Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

AN EXPERIMENTAL STUDY ON THE PERFORMANCE
OF THE SPACE-TIME SIMULATION ALGORITHM

R. Bagrodia August 1991
K. M. Chandy CSD-910061
W.-T. Liao

An Experimental Study on the Performance of the
Space-Time Simulation Algorithm*

Abstract

Most performance studies for parallel simulations enly exploit spatial par-
allelism in the exccution of a simulation model. This paper describes a per-
formance study that used space parallelism, time parallelism as well as a com-
bination of the two decomposition strategies to reduce the execution time for
simulation models of simple stochastic benchmarks. Also, the time-parallel im-
plementation of the model used a simple strategy to correct estimated future
states of a process that cffectively climinated rollbacks. The paper presents
speedup curves for a number of configurations and also analyzes the major
cost components of the parallel simulation algorithm.

1 Introduction

A number of algorithms have heen proposed for the execution of simulation pro-
grams on parallel architectures. Many empirical studies Lhave been devised in the
past few years to evaluate the performance of the algorithms for both determinis-
tic and stochastic applications [RMMS7, Fuj88a. $S89. Fujssh, JBWea87, CS89a,
BL91, WL90, S§S90]. With a few exceptions, most simulation algorithms and per-
formance studies have only exploited spatial decomposition for parallel execution of
the model: the physical systew to be modeled is subdivided into smaller subsystems,
each of which is modeled by a logical process. The logical processes are executed
in parallel; when the synchronization overheads for the parallel processes are less
than the parallelism in the wodel. reasonable speedups may be obtained. Recent
simulation algorithms have suggested that some applications may also benefit by de-
composition in the temporal domain such that a model is simultancously executed
over different time-intervals[CS89b, GL90]. In this paper, we examine both spa-
tial and temporal decomposition of simulation models within the framework of the
space-time simulation algorithm and present the results of an experimental study

*This research was partially supporied by NSF under grant no. CCR 9157610 and by ONR
under grant no. N00014-91-J-1605

that evaluated the effectiveness of the decompositions in reducing the execution
time of a set of stochastic henchmarks,

The paper also studies the effect of state correction as an alternative to rollback
and recomputation and examines its effect on the performance of optimistic algo-
rithms. Paralle] simulation algorithms typically subdivide the space-time region
represented by the execution of the model and execute the sub-regions (which will
henceforth be referred to as areas) simultanconsly, The execution must be synchro-
nized periodically to verify that the dependencies in the model have been correctly
reflected in its execution. Cousider two areas, r, and 75, such that execution of 7
depends on some event in 7,. If the two regions are executed concurrently, the exe-
cution of v will be incorrect. Rather than recompute ry as required by traditional
optimistic techniques, it may sometimes be possible to correct the final state of rp,
so as to explicitly include the effect of the influencing events from the execution of
Ta- State correction techniques for algorithins based on spatial decomposition have
been described for the Maisie simulation language[BL90] and was also proposed by
Lin and Lazowska[LL91] for time-parallel execution of simulation programs. To the
extent that such correction is feasible, it may have a significant impact on improving
system performance by reducing rollback (and indirectly. state saving) overheads
for optimistic techniques.

For the stochastic benchmarks that were studied. the space-time algorithm
yielded significant speedups using a spatial decomposition. However, temporal de-
composition is harder to exploit, particularly if the implementation of the algorithm
is transparent to the analyst. Temporal decomposition with rollbacks and recompu-
tations do not yield significant benefit in reducing execution time of the model. To
exploit temporal parallelism, it must be possible to predict the state of the model
at specific times in the future. For most models, these predictions are invariably
inaccurate, causing the correspouding computations to be recomputed wlhen the
simulation time in the model reaches the future values. In the absence of spatial
parallelism, this yields no speedups and the overhead may actually cause the parallel
implementation to be slower thau the sequential one. However, the study shows that
if temporal parallelisin is used together with state correction, significant speedups
are possible for the stochastic henchmarks that were used in the study. Finally, the
paper also examines the practicality of combining space and time parallelism in the
execution of stochastic models. Once again, for applications where state correction
is feasible, significant speedups were obtained,

The rest of the paper is organized as follows: the next section gives a brief de-
scription of the space-time algorithm. Section 3 descrihes the experiments, Section
4 is a brief discussion of implementation issues for tle space-time algorithm. Section
5 describes the performance results of the experimental study and section 6 is the
conclusion.

[S%]

2 Space-Time Algorithm

The Space-Time framework[CS89b| suggests that the execution of a simulation
model be subdivided into a number of regions where each region represents the
behavior of the system over some interval of the entire space-time region. Figure 1
shows a possible sub-division for a simple model that simulates a 1-dimensional
system. A logical process (Ip) is assigned to compute the behavior of each region.
Each Ip computes the behavior of its region using an iterative relaxation algorithm
that is briefly described in the remainder of this section.

region 3

region 1 region 2

X —

Figure 1: Space-Time decomposition

Let H be the upper bound on the time for which the system is to be simulated.
Let p;¥ refer to the lp responsible for the simulation of some physical process in the
interval [¢,, #,). t; < t,: exactly one Ip computes the behavior of a physical process
for every t in [0,H]. A precedence relation, symbolized by ~, is defined between two
Ip, where pi"¥~+p7" if and only if the state of p}"¥ depends on the state of p{™¥ or
on some message received from pJ¥. If p;"¥~+p}"¥, we say that p{"¥ is a predecessor
of p;"¥ and pj¥ is a successor of pJ¥. Note that although the exact predecessor
or successor set for an lp cannot be determined a priori, a loose upper bound on
these sets can typically be determined (a trivial bound is the entire set of lp in the
system).

Given that the preceding set of lp is executed on a distributed architecture,
the correct state of each lp is computed by using the following iterative strategy:
given some state for its predecessor lp, an lp computes an estimate of its final state.
During this computation, it generates a (possibly empty) sequence of messages for
each of its successors. The message sequence is sent to each successor after a process
has computed its final estimated state. When a process gets a message sequence
from one of its predecessors that is different from the one it received in its previous
iteration, the process recomputes its behavior. This procedure is repeated until

Q=4

FCFS Servers Q=4 m=

Q=4
Arrival
— Q=4 m=

Q=4

Q=4 m=
Q=4

Stage 1 Stage 2 Stage 3

Figure 2: Feed Forward Network (S =3,m=2,Q = 4)

eventually the computation reaches a fixed-point where further execution of any
process does not change its state, and the computation is said to have converged. A
complete description of the algorithm and sufficient conditions for the convergence
of the computation may be found in [CS89b].

3 Experiments

The experimental study used three types of queueing networks that have previously
been used in performance studies of parallel algorithms. The first example is a
feed-forward network (FFN) of the type shown in figure 2. This network consists of
a number of stages, S, such that jobs exiting from stage s; are fed into the servers
in stage s;;1. Each server in stage s; has m successors, and a job exiting from the
server may go to any of the m servers with equal probability. Jobs exiting from
servers in the last stage exit the system. The figure shows the network with 3 stages
where a server in each stage has two successors (S=3, m=2). In addition to S and
m, other parameters of the system include the job arrival rate (A) and the service
rate at each server (u), the total period of simulation T (or equivalently J, the total
number of jobs that were serviced), and N, the number of processors used in the
parallel implementation.

Switch 2

FCFS Servers

Switch 1

O=

Switch 3

Figure 3: Closed Queueing Network (¥ = 3,0 =2,Q = 4)

The next benchmark is a closed queueing network (henceforth referred to as
CQNF) that consists of N switches, Each switch is a merge process that feeds a
tandemn queue of Q fifo servers, A job that arrives at a queue is served sequentially
by the Q servers and then goes to a fork process that routes arriving jobs on any
one of its O (O<N) outgoing paths to a destination switch. The service time of
a job at a server is generated from a negative exponential distribution, where all
servers are assumed to have an identical mean service time. Each switch is initially
assigned J jobs that continuously traverse the network for the specified simulation
period. Figure 3 displays an instance of the network with N=3, 0=2 and Q=4.

The third benchmark {henceforth referred to as CQNP) is similar to CQNF
except that a job may belong to one of two classes: high or low, where jobs in the
first class have a higher priority than those in the second class. Each fifo server
is replaced by a priority preemptible server. Job classes introduce a additional
parameter R, that refers to the percentage of jobs that have a higher priority. The
preemptive nature of this application though increases the chances of rollbacks in
the system and may benefit from a more frequent checkpointing of the system state.

2

2

4 Implementation: Simulation Algorithm

In this section, we first consider the implementation of the basic space-time sim-
ulation algorithm using spatial decomposition and rollback and recomputation to
correct inaccurate predictions. We subsequently consider its implementation using
temporal decomposition with state correction.

In implementing space-time with spatial decomposition, the run-time system
must perform the following major tasks:

e subdivision of the space-time area into smaller regjons.
s periodic checkpointing of each region.

e detection of timing anomalies in the processing order of events by a region and
recomputation of the model from a checkpointed state to correct the anomaly.

¢ convergence detection to determine the time to which the simulation has been
computed correctly.

Many different alternatives exist for each of the preceding tasks. The choice
among these alternatives is not always straightforward and specific decisions may
have a significant impact on the performance of the simulation algorithm. For
example. the system may be checkpointed after every event or only for selected
events. Frequent checkpointing increases state-saving overheads but may decrease
the recomputation overheads when the system is rolled back. Similarly, the subdi-
vision of the system into regions that are simulated concurrently can also impact
the completion time of the simulation. In a subsequent section, we examine two ex-
treme decompositions for a queueing network: the traditional decomposition where
a single /p is used to sequentially compute the state of a physical component at dif-
ferent points in time and the time-parallel decomposition where the entire system
is simultaneously simulated for different time-intervals.

The Maisie simulation language has been implemented on a Symult $2010 mul-
ticomputer using the space-time algorithm. Maisie is a message-based simulation
language whose primary goal is to provide a notation that allows a programmer
to describe the simulation model independently of the underlying algorithm. A
Maisie program is a collection of entities, where each entity models one or more
physical processes. Events in the physical system are modeled by message ex-
changes among the corresponding entities. A programmer designs a Maisie model
of the physical system by describing the physical system using an appropriate set
of entities. The simulation model may subsequently be executed using a sequen-
tial simulation algorithm, a conservative algorithm based on conditional events or
the space-time algorithm. With respect to the space-time algorithm, the algorithm-
independence feature of Maisie requires that each of the tasks described earlier must

be implemented such that they are essentially transparent to the programmer. The
multicomputer Maisie implementation was used to develop and execute a model
of the shark’s world problem on the the Symult and the experimental results were
described in [BL91].

This paper examines the effect of using alternative decomposition, state-saving,
and state correction strategies on the completion time of the queueing network sim-
ulation models described in the previous section. As such, the four major tasks
described earlier were programmed explicitly in the simulation model. The simula-
tion support facilities provided by the Maisie system were not used; rather Maisie
was used simply as a convenient framework within which to express the parallel
computations. In the next section, we describe how each of the FFN, CQNF and
CQNP networks were modeled for parallel execution and compare the completion
time of the parallel implementations with their sequential counterparts.

5 Results

Speedup is the primary metric of interest in these experiments. For a given con-
figuration. speedup is defined as § = Tyeq/Tpar, Where T,eq is the completion time
for the simulation when executed using a sequential simulation algorithm and T,
is the completion time using a parallel implementation. Except where noted, each
sequential run was executed on a single node of the Symult 52010 multicomputer
whereas the parallel implementations used multiple nodes that are identical to the
one used for the sequential executions. Other than the simulation algorithm, the
model for the sequential and parallel implementations is an essentially identical
Maisie program.

5.1 CQNF and CQNP Experiments

For the CQNF network. each merge process was modeled by a Maisie entity called
switch and each tandem queue together with its associated fork process was mod-
eled by another entity called queue. Thus each node of the physical network is
modeled by one switch and one queue entity: for parallel implementations of the
model both these entities are executed on a single processor. The switch entity is
straightforward and is not discussed further. The queue entity works as follows: for
each arriving job, the entity sequentially simulates service of the job at its Q servers
and generates a message for one of its O neighbors. When & jobs have been ser-
viced (for a suitably chosen k), the messages generated by the entity are sent to the
corresponding neighbors and the final state of the entity is saved. If a subsequent
message at a queue entity contains a job with an arrival-time that is smaller than
the departure time of any of the jobs serviced in the previous iteration, the entity
is recomputed from an appropriate state. The parameter £ has a significant impact

(@ =10,J=32x N, T = 4 x 105)
16 T T

14
12
10
Speedup 8
6

4

0 [I
2 4 8 16
Number of Switches

Figure 4: CQNF Speedup: number of switches

on the performance of the implementation. Other things remaining the same, the
value of k affects the frequency of state saving, the amount of network message traf-
fic. and the frequency with which the system convergence time is computed which
also affects the frequency of garbage collection. In addition to the application pa-
rameters, the performance of this implementation was also studied as a function of
k.

The convergence time for this model is computed by using an asynchronous
convergence detection algorithm: each outgoing message from an entity carries its
local convergence time and a message number that serializes the number of correct
messages sent to each neighbor. Every entity periodically checks to determine the
largest number corresponding to which messages have been received from all queue
entities in the model and uses the value to compute the system convergence time.

The first graph (figure 4) measures the speedup obtained in the parallel imple-
mentations as a function of N. The other primary parameters were fixed at Q=10
and J=32*N. As seen from the figure, the speedup increases almost linearly with
N for N < 16. Larger values of N are not included in this graph, as the 4M
limitation on the main memory of each multicomputer node restricted the largest
sequential implementations that could be executed. Modified configurations that
were executed for larger values of N are discussed subsequently.

Given a network of N switches, the amount of computation is determined by the

(N=16,T =4 x 105 K = J/4)
16 T T T T

14
12
10

Speedup 8

0 | 1 |
16 32 64 128 256
Number of Jaobs

[J1]
—
(3]

Figure 5: CQNF Speedup: jobs per switch

number of jobs (J) assigned to each switch as also by the number of servers in each
tandem queue(Q). Figure 5 presents the speedups obtained for a network of N=16
fully connected switches as a function of the number of jobs in the system, for Q=5
and 10 respectively. Note that initially the speedup increases with J and then levels
off to reach a peak speedup of about 14 for J=32*N. This behavior is expected as
the initial increase in J offsets the message communication time in the network and
once every node is fully utilized, further increases in J have no affect on the speedup.
Note also that whereas for smaller values of J the speedup is greater for larger Q,
the value of Q is less relevant as J is increased. This is intuitively plausible, as
for smaller J, the larger Q implies that each node is being better utilized. As J
increases, each node is fully utilized even for the configuration with a smaller Q.
The experiments that are reported in this graph assumed an iteration count (k) of
J/4. The behavior of the network as a function of k is discussed subsequently.

To permit networks with larger N to be executed, memory requirements of the
model were reduced by changing the topology. Rather than use fully connected
networks, each switch was assumed to be connected to N/2 other nodes in the
system. Furthermore, the number of jobs were reduced from J=32*N (which yielded
the optimum speedups for the experiments in figure 5) to only 4*N. This allowed us
to execute simulations of upto 64 switches, and although the speedup is sub-optimal,
it was still close to 35 for N=64. Figure 6 gives the speedup as a function of N, where

(Q=10,0=N/2,J =4x N, T = 4 x 105)
10 T T T T

J/4 o
J/2 8-

K
g _Ix'

0 i [I]
8 16 32 64
Number of Switches

o
=N

Figure 6: CQNF: Speedup over Sun Sparc-IPC

the sequential implementations were ezecuted on a Sparcstation IPC, a configuration
that is considerably more powerful than the single node of a Hypercube. As seen
from the figure. significant speedups were obtained (upto a factor of 10) even when
compared against a superior sequential implementation.

The final set of experiments were designed to measure the overhead due to the
simulation algorithm itself. As mentioned earlier, the iteration count & has a sig-
nificant impact on the frequency of checkpointing, convergence detection and other
tasks performed by the run-time system. Figures 7, 8 and 9 present the speedup,
overhead and number of rollback events as a function of k for two configurations
that differ only in the number of jobs in the network. The overhead costs consist
primarily of checkpointing, garbage collection, determining recomputation points in
the queue of checkpointed states and the message delivery costs (both hardware and
software). Note that rollback costs are not included as a separate cost as they in-
directly contribute to the preceding categories. For J=32*N, the speedup increases
initially and then decreases. The intuitive explanation for this behavior is that as
k decreases, it initially causes the simulation to synchronize more frequently, thus
reducing the number of rollbacks. Also, the normal increase in overhead caused
by the lower k is more than offset by the decrease due to the reduced number of
rollbacks, resulting in overall improvement in the speedup. However, as k is de-
creased further, rollbacks are not reduced significantly whereas the other overhead

10

(Q=10,N =16.T = 4 x 10%)

16 T
14 - §
12 = p
10<
Speedup 3
6
4
2
0 1 1
J/2 J/4 J/8 J/16
Iteration Count
Figure 7: CQNF Speedup: iteration count
(=10,N =16,T = 4 x 10%)
100 T I
J=2x N &
80 FJ =32 x .V 8- P
O'\ferhe::u?O B T
(sec) 40 L _
20 H—/"‘GF//,——GJ
0$\ ol |
J/2 Ji4 J/8 J/16
Iteration Count
Figure 8: CQNF Time: system overhead
(Q =10,N =16,T = 4 x 109)
5 T T
J=2x N &
4 =32x N 6
Rollback 3
Events
(x10%) 2 -
1 -
I ———— 4
0 L £ €]
J/2 J/4 J/8 J/16

Iteration Count

Figure 9: CQNF: rollback events
11

(Q=35N=16T=4x10%HI:LO=1:16)
16 T T T T

14
12
10

Speedup 8

0 | i | i
16 32 64 128 256 512
Number of Jobs

Figure 10: CQNP Speedup: jobs per switch

increases causing a net decrease in speedup. This explanation is in fact supported
by the graphs in figures 8 and 9 respectively. For J=2*N, the speedup decreases
monotonically, dropping significantly for the lower values of k. This is accompanied
by a sharp increase in the overhead costs and also in the number of rollbacks. In
examining the contributants to the overhead, it was found that although all costs
increase. the major increase is due to higher message delivery costs. Note that for
this configuration, the lowest value of k implied that each queue processed exactly
2 jobs before synchronizing with its neighbors. This caused a significant increase
in the total number of iterations needed for the simulation, and consequently in-
creased the simulation overheads. As the amount of useful work done per iteration
is relatively small, this configuration yielded a minimal speedup of 2.

The implementation of the CQNP benchmark was very similar to the CQNF im-
plementation, where a queue was used to model the Q servers and the fork process
and a switch entity modeled the merge process. The speedup curves for the CQNP
application were similar to those obtained for the CQNF experiments. For a low ra-
tio of high to low priority jobs, the speedup curve as a function of the number of jobs
(J} is displayed in figure 10 where the speedup is seen to increase as J is increased,
and is independent of the number of servers (Q) for larger values of J. Figure 11
shows that the speedup also improves almost linearly as the number of switches is
increased; note that the number of nodes used for the parallel implementations is

12

16 T T
14

12

10

Speedup 8

0 |]

16
14
12
10
Speedup 8
6

4

(@ =10,J =32x N, T=4x105, HI:LO =1:186)

2 4 8 16
Number of Switches

Figure 11: CQNP Speedup: number of switches

(Q =10,N=16,J =32x N, T = 16 x 10%),

I T 1
)]
>
g =]
B K=J/2 o T
K=J/4 -
- ~
1 !]
1:1 1:2 1:4 1:8 1:16

RI:LO ratio

Figure 12: CQNP Speedup: High/Low job ratio

13

such that each switch and its associated queune is mapped to a single node of the
multicomputer. Finally figure 12 displays the speedup as a function of the ratio of
high to low priority jobs. Other things remaining the same. the speedup increases
as the ratio is decreased. This is expected because as the ratio decreases there is
less likelihood of a low priority job being preempted and as such a lower probability
that the completion message for a low priority job is subsequently canceled bv a
roltback.

5.2 FFN Experiments

The FFN benchmark was used to measure the effectiveness of space parallelism,
time parallelism and also a combination of the two methods. For the space parallel
implementation, each stage of the network was modeled by a single entity. This
ensures that every entity processes an equal number of messages and also simpli-
fies the allocation of processes to processors. The frequency of checkpointing and
convergence detection is once again determined by a suitably chosen k, which rep-
resents the number of jobs that are processed at a stage before they are forwarded
as a packet to the next stage. The convergence detection is simpler for this applica-
tion as the convergence time at each stage can be determined locally from messages
received from the preceding stage.

For the time-parallel implementation, the simulation horizon H was subdivided
into smaller intervals, each of duration T. The simulation model essentially consists
of a number of ffn entities, each of which is responsible for simulating the entire
network for a specific interval of T time units. Let entity ffn; simulate the network
in the interval ¢,=[(: - 1)T, {T), i= 1.2 ...n, for n=H/T. The parallelism exploited
by this implementation is the simultaneons computation of the state of the network
at many distinct points in time. Each ffn entity is initialized to an identical state.
where its servers are assumed to be idle. Subsequently, each entity simulates job
arrivals and their service at its servers during interval ¢;. The state of an ffn entity
is represented by the departure time of each job from each of its servers. At the
end of its simulation interval (at time ¢*T), entity ffn, transmits the state of
each server (either as idle. or if busy, the remaining service time) to entity ffn;y.
Note that entity ffn;i; has simultaneously simulated the network in the simulation
interval ¢;;, under the assumption that every server is idle at time i*T. Under the
normal optimistic assumptions, if the final state transmitted by entity ffn, is such
that all its servers are not idle. entity ffn;,; must be recomputed. As it is unlikely
that the interval T can be predetermined such that the entire network is periodically
empty, this recomputation will effectively sequentialize the parallel implementation.
However, if the final state transmitted by entity ffn, can be used to correct the
state of entity ffn,y at time (i+1)*T without recomputation, significant speedups
may be realized. In the parallel implementations reported in this paper, the state
of ffni1, was corrected by adjusting the departure time of its jobs to account for

14

(N =64,J =28 I = 1024)

70 T 1 T T T
Time-Parallel
60 ~ o & S
50 é, " N 2\, A
40 + -
Speedup £ H
SOE;\E/B——B——FU)
Afu=0.05 4+—
20 Ap =050 &
A= 0.91 32—
10 - AMp =096 &— |
Au=1.00 8~
0 { 1 t {)|
5 10 15 20 25 1]

Number of Queues

Figure 13: FFN Speedup: number of servers

the remaining service time of jobs that are still in service (or in the queue) at time
i*T. If the final state of entity ffn,y, after these adjustments is different from
what was computed in the previous iteration, then further change in the state of
entities ffn,y, (and indirectly its successors) may be needed. Thus the computation
proceeds in phases, where in the first phase all entities simultaneously simulate the
network for duration ¢; but only entity ffn is guaranteed to have converged. In the
worst case. the simulation may need to be executed for n phases before it converges.
(Note that each phase need not be executed synchronously). However, for networks
with low utilization, the implementation converges much faster.

The first graph (figure 13) for this set of experiments studied speedup as a

At p | States Fixed | Time(sec)
1.00 26,785,820 81.48

0.91 1,478,436 55.02
0.50 18,563 51.54
0.05 106 51.48

Figure 14: FFN: Number of states fixed (§ = 1,Q = 30,J = 218)

15

(§=6,0=6,J =213 T =512
70 T T T i
Time-Parallel
60 |- _

50

40
Speedup
30

I

3 4 8 16 32 64
Number of Nodes

Figure 15: FFN Speedup: number of processors

function of network utilization for a simple network that consists of 1 stage. The
simulation interval (T) assigned to each entity was chosen such that an entity is
responsible for generating [=512 arrivals. The graph in figure 13 describes the
speedup as a function of the number of servers(Q) for different A : u (R) ratios.
Other things remaining the same, the speedup is better for a network with a lower
R ratio. This is expected as a lower ratio implies that each server has many idle
periods. which implies that when the state of some f fn; is corrected., it is less likely
to cause changes in its successor. The table in figure 14 corroborates this conjecture.
It shows that whereas the configuration for R=0.05 needed only 18K states to be
fixed-up. for R=1 almost 26M states needed to be corrected. This significant differ-
ence in the state correction activity is primarily responsible for the large variation
seen for the speedups in the two configurations. For a ratio of 0.05, the speedup on
a 64 node network was almost 58, which is close to optimal. It is relevant to mention
that unlike the CQNF and CQNP experiments, the sequential implementation for
the FFN experiment was a simple C function whereas the parallel implementations
were written in Maisie. In our opinion, it would be hard to further improve the
efficiency of the sequential model.

The second graph (figure 15) describes speedup as a function of the number of
multicomputer nodes. As seen from the graph in figure 15, the speedup is almost
linear with a value of 56 for 64 nodes. The tested configuration was a 6 stage

16

(5=6,Q=6,N=64,I=256,M = 2)
70 T T T T T
Time-Parallel

60 -
Pt PN

—

73

40 T

Speedup
30

0 1 | 1 i 1
ol4 al5 -)16 al7 18 al9 520
Number of Jobs

Figure 16: FFN Speedup: total number of jobs

network with a branching factor of 2 and a simulation interval (T) that generates
I=512 arrivals.

The third graph (figure 16) studied speedup as a function of the total number
of job arrivals. Given that each entity simulates the network for 256 job arrivals,
a 64 node multicomputer would be fully utilized for a simulation horizon of 24
job arrivals and further increasing the number of jobs will not improve speedup.
However, as shown in the graph of figure 16 there is an initial increase in speedup of
about 10% which finally levels off only after 2!2 job arrivals have been simulated. If
each node simulates the network for only one interval, then the node must remain
idle once the simulation has converged over its time interval, even though it may not
have converged over the rest of the network. However, if multiple (non-consecutive)
time-intervals are allocated to each node, it may continue to do useful work for
a longer time, improving the utilization and hence the speedup. The value of I
also has some effect on the speedup, as seen from the graph in figure 17 where the
speedup was within 10% of its maximum value as I was varied from a low value of
64 to a high of 8K with the speedup being at its maximum value for 256 or 512
depending on the A : u ratio for the network.

Finally, an implementation of the FFN network was also used to examine the
consequence of combining space and time parallelism: for these experiments, each
stage of the network was assigned 7 nodes, where 7 = N/S, and N is assumed to be

17

(§=6,Q=6,N=64,J =25 M =2)

70 1 T T T T T
Time-Parallel
60 - R R -
4 o9
50€ b
0
40 -
Speedup
30 n
20 N
10 Afp =0.50 ©-
Afu = 1.00 &4
0 | | | 1 | 1
286 o7 o8 9 910 911 912 213
Jobs/Period
Figure 17: FFN Speedup: iteration count
(V=60,Q =6,J =N x 22T =256)
T T
54 ~ Space-Time Parallel .

==y

Speedup48
46

44 Afp =0.05 +—+
Afp =050 ©—

42 A= 0.91 %
Ay =100 5

40 :

(6,10) (3,20) (2,30) (1,60)

Problem Set (S,T)

Figure 18: FFN: Space-Time Speedup

18

a multiple of S. A number of experiments were performed to measure the relative
effectiveness of the time and space parallelism. Consider the following scenario:
assume that N=5_ A pure space parallelism would imply that each stage be assigned
to a unique node. A pure time parallelism could cause the entire network to be
simultaneously simulated for N different time intervals. A hybrid implementation
would map multiple stages to a single node and use the additional nodes to exploit
time parallelism. If N>S, the space parallelism can exploit at most S nodes, where
the remainder can be used to exploit time parallelism. The performance of a FFN
network with 5=6, M=2 and Q=6 as a function of these mappings is presented in
figure 18. Given a network of 6 stages and 60 nodes in the multicomputer, four
different mappings were attempted: in the first case, each stage is mapped to a
different node and is simultaneously simulated for 10 consecutive time periods, thus
allocating a total of 10 nodes for each stage. In the subsequent mappings, the extent
of space parallelism is decreased by mapping 2, 3 and eventually all 6 stages on a
single node and using the extra nodes to increase time parallelism. As seen from the
graph in figure 18, the overall speedup is best when the entire network is executed
using only time parallelism.

6 Conclusion

This paper examined the effectiveness of different implementations of the space-time
simulation algorithm in improving the completion time of of a class of stochastic
simulation models. Almost all existing performance studies for parallel simulations
have only examined the effectiveness of exploiting spatial parallelism for the execu-
tion of a model. In this paper. we described a set of experiments that used space
parallelism, time parallelism as well as a combination of the two strategies to reduce
the completion time for simulation models. In addition, rather than use rollback
and recomputation 1o correct estimated future states, the time-parallel implementa-
tion uses a simple fix-up strategy that effectively eliminates rollbacks and provides
near optimal speedups for a class of feed forward networks. The viability of state
correction mechanisms in the implementation of other types of systems is currently
being studied.

References

(BL90] R.L. Bagrodia and Wen-toh Liao. Maisie: A language and optimizing
environment for distributed simulation. In 1990 Simulation Multicon-
ference: Distributed Sirnulation, San Diego, California, January 1990.

[BL91] R.L. Bagrodia and W.T. Liao. Parallel simuation of the sharks world
problem. In Western Simulation Conference, 1991,

19

[CS89a]

[CS89b]

[Fuj88aj

[Fuj88b]

[GL90]

(JBWea87]

[LL91]

[RMMS7]

[$589]

(SS90]

[WL90]

K.M. Chandy and R. Sherman. The conditional event approach to
distributed simulation. In Distributed Simulation Conference, Miami,
1989.

K.M. Chandy and R. Sherman. Space-time and simulation. In Dis-
tributed Simulation Conference, Miami, 1989.

R. Fujimoto. Lookahead in parallel discrete event simulation. In Inter-
national Conference on Parallel Processing, August 1988,

R. Fujimoto. Time warp on a shared memory multiprocessor. Technical
report no. uucs-88-021a, Computer Science Dept., University of Utah,
1988.

I. Greenberg, A.G. Mitrani and B. Lubachevsky. Unbounded paral-
lel simulations via recurrence relations. In 1990 ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems, pages
1-12, 1990.

D. Jefferson, B. Beckman, and F. Wieland et al. Distributed simula-
tion and the time warp operating system. In Symposium on Operating
Systems Principles, Austin, Texas, October 1987.

Y.B. Lin and E.D. Lazowska. A time-division algorithm for parallel
simulation. ACM Transaction on Modeling and Computer Simulations,
1:73-83. January 1991.

D.A. Reed, A.D. Malony, and B.D. McCredie. Paralle]l discrete event
simulation: A shared memory approach. In Proceedings of the 1987
ACM SIGMETRICS Conference, pages 36-39, May 1987,

Wen-king Su and C.L. Seitz. Variants of the chandy-misra-bryant dis-
tributed simulation algorithm. In 1989 Simulation Multiconference:
Distributed Sirnulation, Miami, Florida, March 1989.

L.M. Sokol and B.K. Stucky. MTW: experimental results for a con-
strained optimistic scheduling paradigm. In Proceedings of the SCS Mul-
ticonference on Distributed Simulation, pages 169-173, January 1990.

D.B. Wagner and E.D. Lazoska. Parallel simulation of queueing net-
works: Limitations and potentials. In Proceedings of 1989 ACM SIG-
METRICS and PERFORMANCE, pages 146-155, May 1990.

20

