queue which has the minimal ezpected value of unfinished work.
We assume the queuweing system to have K servers, each with an infinite capacity queue.
The arrival process is Poisson with parameter A and the service time distribution on server 1
is exponentially distributed with mean 1/u;,1 < 1 < K. Without loss of generality, we
assume p(y > fg > -+ 2 pr. The computation algorithm allows one to tradeoff accuracy
and computational cost. Upper and lower bounds on the ezpected response time and ezpected
number of customers are computed and the spread between the bounds can be reduced with
additional space and time complexity. Eramples are presented which illustrate the excellent
relative accuracy attainable with relatively little computation.



1 Introduction

In this paper, we are concerned with bounding the mean response time (and thereby the
mean number of customers in the system) of the minimum ezpected delay routing policy
(a natural generalization of the shortest queue routing policy). The system under study
has K servers, where K > 2. Each server has an infinite capacity queue and service rates
are exponentially distributed with rate g, 1 = 1,2,..., K. Without loss of generality, we
assume gy > pfg 2> --+ 2 fx. The job arrival process is Poisson with rate A. Upon arrival,
the job will join the queue with minimal expected unfinished work (the formal definition of
the routing discipline will be given later). In case of a tie, the job will join the server with
lowest index. If all the service rates are the same, then the scheduling policy reduces to the
classic shortest queue routing policy.

Joining the shortest queue is a natural way to balance the load in a multi-server system
and thereby achieve better system performance, i.e. mean response time. One of the major
difficulties in analyzing this kind of routing discipline is the multidimensional nature of the
state space, which is infinite in each of the K dimensions and the lack of a closed form
solution. Most of the published results are limited to the case where X' = 2 with exponential
interarrival and service times.

We start with a brief review of the published literature on the shortest queue routing
problem. Kingman [11], and later Flatto and McKean [8] studied this problem with K = 2
via transform methods. They obtained an expression for the mean number of jobs in the
system expressed as an infinite sum which can be simplified under a heavy traffic assumption.
Cohen and Boxma [4] treated a similar problem as a Reimann-Hilbert boundary problem
and obtained a functional representation for the mean number of customers in the system.
Conolly [3] studied the same model as in [8, 11] and proposed an approximation algorithm
for evaluating equilibrium state probabilities via state truncation. Rao and Posner [19]
proposed an approximation algorithm to analyze a system with X = 2 and in which each
server has a different service rate {heterogeneous servers). An arriving job joins the server
with smaller number of jobs (rather than joining the server with minimum expected delay).
The analysis approach involves treating one of the queues has a bounded capacity so that the
transition rate matrix for the modified system can be expressed in a matrix-geometric form
[18]. Grassman [10] studied the same problem with K = 2 and solved for transient and steady
state behavior. Halfin [9] studied the two servers problem and used a linear programming
technique to compute bounds on the mean number of customers in the system. Blanc [2]
studied the join shortest queue problem with arbitrary number of heterogeneous servers. He
proposed an approximation method which is based on power series expansions and recursion
which requires substantial computational effort. Nelson and Philips [16, 17] proposed an
approximation for mean response time of with K homogeneous servers. More importantly,
the approximation allows general interarrival and service time distribution. Avritzer [1]



studied a dynamic load balancing algorithm which used threshold policy in an asymmetric
distributed system. The result is only applicable to two distinct servers and a small class of
threshold sizes, no formal proof is given on how to obtain performance bounds. None of the
work cited above treats more than two servers and simultaneously provides error bounds.

The major contribution of this paper is a computation algorithm that (1) allows more
than K > 2 servers, (2) allows heterogeneous servers, (3) includes scheduling based on
queue length and service rate (thus, a generalization of joining the shortest queue) and (4)
provides error bounds. The bounding methodology also allows one to tradeoff accuracy and
computational cost as will be demonstrated.

In Section 2, we define formally the queueing system we are analyzing. In Section 3 and
4, we present Markov models which provide upper and lower bounds on the mean response
time and formally prove that these modified models do provide bounds. In Section 5, we
show how we can further reduce the state space by lumping similar states. In Section 6, we
present two numerical examples and show that the bounds are indeed tight. Conclusions are
presented in Section 7.

2 Minimum Expected Delay Routing Model

We consider a system with K > 2 servers, each with its own infinite capacity queue and
exponential service rate y;, t = 1,2,..., K and gy > gy > --- 2 pg. The job arrival process
is Poisson with rate X. Let n;(#) be the number of customers in the i** server queue at time
t. Let U;(t) = (1 + ni(¢))/p:, which is the expected unfinished work at the i** server if the
new customer joins queue i. Define U*(¢) = min{U;(¢),: = 1,...,K}. Upon arrival of a job
at time ¢, the job will join a server j where U,(t) = U*(t). If a tie occurs, the job will join
the lowest index server in the set {j|U;(t) = U*(t)}. A special case of this routing discipline
is when all service rates are equal, and in this case it reduces to the classic shortest queue
routing problem. We can construct a Markov model, M, for this queueing system with state
space:

{s = [ni,n2,...,ng}ni 20, i=1,...,K}

Assume the system is stable; that is p = A/ 7K, 1t; < 1. The steady state probability vector
for this continuous-timme Markov model is the solution to:

=0 (1)
=1 (2)
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where 7 is the steady state probability vector, G is the transition rate matrix and e denotes
an appropriately dimensioned column vector of 1's.
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We can transform this continuous-time Markov model into a discrete-time Markov model
via uniformization [20] (the rationale behind this transformation is to facilitate the com-
parison of the original model and the modified model). To express the one-step transition
probabilities for this discrete-timme Markov chain, we need the following notation:

S = total state space of the original model, M.

h = M+ Z5 m]™

U*(s) = min{l;|U; = (1 + ni)/pi,t = 1,.., K, 8 = [n1,nq,...,0k]}.

na(s) = set of servers in state s in which {U; = U*(s}}.

n*(s) = the lowest index for servers in set nq(s).

1{c} = indicator function for condition c.

The one-step transition probabilities for a given state s = [ny,...,n,,...,ng] are:
s— s+te; 1{: =n"(s)}hA (3)
§— S$—¢ 1{n; > 0} hy, (4)

K

s§— s 1= h[A+3 1{n; > 0}p] (5)

=1
where s+e; is the state s with one additional customer in the :** queue. Also note that:
K K
1 —h[)\—{—Zl{n,' > 0}#,‘] = Zl{n,— =0},u.-h (6)
=1 =1

Let P be the transition probability matrix for the transformed discrete-time Markov chain,
we can obtain the steady state probability, at least theoretically, by solving the following
system of linear equations:

=h
LU
]

7

1 (7)

i

e}

Of course, based on the state description, 7 is a K-dimensional vector which is infinite in
each dimension. The exact solution to this problem has thus far been found to be intractable.

In general, the original problem does not possess a closed form solution and it is impossible
to solve the problem numerically due to its state space cardinality. Since the Markov chain
lacks special structure, techniques such as the matrix-geometric methods do not apply in
general. One natural way to approach this problem is to construct another model that
closely bounds the performance of the original problem and at the same time, the modified
model should have either a known closed form solution or at least be efliciently evaluable by
numerical methods.



An important observation is that the motivation for using minimum expected delay policy
is to balance the workload among all servers in the systems. Consider a system of two servers
with equal service rate in which the current state is [5,1]. The purpose of using the routing
policy is to balance the system as much as possible, therefore it is reasonable to assume that
a highly unbalanced state(e.g., [5,1]) has a much smaller probability mass than the balanced
state (i.e., {3,3]). This crucial insight provides the rational for constructing two modified
versions of the original model which can be shown to bound the mean response time of the
original system. In both cases we represent the exact behavior (transition rates) for the
most “popular” states. The number of states in the most popular subset is a function of the
accuracy demanded and computational cost one is willing to pay. When the system leaves
this subset we modify the behavior of the system in such a way that (a) the modified system
has an efficient solution and (b) the modified model behavior can be shown to bound the
behavior of the original model.

In the following two sections, we present two Markov models which can provide an upper
bound and a lower bound mean response time. We also present numerical procedures to
efficiently solve these two modified models.

3 Upper Bound Model

In this section, we construct a modified Markov model, M,,, which provides an upper bound
for the mean response time and mean number of customer of the original model, M. For
the upper bound model M,, we assume we have the same system configuration, namely
the job arrival process is Poisson with rate A and system has K servers with service rates
pit=1,2,...,K,and gy > pa 2 -+ 2 px.

The upper bound model can be described as follows. There are two additional model
parameters for M,. First, we have a threshold parameter d which indicates the degree of
imbalance permitted between different servers’ queues (a formal definition for d will be given
later.) A job may depart from the system only if its departure will not violate the maximum
degree of imbalance permitted. If the job departure would violate the threshold setting,
the job restarts itself within the same server. Intuitively, this mechanism forces a job to
stay in the system at least as long as in the original model and thereby increases the mean
number of jobs in the system. The rationale behind the threshold parameter is to generate
a model which has a state space which is a small subset of the state space of the original
model. The second parameter is the artificial capacity, C; where 1 = 1,2,..., K (again, C;
will be precisely defined later) for each server. Whenever a job arrives to the system and
finds that each server has an integer multiple of C; jobs, each server will put all jobs in
its queue (except the arriving job) into a suspended state and a new busy cycle is started.



This busy cycle will end when all servers complete all jobs except for the suspended jobs.
The suspended jobs are then released and can be served. Note that the definition here is
recursive. During the busy period following suspension of a set of jobs, the capacities C; can
again be exceeded, causing another set of jobs to be suspended. When a busy period ends,
only the set of jobs suspended at the initiation of that busy period are released for service.
The purpose of the C;, 1 <1 < K, is to create a matrix with repetitive structure and based
on that structure, we will be able to derive an eficient numerical solution algorithm. The
computation algorithm is based on a partitioning of the state space of M, into {SeU S -}
such that all states in S;, ¢ > 0 satisfy the condition :C; < n; < (141)C; for j =1,..., K.
Due to the routing of arrivals and the constraint on departures, we can show that there is
only one transition from 8; to &;;; and the transitions from S;4; to S; can only go to one
state in §;. This modification to the model should also increase the mean number of jobs
in the system compared to the original model since service of a suspended job can only be
resumed service when all the active jobs depart from the system.

As an example, assume that we have a system with four homogeneous servers and we let
C; =10, for i = 1,2,3,4. It is easy to see that Sy consists of all states for which each queue
has between 0 to 10 customers; S; consists of all states for which each queue has 10 suspended
customers, and has between 0 to 10 active customers and at least one queue has an active
customer. Observe that the only transition from & to S; is through state [10,10,10,10].
This is due to the routing of arrivals. The only non-zero transitions from §; to Sp are from
states [11,10,10,10], [10,11,10,10], [10,10,11, 10} and [10,10,10,11] to [10,10,10,10]. This
is due to the rule introduced in M, that suspended customers are only served when the busy
period (corresponding to states in S;) has completed. For a heterogeneous server system,
the value of C; has to be chosen to be proportional to the relative service rate in the system
to maintain the same structure for the transition rate matrix.

An important point is that the parameters d and C; can be chosen to control the extent
to which M, behaves like the original model M, i.e. the larger d and C; are, the larger the

portion of the state space that has behavior identical to the original model.

We define the following variables for M,,.

Sy = total state space of M, where S, C S.

h = [A+ Efil )™

C; = I_‘EfCJ, it = 1,2,...,K, where C is some positive integer such that
Lf;—CJ > 1.

d = threshold setting where (C; —C +1) <d < Cy.

Nmaz(s) = max{n|s = [n1,..., ..., nx]}.

I(s) = smallest integer [ such that [C; — n; > 0 for all servers z,: = 0,1,...,K m
state s. Note that I(s) is the depth of recursion of job suspensions in state
s.



We transform this continuous-time Markov model into a discrete-time Markov chain with
the same uniformization parameter A which we used in the original model M. The one-step
transition probabilities of the discrete-time Markov chain for a given state s = [ny, .., ni, .., 1y
are:

s— s+e 1{i=n"(s)}hA (8)
s— s—e Un; >0} {nmu(s) —n; < d}l{n; — ({{s) — 1)C; > 0} hy; (9)

K
5> s 1 —AA+Y ) 1{ni >0} 1 {nmas(s)~n; <d}1{n; — (I(s) — 1)C; >0} u;} (10)
i=1
Note that for transition s — s—e;, the second indicator function reflects that a job cannot
depart if it violates the maximum degree of imbalance permitted. The third indicator func-
tion reflects that job cannot depart if it is in a suspended state. We are now in a position
to formally compare the original (M) and the modified Markov chain (M) and prove that
the mean response time of M, is an upper bound of the mean response time of M.

3.1 Proof of upper bound mean response time

Our proof that the mean response time of the modified model is an upper bound on the
mean response time of the original model follows the approach in [7]. Let T and T, be
the one-step expectation operators of the original model M and the upper bound Markov
model M,. That is for any non-decreasing function f, we define T in terms of the one-step
transition probabilities to be:

Tf(s) = > pls—s1f(s)

8'eS
T.f(s) z pls— s f(s")

S'ESu

where p[s — s'] is the transition probability from state s to state s'.

Let R and R, be the mean response time of M and M, respectively. And let N and
N, be the mean number of customers in the system for M and M,. To show R < R, all
we need to show is N < N, since the average arrival rate for both models is A. Define the
reward for state s as #(s) = Y, n;. The mean number of customers in the system can be
expressed in term of the expected reward function:

N = > r(s)x(s) (11)

SES

Let V*(s) be the total expected reward over ¢ periods with one-step reward function r
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when starting in state s. We have:
t
Vis] = 3 THr(s)]
k=0
with T° being the identity function. By the Markovian property, we have:

Vilsl = r(s) + TV 7r(s)]

Since both Markov models are irreducible (easily seen from their definitions), steady state
performance measures are independent of the initial state s’, and we have:

N =) r(s)r(s) = tl_lfg Vis] and (12)
s€S
No =3 r(s)mu(s) = tll’rgx‘D VEs'] (13)

$ESu

By comparing the total expected reward over ¢ periods for both the upper bound and
original model and s € S, we have:

(Vi =VOs] = ruls) —r(s) + (TVy™ = TV )]
= (Tu—T)V sl + Tu(V7! = VITT)[8]

t—-1
= Y. THT, -~ T)V'" s
k=0

The last expression was obtained based on the recursive definition and V?(s) = 0 for all s.
Now divide both sides by ¢ and take the limit as ¢ goes to infinity. We can conclude that
N<N,ifforalls € S, and for t > O:

(Ta—T)VYs] > 0 (14)
Based on the definition on the one-step expectation operator on the original model M

and the upper bound model M,,, we have the following relationship. That is for any state
8 € Syt

(T.-T)f Zl{”->0} Hnmaz(s) —ni=d} | 1{ni—(I(s) —1)Ci=0})pih[f(s) — f(s—e:)]

(13)

where symbol “|” is the logical OR operator. Substituting f(s) for V*(s), it follows easily
that Equation (14) will be satisfied if the following conditions are satisfied:

Vis] —Vis—e] > 0O fori=1,2,...,K;t>0; n;>0ands €S8, (16)



Theorem 1

Vis] — V¥s—e] >0 fori=1,2,....,.K;t>0; n; >0and s€ S,

Proof: The proof is by induction on ¢. When t = 0, V%s) = 0 for all s, therefore the
condition 1s satisfied. Now assume the condition is satisfied for { = m. For t = m + 1, we
have in general':

V() -Vt (s—¢;) = {r(s) + Y ARG = n*(s)}V™(s+e5)+

J=1
K
> Uny > 0hhV™(s—e;) +
R
K
phV®(s—e) + ) 1{nj=0}#th'"(3)}—
J=Lai

K
{r(s—e.-) + 3 AR = n(s—e)} V™ (s—eite;)+

s=1

K
z l{nj > O}pth"‘(s—e,-—e,-) +
J=15#4

Hn;—1>0}phV™(s—e;j—e;) +

( i l{nj=0}pjh+1{n,-—1=0}y.~h) Vm(s-e;)}

i=1g#i

Grouping similar terms, we have:

V(s —Vmtl(s—e) = {[r(s)—r(b"—e;) +

K

’; ARL{j = n*(s)}V™(s+e;)—

K
ST ARL{j =n"(s—e)} V™ (s—eite;)| +
7=1
K
Z l{nj>0}pjh Vm(s—ej)—V"‘(s—e,-——eJ-) +
=134

l:,u,;th(S—e,') - l{n; 1> O}ﬂ.-hV"‘(s—e.-—e.-)

INote that the condition implies that in state s, there is at least one job in the i*? queue.
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~1{ni—1= O}u;hV’"(S—ei)]

K
2. Unj=0}u,h

i=1,5#i

V™(s) — V'"(s—e,-)} }

It is clear that the first [] term is greater than zero. By induction hypothesis, the third,
fourth, and fifth [] terms are greater than zero. It remains to prove that the second [] term
is greater than or equal to zero. To answer this question, we break this term into four cases.

For case 1, for state s, # # n*(s) and for state s — ¢;, #£n*(s—e¢,), this implies n*(s) =
n*(s—e;}) = j where j # ¢, the second term is:

K
Z ARG = n"(s)}

J=l g

(V™(s+e;) — V™(s—eite;)| =2 0

Case 2: for state s, 1 = n*(s) and for state s — e;, 1 = n*(s — ¢;), the second term is:

> 0

Ah [(V"‘(s-l—e,-) —V™(s—eite)

Case 3, for state s, i # n*(s) and for state s — ¢;, 1 = n*(s — ¢;), the second term is:

K
[Z Ahl{j=n*(.s)}Vm(s+ej)—-Vm(s-—e.'-i—e.-)} > 0

=1,

Case 4. For state s, i = n*(s) and for state s — e;, i # n*(s — e;). This case is obviously
impossible. O

3.2 Computational algorithm for solving the upper bound model

In this section, we will describe an algorithm for computing the mean response time of the
upper bound model. We define a partition of the state space of M,, 8§, = UZ,S; and
Sins; = 0, Vi # j, where:

So = set of states with n; < C;,j =1,2,..., K.
S; = set of states with :C; <n; < (1 +1)C;,j=1,2,...,K and for z > 1.
Ps, s; = transition probability matrix from states in &; to states in §j.



The transition rate matrix P, has the form depicted in Figure 1:

[ Ps,s, Ps,s, O 0 0

P51 wSo Psl w51 P31 o 0 0

P, = 0 Pss Psps, Ps,ss 0
0 0 Pss, Psysy Psyps,

Figure 1: Transition probability matrix for upper bound model.

This is a block tridiagonal transition probability matrix and therefore represents a gen-
eralized birth-death process. By aggregating each partition &;, we can form a birth-death
process. Next, we show how to obtain the exact conditional state probability vector, given
that the system is in partition S;. Once we have this information, it follows easily that we
can obtain the aggregate transition probabilities exactly.

There are several important features of this upper bound model, M,,. First, there is only
a single state in S; that has a non-zero transition probability into any states in §;44, 2 2 0.
Let us call this state s;(Cp). State s;{Cy) is:

Sg(Cg) = [nl,ng,... ,n[{] e S,' where n; = (2 + 1)CJ' v j = 1,2,. ..,I{

This follows from the rule used to assign an arriving customer to a server. Also, there are K
states from S; that have non-zero transition probabilities to states in §;_; where ¢ > 1. Each
corresponds to which server is the last to complete its “active” (non-suspended) customers.
Let us call these states s,({), 1 <! < K, ¢ > 1. These states are:

si(ly = [n1,n2,...,ng) €S where
n = 201 +1 and
n; = i1C; for l#j and 1,j=1,2,...,K

This follows from the restrictions on departures in the upper bound model. The following
are easily seen to be the tramsition probabilities between 5,(Cp) and s;4:(I),1 =1,2,..., K

o s(Co) = sin(l)  1{I=n"(s:(Co))}rh
sis1(l) —  8:(Co) wh for 1=1,2,... K

Another important observation is that the submatrices Ps, s; for ¢ > 1 are all identical. We
now consider how to compute the conditional state probabilities P{s € &;|S;} exactly. We
first need the following result from [6):

10



Theorem 2 Given a irreducible Markov process with state space S = {AUB} and transition
probability matriz:

Pg4s Ppp

where P ; is the transition probability sub-matriz from partition ¢ to j. If Pp4 has all
zero entries ezcept for some non-zero entries in the i** column, the conditional steady state
probability vector given that the system s in partition A is the solution for the following
linear system of equations:

[ Paa Pap ]

4 [PA,A + Pap e gﬂ =

Tlae = 1

where €] is a row vector 0 in each component except the 1** component which has the value

1.

We are now in the position to compute the conditional state probabilities on each partition
exactly. Without loss of generality, let us consider &;, for some z > 1.

Lemma 1 Let Ps, s, be the transition probability matriz which is similar to Ps, s, ezcept for
the following modification:

Poi(Colsi(Co) =  Pai(Co)si(Coy T AR (17)
Pai()ai(t) = Pos(ths(ty T 1l where | = n*(s;-1(Co)) (18)
ﬁa.'(j),s;(l) = ,u,h j = 1,2, ey K and j ?‘-‘ l (19)

The solution for the following linear system of equations:

7 Ps

o Hy

251
e

provides the conditional steady state probability of state s given the Markov chain is in some
state in S;, that is:

#(s) = _ ) VseSs;

ZJES.' W(S)

Proof: Let us partition the state space S, = {S;US; } where 8. = U“;zf)sj and S =S, - S,.
There is only a single return state in S;, which is s;(Cy), from states in S;. Based on

11



theorem 2, the modification according to Equation (17) provides the conditional steady
state probability given the system is in S;. Now partition the state space S; = {8} U S;}
where 8§} = U;-;%,SJ;. Note that there is only one return state in S;, which is s;(n*(si—1(Co))).
Again, based on theorem 2, the modification according to equation (18) and equation (19)
provides the conditional state probability vector given the system is in state S;. O

Since we can compute the conditional state probabilities for each partition §; exactly, we
can exactly aggregate states in each S; into a single state s;,z > 0. The aggregate chain is
depicted in Figure 2.

A A A A A
] agyg ag agg agg
\g \Qﬂ
‘\ '\_
m m il h n
agg agg agg agg agg

Figure 2: Aggregate Chain for upper bound model

Solving this chain, we have:

ll + —AOJCQ;] B (20)

Hagg —

-1 i-1
7(s:)) = [1+ Ao ] ( Ao ) (’\“”) for i=1,2,... (21)
ftagg — Aagg Hagg Hagg

To obtain the mean number of customers in the the upper bound model, N, let us define
the following:

7(0)

K
Co = >.C;

i=1

F(s) = r(s)—iCo sSES;
N(s;y = 3 #(s)i(s)

8ES;
where 7(3) is the solution of the following Markov chain:

TPs.s =

—

e =

12



Then we have:
N, = N(so)x(so) + 2 [N(s,) + ng] 7 (i) (22)

Since N(s;) = N(s;) for i # j and ¢,j > 1, we can simplify the expression above and obtain
the expression for N,:

= ~S TiSp ~.E»‘,' — T Sg QD-LWSO
Nu - N( 0)( )+N( )(1 ( ))+C/\(ﬂagg_)\agg)2 ( ) (23)

From Little’s Result [13], the upper bound mean system response time is:

R, = N,/ (24)

4 Lower Bound Model

In this section, we construct a modified Markov model, M}, which provides a lower bound
for the mean response time of the original model, M. We first give an informal description
and motivation for the lower bound model. As for the upper bound model, two additional
parameters are used to specify model M;, namely, d and C;, ¢ = 1,...,K. A job may
depart normally from the system only if the departure does not violate the maximum degree
of imbalance permitted. If a job departure violates this threshold setting, the system will
go into a full service mode. In this mode, the system behaves like an M/M/K system
with a special service discipline; specifically if there are j customers (where j < K) in the
system, these j customers will be executing on the j fastest servers. If there are more than
K customers in the system, then the system behaves like a regular M/M/K system. The
system will operate in this mode until the next idle time and then it will start behaving
like the original system again. Also, when a job arrives and finds that the system has C
customers, where C; = TX C;, the system will again operate in a full service mode until
the system goes idle and then it reverts back to its original behavior. Intuitively, these
modifications will yield a lower bound on mean response time. Since the modification are
idealization in which either the model behaves exactly as the original model or the best
possible service rate is delivered. While this is intuitive we will also formally prove that
the modified model M; yields a lower bound on the mean response time. Of course, it is
intended that d and C;,7 = 1,2,..., K be chosen large enough so that most of the time, M;
behaves like the original model. On the other hand, to be able to solve the model efficiently,
we would like to keep these parameters small.

13



4.1 Proof of lower bound mean response time

In order to facilitate the comparison between M and M;, we organize the state space for
model M using the following notation:

N; = set of states with exactly 7 jobs in the system, where : = 0,1,...

G {MUMNU---Ng, }

Qi; submatrix containing transition rates from states in N; to states in N
Qig = submatrix containing transition rates from states in A; to states in G

Figure 3 illustrates the form of the transition rate matrix for model M when states are
ordered according to the number of customers in the system.

[ Q0,0 QO,G 0 0 0
Qoo Qgg Qg.cpn 0 0
0 Qoye Qopsrc,41 Qopt1,0,+2 0

0 0 Qcyrrop+1 Qojrac42 Qojr2,0043

Figure 3: Transition rate matrix for M.

Using the state replication technique from [15], it is easy to show that we can transform
the model M into another model, M, by duplicating states in G without perturbing the
expected number of customer in the system. Let us call the duplicated set of states G’. The
transition rate matrix M;, which results from the duplication of states in G, is illustrated in
Figure 4. More formally, if?:

[-73-03 g, £>G]

is the steady state solution for model M, the steady state probability vector for model M,
1s:

[ED,EZ;;E;'E>Q] where ng =g+ Ty

Note that there is a one to one mapping between states in ¢ and states in G’ and Qg g =
Qo,g, Qgo = Qgro and Qo410 = Qcyt1,¢r- Starting from an empty system, only states in

210 simply notation, we use X, g to represent steady state probabilities for states other than state 0 and
states in G

14



Qoo Qog 0 0 0 0
Qoo Qog 0 Qg,cp+1 0 0
Qoo 0 Qg Qgrcp+1 0 0
0 0 Qecprig Qoo Qoptrcp42 0
0 0 0 Qcrv2.0,41 Qojr2042 Qopr2,0043
L

Figure 4: Transition rate matrix for M;.

G are visited until the number in system exceeds Cy. When the number in system falls to
Cy again, states in G’ will be visited rather than states in G until the system goes idle. At
this point the described behavior repeats. Intuitively, the idea is that if Cy is large enough,
the number in system only rarely exceeds Cy and therefore most of the time, M; behaves
exactly as the original model M.

Although the states in § are more popular that other states in the model, there are still
a large number of states in ¢ which have low steady state probability, for example, those
states with large imbalance in queue length. With this in mind, let us partition ¢ into
two sets of states, G; and G, where G; contains all those states that satisfy the threshold
setting d, and G, = G — G;. Based on the results from [14], transitions from G, to G, can be
transformed to transitions from G, to the corresponding states in G’ (since there is a one to
one mapping between states in G and G’) without perturbing the mean number of customers
in the systems. Formally, the steady state probability vector for model M, is:

" " !
[EaaEg,,Eg'£>g} where Tg = [EEI,Q] +£;: =g+ g

The transition rate matrix for this new model M; is illustrated in Figure 5.

[ Qoo Qog 0 0 0 0
QG1 0 QG1 K1 QG1 G’ QGl Ll 0 0
Qoo 0 Q¢gr Qorcpm 0 0
0 0  Qcyier Qoo+ Qoo+ 0

0 0 0 Qo241 Qepr2o02 Qoptr,0p43

Figure 5: Transition rate matrix for M,.

Now, (conceptually) we apply exact aggregation [5] to states in G’ and to states in A; for
i > Cy. That is, we aggregate all states with equal number of customer into a single state.

15



Denote the aggregate state corresponding to ¢ customers in the systems as @; and let g;;
be the aggregate rate between aggregate state ¢ and j. The transition rate matrix for this
model M3, is illustrated in Figure 6.

[ Qoo Qog, 0 0 0 0
Qﬁ 0 QGL W1 QG1 a1 QGl a2 ch 103 QGI 24
Ga1,0 0 Ga,,m Ga, ay 0 0

0 0 Gayaw YGazaz Yazas U
0 0 0 Jazaz  Gosaa  Gas,o

Figure 6: Transition rate matrix for Mj.

We are now in a position to compare model M; (which has the same expected mean
number of customers as the original model, M) to the lower bound model M; since they have
similar transition structure. Note that in the lower bound model M;, the system operates in
the full service mode when it is in states a;, ¢ > 1. That is®:

. T 1<i<K

It is clear that these aggregate rates g}, ,. | in M; are upper bounds for aggregate transition
rates ¢g,,q,_, iIn Ms.

Again, to facilitate a formal proof that M, provides a lower bound, we transform the
two continuous time Markov modes, M3 and M, into discrete-time Markov chains with the
uniformization parameter h. We can then apply the same approach as in Section 3.1 to show
that the expected number of customers in the system for model M; is less than the expected
number of customers in model M3. Based on the difference of the one-step expectation
operator T} (for model M;) and T, we need the following conditions to hold:

Via;io1) — Via) < 0 i>1landt>0 (26)

Theorem 3
Viai—1) — Vi(a;) <0 t>landt >0

Proof: Let us pick any 7, where ¢ > 1. Again, the proof is by induction. When ¢ = 0, the
condition is clearly satisfied. Assume the condition holds for t = m. For t = m 4+ 1 we have

3To simplify notation, we use notation ay (a state with no customers in the system} and 0 interchangeably
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in general:

V™ (a;0) = VP (a) = {r(aict) + MV™(05) + Gaiey i BV ™ (@ic2)+
+ (1= A + Gairi0)) V™ (@ic) } =
{

T(a; + ARV™ a=+1) + a0y th(a;_1)+
+ (1 ~ h(A + Gasaiy )) V"'(a,')}

Since the following inequalities hold:

Jai_raiz S Yajaioa
[1 — h(/\ + ga.-_l,a.-_,)] > [1 - h(’\ + gai,ai-:)]
h(Gaiaicy = Gai_raia) = [1 ~h{A + ga.’—uﬂ-’—z)] - [1 ~ h(A + 9a0ims )]

By rearranging terms, we have:

Vet ain) -~ V™ @) = [r(ais1) — r(a)] +
AR{V™(a;) = V™(ai)] +
(Fai_i,aia )R [V™(@i2) = VT (aizt)] +
(Gasaics — Gaimy,aioa ) [V (@in1) = V™ {aioa)] +
(1 — A(A+ gajaic ) V™ (@i1) = V@)

The first [] term is less than zero, the fourth [] term is equal to zero. By the induction
hypothesis, the second, third and fifth [] terms are less than or equal to zero. O

4.2 Computational algorithm for solving the lower bound model

In this section, we describe an algorithm for computing the mean response time in the lower
bound model M;. Let S = {noUG;}. Again, the transition rate matrix is depicted in Figure
T:

Observe that if we know the conditional state probabilities for states in Sg, we can
aggregate Sy as a single state, sp, and we will have an efficient algorithm to compute the
mean number of customer in the system. Noted that there is only a single return state to
8o from states outside Sy, and based on Theorem 2, the state probabilities conditioned on

17



[ Qoo Qo 0 0 0 0
QGl,U QQ’[.Gl QG1.01 QGuaz QGl.as QGNM

g;1,0 0 g::l,al gzl,az 0 G
0 0 |l 9200 Yarer Yazas O

0 0 0 g;;;,az g;:; as g;s,b"!

Figure 7: Transition rate matrix for lower bound model.
the system being in S can be obtained by solving the following system of linear equations:
C! +1
1.1"(50) [QSD.SO + (Z Q&JM Q) ggl = 0
=1

HSo)e = 1

where 7”?(80) is the steady state probability vector given the system is in &;. We can now
apply exact aggregation and the aggregated process is depicted in Figure 8.

() (@) (a2 _(a ) Yo b e

Figure 8: Aggregate Chain for lower bound model

The transition rates for the aggregated chain are:

T = F(S0)Qspnit i=1,...,C5 +1
Jaiaimn = A i>1
g;;,ao H
g — { Zj‘:1 Ky i=2,3-,...,I{
o T otherwise

where p* = 38 | 4.
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Solving the chain, we have:

Cr+1 C_f+1
W(SU) = 1+ Z Z[A. Z g"OsaJ Hgakvak—l
i=1 j=1 k=j k=3
A Cf+1 Cf+1
Jj=1 k=j
Cj+1
71'(&,') = 30 E[As Z gao,a, Hgak 1B k- 1
J=1 k=j
/\ C:-}-l C_f+1
7(a;) = w(so)(— ” )i=Cs-1 Z[/\C’+1_J > a0

k=j

1]_|_

Cr+1

RO H Iapan) ]

(27)
i=1,...,Cp+1 (28)
Cf-l-l
H gﬂk 1k — 1
k=]
i=Ci+2,...  (29)

To obtain the mean number of customers in the system, N; and the mean response time

Ry, let 3
N(So) = > r(s)i(s)

8€S8y

Then we have:

Ny = N(s0)n(So) + iifr(a )

=1

R = N/

5 Further State Space Reduction

In the previous sections, we discussed the methodology to construct an upper bound model
M, and a lower bound model M;. The computational costs in solving the models are:

1. obtaining the conditional state probabilities in Sy and &,

2. obtaining the steady state probabilities of the aggregated process and,

3. obtaining the performance measure, e.g., expected response time or expected number

of customers.
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The larger the state space cardinality of &;, the more accurate are the results obtained. In
this section, we discuss how we can reduce the state space of S; by lumping similar states.

Kemeny and Snell {12] studied under what conditions an aggregated process is still
Markovian. The condition for a Markov process to be lumpable with respect to a parti-
tion {Po U P; U---}, where P, P; = B, is that for every pair of sets P; and P;, rrp; has
the same value for every state k € P; where:

TP = ) Gkd for k € P,
leP;

We can apply this notion to our minimum expected delay routing problem.

Let J be the number of distinct types of servers in the model where two servers are of the
same type if and only if they have the same service rate. For any state s define the following

mapping:
f:s — {lLli=1,2,...,J}

where:

—
-,

= is a set of tuples (e, Bi;)
a;; = is a queue length for a server of type ¢ that appears in state s
B:;; = is the number of servers of type ¢ that has queue length a;; in state s

We define a partition of the state space S, (or &) by specifying that s;,s; € Su(or &)
are in the same partition if and only if f(s1) = f(s2)-

For example, assume we have a four server system with gy = po = 4, g3 = 3 and
tta = 2. There are three distinct types of servers and J = 3. We can group states such as
31 = [3,4,2,1] and state s; = [4,3,2,1] into the same partition since the l;,¢ = 1,2,3 for

both states are:
h= {(4, 1), (3, 1)}
L={(21)}
Iy = {(1,1)}

It is not difficult to see that the condition for lumpability is satisfied and we can greatly
reduce the state space of the model that needs to be solved.
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6 Numerical Example

In this section, we present two examples to illustrate the bounding algorithm.

The system we consider in our first example consists of four homogeneous servers. To
vary the system utilization p from 0.1 to 0.9, we fixed the input arrival rate at 4.0 and vary
the service rates for all servers. For this example, we set d = 4. For p = 0.1 to 0.7, we set
Ci =1, for p = 0.8, we set C; = 9 and for p = 0.9, we set C; = 10. Table 1 illustrates the
upper and lower bound mean response time as a function of system utilization. Percentage
error? is defined to be B=R ¥ 100%. Note that the bounds are very tight.

Ru+H,
System States Response Time | Response Time | Spread of | Percentage
Utilization | Generated | Upper Bound Lower Bound Bounds Error

0.1 175 0.100074 0.100074
0.2 175 0.201692 0.201692
0.3 175 0.309557 0.309557
0.4 175 0.431429 0.431429
0.5 175 0.579080 0.579068 0.000012 | 0.00103 %
0.6 175 0.773178 0.772967 0.000211 | 0.01364 %
0.7 175 1.061225 1.056777 0.004448 | 0.21000 %
0.8 245 1.569928 1.554950 0.014978 | 0.47931 %
0.9 280 2.867803 2.752649 0.115154 | 2.04883 %

Table 1: Homogeneous servers system

The second system we consider has four heterogeneous servers with gy = 10, g2 = 9, 3 =
8 and u4 = 6. To vary the system utilization from 0.1 to 0.9, we fix the service rates for
all servers and vary the input arrival rate. We set d = 6 and for p = 0.1 to 0.7, we set
G =< 9,8,7,5 >. For p = 0.8 to 0.9, we set C =< 12,11,10,8 >. Table 2 illustrates the
upper and lower bound mean response time.

To illustrate the tradeoff between computational cost and accuracy of the bounds. Let
us consider the homogeneous queueing system in the first example. By fixing the system
utilization at 0.9 and increasing the number of states generated, we see the improvement of
the bounds in mean response time. The result is illustrated in Table 3.

4if the spread in bounds is less than < 10%, we leave the entries for the spread of the bounds and percentage
error blank.
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Joining the shortest queue load balancing is appealing not only due to it’s simplicity in
implementation, but theoretically difficult to analyze. Since the arrival process is state
dependent and no close-form solution exits in general. Also due to the fact that each servers
has an infinite capacity queue, the state space cardinality of the Markov model is infinite
and it becomes impossible to generate all the states space to analyze the Markov model
numerically. We have presented an approach to bound the mean response time and the mean
number of customer of minimum expected delay routing policy, which is a generalization for
join the shortest queue routing policy. The algorithmic approach provides the flexibility
to tradeoff computational resources and tighter bounds. There is ongoing work in how to
choose d and C; such that we can a prior predict the error bounds. Also an ongoing work in
investigating the possibility of bounding mean response time under more relaxed conditions,

System States Response Time | Response Time | Spread of | Percentage

Utilization | Generated | Upper Bound | Lower Bound Bounds Error
0.1 3095 0.103573 0.103301 0.000272 | 0.13148 %
0.2 3095 0.107718 0.107435 0.000283 | 0.13153 %
0.3 3095 0.113167 0.112859 0.000308 | 0.13627 %
0.4 3095 0.120737 0.120305 0.000432 | 0.17922 %
0.5 3095 0.131729 0.131086 0.000643 | 0.24466 %
0.6 3095 0.148537 0.147701 0.000836 | 0.28221 %
0.7 3095 0.176870 0.174620 0.002250 | 0.64013 %
0.8 6410 0.230285 0.225782 0.004503 | 0.98735 %
0.9 6410 0.391237 0.372385 0.018852 | 2.46876 %

Table 2: Heterogeneous servers system

d| C States Response Time | Response Time | Spread of | Percentage
Generated | Upper Bound | Lower Bound Bounds Errors "

4| 7 175 3.157382 2.487368 0.670014 | 11.86968 %

49 245 2.927385 2.624671 0.302714 | 5.45228 %

4|10 280 2.867803 2.752649 0.115154 | 2.04883 %

5|12 518 2.790852 2.760358 0.030494 | 0.54932 %

Table 3: Computational Cost vs. Accuracy
Conclusion

e.g. by allowing general interarrival and/or service distribution.
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