Computer Science Department Technical Report
Cognitive Systems Laboratory
University of California
Los Angeles, CA 90024-1596

TRANSLATING A CYCLIC DEFAULT THEORY INTO AN
ACYCLIC DEFAULT THEORY

R. Ben-Eliyahu September 1991
R. Dechter CSD-910063

TECHNICAL REPORT
R-169
July, 1991

Translating a Cyclic Default Theory into an
Acyclic Default Theory

Rachel Ben-Eliyahu Rina Dechter
< rachel@cs.ucla.edu > < dechter@ics.uci.edu >
Cognitive Systems Laboratory Information & Computer Science
Computer Science Department University of California
University of California Irvine, California, 92717

Los-Angeles, California 90024

July 29, 1991

Abstract

We present an algorithm that translates any cyclic propositional

disjunction free default theory (PDFD) into an equivalent acyclic
PDFD over the same alphabet.

1 Reiter’s Default Logic

Following is a brief introduction to Reiter’s default logic [Rei80].

Let £ be a first order language. A default theory is a pair (D, W), where
D is a set of defaults and W is a set of closed wifs (well formed formulas)
in £. A default is a rule of the form « : B1v.ey Ba)y . where a, 8y, ...3, and
¥ are formulas in £. The intuitive meaning of a default can be : If I believe
in o and I have no reason to believe that one of the B; is false, then ! can
believe also in v. A default is semi-normal if it is in the form o : BAy/v. A
default theory is closed if all the first order formulas in D and W are closed.

The set of defaults D induce an extension of the set of formulas in W.
Intuitively, an extension is a maximal set of formulas that can be deduced
from W using the defaults in D.

Formally, let Th(E) denote the logical closure of E in £. We use the
following definition of an extension:

Definition 1.1 ([Rei80] theorem 2.1) Let E C £ be a set of closed wffs,
and let (D, W) be a closed default theory.

Define
Eg = W
and fori >0
Eiy1 = Th(E)U {vla: B1y..., Bu/v € D where a € E; and -fy,...08, ¢ E}
Then E is an extension for (D, W)iff E = U2, E..
(Note the appearance of E in the formula for Eiyy).

In this paper we restrict our attention to a subset of propositional default
theories where formulas in D and W are disjunction free. We will assume
that 1 is consistent and that no default has a contradiction as a justification.
Since if W is inconsistent, only one extension exists (which is inconsistent,
as Reiter shows}, and a default posessing a contradictory justification can be
eliminated.

We call this subclass PDFD (Propositional, Disjunction-Free Default the-
ories).

2 Definitions and Preliminaries

In this section we present notations , definitions and lemmas that will be
used throughout the paper.

We denote propositional symbols by upper case letters P, @, R..., propo-
sitional literals (i.e. P,—P) by lower case letters P, ¢,r... and conjunctions of
literals by «, 3.... Sometimes we will regard a conjunction of literals as a set
of these literals.

Given a set of formulas S, we denote by S$* the logical closure of S and
call S a logical kernel of 5*. It is clear that when dealing with disjunction free
propositional default logics, every extension E* has a logical kernel consists
only of literals.

For convinience and without loss of generality we will also assume that
the consequent in each rule is a single literal.

The dependency graph of a PDSD (D, W), G(p,w), 1s a directed graph
built as follows : Each literal p appearing in a rule in D or belonging to W
1s associated with a node. There is a directed edge from p to r iff there is a
default in D where p appears in its prerequisite and r is its consequent.

An acyclic PDSD is one whose dependency graph is acyclic. Note that
acyclicity of a directed graph can be tested in linear time (see [Tar72]), thus
vielding a test for acyclicity of PDSD wich is linear with the size of D.

We will sometimes need to identify the “strongly connected components”
of the dependency graph . The strongly-connected components of a directed
graph is a partition of its set of nodes to a maximal disjoint subsets such
that for each subset C, and for each «, y € C, there is a directed path from
z to y and a directed path from y to z in & (see also [Eve79], section 3.4).

Tarjan ([Tar72]) showed also a linear time algorithm which identifies the
strongly connected components of a graph.

We will sometime call "strongly connected components” simply compo-
nents, and a directed path simply a “path”.

Definition 2.1 Let § be a default and let E be q set of literals. We will say
that E satisfies the preconditions of § (precond(8)) iff pre(6) € E and for
each g € jusif) ~q ¢ E 1. We will say that F satisfies § iff it does not

INote that since we are dealing with PDSDs, if e is not a contradiction, the negation
of one of its conjuncts is in the extension iff the negation of « is there too.

satisfy the preconditions of § or else if it satisfies both the preconditions of &
and the conclusion of §.

Definition 2.2 Let (D,W)be a DF propositional default logic, E a set of
propositional formulas and p a literal. A proof of p in E is a locally acyclic
sequence of rules &y, ..., 8, such that the following conditions hold :

o concl(b,) = p.

o for all1 <1 < n and for each q € just(&), ¢ ¢ E

e foralll <i<n pre(§;) C W {concl(é,), ..., concl6;_;)}.
The following lemma is instrumental in our theorems:

Lemma 2.3 Let (D, W) be a PDSD. Then E*is an estension of (D, W)iff
E*1is a logical closure of a set of literals E that satisfy :

1. WCE
2. F satisfies each rule in D.
3. For each p € E | there is a proof of p in E .

4. E™ s the logical closure of E . O

3 Translating a Cyclic PDFD to an Acyclic
PDFD

We will say that two default theories are equivalent iff every extension of one

of them is an extension of the other , and vice versa. We will show now that

for each cyclic PDFD there is an equivalent acyclic PDFD over the same

alphabet. Thus, an alternative approach for translating a cyclic PDFD to

a set of propositional formulas would be to first translate it to an acyclic

PDFD and then translate its equivalent acyclic PDFD to propositional logic,
We will need the following definition :

Definition 3.1 Let § = o : Bly and & =o' : §'/4" be two defaults. We will
say that 6 subsumes & iff v = Y, aCa and 8C 4.

The following algorithm, we claim, translates a cyclic PDFD to an acyclic
one . For the sake of simplicity, it assumes that in each cyclic rule § , there
is only one literal p € pre(6) such that p is on a cycle with concl{§), and this
literal appears first in the prerequisite part of the rule. The generalization is
easy.

The algorithm works separately on each component of the dependency
graph. If p and ¢ are in the same components and ¢ is in a prerequisite of a
rule § which derives p, then for each acyclic rule of ¢ we replace ¢ in pre(é)
with the prerequisite of that acyclic default , and we also add its justification
part to the justification of §. So we get a new acyclic rule for p, that in
its turn can be used to derive more acyclic rules for other literals in the
component by replacing each occurrence of p in their cyclic rule using the
acyclic rule we have just derived for p. This process might be infinite unless
we take care not to add a default if a rule that subsumes it is already in the
set. If we do this, we reach a fixed point in & + 1 iterations, where k is the
length of the longest acyclic path in any component.

Here is an outline of the algorithm :

1. Draw the dependency graph of of (D, W)(Gp,w)).
2. Identify the strongly connected components of Gp w)(Cy, ..., Cpr).

3. For each component C, compute the following until a fixed point is
reached (i.e. until R;(C) = R (C)):

5

Let py, pa, ..., pa be all the literals in C.

For each p, € C, a.cycgl, = { all acyclic rules from D with P as a consequence }.
acycﬁ;"l = acycg',U, {qu A g Agiy, Aga A Qe Ty AT AT AT AT AT/
|36 €D, 8§ =q Aga... A QT ATo A/ ps,
me€Cand gy Aq, Agy Ty, Ary ATy, /g € acyc) }
RJ(C) = U,’___ln_n&C}’C;'.

The operator |J,denotes a union of two sets of defaults with the addi-
tional condition that in the union there are NO two rules such that one
subsumes the other. If , when computing the union , two such rules
appear, only the shorter one will stay in the union. That is necessary in
order to be able to reach a fixed point in a finite number of iterations.

For each component €|, Let R*(C) denote the fixed point of the operator
U* wr.t. C.

4. Let D' = Uizy, mR*(C:). (D',W) is an acyclic PDFD equivalent to
(D,W). O

Proposition 3.2 For each component, step 3 of the algorithm will be done
tn at most k+1 iterations, where k is the length of the longest directed acyclic
path in any component.

Example 3.3 Consider the following default theory:

D=t =P1/p1,f2 1P2/P2,P1 =P2/P2,Pz =P1/P1
W=

The strongly connected components of its dependency graph are : Cy =

{tl}’ Cy = {plap2}J Cs = {tQ}
To compute D' we do the following :

acyey, = acyey, =0, So R*(Cy) = R*(C3) = 0
acycy = {t: : p1/p1}

acycy, = {tz: p2/p2}

Ry(Cy) = acycgancycgz

acye, = {t1: p1/p1}U{t2 : p2 Api/pr}

acyc,, = {t2: pa/p2}JU{t1 : p1 A p2/ps}

Ry(Cy) = acyc, Uacyc),
acycl = acyc},
Udta: p2a A pi/pisty py A g Apr/p}
= acyc,,
acych, = acycl
Uddts: pr A p2/pa,ta pa A py A pafps)
= acyc),
D'= Ri(Cq) = Ry(Cy)
={ti:p/ptaipr Api /oty P2/p2,ty i py A pafpy}
The main result of this section is summerized in the following theorem:
Theorem 3.4 For every PDFD there is an equivalent acyclic PDFD,

In the following proposition, Let r denote the maximum possible number
of literals in the prerequisite of a rule which appear in the same component
as its consequent. a - the maximum number of acyclic rules in D which has
the same literal as a consequent, ¢ - the maximum number of cyclic rules in
D which has the same literal as a consequent, k - the maximal size of an
acyclic path in any strongly connected component in the dependency graph
of (D, W)and n the number of literals in (D, W)which do not appear in W,

Proposition 3.5 Suppose (D, W)was transformed to (D', W')using the above
algorithm. Then

¢ Ifr =1, the algorithm will run in O(k *nxaxc*) and this will also be
the order of |D'|.

® Ifr > 1 then the algorithm will run in Ok xnx(a*e)™) and so will
be the order of |D'|.

note that O(|D|) £ O(n*(a+c)) (assuming no rule has a literal from W
as a consequence). Also note that step 3 can be executed in parallel for each
component.

As mentioned above, the algorithm presented here assumes that r <1, to
save the reader and us tedious notations. To generalize it, when computing
acyc;“, if we encounter a rule § such that concl(8) = p and ¢y, ...¢,, are in
the same component as p and appear in pre(§), then for each combination of
rules one from each acyc-;i (¢ = 1...m) we create a new acyclic rule for p. All
theorems and propositions in this subsection remain the same for the case
r>1,

4 Proofs

Proof of proposition 3.2

Proposition 4.1 Suppose that § € D’ was first introduced in Ri(C)
(i.e. 6 € Ry, 6 ¢ Ri—y) for some k,C Then, there must be a series

of defaults éy,...,é; in D and literals po, p1, ...px such that the following
hold :

o concl(é;) =pi, b = 4.

® Do,..px are in the same strongly connected component.
o concl(é;) € pre(b;y1).

o Ifi #] then pi # py.

Proof: By induction on k. All the p;’s are different because we do not
allow in R; a rule which has already a rule that subsumes it in R;_,.
O

Suppose that in the k£ + 1's iteration a new default was introduced to
D’. Then, by proposition 4.1, there must be a path of length k¥ + 1 in
some component. A contradiction. O

Proof of theorem 3.4 The following proposition is quite obvious:

Proposition 4.2 If ¢ and p are in the same component, no literal in
« s in the same component with p, gAa : 3/pisin D and &' : 3'/q is
a (acyclic) rule in D', then o default that subsumes o’ Ao : BA B [p is
in D',

Let (D, W)be an arbitrary PDFD, and let (D', W)be the output of the
above algorithm. We will show that (D, W)and (D', W)are equivalent.

e Let E”be an extension of (D, W). We will show that E*is also an
extension of (D', W). Let E be the logical kernel of E* which satis-
fies the conditions of lemma 2.3. We will show that E satisfies the
conditions of lemma 2.3 also with respect to (D', W). Condition
1 is clearly satisfied.

For condition 2 , suppose that for an arbitrary § € D', E satisfies
precond(é). We want to show that concl(6) € E. Suppose that
concl($) € C for some component C' of G(pw. The proof is by
induction on the lowest 5 such that é ¢ Ri{(C). If : = 0, then the
assertion clearly holds since § belongs also to D. Now, suppose
that 6 = ¢ A ..gn 1 7 A -Tm/p appears for the first time in
R1(C)6 ¢ D, 91, qn are in Eand ~ry, ..., ~r,, are not in E .
So there must be a default =g AL A Gk : 1A L A1 /q for
some k <n,!<min Ri{(C) and a default 6, = AN Qi1 A g
T41 A At /pin D, where ¢ € C. Since the preconditions of
é; are satisfied by E, by the induction hypothesis ¢ € E, So the
preconditions of §p are in E, and since 6p is in D, pisin Fas
well.

For condition 3, Let P € E, we want to show a proof of pin E with
respect to the theory (D', W). By induction on the length n of a
minimal proof of p in E w.r.t. (D,W): If n =0, then peW.
Let 61,...080401 = g1 A ... A Gn i1 A ... ATy /p be a proof of p in
E using rules from D. If dnt1 1s acyclic, we are done using the
induction hypothesis. If bn41 is cyclic, then suppose WLG that Q1
is on the same component as p- Using the induction hypothesis,
let 8,....,6, = a: B/q1 be a proof of ¢, in E using rules from D).
By proposition 4.2 above then, there must be a defaylt § e D
such that é subsumes o A gs... Agn:BATLA...ATy/p. From here
1t is easy to see how we construct a proof of p in F using rules
from D'

Let E*be an extension of (D', W). We will show that E*is also an
extension of (D, W). Let E be the logical kernel of E*which satis-
fes the conditions of lemma 2.3. We will show that F satisfies the
conditions of lemma 2.3 also with respect to (D, W). Condition 1
is clearly satisfied.

For condition 2 , suppose that for an arbitrary § € D, E satisfies
precond(d). We want to show that concl(6) e E. If§ is acyclic,
then it belongs to D', and we are done. Suppose then that § =
gAa: 3/p for some ¢ which is on the same component as p. Since
q € E, there is a proof §;,...6, = « - B'/q of ¢ in E using rules
from D’. By proposition 4.2 above then, a rule & which subsumes

the default o’ A : B/ A B/pisin D'. Since the preconditions of &
are satisfied, p must be in £ .

For condition 3, Let p € E, we want to show a proof of p in
E with respect to the theory (D, W). We will need the following
proposition:

Proposition 4.3 For each default § € D' there is a series of
defaults s(6) = 6y,....6, in D such that :

— foreach1<i<n pre(8;) C Ur<jciconel(§;) UW Upre(6).
— concl(8,) = concl(§).
— Foreachl <i<n, Just(6;) C just($6).

Proof: Let § € D' be a default. We want to show a series in
that have the above properties. We will do it by induction on the
minimal j such that § € R;. If j =0, then § itself is in D, Suppose
b= A A iy A...At/p appears for the first time in R;,. So
there must be a default 6 = @A Ag TN ATy g for some ! < m
and A < kin R;, and default §p = GAG A AGy Th+1 AL ATL/p
in D. By the induction hypothesis, §; can be replaced by series
of rules s(§) having the properties above. Clearly, the series <
3(6),ép > will have the required properties w.r.t. §. O

We will find the proof for p wrt D using induction on the length
n of the proof of p in Ew.r.t. (D', W): If n = 0, then peW.,

Let 61, ..., 6,41 be a proof of p in E using rules from D', By the
induction hypothesis, for each ¢ € pre(dnyq) there is a proof in
E using rules from D. Those proofs followed by §(6nt1) are a
proof of p in F using rules from D,

G
Proof of proposition 3.5

s will denote the maximal size a strongly connected component in
the dependency graph of (D, W).

d will denote the number of components in the dependency graph
of (D,W).

10

Also, denote by a; the upper bound of lacycl|, for any p.

Clearly, if r = 0 then D' = D ((D, W)itself is acyclic), so we assume
r>1.

We get :

ap S a

Q41 _<_ O‘.J'r * C

OR:

ap S a

a1 L a *c

< (@ *c)" xc=a" k¢!

a3 < (@ « N x o= g’y L

Soifr =1, a; < ax*c*.

Ifr>1,sincel +r4r2 4. k1 =r*—1/r—1<rk),
ar <a™ x = (a*c)™"

We get that for each component:

|Rif < lR,-_ll—i—s*a;S_s*a,-*(z’—{-l)

and

lD’l Sd*Rk Sd*s*ak*(k-i-l)

Since a better aproximation to d * s is n, we get:

D] Sn*a*ck*(k-l—l)ifr:l

1DV <m*(axe)(k+1)ifr>1

11

References

[Eve79] Shimon Even. Graph Algorithms. Computer Science Press, 1979.

[Rei®0] Ray Reiter. A logic for default reasoning. Artificial Intelligence,
13:81 132, 1980.

[Tar72] Robert Tarjan. Depth-first search and linear graph algorithms.
SIAM journal of Computing, 1(2), June 1972.

12

