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ABSTRACT OF THE DISSERTATION

High-Performance Fault-Tolerant VLSI Systems
Using Micro Rollback

by

Marc Tremblay
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1991

Professor Yuval Tamir, Chair

This dissertation addresses the problem of achieving both a high level of fault
tolerance and high performance in VLSI computer systems. New implementation
techniques are proposed for systems operating in hostile environments where a
high rate of errors is expected. Due to the real-time constraints commonly imposed
on such systems, long interruptions of service are not acceptable. Hence, both

error detection and error recovery must be rapid and robust.

Checkers and encoders on the critical path for intermodule communication are
a major cause of performance degradation in many fault-tolerant systems. This
performance degradation can be eliminated if error detection is allowed to proceed

in parallel rather than in series with intermodule communication.,

The fundamental new technique proposed in this thesis, micro rollback,
allows the use of extensive error detection mechanisms without compromising
system performance. Error detection is performed in parallel with normal
execution. If errors are detected, micro rollback restores modules to a previous

error-free state. Micro rollback is based on the optimistic assumption that system

XX



components are fault free most of the time. This allows modules to be optimized

for the normal case when no errors occurs.

Efficient techniques for adding micro rollback to a processor and other
modules are described. VLSI layouts and extensive simulations of key building
blocks demonstrate that the proposed techniques involve small area overheads and

minimal performance degradation.

In a multi-module system, rollback to a consistent global state requires
coordination among the modules. We introduce a novel hardware mechanism for
logging the occurrence of recent intermodule transactions. During a rollback, these
logs are used to compute the appropriate rollback distance for each module.
Through the design of specific rollback domain interface units, we also show that
standard modules not capable of rollback can interact with modules belonging to

the rollback domain.

The integration of micro rollback with speedup techniques for uniprocessors,
such as out-of-order execution and register renaming, shows that a high level of

fault tolerance can be achieved for high-performance processors.
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Chapter One

Introduction

The widespread use of VLSI digital systems running critical applications in
‘‘hostile’’ environments, has resulted in the development of systems able to operate
reliably in the presence of isolated faults. The reliability requirements for systems
operating in harsh environments, such as air-borne or space-borne computers,
demand that only momentary cessation of processing be tolerated. Since most
errors are caused by transient failures[Cast82], the ability to detect and recover
quickly from transient faults is directly related to the reliability of a computer
system. Systems capable of operating reliably despite the occurrence of errors, are

said to be fault-tolerant.

One of the keys to achieving a high degree of fault tolerance is the ability to
detect errors immediately after they occur and prevent erroneous information from
spreading throughout the system. Traditionally this had been achieved through
concurrent error detection, which is designed to detect the first error resulting from
a fault in the system. To achieve concurrent error detection and confine the
damage caused by the error to the failed module, it is often necessary to check the
outputs of the module continuously (during every clock cycle for synchronous
systems). These requirements are usually satisfied by connecting checkers and
isolation circuits in the communication path between each module and the rest of
the system (Figure 1.1(a)). Consequently, concurrent error detection results in
longer clock cycle times in order to allow the checks to complete. Alternatively,

checking delays can be pipelined, resulting in additional pipeline stages thus



diminishing throughput whenever the pipeline needs to be flushed or is not full due
to data dependencies. Hence, systems with high-coverage concurrent error
detection often experience significant performance penalties due to checking
delays. Moreover, these delays can compound as, for example, when a processor
reads a memory word, and (1) Hamming Code checks are made, (2) the word is
encoded for bus transmission, and (3) the word is checked when it arrives at the

processor before use.

Module 1

-

—

Checker Checker

Module 2

‘

(a) Concurrent Error Detection (b) Parallel Error Detection

Figure 1.1: Concurrent error detection vs. parallel error detection.

One way to solve the problem described above is to perform checking in
parallel with the transmission of information between modules (Figure 1.1(b)).
The receiving module does not wait for checks to complete. It proceeds with
execution as the check is being carried out and the checking result is sent one (or a

few) cycles later.

Performing error checking in parallel with inter-module communication



largely solves the problem of checking delays, but it introduces a new problem in
recovery. The state of the system (starting with the receiving module) may be
polluted with damaged information before an error signal arrives. Therefore it is
necessary to back up processing to the state that existed just before the error first
occurred. This returns the system to an error-free state where the offending
operation can be retried (or correction may be attempted by other means such as
restoring information from a redundant module or initiating higher level rollback).
We call the process of backing up a system several cycles in response to an error

signal, micro rollback [Tami88b, Tami%0].

This dissertation addresses the problem of achieving a high level of fault
tolerance in computer systems while maintaining high performance. With micro
rollback, parallel error detection can be used, thus removing error detection circuits
from critical paths. General techniques for efficient implementation of micro
rollback in processors and other modules are described throughout the thesis. It is
shown that micro rollback can be integrated with many speedup techniques, thus
demonstrating that micro rollback can serve as a basis for high-performance, highly

reliable computer systems.

1.1. Applications of Micro Rollback

Systems using concurrent error detection can benefit from micro rollback by
replacing the error detection mechanism with a parallel scheme. For example, if
data in a cache memory is stored along with check bits so that its validity can be
checked upon retrieval, the logic necessary for the coding and decoding may be
inserted serially between the processor and the memory (Figure 1.2(a)). The added



delay due to the error detection logic would contribute to the access time to the
cache memory which is often a critical path for high performance
processors {Kane87]. With micro rollback, the checkers (or correction circuitry)
can be removed from this critical path. The error detection can occur in parallel

(Figure 1.2(b)) and the error signal can be sent after the data has arrived.

Memory Memory

ECC ECC
Processor Processor
(@) )

Figure 1.2; Application of parallel eror detection for a
Processer-memory system
Another important use of parallel checks is in duplex systems[Down64]
where error detection is accomplished by running two identical subsystems in
parallel and comparing their outputs (Figure 1.3). With this technique, which is
supported by some current commercial chips [AMD87], the two subsystems may
be on different chips and there is thus a significant delay in getting both outputs to
the comparator (off chip communication) and obtaining the results of the

comparison. With micro rollback, the processors do not have to wait for the output



of the comparator to resume operation — upon a mismatch both processors are
forced to roll back to a point in time where they were both in agreement. A system
based on triplication and voting {TMR) can benefit from micro rollback in a similar
way (Figure 1.4). During normal execution, the three modules execute instructions
without waiting for the outcome of the voting. When voting indicates a

disagreement, the modules are brought back to an error-free state using micro

Processor 1

\ Comparator /

Figure 1.3: Processors operating in duplex mode

rollback.

Processor 2

Duplex mode operation and TMR both use redundancy in space. Micro
rollback can also be used for systems in which checking is done using time
redundancy. With time redundancy, the same hardware is used to compute logic or
arithmetic operations that can confirm the validity of the results. The operation
performed by the hardware to validate the results, can be the same — in which case
a simple comparison between the two results is sufficient, or different — in which

case a ‘‘match’ is established through a relation between the two results. For



Processor 1 Praocessor 2 Processor 2

Quitput

Figure 1.4: Processors running in Triple Modular Redundancy (TMR).

instance a combined multiplier/divider functional unit can be used to validate a

multiplication through a division.

Time redundancy can be achieved at small cost (small hardware overhead) by
using alternating logic [Reyn78]. Circuits such as adders and multipliers can be
slightly modified so that when fed with complemented operands they produce a
result which is the complement of the one obtained with non-complemented
operands. Recomputing with Shifted Operands (RESO [Pate82]) is another method
for using redundancy in timé — the second computation is done using shifted
operands (shifted left), producing a result which is then shifted right in order to
compare it with the original result. In a fault-free circuit, the second computation
matches the original result (Figure 1.5). Although savings in area are achieved
through time redundancy, the main drawback of this method is the added delay

required to recompute the result and compare the two values. Using micro
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Error Comparator
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Figure 1.5: Error detection by Recomputing with Shifted Operands
(RESO). The first result is computed with the original
operands and stored into the register (using first set of control
signals). The second result is calculated using shifted
operands (shifted left k¥ positions). The second result is
shifted right by k positions and compared with the original
result.

rollback, the second result can be computed in parallel with normal execution. If
an error is detected, the processor is rolled back to a point before the computation

error occurred.
In a multi-module system, a high level of fault tolerance can be achieved by

making each module self-checking (Figure 1.6). When an error is detected by one

of the modules, it is reported to the rest of the system C cycles later where C



represents the error detection latency. A recovery procedure such as software
rollback can then be initiated so that process can resume within a few milliseconds.
Although quite useful in many situations (e.g. general purpose computing), the
method described above cannot be used in a context of real time control or in an

environment subject to a high rate of faults.

Data Bus
Error signal T T T !

-
+

Figure 1.6: System with Self-Checking Modules

In tightly-coupled multi-module systems, micro rollback can be used to
provide faster error recovery than software-based techniques. Upon detecting an
error, a module sends a rollback signal to the other modules in the system, thereby
requesting a rollback to a global fault-free state. Using records of previous inter-
module interactions, all the modules must then coordinate their individual
rollbacks, to achieve a consistent, error-free, system state. After all the modules

have rolled back (in parallel), normal system operation can resume.



1.2. Implementation of Micro Rollback

The previous examples have shown how micro rollback, once combined with
some error detection mechanisms, can reduce or even eliminate overheads
encountered in traditional fault tolerant systems. This, as we will see in the next
chapters, is possible only if micro rollback can be implemented efficiently without
adding significant delay. A straightforward implementation of micro rollback
could lead to a significant increase in area and could introduce delays by attaching
circuitry to critical paths.

Throughout this work we present novel architectures that exploit micro
rollback capabilities for achieving a high degree of reliability but also try to
minimize the overhead on the system. While presenting these new ideas and
exposing their benefits, we also implement (detailed layouts, logic simulations,
extensive SPICE simulations, etc) the designs in order to know in details the
impact of our ideas on the system. Bearing in mind that fabrication of the modules
would lead to better absolute measurements, we compare our delays and area
metrics to other modules implemented using the same technology, and when
possible laid out by the same designer. This work has led to the development of a

complete processor through class projects [Trem88] and other efforts [Tami91].

1.3. Organization of this Work

In Chapter 2 we provide a brief overview of common error detection and
correction techniques for computer systems. We also examine hardware
mechanisms for reversing recent state changes in processors. These mechanisms

are directly related to micro rollback even though they were originally developed



for supporting precise interrupts and efficient handling of mis-predicted conditional

branches.

An additional benefit of using micro rollback is the possibility of using
“‘cheaper’’ checkers (in terms of area) for error detection. Since long error
detection latencies have little impact on performance, it is possible to use slow
checkers, which are small and simple. If error detection is on the critical path for
performance, it is necessary to use fast checkers, which may be large and complex.
In Chapter 3 we describe and evaluate the VLSI implementations of checkers that

are commonly used for error detection and correction.

We present in Chapter 4, techniques for an efficienr implementation of micro
rollback in VLSI systems. We focus on building blocks for a VLSI RISC
processor that is capable of micro rollback. We show how the updated state of the
entire processor can be checkpointed after every cycle without replicating all the
storage. Based on VLSI layout and circuit simulation of key modules, it is shown
that the micro rollback functionality can be added with only a small performance
penalty and with a low area penalty relative to the size of the entire chip. We will
also discuss the implementation of a cache capable of micro rollback as well as the
problems (with their solution) encountered in a multi-processor environment with

shared memory.

The implementation of micro rollback in a multi-module system is discussed
in Chapter 5. Asynchronous and synchronous systems are both covered.
Transducer modules performing translation between a number of cycles to rollback
and a number of transactions to rollback (and vice-versa), are introduced in this

chapter. Those relatively small modules are implemented through full pass gate
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logic and perform the mapping without interfering with the basic number of cycles
required to rollback.

Chapter 6 describes the problem of interfacing off-the-shelves modules with
modules capable of rollback. It is shown that modules that can roll back and
modules that are not capable of rollback cannot communicate directly and must
exchange information through a rollback domain interface unit (RDIU). The
purpose of the RDIU is to delay (buffer) all transfers to modules which are
incapable of rollback and whose state might be corrupted if these transfers are
erroneous. Transfers from modules which are incapable of rollback are recorded in
a replay memory so that they can be retransmitted to modules inside the rollback
domain following a rollback. We describe several off-the-shelf memory systems
that can be part of a rollback system by connecting them to the system through a
RDIU. We address the issue of integrating a processor capable of micro rollback

with standard loosely-coupled and tightly-coupled coprocessors.

The combination of micro rollback and techniques used to increase the
performance of uniprocessors is discussed in Chapter 7. Techniques such as out-
of-order execution of instructions, branch repair, and register renaming are
combined in a single structure (called a standby reorder buffer) which also provides
micro rollback. Sharing of the circuitry for the techniques mentioned above, leads

to a low area overhead.
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Chapter Two
Previous Work

The development of fault tolerance techniques has improved the ability of
computer systems to cope with hardware component failures. This has led to the
development of highly reliable computer systems, such as the STAR [Aviz71a,
Aviz72], FTMP [Hopk78], SIFT [Wens78], Tandem [Mack78], and
Stratus [Wils85]. Several error detection methods often found in those computer
systems are summarized in this chapter. A micro program control unit with
extensive concurrent error detection is described in details in Section 2.2. Forward
and backward recovery methods are described in Section 2.3. Specifically, we
discuss instruction retry as an example of a backward recovery method. Rollback
techniques used for supporting precise interrupts and handling of mispredicted

conditional branches are covered in Section 2.3.

2.1. Error Detection

The first step in fault-tolerance is to detect errors occurring in the system.
The purpose of error detection is to prevent system failures by recognizing that

they may be about to happen and initiate corrective actions.

Possible errors in VLSI chips include: corruption of the contents of storage
elements, incorrect results produced by computation modules (e.g., an ALU), and
corruption of data and control signals (e.g., buses). These errors are the result of
transient or permanent faults due to design and fabrication flaws (e.g., marginal

timing, incorrect dosage of jon implants), environmental factors (e.g., noise,
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radiation), and wear-out mechanisms (e.g., electromigration)[Doyl81]. Since
micro rollback is aimed at removing delays introduced by checkers it is important
to understand how error detection is performed and what are the different methods
used. The VLSI implementation of some of these methods is described in Chapter

3. Among several error detection methods, we mention:

Parity: a bit representing the XOR of every data bits in a word is sufficient to
detect all single bit errors as well as all odd-weight errors [Hamm30]. This
technique is used in many systems, either to detect errors in storage elements, or to

detect errors after transmission through a bus [Kane87].

Codes for memories: several types of codes have been applied successfully to
memory systems. Most of the codes fall can be categorized into two
families [Rao89]; linear codes, which are usually derivatives of Hamming
Code [Hammm50], and cyclic codes such as linear feedback shift register
(LFSR) [Froh77]. The principle behind these codes is simple. Words are encoded
prior to transmission or storage, and they are checked upon reception or retrieval.
Besides detecting errors, most of the codes offer the possibility (with larger

overhead) to correct a number of errors.

Arithmetic error codes: this family of codes is useful for the design of
computational unit since they serve to detect errors in the results produced by
arithmetic processors as well as the errors which have been caused by faulty

transmission or storage [Aviz71b].
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Duplex mode operation: érrors observable at the boundary of a module can be
detected by running two identical modules in lockstep and having their outputs

feed a comparator [Down64, John84, AMDS87].

Alternating logic: this technique achieves its fault detection capability by utilizing
redundancy in time instead of the conventional space redundancy and is based on
the successive execution of a required function and its dual [Reyn78]. Logic
designs of binary adders and multipliers using alternating logic have been

described in [Take80].

Self-exercising self-checking modules: to prevent accumulation of dormant faults,
modules can be made self-exercising [Renn86]. Additional logic is added to the
basic circuitry of a module in order to periodically activate and test all parts of the
module. This logic can be combined with a simple recovery mechanism (e.g.
Hamming code) to allow rapid recovery before multiple errors build up. Memory
designs making use of this technique have been proposed in[Renn86] and the

methodology has been extended to the design of a complete processor in {Chaug8).

2.2. Micro Program Control Unit with Concurrent Error Detection

The techniques mentioned above can be used individually or they can be
combined in order to enhance the level of fault tolerance that a system can reach.
As an example, we look at the VLSI implementation of a microprogram control
unit with concurrent error detection[Yen87]. The paper describes several

techniques used in order to make the unit self-checking. Specifically, the
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techniques used are:
— coding techniques for detecting unidirectional errors
— dual-rail codes for a few control signals
— duplication for some of the submodules
— layout-based code-word checkers
— the PLA is strongly fault secure and strongly code disjoint
— the PLA is implementied using a modified Berger Code [Mak82]

The addition of these techniques to a basic control unit (in this case, an
Am2910 look-alike) is costly in terms of area, and impairs performance because of
additional delays required to compute codes and because of added capacitance on
various parts of the circuitry. The Concurrent Error Detection (CED) method is
then compared with a simpler method consisting of a duplication of the complete
functional modules (duplex mode) [Down64, John84, AMDS87]. The conclusions
extracted from this article (in quotes) and our own remarks are:

(1) ““The duplex method is easier to design’’.

(2) ““The duplex method has extensive fault coverage for faults in one of the
duplicated modules’’.

(3) The authors estimate that ‘‘the duplex mode method would take 138% more
area than a simple Micro Control Unit (MCU) which represents 20% more area
than the Concurrent Error Detection {CED) method’’. This calculation based on an
estimate of the area taken by check bits generators. In[Trem89a] we discuss the
implementation of data compression circuits and we believe that the area overhead

could be reduced significantly compared to the estimates in [Yen87]. Specifically,
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we believe that efficient compression and comparison circuits combined with the
duplication of the modules should lead to a more reasonable overhead of 110%
(compared to 138%).

(4) ““The duplex method has slightly less performance’”. The exua logic needed
for the CED method is part of the control circuitry and is thus bound to affect the
timing of critical paths on the chips, resulting in decreased performance. With the
duplex method, the basic chip is kept intact so that the performance of the basic
processor is not degraded. However, if the processors must wait for the outcome of
the comparison at the end of every cycle, performance can be significantly
reduced. If there is no need to wait for the output of the comparison, the
performance degradation can be eliminated. This is possible if either there is no
need to support fast local recovery or micro rollback is used. In the first case, after
an error occurs, the processors will continue to operate, with erroneous data, until
the mismatch signal triggers system-level recovery. This recovery can then restore
the processors to a state that was saved (checkpointed) many cycles prior to the
occurrence of the error[Rand78]. In the latter case, as described in Section 1.1,
micro rollback is used to ‘‘hide’’ the error detection latency. Once a mismatch is
detected, the processors are quickly rolled back a few cycles, to their state just
prior to the occurrence of the error.

(5) ““The CED method is able to perform fault diagnosis with greater resolution’’.
This is important for error recovery. If a low latency recovery is desired, a

combination of the two methods can be performed as we shall see in Chapter 4.

The conclusions drawn from the article and our own observations indicate that

the duplex method is more viable than the CED method, based on overhead in
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terms of area, performance, and ease of design.

2.3. Error Recovery

Once an error is detected by hardware checkers, actions must be taken to
“‘repair’’ the damage caused by the fault and resume program execution. Two
techniques described in[Rand78], called forward error recovery and backward
error recovery, attempt to place the system in a valid state from which processing
can resume. After describing these two techniques, a backward error recovery

method related to micro rollback, namely instruction retry, is discussed.

2.3.1. Forward Error Recovery

Forward error recovery schemes attempt to make use of the erroneous system
state, to make further progress. For example, in several operating systems,
recovery procedures following a crash are based on the state of the system at crash
time. Some jobs not affected by the crash will be able to proceed while other jobs,
which were executing in main memory, may not be able to resume. Because
correct identification of the error is often necessary to allow continuation of the
process, forward error recovery schemes are designed as integral parts of the
system they serve[Rand78). An example of a detection of an error in a TMR
system (Figure 2.1), and a subsequent recovery through forward error recovery, is

shown in Figure 2.2.

At a lower level we can consider the use of Error Correcting Codes (ECC) for
various systems such as the Cray X-MP, as a forward error recovery strategy. The

detection of a bit error in a memory word is accomplished through separated
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Module 1 Voter 1

Module 2 Voter 2

Module 3 Voter 3

Figure 2.1: Triple modular redundancy with triplicate voters.
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Figure 2.2: Forward error recovery through a ‘‘roll forward™’,
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dedicated hardware which, upon the detection of an error, gives a state from which
the correction circuitry can flip the specific bit so that process can go on [Cray84).
The circuitry for both error detection and error correction is connected serially with
accesses to memory. Thus, even in case of an error correction, the process is not
interrupted. However, delay is added to each memory access. In the case of the
Cray X-MP, serial ECC takes 0.5 processor cycle (the latency of a memory access
is 14 processor cycles) [Cray84].

Davis in [Davi85] describes the use of ECC for a high density CMOS memory
chip, using the same principles discussed above. In his paper Davis mentions that
the forward recovery scheme using ECC does not add any delay to the memory
access time. This is only true because during a word access (16'bits), one of the
two data bytes is delayed for 15ns by an RC chain to avoid excessive power-supply
noise. During that extra delay of 15ns the ECC circuitry can correct any one-bit
error, an operation taking 10ns, without adding extra delay. On the other hand, for
a chip operating at its full potential, i.e. when both bytes are presented at the same
time, the ECC delay would be added to the critical path, making the chip

significantly slower.

2.3.2. Backward Error Recovery

Backward error recovery relies on the periodic saving of the state of the
system, an action called checkpointing [Rand78)]. The recovery points thus created,
represent error-free states from which the system can resume execution. The

action of bringing a process back to an error-free state is called rollback.

If errors do not occur often and if long recovery procedures and loss of work
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during recovery are acceptable, software methods can be used. Thus,
checkpointing may be performed only once every few millions (or billions) of
cycles and recovery may be software controlled so that the recovery process itself

may take many thousands of cycles [Koo87].

In our research we are more concerned with systems designed for
environments where error rates are high and/or real-time constraints prohibit
significant delays for recovery. As we shall explain later, our work provides

hardware-supported checkpointing and rollback.

error error
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I T I ¥ 1 ] ] T T ) T 1 /\ I { ]
process l J

starts checkpoint checkpoint rollback
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process
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checkpoint

Figure 2.3: Checkpointing and recovery through rollback.

The backward error recovery concept can be used to ‘‘hide’’ the time to
perform error detection and correction. Based on the assumption that errors do not
occur often, it is wise to take any extra delay out of the critical path for a certain
module or out of the communication path between two modules. If a module can
checkpoint periodically, then error detection for actions occurring after a
checkpoint can have a relatively long latency since the swmte of the module can

always be brought back to the recovery point (Figure 2.3).
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If there is enough time between two successive stafes to perform error
detection and/or correction (plus a certain margin), rollback simply consists of
aborting the execution of the current operation before an erroneous modification of
the state occurs (Figure 2.4). In this case, the checkpoint is the state reached before
the operation started, which is the current state since the operation was aborted
before any damage occurred. The Memory Management Unit (MMU) of the IBM
ROMP processor used the latter feature to take error correction out of the critical
path for each access request by the processor to the MMU [Wald85]). The two-
cycle memory access time required for the chip set includes: address translation,
address and data buffering, and ECC error detection. Error correction time is not
included in the access time, if an error is detected, the data sent to the processor is
““intercepted’’ and the corrected data is then resent on a subsequent cycle.
According to[Wald85] this practice reduced the impact of ECC on access time
from 80ns to about 30ns.

execution
cancelled

state (i ) state (i+1)

>

retry |

state_i+1 state (i+2)

v

Figure 2.4: A short error detection latency allows cancellation of an
instruction.
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2.3.3. Instruction Retry

For systems in which the latency of the error detection mechanisms is too
long for a simple cycle cancellation, a method called ‘‘instruction retry’’ can be

used.

With the instruction retry method, the state of the processor is checkpointed at
each instruction boundary. Then, upon the detection of an error during the
execution of instruction ‘j’, the state present after instruction ‘j-1’ is restored, and
execution resumes. In this way the error detection latency is stretched from one
machine cycle to the instruction latency of the fastest instruction (smallest latency).
But because of the various instruction latencies present in the instruction set of a
processor, the storage for checkpointing each instruction must be based on the
longest instruction or on the instruction which changes the most states. For
example, if a processor executes instructions with latencies varying from 2 cycles
to 8 cycles, the error detection latency must be smaller than 2 and the storage must
be large enough to accommodate up to 8 changes of state. The controls for such a
‘“‘temporary storage’’ become quite complex when a wide range of instruction

latency is present in the instruction set of a processor.

The IBM 4341 processor uses instruction retry to recover from errors detected

by the three following error detection methods: [Ciac81]
— duplication and comparison of the lines
— parity bit
— detection of special error conditions (e.g. invalid control register)

When a malfunction is detected, either the operation is successfully retried or
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the operation is aborted. Instructions are re-executed by restoring state information
that is continuously saved and periodically purged by hardware. If the instruction
needs to be aborted, information regarding the cause of the termination is sent to
the machine check interrupt process. Ciacelli claims that the saving and purging
does not affect the performance of the machine. For a VLSI processor we
anticipate that instruction retry would impair performance slightly. Based on our
experience [Tami91] we believe that the insertion of shadow registers for saving
the processor state as well as the extra control signals needed for the retry
mechanism would lead to increased bus capacitance and more complex controls,

which both contribute to lower performance.

An implementation of error detection and instruction retry for a VLSI
microprocessor is described in[Tsao82]. The error detection techniques

implemented are:
— aself-checking PLA for the control part,
— parity checkers for the buses,

ALU errors are not detected unless the chip is matched with an identical chip
running in master-slave configuration (duplex mode). The authors acknowledge
that the error detection hardware is limited (due to area consideration) but they
claim that if the chip is used in a master-slave configuration, single transient errors
are all detected.

In[Tsa082], upon the detection of an error occurring during the execution of
the current instruction, the processor has to capability to retry that same
instruction. To accomplish this, a shadow register is attached to every single state

register on the chip. The shadow registers hold the contents of the state registers
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which were present at the end of the previous instruction. If an error is detected,
the modifications made to the state registers during the execution of the curmrent
instruction are discarded and the previous contents are restored from the shadow

registers.

The method described is efficient for simple error detection mechanisms and
for simple processors, such as the Fairchild F8 used as the target machine, but is
not viable for more sophisticated error detection techniques combined with modemn
VLSI pipelined processors. Using the proposed instruction retry method, the
detection of the error must occur before the execution of the following instruction
(or when the normal state register is copied to the shadow register). In this case the
detection must either (a) be executed serially with the execution of each instruction
— a severe loss in performance, or (b) be executed in parallel — a severe time
restriction limiting the complexity of the of the detection technique that can be

used.

For modern processors, there are several other problems with instruction retry.
First, the state of modern VLSI processor is large and precludes the use of shadow
registers for every single register (the register file for example would have to be
duplicated, adding from 32 to 128 extra registers to the layout). Secondly, modern
RISC processors are heavily pipelined to increase performance. This has the effect
of having several instructions executing in parallel in different stages of the
pipeline. To “‘retry’’ a single instruction becomes more complicated due to the
following reasons:

(1) Different instructions take different number of cycles to execute. The

instruction retry mechanism would have to be designed to accommodate several
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“‘kinds’’ of instructions.

(2) Modern processors achieve high performance by supporting out-of-order
execution of instructions. By definition, instruction retry requires the processor to
roll back to a precise instruction boundary {Smit88]. The ability to roll back to a
precise instruction boundary is also needed in order to support the normal
semantics of interrupts and exceptions[Smit88]. Since instructions modify
processor state out-of-order with respect to the order in which they are issued,
complex dedicated hardware is required in order to support precise
exceptions [Smit88, Hwu87]. The overheads associated with this hardware are
significant, leading to many recent processor designs which avoid full support for
precise exceptions [Sun91, Groh90). Identical hardware is required to support
instruction retry. Hence, instruction retry mandates the overheads associated with
support for rollback to precise instruction boundaries. Micro rollback, on the other
hand, can be implemented for these processors at a significantly lower cost

(Section 4.2).

We will describe, in Chapter 3, error detection methods that offer high
coverage at the expense of long error detection latencies (beyond a single
instruction). We will also describe, in Chapter 5, multi-modules systems where
errors signals are propagated throughout the system without having any knowledge
of what kind of instructons different modules are executing. With instruction
retry, it would be very difficult to synchronize the error signal with the execution
of a particular instruction. The results from Chapter 3, Chapter 4 and Chapter 5,
will show that it is desirable to have a repair mechanism that offers:

(1) Independence between processor performance and the error detection latency.
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This allows the use of error detection mechanisms with long latencies without
decreasing the processor performance.

(2) Independence between the retry mechanism and the instruction semantics of the
module (in order to simplify the implementation)

(3) Independence between different modules. Modules do not need to know the
specific instructions that other modules are executing. The synchronization of the
retry mechanism should be simple and based on semantics-free synchronization

points (e.g. cycles).

The technique that we propose, micro rollback, offers the advantages
described above. It differs from instruction retry since rollback is performed on the
basis of clock cycles rather than instructions. This allows rollback to be executed
at the logic level, without keeping track of instruction semantics and instruction
pipeline conditions. As a result, the micro rollback capability can be independently
implemented in each module of a synchronous system, regardless of its function,
by following very simple specifications — it must be possible to roll back all
storage elements by any number of cycles up to a specified limit (Chapter 4).
Building blocks which are capable of micro rollback can be interconnected in
arbitrary ways to construct synchronous systems capable of micro roliback (chapter
5). Such flexibility is difficult to achieve if the semantics of rollback are tightly

coupled to the specific function of each module.
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2.4. Related Work

Comparison with precise interrupts methods

At the micro-architecture level, the technique we present for micro roliback of
the register file has some similarities with schemes for precise interrupts in high-
performance processors [Smit88, Hwu87]. Because high-performance processors
are heavily pipelined, so that several instructions can executed simultaneously, and
because of the different latencies of the processor’s functional units, instructions
are often allowed to modify the state of the processor in a different order from

which they were issued.

During the execution of a program, if an interrupt occurs, the state of the
running processor may not reflect the state that the processor would have if the
instructions were executed sequentially. This occurs when instructions modify the
processor state out-of-order. For example, an integer addition (short latency)
issued after a floating-point divide (long latency) may complete and send its result
to the register file before the divide completes. If the divide instruction later causes
an exception (e.g. divide by zero, overflow, etc.), the current processor state does
not represent the state present when the divide was issued. In order to resume
operation quickly after an exception, it is essential to have access to the state
present before the instruction causing the exception was issued. Special techniques
have been proposed [Smit88, Hwu87, Mele89] to ‘“‘recover’’ the proper state so

that execution can proceed upon termination of the interrupt.

An analogy can be drawn between repairing the state of a processor in order

to process an interrupt, and repairing the state of a module following the detection

27



of an error. In both cases we have to undo portions of instructions that should not
have been executed. In the context of out-of-order execution machines, higher
performance is achieved by issuing instructions speculatively hoping that
previously issued instructions will not cause an exception. In the context of fault
tolerance, modules proceed conditionally hoping that the error detection
mechanisms will not signal that an error has occurred a few cycles ago. In both
cases special techniques must be provided so that the stare of the processor/module
can be repaired for execution to resume. We will give in Chapter 4 a more
extensive comparison between the different techniques. Specifically we will
compare the Delayed-Write Buffer (DWB) with a reorder buffer with
bypasses [Smit88] and with the forward difference scheme [Hwu87]. We will show
that micro rollback is inherently simpler — there is no need to keep track of
instruction boundaries since the rollback event is transparent to the software. Also
many of the proposed schemes for precise interrupts will be shown to require
multi-cycle rollback, increased bandwidth to storage elements, and complex

contrel.

Exception repair mechanism for the Motorola 88000

A high performance VLSI RISC processor, such as the Motorola 88100, in
which several Special Function Units (SFU) can operate in parallel, requires
special hardware to be able to handle exceptions. The processor’s SFUs have
different pipeline latencies and exceptions can occur at various stages of the
pipeline. Because of the complexity of building an exception repair mechanism,

Motorola chose a combination of hardware components and software routines to
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handle exceptions.

The processor contains several ‘‘shadow’’ registers which are copies of the
register they accompany. For example, each one of the Execute, Next and Feich
instruction (pointers to instructions) have a shadow register. Upon the detection of
an external interrupt or an internal exception, the shadow-freeze (Sfrz) bit of the
processor-status register (PSR) is set and all the shadow registers freeze. All SFUs
also freeze and the instrucdon unit fetches the instruction pointed to by an

exception vector.

Handling of a trap instruction is slightly different. The machine
“‘synchronizes’’ itself before taking the trap. The SFUs are emptied, memory
accesses are completed, and the shadow registers are frozen. Trap processing then

starts at the instruction pointed to by the trap vector.
The shadow register method offers the following advantages:
— it restores the processor state quickly following an exception,
—— itis relatively inexpensive,
— it ““frees’’ the normal logic for exception processing.
But it also presents the following disadvantages:

— if nested exceptions occur, the shadow registers must be saved by a
software routine before jumping to the next exception (the shadow
registers must also be restored upon returning from the second
exception).

— it does not provide precise exception for all cases.

Imprecise exceptions occur for the Motorola 88000 because some exceptions
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are reported late in the floating-point pipelines. To resume operation following an
imprecise ciccption, several registers containing the 5-bit opcode that identifies the
instruction type, the exception handler that became enabled, and the destination
register for the result (plus other information), are provided. Using that
information, Motorola claims that software routines can complete instructions that
caused imprecise exceptions. Unfortunately using this method the processor state
cannot always be restored to a correct state since the program counter cannot
always be restored to the instruction following the exception-causing instruction
(e.g. when a branch occurs) [Mele89]. For these cases, precise exceptions can be
provided by serializing the execution of each floating-point instruction, which

results in a significant reduction of performance in many applications.
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Chapter Three

Error Detection and Correction Circuits
for VLSI Processors

In many applications the performance penalty of system-wide recovery cannot
be tolerated, so it is desirable for modules to include mechanisms for rapid
correction of most internal errors (i.e., loca¥ recovery). In other applications, some
system-level actions for recovery are acceptable but high-speed checkers are
needed to detect errors as soon as they occur and prevent the spread of erroneous

data throughout the system.

Many of the techniques used to detect and correct errors caused by hardware
faults rely on a few basic components: encoders, decoders, comparators, and data
compression circuitry. In a VLSI processor, coding can provide error detection and
correction (EDC) for data kept in the register file and other storage (e.g. PSW,
caches, TLB), as well as for data processed by the ALU (e.g. using arithmetic
codes [Aviz71b] ). For example, single-bit parity can detect an odd number of
errors in registers, while Error Correcting Codes (ECC), such as Hamming code,
provide error correction capabilities [Rao89]. Check bits must be computed every
time storage is modified, and verified whenever storage is accessed. In many
modern processors a modification or access of the register file can occur every
cycle, thus requiring low latency and high throughput for the circuits generating
and verifying check bits. To achieve higher coverage and to detect errors in other
modules (not just storage), duplication and comparison can be used [Down64,

Tami83] at either the module or chip level. To minimize detection latency, values
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of internal nodes of modules should be compared each cycle. If most of the
internal state is not observable from existing pins, numerous extra pins may be
required. In order to reduce the number of extra pins, values of key internal nodes
can be ‘‘compressed’’ efficiently (on-chip before comparison), into signatures of a
few bits, with only a small reduction of coverage[Sedm80, Davi81, McCI85].
Since the comparison is done every cycle, compression and comparison must also

be performed with low latency and higﬂthroughput.

The modules required to implement the error detection and correction
techniques described above, consist mainly of encoders, decoders, comparators,
and data compression circuits. These circuits rely extensively on Exclusive OR
(XOR) gates. Alternative implementations of multi-input XOR gates are presented
in Section 3.1. The different implementations are evalvated with respect to
performance, area, and noise margins. The evaluation is performed in the context
of the microarchitecture of a VLSI RISC processor where such modules might be

used for error detection and correction.

In Section 3.2 we describe and evaluate circuits for implementing Error
Correcting Codes (ECC) based on Hamming Code, in which code generation and
error correction require multiple parity circuits. Through proper choice of high-
speed parity circuits and the specific code to be used (M-code [Cart76, Rao89]) fast
correction and check bit generation are achieved.

In Section 3.3 we discuss the comparators and data compression circuitry
needed for implementing duplication and comparison. When the two modules
whose outputs are being compared are on different chips, compressing the data and

sending it off chip for comparison may introduce significant delays in system
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operation. This potential performance penalty can be greatly reduced (as we will
explain in details in subsequent chapters) by using micro rollback [Tami88b],

which allows detection to be performed in parallel with normal system operation.

3.1. Implementation of Multi-Input XOR Gates

Multi-input XOR gates are key building blocks for many error detection and
correction circuits. For example, a single parity bit is generated by XORing all bits
in a data word. A single parity codeword is verified by XORing all bits in the
codeword. Check bits in error detection and correction codes based on Hamming
codes are also generated and verified by computing the parity (XOR) of a subset of
the bits in the word [Rao89].

ndiff nfet

A R
nd_cont pd_cont nwc pwc

metal 1 . via metal 2
Figure 3.1: Representation of all layers for our layouts.

In this section we describe and evaluate several different implementations of

multi-input XOR gates. Our implementation technology is double-metal 2 p

CMOS (MOSIS SCMOS design rules with A =1p). Figure 3.1 shows how the

different layers are represented throughout this thesis. The evaluation criteria are
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speed, size, and noise margins. The speed is determined by circuit simulation
using SPICE. The high noise margin (NMy ) is defined as the difference between
the minimum high output voltage of the driving gate and the minimum input high
voltage recognized by the receiving gate [West85]. The low noise margin (NM; ) is
defined as the difference between the maximum low output voltage of the driving
gate and the maximum input low voltage recognized by the driven gate [West85].
Our circuit simulations show that for static CMOS circuits (with V,, =0.74 Voir):
NM; =NMy =2.1Volts. NM; is kept at 2.1 Volts in all the circuits described in
this chapter. NHy varies depending on the technique used and is thus the value

that we report in the discussion of the circuits.

The most appropriate XOR implementation cannot be selected without
considering the specific use of the circuit: where on the chip it is connected, pitch
matching with other circuits, use for single bit parity or for multiple check bits in
an error-correcting code, etc. As a specific example, we discuss the use of multi-
input XOR gates for error detection and correction in a VLSI RISC processor. A
simplified datapath of a VLSI processor is shown in Figure 3.2. Two registers can
be read simultaneously from the register file and their values are transferred over
internal buses to the shifter or the ALU. The internal buses are also used to
transfer the results of the ALU or shift operation back to the register file [Sher84].
If the register file stores redundant bits for error detection and/or correction, values
read from the register file must be sent to checkers, which verify and/or correct the
data. Since two values are read simultaneously, two checkers are needed, each

connected to one of the internal buses (Figure 3.2).

If the XOR gates are used for generating and checking the parity of data being

34



Register File Parity/ECC 1 Parity/ECC 2 Shifter ALU

i 4

donnection
(to buffer) buses go
through

e

Zl

onl )? one
tonnectiop

(to buffer)

Figure 3.2: A simple processor with a two-port register file. Two bus
lines are routed over the parity/ECC circuitry.

transmitted over a bus, the pitch of each cell must match the pitch of the data bus.
We will first discuss the performance (delay) and size (chip area) of checkers
attached to a two-port register file designed with a pitch of 50 A. This pitch was
chosen to match the pitch of a simple processor datapath. It is the result of a
compromise between two conflicting factors: (1) a smaller pitch minimizes the area
of the register file, and (2) a larger pitch simplifies the layout of other datapath

cells (ALU, shifter, etc) and results in a shorter datapath.

We will describe how the metrics of the parity circuits change when the data
bus pitch is reduced to 39A. The advantage of this pitch is that it allows a smaller
implementation of the register file (numbers are given in a latter section). We will
also discuss the implementation of these circuits for use with the relatively large
datapath pitch (74) of the SPUR processor [Lee89]. Given a fixed pitch, the only
flexibility is with respect to the size of the cell in the direction of the bus, we

henceforth called this size the stride of the circuit.
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As shown in Figure 3.2, the internal buses are routed over the parity or ECC
circuitry. For high performance, these internal buses are implemented in metal,
typically second-level metal. The two bus lines over each cell of the parity or ECC
circuitry limit the use of second-level metal in these cells, thus making the layout
of the cells more difficult. The parity/ECC circuitry can reduce the performance of
the datapath due to two sources of added delay: (1) the gate capacitance of the
buffers which drive the parity/ECC circuit, and (2) the additional capacitance of the

bus lines, which must be lengthened to accommodate the parity/ECC circuits.

Xo X Xn X Xa X X5 X Xg X Xip X X5 X X34 X
|0 |1 |2 ’3 |4 |5 6 |7 18 Ig ro r] rz r3 r4 rS

i e = =7 = =

l

Figure 3.3: 16-input tree of XORs.

* parity

3.1.1. Static Implementation

An M-input XOR gate can be implemented as a tree of 2-input XOR gates

(Figure 3.3). The resulting stride of a tree laid out as shown in the figure is:

({ log, M] xCelly, 4. tMetaly,, ). The Metaly,, term is the stride for routing the

parity signal, which is a single metal line, out of the datapath. With SCMOS
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design rules, Meraly;,,, is 7A (4A for the line/contact and 3\ for spacing). In a VLSI
layout, non-rectangular modules are undesirable since it is difficult to pack them
efficiently on the chip and significant chip area is wasted. However, the layout of a
binary tree can be compressed to only two rows of | M /2] cells by slightly
modifying the design of the basic cell, and by reorganizing the layout as shown in

Figure 3.4. In this «case, the stide of the wee  becomes
2xCellgypige + (([logzM-l - 1) x Metaly;,,, ). The second term is the stride required
to route wires connecting XOR cells in the second row (routing wires below the
cells in Figure 3.4), as well as for routing the parity signal out of the datapath. The

layout of the XOR cell allows the first row to be connected to the second row

without any extra stride for routing.

A N 0 S A A A i l nli
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'pariry

Figure 3.4: Compact layout of a 16-input tree of XORs.

A possible static logic implementation of a 2-input XOR gates, is shown in
Figure 3.5. The basic 2-input static XOR gate was laid out to match the pitch of
100 A for every two bits leading to a stride for each-cell of 23 A (Figure 3.6). For
the complete tree, the stride is twice the stride of the basic cell plus some routing,
which adds up to 70X (compared to 122 for a straightforward layout of Figure

3.3). A 32-bit parity is generated in 9.25ns. Because of the wide pitch available
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Figure 3.5: Static XOR

for a two-input XOR gate, 100A, each gate is laid out with practically no second-

level metal, simplifying the routing of the buses through the circuit.

us .. Q

R I ey DU i -

Figure 3.6: Layout of a static XOR gate

3.1.2. Chains of Switching Cells

An M-input XOR gate can be implemented using a chain of M swirching
cells [Siev82], as shown in Figure 3.7. The switching cell (Figure 3.8) consists of
four pass gates that have the capability to either interchange the inputs so that

Og=1,and O, =1, if D; =1 or to leave them intact if D; =0. The inputs I and
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I, of the leftmost cell are connected to Vdd and GND respectively. For a data
word of M bits, with Y ones, the logic one signal entering the first cell will be
interchanged Y times and will pass through the cells M-Y times. If Y is even then
the outputs of the right-most cell will be Og=1, 0,=0, if Y is odd, the outputs
willbe 0=0,0,=1.

do"—'l d1=0 d2=1 d31=1

| | |
X X e ST

vev
®

vdd
L
L

Figure 3.7: A chain of switching cells

....................................................................
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Figure 3.8: A switching cell

Since each switching cell requires both the true and complement values of the
data lines (DgD,, - .Ds;), inverters are connected to the bus to provide
D, 0_5 L D 3;. The stride of the complete parity circuit must include the stride of

an inverter, which is around 25A (depending on the width).

As with a Manchester carry chain adder, performance can be improved
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significantly by restoring the signal with a buffer every k stages, where typically
k =4 [Mead80, Siev82]. Hence, the width of the XOR cells must be significantly
smaller than the pitch of the data bus. Four switching cells and a buffer must fit in
four times the pitch. Due to this alignment, routing is necessary to bring the value
carried by the bus to the XOR gates and back to the data bus, which also

contributes to the total stride of the parity circuit (Figure 3.11).

Alternative implementations of multi-input XOR gates using pass gate chains

are investigated in the rest of this section.

D; D;
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Figure 3.9: A switching cell implemented with N-transistors

3.1.2.1. N-Chain

The simplest implementation of a switching cell uses four N-transistors
(Figure 3.9). Four such cells connected serially produce a result (the parity of four
bits) with a delay of 1.5ns. For a chain of 32 cells, the delay grows approximately
quadratically with the number of cells [Siev82], leading to a total delay of over

60ns to compute the parity.

As discussed above, performance can be improved by connecting a buffer in
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the chain every four cells, thus obtaining a delay that only grows linearly with the
total number of cells. The longest delay for a sub-chain occurs when one rail,
previously discharged, must be charged to Vdd. If the buffer is a simple inverter,
the total delay for the chain consists of the time to charge the first sub-chain, then
discharge the second sub-chain (since the value is inverted), and so on, for the next
six sub-chains. The worst case delay for the propagation of the signal through the

chain takes 41ns.

Due to the buffer every four cells, the width of the switching cells must be
different from the pitch of the data bus. Four switching cells and a buffer fitin a
width equal to four times the pitch (200A). Our layouts show that for a buffer of
52X and four switching cells with a width of 37\ ((4x37A) + 52X = 200A), the

stride of the chain is 28A.

If non-inverting buffers (two inverters for each rail) are used instead of
inverting buffers, each sub-chain of four cells can be precharged to Vdd-Vth. With
the two leftmost inputs connected to Vdd, since either d; or d; is asserted for each
cell, all segments between the switching cells have a path to Vdd (through at least
one N-transistor). Parity is then calculated by selectively discharging one rail
through a chain of N-transistors and inverters. After a delay of 43ns for the
precharging of such a chain, the discharge can be accomplished in 23ns. Hence, if
the time for precharge is available, the actual computation of the parity is faster
than with inverting buffers. In order to accommodate the more complex circuitry
of the non-inverting buffers (width of 761), the width of the switching cell is
reduced to 31A ((4x31A) + 76A =200L). This results in a small increase of the
stride of the switching cell from 28\ to 30A (Figure 3.10). We show in Figure 3.11
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Figure 3.10: Layout of a switching cell implemented with N-transistors

the floorplan of a complete circuitry for a sub-chain of four cells. For the N-chain
the total stride accounts to 73A.

Circuits simulations indicate that, if the chain is implemented in an N-well
process, the logic 1 levels at the internal nodes of the chain are degraded from
V41 =5 volts to 3.55 volts , because a logic 1 is passed through N-transistors. This
reduces the high noise margin from the normal NMy =2.1Volts 1o
NM; = 0.65Volts [West85]. The three methods discussed in the following three
subsections improve the noise margins of the internal nodes at the expense of a

small increase in area (stride).
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Figure 3.11: Layout of a sub-chain of 4 switching cells (n-chain) with
their inverters, a non-inverting buffer and the necessary
routing.

3.1.2.2. N-Precharged Chain

D; D; precharge
>____..__J““:! » >
— N
—— sV
T » >

Figure 3.12: N-precharged XOR cell

It is possible to avoid passing a logic one through N-transistors by
precharging the entire chain to one and discharging nodes through the N-transistors
(Figure 3.12). In order to minimize the size of the cell, precharging is done
throhgh N-transistors. The critical path consists of passing a zero through the

chain, which takes 23ns. In order to improve noise margins, the voltage of the
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precharge signal can be raised to Vdd + Vih, so that the nodes are charged to a
proper logic one voltage level (Vdd). Our simulations show that with a precharge
signal of 7 volts, the precharge of the whole chain to Vdd is done quickly in 1.23ns.
This supposes the availability of a 7 volt voltage source, a severe constraint for a
VLSI circuit. The noise margins are restored to normal levels and the delay for
computing a 32-bit parity is 28ns (with double buffers in the chain). The stride of

each cell is 322 (Figure 3.13).
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Figure 3.13: Layout of an N-precharged switching cell

Theoretically it is possible to eliminate the need for a second power supply.
Bootstrapping can be used to generate this signal from a nominal voltage

Vdd [Glas85). We show an example of a bootstrap circuit in Figure 3.14 [Glas83].



The bootstrap capacitance Cp,p, is used in the figure to bring the voltage of node A
10 Vyy+Viesoid- That voltage when applied to the gate of transistor M, will
precharge the output capacitance C,,, to V4. A detail explanation of
bootstrapping circuits can be found in[Glas85]. Bootstrapping requires a
“‘bootstrap’’ capacitance that is several times larger than the capacitance of the
nodes that are to be charged to the high voltage. For this circuit, the precharge
signal is applied to the gates of 64 transistors so the boot capacitor must be more
than 100 times larger than the minimum size transistor. To speed up precharging
of the large capacitance, multiple stages of bootstrap buffers may be used. Taking
all this extra circuitry into account makes bootstrapping impractical for

implementing parity.

Vdd

Coarasitic —:JE Choor

Precharge Node

precharge —~ M, — = Cou

Figure 3.14: Bootstrap circuitry to charge a node to V,, through N-
transistors

The addition of N-transistors for precharging, results in small increase of the
stride of the switching cell (32A compared to 30A for the N-chain). The buffer on

the other hand can be made smaller since it can be stretched in the direction of the
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stride to 32A. The width of the buffer is thus reduced to 72A (from 74A). The
stride for the complete parity circuit is 74, only 3\ more than the N-chain (the

size of the bootstrap circuitry is not included).

3.1.2.3. P-Precharged Chain

The requirement for a higher voltage precharge signal can be eliminated by
precharging the chain through P-Transistors (Figure 3.15). Because of the presence
of two wells in each segment, the stride of the XOR cell increases to 46A. The size
of this cell is constrained by the need to route vertically two data buses, two signal
lines for power (for the precharging) and ground (for well plugs) and one line for
the crisscross inherent to the switching cell (when D; =1 the signals switch rail),
all in second level metal. These constraints lead to a cell width of
(2x3)+(3x4+(5x4) = 38X as shown in Figure 3.16. The numbers above represent
respectively the data buses width (3)), the power lines and width of the via contact
necessary for the crisscross line (41), and the required separation between second
level metal lines (4)). While the stride is increased, the noise margins are normail
and the bootstrap circuit is eliminated. The delay to compute the parity through 32
switching cells and 8 double-buffers is 29ns, this following a precharge time of

1.5ns.
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Figure 3.15: P-precharged XOR cell

[N

Figure 3.16: Layout of a P-precharged switching cell
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3.1.2.4. Dual-chain

The switching cell can be implemented using full transmission gates
(Figure 3.17). The noise margins are then maintained at proper levels but the stride
of the basic cell, which now contains twice as many transistors and two wells, is
73X (Figure 3.18). On the other hand, a double buffer can be implemented by
“‘stacking’® one buffer on top of the other reducing its width (48)) and more
importantly, use of second-level metal in the cell can be avoided, making the
routing of the buses straightforward (using second-level metal). The total stride of
the parity circuit is 101A. The total delay for the chain is longer than the delays of
the previous chains, due to the added capacitance at each node. A 32-bit parity is

now calculated in 34ns.
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Figure 3.17: Dual-chain XOR cell
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Figure 3.18: Layout of a dual-chain switching cell
3.1.2.5. Switching Cells With Sense Amplifiers

8 inputs 8 inputs 8 inputs 8 inputs

{ 4 ¢ 4

|k — |

| = Switching Cell

+

= Sense Amp. Parity

Figure 3.19: Tree of 8-input XOR with sense-amp.

" Davis [Davi85] proposed an implementation of a multiple-input XOR gate

using a 2-level tree of 8-input XOR gates (Figure 3.19). Each 8-input XOR gate
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consists of 8 switching cells and a sense amplifier (Figure 3.20). The chain of
switching cells is initially discharged by setting the trigger signal to O volt. When
all data input pairs (D ,,D ;,D 2—,5 29eesD 32532) arrive, the trigger signal is set to 5
volts. At this point, the logic one propagates through the chain (from left to right in
Figure 3.20) until it reaches the sense amplifier. The latch signal is asserted as
soon as a voltage difference large enough for the sense amplifier to detect appears
at the inputs. That signal connects the sense amplifier to the chain and activates
the sense amplifier. The outputs of the sense amplifier (ourput and output)

provide the XOR and XNOR of the incoming data.

............................

U
]

Figure 3.20: A chain of XORs with sense amplifier

The chain is fully discharged in 2.3ns. It takes 3.3ns to propagate the trigger
signal through a chain of 8 switching cells. At this point the voltage difference
appearing at the inputs of the sense amplifier is around 100 mV. For an additional
safety margin, the sense amplifier is activated 0.5ns later (latch asserted). The

second stage consists of a 4-input XOR gate and takes another 2.5ns. The latch
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signal of the second stage is asserted 0.5ns later. Total delay for this circuit is 6.8

ns, the fastest among the circuits discussed so far.

RIS g?fff//ﬁls = ’?///fﬂ E T
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T

Figure 3.21: Layout of the sense-amplifier

Sense amplifiers speed up the calculation of intermediate results providing
fast computation at the expense of large area. The sense amplifier cell contains
significantly more logic than the switching cell, and therefore dictates the stride of
the chain (Figure 3.21). The sense amplifiers are significantly wider than the non-
inverting buffers and they are connected every eight cells instead of every four
cells. Hence, the distance between some cells and the corresponding bus lines is
larger than for previous chains, requiring more stride for routing. Adding this
stride to the stride of the inverter, the sense-amp, and the stride for routing the first
level to the second level 4-input XOR gate (which fits partially into the first level),

we obtain a total stride for the parity circuit of 142A.

For completeness, we note that a chain of 32 NMOS switching cells (Figure
3.9) connected to a single sense amplifier produces a parity bit after 31ns. The
stride of this circuit consists of 28 for the switching cell and 274 for the inverter

for a total of 55A. A period of 28ns must be allowed for discharging the chain
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before operation.

3.1.2.6. Metrics of the Parity Circuits

The characteristics of the different XOR gate implementations are shown in
Table 3.1. The circuits are designed to match the pitch of a dual-port register file
(50%). The table includes the stride and width of the XOR/switching cells, buffers,
and sense-amplifiers. Table 3.1 also includes the stride of the complete circuitry,
which consists of: an inverter for each input, the switching cell, and the necessary
routing (for the static tree the stride consists of two levels of XOR gates and
routing between the cells). The worst case circuit delay and the high noise margin

(NM,; ) of the chain are also shown.

XOR/Switch. Buffer/Sense. Parity Noise Mar, Delay
Implementation Stride | Width | Swide | Width | Stride | Width | MMy prech. | eval
OIS A a | A A) | (Volty [(ns) | (ms)
& Static tree 23 100 none none 70 1600 2.1 —_ 93
& Chain + buffers
N-hain (1 buffer) 28 37 28 52 0 1609 | 0.65 —_ 41
N-chain (2 buffers} 30 31 30 76 73 1609 | 0.65 43 23
N-precharged (5V) 32 35 32 72 76 1604 0.7 2 23
N-precharged* (7V) 32 35 32 72 76 1604 1.95 13 28
P-precharged 46 38 46 48 94 1608 2.1 15 29
Dual-chain 73 38 73 48 101 1602 21 36 34
s Chain + Sense-A.
1-level 28 50 34 113 55 1713 | N/A 28 3
2-level 34 3 34 152 142 1714 | N/A 23 6.8
* with second voltage source

Table 3.1: Metrics of parity circuits. Numbers given for ‘‘Parity’’ in-
clude the complete circuitry (inverters, XORs, routing, etc.)
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3.1.3. Influence of the Data Bus Pitch on the XOR Gate Design

The above discussion of various XOR gate designs is based on a data bus
pitch of 50A. Other designs may have different requirements for the data bus pitch
and the number of bus lines that must be routed over/through the cells. In this
section we examine qualitatively and quantitatively the influence of the pitch of the
data bus on the stride of the circuits. We discuss both smaller and larger pitches.
As mentioned earlier, we picked two representative datapath pitches: the pitch of
the data bus used in the SPUR project (74A) [Lee86, Lee89], and the pitch (391) of
a register file originally designed for minimizing the area. The three register files
differ in terms of: (1) area — the SPUR register file being almost twice as large as
the 39X register file, (2) speed — the S0 register file being slower than the 392
file because of the longer poly select lines, and slower than the SPUR register file,
which uses metal select lines, (3) ease of fitting cells of other modules into the
datapath — a larger pitch makes this easier. Table 3.2 shows the characteristics of
the three register files. For completeness, we have included the metrics of the 39A
cell and the SOA cell with metal select lines. For register files with more than two
ports, we anticipate that the larger pitch required to fit the extra circuitry for the
added ports, will lead to sufficient area for passing additional bus lines over the

cells (second-level metal is used almost exclusively for bus lines in our designs).

For the static cell, a decrease of the pitch only has a small impact of the
stride. We have designed a static XOR gate for the 39A pitch with a stride of 252,
only 2\ more then for the S0A pitch. For a larger pitch, one can see that the
original cell is already streiched out in the direction of the pitch (Figure 3.6), to
accommodate for a width of 100 (2 x SOA). Adding more space in the direction of
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Pitch | Stride | Area | Delay
OHEOEESER.D,
39A poly select 39 32 1248 19
392 metal select || 39 42 1638 14
502 poly select 50 28 1400 22
50X metal select || S50 37 1650 14
SPUR 74 32 2368 13

Cell

Table 3.2: Comparison of different register files used to evaluate the in-
fluence of the pitch on the parity circuits. Delays are for ad-
dressing and reading one of the 64 registers.

the pitch does not contribute to any significant decrease in the stride. Finally, the
delay for computing parity is not affected significantly by the slight change in

routing capacitances.

For a wide pitch (742), the stride of the N-chain (30A) and the N-precharged
chain (32A) can be reduced to the same stride as the one-buffer implementation of
the N-chain (28X). This represents a decrease for the stride of 6.7% and 12.5%
respectively. Those two cells can also be laid out for a pitch of 39A without major
modifications. The delays of the chains of switching cells for a larger pitch are
approximately 2ns longer because of the added capacitance due to longer routing

lines between each cell.

For a pitch of SOA, the P-precharged cell has a relatively large stride of 46A.
That is mainly due to the required separation of the wells (in contrast with the
N-precharged implementation which also has 6 transistors but a stride of only 322).
The extra space provided by a pitch of 742 allows one to compress the cell by
separating the wells, leading to a stride of 32A, a gain of 30% (Figure 3.22). As
mentioned earlier, the width of the P-precharged cell (for a pitch of 50A) is limited
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by the number of second-level metal lines (Vdd, Gnd, Busl, Bus2, crisscross line)
that are routed vertically. We did not succeed in laying out a cell that would

overcome this constraint for a pitch of 39A.

R ot
S R
SR SR

Figure 3.22: P-precharged XOR cell for a pitch of 74A

The Dual-chain can also benefit from a wider pitch. As illustrated in Figure
323 the two sub-chains can be placed side-by-side horizontally instead of
vertically as we had shown in Figure 3.17. One factor that helps reduce the stride
is the sharing of the wells; adjacent cells have their wells interchanged. This brings
the stride down to 32, a gain of 56%! The routing between the two sub-chains is
done using second-level metal, leaving only room for two bus lines to be routed
vertically (in the direction of the bus). The layout of this cell for a pitch of 394 is

equivalent to the original layout and the stride is not affected significantly.

The implementation using Sense-amplifier would only benefit slightly from a
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Figure 3.23: Dual chain of switching cells laid out horizontally

larger pitch since both the switching cell and the sense amplifier cannot be
compressed significantly. Moreover, most of the overhead in the full parity circuit
comes from routing the data bus and the two extra lines required to connect the
first stage to the second one. These two overheads are not reduced by a larger
pitch. To accommodate a pitch of 394, the switching cells can be made smaller
(down to a width =27X) but that only leaves 96A for the width of the sense
amplifier. This reduced width leads to an increase of the stride of the sense-amp of
30A. Our experience with different pitches indicates that sense amplifiers are more

appropriate for pitches of at least 46A.

In conclusion an increase of the pitch leads to comparable strides for the
different circuits. This has the effect of giving more freedom to the designer to
choose the implementation having either good noise margins or high speed. For a
smaller pitch, some implementations are severely restricted and may prove not
viable (P-precharged, sense-amplifier). The static implementation offers good
compromise regardless of the pitch, while the sense-amplifier implementation

presents the best speed but at the expense of large area. As we will see in the next
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section, the benefits of small but fast chains of switching cells becomes apparent in
the context of error detection and correction. In that context, taking into account
speed, noise margins, and area, the P-precharged chain may often be the best

choice.

3.2. Error Correction Circuitry

The XOR circuits described in the previous section can be used for error
detection with a single parity bit. Error correction codes (ECC) [Rao89] can be
used for correcting errors locally without resorting to system-wide recovery. In
this section we discuss the circuits required to to detect and correct errors in storage
elements using error correcting codes based on Hamming Code [Hamm50]. The
check bits of these codes are generated and verified using multi-input XOR gates.
Each check bit is generated by XORing a different subset of the data bits. When
storage is accessed, the same subsets and their corresponding check bits are
XORed to produce a syndrome, which is used to correct some errors and flag others

(e.g., multiple bit error) as uncorrectable [Rao89].

This section focuses on circuits which provide single error correction and
double error detection (SEC-DED). The measurements presented are based on a
SEC-DED code for a 32-bit word. We use a variation of the conventional
Hamming code, called Maintenance code (M-code) [Cart76, Rao89]. Both codes
require XORing several bits to obtain the syndrome but M-code has the advantage
that the maximum number of bits to XOR is smaller, resulting in faster operation.
For example, for a 32-bit word, the syndrome is generated by XORing at most 15
bits, while Hamming code as used in [Davi85] requires XORing up to 33 bits (32
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data bits and one check bit).

Data Bits Check Bits

T111111111222222222233|
i |01234567890123456789012345678001 | © 071626364056

goi11111111111111 1
g(]11111 111111111 1

g2|1 1388 1111 11111 1

g3/ 1 1 111 1 11 111 111 1

g4/ 1 1.1 1 1 1 111 11111 1

gs 1 1 111 1 111 11111 1
g6 1 111 1 11 1111 1

Figure 3.24: M-Code parity check matrix (PCM) for 32-bit Words

The parity check matrix (PCM) for a 32-bit word encoded according to a M-code is
shown in Figure 3.24. The PCM shows which data bits are used for the
computation of each check bit. Each row corresponds to a check bit. A “1” ina
particular column of the PCM indicates that the corresponding bit is in the set of
data bits XORed to generate the check bit. One characteristics of the PCM of M-
codes is that each column and each row have an odd number of ones [Cart76]. The
odd-weight-column property allows the discrimination of even number and odd
number of errors and gives better multiple-error detection capability than the
even-weight-column code [Rao89]. The ones in each row of the PCM represent the
data bits (numbered O to 31) that are XORed to generate each check bit
(cp-Cys """ Cp)-

The organization of the circuitry required to perform error detection and
correction is shown in Figure 3.25. The syndrome generation requires seven rows
of multiple-input XOR gates. Hence, minimizing the stride of the cells forming the

XOR gate becomes more critical than for single-bit parity. The multi-input XOR
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Figure 3.25: Error detection and correction of a 32-bit word.

gates can be implemented in the same way as the parity circuits described in the
previous section. The stride and delay of the syndrome generation circuitry for the
six different implementations are shown in the top part of Table 3.3. The total
stride of the syndrome generation circuitry includes (from top to bottom): routing
for pitch adjustment from the data bus to the inverters (pitch adjust in), the
inverters, the switching cells, routing for pitch adjustment from the syndrome

generator to the data bus (pitch adjust out).

For fast operation and good noise margins at the expense of large area, a static
implementation of the multiple input XOR gates can be used for generating the

syndrome. If area is the main concern, (disregarding noise margins), N-chain XOR
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. . N-prech. | P-prech. Dual | Sense
Swatic | N<hain | " i | Chain | Chain | Amp.
pitch adjust. in 2 4 4 8 1 33
inverters 0 27 28 28 22 27
stride (?\.) Switches (XORs)|[483 210 224 322 511 392
Syndrome . .
X pitch adjust. out 0 12 12 i2 5 48
Generation total ags | 2s3 28 370 | s39 | 500
precharge — 17.0 1.0 1.5 16.25 25
del
elay (MS)) \aivate 75 | 100 12.8 123 | 160 5.0
Emor |area (A%) |total 49300
Ident* |delay (ns)|total 56
decoder 138
stride (7\.) muxes 60
Correction XOR 58
total 256
delay (ns)|total 8
EDC stride (A) | total 741 509 524 626 795 756
delay (ns)|total 211 236 264 259 296 18.6
* outside of the datapath

Table 3.3: Area and delay of alternative implementations of error detec-
tion and correction circuitry (pitch = S0L).

gates can be used. Precharging with a higher-voltage signal can be added to obtain
good noise margins, however there is a significant amount of additional circuitry
required for bootstrapping. As with the parity generation, a P-precharged chain
offers a good balance between speed, area, and noise margins. The large size of
the dual-chain makes it impractical for use in the context of ECC. The sense
amplifier implementation can achieve fast operation, at the expense of large area

and high complexity for the generation of the sense-amplifier latch signals.

Once the syndrome is generated, it can be used to determine if there is a one-
bit error, a double-bit error, or no error. Each data bit is involved in calculating

exactly three check bits (Figure 3.24). If there is a single-bit error, three ones will
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Figure 3.26: Identification of the error,

be generated in the syndrome. For a double bit error, two sets of three bits (among
the seven bit syndrome) are affected, always resulting in an even number of ones in
the syndrome. When the data word is error-free, the syndrome bits are all zero
(since all the check bits match). Figure 3.26 shows the logic used to identify the

location of a single-bit error and to detect the presence of two errors. This circuitry

61



Check Bits

Be—Eg LNNARAAT

1
= 3
¢ ! [ eo—
4 e
-} NI ] T a L M
B = & L H H H
- = | i
L i — 5 | M |
7 Switching Cells
frogropey=
e : L
]
e =R '
L L mi Al
—D ; SNERFERIRIR]
To Decoder
Figure 3.27: Layout of the circuitry required to detect and identify the
€ITOr.

62



does not increase the length of the buses since it is connected to the error detection
circuitry outside of the datapath. The layout of this circuitry, measuring 493002, is
shown in Figure 3.27. The seven XOR switching cells driven by the check bits
(coCy -+ »c6) have been re-aligned to form a single column resulting in substantial
savings in terms of area. To do so, the check bits have been routed over the
circuitry using second-level metal. The signals single error and double error are
conditionally asserted Sns and 5.6ns, respectively, after the syndrome appears. The
main component of this delay comes from the 7-input XOR gate that detects if the

syndrome has an odd number of ones.

Once a single bit error is identiﬁéd, the address representing the location of
the faulty bit in the data word is routed to a decoder. The outputs of the decoder
control XOR gates (the “‘corrector’” in Figure 3.25), which invert the appropriate
bit. The correction process takes 8ns. Other metrics of the corrector are shown in
Table 3.3. In that table, the measurements for the total stride of the ECC circuits
are for the circuits which are in the main part of the datapath and thus contribute to

increasing the stride of the data bus.

The floorplan of the complete implementation of the error detection and
correction circuitry, using P-precharged switching cells, is shown in 3.28. Other
possible implementations of the detection circuitry (e.g.. static, dual-chain, etc),
will not require major changes in the layout (except for the size of the error

detection circuit).

63



Check Bits

Detection Inverter 7 XOR — | |
Circuitr

cuitry | ke T
1 nor

Switching Cells

Error
| Ident.
Correction Skperbifferk
Circuitry Decoder +
Routing

XOR ;? Muxes

Figure 3.28: Floorplan of the complete error detection and correction
circuitry. All modules are drawn to scale.

3.3. Duplication and Comparison

Using duplication and comparison it is possible to achieve high-coverage
error detection for all types of modules [Sedm80, Tami83, John87]. Two identical
modules process the same information in parallel and some of their output pins are
compared every cycle (Figure 3.29). In this section we described the circuits
needed for duplication and comparison. These include comparators as well as data
compression circuitry necessary to reduce the pin requirements when the two

modules whose outputs are compared are on different chips.

3.3.1. Compression

It is often impossible or undesirable to duplicate large VLSI modules, such as
processors, on the same chip. Duplication and comparison with such modules
requires using at least two chips. Hence, comparison is limited to the information
available at the pins. Since many of the results computed by the processor do not

immediately appear at the pins, if the comparison is based only on values available



at the pins, the system is likely to have long detection latencies. This problem can
be solved by including in the compression internal information, such as the output
of the ALU, the PSW, and various state registers. The number of bits to compare
may thus easily add up to more than one hundred, requiring many extra pins. In
order to reduce the number of bits to be transmitted across pins to the comparator,
the values on internal nodes can be ‘‘compressed,’” leading to large reduction in pin

bandwidth requirements with a small reduction in coverage [Davi81, McC185].

Processor 1 Processor 2
Internal Internal
State State
17100 bits 17100 bits
Compression Compression
14 bits A4 bits
Comparator

Figure 3.29: Processors Running in Duplex Mode

There are many possible ways to *‘compress’’ data[McCI85]. A simple and
effective data compression technique is to use several parity bits computed across
the data word to be compressed. For example, for a 32-bit word, we can compute a
4-bit “*signature’’ by constructing four interleaved parity chains, each consisting of
eight bits from the word. Each chain includes every fourth bit in the word. The

implementation of this interleaved parity scheme uses the circuits already
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described in Section 3.1. A large percentage of errors can be detected by
comparing the 4-bit signatures of the two words: any odd number of bit errors and
many multple bit adjacent errors. For random multi-bit errors, 93.75% of the
errors will be detected because the signature of the corrupted word has a
probability of 1/16 (6.25%) of matching the signature of the correct word (16

different signatures can be obtained from 4 bits).

by by by, by by bs bg by bag bag b3 by

B om RN R

* P
* P2
> P3
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AN e

Chains of XORs compressed
word

Figure 3.30: Interlaced parity used for compression

A 4-bit signature of a 32-bit word can be generated in 6ns using four 8-input
P-precharged chains (Figure 3.30). Since the chain is small (8 inputs), there is no
need to insert a double buffer after the first four cells. In this way, the pitch of each
P-precharged cell can be made as wide as the pitch of the data bus (50A), this
results in a stride of 34A for the switching cell. The four chains can be compressed
into one chain where every fourth cell is connected through metal lines. For a
pitch of 50 A we obtained a stride for the complete circuitry of 1004, which
includes a precharge line, an inverter, a P-precharged cell and the routing between

every four cells (Figure 3.31).
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Figure 3.31: A slice of the data compression circuit. From top to bottom:
precharge line, inverter, routing of top rail, P-precharged
switching cell, routing of bottom rail.

3.3.2. Comparison

A comparator can be implemented using the design shown in Figure 3.32.
We have laid out a simple precharged 32-input comparator to match the pitch of
the datapath (50%) and its stride is 49A. The outcome of the comparison is available

8.3ns after the evaluate signal is asserted.
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Figure 3.32: A 32-input Comparator

3.4. EDC Circuits and the Micro-Architecture of a Processor

The circuitry added to the processor for error detection and correction takes
up valuable chip area and often results in performance degradation. In order to
minimize these effects, the parity, ECC, comparator and compression circuits must
be as fast and as small as possible. However, as discussed in Section 3.1, these
circuits cannot be optimized in isolation from the micro-architecture and
implementation of the rest of the chip. For example, chip area is utilized most
efficiently if the pitch of the EDC circuitry for the register file matches the pitch of
the rest of the datapath, even if this is not the pitch at which the area of the EDC
circuitry is minimized. Another example is that it might be necessary to modify
the micro-architecture of the processor, adding an extra pipeline stage, in order to

reduce the performance penalty of the EDC circuitry.

The use of parity or ECC in the register file of a processor delays both the
read and the write operations. For writes, the parity or check bits must be

generated and written along with the data. For reads, the validity of data words
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should be established before the data can modify the processor state. If these EDC
operations are executed serially, a delay of anywhere from 7ns to 41ns (depending
on the choice of implementation) must be added to the time allocated for reads and
writes (Tables 3.1 and 3.3). This would increase the processor cycle time
significantly, considering that processors have been designed using the same

technology with cycle time of 50ns [Horo87].

For writes, it is possible to take advantage of the fact that most pipelined
processors have separate pipeline stages for instruction execution and for storing
the results in the register file [Kate83, AMDS87]. At the end of the cycle during
which a result is produced, the result is written into a forward (or bypass) register.
This eliminates the need for stretching the cycle time to include the register file
write in the same cycle as the computation. Using this property, ECC bits can be
generated in parallel with the wrire into the forward register. Then in the
following cycle, when the EDC bits are ready, they can be written along with the

data into the register file.

For reads it is desirable to send data directly to the ALU since this operation
is often in the critical path. Checking can be done in parallel if the validity of data
words can be established before the processor state gets corrupted by ALU
operations based on the erroneous data previously sent. If an error is detected, any
operation dependent on the read must be aborted. The time available to compute
EDC bits is thus approximately equal to the time allowed for an ALU computation.
Depending on the speed of the ALU, different implementations of the parity/ECC
circuits may match this delay. If not, other methods, such as micro rollback can be

used to remove this strict limitation on error detection latency (Chapter 4).
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Even though EDC operations can be executed in parallel with normal
operations, a slight overhead may still occur. As shown in (Figure 3.2), adding
EDC circuitry in the datapath results in longer data buses which leads to lower
performance even when no error occurs. Our simulation indicates that in the worst
case (stride of ECC =800A) the extra capacitance adds 1.4ns to a register file read
which normally takes 22ns. This represents an increase of 6.4%. For some
processors [Kane87], a register file read is not in the critical path, so the addition of

EDC circuitry may not affect performance during normal operation.

3.5. Summary

Most fault-tolerant systems require that key components, such as VLSI
processors, include significant local error detection and correction capabilities.
The circuits that provide these capabilities are typically encoders, decoders,
comparators, and data compression circuitry. These circuits must provide low
latency, high throughput operation in order to be able to perform checks every
cycle and prevent erroneous information from propagating throughout the system.

Multi-input XOR gates are critical building-blocks for many of these circuits.

We have described several implementations of XOR gates: a tree of static
XOR gates, a compact N-chain, two precharged chains and a dual-chain that
provide normal noise margins, and a fast implementation based on sense
amplifiers. The discussion included major tradeoffs (speed, area, noise margins,
pitch matching) in the implementation of circuits for generating parity, for
computing ECC check bits, for correcting errors, and for compressing and

comparing data.
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High coverage emror detection can be achieved using duplication and
comparison across chip boundaries. In order to reduce error detection latency,
values from nodes internal to the chip should be included in the comparison along
with the values from external buses. The number of extra pins required for
comparison of internal node values can be reduced by ‘‘compressing’’ these values
into a small signature, which is transmitted across the pins to a comparator. Simple
fast circuitry can generate such a signature by computing several parity bits across

interleaved subsequences of bits from the internal node values.
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Chapter Four
Micro Rollback

The main part of this chapter concerns the implementation of micro rollback
for a VLSI RISC processor. Before describing the techniques involved, we give a
definition of micro rollback for a single module. The definition is then broadened
to simple systems where rollback is accomplished either in real time or virtual
time, depending on the modules present in the systemn. The VLSI implementation
of the basic building blocks needed for micro rollback of the processor is
discussed. We show how the updated state of the entire processor can be
checkpointed after every cycle without replicating all the storage. It is shown that
the micro rollback functionality can be added with only a small performance
penalty and with a low area penalty relative to the size of the entire chip. We show
how the concept of micro rollback can be used throughout a system, discuss the
requirements for modules other than the processor, and show how the various

modules operate in a multiprocessor system.

4.1. Definition of Micro Rollback

A micro rollback of a module (subsystem) consists of bringing the module
back a few cycles to a state that it had reached in the past[Tami%0]. In order to be
able to perform such an operation, it is necessary to save a ‘*snapshot’” of the state
of the subsystem (checkpoint) at each cycle boundary. Micro rollback restores the
state of a subsystem by overwriting the current state with a ‘‘snapshot’’ taken in

the past (Fig. 4.1).
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Fig. 4.1. Micro rollback of a module — restoring a saved snapshot.

The number of cycles that can be undone — the rollback distance — is
limited by the number of stored snapshots. One of the design parameters of a
system with support for micro rollback is the rollback range — the maximum
rollback distance that modules in the systemn must support. The rollback range
must be determined based on the latency of the various detection and correction
mechanisms in the system as well as the delays in distributing the rollback
‘‘command’’ once an error is detected. Specifically, in order to allow detection
and correction to be performed in parallel with normal computation, the rollback
range must be greater than the worst-case latency of the slowest detection

mechanism and its propagation.

The state of a module (subsystem) is the contents of all storage elements
which carry useful information across cycle boundaries. For example the state of a
simple RISC processor is composed of the program counter, the program status
word, the instruction register, and the register file. It also includes the contents of

some pipeline latches and registers in the state machine which can be changed

73



during the execution of a multicycle instruction. Micro rollback must maintain
consistency between the states of all modules in the system [Rand78]. Since
instructions also modify external memory (loads and stores), the state of the
memory (cache) must also be checkpointed and rolled back with the processor. We
discuss the interaction between the processor and the memory system in a later

section and in Chapter 6.

4.1.1. Micro Rollback in Virtual and Real Time

Both the normal progress of a module and rollbacks can be depicted on a
virtual time v.s.. real time graph (Figure 4.2). The real time axis (horizontal axis)
represents time intervals generated by a clock driving the module. The clock
advances unconditionally. The vertical axis, labeled the virtual nme axis,
represents the logical progress accomplished by the module. During normal
execution, virtual time advances at the same rate as real time, shown by a diagonal
line in Figure 4.2. During a micro rollback, no useful work is accomplished so
virtual time remains constant, indicated by an horizontal line on the graph. The
length of the horizontal line depends on how much time it takes to execute micro
rollback. State restoring is represented by a sudden drop (vertical line) on the
graph. After a rollback, processing can resume at normal pace as shown in real

time frames 7 and 8.

This representation helps in solving complex situations, such as overlapping
rollback signals or simultaneous rollback signals, in systems with multiple rollback
sources. Using this representation we will show that a module can roll back

according to virtual time or real time, a useful concept for systems composed of
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Figure 4.2: Micro rollback in a virtual time vs. real time graph.

Figure 4.3: Homogeneous system with two checkers. All modules roil
back when an error is detected.

modules capable of rollback and other modules which cannot roll back.

In order to define micro rollback, we must first define ‘‘normal execution’’.

The normal execution of an ideal module, assuming that no errors or rollbacks

75



occur, can be represented as a sequence of states: S =(sq.51, " " S55)- A real module
attempts to perform the same task and the result is a sequence of states:
T =(tods. ), where m >n. Without errors or rollbacks, m =n, and ¢; =s; for

alli (0<i<n)

The state s, is reached by the ideal module after a cycles. If the real module

has either never failed, or failed and was properly recovered, it will reach state s,

at time f, where § 2 a. Hence, s =tg. Assume that the first error that occurs after

time P, occurs at time B+e. Hence, Sqie # fpee- If the error detection latency is d,

the error will be reported at time P +e +d. At this point, a valid micro rollback

must restore the module to a valid state, i.e., to a state that preceded rp,,. We
assume that rollback is accomplished in one cycle.

e A valid micro rollback of n real cycles, where n >d, restores the module to
SALE  IBugsd+ions WHETS  fpieidaion =5k for some &, such that
05k < min(n,Btre-1).

e A valid micro rollback of n virtual cycles, where a > d, restores the module to
SLALE § gy +d+lon - |
In relation to Figure 4.2, a virtual time rollback of n cycles corresponds to

changing the current state to the state n steps Jower with respect to the vertical axis

(virtual time). A real time rollback of n cycles corresponds to changing the current

state to the state located # steps to the left with respect to the horizontal axis (real

time).
The differences between the two rollback methods (virtual time and real time
rollback), are more apparent when we consider an example with two overlapping

rollback signals. The system chosen for this example is shown in Figure 4.3. The



two processors P1 and P2 operate in duplex mode. Results produced by the ALU
of each processor are sent off-chip to a comparator. If a match is found, normal
processing continues. If a mismatch is detected, a rollback signal is sent to the
other modules in the system, indicating that they must roll back to a point in time
prior to the ALU operation that caused the mismatch. In this example, we assume
an error detection latency of four cycles for the comparator. We also make the
unrealistic assumption that the comparator can be rolled back. The comparator is

most likely implemented as a non-pipelined combinational circuit, which cannot

roll back.
virtual rollback
s ALU error
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Figure 4.4: Overlapping rollbacks in virtual time

Data words coming from main memory are sent in parallel to the processors
and to an ECC (Error Correcting Code) checker. If an error is detected by the ECC
unit, a rollback signal is sent to PI and P2. The error detection latency for a
memory error is assumed to be one cycle.

In the example shown in Figure 4.4, an ALU error occurs first, followed by a

memory error. After the detection of the memory error, a rollback of all modules,
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including the other checker (comparator), is initiated. Since all modules, including
the comparator, roll back a distance of two cycles, the stare of the system following
rollback is identical to the system state at the end of cycle 2 on the real time axis.
Hence, as shown on Figure 4.4 (real time frame 9), the ALU error will only be

signaled 4 cycles later.

Main Memory

Comparator

Match?

Figure 4.5: Heterogeneous system with two checkers.

The requirements that all modules, including checkers, roll back when an
error is detected, complicates the design of the system. Checkers are often
combinational circuits and the checking latency may include both the latency of
getting the data to the checker and the checking operation itself. Rolling back the
checking operation to an arbitrary cycle boundary may be difficult. Fortunately,

this is not necessary if rollback is done on the basis of real time.

If checkers cannot roll back, error signals will be generated a fixed number of

real cycles following the occurrence of the error. This detection latency may be
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different for different types of errors since it depends on the implementation of the
checking mechanism. Hence, the error signal from a checker with latency n is
received by the modules exactly n real clock cycles after they receive the erroneous
data. Since the purpose of micro rollback is to restore the modules to their state
prior to receiving the erroneous information, the optimal operation is a rollback of
n real cycles. This should be compared to rollback in virtual time, which would be
required if checkers were always rolled back with the rest of the system and their

latency would thus be specified in virtual time.

An example of a real time rollback for the system shown in Figure 4.5 is
described in Figure 4.6. During the rollback due to the memory error, the
comparator is not rolled back. Hence, the ALU error is signaled exactly four real
cycles after the ALU error occurs no matter what happens to the rest of the system.
When the second rollback signal arrives to the other modules, the five real cycle
rollback corresponds to a rollback of only two virtual cycle. This can be seen in
Figure 4.6; an horizontal displacement of five real cycles from the end of cycle six

brings the system to the state reached after real cycle one.

In order to see how the errors are handled in the two frames of reference, we
have drawn the sequence of errors happening in Figure 4.4 on a virtual time axis
and the same set of events, represented in Figure 4.6, is drawn on the real time axis.
As one can see in Figure 4.7, errors are handled identically but in different time

frames.
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Figure 4.6: Overlapping rollbacks in real time.

4.2. Support for Micro Rollback in a VLSI RISC Processor

As described in Chapter 1, with micro rollback there is the potential for
achieving both high performance and high reliability. However, this potential can
only be realized with efficient techniques for supporting micro rollback in the
modules of VLSI systems. For example, a possible approach to supporting micro
rollback with a rollback range of N cycles in a conventional processor is based on
replicating the register file N times. However, this would result in large overhead
in both chip area (additional storage cells) and performance (longer buses, larger
decoders, eic).

Our research involves the development of techniques at the architecture and
microarchitecture level for efficient support for micro rollback. Through full VLSI
layouts of the key building blocks, we are able to accurately evaluate the chip area

overhead of our techniques. Detailed SPICE simulations of the circuits are used to
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Figure 4.7: Sequence of errors drawn on a real time axis for real time
rollback and on a virtual time axis for a virtual time rollback.

determine the performance overhead. Our VLSI implementations are all in CMOS
technology, using the MOSIS scalable design rules (SCMOS). The SPICE
simulations are based on circuits extracted from the layout, assuming a2 g (A= 1.0)

process (as in Chapter 3).

As a concrete example, we have designed and implementing a VLSI
processor capable of micro rollback. We have chosen the Berkeley RISCII
processor [Patt82, Kate83] and determine the area overhead and performance
penalty for adding to it the ability to perform micro rollback. In later chapters, we
will describe methods for adding micro rollback to more complex processors. The

process of saving the state of a RISC processor and the method used to roll back in
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one cycle are described below. The state to be saved and restored is located in the

register file and the individual state registers.

4.2.1. Micro Rollback of the Register File

At every cycle, a write into the register file may be performed. As discussed
above, the state of the register file can be preserved for N cycles by replicating it N
times (for example, using shift registers) [Hwu87]. This technique results in high
area and performance overhead due to replication of the logic, longer buses, and
increased attached circuitry. As we will show in Section 4.2.4, this technique is
more appropriate for single state registers, for which a more efficient technique is
not available. Instead of replicating storage, we use the approach of delaying
commitment of state modifications [Smit88, Hwu87]. The proposed method uses a
delayed write buffer — DWB, which minimizes the extra hardware needed, and
still allows a rollback of up to N cycles to be executed in a single cycle [Tami88b,

Tami%0).

4.2.1.1. High-level Description

Whenever the processor writes data to one of its registers, the address of the
destination register as well as the data to be written, is stored in an N-word first-
in-first-out queue (FIFO), which we call a delayed write buffer — DWB (Figure
4.8). The DWRB delays each write by N cycles before it is finally written into the
register file. During every cycle, a new entry is made in the right-most cell of the
DWB. If a write occurs, the data is entered and the DWB position is marked valid.

If no write occurs, the DWB word is reserved but marked as invalid. During every
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Fig. 4.8. A register file with support for micro rollback.

cycle, the oldest (left-most) entry in the DWB is written to its corresponding

address in the register file if its valid bit is set, and discarded otherwise.

In order to roll back p cycles (1 <p < N), the last p entries in the DWB (the
right-most p entries in Figure 4.8) are invalidated by clearing the valid bits (no

data transfers are needed).

The register address corresponding to the data shifted in during a wrize is held
in a content-addressable memory (CAM). During the register read phase of every
instruction, the register addresses of the two operands are compared with the
addresses of the registers stored in the DWB. If there is a match and the valid bit

in the CAM is set, the data of the matching register is gated on the corresponding
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internal data bus. If there is more than one match for a particular operand, a
priority circuit is used to provide the most recent version available in the DWB.

This corresponds to the rightmost valid register in the FIFO in Figure 4.8.

An important feature of this design is that during both register read and
register write operations the register file and the DWB operate in parallel without
significant conflicts for the use of the internal buses (which would lead to

additional delays).

4.2.1.2. Implementation and Interfacing of the Register File and DWB

As in RISCII, the datapath includes a large register file consisting of 128 32-
bit registers, organized in eight overlapping register banks[Kate83]. The RAM
cell used in this register file is a two-port cell which allows two simultaneous reads

and one write during a processor cycle. Both buses are precharged prior to a read.

The top section of the DWB contains the data to be written into the register
file, while the bottom part contains the register addresses of the corresponding data.
The data part is both a FIFO queue and a RAM. The FIFO queue functionality is
implemented using shift registers which can also be accessed as a RAM. In this
way, an entry can be selected by the bottom part of the DWB and its value driven
onto the bus. The bottom part is a FIFO which is also a CAM. Each FIFO/CAM
cell consists of a one-bit static shift-register cell as well as circuitry for associative
lookup. Since an instruction may require two operands, two lookups in the CAM
can be performed simultaneously (see Figure 4.9). As a result of the associative
Jookup, one or more ‘‘match lines’’ are asserted and the most recent one is

determined by a priority circuit (Figure 4.10) and used to address the top section of
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Figure 4.9: A FIFO/CAM cell for the delayed-write buffer.
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Figure 4.10: Priority Circuit for the DWB.

the DWB. Figure 4.11 shows the layout of the CAM cell.

The register file data bus is connected, through switching logic (Figure 4.12)
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Figure 4.11: Layout of the FIFO/CAM cell.
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Figure 4.12: Switching logic between the register file and the DWB.



to the DWB. Precharging the bus and selecting the proper register is done in
parallel for the register file and the DWB. The outcome of the lookup in the CAM
determines whether the buses are connected or disconnected. If there is no match,

the register file provides the data, while the DWB takes over if there is a match.

4.2.1.3. Alternative Implementation of the FIFO/CAM

The FIFO/CAM cell shown in Figure 4.9 is a critical factor in determining the
area and performance overhead of the DWB. In order to determine the area and
delay of different transistor implementations of a FIFO/CAM cell, we have laid out
and simulated a CAM composed of four entries of 7-bit tags for three different
transistor circuits (Figure 4.13). Only the transistors required for the comparison
are shown in the figure. The shift-memory cell is similar to the one in Figure 4.9.
The FIFO/CAM cells were laid out to match the stride (92A) of the FIFO/DATA
cells used in the MIRROR processor [Tami91]. For this configuration, cell (a) is
73% larger than cell (c) even though it has only one more transistor. This is due to
the extra metal interconnects needed for cell (a). For other strides, results may be
different but cell (c) should still be smaller than cell (a) or (b). Cell (b) and cell (c)
are faster than cell (a) mainly because the discharge of the match line is done
through a single N-transistor, compare to two N-transistors for cell (a). The gate of
the discharge transistor in cell (c) (the transistor connected to the match line) is
driven slightly faster than the discharge transistor in cell (b). As a result, cell (¢) is
slightly faster then cell (b). Cell (c) is thus is a good choice for a CAM with a size

comparable to ours (4x7).

If the height of the CAM cell is critical and if the width of the cell (in the
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Figure 4.13: Comparison of three different transistor circuits for CAM
cells. The cells are laid out to match a stride of 92A. The
delays are for a CAM of four 7-bit tags.

horizontal dimension) is not constrained, the cell described in Figure 4.14 can be
used [Chow89]. In this cell, only two address lines go through the cell (compared
to four in the previous implementations). This reduces the number of second-level

metal  lines  going  horizontally  through the cell to four

(Vdd , GND , address ,, address ;), which decreases the minimum height of the cell
to 26A (32 for the lines minus 6A for sharing GND or Vdd). This design requires

two vertical lines to be connected to each port of each cell forming the tag. One
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line is conditionally discharged through P-transistors while the other one is

conditionally discharged through N-transistors. The lines are combined through an

inverter and a NOR gate to form a match line. The addition of two vertical lines

and the replacement of N-transistors by P-transistors (requiring separate wells for

the matching circuitry), leads to a cell with a large width. In our context, where the

cells must fit in 924, the design of this cell is impractical.
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Figure 4.14: CAM cell optimized for reducing the vertical dimension.
Only two address lines are routed horizontally.

4.2.1.4. Pipeline Organization

In RISCII, instructions are executed in a three-stage pipeline: instruction

fetch, execute (includes reading from the register file), and write (store the result in

the register file) [Kate83]. The separate stage for writing to the register file is

needed because writing a value to a large register file is a time consuming task and
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the separate stage for it facilitates most efficient use of processor resources. In
order to prevent pipeline interlocks, RISCII uses internal forwarding: the result of
the operation is stored in a temporary forward register at the end of the second
pipeline stage and, if necessary, it is immediately (in the next cycle) forwarded to
the next instruction. In the third stage of the pipeline the value from the forward

register is written to the register file.

With our register file organization, writing the result can be done quickly
since it is never written directly into the large register file. Instead, the result is
written to the first (right-most in Figure 4.8) entry in the DWB. The entire DWB
serves a function similar to that of the forward register in RISCIL If we consider
an instruction to be complete only when its result is written into the real register
file, and given a DWB with n stages, a processor using our register file
organization has an n + 2 stage pipeline: instruction fetch, execute, n — 1 stages of

advancing through the DWB, and writing the result into the real register file.

4.2.1.5. Performance and Area Overheads for Micro Rollback Support in the

Register File

The read and write delays when accessing a large register file are often
critical factors in determining the overall processor timing. In a RISC processor,
where the pipelining and control are very simple, the register file is likely to be the
largest single module {Kate83]. In this subsection we present the details of the
timing of the RISC processor with micro rollback support, focusing on the timing
of the register file. The performance penalty and area overhead for micro rollback

support in the register file are discussed.
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4.2.1.6. Timing

Processor timing is based on a four-phase clock. The internal buses are
precharged during ¢, (phase 1), the registers are read during ¢,, the ALU operates
and writes the results into the DWB during ¢, and ¢4. During ¢ and ¢, the DWB

is also shifted and the oldest entry is written into the register file [Tami88a].

30

‘File = 128 : emem TS
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Fig. 4.15. The performance overhead of the DWB — read delay for vari-
ous sizes of the register file and the DWB.

To determine the performance penalty for micro rollback support in the
register file, we have produced a complete VLSI layout of the register file and have
simulated the operation of these circuits, using SPICE, for several register file and
DWB sizes. The results of our simulations are shown in Figure 4.15. The

overhead introduced for micro rollback support can be determined by comparing
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the read delay with a DWB of the size of interest to the read delay with a DWB of
size 0 (no micro rollback support). For example, a file of 128 registers with a
DWB of 8 registers has a read delay of 27ns (vs. 24.7 ns for a standard register
file).
The read delay can originate from two different sources:

(1) when there is no match in the DWB: the address is sent to the register file, the
chosen register discharges the file bus lines, a superbuffer connected to the register
file bus discharges the DWB bus lines.

(2) when there is a match in the DWB: the address is looked up in the CAM, a
match is detected, the priority circuit determines which register to select, and the

chosen FIFQ register discharges the FIFO bus lines.
For a large register file, the critical path will most likely be path (1} (for a
small DWB). For a small register file with a large DWB, the main data bus is

discharged before the buses are connected. In this case the critical path is path (2).

4.2.1.7. Area Overhead

Using the same combination of register file and DWB sizes, the area overhead
required for micro rollback support in the register file is shown in Figure 4.16.
Note that this overhead includes all the circuitry involved with the DWB: the
storage cells in the DWB, the CAM cells, the priority circuit, the control, etc. The

layout of a 64 entry register file with a DWB of depth four is shown in Figure 4.17.

92



60

File=16 File=32 File=064 File = 128 .-
48 - . . .. e e oA T IRECIEEE e .Iz'.,
. ‘, . . . . L7
I, . ’I .
I - - .
. P . . . - .
36 - - AR U e
OVERHEAD A : Lt _
/ : . PR . .
(%) y 3 I A P o e o e SRR
! . e . .
K /’ .
’ ” . -
l . . /’ . . . . .
' -
2 f T ARSI I e .
’ v ’,’ . . - . -+ -
; - . .
/ ’, A . .
Y2 . .
0 T u | [ | I T
0 4 8 12 16 20 24 28 32

FIFO S1ZE

Fig. 4.16. The relative area overhead of the DWB.

4.2.2. Comparison of the DWB with other Methods

Precise interrupts (exceptions) in processors with multiple functional units

require undoing changes made by instructions which were issued after the

interrupted instruction but caused state changes, out of order, before the exception

was detected [Smit88]. As mentioned in Section 2.4, the techniques used to

implement micro rollback are similar to techniques used to support precise

interrupts. In this subsection, we describe some of the mechanisms used to

implement precise interrupts [Smit88, Hwu87] and compare them to the proposed

technique for micro rollback.
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Figure 4.17: Layout of a register file containing 64 registers and a DWB
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Reorder Buffer

Figure 4.18 shows the organization of a reorder buffer (RB) along with a
result shift register (RSR) [Smit88]. The result shift register is used to (a) reserve
the result bus (b) route the results of the functional units to the proper entry in the
reorder buffer. It is managed as a FIFO queue but information can be inserted out-
of-order. When an instruction is issued, the functional unit it specifies along with a
tag pointing to the next available entry in the ‘‘reorder buffer’’ (indicated by the
tail pointer) are stored in the RSR. Data are stored in the RSR at position p (p
entries away from the head of the RSR) where p is the latency of the functional

unit specified.

The destination register of the instruction being issued along with the current

PC are stored in the RB at the location pointed to by the tail pointer. When an
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Figure 4.18: Reorder buffer with result shift register.

entry reaches the end of the RSR the computation result from the functional unit
along with the exception bits are routed to the reorder buffer at the location pointed
to by the tag. The reorder buffer gathers results produced out-of-order and sends
them to the register file in order. Bypass circuits are provided in the reorder buffer
so that reads to the register file always return the most update value. Exceptions
are handled not when they are produced by the functional units but when they
reach the head of the RB. If an exception is detected, instructions following the
instruction specified by the head pointer in the RB are invalidated. Precise
interrupts can thus be achieved (the PC is also available from the head of the RB).

In[Smit88] it is stated that the circuitry required for implementing the reorder
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buffer is conceptually simple but that there is a great deal of it.

Micro rollback is inherently simpler than mechanisms that provide precise
interrupts using a reorder buffer — there is no need to keep track of instruction
boundaries since the rollback event is transparent to the software. One
demonstration of this simplicity is that the DWB is simpler than the RB. Since the
RB must put in order results that are produced out-of-order, it cannot be
implemented as a simple FIFO queue. Instead, there is a need for a circular buffer,
implemented as a RAM (random access memory) with tail and head pointers. Two
extra buses and associated decoders are required for the RB. An extra write bus
across all RB entries is used for writing into any entry. An extra read bus is used
for transferring values to the permanent register file. With the DWB, all writes are
done to one end of the queue and transfers to the register file are done from the
other end. Furthermore, extra hardware is needed with the RB for manipulating the

head and tail pointers.

History Buffer

In order to avoid the bypass circuitry of the reorder buffer, a history buffer
(Figure 4.19) is proposed in [Smit88]. A similar mechanism, called the backward
difference, is proposed in[Hwu87] for out-of-order issuing units. When an
instruction is issued, its destination register value and register number are writien
into the history buffer. Writes to the register file are sent directly to the register file
without having to go through a reorder buffer. Following an exception, the
information provided by the the history buffer is sufficient to restore the contents

of registers that may have been modified out-of-order. The history buffer has two
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Figure 4.19: History Buffer.

significant disadvantages. First, an extra port in the register file is required so that
superseded values can be placed into the history buffer. This increases the size of
the register file and would most likely increase access time. Secondly, a repair
(rollback in our case) requires several cycles to transfer data from the history buffer
to the register file. For real time systems operating in an hostile environment

where the error rate is high, this may not be acceptable.
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Future File

In the future file scheme (Figure 4.20) proposed by Smith and
Pleszkun [Smit88], two register files are required: one is accessed directly by the
processor during reads and wrires, the other is connected to a reorder buffer
without reading logic. In this way, one register file provides good performance
while the other one, which is transparent to normal execution, provides the correct

state for rollback to a precise instruction boundary.

The authors mention that the future file presents some advantages for
machines that implement interrupts via an ‘‘exchange’’ {Smit88). This advantage

is obtained at the expense of the large overhead introduced by adding an extra
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register file. In a VLSI environment, the requirement of writing to two register
files simultaneously may lead to additional delay due to the way that the datapath
is organized (normally a sequence composed of the register file, shifter, ALU, etc.).

The problem of multi-cycle recovery is also present with the future file.

Copy technique

This technique is useful for maintaining fast access time to a group of
registers (such as the register file), without increasing the bandwidth to those
registers.. For each register in the processor, there is a set of ¢ backup registers
which preserve the state of ¢ checkpoints in the active window [Hwu87]. The
backup registers are organized as a stack so that the current register is pushed onto
the stack during a checkpoint, and popped when a repair is needed. The main
disadvantage of this method is the huge area overhead required (in the order of ¢+1
times greater than a single register). According to the authors, the technique
should still be attractive for an on-chip register file, a claim that may be correct
only for very small register files. Current high-performance processors have a
large register file, usually between 32[Kane87, Lee89a] and 128 [Brow90]
registers, which makes this technique impractical to implement. The article claims
that performance is not affected, but no actual implementation of the copy

technique (which requires longer buses) is presented.
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Forward Difference

This method is a variation of the Reorder Buffer Method described
in {Smit88]. The forward difference mechanism also has some similarities with the
DWB method. For example, the forward difference can be used 1o delay writing of
changes made by instructions executed speculatively (e.g. by predicting a
conditional branch) [Hwu87]. Fast repair is possible with the forward difference by
using methods similar to what is used for micro rollback. Hwu and Patt [Hwu87]
do not provide implementation details, so a detailed comparison cannot be

presented.

4.2.3. Detection and Correction of Errors in the Register File

A large register file, build out of memory cells, is likely to contain most of the
state for simple VLSI processors. Hence, the register file is the module most likely
to fail (especially due to transient faults). Since a transient fault may change the
value of any of the bits in the register file, rolling the system back a few cycles will
not automatically correct the erroneous data. Hence, if an error occurs in one of
the registers in the file, it is necessary to have redundancy in order to recover. One
approach is based on the use of a duplex processor from which valid copies of
damaged information may be recovered. An alternative approach is to use error
correcting codes in the register file. In both cases micro rollback prevents

checking or correction delays from slowing down normal operation.
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4.2.3.1. Duplex Processors

Two processors execute the same instructions in lock-step. A separabie
error-detecting code (e.g. parity) is used in the register file of each processor so that
it will be possible to determine which processor has the valid data. If a processor
detects an error in a value read from the register file, it initiates a micro rollback in
both processors to the cycle prior to the register file access. The correct data is
then copied from the correct processor to the one that detected the error and normal

operation is resumed [Tami91].

4.2.3.2. Use of Error Correcting Codes

If some separable error correcting code (e.g. Hamming) is used in the register
file, it is possible to recover from errors in the register file without the use of a
duplex processor. The code bits are generated when a word is transferred to the
DWB. During reads from the register file, the correction circuitry detects and
corrects them appropriately. Since it is undesirable to lengthen the critical timing
path, words read out of the register file are captured by latches and checked in
parallel with their processing by the ALU. If an error is detected, processing is
stopped, the word is then corrected and stored in the register file. A micro rollback
is then initiated in order to restore the state of the processor to the cycle prior to the

one when the register file read was performed.
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4.2.4. Micro Rollback of Individual State Registers

In various locations on the chip there are individual registers that contain part
of the processor state. These include the program counter (PC), instruction register
(IR), program status word (PSW), pipeline latches, etc. Since these registers may
be modified every cycle, support for micro rollback of up to N cycles means that
for each register there must be N ‘‘backup registers’’ provided to save the state for
the previous N cycles. We present two methods for rolling back individual state
registers; the first one is based on a FIFO memory, while the second one is based
on a small RAM. Both methods achieve micro rollback of a variable number of

cycles in a single cycle.

With the FIFO method, a state register, labeled current in Figure 4.21, is
backed up by a set of N registers which are organized as a FIFO. The FIFO
registers are transparent to the processor in the sense that all reads and writes are
performed using the current register. At the end of each cycle, the content of the
current state register is copied into the FIFO which pushes down all the other
registers. In order to roll back C cycles, the first C registers in the FIFO are
invalidated, then the first register marked ‘‘valid’’ in the FIFO, identified through a
priority circuit, is copied into the current register. Normal processing can resume

with the next cycle.

The RAM method uses a pointer to “‘next available backup register’” in a
small RAM to create a circular buffer (Figure 4.22). The content of the current
register is saved every cycle into the RAM and the pointer is then incremented. In
order to roll back C cycles, C is subtracted from the current value of the pointer

(modulus the number of elements in the RAM) and the result is used as an address
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Fig. 4.21. The FIFO method for micro rollback of individual state regis-
ers.

of a register in the RAM which is copied to the current register. The input to the
address decoder of the RAM is the same throughout the chip, allowing a single

centralized implementation of the counter and subtraction logic.
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Fig. 4.22. The RAM method for micro rollback of individual state regis-
ters.

Table 4.1 shows the sizes of the components and the stride (dimension of the

circuit parallel to the bus) of the data arrays for the two methods. The difference in
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control total
area area

43,166A% | 520,666)1%

Method data cell data array

Height = 394 | Stride = 382A
Width = 54A { Area=477,500A2
Height = 304 | Stride =271\
Width =347 | Area=316,250A2

FIFO

RAM 2251742 | 338,767A2

Table 4.1: A comparison of the area overhead of the two methods for mi-
cro rollback of an individual state register by up to six cycles.

size is due to the greater complexity of the data cell for the FIFO (shift and read).
There is no extra delay added to the processor since the extra logic is not connected
serially to the path followed by the buses; only the *‘current register’” interacts
with the rest of the system. On the other hand, the area for each state register must
be increased. For example, in order to implement the capability of rolling back

four cycles using the RAM method, the area must be increased by a factor of 5.8.

4.2.5. Micro Rollback for the PC Unit

In the Berkeley RISCII processor there are three registers used for storing the
next, current, and last values of the program counter [Kate83]. In the original
design these registers are organized as a small FIFO and the following transfers
occur during each cycle:

new value — next_pc — pc — last_pc — discarded
Micro rollback of the PC unit could be supported by treating the three registers as
individual state registers. However, as discussed in the previous subsection, this
can result in significant area overhead. A more efficient implementation takes
advantage of the FIFO organization of the PC unit and uses the FIFO method

described in the previous subsection [Lian90]. The basic organization of the new

104



PC unit is shown in Figure 4.23.

Upon a rollback of C cycles, the C leftmost registers are invalidated. A
special-purpose circuit, called ‘‘PC Mapper’’ is then used to select a register as

follow:

next_pc:  first valid bit
pc: second valid bit
next_pc:  third valid bit

to chip e

TTTTTTH

nexipe.pc, clafulg‘; B R A S O A 4

select signals T 1 1 1 1 1 |
e—— select nextpc

PC Mapper  p— select pc
«— select lastpc
| T L1111

Viviv|v

clear signals
used during rollback

Figure 4.23: Micro rollback of the PC unit.

The PC mapper (Figure 4.24) is implemented using circuitry similar to the

Invalidate Write Counter that we will describe in details in the next section
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(Section 4.2.6). The layout of the complete PC unit with a rollback range of four
cycles is only 2.8 times larger than the layout of the PC unit used for a system
without micro rollback. This compares favorably to an overhead factor of 5.8 that
would be achieved if the RAM method from the previous subsection was used for

each PC register individually.
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Figure 4.24: Mapper circuitry for the PC unit.

4.2.5.1. Error Detection for State Registers

A potential problem with rolling back the state registers occurs if micro
rollback is initiated and the version of the individual register read from the backup
registers is erroneous (due to a transient fault that occurred after the value was
stored in the backup registers). Detection of such errors can be supported by
adding error detection bits to the value of the register when it is stored in the
backup memory. During a rollback, the contents of the appropriate backup register

goes through the parity checker and is stored into the current state register. If an
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error is detected, a micro rollback on one additional cycle can be initiated, thus

recovering from this potentially serious error.

4.2.6. A Delayed-Write Buffer for Infrequently Modified Registers

The method used to roll back the register file, described in Section 4.2.1, is
based on the fact that writes into the register file can occur every cycle. For
example many RISC processors complete an instruction every cycle [Kate83,
Kane87]. Because it is possible to have N writes during N cycles, a Delayed-Write

Buffer of depth N is necessary.

In some modules, writes to the register file may occur at a lower rate than
once per cycle, so a smaller DWB may be sufficient. For example in the Motorola
68881 most instructions take at least 30 cycles to execute [Moto85a). It is
unnecessary to dedicate a DWB of N registers if it is known that during N cycles at
most one write can occur so there is at most one value to invalidate in the entire
DWB at any point in time. If a rollback of N cycles can “‘undo’’ at most M writes,
only M registers are needed in the DWB. Considering that floating-point registers

are 80-bits wide, the gain in area can be considerable.

A DWRB for a system in which at most three writes can occur during five
consecutive cycles (W =5, M =3) is shown in Figure 4.25. The part containing
the data and the register addresses is similar to the full DWB, except that it now
contains M registers instecad of N. The control section is significantly more
complex. It includes three major new components: a Write Monitor (WM), an
Invalidate Write Counter (IWC), an Invalidate Write Mapper (IWM), and some
logic for the shifting of the FIFO buffer.
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Figure 4.25: DWB forinfrequently modified registers.

The Write Monitor keeps track of all the writes executed by the module; a one
is shifted in whenever a write is executed, while a zero is shifted in otherwise. The
number of bits in the Write Monitor is the maximum number of cycles that the
register file may have to roll back (in this case, N = 5). The number of ones in the
Write Monitor should never exceed M (in this case, M = 3). If it does, an error will
be signaled.

The Invalidate Write Counter (see Figure 4.26) determines how many writes
have been executed in the past C cycles (C <N) based on the contents of the WM.
The inputs to the circuit use negative logic. Internally, the lines carrying the

number of cycles to roll back are precharged to GND in the first phase phase. In
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Figure 4.26: Invalidate write counter IWC).

the second phase, only one input is zero so all but one of the lines are effectively
disconnected from the inputs. The output of the circuit indicates that W writes are
to be invalidated. In order to simplify the rest of the control circuitry, the circuit
also indicates that W-1, W-2,---,1 writes should be invalidated. An error
indication is signaled if the inputs result in a request to invalidate more than M
writes. The basic cell for the IWC is a simple demultiplexer implemented with full
transmission gates (see Figure 4.27). Its input is connected to output 1 when
select =1 and output 0 when select =0. In Figure 4.26 we have shown a path
created when the contents of the Write Monitor is [X0110] and a rollback of 4
cycles is requested. As shown in the figure, 2 writes (and 1 write) must be

invalidated. The fifth entry in the Write Monitor does not modify the output
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because it occurred more than 4 cycles ago.

ourput 1 output 0
RN SH— I
select -+ ’ J- -+ select
select ~ F { f Z-*select

Figure 4.27: Basic cell for Invalidate Write Counter.

The Invalidate Write Mapper is used to identify which locations in the Valid
Bit Register must be invalidated. The input is the number of writes to undo, while
the outputs are asserted when the corresponding bits in the Valid Bit Register are to

be cleared (Figure 4.28).

clear clear clear
valid[3] wvalid[2] valid[1]

error -———-—1 —r
g—%} = valid[3]
error [::r ril _2'-[
T valid (2]
error | ;}1 rl"_ ?l—l
;,r—%; T+ ‘f__lI} 2 valid[1]

3 writes 2writes 1write

Figure 4.28: Invalidate Write Mapper (IWP).

The circuitry that controls the shifting in the DWB is shown in Figure 4.29.

The leftmost register is shifted out to the register file only if the ‘‘oldest’” bit in the
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Write Monitor is one, The other registers shift to the left only if there is room,

otherwise they remain idle.

Shift into Shift into Shift into
Shift our FIFO[3] FIFO[2] FIFO[1]

(\ Write insir,

Shift
Signal

- Valid Bit[3]
Write monitor[S] Valid Bit[3] Valid Bit[2]

Figure 4.29: Control circuitry for shifting the DWB.

We have produced a layout of a complete Delayed Write Buffer similar as the
one shown in Figure 4.25 (N =5 and M =3). The area of the circuit, including
both the control and the all the storage, is 778640 A2, which is approximately 20%
of the area of a dual-port register file with 64 32-bit registers. The control circuitry
accounts for 13% of the total area for the DWB. We have determined the area of a
DWB for several values of N (the maximum number of cycles that can be rolled
back) and M (the maximum number of writes that can be undone). These results
are summarized in Table 4.2 which indicates the ratio of the area of an
““optimized’’ DWB (optimized for a small number of writes) over the area of a full
version with M =N. For example if a module operates in such a way that its

register file is never modified more than once every 4 cycles and the module may
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have to roll back up to 8 cycles, the table indicates that for N =8 and M =2 the
optiﬁﬁzcd DWB takes only 34% of the area taken by a full DWB with 8 registers.

Delayed Write Buffer Area (A3
Generalized DWB Full
M=2 M=3 M=4 M=N
527380 758030 088680 900200
(58%) (84%) (110%) (100%)

y N 5 | 547040 [ 778640 | 1010240 | 1125250
(Maximum @o%) | (69%) | (90%) | (100%)
number 4 870 | 1086320 | 18004
of cycles o | 617420 | gs1 0 | 1800400
(34%) | @7%) | (60%) | (100%)

to rollback)
888700 | 1130750 | 1372800 | 3600800
(25%) (31%) (38%) (100%)

16

Table 4.2: The Areas of *‘Optimized’’ and *‘Full’’ DWBs.

We have simulated the DWB circuitry using SPICE. The critical path is
through the decoder, the TWC, the ITWM, and the Valid Bit register, resulting in a

delay of approximately 13ns. This fast operation allows single cycle rollback.

4.3. System Issues in the use of Micro rollback

In addition to the processor, micro rollback can be used effectively with other
modules of the system. Parallel error checking and delayed error signals can be
implemented using techniques similar to those used in the processor. The decision
to use these techniques instead of serial checks is based on the potential
performance improvement and the hardware overhead involved. In general,
whenever data can be received or transmitted before it is checked, a DWB, such as
the one described in Section 4.2, may be used to delay permanent modification of

critical state until the results of the check are received.
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4.3.1. Micro Rollback and Cache Memory

Most modern processors use caches to increase performance by decreasing the
effective memory access time. The introduction of serial checking in the path
between the processor and the cache introduces a severe degradation of the benefits
gained by the cache. In this case, parallel checking means a significant

performance gain.

As with the register file, a DWB can be used to support micro rollback in the
cache. During every load instruction there is a lookup in the CAM to ensure that
the processor will obtain the most recent value stored to the specified address. If
the address is not found in the DWB, data comes either directly from the cache on
a hit, or from main memory on a miss. On a hit, no critical state in the cache is
affected so no actions need to be taken to undo the load. On a miss, a line in the
cache has to be replaced by data fetched from main memory. During a micro
rollback, there is no need to restore the previous contents of the cache line — the

worst effect of an erroneous load is that a line has been fetched unnecessarily.

A store instruction is handled in the same way as a write to the register file
(Figure 4.30). The store is delayed for N cycles in a DWB. The rightmost entry in
the DWB is marked valid when a store is initiated. The last n entries in the DWB
are marked invalid during a rollback of n cycles. Unlike the DWB for the register
file, where both a register read and a register write could occur during the same
cycle, a load and a store from/to the cache cannot be execuied in parallel. This
causes a problem when a valid store comes out of the DWB and a load is
requested. Priority must be established between the two requests. Two possible

solutions for this problem are: (1) the load is blocked until an invalid store reaches
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Fig. 4.30. A cache memory with support for micro rollback.

the end of the FIFQ, at which time the load can be executed, or (2) the stores are
blocked and priority is given to the load. The first solution is easier to implement
but degrades performance. The required circuitry for the second solution, which
does not affect performance, is described in Chapter 6.

It should be noted that the interaction between the cache and main memory
occurs after the data has gone through the DWB. Thus, either write-back or write-
through caches may be used and in both cases there is no need to undo a write to
main memory (checking of the data is complete before the write to main memory
occurs).

As shown in Figure 4.30, the lookup in the CAM of the cache DWB requires a
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comparison of thirty address bits. In order to speed up that comparison, the
comparators are partitioned into two segments and thus achieve 12ns operation.
The lookup in the DWB is performed in parallel with the lookup in the cache.
Since the access time of the cache in current VLSI systems is typically longer than

12 ns, the lookup time in the DWB should not degrade system performance.

4.3.2. Micro Rollback and Main Memory

In many systems it may not be desirable to include main memory in micro
rollbacks. One of the problems with performing micro roliback in all modules of a
large multi-module system is that it requires synchronous operation. For micro
rollback of up to N cycles, each module must buffer up to N “‘versions’’ of its
state and be capable of precise roll back of a specified number of cycles. This is
difficult to do if the entire system is not completely synchronous. Many high-
performance buses have asynchronous protocols so it may be difficult to coordinate

micro rollbacks of the processor and main memory.

If the frequency of interactions (communication) between two particular
modules in a system is small, the receiving module can simply wait for the error
checks to be completed before using the data. Under these conditions the effect of
waiting on performance is small and there is no justification for the extra hardware
and added system complexity for micro rollback support. This argument often
holds for main memory and I/O interface units in systems in which the processor
uses a cache. In such systems the processor ‘‘rarely’’ accesses main memory. In
addition, since communication across the system bus typically occurs in multiple

word blocks, performing the checks serially, in a pipeline fashion, only delays the
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first word of the block and causes minimal performance degradation.

4.4. Micro Rollback in a Multiprocessor Environment

So far we have demonstrated how micro rollbacks work in a single processor
system. We now describe how micro rollbacks can be used with a shared-memory
multiprocessor system. The architectural model considered is the following: a
collection of processors, each with its own private cache, are connected to each

other as well as to main memory through a single shared system bus.

When a write is executed by a processor, the local cache and the rest of the
system are normally not aware of it until the data exits the FIFO and is written into
the local cache (Figure4.30). Any actions required by the cache coherency

protocol then takes place as with normal caches.

In a multiprocessor system where each processor has a local cache there is a
problem of maintaining identical views of the logically shared memory from all the
processors [Cens78)]. Specifically, in order for the caches to be transparent 10 the
software, the system is often required 1o be memory coherent, i.e., the memory
system is required to ensure that ‘‘the value returned on a load is always the value
given by the latest store instruction with the same address’’ [Cens78]. A
multiprocessor system in which DWBs are used with the caches is rot memory
coherent. Specifically, a load executed by one processor cannot return the latest
value written to the address by a store from another processor until the value stored

“‘propagates’’ to the head of the DWB and is written to the cache (Figure 4.31).

'In a multiprocessor system that is not memory coherent it is desirable to

maintain the weaker condition of sequential consistency [Lamp79]. Sequential
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consistency requires that ‘‘the result of any execution is the same as if the
operations of all the processors were executed in some sequential order, and the
operations of each individual processor appear in this sequence in the order
specified by its program.” Unfortunately, a multiprocessor system that uses DWBs
is not sequentially consistent. The problem is illustrated by Lamport’s [Lamp79]

example of a mutual exclusion protocol:
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i1f b =0 then critical section :

if a =0 then critical section

.

else . . . fi

With the DWBs, Process 1 can set a:=1 at the same time that Process 2 sets b:=1.
They can then both reach their if statements before the srores setting a and b have
time to propagate to their respective caches. Sequential consistency is violated
since the result of the execution is as though the sequence of operations is:
Process1: if b = 0 then critical section ;

Process2: if a = 0 then critical section ;

Process1: a := 1 ;

Process2: b := 1 ;

Without modifications to the scheme shown in Figure 4.31, a multiprocessor
in which the processors use the DWBs with their local caches is a very limited
system. Synchronization through atomic instructions, such as test-and-set, can also
become a problem. For a test-and-set instruction, the set is made right after the resr
during the same bus transaction. Using a conventional processor with the cache
described in Figure 4.30, the test consists of reading the variable from the cache,
while the set involves a write to the FIFO. A problem occurs if processor P,

performs a test-and-set and the write is still in its FIFO when processor P,
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performs another rest-and-set on the same variable. Processor P, will not be able
to observe the set by P, and both processors will enter the critical section
concurrently. As shown above, because the system is also not sequentially
consistent, other mutual exclusion protocols that work on conventional

multiprocessors may not work on a multiprocessor that uses the DWBs.

In order to allow synchronization in a multiprocessor with the DWBs, the
cache controller must be modified. The simplest modification is to allow cache
blocks to be locked during test-and-set operations. Specifically, a block containing
a semaphore should be locked from the time it is accessed, until the time that it is
modified. For a DWB of depth N, this means that the block is inaccessible during
N cycles plus the time it takes to execute the test-and-set instruction. An
alternative solution is for the cache controller to look up DWB entries as well as
cache entries for each transaction it observes on the bus. If there is a bus
transaction which *‘hits’’ on the DWB, it is blocked until either the corresponding
data emerges from the DWB and is stored in the cache or the local node performs a
micro rollback and the data is marked invalid. While this latter sclution requires
more hardware (support for swo simultaneous lookups in the DWB — one from the
processor and one from the cache controller), it has the advantage of maintaining

sequential consistency, thus allowing paralle! programs to work as expected.
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4.5. Summary and Conclusions

In this chapter, we have described a mechanism, called micro rollback, which
allows checking to proceed in parallel with intermodule communication by
supporting fast rollback of a few cycles when a delayed error signal arrives. Micro
rollback is a powerful technique that facilitates the implementation of high-
performance VLSI systems which are also highly fault-tolerant. It allows a variety
of concurrent error detection and correction techniques to be used with minimal

performance penalty.

We have presented a systematic way to design VLSI computer modules that
can roll back and restore the state which existed when the error occurred.
Specifically, the implementation of micro rollback in simple synchronous systems
involves replication of small isolated registers and the use of full delayed-write
buffers (DWBs) for storing recent state changes to large register files. The
efficiency of micro rollback has been demonstrated by showing the low area and
performance overheads it incurs when added to a simple register file. For example
a typical processor with a register file of 64 registers and a rollback range of four,
has an area overhead for the register file of 14% and the processor cycle is
stretched by 5%.

We have described a mechanism for reducing the size of the DWB for micro
rollback of register files which are not modified every cycle. Based on CMOS
VLSI layouts of the DWB and its control circuits, it was demonstrated that in some
realistic situations our new design can result in savings of more than fifty percent

of chip area compared to the previously used **full”” DWB.

When applied to a VLSI RISC processor, the micro rollback technique is
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characterized by extremely low performance overhead and a modest area overhead
compared to the area of the entire processor. We have shown how micro rollback
can be used in a complete system with a memory hierarchy and we have discussed
problems encountered in multiprocessor systems. The various subsystems
presented in this chapter are representative of many common modules in wide
variety of VLSI systems and are thus new critical building blocks which are likely
to have wide application in future systems that will combine fault-tolerance and

high performance.
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Chapter Five

Micro Rollback for High-Performance
Multi-Module VLSI Systems

Current VLSI computer systems consist of many complex chips in addition to
a CPU chip — for example, floating point coprocessors, memory management
units, communication coprocessors, etc. In this chapter we show how micro
rollback can be implemented in such complex heterogeneous systems consisting of

a variety of modules which may interact asynchronously [Trem89b].

The techniques discussed so far for micro rollback are based on system-wide
rollback of a specified number of cycles. In a synchronous system, when one
module rolls back, other connected modules roll back the same number of cycles in
order to maintain a consistent state [Tami88b, Rand78]. Maintaining a consistent
state is not as simple in a system with several modules which operate with different
clocks and interact using an asynchronous protocol (for example, the processor and
coprocessors in a system based on the Motorola 68020 [Moto85bl). Specifically,
once one module rolls back, the number of ¢ycles that other modules should roll
back depends on recent interactions between the modules. This is a special case of
the general problem of recovery in distributed systems[Rand78], except for the
requirement that the entire operation should be performed by hardware in only one
or two cycles. In this chapter, we present techniques for meetings these
requirements. These techniques are based on using inter-module interactions as a
basis for synchronization when coordinating roll back of multiple modules to a

consistent global state. This is accomplished with special-purpose circuits that
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translate between inter-module interactions and internal clock cycles of each
module. We present the design of these circuits and their evaluation based on

VLSI layouts and extensive simulation.

5.1, Micro Roliback of Multi-Module System

In a system that consists of several modules, a rollback signal initiated by a
module may affect other modules connected to it. Following a rollback of one of
the modules, its state may be inconsistent with the state of other modules. If at
time T module M, is rolled back ¢ time units, its new state is consistent with the
state of another module M , if, and only if, one of the following conditions is met:
(a) there were no interactions between M, and M , in the interval [T-t,T], or
(b) M, is rolled back to its state prior to any interactions with M during the

interval [T-t,T].

In case (a) there is no need to roll back module M,. Since M, has not interacted
with M since time T —1, if the states of the two modules were consistent before
M, was rolled back, they remain consistent following the rollback without
requiring further action by M,. In case (b) both M, and M, must be rolled back.
To determine which case applies as well as the *‘distance’” that M, may have to
roll back, interactions between modules must be monitored. An interaction or a
transaction is any transfer of information between two modules, such as data
transfer, control signals, etc. In this section we describe how we monitor
transactions and how we maintain consistency throughout the system when a

rollback occurs.

In a synchronous system, all inter-module interactions are synchronous with a
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common clock. If one module, M,, rolls back C cycles, the simplest way to
maintain consistency in the system is to roll back all other modules C cycles plus
the rollback signal propagation latency (Figure 5.1). This implies that some
modules unnecessarily roll back even if they have not interacted with module M,
in the past C cycles. In some cases, performance can be improved if modules are
rolled back selectively, depending on their recent interaction with M,. This

method will be described in the context of asynchronous systems.
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Figure 5.1: Micro rollback in a synchronous system: the module which
receives the error signal is rolled back by a distance equal to
the error detection latency. Adjacent modules roll back by
the same distance plus the rollback signal propagation
latency.

Many systems consist of modules that operate with different clocks and
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interact asynchronously. For example the Motorola 68020 processor [Moto85b]
can operate at 25MHz together with a Motorola 68881 [Moto85a] floating-point
unit operating with a 16.7MHz clock. Without a common clock, rollback in an
asynchronous system cannot be coordinated based on the number of cycles to roll
back (Figure 5.2). If two modules, M, and M, each roll back C cycles of their
internal clock, their states following rollbacks may be inconsistent. If module M,
rolls back C, cycles internally and during the last C, cycles it has participated in T
transactions with another module M ,, then module M ; must roll back to the state it
had prior to the last T transactions with M,. For M, T transactions may

correspond to a different number of internal cycles, C,.

Main Processor

clock=25 MH:z

rollback of
4 cycles

rollback of
X cycles?

rollback of
Z cycles?
rollback of

Y cycles?
—
Coprocessor 1 Coprocessor 2 Coprocessor 3
clock=33 MH:z clock=25 MH:z clock=16.67 MH:

Figure 5.2: Micro rollback in an asynchronous system. No common
clock — rollbacks cannot be synchronized through cycles.
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In order to roll back to a consistent system state, the rollback of all the
modules must be coordinated. This coordination is based on intermodule
transactions. The module that initiates a rollback of a specified number of internal
cycles must translate this number to the number of transactions that have occurred
during that time with other modules and send this number of transactions to the
other modules. In order to participate in a rollback initiated by other modules, each
module must be able to receive the number of transactions to rollback and translate
them to internal cycles. We have designed a circuit for performing the mapping
between internal cycles and transactions. We call this circuit a transactions-to-
cycles/cycles-to-transactions transducer (Figure 5.3). A module connected to
several different modules through dedicated communication ports and links

requires a transducer for each connection (Figure 5.4).

Module 1 Module 2
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Figure 5.3: Synchronization through transducers.
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Figure 5.4: Transducers in an asynchronous multi-module system,

5.2. Cycles-to-Transactions and Transactions-to-Cycles Transducer

For a module M, a transducer (see Figure 5.5) performs three basic functions:
(1) It keeps track of transactions with another module M.
(2) When a rollback signal is generated internally, indicating that M, must roll
back C,; cycles, the transducer determines how many transactions (T) M, has
performed with M ,, and sends that number to M,
(3) Upon receiving a rollback signal from M, the transducer converts the incoming
number of transactions T to an internal number of cycles C;. A micro rollback of

C, internal cycles is then initiated.

The shift register labeled Transaction Monitor in Figure 5.5, is used to keep
track of transactions with another module. During each cycle, a 1 is shifted in if a

transaction occurs, a ( is shifted in otherwise (no transaction). When a rollback of
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Figure 5.5: A transactions-to-cycles/cycles-to-transactions transducer.

C internal cycles is performed by a module, the first (bottom) C' entries in the

Transaction Monitor are cleared.

-Two special circuits, a ‘‘Cycles-to-Transactions Unit”* (CTU) and a

““Transactions-to-Cycles Unit’’ (TCU), are used in a transducer to perform the
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Figure 5.6: A cycles to transactions unit (CTU).

necessary translations. A CTU which converts a number of cycles ranging from 1
to 5 to a number of transactions ranging from 1 to 4, is shown in Figure 5.6. This
circuit is similar to the Invalidate Write Counter described in Chapter 4. Instead of
monitoring writes, it monitors transactions. The inputs are: a) the number of cycles
to roll back — N, and b)the contents of TM, the shift register monitoring
transactions. The output is the number of transactions that have occurred during
the last N cycles, i.e., the number of transactions that should be ‘‘undone.’’ The
thick line in Figure 5.6 represents the connection established when a rollback of 5
cycles occurs and 2 transactions are ‘‘stored’” in the Transaction Monitor. An error
is signaled if the CTU determines that more than 4 transactions have to be undone.

The maximum number of transactions possible for a given number of cycles
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depends on the module itself and on the protocol used to communicate with other

modules.

Scycles 4cycles 3cycles 2cycles 1cycle

error ‘_-E"]
v ] A 1
1 I TM [5]
error : -:1 r}L Tp] .
At T e
error ¢: _riLL {} 3}] 0
e H—= T™ (3]
error ] 1 =N 3 — 0
B e S i s U A T™ [2)
R i
2 1 L. L_Jr} 5= TM[I]
| l 1
4 3 2 1

fransactions  Iransdclions  transgctions  transaclion

Figure 5.7: A transactions to cycles unit (TCU).

A TCU, which is dual to the CTU described above, is shown in Figure 5.7.
The inputs are: a) the number of transactions to roll back and b) the contents of the
transactions monitor. The output is the number of cycles to roll back. In
Figure 5.7 the thick line represents a rollback of 2 transactions requiring a rollback
of 4 cycles internally. In the case where the requested number of transactions to
roll back is larger than the number of transactions contained in the Transaction

Monitor, an error signal is sent to the control unit.

We have laid out the complete circuitry of the bidirectional transducer (Figure
5.8) and it measures 164000 A?, which represents 4% of the area of a dual-port
register file with 64 32-bit registers, or 22% of a simple ALU. The time required to

convert cycles to transactions (and vice versa) is about 10ns, which makes a
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single-cycle rollback possible even for fast modules.
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Figure 5.8: Layout of a transducer (not showing basic cells).

5.3. Micro Roliback in Bus-Connected Systems

Periodic checkpointing of process states and roll back to a previous state
when an error is detected is a common technique for error recovery in distributed
systems [Rand78]. If each process is checkpointed independently, rolling back one
process may require rolling back a second process further in time which, in turn,
may cause a third process to roll back, etc. leading to an uncontrolled domino
effect [Rand78). In the worst case, this can result in all processes in the system

rolling back to their state when the system is initialized.

In the systems discussed so far, the modules are interconnected in a tree
topology, where there is a unique path between every pair of nodes (Figure 5.2,

Figure 5.3). In the context of micro rollback, which is done at the level of
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hardware modules, the domino effect cannot occur in such system. However, if the
modules are connected in an arbitrary topology, where there are several
independent communication paths between pairs of modules, the domino effect
could, potentially, occur. Since the range of rollback is severely limited (a few

cycles), this can make recovery impossible.

ra b

<, > 2

Y L

Figure 5.9: Bus-based multi-module system.

At first glance, it appears that the domino effect can be a problem when micro
rollback is used in common bus-connected systems[AMD87, Moto85b]
(Figure 5.9). For example, in the system shown in Figure 5.9, the following
situation could occur:

e a rollback signal is initiated in the main processor which rolls back C cycles.

o the main processor sends a number of transactions to roll back to the FPU.

e the FPU rolls back and its transducer determines that the MMU must also roll

back because it interacted with the FPU during the last few cycles.

e the MMU rolls back, and its transducer sends a number of transactions to roll
back to the main processor, which, in turn, is now required to roll back more than

C cycles.

In a system where all modules are interconnected via a common bus, this
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problem can be solved by using bus transactions as a common logical
clock [Lamp78]. Bus transactions can be monitored by all the modules in the
system and used for synchronization. There are two possible techniques for using
bus transactions to achieve a consistent state following rollback:

1) Each module has one transducer which monitors generic bus transactions
(Figure 5.10). Whenever a module detects an internal rollback signal, it converts it
to a number of bus transactions, and puts it on the bus. All the other modules read
this number of bus transactions, convert it to an internal number of cycles, and roll
back. The disadvantage of this method is that it generates unnecessary rollbacks.
Modules may roll back a certain number of system bus transactions even if they

have not had any interactions with the rest of the system.

internal inte[nal inte[nal
cycles cycles cycles
ransducer] ransducer, ransducer|
bus transactions bus transactions bus transactions
System Bus

Figure 5.10: Elimination of the domino effect using a transducer to
convert between bus transactions and internal cycles.

2) Each module has two transducers (Figure 5.11). The shift register (monitor) in
the bottom transducer, shifts every time there is a bus transaction on the system
bus. A *‘1”’ is shifted in if the bus transaction belongs to the module (private bus
transaction). A ‘0’ is shifted in otherwise. The shift register in the top transducer

shifts every internal clock cycle. A ‘1’ is shifted in if there was a bus transaction
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involving the module during the particular cycle. A **0’’ is shifted in otherwise. If
a rollback signal is detected, the following conversion occurs:

Generic Bus Transactions — Private Bus Trans. — Internal Cycles
In this way modules roll back only if necessary, but require twice the amount of
hardware. The delays are also doubled which may make the implementation more

critical for modules operating at high frequencies.

Module 1 Module 2 Module 3
internal internal internal
cycles cycles cycles
ransducer ransducer ransducer]
local ) local . local _
bus transactions bus transactions bus transactions
ransducer] transducen transducer
lobal ) lobal _ lobal .
us transactions us transactions us transactions
System Bus

Figure 5.11: Elimination of the domino effect using two transducers to
convert between generic bus transactions, privaie bus
transactions, and internal cycles.

5.4. Summary and Conclusions

In a synchronous system, where all modules share a common clock and
communicate via synchronous links, maintaining consistency following rollback is
simple: all modules roll back the same number of cycles. In this chapter we have
shown that micro rollback can also be implemented in heterogeneous asynchronous

systems, where different modules operate with different clocks and communicate
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over asynchronous links. The key to implementing micro rollback in this type of
system is a simple circuit that translates between the number of local cycles to roll
back and the number of inter-module transactions. We have presented details of
the implementation of this circuit as well as techniques for applying a variation of
it in bus-connected systems composed of a processor and several asynchronous

COProcCessors.
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Chapter Six

Interactions with Modules Outside
of the Micro Rollback Domain

In the previous chapter, it was shown how micro rollback can be implemented
in a multi-module system where each module by itself is capable of micro rollback.
A set of modules always rolling back together to maintain a consistent state is

called a micro rollback domain (Chapter 4).

Micro Rollback

Domain

(=)

Modules Capable ’ \Off —the —Shelf Modufesl
of Micro Rollback

Figure 6.1: Classification of modules in a system.

In many cases it is useful to include in a single system some modules which
are capable of micro rollback and some that are not. We call such a configuration a
hybrid system. In a hybrid system, the modules which are incapable of micro
rollback must remain outside the rollback domain. The interactions between the

rollback domain and modules which are not capable of micro rollback (the
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“‘outside world’") is the topic of this chapter. We will show that standard modules
can communicate with the rollback domain through a dedicated interface unit. We
focus on the design of simple interface units for memory systems and floating-

point coprocessors.

6.1. Hybrid Systems

A fault-tolerant system based on micro rollback may benefit from the high-
level of performance provided by specialized modules implemented for standard
systems. For example, for some applications performance can be increased
through the use of dedicated coprocessors for floating-point operations [Inte87,
Moto85a, Rowe88, Mont90]. Complex ‘‘intelligent’” cache chips[Mele89,
Mati89] can improve the performance of the memory system to match the
requirements of modern microprocessors. Other applications which may benefit
from dedicated coprocessors include digital signal processing (e.g. FFT), graphics,

pattern recognition, etc.

Adding micro rollback to these complex chips can be achieved by using the
methods described in the previous chapters. These methods involve the
modification of several units (leading to new layouts and new masks) which may
require several man-years to produce. Even though these methods were developed
with the goal of minimizing the area overhead and the performance degradation,
the critical path may still be altered, requiring a reduction of the frequency at
which the system (including all modules) operates. If the chip is to be produced for
specific applications (low volume), or if a short design cycle is a priority, or if the

system requirements demand that the performance of other modules does not
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decrease, the process of adding micro rollback to a complex chip in the system may

not be a viable solution.

With the recent advances in custom and semi-custom design, a hybnd system
residing on a single chip is foreseeable. A floating-point unit (FPU) could be part
of a standard cell package (the MIPS 3010 uses only 75000 transistors) and could
be combined with a previously designed processor capable of rollback, such as the
MIRROR processor [Tami91]. For such cases, it is desirable to design general
interface units which allow a single-chip hybrid system to be built rapidly without

modifying the cells themselves (e.g. the floating-point multiplier pipeline).

The external inputs and outputs of a system are often inherently incapable of
rollback. Sensors, data acquisition modules, commands and controls sent to
physical systems, are a few examples of modules where rollback is difficult or even
impossible to achieve. In these cases, a mechanism for interfacing the physical
world with a high performance fault-tolerant system based on micro rollback must

be developed.

Another possible motivation for building a hybrid system is the use of some
modules that are implemented in a different technology, which is less susceptible
to faults, and as a result have a much lower rate of errors than the modules that are
capable of rollback. For instance, modules could be implemented with larger
feature size, or they could be embedded in shielded packaging, or a technology
more resistant to radiation (e.g. GaAs) could be used for their fabrication. With a
low rate of errors, system requirements may be met despite the use of slow
recovery mechanisms, such as system-level recovery {Rand78]. Some modules in

the system (e.g. those implemented in GaAs) may have a much lower failure rate
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than other modules. It may be acceptable to use slow recovery mechanisms for
errors caused by the failure of these ‘‘resilient’’ components, while faster recovery
mechanisms will be necessary for errors caused by modules with a high failure
rate. As an example, we consider a hybrid system, with GaAs modules, which are
not capable of micro rollback, and CMOS modules, which are. All modules
process data at their inputs as soon as it arrives, without waiting for checker
outputs. For the GaAs modules, an error signal implies that their local state may be
corrupt, so system-level recovery must be initiated. For the CMOS modules, an
error indication triggers a micro rollback which restores them to a valid state, thus

avoiding the need for system-level recovery.

6.2. Rollback Domain Interface Unit

Since state changes in modules outside the micro rollback domain cannot be
undone, direct communication from modules in the rollback domain to the
“‘outside world”’ cannot be achieved. In order to allow any communication to
occur, a dedicated hardware module, called a rollback domain interface unit
(RDIU), must be used to interface modules inside the rollback domain to modules

outside the rollback domain (Figure 6.2).

The general case of establishing communication between the two domains can
be made by treating that each transfer as an arbitrary transaction. By delaying all
communication (through a buffer) from the rollback domain to the outside domain,
it is possible to ensure that data or controls reaching the modules not capable of
rollback are committed and do not need to be rolled back (Figure 6.3). In the other

direction, i.e. from the outside domain to the rollback domain, communication does
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Figure 6.2: Insertion of an RDIU in the communication path. Both
domains exchange data and control signals through the
RDIU.

not need to be buffered since even if erroneous data reach a module, it is possible
to undo any damage by rolling back the module. On the other hand, data produced
by a module outside the rollback domain may need to be ‘‘replayed’’ following a
rollback. This capability must also be provided by the RDIU interfacing the two

domains (‘‘replay memory”’ in Figure 6.3).

Delaying all communication in one direction may result in severe
performance degradation. Based on the semantics of the communication between
two modules, it is possible to optimize the interface so that only state damaging
interactions are buffered. To better understand how an RDIU can be selective in
the messages that are to be buffered and the ones that are not, we consider two

important examples: the processor-memory interface (Section 6.3) and the
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Figure 63: General RDIU allowing communication between the two
domains. Communication is buffered in one direction, while
exchanges are ‘‘logged’” for possible replay in the other
direction.

processor-coprocessor interface (Section 6.4 and Section 6.5).

6.3. Processor with Cache/Memory System Outside the Micro Rollback

Domain

High-performance cache/memory modules providing high data transfer rates,
efficient addressing modes, and wide data transfers, have been developed in order
to increase the performance of computer systems. A system based on micro
rollback can benefit from using these modules if, for the reasons mentioned in the
previous section, proper interfacing is established. In this section, we investigate
the design of specific RDIUs for interfacing a micro rollback capable processor
(MRCP) with a variety of cache/memory systems. As we described in Chapter 4,
depending on the cache/memory configuration it may not be necessary to roll back

main memory. In the following discussion we look at the case where the chosen
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cache/memory system needs to be rolled back. For the sake of clarity, we refer to
the cache/memory subsystem as the ‘‘memory’’. We first look at a simple one-
cycle memory, going to a more complex burst-access variable latency memory

system with out-of-order responses.

6.3.1. Processor and Single Cycle Memory

In the simple system depicted in Figure 6.4, a processor accesses memory
through load and store instructions in a single bus cycle. The memory consists of
standard chips without rollback capability. Direct communication cannot be
allowed since erroneous Sfores can corrupt the memory. To allow interaction
between the modules, an RDIU is required in the communication path between the

memory and the processor.

One Cycle ) Main

Processor
load istore Memory

Figure 6.4: Single bus cycle communication between processor —
memory
In order to make the RDIU transparent to the MRCP and the memory, the
original interface between the modules must be maintained (Figure 6.5). While
interacting with the processor, the RDIU behaves like the memory subsystem. For
example, if the original interface specifies that the processor must be stalled if the

memory system is not ready, the RDIU must send the same control signals to the
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MRCP if the memory sends a busy signal to the RDIU. No modifications should
be required to the protocol already established by the processor.

Processor

Figure 6.5: RDIU inserted in between a processor and main memory.,

Main
Memory

v

Processor Processor
Memory Memory
Interface Interface

General RDIU for Single Cycle Memory

The replay memory needed for the general RDIU, described in Section 6.2
and shown in Figure 6.3, is not needed for a single cycle memory. With a memory
system responding to processor requests during the same cycle as they are issued,
only one active request is active at a time. The memory system starts processing a
request and finishes it before starting a new one. Following a rollback, there are no
outstanding requests. The exchanges that occurred during the past n cycles are

replayed by the memory itself upon request from the processor.

In the other direction, that is from the processor to the memory, data and
control signals generated by the processor during load and store instructions are
not ‘‘committed”’. The general RDIU is used to delay these interactions until they
are out of range of a potential rollback. Data and control can be sent *‘safely’” to

memory only after being delayed in a buffer until they pass the maximum rollback
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distance (the rollback range). The following operations happen in the RDIU during

a store or a load (Figure 6.6):

— the address, control signals (loads and stores) and data (for stores) are

shifted in the FIFO and the entry is marked valid.
— every cycle entries in the FIFO are shifted.

— valid entries reaching the end of the FIFO are sent to the memory.

Invalid entries are discarded.

The main disadvantage of using a general RDIU for the processor-memory
interface, is the overhead introduced by delaying loads for N cycles. A module
may be idle waiting for data that would normally be available, but is being delayed
in the FIFO. As shown below, this overhead is large, making the use of a general

RDIU impractical.

Starting with a system S, with no RDIU, we define the performance measure
T as being the overhead per cycle that results if an RDIU is inserted in the
communication path between the processor and the memory. The parameters upon

which t depends are:
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Figure 6.6: The general RDIU delays all interactions between the two
domains

N length of the FIFO
percentage of load instructions
5 average number of instructions that can be scheduled

during the load latency

If we assume that one instruction per cycle can be scheduled, and that s non load-
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dependent instructions can be scheduled during the N “‘extra’ cycles following a
load, then the penalty is reduced to (¥ —s). From this and the load frequency f we
find:
T=f xX(N -5).
We consider a system where the FIFO of the RDIU must hold data for up to
four cycles, (W = 4). For a typical RISC processor loads represent about 20% of the
instructions mix [Henn90]. From compiler technology, it is known that following a

load, delay slots can be filled as follow [Gros83]:

first delay slot: 70%
second delay slot:  30%
third delay slot: 10%

Which means that on the average out of 10 loads, 7 will have one slot filled, 3 will
have one more slot filled, and 1 will have an extra slot filled. On the average

0.7+03+01=1.1

useful instructions can be scheduled while waiting for a load. From these numbers

we obtain:
N = 4
f = 02
s = 1.1
which gives:
1=0.58
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Delaying loads through an RDIU with a FIFO of length four, would thus cause a
considerable overhead of 0.58 cycle per cycle. For example if §, execute a
program in 1000 cycles, a system with a DB of depth four would take an extra 580
cycles (1000 x 0.58) to execute (for a total of 1580 cycles). Thus, while the
general RDIU is simple and maintains the original order for the transactions
between the processor and memory, it also results in significant performance

degradation.

Fortunately, the semantics of the memory can be used to reduce the
performance penalty of the RDIU. The rest of this section deals with the design of
a special purpose RDIU called a delayed store buffer (DSB) which eliminates this

degradation.

Delayed Store Buffer

Since a load does not modify the state of memory (as opposed to a store
which overwrites a memory location) it can be executed even if it is not committed.
The memory will be consistent with the rest of the system even if loads are not
““undone’’ (on the memory side) during a rollback. Thus, load requests can be sent
directly to memory and the overhead of the RDIU can be eliminated.

Using a scheme similar to the DWB of the register file in Chapter 4, it is
possible to provide for loads access to the most recent updates performed by the
uncommitted stores. This hardware is the DSB. Sending loads directly to memory
minimizes the load latency but introduces the problem of memory bus contention

between loads and previously issued stores (see Section 4.3.1).

Contention for the memory bus occurs as a result of the following situation:
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the first entry of the FIFO in the DSB is valid and is ready to be shifted out onto the
bus to be written to the memory, while, simultaneously, a load is initiated by the

processor. We describe two solutions to this problem:

Priority to stores: priority is given to the valid data in the DSB, loads
simply block and wait for a ‘‘bubble’’ in the FIFO (a non valid entry) so
that a load request to memory can be made. This solution is simple in the
sense that the hardware required is minimum but the original performance
may not be maintained if collisions occur. In the worst case, a load is
blocked for N cycles until N valid stores are sent from the DSB to memory.
Saving and loading a register file (through multiple stores and loads) during
a context switch is an example of when blocking can happen. During
normal execution, blocking depends on the probability of having a load N
cycles after a store. This situation does not occur often since for typical
integer programs loads represent up to 20% of the instruction mix, while

stores represent around 10% [Henn90].

Priority to loads: to maintain the same level of performance as a system
without an RDIU, loads must have priority on accessing the bus.
Specifically, if there is a store ready to be sent to memory and a load is
requested from the processor, the DSB remains idle (does not shift) and the
load proceeds as in a normal system. Even though the FIFO is not shifted,
its contents are now one cycle closer to commit time which should be
reflected in the RDIU. Logic that keeps track of how long data have been

in the DSB must be provided. The following section explains how this
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mapping is accomplished in hardware.

Mapping Between a Number of Cycles to Roll Back and DSB Invalidate
Signals

If N is the maximum number of cycles that the processor can roll back, then
we must keep track of what happened in the previous N cycles and map a number
of cycles n<N to a number of invalidates (i<N) (Figure 6.7). This kind of
mapping is similar to the mapping of a number of cycles to invalidate to a number
of wrires to invalidate in the optimized design of the register file (Section 4.2). The
only difference is that in the RDIU, whenever there is a shift, the whole FIFO
shifts, compared to individual shifting of the registers in the DWB. Individual
shifting was necessary in the optimized register file in order to minimize the
number of entries in the FIFO. The size of the FIFO was based on the maximum
number of writes that could occur during N cycles. For the one cycle memory, N
stores can occur during N cycles, which dictates a FIFO of N registers. A global
shift of the FIFO results in simpler mapping (than with individual shifts) but the
performance is slightly lower since data coming from the processor are blocked if
the first entry of the FIFO is occupied, even if the FIFO does not contain N valid
entries. Individual shifting of entries in the RDIU, similar to the shifting for the
optimized DWB, would allow less blocking than with global shifts. The task of
locating valid entries in the FIFO (done by the invalid write mapper (IWM) in the
optimized register file), is eliminated for this RDIU. The block diagram of the
modified delay buffer with the circuitry for the mapping is shown in Figure 6.8.

A ““17° is shifted in the shift monitor (SM) in Figure 6.8 whenever the FIFO
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Figure 6.7: Mapping between n cycles and i invalidates.

shifts. Otherwise a *‘Q’’ is shifted in. The N cells in the shift monitor (where N is
the rollback range) shift every cycle. The FIFO shifts every cycle unless there isa
collision with a load being issued by the processor. The Mapper (Figure 6.9), a
circuit similar to the Invalid Write Counter (IWC in Chapter 4), converts a number
of cycles to roll back to individual invalidate signals for the entries in the FIFO.
We show in Figure 6.9 a Mapper for a delay buffer for which the FIFO was
blocked for two consecutive cycles due to conflicts with loads. A rollback of four
cycles in this example will be routed through the transmission gates of the Mapper
to two invalidate signals (invalidate, and invalidate ;). This shows that the two

idle cycles have been acknowledged by the RDIU.

6.3.2. Processor and Memory with Wait States

In a system where the latency for memory accesses is determined by the
memory rather than the (faster) processor, wait states are introduced between the
processor request and the data transfer from memory. This is accomplished with
simple handshaking between memory modules and the processor. As long as the
memory notifies the processor that the data is not ready, the processor is in a stall

mode (for simple systems).
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Figure 6.8: A delayed store buffer serving as the RDIU for single cycle
memory.

When an RDIU is introduced between the processor and the memory, the
memory interacts directly with the RDIU instead of the processor. If the memory
is busy, the FIFO of the RDIU is stalled, preventing data in the FIFO from being
sent out to memory. During that time, the RDIU blocks any incoming stores from
the processor. Even though the FIFO is not shifted, the data contained in the RDIU

moves closer to the commit time during each cycle (wait state or not). This
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Figure 6.9: Store mapper. In this case a rollback of 4 cycles invalidates
only the first two entries in the buffer.

situation is similar to the one described in the previous section where a collision
between a load and a store resulted in stalling the FIFO of the RDIU but also kept
track of how long data has been in the FIFO. Thus, the RDIU structure previously

described in in Figure 6.8, can be used for memory systems with wait states.

As with the simple memory with no wait states, a replay memory is not
needed since the processor blocks until access is complete and the memory handles
processor requests sequentially in a pipelined manner (there is never more than one

outstanding request).

152



6.3.3. Processor and Memory with Burst Access Mode

Burst access mode allows rapid loading or storing of consecutive blocks of
words in memory. A single address [A] is sent to memory and the rest of the
words in the block [A+1, A+2,..., A+n] are accessed through simple handshaking
between the processor and the memory. Burst access mode can result in higher
memory bandwidth and reduced load on the address bus. It also offers the
possibility, once the starting address is sent, to use the address bus as a supplement
to the data bus thus achieving higher bandwidth through wider data

transfers [AMDS&7].

For a system which provides burst access modes, the insertion of an RDIU

requires the following for maintaining correct operations for stores and loads:

Stores:

When the processor requests a burst mode access, it is granted by the RDIU
and the communication starts between these two modules. All requests are
buffered for N cycles. After the first request goes through the FIFO (after a delay
of N cycles), the RDIU requests a burst access to the memory. The control signals
that the processor initially sends to the RDIU indicating a burst access must be
stored along with the address and the data in the FIFO of the RDIU. A CAM
similar to the one described earlier guarantees that the latest update of a variable is

available for subsequent loads.
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Loads:

In previous systems we have described a scheme where loads have priority
over stores whenever there is a conflict between the output of the FIFO of the
RDIU and the processor. This is not the case with burst accesses. If a burst store is
initiated by the RDIU to the main memory, it is not interrupted by a load from the
processor. This simplifies the logic involved and does not require complex
operations for stopping the burst access, execute the load, and resume the store.
The load simply blocks for n cycles (n<N) until the burst store terminates. This
operation decreases performance slightly when a load follows a burst store too
closely. This can occur for example during a context switch when the whole
register file is saved through many consecutive stores followed by many
consecutive loads to bring the new variables into the register file. To alleviate this

problem, non-load instructions can be inserted between the series of stores and

loads.
loadm  mem_addr,R1 cycle 1 address out
cycle 2 data in
‘—
cycle 3 data in
rollback
cycle 4 data in
of 3 cycles
cycle 5 data in

Figure 6.10: Rollback during a burst load (similar for burst store).

If a rollback occurs in the middle of a burst load/store, e.g. a few cycles after
the address has been sent (Figure 6.10), the processor is not able to regenerate the
current address since during a burst access only controls signaling consecutive

addresses are sent. In order to be able to continue the burst load/store, the address
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must be regenerated and the proper control signals must be sent by the RDIU.
Hence, the RDIU must keep track of the addresses used for each access, including
each word access which is part of a block burst access. For each load/store
requested by the processor, the corresponding address is stored in a FIFO in the
RDIU (Figure 6.11). A burst access is detected by the RDIU and instead of getting
the address from the processor, it is generated on-chip by incrementing the
previous address by the amount originally specified by the processor at the
beginning of the burst protocol. The result is stored in the FIFO. After a roliback,
the RDIU must determine if it is in the middle of a burst load/store so that if an
increment signal is received from the processor, it will be interpreted as a
continuation of a burst load/store.

Addresses entering the FIFO of the RDIU are eventually shifted out of the
FIFO when they reach commit time. At that point they become out of reach of a
rollback and can thus be discarded. During a rollback, the FIFO containing the
addresses in the RDIU keeps shifting since the addresses are effectively getting

“‘older’’ (closer to commit time).

The replay memory is not required for the same reasons that we enurmnerated
when describing for the previous memory systems (processor blocking until access

is complete, and sequential, non-pipelined accesses).

155



| increment
register

» To Memory Module

9
A
L
@
-
ol
~—

>

Address ———u

BurstINormal —
valid

LTI T

Select Address
To Be Sent

Rollback
of n Cycles

Figure 6.11: Logic required to handle rollbacks occurring during a burst
load.

6.3.4. Processor and Memory with Pipelined Accesses

In order to increase the bandwidth between the processor and memory
modules, accesses to memory can be pipelined. The process of receiving the
address, decoding the address, accessing the memory array, fetching the data, and
sending the data back to the processor can be pipelined by inserting latches
between distinct segments (Figure 6.12). In this way, a request to a multi-cycle
latency memory system does not hold the bus waiting for the access to complete
(other requests can be made). As an example we mentioned the memory interface

of the Intel i860 processor [Perr89). The bus interface unit can send up to three
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memory requests before getting data associated with the first request back from
memory. With pipelined access, high throughput can be achieved despite long

latencies in the memory subsystem.

Pipelined
emory
=
L
Processor ]
M
L

Figure 6.12: Pipelined memory subsystem

Because the memory pipeline resides outside the micro rollback domain, a
processor rollback does not propagate to the memory modules and cannot ‘‘undo’”
the previous memory requests. This introduces a problem when normal execution
resumes after a rollback since responses to previous memory requests may collide
with new memory requests. For correct operation, the first few data items

returning from memory should be discarded.

With pipelined memory, a processor may send a new load request to the
memory while it accepts data requested p cycles ago (where p is the depth of the
memory pipeline). Thus, a rollback of n cycles, besides undoing loads initiated
during the past n cycles, also undoes the ‘‘accept data’’ operations tied to loads
issued beyond n cycles (the rollback distance). Data transfers which are the result
of loads initiated more than n cycles prior to rollback are valid. Hence, following

rollback, the data must be resent to the processor.

We propose three schemes for supporting pipelined accesses and micro

157



rollback. These schemes are suited for three alternative pipelined memory designs.
The first system implements in-order fixed latency loads, the second one has
variable latency loads, while the third one can process loads out-of-order. We
concentrate on the load operation which is more complicated than the store. Stores
can be handled by the same hardware as described previously (data are buffered
and entries are invalidated during a rollback). When an invalid store reaches the

end of the FIFOQ, the pipeline advances but no request is sent to memory.

In-Order Fixed Latency Loads:

When loads return in-order after a fixed number of cycles (through
synchronous operations), a shift register of length L, where L is the latency of a
load, is used to keep track of pending Joads (Figure 6.13). During each cycle, a 1
is shifted in the load monitor (ILM) if a load is requested by the processor,
otherwise a 0 is shifted in. When a the data arrives from the memory modules, it is
sent directly to the processor only if the rightmost entry in the shift register is 1
(valid). Otherwise the data is discarded. A rollback of n cycles invalidates the n
most recent (leftmost) entries in the load monitor, so that the loads associated with

those bits get discarded once they arrive from memory (Figure 6.13).

The replay memory shown in Figure 6.13 saves all data sent to the processor
during the past N cycles. The replay register (under the replay memory in Figure
6.13) is used to indicate which entries in the replay memory are valid. The input of
the replay register is connected to the output of the load monitor, thus forming a
longer shift register. If a rollback of n cycles occurs, the pointer pointing to the

rightmost entry in the load monitor is moved “‘up’’ n positions into the replay
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Figure 6.13: An RDIU for pipelined memory with in order fixed latency
loads.

register. If the content of the replay register pointed to by the pointer is “‘1°’, then

the data saved in the replay memory is re-sent to the processor.

During a rollback, the memory subsystem, being outside of the rollback
domain, is unaware of the rollback and may keep sending data. Thus, in order to
be able to replay this data when normal execution resumes, the incoming data is
shifted into the replay memory while the pointer points to the same entry in the

replay register.

When a ‘0", indicating a rollback, reaches the rightmost entry of the load
monitor, the replay memory does not shift. Instead, the pointer is shifted one entry
“‘to the right’” in the replay register. This has two effects, (i) by not shifting the
replay memory, incoming data is discarded (which is required by the rollback), (ii)

by moving the pointer, data that has arrived while the pointer is in the replay
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Figure 6.14: Contents of the load monitor before and after a three cycle
rollback.

register is sent to the processor. After n ‘‘0s’’ reach the rightmost position, the
pointer is back to its original position. Figure 6.14 shows an example of a three
cycle roliback occurring after several pipeline accesses have been issued. The state
of the shift registers after the rollback is shown in cycle 1. For the next 3 cycles
(cycles 1, 2, and 3), data from the replay memory is re-sent to the processor.
During cycle 4 and 5 new data that have just entered the replay memory are sent to
the processor. Cycle 6 and 7 show the normal situation where the data arrives

directly from memory and is sent at once to the processor.
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In-Order Variable Latency Loads:

In the previous scheme, the length of the load monitor was dictated by the
fixed latency of the loads. Valid signals stored in the load monitor reached the end
of the shift register precisely at the same time as the data from memory arrived.
For asynchronous protocols, loads can have different latencies. Since the width of
the load monitor must accommeodate various load latencies, the bit that corresponds
to a load response is not necessarily the rightmost bit in the load menitor. Special
circuitry must be provided so that the rightmost valid bit in the load monitor
(instead of the rightmost bit) is used to control the destination of the data coming
from memory. A load monitor of width W will allow up to W consecutive pending

loads, assuming that the loads were issued in consecutive cycles.

The circuitry shown in Figure 6.15 allows pipelined accesses with variable
latencies to be rolled back. During normal operation, a ‘1" is shifted in both the
load monitor and the discard register (DR) if a load is present. Otherwise, a *‘0’" is
shifted in. Without any rollbacks, the discard register has the same contents as the
load monitor (when the contents of a location in the load monitor is *‘0”’, the
corresponding bit in the DR is never accessed, in order to simplify controls it is
also set to **0”’). Bits in the load monitor indicate when load requests have arrived.
Bits in the discard register reflects the validity of those entries based on rollback
signals. When a rollback occurs, the n leftmost entries in the discard register are
set to ‘‘0’’. When data comes back from memory, along with a data ready signal,
the priority circuit identifies the location of the rightmost valid bit in the load
monitor. That entry is then used to select the corresponding entry in the discard

register. Data is either routed to the processor (discard register entry = 1) or
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Figure 6.15: An RDIU for pipelined memory with in-order variable
latency loads.

discarded (entry = 0). The rightmost valid bit in the load monitor is reset to “‘0”

(clear signal in Figure 6.15) using a delayed version of the signal used to select a

DR entry. If a ““1” reaches the end of the load monitor and the request has not yet
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been provided by the memory, the load monitor stops shifting. Every cycle the
contents of the load monitor move closer to commit time regardless of whether or
not they shift. This is acknowledged by shifting a *‘0’” into the shift register of a
mapper similar to the one described in Section 6.3.1. The replay memory is

handled similarly to the one used for the fixed latency pipelined memory.

Out-of-Order Loads:

Some memory systems allow requests from a processor to be processed out of
order. In such systems, a tag is associated with each data item so that when the
request is returned by the memory system, the processor is able to identify where
the data belongs. An RDIU for such a system is represented in Figure 6.16. The
only difference with the scheme for variable latency loads concerns the matching
of the incoming data with entries in the load monitor. When a response 1o a load
arrives from the memory, the address tag is compared with entries in the RDIU. If
a match is found, the data is routed/discarded depending on the corresponding

value in the discard register.

A straightforward implementation of the RDIU shown in Figure 6.16 with a
data bus and address bus of 32 bits, would lead to a long narrow ‘‘band’ of
circuitry. In order to obtain better proportions, the CAM part of the RDIU is
“‘folded’’ in half, reducing the height-to-width ratio of the full RDIU to around
seven (from around fourteen). Folding is accomplished without adding a layer for
routing buses over the circuitry since the address bus must go through both the
CAM and the replay memory (Figure 6.17). The dimensions of the components

appearing on the layout of Figure 6.17 are mostly based on cells used for designs
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described in details in Chapter 4.
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6.3.5. General RDIU for a Processor-Memory System

We showed in the preceding section, that high-performance can be
maintained in a system with modules inside and outside of the micro rollback
domain only if the RDIU is tailored to the protocol used in that system. Through
different designs we demonstrated that by adding features to the RDIU it was
possible to operate with only a slight loss of performance. To better understand the

function of a complex RDIU and to generalize its use in a processor — memory
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system, we show in Figure 6.18, a block diagram of an RDIU that can handle
simple requests, burst accesses, pipelined accesses, and out-of-order requests.

Each individual feature presented in the preceding schemes is included.

6.4. Loosely-Coupled Coprocessors and Micro Rollback

In this section we examine how off-the-shelf loosely-coupled coprocessors
can be inserted into a rollback system. The term loosely-coupled is used to
describe coprocessors that depend on the processor for initially receiving
instructions and operands, but are capable of operating independently from the
processor once execution has started. Generally, loosely-coupled coprocessors do
not have direct access to the instruction bus, instead the processor assumes the task
of fetching, decoding and sending related instructions to the coprocessor. Memory
operands are also the responsibility of the processor and these are transferred to the
coprocessor through a form of handshaking. The pipeline of a loosely-coupled
coprocessor is completely independent from the processor pipeline so that once a
coprocessor instruction is started, complete parallelism can occur between the two
units. Generally, exceptions for loosely coupled coprocessors are not reported to
the processor at the moment they occur, but only when another coprocessor

instruction is executed, this is referred to as a deferred trap [Sun91].

As a concrete example, we look at the Motorola 68881 [Moto85a] (the Intel
80387 is just as representative). Even though loosely-coupled coprocessors do not
represent the current state-of-the art in coprocessor interfaces, they provide a good
example of how an RDIU can be inserted in a system so that modules inside and

outside the micro rollback domain can interact. In the next section we will discuss
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tightly-coupled coprocessors, such as the MIPS R3010[Kane87], which are more

representative of current high performance coprocessors.

The Motorola 68881 is a ‘‘passive’” coprocessor in the sense that all floating-
point instructions and their operands are fetched by the main processor. The
execution part of the instructions is completely done by the 68881 and is
independent from the execution of ‘‘normal’’ processor instructions. This allows
almost complete overlap between the two processing units once the coprocessor
instruction is started. An interesting feature of the 68881 is the asynchronous
protocol used with the processor, most likely a Motorola 68020, which allows

different clock frequencies to be used for the two modules.

In the context of micro rollback, controls and data cannot be sent directly
from the processor to the coprocessor since they could change the state of the
coprocessor and upon rollback of the processor, could not be restored to a correct
state. An RDIU is thus introduced in the communication path between the
processor and the coprocessor (hereafter referred to as P and C). A delay buffer
RDIU such as the one described in Section 6.3.1 and shown in Figure 6.6 can be
used. All information flowing from P to € including floating-point instructions,
data operands, and controls signals, is delayed by N cycles. In this way, once an
instruction exits the FIFO of the RDIU, it is committed and can be executed
“‘safely’’ by the coprocessor. For instance, if the main processor fetches a
floating-point ADD, it is sent immediately to the RDIU where it is delayed for N

cycles and then sent to the coprocessor where it is executed at once.

The approach described above is general and does not consider the semantics

of the coprocessor instructions. By looking at the exchanges occurring between P
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Figure 6.19: The N-Deep FIFO delays data, addresses, and control
signals send by the processor to the coprocessor.

and C, during coprocessors instructions it is possible to exploit the fact that some
commands sent by P to C do not cause state changes in € and can bypass the delay
buffer. The commands sent by P that do not change the state of C are mostly
request to read one of the coprocessor’s interface registers (CIR). For example,
during all floating-point arithmetic instructions and during floating-point register
moves, the 68881, after receiving the initial controls, will request the current
program counter (PC) from the processor. The request by C is made by setting a
bit in one of its control register. Soon after sending the initial controls, P reads the
response register on C and detects that the PC must be transferred. The latter
command (read of the response register), does not modify the state of C and can be
issued directly after the initial commands. A modified delay buffer, which routes
read requests directly to C without delaying them, constitute an efficient RDIU
which improves performance in respect to a pure delay buffer (Figure 6.19). Read

commands sent directly to the coprocessor are processed sequentially (one at the
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time) and are not pipelined. Complicated transfers from C to P are decomposed
into several one-cycle read commands. Thus, a replay memory is not needed since
any processor rollback that ‘‘undoes’” a read command, would request that read
command again when processing resumes. If a coprocessor-processor system has
multiple cycle read commands, the RDIU must reject any ‘‘unwanted’’ data,

similarly to the RDIU described for the pipelined memory in Section 6.3.4.

The insertion of the FIFQO in the communication path between P and C,
introduces a delay of N cycles for each state changing interaction. This penalty
translates directly into a system overhead of N cycles times the number of
interactions that each coprocessor instruction has. The possible overlap between
the coprocessor instructions and the main processor instructions occurs only after
the execution phase of a coprocessor instruction has begun. It is important to keep
in mind that floating-point operations executed by the MC68881, take anywhere
from 30 to more that 1000 cycles to be completed. Thus an overhead of 4, 8 or 12

cycles per floating-pint instruction may not be that significant.

6.5. Tightly Coupled Coprocessors

Coprocessors referred to as “‘tightly coupled coprocessors’” are added into a
system by forming a seamless integration of their instruction set with the processor.
By duplicating some of the pipeline stages, such as instruction decode, tightly
coupled coprocessors are able to access instructions and data much faster than
loosely coupled coprocessors. The handshaking protocol occurring between a
processor and a loosely coupled coprocessor can be eliminated resulting in levels

of performance at least an order of magnitude greater than the loosely-coupled
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coprocessors described in the previous section [Rowe88]. On the other hand, their
greater interaction with the processor renders the task of integrating them into a
micro rollback system more challenging. As a concrete example we look at a
system composed of a version of the MIPS R3000 RISC processor which can roll
back (refer to the R3000mr hereafter), and the standard MIPS R3010 floating-point
accelerator [Kane87], which cannot rollback. The R3010 is representative of
tightly coupled coprocessors such as the IBM RS/6000 [Groh90] which receives
instructions directly from the instruction cache and decodes them separately, and
the Intel i860 [Sit89] which decodes floating-point instructions in parallel with

integer instructions.

The close coupling between the R3000 and R3010 as well as the visibility of
the FPA pipeline to the processor, make the R3010 a ‘‘complicated’” candidate
which led us to investigate several alternative implementations of RDIUs. Even
though we focus on the MIPS R3010, the ideas presented in this section are general

and can be applied to other coprocessors.

6.5.1. The R3010 Coprocessor Operation

The instruction pipeline of the R3010 parallels the one of the R3000mr main
processor. The floating-point accelerator (FPA) continuously monitors the
instruction stream. If a floating-point instruction is detected by the FPA, it enters
the 6-stage pipeline, and transfers data (and exception signals) synchronously with
the processor. Otherwise, e.g. during normal instructions, the FPA simply ignores
the instruction. Independently of the incoming instruction, the FPA pipeline

advances in order to achieve synchronization with the R3000mr.
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Uncommitted instructions cannot be sent directly to the R3010 since they
could cause modifications of the internal state from which the R3010 could not
recover. The same applies to data items that are moved to the FPA (floating-point
loads from memory and floating-point moves from the CPU to the FPA). Some
buffering between the instruction stream, the data bus, and the R3010 must be
present so that only committed instructions and committed data reach the

COPToCessor.

6.5.2. Simple Solution: Intercept Individual FPA Instructions

Memory System

R 3000mr

—  R3010
RDIU

Processor p-—-— oo + Coprocessor

—— = data linstruction bus

------- = control signals

Figure 6.20: The RDIU intercepts all incoming instructions before they
reach the R3000 and R3010.

The first RDIU design that we propose for the R3000mr-R3010 system
consists of a module that intercepts incoming instructions before they reach the

processor and the coprocessor (Figure 6.20).
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Since only committed instructions and data enter the FPA, there is no need to
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“‘intercept FPA

The RDIU can determine quickly if the instruction requires FPA intervention
by decoding the three most significant bits of the incoming instruction
(31, 130 L 29)-

(I 53/ 3p + I 55f 20). If the instruction is a normal instruction, it is sent immediately to

This can be implemented with three 2-input NAND gates

the R3000mr and the R3010. The R3000mr proceeds with the execution of the
instruction while the R3010 simply discards it. If the instruction is an FPA
instruction, the CPU and the FPA are stalled for N cycles, where N represents the
rollback range. If data is to be exchanged from the CPU to the FPA, it must also
be delayed until it becomes committed. This is accomplished by buffering data

through the RDIU. The flowchart in Figure 6.21 describes this process.
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Figure 6.22: Circuitry of the RDIU replaying the previous data
movements coming out of the R3010.

“‘undo’’ operations in the R3010. The state of the R3010 does not need to be
modified upon receiving a rollback signal (this is a requirement for this system
since we are using a standard R3010). If data movements from the FPA to the
CPU or to memory (floating-point moves and stores) occurred during the past
cycles covered by the rollback distance, there is a need to replay the data produced
by the FPA.

The circuitry shown in Figure 6.22 supports both the delaying of information

from the instruction memory to the FPA and the replaying of data sent in the last
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four cycles by the FPA. The rollback register is used to keep track of which
instructions are valid. It is composed of two parts: the first one has four entries,
(based on the rollback range) and is attached to the instruction FIFO, the second
part has six entries corresponding to the number of pipeline stages in the R3010.
During normal execution, the rollback register is filled with ones. When a rollback
occurs, the last n entries, where n is the rollback distance, are invalidated (set to
zero). The instruction FIFQ delays all instructions coming from the instruction bus
for N cycles. The instruction is then either sent to the FPA or a non-FPA
instruction is sent if a rollback canceled this instruction. This is accomplished by
replacing bit 30 of the instruction by a **0”’” which indicates a non-FPA instruction
(based on the contents of the rollback register). A non-FPA instruction is ignored

by the R3010.

The store monitor has six entries, each one corresponds to a stage in the
pipeline of the R3010. A ‘‘1” is stored in the store monitor when the RDIU
detects that the instruction being sent to the FPA will cause data to come out of the
FPA. The replay memory is a small FIFO that stores any data that comes out of the
FPA for N cycles (in this case N = 4). If a rollback of n cycles occurs, the replay
pointer, located at the tail of the store monitor, is moved n positions into the valid
register (associated with the replay memory), thus pointing to data that was
produced n cycles ago. The data item pointed to by the replay pointer is put onto
the data bus and sent out to the CPU. The rest of the data that were produced by
the FPA are replayed one by one by letting the FPA execute and by continuously
shifting the store monitor, the replay memory, and the valid register (and the

rollback register). The replay pointer is brought back to its ‘‘normal’’ position (the
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tail of the store monitor) one position at the time when ‘‘invalid’’ entries appear at

the tail of the rollback register. During that time the replay memory does not shift.

Figure 6.23 shows the contents of the rollback register, the store monitor, and
the valid register before and after a rollback of three cycles. In this figure we show
a general case where several consecutive floating-point stores are pipelined one

after the other (one per cycle).

The initial state of the FPA is shown in cycle 0 in Figure 6.23. The contents
of the valid register (VR) shows that the FPA has sent out data for each of the past
four cycles. The store monitor shows that the pipeline of the R3010 is filled with
instructions generating data movement out of the R3010. The ones in the rollback
register indicates that all entries are valid. After a rollback of three cycles, the first
three entries in the rollback register are invalidated. The contents of the replay
memory is accessed by moving the replay pointer three positions into the FIFO
(shown in c¢ycle 1 in Figure 6.23). During the next seven cycles (2,3,4,5,6,7, and
8), the pointer is kept at the same position while the R3010 pipeline keeps
producing committed results which are shifted in the replay memory. When a zero
(rollback entry) reaches the tail of the rollback register, the output of the store
monitor is discarded and the rollback pointer is moved up one position in the replay
memory. This allows the FPA to catch up with the CPU by ‘‘squashing’’ the
rollback cycles one by one. The last invalid entry in the rollback register, shown in
cycle 10 in Figure 6.23, causes the replay pointer to move back to the tail of the
store monitor, which is its assigned position during normal execution. In this way
rollback has been accomplished in a transparent way for both the CPU and the

FPA.
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Figure 6.23: Contents of the rollback register, the store monitor, and the
valid register following a rollback. We assume that several
floating-point stores can be pipelined consecutively.

The performance degradation due to the insertion of the RDIU in the system
is reflected by two components. First, the processor cycle is slowed down since an
instruction fetch must now go through the RDIU. The operations performed by the
RDIU during normal instruction fetches are minimal (2 levels of gates), but once
added to the time it takes for an instruction to go through the pins, it becomes non

negligible. This problem can be alleviated by sending instructions directly to the
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CPU and generating a synchronization rollback of one cycle if the instruction is
later identified to be an FPA instruction. We will discuss this method in more
details in Section 6.5.2. The second source of performance degradation is due to
the N-cycle delay added to each FPA instruction. Moreover, the instructions
generating a movement of data from the CPU or memory to the FPA must account

for another N-cycle delay. This overhead can be described as follow:
overhead =P X (f g XN) + (f poa X fami XN))

Where the overhead is the total number of extra cycles required to run the process.
P is the total number of instructions executed for a process, f p,, is the fraction of
floating-point instructions, f,,; is the fraction of floating-point operations causing
data movement into the R3010. An example of the overhead can be obtained from
numbers published in {Cmel91]. For the program SPICE, P =21569, f4,, = 18%,
and f4,; = 50%, which gives an overhead of 23295 cycles for N =4, or around
86% considering a cpi (cycles per instruction) of 1.25 (the program runs almost

twice as slow).

The components required to implement the RDIU are similar to the ones
described in previous sections (FIFO, Mapper, etc). The only constraint on the
design regards the speed at which an instruction can enter the RDIU, be identified
as a normal instruction and be sent out to the CPU. Unless the synchronization
rollback method is used, this delay is added to the processor cycle time since
fetching a word from the instruction cache represents a critical path. The rest of
the logic does not interfere with normal operation and is only active during
rollback. Operations such as moving pointers, shifting FIFOs, and mapping an

input signal are simple and easily fit in the full clock period allowed for them to
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execute.

The small amount of logic necessary to implement the RDIU as well as
“loose’” timing restrictions for the rollback circuitry, make this chip a good

candidate for semi-custom or gate array implementation.

6.5.3. More Efficient Solution: Non-damaging FPA Instructions Sent Directly

In this section we present an improvement over the previous scheme, which is

achieved at the expense of a adding a small amount of circuitry in the RDIU.

Of the seventeen FPA instructions, five do not modify the state of the R3010
upon completion. These five instructions include moves from the FPA (data
registers and control register), stores from the FPA, and branches based on a
previously calculated condition. Even though the branches have an impact on the
CPU and on the flow of instructions (which can be rolled back), they do not affect
the state of the FPA. Those five non-damaging FPA instructions, can be issued
directly to the FPA without waiting until they become committed. The flowchart

reflecting this change is shown in Figure 6.24.

The flowchart is similar to the one shown in Figure 6.21, except that further
decoding is done to find if the instruction will modify the state of the FPA. The
extra hardware required for implementing this scheme consists of simple logic
decoding five bits from the opcode of incoming instructions. This logic is
comparable to the logic used to detect floating-point instructions, and can be

implemented with two-level logic.

The performance of this scheme is improved since non-damaging FPA

instructions are not delayed. The overhead becomes:
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Figure 6.24: Flowchart representing an optimization for instructions that
do not modify the state of the FPA.

overhead = P X {((f jpq X (= fad) XN)Y+ (fpa X Fami XN))

where f, 4 represents the percentage of floating-point instructions that do not cause

a change of state upon completion in the FPA.

For the same example (SPICE) we obtain f,; = 22% which lead to a reduced

overhead of around 74% (vs. 86% for the simple scheme).
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6.5.4. Solution for High-performance: Instruction Prefetch Buffer

The close interaction between the R3000mr and the R3010 requires that upon
the detection of a state-modifying FPA instruction both units be stalled for N
cycles. When the CPU is stalled, the instruction fetching mechanism is disabled
and the flow of incoming instructions stops until execution resumes. When a new
instruction is fetched, the same procedure occurs, i.e. the instruction is partially
decoded to see if it is an FPA instruction, in which case it is delayed for N cycles.
For consecutive FPA instructions this process can be pipelined so that several FPA
instructions can be waiting sequentially until they become committed.

The idea of pipelining the ‘‘waiting time’’ of incoming FPA instructions
requires a continuous flow of fetched instructions. Since this cannot be
accomplished by the CPU (which is stalled from the moment an FPA instruction is
detected), a simple instruction prefetch buffer (IPB) is inserted in the system. The
IPB is used mainly to continue the fetching of instructions even when the CPU is
stalled due to the detection of an FPA instrucdon. If a sequence of FPA
instructions is fetched and queued in a pipelined manner in the IPB, the overhead
of N cycles will be incurred for only the first FPA instruction. This method can
lead to a significant gain in performance if instructions can be fetched correctly

without processor intervention.

In order to keep the IPB simple (no need to redesign the whole CPU),
subsequent instructions can be assumed to be the sequential continuation of the
current instruction stream. When the delayed instructions are released to the CPU
and FPA, a different flow of instructions may result since previous conditions were

not available when the instruction fetches occur. In that case, instructions in the
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prefetch buffer have to be invalidated and a new instruction stream needs to be
fetched. The sequence of operations controlling the flow of an incoming

instruction is shown in Figure 6.25.
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instruction
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send FIFO (0]
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Figure 6.25: Flowchart of the progress of an incoming instruction. A
continuous flow of instructions is assumed.

The circuitry required to replay the data sent out by the R3010 upon rollback
is similar to the one described in figure 6.22. When a rollback of n cycles occurs,
the last n instructions in the FIFO are invalidated. Entries in the rollback register
are also invalidated appropriately. The replay memory is accessed so that previous

results are sent back to the CPU. The CPU itself is rolled back.
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The improvement in performance due to this method occur when at least two
floating-point instructions appear consecutively in the code. In the best case, a
sequence of several FPA instructions would execute just as fast as a normal system
without rollback, except for the startup delay of N cycles. Adjustment to the
compiler should be made in order to favor grouping of FPA instructions so that the
overhead becomes minimal. A dynamic measurement of the instruction flow
would be required to obtain accurate numbers representing the performance gain

over the previous method.

Memory System

L4 R3010

A— 2 Coprocessor

R 3000mr
RDIU
Processor

Tsynchronizarion rollback

= data linstruction bus

-------- = control signals

Figure 6.26: By removing the RDIU from the instruction fetch path, it is
possible to maintain the same processor Cycle time. A
**synchronization’’ rollback is necessary to synchronize the
CPU and FPA upon the detection of an FPA instruction.

It is possible to improve the protocol so that instructions can be sent directly

to the R3000mr without having to go through the RDIU. This execution of
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instructions becomes speculative in the sense that it is guessed that these
instructions are not of the FPA type. In the case of normal R3000 instructions, the
instructions reach the CPU without added delay and are executed just like in a
system without micro rollback (Figure 6.26). For FPA instructions we let the
processor execute for a few cycles even after the RDIU has detected that the
instruction which just entered the queue is an FPA instruction. In this way
instruction fetch continues (conwrolled by the R3000) without the intervention of
the RDIU. If control signals are normally exchanged between the processor and
the FPA when an instruction goes through the first few pipeline stages, the RDIU
must be capable of duplicating these same signals. In this way the processor will
proceed as if no RDIU is present. This may lead to an increase in the complexity
of the RDIU. The capability to send a rollback signal of N cycles to the CPU must
be added to the RDIU. This rollback signal differs from a normal rollback signal in
the sense that it does not affect the FIFO of the RDIU since its purpose is just for
synchronization and not due to error detection. The other advantage due to this
method is the better utilization of the instruction fetching unit of the R3000mr. By
letting the CPU execute and pursue instruction fetching, it is possible to eliminate

the fetching logic previously required for the RDIU.

6.6. Conclusion

The main purpose of this chapter was to demonstrate the capability, through
the use of a rollback domain interface unit (RDIU), of integrating off-the shelf
modules into a micro rollback system. This added ‘“‘feature’’ allows a system to

take advantage of standard high-performance modules that are developed for
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applications or environments different than the ones micro rollback is targeted for.

We have concentrated on modules which interact directly and frequently with
a processor capable of micro rollback (of the kind described in Chapter 4), namely

memory subsystems and floating-point coprocessors.

The memory subsystem, a dedicated high-performance cache, was shown to
be a good example of a module which can be integrated in the system without high
cost and without significant performance degradation. A single-cycle cache
memory requires hardware similar to a large register file so that recent changes can
be held up until they become committed. The problem of collision between load
and previous stores, nonexistent for register files, but unavoidable without dual

LR

port caches, was solved by adding a Mapper which lets data ‘‘age’’ in a delay

buffer.

We have described an RDIU for a complex memory subsystem capable of
burst accesses, pipeline accesses, and out-of-order requests. The key idea is to
keep enough information in the RDIU to allow quick recovery upon the reception
of a rollback signal. Buffering of damaging transaction is also required but did not
cause trouble because of the very nature of the memory subsystem (data is not

processed, it is merely stored).

Coprocessors, loosely or tightly coupled, were shown to suffer some
performance degradation due to the delay that must be imposed to state-damaging
instructions before they reach the coprocessors. Nonetheless, it was shown that the
amount of hardware required to implement an RDIU for these coprocessors was
small and would allow full use of the coprocessors’ instructions. The introduction

of floating-point coprocessors led to a gain of up to two order of
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magnitudes [Inte87] in conventional systems which makes them very attractive for
micro rollback system even when, in the worst case, a penalty of N cycles is added

to each exchange between the processor and the coprocessor.

Our choice of complex modules with complex interface protocol, has led to
the development of general techniques that we believe can be applied to a variety
of off-the-shelves modules. Through the use of RDIUs, the applicability of micro
rollback is extended beyond custom designed modules and allows a broader range

of applications to benefit from parallel error detection.
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Chapter Seven

Combination of Micro Rollback with Speed-Up
Techniques for Uniprocessors

In previous chapters we have shown how micro rollback can be used to
minimize error detection overhead in terms of area and delays. Serial delays are
eliminated through the use of parallel error detection. Area overhead is reduced by
having the possibility to use slower (longer latency), smaller modules. In this
chapter we take our approach one step further. We integrate micro rollback with

speed-up techniques developed for increasing the performance uniprocessors.

In high performance processors, it is desirable for normal operation to be
based on the optimistic assumption that rare events do not occur. This leads to the
elimination of delays that are introduced by checking for those events in
conventional designs. For example, arithmetic exceptions are not expected to
occur at a high frequency in normal programs. Careful design of the pipeline can
" remove the delay caused by checking for exception so that results in normal
operation are produced more quickly. Upon the detection of an arithmetic
exception, the program can be stopped and brought back to a point before the
exception-causing instruction so that proper handling can proceed (typically, a trap
is triggered) [Smit88, Hwu87]. The removal of exception logic from normal
execution may allow the clock cycle to be shortened or pipeline stages to be
eliminated. If exceptions do not occur often, significant gains in throughput can

thus be achieved.

There are fundamental similarities between the handling of errors due to
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hardware faults and the handling of events such as arithmetic exceptions, page
faults, cache misses, and TLB misses. All of these events are infrequent and:-
require the hardware to deviate from its normal operation (e.g. fetch a cache block
or jump to a trap handling routine). If the hardware is designed to optimize
performance for the normal case, the handling of the rare events may require
undoing state changes that were incorrectly performed. Undoing incorrect state
changes is precisely the task of micro rollback in handling errors caused by
hardware faults. Thus, efficient high performance implementations can be
achieved by combining the hardware for micro rollback and for handling the other

rare events.

In order to achieve high performance, processors rely on techniques such as
register renaming [Logr72, Kell75], out-of-order issuing, execution, and
completion of instructions [Smit88], and speculative execution of
instructions [Hwu87, Smit90]. Register renaming, as we will describe in the next
section, relies on more than one instance of a data register to eliminate dependency
between instructions. The extra registers needed for register renaming can be used
for micro rollback, thus leading to an efficient implementation of both techniques.
Out-of-order execution and speculative execution of an instruction stream (beyond
a conditional branch) requires dedicated hardware to support precise interrupts and
branch repair. In Section 7.2 and 7.3, we describe how micro rollback can be
combined with this hardware to form a standby reorder buffer which is a flexible

mechanism for delaying commitment of changes to the processor state.

188



7.1. Micro Rollback and Register Renaming

In order to avoid register storage conflicts in a processor with several
functional units capable of producing out-or-order results, register renaming can be
used [Logr72, Kell75]. An instruction can be issued even though its target register
would normally overwrite the source register of an instruction issued previously

but which hasn’t used the register yet. For example, in the following code:

div r3,r2,rl
add r5,r4,r3
load r3, &émem_address

The div instruction is issued and takes several cycles to produce a result. The
add instruction is also issued but cannot execute since one of its source register is
not ready (r3). The load instruction could normally not be issued since it would
overwrite the content of r3 before it has been used by the add instruction (write
after read (WAR) hazard [Kell75] ). However using register renaming the logical
register r3 associated with the load is renamed to a different physical register.
In this way the load can proceed, loading new data into a physical register which
will then be available for subsequent instructions accessing r3. In the meantime
the previous physical register containing the data referred to by r3 is kept intact
so that it can be used by the add instruction as soon as the divide instruction
terminates. After the source r3 has been used by the add, the physical register
representing the previous r3 can be released so that it can in turn be renamed as a

physical register for another logical register. In a similar way, register renaming
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can be used to eliminate write after write (WAW) hazards.

In some cases the actions associated with register renaming can be
accomplished by an optimizing compiler. One of the limitation of static register
allocation and scheduling (done at compile time) is tied to the fact that the latency
of the functional units may be variable. For example: (a) an early-exit muitiplier
producing results with different latencies depending on the operands, (b) a load
pipe with variable latencies due to cache hits/misses, and (c) a variable latency
divider [Will91]. Moreover, as we shall see later, register renaming can be used to
logically separate two functional units sharing a pool of registers, without having
complex circuitry for keeping track of the current usage of the registers for both
units, For example, even though the fixed-point unit of the IBM RS/6000 executes
the floating-point loads, it is decoupled from the floating-point register file and
from the registers currently being used by the FPU by using hardware register
renaming. Static register allocation would be ineffective in this case since the units
were purposely designed so that they could operate independently and offer the
flexibility to operate ‘‘out-of-synch’’ at the instruction level (one unit can be ahead
of the other one by a few cycles). Finally, hardware register renaming has the
advantage (over a static scheme) of ‘‘adding’’ physical registers to an architecture
without increasing the bit field allocated in the instruction word to specify the

logical registers.

Hardware register renaming, for a register file of 32 registers, has been shown
to improve performance by about 15%-21% compared to a scheme without
renaming [John89]. However, it should be noted that those numbers were obtained

with a compiler optimized to minimize memory traffic (minimizing the number of
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loads/stores) by assigning a maximum number of local variables to on-chip
registers. Johnson mentions that for a processor with a large number of registers
and/or with a compiler optimized to assign different instances of a local variable to
different registers, the results would be closer to what is obtained through hardware
register renaming. On the other hand, the basic architecture for which the numbers
above were extracted has fixed latencies for all its functional units, thus reducing

the advantage that hardware renaming has over the static method.

Register renaming allows parallel execution of instructions through the use of
exira registers which keep ‘‘old’’ data temporarily until data are no more needed.
This technique is similar to micro rollback where data are also kept temporarily
until they are committed. To accomplish micro rollback, the register renaming
technique can be modified so that the old contents of registers can be kept ‘“alive™
for a few cycles before being discarded. This efficient use of resources for adding

micro rollback can contribute to a low performance overhead.

Since a full cycle is often dedicated for the register renaming [Groh90], there
is a possibility for adding micro rollback to the processor without increasing the
processor cycle. Furthermore, by using the existing hardware it is possible to add

micro rollback with only a small area overhead.

7.1.1. Micro Rollback of a Simple Processor Using Register Renaming

In this section we describe how a simple processor with a single functional
unit can be rolled back using register renaming. The advantages and disadvantages
of this method will be compared to the delayed-write buffer method described in
Chapter 4.
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Description

Even though the following method is general, for the sake of clarity we
describe the hardware required to roll back a register file of 64 registers from one
to four cycles (rollback range N =4). Four physical registers are added to the
register file so that up to four temporary values can be kept at all times. Since a
maximum of one write per cycle occurs, this is sufficient to hold temporary data
for up to four cycles. These extra registers are used to save copies of registers that

would normally be overwritten by uncommitted data (during a wrize).

Every cycle, logical register addresses (logical tags) are mapped to their most
recent physical register assignment (physical tag). Source registers logical tags are
renamed through a mapping table consisting of 64 rows of 7-bit tags (Figure 7.1).
Since all logical tags go through the same process (accessing the mapping table),
we consider all tags to be renamed even if a logical tag has the same ‘‘binary’
value as its corresponding physical tag. This can occur for instance when a logical
tag has kept the same assignment since initialization.. This is only dependent on
initializing the mapping table with matching tags at power up and is not a

requirement for this method to work.

The mapping table is implemented as a RAM with two decoders to provide
the throughput necessary for two source operands to be renamed per cycle. In
order to check for assignments resulting from previous instructions that are not yet
committed, a small CAM (4-deep) is also scanned in parallel to see if there is a
more recent assignment. If so, a match signal will select the correct assignment
(Figure 7.1). The CAM with the priority circuit and the logic attached to the
logical and physical tags is simply a delayed-write buffer (DWB) for the mapping
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Figure 7.1: Micro rollback of a simple processor using register
renaming. Tag logic is outside of the datapath. Four extra
registers are added to the register file. The pitch of the
datapath remains the same. The diagram is not drawn to

scale,

A destination address causes a new renaming of a logical tag. That is

accomplished by storing in the CAM the logical tag along with the first available

physical tag. After four cycles, at which point the write associated with the
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destination register (e.g. during an ALU operation) becomes committed, the
assignment is transferred to the mapping table. The old physical tag is returned to
a list of available tags so that it can be reused. Since reads and writes occur during
different phases of the processor cycle, the decoders for the mapping table can be
shared by the source tags and the destination tags (similarly to the decoders in the

register file).

The implementation described above contains 72 locations where tags can be
stored. Since there are only 68 physical tags, there are always four unused
locations. A better implementation can be made by eliminating the ‘‘available tags
FIFO’’ shown in Figure 7.1. This can be accomplished by invalidating entries in
the CAM upon initialization and by providing a feedback path from the output of
the FIFO/CAM back to the input (Figure 7.2). A physical tag is always made
available for a new assignment. Every cycle, depending on the valid bit of the
leftmost entry in the FIFO, either (a) the bit is equal to *‘17’: a write is made into
the mapping table in which case the physical tag that used to correspond to the
logical tag being remapped is made available, or (b) the bit is equal to “‘0’": the
physical tag corresponding to the leftmost entry in the FIFO is returned to the head
of the FIFO through the feedback path. Invalid entries in the FIFO occur since a

destination register is not necessarily modified every cycle.

A rollback consists of invalidating the last n tag assignments. The writes
made during the last n cycles are thus disregarded and the data preserved in the
register file is made available through the old tag assignment which is still in the

mapping table.
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Implementation

A preliminary layout of the logic necessary for implementing the scheme
described in Figure 7.2 is shown in Figure 7.3. Each one of the components shown
in the figure has been laid out previously [Tami90b, Tami%0a]. Formulas based on
the dimensions of the basic cells used in our previous designs can be derived to
obtain the dimensions of all modules in Figure 7.3. The formulas for two read
ports/one write port (2R/1W) cells were obtained directly from the layout of the
Mirror Processor [Tami91]. The height of the register array is based on the databus
pitch (39A) and on the overhead for precharging the select lines (26A). The width
of the array includes the array itself, based on a stride of 32X for the basic memory

cell (two read ports and one write port time multiplexed), plus four wide power
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Figure 7.3: Preliminary layout of the logic required to implement micro
rollback through tag manipulation. The gray area represents
the overhead due to micro rollback.

lines and additional circuits to gate the data line onto the databus. The height of
the decoder is based on the pitch of the basic decoder cell (484) and by the
superbuffers driving the select lines through the array. If a DWB is present then
the pitch of the decode cells in the decoder is dictated by the pitch of the CAM in
the DWB (pitch of 1031). Also, the decoder must be stretched in the vertical
direction (moved up in Figure 7.3) so that the priority circuit can be inserted

between the CAM part and the data part of the DWB. This is shown in Table 7.1
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where 253\ (as opposed to 157A) is added to compute the height of the decodery,;-.
The width of the decoder matches the register array and is not affected by the
presence of a DWB. The height of the DWB includes (1) the data part, which
matches the pitch of the register array, (2) the CAM part, which has a pitch of
1032, and (3) the priority circuit, valid bits and buffers (403A). The width of the
DWB includes connecting circuitry with the register file, N FIFO/DATA cells
(stride of 92A), and buffers.

2R/1W ports 1R/1W ports

Register File | Height (A) || (D x39)+26 (D x39)+26
Array Width (A) || (R x32) + 269 (R x32) +206
Decoder Height (A) || {4 x48)+157 (A x32)+127
(no DWB) Width (A) || (R x32)+269 (R x32)+206
Decoder Height (A) || {4 x103) + 253 (A x87)+213
(DWB) Width (A) || (R x32)+ 269 (R x32)+206
DWEB Height (A) || (D x39)+ (A x103)+403 | (D x39)+ (A x87)+320

Width (A) || (N x92)+ 149 (NxT2D)+75
D = number of data bits
R = number of registers
A = number of address bits
N = rollback range

Table 7.1: Formulas for computing the area for register file arrays,
decoders, and Delayed Write Buffers (DWB). Results are
given for register files and DWBs with one or two read ports
and one write port.

The formulas shown in Table 7.1 are based on layouts with matching pitch
and stride for adjacent cells. This facilitates the layout greatly and is representative
of what CAD tools providing auto-placement and routing would generate. The
numbers used for the formulas are obtained from the layout of a complete

processor [Lian90] which includes a register file and a DWB. This provides an

environment representative of what one would obtained for a layout based on the
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same cells.

In a different context, where shrinking of individual components is highly
desirable, or where CAD tools do not provide pitch matching between adjacent
cells, our formulas may not be representative of how the same modules would be
laid out. For instance, the height of a decoder laid out to match the pitch of the
CAM cells in the DWB is almost twice as large as a normal decoder (8714 vs 4454
for 6 address lines). In a context where local optimization is emphasized (Chapter
4), or where the set of constraints is different, the decoder may be laid out with
minimum height (different pitch) and connected to the DWB through extensive
routing (for pitch matching). Since extensive routing may be difficult to evaluate,
we have chosen in this chapter, to match the pitch of adjacent cell to facilitate the
computation of the area overhead for a variety of modules. This will lead to
comprehensive comparison between different methods, which is our main
objective.

In order to calculate the overhead caused by the register renaming method, we
first find the parameters describing the sub-modules according to the formulas of
Table 7.1. As mentioned earlier, as a concrete example, we consider a register file

of 64 32-bit registers and a rollback range of four cycles.

The datapath is basically left intact except for the 4 extra registers added at
one end of the register file. The decoder for the original register file is enlarged to
accommodate for the decoding of four more registers via one extra bit. The height
of the decoder is calculated from the formula with ‘‘no DWB’’ since there isn’t any
DWB attached to the register file. Hence, the complete register file can be

characterized by D =32,R =68,and A =7.
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The map table is a register file (even though it stores addresses) with three
read ports and one write port. Three different tags need to be read from the
mapping table: the physical tags of the two sources registers and the physical tag
which is about to be overwritten by the leftmost entry in the FIFO (through the
write port). The latter is needed to make a physical tag available for the incoming

logical destination tag.

Adding an extra read port to a 2-read/1-write register file results in an increase
of approximately 25% in the area of the RAM array [Muld91]. Hence, the register
file array area calculated according to Table 7.1 needs to be multiplied by 1.25.
For the decoder, adding a port leads to an increase in the height of the decoder.
The new height for a normal three-port decoder (without an adjacent DWB) is
Height = (A x 72) + 231. But since the decoder for the map table is adjacent to a
DWRB, its pitch is dictated by the pitch of the CAM cell which is (from Table 7.1):
Height = (A x 103) + 253. This formula leads to a larger dimension and is the one
we use for the decoder. Finally, the width of the data words in the map table is
equal to the number of bits in the physical tags, which is seven for this example.
The map table is thus characterized by D =7, R=64, and A =6 and by
multiplying the area of the register file array by 1.25 (extra port).

The DWB for the map table needs to contain four entries (rollback range) of
six address bits representing the logical tags and seven data bits for the physical
tags. Itis characterizedby:A =6,D =7,and N =4.

The area taken by each component is shown in Table 7.2. In this table we

show the area of a register file for a processor where there is (a) no rollback, (b)

rollback implemented using the DWB method covered in Chapter 4, and (c)
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Register File Map Table DWB Total
Armuy Decoder Amy Decoder
Param. D=32, R=64 R=64, A=6
2x3 26 6 x 45) + 157
Height () (32x39) + (6x48) +
Mo 1274 445
Rollback 26 64 x 32°
Width () (64 % 323 + 269 | {64 x 32) + 269
2317 237
Area () 2,951,858 1,031,065 3,982,923
Pamam, D =32, R=64 R=64, A =6 D =32, A=, N=4
Height (1) (32x3)+26 | (6x103)+ 1253 (32 x 3916 x 103403
1274 871 2,269
DWB
Method | Width (U (64 x 32) + 269 | (64 x 32)+ 269 (4% 92)+ 149
’ 2317 2317 517
Arca (A% 2,951,858 2,018,t07 1,173,073 || 6,143,038
Overhead 0% %% 100% 4%
Param. D=32, R=63 R=68,A=7 D=7 R=64 R=tA A=b D=T,A=6,N=4
Height () (32 x39) + 26 (7 x 48} + 157 (Tx39)+26 | (6x103)+253 (7 x 393H6 % 1031403
i)
1,274 493 299 871 1,294
Renaming
) (68 x 32) + 269 | (68 x 32) + 269 (64 x 32) + 269 | (64 x 32} + 269 (4 x92) + 149
Method |Width (A)
2445 2,445 27 2317 517
Area (A} 3,114,930 1,205,385 | (x1.25 )865,978 2,018,107 668,998 |; 7,873,363
Overhead 55% 17% 100% 100% 100% 08 %

Table 7.2: Overhead for adding a rollback of range four to a 64 x 32 bit
register file for both the DWB method and the register
renaming method. The numbers are extracted from layouts of
the Mirror processor. The parameters are: D = number of data
bits, R = number of registers, A= number of address lines,
and N = rollback range.

roliback implemented using register renaming. For a register file of 64 32-bit
registers and a rollback distance of 4, the DWB method presents an overhead of

54% compared to an overhead of 98% for the register renaming method.
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Advantages

One advantage of the register renaming method over the DWB method
concerns removal of the logic attached to the datapath. This logic increases the
capacitance of the bus lines and lengthens the processor cycle time. Indeed, the
added delay with the DWB method comes mainly from having longer buses due to
the FIFO/CAM (which contains data and register tags) which is connected in
between the register file and the shifter/ALU. Buffers located in between the
register file and the DWB also contribute to a small increase in the processor cycle,
With the register renaming method, the datapath goes through a single uniform
structure forming the register file. By removing the DWB, the FIFO/DATA cells
are deleted from the datapath. This is important considering that the FIFO/DATA
cell of the DWB is more complex than a simple register file cell, but must still fit
into the same datapath pitch. For the DWB method, N columns (N is the rollback
range) of this complex cell contribute to a significant increase of the datapath
stride. Alternatively, in order to reduce the length of the data path, the pitch could

be increased, but this would result in a larger area for the datapath.

With the DWB method it is not clear how sense amplifiers could be integrated
to speed up reading of operands. One possibility is to insert two sets of sense
amplifiers, one for each of the logically separated data parts (register file and
DWB), this, however, would add a significant stride to the datapath. Register
renaming, on the other hand adds a few registers to the register file, but does not
modify the underlying logic. The only impact of this technique on the timing
would be a possible longer time required before the latch signal cuts off the sense

amplifiers from the bus of the register file (going from 64 to 68 registers). The
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decoder of the main register file is smaller than the decoder obtained with the
DWB method since it does not have to match the stride of the complex FIFO/CAM
cell present in the DWB. Another advantage obtained through this method is that
the extra logic required is logically and physically separated from the datapath.
This means that a high performance datapath would not require modifications
except for adding N registers to the register file. Of course the decoder requires
small modifications especially if one more bit needs to be decoded, but should

would not disturb the timing of the datapath.

The principal advantage of this method is more apparent in the context of a
multiple functional unit processor with a superscalar architecture. In that case,
micro rollback and out-of-order execution are merged together sharing the same
circuitry, diminishing overhead in terms of area and delays. We will describe this

situation in the next section.

Disadvantages

The benefits described above come at a large price. The delay to perform
register mapping is large and is likely to be on the critical path of the processor.
The time to access the register mapping table is serialized with the access to the
decoders and the discharge of the data lines, leading to a longer processor cycle.
On the other hand, as we will see in a later section, some processors allow a full
clock cycle for register renaming, a length of time that should be sufficient to

handle our extra logic.

The area occupied by the mapping table is very large mainly because of the

large decoder which must decode logical addresses. Compared to the DWB
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method, the area overhead is much larger, 98% compared to 54% for the DWB
implementation. The register renaming method is also more complicated to
initialize. Initial tags must be loaded into the CAM, which contributes to a few
extra cycles for initialization. Finally, it is not clear how register renaming can be
integrated with register windows. In the current context, because of those

disadvantages, the DWB method is a logical choice over the register renaming

method.

Observations

With the DWB method, a buffer is used to store uncommitted data. Similarly,
register renaming uses a buffer to store uncommitted tag assignments. During a
rollback, buffers containing uncommitted modifications are selectively invalidated,

effectively undoing changes that should not have occurred.

Following a rollback, the register file associated with the DWB method
contains valid data while the register file of a processor using register renaming
may contain invalid data in some registers. With register renaming, rollback is
accomplished by ‘‘moving”’ the micro rollback logic at a different level. Upon a
rollback, uncommitted data is made unavailable through invalidation of tag
assignments. The data part of the register file is left intact while the address part is

made more complicated.
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Error Detection for the Register Renaming Logic

The logic needed to implement micro rollback using register renaming mainly
consists of memory cells (CAM, RAM, shift registers, etc.). Similarly to the
register file and the DWB (Chapter 4), errors occurring in this added logic can be
detected by generating a parity bit for each pair of logical and physical tags. The
parity bit is generated from the bits forming both tags and the valid bit. The parity
bit propagates through the DWB along with the tags and is stored in the mapping
table after N cycles. The parity bit is recomputed and XORed with the stored
parity when the physical source tags are read from the mapping table or from the
DWB. A mismatch generates a rollback and requires a processor transfer of the tag

assignment from the fault-free processor.

The error detection/correction hardware is significantly larger for the register
renaming method than for the DWB method. An extra parity generator/checker is

needed and a different protocol is required to transfer tags among processors.

7.1.2. Micro Rollback and Register Renaming for a Superscalar Processor

In the previous section we have described how the register file of a processor
could be rolled back using register renaming. As mentioned before, the original
goal of register renaming was to reduce storage conflicts for processors with
several functional units [Logr72, Kell75). In this section we will describe how we
can make use of the existing hardware dedicated to register renaming to
accomplish micro rollback. As a concrete example, we will base our discussion on
the scheme chosen for the IBM America project [Groh90], which is basically the
same scheme that was later implemented for the R§/6000 [Grov90].
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Description

In order to allow (1) greater parallelism and (2) synchronization of the fixed-
point unit (FXU) and the functional units of the floating-point unit (FPU), register
renaming is used for the source and destination registers of the FPU. The FPU can
execute instructions with three source registers and one destination register. The
5-bit field for each register address corresponds to one-of-32 logical registers in the

register file.

When an instruction enters the rename stage of the floating-point pipeline, the
three logical source register tags §,, S,, and §4 (Figure 7.4), are mapped to 6-bit
physical register tags through the map table. The destination register tag is
renamed, i.e. a new physical tag is assigned to its logical tag. The new tag is
obtained from the free list (FL) and the old tag is kept in the pending target return
queue (PTRQ). Both queues (FL and PTRQ) are maintained through a set of
pointers. Tags in the PTRQ are released by previous arithmetic instructions which
signal that data contained in those registers have been used and do not need to be
kept ‘‘alive’’ any longer. Before returning to the free list, a comparison of the tag
is made with pending stores (‘‘="" in the pending store queue of Figure 7.4). If
there is no match, the tag is sent to the free list. If a match occurs, the give back
(GB) bit is set and the tag (contained in the ‘“T”’ field) will be released only when
the store completes. There are eight (six for the RS/6000) extra physical registers
provided, making the depth of each queue equal to eight. A lengthy explanation of
the renaming method can be found in [Groh90]

" The current IBM RS/6000 implementation of the floating-point unit allows

two instructions to be renamed per cycle, indicated by the two registers R and R
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Figure 7.4: Register renaming scheme for the IBM RS/6000

pointing to the map table in Figure 7.4. For the sake of simplicity, we describe the

hardware as if only one instruction enters the rename stage per cycle.

Adding micro rollback to the register file means holding ‘‘overwritten’’ data
long enough in temporary registers so that if a rollback occurs it is possible to
restore old values. This action is similar to what is accomplished by register
renaming by saving old register values until previous operations complete. There
are some subtle distinctions between the two sets of requirements which we will

uncover in the following paragraphs.

The mapping table, the different queues, as well as the pointers maintaining
those queues represent part of the processor state dedicated to register renaming
and thus need to be rolled back. These sub-modules operate synchronously and
can thus be rolled back individually using methods described previously. This

would lead to a large overhead and would not take advantage of the specific
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functions accomplished by each sub-module. For example if a module (e.g. map
table), containing only committed data, sends data to an adjacent module (e.g. the
PTRQ), this data does not need to be buffered through a DWB before reaching the

adjacent module. An efficient method avoiding superfluous logic is described in

the following paragraphs.
RO R1 Free List
PilaPs[*] Pi2Pl" ] HEEEEREE
3 1
log. iphys.|V
v
v
: [ ]
11
I
;
Map Table PTRQ FIFO
(32x6) ——{ [T g,

Figure 7.5: New structure for register renaming and micro rollback for
the IBM RS/6000 processor architecture.

The map table, which can be implemented as a small RAM, represents the
largest state of the register renaming control structure. To prevent uncommitted
data from corrupting the map table, a small buffer is inserted in the path between
the target register tag and the map table (Figure 7.5). Any new tag mapping is first
stored in the buffer. Only after four cycles (four being the rollback range), is the

assignment stored into the table. When a rollback occurs, the tag assignments
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stored in the buffer are invalidated so that when they reach the end of the buffer

they are returned to the free list instead of being stored in the map table.

— div r3,r2,rl
add r9,r8,r3
load r3 (r3 renamed)
.
| ]
e
Rollback

{r3 released)} —/
mul ré6,r5,r4d

Figure 7.6: Register tag released after a long latency. This example
shows the need to “‘unrelease’’ a tag during a rollback.

When a tag assignment enters the map table, it pushes the old tag value out to
the PTRQ. Since any action performed on the map table is committed, the tag that
comes out is also committed, which means that the PTRQ also contains committed
data and its data does not need to be rolled back. On the other hand, actions
performed on the PTRQ may not be committed. For example let’s consider the
code shown in Figure 7.6. The div instruction is issued and takes several cycles
to produce a result. The add instruction cannot execute since its data depends on
the result of the previous instruction. The load following the add creates a new
assignment for r3 and the old assignment is pushed into PTRQ waiting to be
released by the add. When the div terminates, the add fetches r3 (using the
physical address saved at issue time) and start executing. At that time the old
assignment for r3 is released. If a rollback occurs shortly after r3 is released, it

is necessary to ‘‘unrelease’’ it so that when the add re-executes, it has the proper
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register to release. This is accomplished by adding a small buffer and by managing
the queue slightly differently (Figure 7.7). Released tags are buffered in a small
FIFO (four entries) before they enter the free list. This has the effect of delaying
the action of releasing tags by four cycles, allowing time for a subsequent rollback
to invalidate the last n released tags. With eight extra physical tags available for
register renaming [Groh90], a PTRQ of length twelve will guarantee that at least
four entries separate the head pointer from the (wrap-around) tail pointer. Those
four entries act as a temporary buffer for pre-released tags. Upon a rollback, the

pointers are brought back to their previous value, pointing to tags available at that

time.
PTRQ FIFO
'[ v v v v
Tail Release Head b v o
Entries invalidated
N y upon rollback

. V7
Pointer conienis
saved for n cycles

Figure 7.7: New Pending Target Return Queue (PTRQ). A small FIFO
is added and the PTRQ is made longer so that tags can be
‘‘unreleased’’.

In this section we showed how micro rollback could be added using a register
renaming technique (a) to a simple processor and (b) to a processor with a few
functional units. Different tradeoffs showed that the area needed for implementing
the register renaming technique for a small processor, is much larger than with the
DWB. Unless the few advantages tied to the register renaming method

(enumerated earlier) are critical, the DWB is a preferred choice. For case (b), the
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processor already uses register renaming for performance reasons, so adding micro
rollback through register renaming instead of with a DWB, becomes relatively

inexpensive. The main changes to the existing hardware include:

— assign a new physical tag for all instructions with a destination field
(done in the America project, but only loads are renamed in the

RS/6000). On a more complex processor, this is already implemented.
— add a small buffer in front of the map table
— modify the PTRQ
— rollback pointers

We have concentrated our efforts on the register renaming circuits since they
can be combined effectively with micro rollback. Other parts of the processor
(coprocessor) would require additional circuits similar to the ones described in
Chapter 4. An accurate evaluation of the area overhead will be given in a later

section (for a more complex processor).

Error Detection for the RS/6000 Register Renaming Logic

Errors occurring in the logic needed for register renaming and micro rollback
can be detected by using parity and state compression/comparison. A parity bit can
be attached to a pair of tags when it is written into the DWB and when it is later
stored into the map table. This parity bit is checked whenever a tag pair is read
from the map table or from the DWB. For the physical tags in the PTRQ, the FIFO
(extension of the PTRQ), the pending store queue (PSQ), and the free list (FL), a
parity bit can be used in conjunction with collecting the state of the tags at a few

key places (entering and exiting queues, and in the PSQ).
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7.2. Integrating Support for Micro Rollback and Precise Interrupts

In order to achieve high throughput, most modern CPUs consist of several
pipelined functional units connected together through a complex instruction issuing
unit. Some supercomputers, such as the CRAY-1, have several functional units but
are limited to issuing one instruction per cycle [Cray77]. Other processors such as
the SIMP processor {Mura89], the Intel i960CA [Inte89], the Intel i860 [Kohn89],
and the IBM RS/6000 [Grov90], can issue multiple instructions per ¢ycle to various
functional units. In this section we consider processors of the first type discussed
above (Figure 7.8). As in [Smit88], we assume that the process state consists of the
program counter, the register file and main memory. The instruction issue unit
provides a bandwidth of one instruction per cycle if there are no register interlock

conflicts and no result bus contention.

As shown in Figure 7.8, different functional units (one of which is a load/store
pipe) have different latencies leading to out-of-order completion. Smith and
Pleszkun [Smit88] proposed a method for implementing precise interrupts on such

a4 ProCcssor.

An interrupt is precise if, when it is processed, all instructions before the
instruction causing the interrupt have terminated and none of the subsequent
instructions have modified the state of the processor [Smit88]. Precise interrupts
force a machine to preserve the view of a machine which executes one instruction
at the time, finishing each one before processing the next one. Generally, for an
interrupt to be precise, the program counter is restored to point to the interrupt
causing instruction. Interrupts, as defined in the article by Smith and Pleszkun,

include traps resulting from exception conditions (illegal opcode, divide by zero,
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Figure 7.8: Processor with several pipelined functional units with a
single instruction issuing unit and a single result bus.

overflow, etc) and external interrupts which are caused by sources outside of the

current process (e.g. I/O interrupts).

In order to provide precise interrupt, Smith and Pleszkun proposed to add a
result shift register (RSR) and a reorder buffer (RB) to the processor (Figure 7.9).
The result shift register provides a way to reserve in advance the result bus based
on the latency of the operation in the decode phase. It also saves the address of the
location in the reorder buffer where the result will be routed. When an instruction
is decoded, an attempt is made to insert a new entry in the result shift register. If

the desired location is already occupied by a valid entry, the issuing unit simply
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Figure 7.9: Result shift register and associated reorder buffer.

waits one cycle for the FIFO to shift. The reorder buffer (RB) allows results to be
made available to subsequent instructions as soon as they are produced by the
functional units. The results are temporarily stored in a queue and are committed
to the register file in program order (Figure 7.9). When an instruction is decoded,
information corresponding to its operation is written in the reorder buffer entry
indicated by the tail pointer. The head pointer indicates which entry is going to be
transferred to the register file next, as soon as the corresponding result is produced.
In order to make the latest results available to subsequent instructions, bypass

circuits are connected to the reorder buffer (not shown on the figure).
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7.2.1. Rollback of the RSR and RB Using Multiple DWBs

In this section, we show how micro rollback can be added to a CPU with

support for precise interrupts using DWBs to delay commitment of changes to the

RSR and RB.
Result Shift Register
RAM ~ N Reorder Buffer
v | FU [RB E ldest - CAM
—
pxcep.|reswt |V || dest | PC
g d
g c &
: g g
9 ¢ ¢
e
¥ =
[ 1 [ 1
&SR Elv | FU |RB_E | dest dest \RB Egxcep. yesult |Vi{idest | PC |[RBE|V
DWB, DW., WB,
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adder
T
rom

From decode,
and issuing units

Figure 7.10: Micro rollback added to a multiple functional unit CPU.

The result shift register is a complex structure in which entries are inserted out
of order and shifted every cycle. To facilitate micro rollback, the shift register
capability of the RSR is implemented as a RAM with a pointer indicating the head
of the buffer (Figure 7.10). Shifting is simulated by incrementing the pointer every
cycle so that it points to the next location in the RSR. The address of a new entry

in the RSR is determined by adding the latency of the functional unit specified by
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the current instruction to the pointer. This forms the associative field identified as
RSR_E is DWB, (Figure 7.10). The bypass circuitry provided by DWB, is
required for the RSR since the pointer may access a location in the RAM whose
most recent contents are in the data part of DWB,. Each RSR enwry includes a
valid bit (v), a tag identifying the functional unit (FU), a tag identifying a location
in the reorder buffer where the result is going to be forwarded (RB_E), and the
destination register number (desr). As we will explain in the next paragraph, the
reorder buffer is split in two independent parts which requires a duplication of the
dest field in order to be able to do an associative lookup to provide the most recent

update of a register.

As proposed in [Smit88], each entry in the reorder buffer is modified once
during issue time and once when the result is produced by the functional unit.
Micro rollback is added to the reorder buffer by logically splitting it into two units
and adding two DWBs (DWB ,, and DWB in Figure 7.10) to delay commitment of

all modifications.

The components of the RB entry which are modified at issue time are the
destination register number and the PC (dest and PC in DWB,). These fields are
buffered in DWB , along with the value of the tail pointer at issue time (RB_E in
DWB,). The dest field is stored in a CAM with bypass circuits in order to detect
RAW hazards if one of the N subsequent instructions specify dest as a source
operand.

The second part of the reorder buffer includes the result and exception
conditions produced by the functional units. As soon as results exit the functional

units, they are routed to the reorder buffer. The results and exceptions may not be
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committed and must thus be buffered through a DWB (DWB4 in Figure 7.10).
Results residing in DWB 4 are the latest updates of the data registers and must be
accessible to subsequent instructions. The CAM part of DWB 5 contains the des?
field associated with the result. This field is made available by carrying it through
the RSR and storing it in DWB 4 at the same time as the results. An alternative to
carrying the desr tag through the RSR would be to retrieve it from the reorder
buffer when storing the result in DWB 4. This would require an extra read port and
the corresponding buses in the reorder buffer. Upon exiting DWB 1, the result, the

exception bits, and the valid bit are transferred to the reorder buffer.

A rollback consists of invalidating entries in the three DWBs and rolling back
the pointer of the RSR and the tail pointer of the RB. The head pointer of the RB is

not rolled back since it is advanced only when committed data exit the RB.

To summarize, we describe the complete path followed by an instruction.
When issued, the functional unit and the destination register specified by the
instruction are stored in DWB ;. One entry in the RSR (RSR_E) and one entry in
the RB (RB_F) are reserved and the corresponding entry numbers are stored in
DWB . At the same time, the dest fields of the instruction, the PC and the tail
pointer value, are stored in DWB,. After N cycles (we assume for this example
that the latency of the functional unit is greater than N), data is stored in the
reserved slots of the RSR (from DWB,) and the RB (from DWB,). When the
result is produced by the functional unit, it is routed along with the exception bits
to DWB 5 by the FU field of the RSR. The dest field is transferred from the RSR to
DWB,. After N cycles, the result and exception bits are transferred to the reserved

location in the RB. When the head pointer reaches the reserved location, the result
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is sent to the register file conditionally on the value of the exception bits.
Subsequent instructions check for RAW hazards by scanning the dest field in

DWB ,, DWB 5 and the reorder buffer.

In order to evaluate the area overhead resulting from adding micro rollback,
we consider the RSR to be a register file with one read port and one write port,
while the RB is a combination of a register file with two read ports and one write
port and 2 CAM (comparable to a DWB). From Table 7.1 in the previous section,
we can calculate the area overhead for register files modified to accommodate
micro rollback (matching the decoder pitch with the CAM cells of the DWBs).
The numbers for the one read port/one write port (IR/1W) in Table 7.1 were
obtained from modifications of the 2R/1W basic cells. The area taken by the three
added DWBs is computed in a similar way. This area, once added to the extra area
required for the modifications of the RSR and RB gives us an approximation of the
total area overhead. Some of the area needed for the extra control signals is taken
into account since the formulas are based on a real design which has control lines
running across the circuitry. The resulting floorplan of the RSR and RB with the
DWBs should be similar to the floorplan of a similar chip without rollback

capability since we position the DWBs in front of the RSR and RB.

For the RSR the parameters are:
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= rollback range

=  maximum number of pipeline stages in the FUs

A = log,(maximum number of pipeline stages)

D = logy(number of functional units)+
logy(number of entries in the RB) +

log,(register file size)

For a CPU with a register file of 32x64 bits (floating-point data), with six
functional units with pipelines as long as 10 stages, with 6 possible entries in the
RB, and for a rollback range of four, we obtain for the original result shift register:
N=4, A=4, D=6, R=10. For the modified RSR the parameters are: N=4, A=4,
D=11, R=10. Table 7.3 shows the area overhead for each individual component.

The table shows that the area dedicated to the RSR is increased by 250%.

New Original Design Modified Design DWB Overhead

Parameters amuy decoder toul amy decoder tota) total (%) (%)
Nt A=4

RSR{ 1otal Dell R=10 136,760 134,130 270,390 239,330 297,086 534412 368,333 675,894 250
N=dA=3

left 1252537 | 138,761 | 1,391,298 || 1,252,537 | 138,761 | 1,391,298 || 1,926,342 || 1,926,342 | 138
D =69 R=0
i N=AA=S

RB |rght 1,446,163 | 28754 | 1534917 || 1,446,163 [ 88,754 1,534,917 {{ 1,180,311 || 1,180,311 | 77
D =315 R=6
N=4 A=3

total 2698700 | 227515 | 2926215 || 2,174,620 | 227515 | 2926215 || 3,106,653 || 3,106,653 | 106
D=106R =6

Sam | Total 2835460 | 361,645 | 3,197,105 || 2,413,950 | 522,601 | 3,460,631 || 3519021 {| 3,782,547 | 118

Table 7.3: Calculation of the area overhead for adding three DWBs and
modifying the result shift register and reorder buffer.

The RB is decomposed in two sections. The first section is connected to the
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RSR while the second one is connected to the issuing unit. For the first part (on the
left side in Figure 7.10 and labeled ‘“‘left’’ in Table 7.3), we have the following

parameters:

rollback range

number of entries in the RB

A

i

[logz(nu.mber of entries in the RB)

D, (bits of results) + (bits for exceptions)

This gives N=4, R=6, A=3, and D =69 which results in an overhead of 138%. The
“right’” part of the reorder buffer is more complex in the sense that one part is
similar to a register file while the other part is a CAM with a priority circuit similar
to the one used in a DWB. In Table 7.3 the area for the CAM is accounted with the

area for the register array. For this part of the RB, the parameters are:

= rollback range
R = number of entries in the RB
A = -logz(number of entries in the RB)  [for the decoder]
Ay, = Flogz(register file size) [for the CAM]
D, = PC width [for the RB]
D; = -logz(number of entries in the RB) [for DWB,]
+ (PCwidth)

For the same processor with its original register file of 32 entries of 64 bits, a PC of

32 bits and 5 bits dedicated for exceptions, this gives: N=4, A =3, A,=5, D =32,
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D1=35, and R=6. Table 7.3 shows that the area overhead for implementing micro
rollback for both the RB and the RSR, results in a 118% increase in area.

In the next section, we will describe another method which attempts to take
advantage of the features of the structures being rolled back as well as the way that

they are interconnected in order to reduce the area overhead.

7.2.2. Rollback of RSR and RB Using Marked Entries

Markers vg%:rd Result Shift Register
7 —" v = \
0— 4+ 4+ 4 FU RB E

o— L L 4

oo,

Invy Inv, Invy Inv,
Figure 7.11: Four bit mark used to identified entries (for possible
invalidation) modified in the past four cycle.

Since new entries in the RSR are only written to invalid locations, valuable
contents cannot be overwritten. This means that upon a rollback, there is no need
to restore the previous contents of recently modified RSR registers. The register is
simply invalidated so that it does not generate unwanted actions when it reaches

the head of the buffer (the other purpose of the invalidation is to make entries

220



available for upcoming instructions). To provide rollback capability, entries in the
result shift register are marked using an N-bit shift-register. Upon entry in the
RSR, a “‘1”’ is shifted in the leftmost cell (Figure 7.11). Each cycle, a zero is
shifted in. After four cycles, the tag contains (0000) indicating that the valid entry

in the RSR is committed.

A rollback of the entries conditionally clears the valid bit based on the value
of the mark bits for each entry (Figure 7.12). The mark bits are implemented
through shift register cells. The ‘‘clear valid bit”” and “‘clear mark bits’’ signals are
generated through a wired-OR of four AND-gates implemented with pass-transistor
logic. Only one of the AND-gates can be ‘‘on’’ at any time since only one ‘1"’
circulates through the shift register. The ‘‘clear mark bits’’ signal clears the
appropriate bits during the next phase. The valid bit is a simple one-bit memory
cell. The fields FU (functional unit number) and RB_E (reorder buffer entry) in the

RSR are used in the same manner as for the RSR described in Figure 7.9.

j%eﬁé bit
rd “P“f“_D’q_J"’f “pim{)’wf @1“i[>d‘°jd o b Gl o
IoId up.luc T upJan loL ule T LJ

! load . e load| up

N :
clear m 1 U i
rollback rollback rollback rollback

1 cycle 2 cycles 3 cycles 4 cycles

clear m

Figure 7.12: Mark bits and the clear valid bit signal for the RSR.

A rollback must also ‘‘replay’’ the few entries that might have reached the

head of the result shift register during the past # cycles. This is done by moving
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Figure 7.13: Marked result shift register and standby reorder buffer.
Each structure is implemented as a RAM with the associate
decoder (dec).

the head pointer ‘‘up’’ n positions in the RSR (Figure 7.13). In order to guarantee
that there is a ‘‘buffer area” in the RSR (which is implemented as a circular
buffer), the number of entries (originally X') in the RSR is increased by N. X is
the number of stages of the longest pipeline connected to the RSR. Since an entry
cannot be more than K-1 locations away from the head pointer, by making the
depth of the RSR K + N, each entry remains intact for N cycles after it has been

released by the head pointer.

- The structure that we propose for combining rollback to the reorder buffer, is

called a standby reorder buffer (SRB) (Figure 7.13). The name comes from the
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fact that entries wait in the buffer in *‘standby’’ until they become committed. As
with the result shift register, new entries in the standby reorder buffer do not
overwrite previous valid entries. Hence there is no need to preserve old values for
rollback recovery. As for the reorder buffer proposed in [Smit88], the standby
reorder buffer is managed using pointers. The head pointer indicates the next result
to be transferred to the register file. The tail pointer indicates the next available
entry in the RB.

The SRB is modified twice. The first time, the destination register (dest) and
the program countcf (PC) are stored in program order by the issuing unit at the
entry pointed to by the tail pointer. The second time, the result (res.), the exception
bits (exc.), the valid bit (v), and the mark bits (described later), are stored when the
functional unit completes the operation, to the entry pointed to by the RB_E field in
the result shift register. Two logical decoders are shown on Figure 7.13 since they
are accessed by different address buses and select different fields in the SRB.
Depending on the timing between the issuing unit and the RSR for a specific
implementation, it may be possible to combine the two decoders into one by

adding a control signal selecting which ‘‘half’’ of the SRB should be modified.

All in-order modifications made between time {t} and {t+n} are entered
between the positions occupied by the tail pointer at time {t} and the position
occupied at time {t+n}. By rolling back the tail pointer to its position at time {t},
all modifications made in the past n cycles will be eliminated. As we will explain
later, the head pointer is moved only when the data it contains is committed, hence

it does not need to be rolled back (a head pointer move is always committed).

A mechanism based on mark bits and a ‘‘committed bit’’ is used to provide
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rollback for random modification in the SRB. Whenever a result becomes
available it is routed to the reorder buffer and ‘‘marked’’ as recently modified, i.e.
the leftmost bit in the small shift register is set to one. Every cycle a *‘0’’ is shifted
in the register. After four cycles, the mark bits are all zeroes (0000) and the
committed bit is set to *‘1’’. The committed bit remains ‘‘1’’ until it is cleared by
the control logic when the result is transferred to the register file. The transistor

diagram for the last mark bit and its control signals is shown in Figure 7.14.

An entry pointed to by the head pointer is not sent to the register file until the
committed bit is set. This guarantees that an uncommitted change will stay at least
four cycles in the standby reorder buffer so that it can be intercepted before
modifying the state of the CPU permanently. Rollback is accomplished in the
same way as for the result shift register. If there is a match between the invalidate
lines and the mark bits (both being one), a “‘clear valid bit’’ and a ‘‘clear mark

bits’’ signal is initiated.

Implementation

The area overhead for adding micro rollback to the RSR and for the SRB can
be calculated using the formulas shown in Table 7.1. This will give us the area for
all the logic except for the mark bits. A layout of the mark bit cell indicates a size
of of 88A x 32A. The committed bit and the valid bit are included in the register
array. A small adder is also needed to compute the address of an entry in the RSR
based on the the head pointer and the latency of the functional unit. The adder can
be implemented with four simple full adder cells (for a RSR of up to 16 entries) to

form a four-bit serial adder.
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Figure 7.14: Transistor diagram of the last mark bit.

The modified RSR needs to be expanded by N registers vertically, and NV
mark bits must be appended to its width. This leads to a large increase in the area
dedicated to the RSR since N is of the same order of magnitude as D (D = number
of data bits in the RAM). The results of the computation are shown in Table 7.4.
From the table, ignoring the area for the four-bit serial adder, we obtain an area

overhead of 78% for the result shift register.

The standby reorder buffer is not extended in its number of entries from the
original reorder buffer. This is due to the fact that entries are maintained in the
buffer until they become committed. One could argue that to maintain similar
performance we have to add N entries so that the issuing unit does not stall, but
this is not entirely true. Since results entered the SRB somewhere between the
head and tail pointer, they stay in the buffer for n cycles (1=<n=<R). When the
result and exception bits reach the head of the buffer they may already be

committed and be sent to the register immediately without stalling the issuing unit.
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RSR eters array decoder | mark bits total overhead
F area (AD) | area (A?) | area (A2 | area(A?) || area (AD) | (%)
Original N=4 A=4
Design D=TR=10 157,274 134,130 _ 291,404 — —
Modified | N=4A=4
Design D=7R=14 195,546 | 166,770 157,696 | 520,012 || 228,608 78

Table 7.4: Area overhead for adding micro rollback to the result shift
register using mark bits (four-bit serial adder not included).
N =rollback range, A = number of address lines in the RAM,
D = number of columns in the RAM, R = number of rows in
the RAM.

In the worst case, the RB is full and its head pointer points to an entry that must

wait four cycles before being transferred to the register file. The average case lies

somewhere in between those two cases. A detailed simulation of the processor and

of this structure is required to quantify the exact performance degradation. Since

we do not have a simulator we show in Table 7.5 the area overhead for the best

case (same number of entries as the RB) and for the worst case (SRB with four

more entries). The area overhead is 3% for the best case and 19% for the worst

casce.
Reorder Buffer Rollback Logic Overhead
ey decoder CAM rotal mark commit rotal %)
1 port 2 ports (two) (DWB) bits bit

Best || par || R=6,D=37 | R=6D=65 | R=6A=3 | N=6A=5 — R=6N=4 — — -
Case || area 534,662 1,180,621 253,924 643518 2,662,725 67,584 7488 75,072 3
Womst || par- || R=10,0=37 | R=10,0=65 | R=10,A=3 [ N=10A=5 — R=10N=4 — — —
Case area 772,694 1,508,429 117,298 643,518 3,041,939 112,640 12,480 | 125,120 19

Table 7.5: Area overhead for adding micro rollback to the reorder buffer,

forming a standby reorder buffer (SRB).

By adding the numbers (area) obtained from Table 7.4 and Table 7.5 we
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obtain the total overhead for adding micro rollback to both the RSR and the RB.
The results are 10% for the best case and 25% for the worst case. Those numbers
compare favorably to the numbers obtained for the method with three DWBs
(118% overhead).

7.3. Combination of Rollback with Several Speed-Up Techniques

In the preceding sections of this chapter, we considered how micro rollback
can be implemented in conjunction with two mechanisms used in high-
performance uniprocessors: register renaming and support for precise interrupts in

superscalar processors.

In this section we describe other techniques used to improve performance of

advanced processors. Specifically we discuss a processor with:
— multiple functional units
— out-of-order execution/completion
— restart after exception (precise interrupts)
— restart after mispredicted branch
— register renaming
— micro rollback

Multiple functional units are necessary for achieving a high degree of
parallelism beyond what pipelining alone can achieve. Qut-of-order execution and
completion of instructions eliminate some of the delays associated with functional
units conflicts and data dependencies. As described in the previous sections,

precise interrupts are required to guarantee proper restart after exceptions. Single
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cycle restart after a mispredicted branch is essential for quickly correcting the state
of a processor following execution of a wrongly predicted conditional
branch [Hwu87]. Register renaming removes anti-dependencies (WAR hazards)
and output dependencies (WAW hazards) for the register file. Micro rollback is
required to undo state changes which were made based on errors caused by
hardware faults. We show how these techniques can be implemented using a

standby reorder buffer (SRB).

Precise Interrupts

With the SRB, restart from an interrupt is accomplished as described
in [Smit88]. Exceptions are not dealt with when they occur but only when they
reach the head of the standby reorder buffer (Figure 7.15). At that time results are
forwarded to the register file or cause an interrupt depending on the exception bits

stored with that entry.

Branch Repair

The occurrence of conditional branches in the instruction stream reduces the
ability of a processor to fetch instructions ahead of time. By introducing
dependence between the result of an instruction and the next instructions to be

fetched, execution is delayed and NOPs enter the pipeline.

In previous work on hardware support for precise interrupts [Sohi87, Hwu87],
and on support for ‘‘boosted’” instructions [Smit90), it has been proposed to
executed one of two paths of a branch (taken or not taken) conditionally until a

branch condition is resolved. If the path was guessed right, execution proceeds,
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otherwise all state changes performed by instructions following the branches must
be undone. Once again a parallel between increasing performance and micro
rollback exists. In one case, assumptions are made on the outcome of a branch, in
the other, assumptions are made regarding the correctness of the data/instructions.
Those assumptions are made first on valuable statistics showing that branches can
be predicted correctly anywhere from 60% to 93% of the time [Lee84], and

secondly on the fact that errors do not occur frequently.

lo register  to register
file array  file decoder

b |cc|mark|C | v bxcept.|  result p dest PC
d r d
e i e
c 0 c
[0 r [
d i d
€ t €
r y r
11 4 11 5 64 5 32
 head |
\_V____./
CAM | tail |

Figure 7.15: Standby reorder buffer (SRB).

With the addition of minimal circuitry to the SRB shown in Figure 7.13, we
show that it is relatively simple to recover from mispredicted branches. Whenever
a branch is encountered in the instruction stream, it is entered in the standby

reorder buffer (the *‘b’’ bit is set to *“1’") even if it does not affect the contents of a
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destination register (Figure 7.15). The predicted outcome of the condition is also
stored in the SRB at the location indicated by CC. On some machine, the target of
a comparison is a destination register; in this case the predicted condition code bit
are stored in the result field of the SRB. In our case we assume that there is a one
bit condition code which is carried by the SRB upon the prediction of a path.
When the condition is resolved, a few pipeline stages later, it is sent to the reorder
buffer at the branch entry. The outcome of the condition is then compared with the
one that was assumed. If they match, the head pointer moves down purging the
branch instruction; full throughput is achieved. If the conditions do not match, all
instructions that follow the branch, i.e. all instructions placed after the branch in
the reorder buffer are invalidated. Alternatively as proposed in[John89],
instructions can be canceled only when an instruction (branch) reaches the head of
the buffer. In this way, the design of the cancellation circuit is simpler since
backing-up the state consists of invalidating the whole reorder buffer instead of

selectively invalidating entries.

Register Renaming

The processor model proposed by Smith {Smit88] (Figure 7.8) stalls when one
of the source operands of the instruction in the issuing unit is not ready. This
situation occurs when one of the source operands matches the destination field of
one of the entries in the reorder buffer and the result is not yet valid. The processor
also stalls for one cycle if there is a conflict in the RSR (i.e the result bus can not

be allocated at the desired time).

Higher throughput can be achieved if out-of-order issuing combined with
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register renaming is allowed. This can be done by a scoreboarding
mechanism [Thor70] or through reservation stations[Toma67] or using a
centralized unit (register update unit) {Sohi87]. Many other papers have been
published on instruction issuing units [Sohi90, Acos86, Arya85]. Our goal is not to
expand on that subject, but to combine micro rollback with a technique
representative of what can be encountered in high performance processors. A
scheme based on a standby reorder buffer and reservation stations is representative
of proven techniques [Toma67, John89] and should be indicative of how micro
rollback can be combined with other models described in the aforementioned

papers.

We assume that functional units can accept stalled instructions while
monitoring the latest progress of all the functional units. For this model, register
renaming is accomplished through the SRB. When instructions are issued, they
search the SRB in parallel with the register file for the latest update. If there is a
match in the SRB, the data is forwarded. If the result is not yet available, the tag
corresponding to the SRB entry is forwarded so that when 1t becomes available the
functional unit can proceed. If another instruction with the same destination
register enters the SRB, it occupies a more recent entry and all subsequent
instructions referring to this logical register will obtain the value from this entry in
the SRB since a priority circuit selects the most recent value (Figure 7.15). The

register has thus been renamed.
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Micro Rollback

Rollback for the SRB is similar to the scheme described in Section 7.2.2.
When a rollback occurs, the mark bits are checked to determine how many cycles
have the entries been present in the SRB. If the ‘‘stand-by time’’ is less than or
equal to n (the rollback distance), the result and the exception bits are invalidated.
The other fields are not modified. The tail pointer is also rolled back which causes

entries between time {t) and (t+n} to be discarded.

Since new entries in the SRB do not overwrite potentially useful information
(i.e. information that we may try to retrieve), such entries can be written directly
into the SRB: there is no need to delay the writes. This has the benefit of removing
one level of bypass logic, or forwarding logic, that would be necessary if a DWB

were to be used in front of the SRB.

Error Detection for the Standby Reorder Buffer

Errors occurring in the SRB can be detected in the same way as for the DWB
method (Chapter 4) and the register renaming method (Section 7.1). A parity bit is
generated by XORing the data being written in the SRB and is stored along with
the data. When there is a need for accessing the data, the parity is regenerated and
compared with the stored one. Since entries in the SRB are modified twice (at
issue time and after computation time), two parity bits can be computed based on

the separate fields.
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7.4. Rollback of Pipelined Functiona! Units with Long Latencies

In the previous sections we have described how to implement micro rollback
in a CPU with multiple functional units. We concentrated our efforts on the
hardware connected to the functional units; specifically the result shift register and
the reorder buffer. The functional units themselves contain several latches which
are part of the processor state, and must also be rolled back. Rolling back generic

functional units with long latencies, is the topic of this section.

Most high-end processors have several pipelined functional units with varying
latencies. For example in the CRAY-1, latencies range from two cycles up to
fourteen cycles{Cray77]. The pipes are composed of combinational logic
separated by latches forming individual pipeline stages. The latches in the
pipelined functional unit can be rolled back using the methods described in Chapter
4 for individual state registers. This has the disadvantage of adding a significant
amount of logic into the datapath of the functional unit. Each latch would be
replicated N times (where N is the rollback range) leading to over 50 additional
latches for some pipes. Adding logic to a highly optimized circuit translates into
longer delays and lower performance. Moreover adding control signals to the

pipes would also complicate the design of these complex circuits.

Performance degradation can be minimized if the functional units are not
modified for micro rollback. Instead, the functional units can be handled as
independent circuits which cannot be rolled back (see Chapter 6). Since a
functional unit interacts with other units only through its inputs and outputs, the
circuitry attached to the ends of the pipelines (inputs and outputs) must be used to

implement rollback.
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The proposed circuitry is similar to the circuitry used in Chapter 6 to
implement rollback of tightly coupled coprocessors. For each pipeline there is a
shift register of length S, where § is the number of stages in the pipeline (Figure
7.16). This shift register hereafter called the pipeline usage monitor (PUM).
Whenever an instruction is dispatched to a functional unit with its source operands
available, a *‘1”’ is shifted in the PUM. A ‘0" is shifted in if no operation is
initiated. The PUM shifts every cycle. In this way, a *‘1”’ in the PUM follows the
corresponding operands in the pipe. When a result reaches the end of the pipe, it is
routed through the result bus to the reorder buffer only if a *“1°’ appears at the end
of the PUM. Otherwise it is discarded. For a rollback of n cycles, the n most
recent entries in the PUM are set to “‘0’” so that results corresponding to those bits
get discarded a few cycles later, when they reach the end of the pipeline. In this
way any operations that have entered the pipelined after the error occurred, are
invalidated. This is necessary since operations could enter the pipeline with
corrupted operands produced by previous erroneous operations. Note that if a
structure similar to the reorder buffer described in the previous sections is used, its
most Tecent entries are also invalidated since those results should not be available

for instructions that will be replayed.

Since the functional units are not rolled back internally, results produced by
valid instructions during the past n cycles must be ‘‘replayed’’ (see Section 6.5).
Units connected to the functional units will thus get data just as if the pipeline were
rolled back internally. The replay capability is provided by a small replay memory
(Fig_ure 7.16), which stores all valid results coming out of the pipeline, and a replay

pointer (RB) which points to the the location which provides the data for the result
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Figure 7.16: Pipeline usage monitor (PUM) associated with each
functional unit in the CPU. Rollback of the pipe as a whole
is simulated.

bus. During normal operation the replay pointer points to the last latch in the
pipeline. The roliback register (RR) is a shift register that keeps track of which
instructions in a functional unit will be canceled due to micro rollback. It is
initially filled with “‘1’* indicating that no rollback has occurred. Every cycle,
during normal operation, a ‘‘1"’ is shifted in the RR. Upon a rollback of n cycles,
the n most recent entries of the rollback register are set to *‘0’". The replay pointer
is moved down n positions so that it points to a replay memory and a valid register
(VR) entry. The recovery procedure starts by re-sending valid results from the

replay memory at the location pointed to by the rollback pointer. The pointer
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moves up only when a ‘‘0’’ appears at the end of the rollback register indicating a
bubble in the pipeline. Eventually the pointer is moved back into its normal
position since the number of bubbles in the RR equals the number of positions that
the pointer was moved. This is shown in Figure 7.17. The pipeline does not need
to be stalled and full throughput is achieved. There is no contention for the result

bus since the result shift register is also rolled back to allocate the resource.

of B Eekes
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Figure 7.17: Example of a three cycle rollback for a 5-deep pipeline.

7.4.1. Elimination of the Result Shift Register

The presence of a PUM for each functional unit suggests the elimination of
the result shift register (RSR) by distributing some of the logic to the functional
units. This would eliminate unnecessary stalls in the issue unit due to conflicts in
reserving the result bus in advance (through the RSR). Arbitration for the result
bus can be done when results are produced, by assigning fixed priorities to the
different functional units. A similar mechanism is used in the Motorola 88100 to
allocate the ‘‘write-back’’ slot to one of its functional units [Mele89]. For the

Motorola 88100 priority is given to single-cycle instructions (most fixed-point
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instructions), then to the integer multiplier, the floating-point multiplier, the
floating-point adder, and finally to the load unit. To prevent long stalls of low
priority instructions, a high priority can be given to units which have requested the
write-back slot more than one cycle ago. Johnson claims that the added circuitry to

implement the ‘priority to old instructions’’ scheme is minimal [Johng9].

The RB_E tags, previously in the RSR (Figure 7.13), are used to route a result
to the reserved location in the reorder buffer. By eliminating the RSR, RB_E can
be distributed to the functional units. The PUM (pipe usage monitor) of each
pipeline can be made wider to accommodate this added tag. Because of the
possibility of contention for the result bus, a pipeline may have to stall and send a
busy signal to the issuing unit. Even when the pipeline is stalled, the intermediate
stages continues to ‘‘move’’ towards commitment every cycle. This must be

acknowledged by a mapper similar to the one described in Section 6.3.1.

7.5. Conclusion

In this chapter we investigated schemes for integrating micro rollback with
mechanisms normally associated with speedup techniques for high performance

Processors.

We developed a method for evaluating the area overhead of several designs
that we proposed. The method is based on accurate measurements of layouts of a
complete chip and on the fact that most components can easily be scaled. The
calculations based on this method gave us clear-cut ideas of which methods are
expensive in terms of area and also indicated how much area should be dedicated

to the extra circuitry required for micro rollback. Layouts of the several designs
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would have given more accurate results but would not have changed the

conclusions that we reached.

We have shown that register renaming can be used to implement micro
rollback in a simple processor. Even though the overhead was large compared to
the DWB method, the method is attractive for processors with hardware register

renaming already implemented on-chip for performance reasons.

We introduced a structure called a standby reorder buffer which allows
several speedup techniques such as out-of-order execution, branch repair, and
register renaming to coexist with micro rollback. Mark bits were added to the
standby reorder buffer to provide micro rollback. The SRB was shown to be
substantially smaller than an equivalent scheme using DWBs to roll back the

structures {RSR and RB).

The goal of this chapter was twofold. First, it was shown that for existing
high-performance processors, there are efficient ways for adding micro rollback to
the architecture. Second, by investigating ways of combining a variety of
techniques enhancing parallelism for a CPU with micro rollback, we hope to
demonstrate to computer architects that it is possible to design powerful fault-
tolerant processors using micro rollback as the main method for parallel error

detection and fast error recovery.
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Chapter Eight

Summary

This dissertation has addressed the problem of achieving a high level of fault
tolerance for a computer system while maintaining high performance. The target
systems operate in hostile environments, where a high rate of errors is likely. Due
to the real-time constraints of the applications, long interruptions in service are not
acceptable, adding to the system requirements that recovery from errors must be

achieved quickly.

Traditional methods for satisfying the above requirements lead to costly
replication of the hardware and/or reduced performance. Performance degradation
results from implementing concurrent error detection and correction with circuits

operating in series with intermodule communication.

A system based on micro rollback circumvents these problems by allowing
error checking to be performed in parallel with inter-module communication. The
optimistic assumption that a system operates without faults ‘‘most of the time™
allows the removal of checkers from the communication paths between modules.
This leads to faster inter-module communication andfor shorter pipelines,
contributing to improved performance. Micro rollback allows a module to begin
processing all inputs immediately upon arrival, despite the possibility that they are
erroneous. Upon the eventual detection of an error, micro rollback provides fast

restoration of the system to a valid state.

The theoretical value of micro rollback could be undermined if inefficient

implementations of the method are used. Simple replication of the storage for the
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complete state of a module would lead to a large area overhead and reduced
performance. There are two sources for the potential performance penalty. First,
the added capacitance of the replicated circuitry would slow down the processor.
Second, on-chip caches and similar circuitry providing speedups, would have to be
decreased in size or even removed in order to accommodate the additional
circuitry.

Techniques for implementing micro rollback with low area and performance
overhead were developed throughout this dissertation. For a processor, these
involve introducing a delayed-write buffer (DWB) which delays commitment of
changes to storage, such as a large register file. Efficient methods for
checkpointing and restoring state registers, a stack of registers (e.g. last_pc, pc,
next_pc), or register files modified less frequently than once per cycle were also
developed. For memory systems (e.g. caches), we have shown that micro rollback

can be implemented using a DWB similar to the one used for the register file.

Detailed layouts and extensive simulations of key building blocks have
confirmed that micro rollback can be implemented with little area and performance
overheads. The area overhead for adding micro rollback comes mainly from the
extra storage required for saving the uncommitted modifications and, to a lesser
extent, from the more complex control circuitry. The extra processing required for
micro rollback occurs mainly in parallel with normal operation. The small
performance degradation is due mostly to the longer buses, a small increase of the

fan out of some circuits, an extra level of multiplexors, and larger decoders.

- In a multi-module system, a rollback signal generated by one module must be

sent to the rest of the system so that a consistent state can be reached after all the
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modules have rolled back. We have developed a mechanism for logging the
occurrence of recent intermodule transactions. These logs are used to coordinate
rollbacks, determining the distance that each module should roll back in order to

maintain a consistent system state.

We have shown that it is possible to implement hybrid systems, consisting of
modules capable of rollback and modules not capable of rollback. Rollback
domain interface units (RDIUs), serving as the interface between the different
module types, have the capability to buffer data transfers, delaying their delivery to
their destination or replaying them when necessary. Several RDIUs were described
for a micro rollback capable processor (MRCP) interacting with standard memory
subsystems (e.g. caches supporting burst accesses and pipelined accesses). It was
shown that simple RDIUs can also be used to interface an MCRP with loosely-

coupled and tightly-coupled coprocessors which are not capable of rollback.

We proposed the integr-aticm of micro rollback with techniques designed to
increase the performance of uniprocessors, such as out-of-order execution, branch
repair, and register renaming. It was shown that these techniques are compatible
with micro rollback. We believe that future generations of VLSI processors will
incorporate some of these speedup techniques. Our work should encourage
computer architects to consider adding micro rollback and speedup techniques
simultaneously so that both high performance and a high level of fault tolerance

can be achieved.
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