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ABSTRACT OF THE DISSERTATION

Self-Timed Arithmetic Structures in CMOS Differential Logic
by
Shih-Lien Lu,

Doctor of Philosophy in Computer Sciences

University of California, Los Angeles, 1991

Professor Milos D. Ercegovac, Chair

The design, implementation and evaluation of self-timed computer subsystems
in CMOS technology is presented. More specifically, arithmetic structures such as adders,
array multipliers, and array dividers are investigated.

First, a new circuit technique — Enable/Disable CMOS Differential Logic
(ECDL), is proposed and studied. This new circuit is used to actualize the design of self—
timed modules. Several self-timed arithmetic structures which includes adders, array multi-
pliers and array dividers were designed and implemented using ECDL. A modelis suggested
to predict the area and speed of different arithmetic algorithms when implemented in ECDL.
Several chips are fabricated through MOSIS and measured. Comparisons are made between
the measured results, SPICE simulation and this prediction model. This new CMOS differ-
ential logic family gives a new dimension in the design of arithmetic structures as well as
computer systems.
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Chapter 1

Introduction

”... Now, if you only kept on good terms with him, he’d do almost anything you liked with the
clock.” ... Lewis Carroll in Alice in Wonderland

Clocked logic has been the main synchronization discipline for digital comput-
ing systems. In a clocked system time is divided into quantized periods. Only with each
“beat” of time (clock pulse), may a new state or event occur. All sequences of computation
are controlled by the clock. Thus the computing power or the execution speed of instructions
in a clocked system is bounded by the speed of its clock. That is, in order to design faster
clocked digital systems, faster clocks must be used. However, in synchronous systems con-
trolled by a central clock, the clock period must be greater than the sum of the longest combi-
national logic delay, the state register cell delay and the setup time of the state register, That
is, the clock period must accommodate the worst case delay of the system [Ung 86). However
the actual delay of a digital system may be much shorter than the worst case delay. As aresult
digital systems with a global clock run slower than what the actual delay may provide. Over
the past several years, remarkable technical progress has been made in the manufacture of
semiconductor integrated circuits. By 1988, advances in photo-lithography have allowed
very large—scale integrated (VLSI) circuits with transistor effective channel lengths of one
micron in volume production. Further scaling down to 0.5 micron and below is expected to
be realized in the near future. In particular, Complementary Metal Oxide Silicon (CMOS)
technology has played an increasingly important role. The potential for high speed with al-
most no static power consumption, while still allowing very high densities, permitted CMOS
to be accepted as the technology to build compact fast digital systems. However, with the
down scaling of feature size and the increase in chip area, not only has the complexity of
chips increased, but the timing relationship between wiring and circuit elements has also
been altered. Synchronization of elements in a system with a global clock is becoming in-
creasingly problematic [Sei 79]. While the technology offers gates with delay in the fraction
of nano—second range, very few synchronous systems can achieve a global system clock
speed of 50 MHZ or above. An alternative is to have a self~timed system. A self-timed [Sei
801} system is a interconnection of self-timed parts — called self~timed elements. Elements
initiate the computation with the arrival of start signals. Upon the completion of the compu-
tation by the elements done signals are generated. These done signals become the start sig-
nals of elements whose inputs depend on the outputs of the elements generating the done sig-
nals. The sequencing of computational steps is determined by the way elements are con-
nected. Therefore in a self-timed system, there is no need for a global clock. The computa-
tion is governed by the sequence of actions of each module’s dependence on one another. As
aresult the speed of the self-timed system is not determined by the worst case propagation
delay, and there is no waiting, hence, no time wasted by any of the sub-modules. Replacing
the elements of the critical path with faster modules will improve the overall system perform-
ance without fine tuning the system clock.

The aim of the work presented in this dissertation is to address the problem of
design, implementation and evaluation of self—timed computer subsystems in CMOS tech-
nology. More specifically, we concentrate on arithmetic structures such as adders and multi-
pliers, which are essential in the design of digital systems. As a new implementation ap-
proach, a CMOS differential logic family is introduced [L.u 88a] and used in the development
and implementation of these arithmetic structures. We show that this new CMOS differential
logic family gives a new useful alternative in the design of arithmetic structures as well as
computer systems. It can be used not only for building self-timed digital subsystems, but



also serves to realize a safe single phase clocking methodology for synchronous digital sys-
tems [Lu 88] [Lu 90].

1.1 Contributions

_ The results of this dissertation are not intended to be panaceas for all system tim-
ing problems nor will they be used to manage the entire VLSI complexity issue. However,
this dissertation contributes in the following areas:

D A new CMOS differential logic family — Enable/Disable CMOS
Differential Logic (ECDL), with propagation delays smaller than the
standard static CMOS.

D A transition scheme for controlling events using ECDL.,

D Realization of iterative networks with ECDL circuits.

D Several arithmetic structures using ECDL circuits:

(1) Two—summands adders

(2) Array multipliers

(3) Iterative divider.
D Evaluation and measurement of arithmetic ECDL structures.
D Alternative clocking schemes using ECDL.

1.2 Motivation

Circuit structures for efficiently performing arithmetic functions are often re-
quired for high speed computing. The design process of an arithmetic structure consists of
two phases. The first is to develop efficient algorithms and the second is to realize the logic
implementations of these algorithms in a suitable technology. Although the development of
efficient algorithms for an arithmetic function requires more creative thinking and theoreti-
cal background, efficient implementation of an appropriate algorithm determines the overall
system performance. Moreover, in many cases the implementation techniques as well as the
medium used will affect the decisions made on the level of algorithmic design. Therefore, we
must not underestimate the importance of implementation and should consider these two
phases as one inseparable entity. With the rapid development in very large scale integration
comes a need for further research in suitable fast and efficient arithmetic algorithms and im-
plementations to take full advantage of the advancement in technology. In many arithmetic—
intensive applications the use of traditional arithmetic algorithms and implementations, pri-
marily developed for small scale integration or medium scale integration (SSI/MSI) gate—le-
vel technology, not only is inefficient but is also becoming unsatisfactory in performance.
First, scaling down feature size and scaling up chip area increases the complexity and makes
timing become more difficult to solve. Global clock distribution and long distance communi-
cation required by synchronous systems will become more and more problematic {Sei 79].
Second, as the chip area is scaling up, there is an increasing demand for higher integration.
This increasing complexity demands modularity. For example, in [Sans 81], it is shown that
as the number of cells increases, the size of individual cells decreases, and more area is taken
up by interconnections. In particular cases, total chip area may increase, even though the de-
vices are scaled down, which is mainly caused by the amount of routing area required. More-
over, the design time for these individual cells increases dramatically as well. Third, algo-
rithmic timing analysis based on gate delays becomes an unreliable reflection of how an im-
plemented chip will perform. Delays contributed by wiring parasitics, fan—ins, and fan—outs



are not fully observed nor accounted for. To address the difficulty of having a global clock we
propose to use self-timed circuits.

1.3 Thesis Approach and Related Work

Over the last few years, CMOS technology has been accepted as one of the viable
technologies for VLSI systems. It has several major advantages: low static power dissipa-
tion, high noise margin and single power supply requirement. Since the output of a CMOS
gate is guaranteed to settle at either the power supply or the ground level, the designing of
CMOS circuits is easier than that of nMOS. No delicate balancing of the load and driver tran-
sistors 1s needed. The conventional static CMOS gate, however, is intrinsically slow and area
consuming because the logic function is duplicated by both n and p channel devices. More-
over, since each signal mustdrive both an n—channel and a p—channeldevice, the load capaci-
tance is the sum of both which amounts to approximately three times the load capacitance of
an nMOS implementation. Several methods have been proposed to improve the static
CMOS performance. In this dissertation, we proposed a new way of implementing logic with
an improved differential CMOS logic family — enable/disable CMOS differential logic
(ECDL). Other differential logic families reported in the literature include: cascode voltage
switch logic (CVSL) [Hel 84], dynamic cascode voltage switch (DCVSL) [Hel 84], comple-
mentary set—reset logic (CSRL) [Mead 85], sample—set differential logic (SSDL) [Grot 86]
and split-level differential logic (SLL) [Pfen 85]. In short, ECDL has the following charac-
teristics:

e it can be either static or dynamic

¢ it has a good combined time/speed/power product

* it has little overhead circuitry

® it can be asynchronous or synchronous

e it lends itself to automatic generation of geometry

By using this ECDL to implement some self-timed structures we hope to demon-
strate practical performance improvements over clocked CMOS circuits. Work reported by
Jacobs [Jacob 88] and Meng [Meng 88] both use the dynamic Cascoded Voltage Switch Log-
ic (CVSL) [Hel 84] structures as the implementation circuitry. Qur implementation of self—
timed structure differs from work done by Jacobs [Jacob 88] in two ways. First, ECDL is
stattc. There is no charge sharing problem in comparison with the dynamic CVSL approach.
Second, since some event control can be implemented with ECDL directly, the amount of
control circuit is reduced. This idea of combining logic for event control and information
processing is the main difference that sets apart this work from other self—timed approaches
proposed [Meng 88, Suth 89]. While previous work done by Jacobs [Jacob 90] and Meng
[Meng 88] uses bit—slice (ripple) and Booth algorithm to implement their computation mod-
ules, this work explores other arithmetic algorithms.

1.4 Scope of Dissertation

This thesis will concentrate on the design and implementation of submodeles
used in a digital system. We will discuss and compare different CMOS logic structures as an
implementation medium. A detailed circuit design analysis of ECDL will be performed. We
will evaluate the effectiveness of using ECDL to implement different arithmetic computa-
tion modules. Actual structures will be designed and fabricated through MOSIS which in-



cludes several two summand adders, array multipliers and other logic functions. An analyti-
cal model predicting the performance is proposed. Appraisal of different arithmetic algo-
rithms on the silicon level, instead of on the gate level as previously done, will be performed
by comparing the measured results with modeled data.

1.5 Qutline of Dissertation

As mentioned, the focal point of this thesis is to develop a new dif ferential logic
circuit called Enable/Disable CMOS Differential Logic (ECDL). We begin in Chapter 2 by
comparing different CMOS logic families as an implementation medium of designs. Trade-
offs in area and speed of several CMOS logic techniques are compared through SPICE simu-
lation for a particular logic. In Chapter 3, the detailed circuit design of this new differential
logic family is explained. The basic circuit structure is extended to implement the comple-
tion circuitry for self—timed operation. We also explain how event control can be performed
from the circuit structure itself. In Chapter 4, implementation of iterative networks and array
networks with ECDL is discussed. Two ways to improve the performance of iterative net-
works are shown. In Chapter 5, we examine the approach of implementing a data flow graph
using ECDL. Firing of tokens is regulated by the transition signals. These signals are pro-
cessed with ECDL. Chapter 6 and 7 present self-timed iterative networks implementation
for several arithmetic operation. Chapter 6 covers four different adders and Chapter 7 ex-
amines three array multipliers and an array divider. A first—order modeling technique is pro-
posed to predict the performance of arithmetic structures designed using ECDL. Chapter 8
demonstrates a single--phased clocking scheme which utilizes both clock transition edges as
an additional capacity of ECDL circuits. Chapter 9 summarizes the contribution and open
research problems.



Chapter 2

CMOS Technology : Different Implementations of Logic

2.1, Introduction

The behavior of the logic implementation definitely affects high level architec-
tural decisions. In this chapter we summarize some different styles of CMOS logic structures
and discuss their speed, are and power properties. First, different styles of CMOS logic tech-
niques can be categorized into two groups according to their timing properties. Logic struc-
tures which have no minimum clocking speed requirement are labeled as static logic. Logic
structures which operate on charge storage and require a lower bound on the speed of the
clock to prevent incorrect behavior and malfunction are called dynamic logic. Conventional
CMOS with both N—channel devices and P—channel devices is a static logic. Domino logic
[Kra 82] is an example of a dynamic CMOS logic. There is another way to group logic struc-
tures. This grouping depends on the way logic is realized. When a single logic network of
either N—channel MOS devices or P—channel MOS devices or a two logic structures of both
N—channel and P—channel is used to implement the logic function or its complement (not
both), these logic structures are called single—ended logic. Logic structures using a single
network or two logic networks to implement a given logic equation and produce both the
function and its complement are named differential logic (or double—railed logic). In Figure
2.1, we summarize the classification of CMOS logic structures discussed in this chapter.
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2.2 Single-Ended CMOS Logic

2.2.1 Conventional Static CMOS

Static CMOS implementation of a suitable function is considered redundant. The
function is duplicated by both n and p channel devices. Moreover, each signal must drive
both an n—device and a p—device (Figure 2.2).

Vdd

{P—Channel |
» devices J . ;'gtz—Channel
: A>-c1 B>Q C>c1: : S
e--- :'.'.'.'.-.'.'.;t.'.'.:'.'.-.:.'.-,- -< OUTPUT

A > : >

: ] : To N-Channel

: : ate

;B> : g

E :I N—Channe'!

; C > devices !

Figure 2.2 Static CMOS NAND of 3 inputs

We denote C... asthe load capacitance, C.. as the gate capacitance per unitarea, w, and
L, as the width and length of the n—channel device, and w, andL, as the width and
length of the p—channel device. Then, the load capacitance is expressed as:

C!md = Cox (WnLn + Wpr) (2'1)

which amounts to about three times that of an nMOS implementation, for W, = 2w, . This
load capacitance contributes to the slowness of static CMOS logic compared to nMOS. Fur-
thermore, the redundancy of the logic network contributes to a larger implementation area.

In static CMOS, NAND and NOR functions are easier to implement than AND
and OR functions, since n—channel devices pass the GND signal without voltage degradation
while p—channel devices pass the Vdd signal without any voltage drop. Moreover, CMOS
gates in NAND form are used more often than the NOR form of gates. The major factor con-
tributing to this selection is the difference in the mobility of electrons and holes. For particu-



lar values of v,, and v, the MOSFET current is directly proportional to k, which is the trans-
conductance parameter. We denote £, and &, as the transconductance parameter of p—chan-
nel device and n—channel device, respectively. Let u, and g, be the mobility of carrier in n—
channel and p—channel devices, respectively. Therefore, we have:

_ W (2.2)
kn - L,, ﬂ.ucaz
W,
k, = L_Pﬂ”c‘"' (2.3)

There are two characteristics of interest: First, since g, and u, are different, in order to pro-
vide a similar fall and rise imes, width of P-channel devices need to be sized. Second, since
4. islarger than g, , itis better to chain the higher performance n—hannel devices in series
to form NAND gates than to chain P—channel devices in the NOR form of gates. Otherwise,
the larger—sized P—channel devices not only consume much circuit area, but also add extra
load capacitance to the gate. Figure 2.3 illustrates the tabulated results of SPICE simulation
for two gates, a 5 input NAND and a 5 input NOR. The technology used in simulationisa 3
micron technology. However, this is not the most advanced technology available. For com-

parison purposes, we use this technology throughout the thesis except where it is explicitly

stated otherwise. The fast and slow cases are simulated with fast and slow SPICE level 2
model parameters provide by MOSIS [MOSIS 84]. The model’s parameters used for the sim-

ulation are included in Appendix A. Conventional static CMOS can be clocked. A general

clocked CMOS gate is illustrated in Figure 2.4. Originally, this form of logic was developed
to build low power CMOS circuits. The effect of reducing the power is mainly a result of
having metal gates. We can use this kind of logic structure to enable the design in interfacing
with other dynamic forms of logic circuits. The clocked gates have the same input gate ca-
pacitance as the static CMOS gates. However, the clocking transistors will cause longer rise

and fall times.

Since conventional static CMOS tends to be slow in speed and large in area, the
Dominoe logic method was proposed to reduce the transistor count and to increase the opera-
tion speed [Kra 83].



5—-input NAND (W/L=3/4 all transistors)

rise time (ns) fall time (ns)
Typical
case 2.2 8.2
Fast case 1.6 5.8
Slow case 2.7 9.8
5-input NOR (W/L=3/4 all transistors)
rise time (ns) fall time (ns)
Typical
case 285 1.4
Fast case 20.0 1.2
Slow case 32.4 1.5
Figure 2.3  Rise and fall time for 5~input NAND and NOR gates
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2.2.2 Domino CMOS

A basic circuit is shown in Figure 2.5. The Domino logic family operates with a
single—phase clock in two modes. During the first operation mode ( ¢ =10), the output node
{(node X in Figure 2.5) is pre~charged to Vdd. The clock signal (f) then goes to one, disabling
the pre—charge p—type transistor and enabling the bottom n—type transistor to provide a path
to GND. If the logic network provides a path from node X to ground, chage accumulated
during the pre—charge period will be discharged through the path. The output will be ob-
tained from an inverter. This inverter is necessary to prevent charge redistribution as well as
spikes. With thisinverter, AND and OR functions are readily obtained. In contrast to conven-
tional static CMOS logic, the practical gate preferred is an OR gate instead of an NAND.
Simulation has been performed to demonstrate a typical speed. Results are shown in Figure
2.6. Again this is done for the MOSIS’ 3 micron CMOS technology.

There are two major disadvantages with Domino logic family. First, this logic
family is notcomplete. [t does not provide negation. Second, the usual method of using trans-
mission gates, as 1llustrated in Figure 2.7, to do pipelined implementation leads to race con-
ditions, if clocks are not completely non—overlapping. When both ¢ and ¢ are 1 or 0, there
exists a path from input to output in Figure 2.7, which causes compromised (not the power
rail voltages) logic levels . An extension of the Domino logic was proposed by Goncalves/
DeMan [Gon 83]. This modified method is called NORA. A similar approach is also re-
ported by Friedman and Liu [Frie 84].

10



<
o)
Q

Vdd
¢ >O ]node X ~
_L 7
A>—
N
B>
C S>— N-Channel
devices
¢ >

v

Figure 2.5 CMQOS Domino NAND of 3 inputs

Number of inputs rise time
(ns)
2 7.5
5 13.5
9 20.0

Figure 2.6 Rise times of several Domino AND gates
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2.2.3 N-P Dynamic CMOS or NORA CMOS

The new Domino logic extension utilizes both the n—core and the p—core logic
network gates in alternating stages. A general circuit is shown in Figure 2.8. In this setup,
n—core networks are clocked by ¢ and the p—core networks are clocked by ¢ . Both the n—
core and the p—core stages are pre—charged when ¢ =0and ¢ = 1. In the n—core stage, the
output node 1s pre—charged to Vdd. In the p—core network stage, the output node is pre—
charged to 0. Consequently, when an n—core network stage is in evaluation phase, output
node is discharged. As it is discharged, it turns on the p—channel devices of the next p—core
network, which in turn, will charge up the output node. By using this method, inverters are
eliminated and the logic family is complete. However, outputs of n—core gates cannot be used
for the inputs of other n—core gates, and outputs of P—core gates cannot be used for other P
core gates. Goncalves and De Man [Gon 83] also proposed a dynamic CMOS method for
pipelined logic structures. Instead of using the CMOS transmission gates, clocked CMOS
latches, as illustrated in Figure 2.9, are used to couple pipeline stages. Each stage may be
composed of an arbitrary number of the n—core and the p—core network gates. In all odd
stages, the period when ¢ isOand ¢ is 1isused as the precharge phase and the period when
¢ =1and ¢ =0is used as evaluation phase. Conversely, in all even stages, the period of
time when ¢ is1and ¢ is 0 is used as precharge phase and the period of time when ¢ =0
and ¢ =1 is used as evaluation phase. Figure 2.10 illustrates the alternating phases. Since
both ¢ and ¢ are used as precharge phase as well as evaluation phase, it requires an even
split between the two phases.
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2.3 Differentiat CMOS Logic

2.3.1 Cascoded Voltage Switch Logic Family

Another approach in improving the speed and the density of static CMOS logic is
proposed by Heller et al. [Hel 84]. This logic family named Cascode Voltage Switch Logic
(CVSL) is based on a cascoded dif ferential pairs of MOS devices forming a complex differ-
ential network tree. A basic circuit is illustrated in Figure 2.11. Depending on the input val-
ues, one of the node ( OUTPUT or PUTPUT ) will be pulled down to ground by the combina-
tional network. Two P—-type transistors connected in a cross coupled fashion provide regen-
erative action to pull one node to Vdd and pull the other to Ground. There is no static power
dissipation. Once the result is set, it remains unchanged. Since each output only drives N—
type gates, the gate loading capacitance is generally three times smaller than that of static
CMOS implementation. Moreover, since both output and its complement are available, most
of inverters are eliminated. Designing the differential logic network can be formalized as
proposed by Chu and Pulfrey [Chu 86], which lends to automation and logic minimization.
An example is shown in Figure 2.12 which illustrates the compactness of CVSL. The idea of
Domino logic can be applied to CVSL as well. Figure 2.13 shows a high performance
clocked CVSL. During the precharge period, when f is 0, both N and N are pre—charged
high which brings both oUTPUT and OUTPUT nodes to Vdd. Asf goes high, two P—channel
transistors used to precharge are turned off and the circuit is left in the evaluation state. De-
pending on the differential network logic tree one of the nodes (N or N ) is discharged to
ground while the other stays at Vdd. Feedback through M1 and M2 improves the noise mar-
gin,

There is a major disadvantage in both clocked CVSL. and Domino logic. Since
the delay of the gate built with the clocked CVSL and Domino logic 1s linearly proportion to
the number of stacked N—channel transistors in the logic tree, this limits the complexity of
function which can be built with these circuits. A practical limit of only 4 — 5 N—channel
transistors in the combinational logic tree can be stacked in series.

Vdd
OUTPUT N OUTPOT
: """"""""""""""""" 1
INPUTS—— N-GHANNEL ;
JE—— NETWOR '
: ~ NELLORK s :
| S B L L L e ]

Figure 2.11 A Basic CVSL Circuit
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2.3.2 Sample Set Differential Logic

Grotjohn and Hoefflinger improved the clocked CSVL and called it Sample-Set
Differential Logic (SSDL) [Gro 86]. A basic circuit is shown in Figure 2.14. In thissetup a

vdd
" Vdd : EEEE
: : ;
E E ¢ : M1 Mgk)—#
: - ouT : : ouT
[ = ——{>o
Ly ST
EN (Y
L i
LS —— - e S
' ' INPUTS—— ) NETWORK :
: : — : TREE .
' ' —_— 1 Voo mEe

FIGURE 2.14 Sample Set Differential Logic

single phase clock is used. Both clock and the complement of the clock are used to control the
operation, though. When the clock is low, the circuit is in a sample stage. Transistors M1, M2
and M3 are all turned on by the clock and its complement. Input values and the differential
network tree will provide a path from ground to one of the nodes, either ¥ or N . Asaresult
that particular node has a voltage lower than Vdd set by the voltage divider, while the other
node remains at Vdd. As the clock swings high, the circuitisin the set stage. In this stage M1,
M2 and M3 are turned off but transistor M4 1s turned on enabling the sense amplifier. At this
time the node with a voltage lower than Vdd will continue to drop and feeding back to enable
the other node to remain at Vdd. The discharging is done by the nMOS transistor of the sense
amplifier. This contributes to the major advantage of the Sample Set Differential Logic. The
speed performance is independent of the number of nMOS transistors in series of the differ-
ential network tree. There are several drawbacks. First, during the sample stage both M1 and
M2 are on, there exists a direct path from Vdd to ground. Static power is consumed because
of this path. Second, while there is no speed penalty for large numbers of nMOS transistors in
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series, a single transistor differential tree may cause the node n¥ or N to drop past the logic
threshold voltage, Vinv, during the sample stage feeding the next input with wrong results.
Third, although it needs only one clock signal, however both clock and its complement are
necessary in order to control the circuit operation. Any overlapping of the clock and its com-
plement due to skewing will cause logic level to compromise.

2.3.3 Split-Level Differential

Another static differential logic family is proposed by Pfennings et al. [Pfe 83]. A
basic DSL circuit is shown in Figure 2.15. This circuit differs from CVSL by adding two
extra N—channel devices, M4 and M5. These two N—channel devices are gated by areference
voltage. The reference voltage is set to be one half of Vdd plus the threshold voltage of an
N—channel device to give the optimal speed performance. Assume, initially, ¥ is low and
N is high. The P—channel transistor, M2, is turned on while M1 is turned off. The voltage
value for y and ¥ is 100mV and half of Vdd, respectively. If the differential logic tree
changes its input signal and a path exists from ¥ to GND, only half of Vdd times loading
capacitance of charge needs to be discharged. This gives a speedup of at least 2 with respect
to static CMOS circuits. While the speed 1s increased, there will be static power produces in
this logic circuit. This is caused by transistors M3 and M4 being turned on constantly which
provides a path from either N or ¥ to ground.

TVdd

E{L ouT

ouT
M4 M5
N N
— NMOS
—1 LOGIC
INPUTS—— ’&( NETWORK WL‘
— T TREE

3—|M3

FIGURE 2.15 Split Level Differential CMOS
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2.3.4 Enable/Disable CMOS Differential

[Lu 88a] proposed a new static CMOS differential logic named Enabled/Di-
sabled CMOS Differential Logic(ECDL). ECDL is designed for implementation of high
speed CMOS circuit, Unlike the previous two logic families —SSDL and DSL, this method
consumes no static power. The logic noise margin is also higher, since there are no voltage
dividers. Moreover, a true one—phase clock is used, which eliminates the overlapping clock
problem caused by clock skews. ECDL can be further modified to implement pipelined logic
as well as asynchronous iterative logic circuits. We will present the operation principle and
the detailed electrical properties of ECDL in the next chapter. Figure 2.16 shows a basic
ECDL circuit. While clocked CVS logic belongs to dynamic logic family, SSDL and ECDL
and CVSL are all in the static logic family.

Vdd

------------------------------------

INPUTE——+—— NMOS
—_— ’5( NETWORK :
N TREE :

FIGURE 2.16 Basic Enable Disable Differential CMOS Circuit
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2.4 Comparisons of Different Logic Structures

To compare the performance of the various form of logic structures, a full adder is
implemented with all the logic techniques discussed in this chapter. Figure 2.17 shows the
various forms of full adder cells in different logic families. A total of eight different adders
are simulated with SPICE using typical parameters listed in Appendix A. Three of them are
single—ended logic structures and the other five use differential logic structures. In order to
have meaningful speed comparison, all transistors are sized as L/W = 3.0m / 4.0m. Each of
the full adders is chained linearly to form an 8-bit carry—ripple adder. A small wiring load
capacitance is included with output nodes of each bit. The worst case input patterns of
A=(11111111), B=(00000000) is applied to these adders together with the initial carry set to
1. The delay per—bit is calculated by dividing the total dealy of an 8-bit carry—ripple adder by
8. Power dissipation is also simulated using SPICE with a technique described by Kang
[Kang 86].

A tabulated comparison is shown in Figure 2.18. We observe that the Differential
Split-Level (DSL) circuit yields the best performance. This is explained in the previous sec-
tion due to the need to only swing one—half of the rail-to-rail power voltage. However it also
consumes much more power. Sample Set Differential Logic and Clocked CVSL. have the
worst delay—power product. ECDL has the best power—delay product.

2.5 Conclusion

Differential logic can be faster than conventional static. The fastest static differ-
ential logic is the differential split-level logic (DSL). However, DSL consumes static power.
It also has problems with noise margin and number of input signals. In contrast, ECDL is
static. It consumes no static power. It is not as fast as DSL but gives better performance in
comparison with other differential logic families. It does not have practical problems with
number of input signals. In the next section, ECDL is studied in more detail.
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(d) CVSL CMOS

FIGURE 2.17 Full Adder Implemented with NORA and CvSL CMOS
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FIGURE 2.17  Full Adder Implemented with clock CVS CMOS
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#of | #of | Total
Nde-| Pde-| g carry propagation time { power dissipation
vices | vices (ns/bit) (mW at 10Mhz)
Static 15 15 30 6 0.35
Domino 16 4 20 7 0.52
NORA 11 13 24 7.5 0.37
CVSL 18 4 22 12 0.56
Clocked
CVSL 22 12 34 7 1.31
Sample
P 30 12 42 4 2.67
Set
Split ) 4 26 2 1.82
Level
Disable
Figure 2.18  Comparison of Different Full Adder Implemented with

Different Logic Structures
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Chapter 3
Basic Principles of Enable/Disable CMOS Differential Logic

3.1 Introduction,

There are several CMOS differential logic families discussed in the previous
chapter. In this chapter we will discuss the detailed circuit design of Enable/Disable CMOS
Differential Logic circuits(ECDL). We will explain the reason why ECDL implementaiton
of a boolean function is faster in comparison with other differential circuits implementation.
We will also discuss why its fall time and rise time does not depend on the number of transis-
tors stacked in series used to realized the boolean function.

3.2 Enable/Disable CMOS Differential Logic Operation Principle

ECDL is based on principles similar to the complementary set-reset logic
(CSRL) proposed by Mead and Wawrzynek [Mead 85]. General schematics for both the N—
core and P—core ECDL are depicted in Figure 3.1. Each ECDL gate has two main functional
blocks. They are the latch block and the logic tree block. The latch block consists of an en-
able/disable transistor, two preset devices and two inverters connected as a cross—couple
latch. The logic tree block consists of the dif ferential network tree logic. There are two opera-
tional states for the latch used in EDCL. One is the unpowered state and the other is the pow-
ered state. While the latch is un—powered, both output nodes are initialized to ground or Vdd
for N—core type and P—core type ECDL, respectively. For an N—core ECDL gate, the latch is
powered up (or turned on) by the trailing edge of the clock signal. As the clock signal goes
low, the enable/disable transistor, M1 (Figure 3.1) will turn on and supply current to the cross
coupled inverters. Since both outputs are preset to low by the clock signal, M2 and M3 will
also turn on. However, since one of the output nodes has a path connected to ground while the
other path is cutoff, the latch will be set to either (high, low) or (low high). The differential
network tree determines the way the latch will set. Instead of using only the differential net-
work tree to discharge / charge the output, the transistors in the latch are used to charge and
discharge. This is the main reason why ECDL can have more N—devices in series without
performance degradation. In an N—core type EDCL gate, the P—channel transistors of the
cross—coupled latch are used to charge up one of the output nodes. The N—transistors in the
latch are used to discharge the node in P—core type EDCL. The feedback action of the latch
also aids the charging and discharging once the latch decides which way it will be set.
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The feedback action also helps to speed up the operation of ECDL gates. Similarly, the P--
core ECDL gate uses an N—channel device to enable / disable the crossed coupled inverter
latch. However, the P—core ECDL uses two P—devices to preset the output nodes to high. The
sizing of the transistors in the cross—coupled inverter latch as well as the enable/disable tran-
sistor will affect the performance of the ECDL gate. We discuss this in more detail in the next
section.

3.3 Electrical Properties of Enable/Disable CMOS Differential Logic

In Figure 3.2, a simple N—core ECDL inverter is illustrated. We use this simple
ECDL inverter first to examine the details of the behavior of each device. In the following

discussion, we denote the voltage at a particularnode ias V; , the gate to source voltage of a
transistor Mi as V,,(Mi) , the drain to source current of a transistor Mias 7.{Mi) and the cur-

rent charging nodeias/; .

(node 2)

Vad
_— ¢ : | v {node 3)

M2 M3 .
Out (node 4) Out (node 5)

< —>
o >—|[M6 MZ”-( o

> [vs v Jj<m
V (node g) % (node7) V

Figure 3.2 A Simple ECDL inverter

Let us assume initially at time zero that the clock signal (f) is high (5 Volts). Transistor M1 is

in the cutoff region. There is no current path from Vdd to node 3. Transistors M6 and M7 are

both in the saturation region, bringing both outputs to ground (nodes 4 and 5 are at 0 volts).
Since node 3, node 4 and node 5 are at 0 volts, the gate to source voltages (Vgs) of devices M2
and M3 are both at 0 volts and are all in the cutoff region. Similarly, devices M4 and M3 are
alsoin the cutoff region, since their Vgs are also at 0 volts. Devices M8 and M9 are also in the
cutoff region, since both the inputs are low. At time T, the clock signal starts to drop. Let’s
assume it goes down to 4 volts. Device M1 has Vgs equal to minus one volt which s less than

the threshold voltage of a P—channel device.

Vo M1) = V,-Vdd = 4-5 = -1 3.1

Therefore M1 is in the saturated region. Its source drain current charges up node 3. Sometime
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later, voltage at node 3 goes up from zero to a voltage lar ger than the threshold voltage. This
causes the gate to source voltages of M2 and M3 to drop below the threshold voltage.

VM2) = Vo(M3) = Vs = Vs =0 - Vs = -V, (3.2)
As aresult both M2 and M3 are in the saturation region. However at the same time, the input
signal and its complement are being applied to M8 and M9, respectively. Let us assume that
the input is a logic 1. The voltage at node 6 is going up from zero to be greater than the thresh-
old voltage, while the voltage at node 7 remains at zero.

V. (M8) = Ve-GND = Vg and V(M9) = V,-GND = 0 (3.3)
We conclude that M8 is also in the saturation while device M9 remains in the cutoff region.
Since both M2 and M8 are on, the current which is used to charge up node 4 is the difference
of the drain to source current of these two devices minus the source—drain current of the de-
vice M6.

Iy, = [, (M2)-1,(M8)—1,(M6) 3.4
At the same time, M3 is turned on but transistor M9 is turned off. The current charging node 5

is equal to the total source to drain current of the device M3 minus the source—drain current of
M7.

Is = I (M3)-1,(M9)~ 1 (MT) = Is(M3) - L.{MT) (3.5)

This current is definitely larger than the current charging up the capacitance at node 4, since
M2 and M3 are of the same size and initially their gate—source voltages are the same and their
drain—source currents are the same. Moreover, M6 and M7 are of the same size and their ga-
te—source voltages are the same, which means their drain—source currents are the same also.
We obtain the following:

Al = L—Is = I(M8) > 0 (3.6)

This positive current difference will create a difference in voltage between node 4 and 5. By
the time the voltage at node 5 is greater than the threshold voltage, device M4 is also in the
saturation and is adding more path from node 4 to ground and making sure node 4 is holding
atzero volts. As the voltage at node 5 continues torise, M2 will go from the saturation region
to the linear region, then to the cutoff region, further enforcing the current difference be-
tween node 4 and node 5. At the same time, the clock has dropped from high to low making
the gate—source voltages of M6 and M7 zero. This puts M6 and M7 into the cutof f mode,
further increasing the total current charging node 4. It is because of this push—pull effect that
a gate in ECDL is faster than CVSL. Moreover, since the logic network is only used to create
adifference in current charging the output nodes, having several N—channel devices in series
does not affect the performance in a significant manner. Figure 3.3 illustrates the SPICE sim-
ulation of an ECDL inverter gate. Notice that the input switches at the same time as the clock
signal. There is no setup time for inputs. This fact is used to produce the self—timed circuitry
presented in chapter 4. Figure 3.4 illustrates the simulation of a 20 input NAND gate in
ECDL. There are 20 N—channel
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devices in series and the output result is still correct. We observe that as the number of de-
vices in series increases, the noise of the output also increases. This is because the difference
in the current initially used to charge up the output and its complement depends on the num-

ber of transistors in series. With noise and mismatching caused by fabrication, the practical
limit of the number of N—channels in series allowed would be around 10 to 15. Increasin gthe
size of the P-channel devices of the cross coupled inverter latch does not contribute to the

current difference. It merely increase the total current available to charge the output nodes. In
order to increase the total number of N—channel devices allowed in series, the size of the N—

channels used to build logic networks needs to be increased. However, with increase of their
size, the gate capacitances also increase which will degrade the overall performance. The
other factor which affects the performance of an ECDL gate is parasitic capacitance of the
output nodes. This capacitance is contributed mainly by the number of drains connected to
the output nodes. In the NAND gate example, the number of drain area of a MOSFET transis-

tor connected to the output nodes are independent of the number of inputs. In a NOR gate, the
number of drain of transistors connect to the output is linearly proportional to the number of
inputs. With a complex logic tree, the speed will be reduced compared to a simple inverter.

ECDL is static. There is no static path from power to ground, hence no static pow-

er consumption, This is different from the Differcntial Split-Level CMOS Logic (DSLCL)
which trades power consumption for speed gain. Figure 3.5 illustrates the current measured
at the power supply of an ECDL inverter. Since ECDL is fully static, there is no minimum
clocking frequency requirement. An N—core ECDL’s ouptut will remain unchanged as long
as the clock signal is low.
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3.4 Design Trade—offs

Speed, area, power consumption and noise margin are some of the more impor-
tant trade—off criteria in evaluating digital circuit designs. Let us examine an ECDL inverter
as illustrated in Figure 3.2. If we treat each transistor as a voltage controlled current source,
Figure 3.6 illustrates the large signal equivalent circuit of an ECDL inverter.

V., Voo

I =V, Vdd - V)

IS =ﬂVoun Vx_ Vm)

L=fVan Vi Vou)
Vou ; Vam
< T 1>
; I4 =F(Vam, Voul) Is ﬂVom V; ; 17 =f(V¢, Vm)

Iﬁ =ﬂV¢1 Vom‘)

IB =f(vim Vald) ]9 = (Vﬁ, VBiT)
Figure 3.6 ECDL Inverter Analysis

Before the clock makes a transition from high to low at t=0, the voltages at node ”x”, output
and its complement are all equal to zero. As the clock makes its transition from high to low,
the following equation defines the voltage at node “x”.

d(C.V)

i I 3.1

To simplify the analysis, we assume Cx is a lumped capacitive value instead of a function of
Vx. After integrating both sides of (3.7) we obtain:

V, = Cijlld: (3.8)

The first order current equations describing the behavior of a MOSFET is expressed as:
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V: =0

{cutoff)
v, = 2‘21 [Vam Vet e (saturated)  (3.9)
_B (Vu-V) linear)
o= £ | (V= Vy = Vo)V~ V2= (

Here the threshold voltage of the P—channel device is taken to be a positive value (absolute
value) incontrast to the usual definition[Wes 85]. From (3.9) we can solve the time needed to
charge node x” to the voltage necessary to turn on M2 and M3. This delay can be reduced
either by increasing the W/L value or by reducing the capacitance at node x”. When the volt-
age of node “x” is larger than the threshold voltage of the P—channel device, M2 and M3 are

in the saturation region. Output voltage is expressed as:

1
Vo = j Ldt (3.10)

At this point the transistors M2 and M3 are in the saturation also, so both output and its com-
plement have voltage as:

V. = =2 I (y—To—I)dt
Cou

Vm = Ei;;j([;—[-,—lg)dt (3-11)

Inidally, output and its complement are both low (0 volts). Devices M6 and M7 are in the
saturation. In order to get positive current to charge up the capacitance, M6 and M7 must be
smaller than M2 and M3. Moreover the mobility difference in N—-device and P—device, M6
and M7 should be less than half the size of M2 and M3. However, M6 and M7 are only in the
saturation for a short period of time. As the clock input continues to drop and output contin-
ues to rise, M6 and M7 quickly goes from the saturation, to the linear, then, to the cutoff re-
gion. As both output and its complement rise to greater voltage than the threshold voltage of
N—devices, either M8 or M9 will be on depending on the input value. The rise time of output
or its complement again depends on the size of M2 and M3 as well as on the size of M6 and

M7. Assume Vin is high, therefore f; > 7, = 0. The voltage at output and its complement can
be expressed by the following equations:

Vouw = 2gﬂt I(Vm— Vx - pr)?._ (V¢ - Vllm)2 - (Vin - Vthn)zdt
_ B 2y _yoy
Vm‘ - 2Cm I(Voul - Vx - Vu‘p) (V¢ Vg,,,) dt (3. 1 2)

If the current J, is too small in comparison with 1,, then the inverter will give wrong results,
since the mis—match caused by the cross—coupled transistors may be more than the differ-
ence caused by the current discharging. However, if the current 7, is too large, it fights with
I, and makes the rise time very long.

Figure 3.7 summarizes the timing of this ECDL inverter. There are three areas
that contribute to the delay. From time 0 to ¢, , the delay is the fall time of the clock signal

¥

from Vdd to Vdd—Vthp. The delay time from+, to 1, is caused by the charging of node "x” to
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Vihp. Time from &, to 4 is contributed by charging up both outputs to Vihn. Finally, the time
from , to 4 is the rise time of the output. From the analysis discussed in this section, the
P—channel devices should be large to gain speed. The only devices needin g careful balancing
are the input N—channel devices. Their size also depends on the number of transistors in se-
ries.

T
Vout/Vout
5 —
45—t ———==——=—===
I
0 i | T
|

Figure 3.7 Timing diagram
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3.5 Conclusion

ECDL has the same main advantage as static CVSL, which is that there is no stat-
ic power consumption. It is faster and has no pratical limitation in terms of number of N—
channel devices in series allowed in the network tree. It has several advantages over Sample
Set Differential Logic (SSDL). First, in SSDL, during the sample phase there exists a path
from power to ground. Because of this path, SSDL dissipates power half of the time. Second,
SSDL needs two extra inverters to convert the outputs to right polarity before they can be
fetched into the next gate. These two inverters increase the area needed and add delays to the
swtiching time. Third, SSDL’s output level is not fully to the power supply level. This de-
creases noise margin. ECDL has none of these disadvantages.
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Chapter 4

Self-Timed Networks for Iterative Functions

4.1 Introduction

An iterative network is a circuit network constructed by interconnecting a set of
identical modules or submodules in a one-dimensional regular fashion[Erc 85). This con-
cept was introduced by Keister et al. [Kei 51]. The best known example of an iterative net-
work is a binary carry-ripple adder. This is a unidirectional iterative network. Iterative net-
works are widely used in implementing some logic functions which have a lar ge number of
inputs. Implementing these functions with a single logic network is usually not cost effec-
tive. However, many times these functions can be partitioned and implemented with iterative
networks. The advantages of this implementation approach over conventional combination
circuit realizations of the same functions are [Ung 771:

(1) Limited number of elements to design: instead of designing an n—input network, a
much smaller network is designed.

(2) Simple connections: only nearest neighbor modules are connected.
(3) Regular organization.

(4) The total number of modules grows linearly with the number of inputs instead of near-
ly exponentially.

(5) Testing, fault detection and repair are more regular,

All these advantages contribute to the suitability for very large scale integration
implementation. The main disadvantage of using iterative networks to implement logic
functions is its delay, because signals must propagate through all stages of the network se-
quentially. However, there are general methods which can be used to speed up the implemen-
tation of iterative networks.

In order toreduce the delay of an iterative network, we may reduce the number of
cells. The most straight forward way to reduce the number of cells is by combining two or
more cells into one complex cell. This is the merged cell method proposed by Unger [Ung
77]). Take for example, the binary ripple—carry adder. By combining two full adders into one
2-bit adder, we are effectively reducing the delay by half if the new module has the same gate
delay as the original gate.

Another method to reduce the delay problem of iterative networks is to transform
alinear array into a tree array. [Ung 77] also studied this problem and outlined the conditions
under which an iterative network can be transformed into a tree network.

4.2 ECDL Iterative Networks

As mentioned in Chapter 3, there are two states for each of the general ECDL
circuits — the disabled state and the enabled state. The rising or the falling of the clock signal
enables or disables the cell. Figure 4.1(a) illustrates a straight forward way to generate a
Complete (Done) signal for its outputs. During the disable stage, both output and its comple-
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ment are at logic 0. The output of Done signal is at logic 1. As the ECDL gate is enabled and
one of the output nodes is charged to logic 1, the Done signal will become 0. However, this is
not a very efficient circuit.

vdd
mig Out
M11 Out
Done1
vdd .
Out M8 Mg Out
Done )—(1 M1
M2 M3
60Ut * * ® ® 0%‘”
M4 M5

Done g >_|I:M6 MZI _< Done g

N—core K
V >\ Differential logic tree V
I . I

v

Figure 4.1(a) N—-Core ECDL Gate with the Completion Circuit

Figure 4.1(b) shows a modified circuit of Figure 4.1(a) where a local clock signal can be gen-
erated with the reduction of one transistor per cell. No matter which method is used to gener-
ate the local Done signal, an iterative array network can be built by organizing several identi-
cal ECDL cells in an array fashion. An initial enabling signal is fed into one end of the array.
As the cell finishes its evaluation, a completion signal is generated and sent to the neighbor-
ing cells. This completion signal acts as the initiation signal for the following cells. A "Domi-
no” effect causes this completion signal to propagate through all the cells to the other end. All
outputs are stable after the final completion signal is generated.
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Figure 4.1(b) Modified N-Core ECDL Gate

A one—dimensional iterative network consists of linear array of several identical
modules [Erc 85]. Each module is connected only to its nearest neighbors. A given logic
function F of n variables can be implemented with an iterative networks if a new logic func-
tion G may be derived which satisfies the following condition:

F(Xan—l,Xn—Zv - Xl.) = G(xm G(Xn—h G(Xn-—lo G( ae oy G(Xh CO))))
whereX,, X,i, Xp2, .. Xi, Cy are either scalars or vectors
“4.1)

In comparison, logic function G is a much simpler function to realize than E Moreover, inter-
mediate results, G(xi, o), G(x3, G(x, o), ... are also available as outputs. We may design the
logic function G with an ECDL cell. Chu and Pulfrey [Chu 88] proposed two methods for
realizing differential network trees. With these two methods, each individual cell with the
minimal transistor count can be implemented either manually or automatically.

Given that there is a method to implement individual self-timed modules, a hier-
archical system is readily available. The final completion signal of a particular function may
serve as the completion signal for this entire functional block. This block completion signal
may then be used to initiate operation in another functional block.
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4.3 Examples of ECDL Iterative Networks

In some digital applications, it is desirable to use cyclic codes torepresent data. A
particular cyclic code, Gray code, is quite important. Conversions from Gray code to binary
code are needed. This conversion can be implemented by iterative arrays with cells charac-
terized by simple equations. We obtain each individual bit of the binary code as Gray bits by
the following expressions:

by = &
b = b @ g 0<isn-1

bo = G(go, Glg, . G(gr2 Gga1, 2N . )

where G is@ (4.2)

Besides the most significant bit, each binary bit depends on the previously coded binary bit
and the current Gray bit. With this characteristic, an iterative array network can be specified
to implement this conversion. Figure 4.2(a) illustrates the connections between cells.

G G2 G,
Done one Done, Done |
¢
Gn XOR
XOR XOR sss 1
Bn B n1 B n2 Bo

Figure 4.2 (a) Connection of ECDL Cells

Figure 4.2(b) shows the unique cell used for conversion. Other code conversion algorithms
can also be implemented with iterative arrays. An example is given by Nicoud [Nic 71] who
presented a general algorithm for radix conversion using iterative arrays. To speed up the
conversion, we can group 4-bits together and use a single function to realize the function of a
k-bit converter. Instead of having to wait n stages for the final results to propagate, the total
delay is n/k. The next example will illustrate this speed up. This is the merge cell speedup
method mentioned by Unger [Unger 77].
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Figure 4.2 (b) XOR ECDL Gate

Magnitude comparators are useful in many subsystems. In Figure 4.3(a) we illustrate a single

cell which compares two one—bit numbers and determines if one is greater than the other.

Again this cell can be chained in an iterative array to form an n-bit comparator. Figure 4.3(b)
shows how they are connected. For a faster comparison we can group several bits together In
Figure 4.4, we illustrate a 4-bit comparator done with a single ECDL cell. It is clear that we
are trading overall speed with single cell complexity. An a-bit comparator implemented us-

ing k-bit cell can perform a comparison in n/k delays. Since the single stage delays changes

with the complexity of the single cell, an optimal k value with a given n can be calculated.
The major contribution to the increase of a single stage delay comes from the output node
capacitance. There are 6 transistors drain/source connected to the output node of the ECDL

gate shown in Figure 4.4. Instead, there are only 3 transistors have their drain/source con-
nected to the output node. Through simulation we obtained that an eight bit comparator im-
plemented using 4-bit cells gives a speedup of approximately 2.5 instead of 4. Another inter-
esting observation is that because of the sharing of terms is more possible with complex func-

tions, the total number of transistors used in implementing ECDL comparators with cells de-

picted in Figure 4.4 is less than the implementation using cells depicted in Figure 4.3. As-
sume we use k—bit comparator cells to implement an n—bit comparator, the total transistors
counts is:

%(6k+ 12) 43)
The total number of transisitors used in the single-bit style of implementation is :
18n. (4.4
Another way to speed up the one—dimensional network is to convert itinto a tree

network. For example, an n—bit parity generator can be implemented in ECDL circuit using
tree—network connection. The basic cell of an XOR gate is similar to Figure 4.2 (b) with the
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exception of having two P—channel enabling transistors. Figure 4.5 illustrate the between
cell connection with self—timed signals.

Using self-timed style of design to implement iterative array also gives speed
advantage. The delay of a conventional iterative network is:

T = (%—I)AC + max(AC,AZ) 4.5)

where DC is the delay from the inputs of the cell to its internal outputs, and DZ is
the delay of the cell to external outputs. The network delay is calculated as the worst case
delay. The self-timed implementation of the same iterative network exhibits the actual
delay:

L)
Ty = Zf AC + max(ACx , , AZx ) (*3)

where AC; and AZ  are the delay from the inputs of the ith cell to its internal
outputs and the delay from the ith cell to external outputs, respectively. Values of

AC; and AZ; vary depending on the inputs. In the later chapters we give examples of de-
lays and delay improvements due to self-timed modules.
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(a) ECDL Implementation of Single—Bit Comparator

B A
G, 4— -‘——-Gn—1
Greater-
than
‘_
Done Done__,

B A
'

B A
' 4

Gog—

«—

Greater
than

3
‘_

GreaterJd— 0
than

Done,

(b) Connection Between Cells

Done,

Done,

Figure 4.3 N-bit Magnitude Comparator in ECDL using 1-bit Comparators
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4.4 Array Network in ECDL

ECDL circuits can also be used to implement two—dimensional networks, called
array networks. The only modification necessary is on the enable/disable portion of the cell.
Figure 4.6 (a) and (b) illustrates the two possible logic functions of the control signals. When
the transistors are in series, all signals must be present to enable the cell logic. This gives the
AND function of several events. When the enable/disable transistors are in parallel, any one
of the incoming control signals may enable the cell. This provides the OR function of the
event control.

Vvdd

Doneg )—4 M1
Doneg, )—4 M1

[ ]
®
Doneon >—(1|El1

M2 M3

M4 M5
Done0>_":|v|s Mﬂl—( Done g

N-core K
V ) Differential logic tree V
I ‘ |

v

Figure 4.6 (2) AND function of events
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Figure 4.6 (b) OR function of events

For example, if an array network uses outputs from three of its neighboring cells’ outputs as
its input signals. The “done” signals from these three signals should be ANDed by using the
setup as illustrated in Figure 4.6(a). Figure 4.7 shows this example graphically. With these
two implementations of event functions, we can also implement other networks such as tree
networks and lookahead networks.

In Chapters 6 and 7 we use self-timed array networks to implement array multi-
pliers and dividers.
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Figure 4.7 An Example of ECDL Array Network

52



4.5 Conclusions

Using iterative networks to implement logic functions has many advantages.

First, it is simple. Only a few cells need to be designed. Second, it is regular. This reduces the
interconnection and increases density. Third, they are easily tested. In this chapter we dis-
cussed the use of ECDL circuits to implement iterative one—dimension and two—dimension

networks. This methodology is attractive in providing the overall speed which is lacking in
the conventional implementation of iterative networks and array networks. Simple examples

have been given to illustrate the methodology. In Chapter 6 and Chapter 7, we will give more
examples using this methodology and analyse them more detailly . In the following chapter,
we discuss how ECDL can be used to realize general computation sequencing.
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Chapter 5

The Self-Timed Synchronization in ECDL

5.1 Introduction

Traditionally, the approach to designing digital computers has been as synchro-
nous systems based on a global clock. Some of the important factors which influenced the
methodology of digital system design to take this course were:

(1) Major components of a computer system, like the memory and the arithmetic logic unit
were built synchronously.

(2) With global synchronization, the circuit transients do not affect the proper operation of
the whole system.

(3) The step—by-step nature of the synchronous systems made it easy to design and trace the
sequence of actions in the systems.

(4) The synchronous systems were favored because they required fewer gates which meant a
lower cost if the systems were built from gates.

With the advancements in semiconductor technology and the increase in the sys-
tem size and sophistication of computers most of the factors that influence the choice of syn-
chronous approach have gradually been changed. Moreover, the speed of operation for a dig-
ital system on a VLSI chip has increased to a point where the signal propagation delays con-
tributed by wires in a system have grown to the same order of magnitude of delays consumed
by switching elements. In fact, these wiring propagation delays cause the same global clock
pulse to represent different time instances on two distinct places of a chip. This clock skew-
ing problem causes the synchronous approach of system design to become problematic.

At the same time the theory and methodology of asynchronous system design has
been maturing. There are several reasons this approach may prove useful in designing high
performance special purpose computing systems. First, asynchronous designs are algorith-
mic. It is easier to convert an algorithm to a wiring list for asynchronous modules than trans-
lating the algorithm into step by step procedures. Second, speed independent asynchronous
modules allow the system to perform correctly. There is no need to adjust the pulse width and
clock period to fit all modules timing requirements. It will avoid the clock skewing problem
and allow the system to perform correctly. Third, speed is taken to be as fast as the problem or
algorithm will allow. Fourth, composition of asynchronous module into asynchronous sys-
tems is readily available. Building systems hierarchically is inherent. Fifth, building each
individual asynchronous modules on a single chip enable the testing and verification of each
chip to be performed independently. With each module or chip verified to be functional cor-
rect, they can be assembled together again on a single chip if area permits with no extra tim-
ing constraint to satisfy. This ability to verify module independently is becoming more and
more desirable since testing compass lar ger and larger portions of the development cycle
with each passing day. Last, as Sutherland [Suth 89] points out, incremental performance
gains are easier to come by.

However asynchronous systems have disadvantages also. Firstly, since some
part of a system will continue to remain synchronous, interfacing between asynchronous
parts and synchronous parts are both costly and slow. Secondly, asynchronous designs are
very difficult to test. Since there is no required arrival time for data, it is hard to distinguish
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faults from very slow arriving results. Lastly, the overhead circuitry caused by signaling
convention is more than synchronous systems.

5.2 Self-Timed Signaling

The self-timed scheme is a design discipline where the sequencing of events is
controlled by the internal delays of system elements rather than by an external clock. Picto-
rially, a synchronous systems works like a scheduled train line. At every designated interval,
there will be a train taking off from the station whether there is a full load of passenger or none
at all. A particular passenger has to synchronize her travel itinerary in the schedule of the
train. However, an asynchronous system is like traveling with your own car, There is no fear
of missing a scheduled departure time. There is no waiting in a depot for a train to arrive. You
may visit a new place whenever you have finished visiting an old location. Itis a sequence of
events and we are interested only in the ordering them.

To accomplish the scheduling of events, a protocol discipline has to be enforced.
This protocol strategy governs the proper relationship between events. In digital systems,
this protocol is implemented with signaling. The most elementary signaling strategy which
can be used to compose self-timed signaling conventions is a transition instead of a pulse.
Seitz [Mead 80] has provided an excellent explanation on the signal convention of self—
timed systems, which we summarize briefly here. The most energy efficient and least time
consuming signaling scheme is called 2—cycle, or non—return—to—zero (NRZ) signaling. Fig-
ure 5.1 illustrates the working of this signaling scheme. Stabilized input signals create a “'re-
quest” transition. After a certain time, depending on the delay of the element, output data
become stable and an "acknowledge” transition is initiated. This transition will de—stabilize
input data. When input data becomes stabilized again, a transition is made to the “request”
signal. This transition de—stabilizes the output data. After a delay, output data become stable
again which causes the "acknowledge” signal to have a transition. This transition de—stabi-
lizes the input data completing the signaling scheme. We observe that there are two transi-
tions made in one data transfer. It takes two transfers to go back to the original state. An alter-
native to 2—cycle signaling is named Muller signaling . It is so named because it was first
proposed by Muller [Mul 59]. Tt is also named 4—cycle or return—to—zero signaling because
there are total of four transitions made to the “request” and “acknowledge” signal in one
transfer. Figure 5.2 illustrates the working of 4—cycle signaling. Control circuitry for transi-
tion signalings is necessary to perform logical combination of events besides the self—timed
elements. Many works have been performed on the design of self-timed elements and their
corresponding signaling control circuits. Recently, implementation of these elements and
control circuits in CMOS were reported in [Suth 89] [Jacobs 88] and [Meng 89]. In the fol-
lowing section we present how ECDL can be used to implement self-timed elements. We
also show that some of the event control circuits can be included in the same ECDL cell for
an asynchronous system.
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5.3 Using ECDL to Implement Self-Time Elements and Event Controls

Using ECDL to implement self-timed elements and control circuits has one ma-
jor difference in comparison with works that have been reported. Previously, the control cir-
cuits and self-timed elements were two separate modules. Similar to synchronous system,
the design of asynchronous system involves two separate paths— the control path and the data
path. In an asynchronous system, control paths for transition signals requires circuits to form
various combination of events. The Muller—C element is used for ANDing events. XOR gate
isused for ORing events. In [Suth 89], detailed implementation of these logic combination of
events have been reported. However, in ECDL, the controlling circuits are part of the self—
timed elements. This is accomplished because of the unique property of ECDL’s having two
states —the enabled and disabled states. The signals which controls the ECDL states can also
be used as the event controlling signals. As mentioned in Chapter 4 Section 5, ANDing and
ORing of events can be achieved either by connecting enabling transistors of ECDL in series
or in parallel. Figure 5.3 illustrates the controlling signals of two ECDL modules connected
in series. As depicted, there are two controlling signals with each module, the incoming and
the outgoing control signals, besides the data bus. We named the incoming control signal

“Start; " and the outgoing signal “Done; ” of the module i. These two signals are the Done;

and Dore., signals asillustrated in Figure 4.1. Start; is used to enable the ECDL module and
Done; is used to tell the next module that the output is available now. We observe that Start;,,

isequivalent to Done; . Itisdenoted as Swrr,, => Done; . Therefore, any data flow graph is
adirected graph with nodes as the computation modules and directed arcs as the data connec-
tions. With every datum arc we can add a control arc. Which means any data flow graph can
be implemented using ECDL. However, we have not explained how cycles in a digraph can
be resolved using this signaling methodology.
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Let us concentrate on acyclic graphs first. In the next theorem we show that any acyclic di-
graph can be modified and be implemented using ECDL.

Theorem 1

Given any acyclic digraph G = (VE), where V={ v, v, v, .. v, } are the vertices of G
andE={ e; }and ijisadirected arc from node i tonode jand bothije (1,2,3,..n},
there is an implementation of this graph using ECDL.

Proof:

In Figure 5.3 we see that if G is a line of any length, we can implement G. If G is a tree or any
general acyclicdigraph, we must prove that ECDL can implement nodes with multiple input-

ting arcs and outputting arcs. Let us look at multiple input arcs first. If a node with multiple
input arcs, this means that this node will not start its “computation” until all inputs are ready.

This is clearly the ANDing function. In chapter 4 section 5 we have already shown that AND-

ing function of events can be implemented with ECDL. Now let us look at nodes with multi-

ple output arcs. There are two situation during which this may happen. First, there are multi-
ple output data signals and all of them go to more than one node. This means that there are
multiple ECDL modules in the node and each module is implemented with an ECDL, where
they all have the same incoming enable signals. All the outputting enable signals are ORed

together to generate the “Done”signal of this node. Second, there are multiple output data
lines and part of them go to one or more nodes while the other part may also go to one of more
nodes. This situation can be replaced with one or more duplicated nodes. These duplicated
nodes have the same “Start” signals as the original node. However these output are the part of
the original output, that results in a new digraph which we have already shown that can be

implemented by ECDL.

Q.E.D.

So far we have not discussed how recurrence or cycles can be implemented with ECDL. In
order to implement cycles in a data flow graph, a new control signal must be introduced. This
signal is named “Acknowledge” or “Ack” for short. This signal is an output controlling sig-
nal. It is used to tell the modules which are precedents of the current module that its outputs
have been determined. Therefore there is no need for the proceeding modules to hold their
outputs valid anymore for the current module. This signal is implemented with an inverter.
The input of the inverter is the “Done” signal. The output of the inverter is the “Ack”’signal.
ECDL needs to be modified to accommodate this new signal “Ack”. Figure 5.4 shows the
modified ECDL gate with "Ack” signal added. We observed that there are two transitionsina
signal. In the two—cycle signaling methodology, both transitions are “useful” in controlling
events. In the four-cycle signaling methodology, any one of the transition is“useful”.
ECDL’s signaling methodology is also an modified 4—cycle signaling methodology. Only
one of the transition (edge) of the signal is “useful”in controlling events. However there ex-
ists a side effect in ECDL’ signaling methodology. While only one transition is used to con-
trol the events the other transition will affect the validity of the data. This is the main reason
for adding the “Acknowledge” signal. With the arrival of the “Ack” signal, the ECDL mod-
ule will enter into the “disabled” state where its outputs are invalid. Figure 5.5 illustrates the
timing diagram of four modules connected in pipelined fashion. If we look at the digraph it
represents, we conclude that the transition of signals is really depicting the firing of tokens.
Figure 5.6 (a) illustrates the initial marking of the four module pipeline. Figure 5.6 (b) illus-
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trates the state where a transition has been made— or a “firing” has occurred. Figure 5.6 (c)
illustrates the state where the second transition has been made. We observe that after the first
transition node 1 is “not” ready to “fire” again even if a new token would arrive at its input arc
because there is a token still at the output arc of the node.
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Figure 5.4 Modified N-Core ECDL Gate with Ack Signal
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Figure 5.5 ECDL's 4—cycle Signaling of a 4 node pipeline with Ack
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However, after the second transition, the first node is ready to fire again whenever a new
token arrives at its input arc, Therefore there are in fact “four” states for each node in a data
flow graph. These four states are depicted in Figure 5.7 (a) to (d). Only the state as in Figure
5.7 (b) isready to “fire”. Infact, the “Ack” signal of an ECDL module informs the previous
node that the token does not exists on its outputting arc any more. It is free to “fire” if there
should come another token which, in ECDL, means that the enabling signal has returned to

the “high” state and is ready for the next “useful” transition. This leads to the following theo-
rem.

OO
O-O-OC
OO0

{a) Initial State (b) After One Transition (c) After Two Firings

Figure 5.6 Data Flow Graphs of a Four Nodes Pipeline with Tokens
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Theorem 2:

Givenanydigraph G=(V.E),where V={ v, v, v, .. v, } are the verticesof GandE =

{ & }and ijisadirected arc fromnodeitonodejandbothije {7,2,3,...n), thereisan
implementation of this graph using ECDL.

Proof:

This proof is similar to the proof of theorem 1. In Figure 5.5 we see that a pipeline of any
length can be implemented. If there is a node with multiple inputting arcs, then with each
inputting arc we add a back arc representing the “Ack” signal. Whenever the current multi-
ple inputting arc node has finished its computing, all proceeding nodes do not have to hold its
output anymore. Now let us look at node with multiple output arcs. There are two situations
during which this may happen. First, there are multiple output data signals and all of them go
to more than one nodes. With each fanout of output there will be an incoming “Ack” signal.
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This node will have to hold its output until all its successors have completed its computation.
Therefore we need an AND gate to make SUre the last arrival of “Ack’ triggers the “disab-
ling” effect. Second, there are multiple output data lines and parts of them go to one or more
nodes which the other parts may also gotoone of more nodes. This situation can be replaced
with one or more duplicated nodes. These duplicated nodes will have its SUCCESSOTS to gener-
ate a back arc representing the “Ack” of nodes connected to its outputting arc. This again

results in a new digraph which we have already shown can be implemented by ECDL.

Q.E.D.

5.4 Using ECDL to Implement Bundled Data Convention

ECDL can also be used with the two-phase bundle data convention proposed by
Sutherland [Suth 89]. In fact, by using ECDL to implement the logic used by the micropipe-
line with processing, the delay element can be eliminated. Instead, an additional XNOR gate
and an edge trigger flip/flop is used to warrant the requirement that the control signal must
arrive after the data processing is completed. Figure 5.8 illustrates the design of a stage of a
micropipeline with processing using ECDL. The registers used in Figure 5.8 is the same as
ones used in {Suth 891 which have two control ports (C and P), Cd and Pd are "delayed signals
of C and P caused by the inputloads of the registers. Figure 5.9 shows the timing diagram for
nodes (including internal nodes u, w, y, and z) denoted in Figure 5.8. Since the ECDL logic
provides a completion signal, there is no need to calibrate the delay element to ensure the
timing requirement is satisfied. This elimination of delay elements from the original micro-
pipeline will help to ease the capability of auto-synthesis of self-timed designs using this
bundled—data convention.
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Figure 5.8 2-phase Bundled Data using ECDL
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Figure 5.9 Timing Diagram for the Circuit in Fig. 5.8

5.5 Conclusion

ECDL provides a way to implement a data flow graph. Each node of the data flow
graph can be a gate, an ALU or even a full processor Control structures which previously
required additional hardware circuits can now be implemented within the self-timed ele-
ments using ECDL.. In the next two chapter, several arithmetic modules are implemented us-
ing ECDL. These modules can serve as a node of a dataflow graph as discussed in this chap-
ter.



Chapter 6

Design and Implementation of Two—Operand Adders

6.1 Introduction

Many arithmetic algorithms base their operation on adders. As a result, perform-
ance of a processor depends heavily on the speed of adders. There are various way to imple-
ment adders in a particular technology. There are as many algorithms to achieve two—oper-
and addition. These algorithms, implemented with the same technology and logic family,
give different performance results and cost. Traditional evaluation methodology uses a mod-
el based on a gate level methodology independent of the technology used [Skl 60], for which
gate count and delay are key factors. With the advancement in technology and the innovation
in logic methods, this model is no longer sufficient to reflect the true measure of merits asso-
ciated with each addition algorithm. Guyot et al. [Guy 87] showed how to build efficient car-
ry--skip adders in VLSI context. Wei et al. [Wei 85] presented a systematic approach in con-
structing a fast parallel adder, again in the context of VLSI technology. Both works based
their designs on the conventional CMOS logic family.

In this chapter we will utilize the proposed CMOS logic methodology - ECDL to
implement several two—operand addition algorithms on silicon. These adders have the self—
timed characteristic, discussed in the previous chapter where a completion signal is gener-
ated at the completion of the addition. An analytical modeling method is formulated to pre-
dict the performance and cost of each algorithms implemented in ECDL. This modeling
strategy 1s comparable to Chan and Schlag’s work [Cha 89] where a RC timing model is used
to determine optimal block sizes for carry paths. Here a current (or effective impedance) and
capacitance is used to predict the performance of adders in ECDL logic. This evaluation
method provides feedback to designers in using ECDL to realize different algorithms into
logic. Actual measurements of the implementation are used to compare the model and
SPICE simulation results.

6.2 Modeling Methodology

6.2.1 Delay Model

In [Cha 89] an analytical method was used to evaluate dynamic CMOS Manches-
ter adders with variable carry--skip length. The evaluation is based on the RC timing model.
In this section a current—capacitance model is used to evaluate different adders implemented
in ECDL. The model is based on the equations:

90 _
&t

From the above equations we can estimate the time required to charge up a capacitor to a
voltage V to be:
cv

At ==

and cv=0
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In the following section we will explain in more detail the model used in the chapter. In chap-
ter 3 we discussed the basic operation principles of the ECDL. In Figure 3.7, we observe that
in a self-timed ECDL gate there are three major capacitance loads. One of the loads contrib-
utes the delay of the control signal, the other two loads are associated with the output and its

complement. The intrinsic delay (without external loading) of an ECDL gate is the sum of
three delays: T, —the time needed to switch the enabling transistor, T, —the time needed to
create a difference between the output and its complement, and 7, — the rise time needed to
bring one of the output to logic 1. Assuming that the current charging the capacitive loads is
linear and a linear function of the effective size, the the total delay can be approximated by:

T=T,+T2+T3=(2x+2yz+8xy)%=(x+xyz+4xy)'r

where x=number of P-—devices in series for enabling
¥ = number of nodes at output contributed by the N —network iree
z = number of N —devices in series in the N - network tree
T = intrinsic switching time of a min. sized N - device (6.1)

In section 4 of this chapter, the result of measurements is compared with this model.

6.2.2 Area model

Instead of counting the number of 2—input gates, the total number of transistors
required to implement a ECDL cell plus the wiring equivalent number is used as the measure-
ment for area. This equivalent wiring number is determined by the number of non—local sig-
nals needed for a particular cell. The summation of all non—local signals gives the equivalent
wiring number.

6.3 ECDL Adders

In this section we discuss design, implementation and relative performance of
several n—bit adders — all realized with the proposed ECDL self—timed circuit family. The
adders include a carry—ripple adder (as a reference design), a carry—completion sensing ad-
der[Gil 55], a fixed group carry—skip adder[Leh 611, and a carry—lookahead adder[Wei 56].
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6.3.1 Carry-Ripple Adder (CRA)

One bit full adder is implemented with ECDL as shown in Figure 6.1. A full adder
has three data inputs (A, B, C) and two data outputs — (S, C}. In addition, there are two self—
timing control signals: one input control and one output control signal, which are used tocon-
trol the propagation of results. The logic equation of a full adder used as the ith bit of a ripple
adder can be expressed as:

S (A,-B,-+XE)C~_1 + AB+ABYC,,
Ci = AB; + AB:+AB)Cy, (6.2)

In ECDL both the function and its complement are needed since ECDL, like other differen-
tial circuits, is a double—ended logic. The above logic equation is chosen to maximize the
sharing of terms. The complements of the two outputs are expressed as:

5. = (AB+AB)YC., + (ABi+AB)Ci
Ci = AB: + (AB.AB)T., (6.3)
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(@) The Carry Cell

Figure 6.1 The ECDL Implementation of a Full Adder
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(b) The Sum Cell

Figure 6.1 The ECDL Implementation of a Full Adder

Using expressions (6.2) and (6.3), partial terms are shared when implemented with the differ-
ential network tree. In [Chu 86], two methods are presented for realizing optimal differential
network tree of a particular logic function. Because of this optimization and sharing of terms,
a function often uses comparable number of devices when implemented with ECDL in com-
parison with the same function implemented with conventional static CMOS logic. After
minimization and sharing of terms, our ECDL implementation of a full-adder uses 35 de-
vices including the circuit overhead for self-timed control. However only 7 of the 35 are P-
channel devices, which are usually twice the size of an n—channel device. In comparison, the
conventional CMOS implementation has 15 of the total 30 transistors being p—hannel de-
vices. The ECDL CRA adder has been implemented with MOSIS’ 3 micron CMOS process
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[Tom 88] [Lu 90]. Please refer back to Figure 2.18 which tabulates the comparison of various
implementation of carry-ripple adders in terms of total number of devices, average per bit
delay and dynamic power dissipation. For each logic approach, an 8-bit carry—ripple adder is
implemented and layouted. Figure 6.2 gives the layout of an 8-bit ECDL CRA. This layoutis
extracted and simulated using SPICE with level 2 parameters from a typical MOSIS’ 3mm
process. The delay is obtained from the addition of the input vectors (11111111) and
(00000000) having first bit carry input equal to a step function at time zero. The dynamic
power dissipation was obtained by SPICE as proposed by Kang [Kang 86]. By using the
model mentioned in the previous section, the total delay of an n—bit CRA is:

izl
where Atl; is the actual dealy of stage i
and Arl = max(Arl) = (1+7 2n- = 15¢ (6.4)
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Figure 6.2 Layout of an 8-bit ECDL CRA
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6.3.2 Carry—-Completion-Sensing Adder (CCA)

Speeding up the carry chain propagation time in an adder has been a central prob-
lem in the design of high—speed arithmetic units. In the carry—ripple adder discussed above
the carry propagation time is linearly proportional to the number of bits of the operands. Al-
though the design is simple, the speed is unacceptable for addition of long operands. Howev-
er, the addition time, on the average, is proportional to the length of the longest carry propa-
gation chain if the adder is asynchronous. In 1946, Burks, Goldstine and von Neumann [Bur
46] showed in a classic analysis that if two binary numbers to be added are evenly distributed
in its range, an upper bound of the expected longest carry chain is logy(n) for an n-bit adder .
Reitwiesner [Rei 60] derived an algorithm to determine the longest zero or non—zero carry
chain length. Briley [Bri 73] further tightened the bound suggested in [Bur 46]. All three
works assume the operands are evenly distributed in the range. The implementation of this
adder in ECDL is basically the same as the simple ripple adder except that the completion
logic is modified so that it will exploit a smaller average delay time. This modification allows
the Done signal to be generated whenever the two inputs are both zero or both one. An addi-
tional logic block is required to detect the presence of completion signals from all stages.
This is realized with an n—input NAND gate. The inputs of this NAND are the completion
signals of each bit without the inverters. Figure 6.2 illustrates the carry part of the ECDL car-
ry—completion sensing adder. Notice that there are maximum of three P—channel devices in
series instead of one asin a ripple adder carry cell. The sum cell for carry—completion sensing
adder is the same as in the ripple adder. The ANDing unit used as the completion sensor can
be implemented with conventional static CMOS or with an extra level of ECDL logic. If n
becomes large so that an n—input NAND is unrealizable with a single gate, a tree of NAND
gates can be used to realize the ANDing unit. As a result, the final “done” signal remains high
until all the carries have been enabled. In effect the final "done” signal corresponds to the
slowest individual “done” signal. The total number of transistors per bit in a carry—comple-
tion sensing adder is 41 of which 13 are p—channels, assuming the static CMOS NAND is
used. Although on average the total delay is (log.n) , the worst case delay for an n-bit carry—
completion sensing adder is still proportional to the total carry chain length. In a fixed—lock
system this adder does not provide any advantage since we still need the clock period to ac-
commodate the longest delay. However in a self—timed system, there is no need to wait for
the longest delay and, on average, the system will run faster. Assuming that each stage has an
actual delay of A2, and the completioncircuithasadelayof 7., ,andletAr2 2 max(Ar2) ,the
worst case delay of this carry—completion sensing adder is:

Teea(total) = 2&2; + T.. < nA2 + T, (6.5)

i=l

while the average delay is:

legzn
Tecalaverage) = zAQi + T, < (logam)Ar2 + T,

i=1

(6.6)
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Done,

Figure 6.3 The ECDL Design of the Carry Cell for a
Carry—-Completion—Sensing Adder

If all transistors are of the same size, then the current in the carry—completion sensing adder
used to charge and discharge is smaller than the current of a carry—ripple adder. With the
same loading capacitance value we can expect a longer delay per stage for the carry—comple-
tion sensing adder than D¢1. From the delay model we expect the per—stage delay of the car-
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ry-ripple adder to be:

That is, in the worst case this adder is expected to require about twice the time of the carry—
ripple adder. However, on the average this adder will be faster than carry—ripple adder when
nis larger than 8. A layout of an 8-bit carry—completion sensing adder in MOSIS’ SCMOS
rule has area of 433 lambda by 485 lambda. It is shown in Figure 6.3. This is an 18% increase
in the area compared with the ECDL carry-ripple adder. It consumes almost the same dy-
namic power as the ECDL CRA.
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Figure 6.4 Layout of an 8-bit ECDL CCA
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6.3.3 Carry-Skip Adder (CSA)

The previous adder only minimized the average delay. A simple but efficient way
to speed up the carry propagation is by using the carry skip technique [Leh 61]. Wedivide an
n—bit adder into n/k groups of k-bits. For each group, there is a carry bypass circuit besides
the k-bit ripple carry path. The final carry for a group is obtained as follows:

P,' - A,‘+B"

e - T]r

i=l

C. = P Cot AB+PChy (6.8)

Lehman and Burla [Leh 61] derived the optimal group size which gives the least number of
gate delays for k = /n . Majerski [Maj 67] proposed to include groups of different sizes to fur-
ther reduce the worst—case gate delay by reducing the number of skips. These two ap-
proaches are optimized with the basic uniform delays assuming the ratio between the skip
time and the ripple time is 1. Barnes and Oklobdzija [Bar 85] considered the case when cells
are implemented with VLSI technology and relaxed the ratio to be integers in the range of
two to seven inclusively. Guyot et al [Guy 87] further extended it to include ratios of rational
numbers. Further improvements in the design method of carry—skip adders are discussed by
Chan and Schlag [Cha 90]. The later three works all conclude that carry—skip adders are a
good compromise between ripple-carry adders and carry look ahead adders with respect to
area and delay. While the ripple adder is simple, easy to implement but rather slow, the carry—
look ahead adder requires large silicon area and is much harder to design and implement. The
carry—skip adder, however, gives good performance with a minimum area penalty. To imple-
ment a carry—skip adder in ECDL, we designed a special carry cell at the k—th bit of each
group, assuming a fixed size group. Even with variable sized group the last bit’s carry part
can still be modified. This special carry cell only depends on the initial carry and all groups
inputs, as illustrated in Figure 6.5. The first &-1 bits of the group consist of the carry—ripple
adder discussed in the previous section. A block diagram showing how cells are assembled to
form a k-bit group is given in Figure 6.6. The final completion signal is generated from the
k—th bit of the SUM cell belonging to the last group of an r—bit adder The total area of an
8-bit carry skip adder which contains two k=4 carry skip groups is measured at 467 lambda x
473 lambda. Layout is shown in Figure 6.7. This is only a 5% increase in comparison with an
8-bit carry—completion sensing adder. The total number of transistors in this 8-bit adder
with 4--bit fixed sized groups is 308 of which 28 are P—channel. In general, the number of
transistors for a k—bit group of an ECDL carry skip adder is:

3% -2 (6.9)
where 7k are P—channel devices. Assuming that a P—channel device is twice the size of an
N—channel device, the equivalent transistor count for a &-bit group is:

46k -2 (6.10)
Since for every k bits, the carry cell needs 2k non—local inputs and for every non—local input a
space must be reserved from the starting point of the signal, the total equivalent wiring num-
ber is:

%z2i=n(k+1) (6.11)

i=1
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Figure 6.5 The Kth Bit Carry Cell of a ECDL Carry—Skip Adder
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Figure 6.6 (a) The Block Diagram of a k—bit ECDL Carry—Skip Adder
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Figure 6.6 (b) The Block Diagram of an n-bit ECDL Carry—Skip
Adder with Fixed k-bit size grouping
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Figure 6.7 Layout of an 8-bit ECDL CSA
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From (6.10) and (6.11) we obtain the model of the total area for an n-bit ECDL CSA with
fixed k—bit group as:
Total Area = (47+k)n-2(nlk) (6.12)

Let Dt3 be the delay of the ECDL cell that generates the skip carry. The worst case delay fora
fixed size group carry—skip adder is:

k

Tess = z Arl; (carry-ripple in group 1)
i=1
%-1
+ Z Ar3; {carry bypass)
=2
+ z Atl; (carry-ripple in group nik) (6.13)
i=n—-k+1

The current used to charge and to discharge the output depends on the number of P—channel
and N—channel devices in series. Therefore, there is no difference between the simple carry
cell and the k—th bit carry cell of the k—bit group. Assume the majority of the load capacitance
is contributed by diffusion area, we observe that the total number of diffusion area for the
k-bit carry is always two more than that of the regular carry adder. In addition the N—channel
tree logic of the carry cell which generates the skip carry is lar ger than the regular carry cell’s
N—channel tree network. Therefore, the number of N—channel devices in series for a k—th
carry cell is more than the number of the N—channel devices in series for a simple carry cell.
That is, the n—channel transistors in series is (2k+ 1} instead of 3. This gives a way to estimate
D13 as:

A3 = (1+13 k+1)+4 3x = (-I3C—+1)At1 (6.14)
Substituting (6.14) into (6.13) we have:

Tess = (%+%+%—2)At1 (6.15)

To obtain optimal delay for a fixed size ECDL carry—skip addeg we should choose:

(6.16)
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6.3.4 Carry-Lookahead Adder (CLA)

The limited speed of a carry—ripple adder is a consequence of the carry—out de-
pendence on the carry—in signal. To reduce this dependency, a logic relation may be estab-
lished to have all carries depend solely on the primary inputs. Given two n—bit binary num-
bers A and B:

A = (AAnAss .. AA)

B = (BB,\Byz ... BB}y

Define two auxilliary local functions:

Gi = A By (generate)
Py = Ai+B:  (propagate)

From G and P express all carries in an n-bit addition as:

C1 = G1+P1 Co (6.17)
C2 = G2+P2 C; = G;_+P2(G1+Pl Co)

C = Gi+P; Ciy

c, = G,+P, C,, = G,+P, G4+

P, Py Puy Gust wotPs Pry..Py P, Co

This, in principle, can produces all carries with three logic gate levels assuming no restric-
tions on fan-in, fan-out and the number of gates. Clearly, as n increases, two problems arise.
Oneis the number of logic gates. Toimplement the n—th carry ¢, as given by (6.17) with only
two—input AND and OR gates requires n(n+1)/2 of two—input AND gates and n two—input
OR gates excluding gates used to generate Pi and Gi. The other problem is the fanout for Pi
and Gi. An alternative is to build carry look ahead modules and then assemble them to form
larger adders. In contrast, using ECDL to implement CLA do not have these two problems.
The equation (6.17) is implemented with N—channel logic and there is no theoretical limita-
tion of the number of transistors in series. Therefore, all carries can be generated in one stage
delay. However, the offset voltage is not zero, and in factitcan be as high as 20 mV. When the
number of transistors in series is too large, the differential voltage created is not large enough
for the flip—flop (sense amplifier) to set. This causes the ECDL cell to give a wrong result.
Figure 6.8 gives the k—th bit carry cell implemented in ECDL. Other carry cells are implem-
ented similiarly. The typical delay to generate ¢, is A« . Our model gives approximately
this delay as:

At = (142k+1) Gh+1)+4 (k+D)x = QP+Tk+6) (6.18)
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Therefore, the total delay of an n—bit ECDL CLA implemented with k~bit modules is:

n U+ Tk+6
Tea = (?)_is_ . Dtl (6.19)

This adder takes more area than other adders discussed above. An 8—bit adder uses an area of
672 lambda by 479 lambda which is an 81% increase in comparison with the simple ECDL
carry-ripple adder. Layout is shown in Figure 6.9. A fixed group 8-bit carry—look ahead ad-
der using two 4-bit carry—look ahead adders is implemented. To compare with other ECDL
adders discussed, we determine the total number of N—type transistors:

k
Z(ﬁi +23) = 6(k* + &) + 20k = 6k* + 29k (6.20)

i=l

The total area cost of an #n~bit ECDL CLA contributed by wiring is approximated by:

2 <&, k(e D2k+1)  n(2P+3k+1)
) 21: = n = 3 (6.21)

Therefore, the estimated area for an n-bit ECDL CLA with k-bit modules
is:

n(282+ 21k + 88)

3 (6.22)
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Figure 6.8 The ith bit Carry Cell of an ECDL Carry-lLLookahead Adder
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Figure 6.9 Layout of an 8-bit ECDL. CLA
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6.4. Measurement and Comparison

6.4.1 Delay Comparison

Four 8-bit adders were implemented and fabricated using MOSIS® 3 micron
Tiny chip service. Results from measurements are shown in Figure 6.10. All measurements
use the worst case input combinations of A = (11111111), B = (00000000) andC, =1 , except
for the carry—skip adder which has inputs (11111111) and (00000001). SPICE simulation
from extracted layouts is summarized in Figure 6.11. Simulated results include delays of dif-
ferent feature sizes. Since the design is done in MOSIS Scalable rules, the simulation results
are obtained by setting the layout extractor to a proper value of lambda and by using a dif fer-
ent set of SPICE MODEL parameters for each lambda value. In Figure 6.12, the delays pre-
dicted by the proposed model in the previous section are calculated and plotted against the
measured values and SPICE simulation results for 3 m feature size. Except for the carry com-
pletion sensing adder, results of delays are predictable. The reason for a large difference be-
tween the measured result and simulation for CCA is that the size of the P—channel transistors
are not minimized sized. They have been scaled to match the CRA adder design.

6.4.2 Area Comparison

All four adders are implemented with MOSIS’ scalable CMOS rules. The total
area measured does not include pad drivers. All units are in lambdas. Table 6.1 gives the tabu-
lated results, while Figure 6.13 gives the normalized results in comparison with what the
model predicts. As expected, the ECDL carry lookahead adder consumes much more space
than other ECDL adders. However the model predicts the area fairly well.
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Figure 6.10 (a) Measured Worst Case Total Delay of an 8-bit ECDL CRA

Figure 6.10 (b) Measured Worst Case Total Delay of an 8-bit ECDL CCA
(measurement)
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Figure 6.10 (c) Measured Worst Case Total Delay of an 8-bit ECDL CSA

Figure 6.10 (d) Measured Worst Case Total Delay of an 8-bit ECDL CLA

(measurement)
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Figure 6.11 SPICE Simulation Results of all 8-bit ECDL Adders
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Figure 6.12 Delay Comparison of all 8-bit ECDL Adders for 3m Features Sizes
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Figure 6.13 Area Comparison of 8—bit ECDL Adders
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6.5. Conclusion

Four different adders were implemented using a CMOS differential logic
—ECDL. The area and speed of each adder were measured and compared. One conclusion
can be made is that carry skip adder seems to have the best speed area combined perform-
ance. A first order modeling method is used to estimate the area and speed of different imple-
mentation. This methodology may be used to predict other additional algorithms including
variable—size carry skip adder and other arithmetic structures such as array multipliers and
array dividers implemented in ECDL. .

93



Chapter 7

Implementation of Array Multiplication and Division using ECDL

7.1 Introduction

Hardware multipliers and dividers have become standard in modern processors. For
example the current IBM RISC System/6000 processor chip set consists of six VLSI chips
[Misra90]. Among the six chips are the Fixed—Point Unit and the Floating—Point Unit. Both
of these chips have dedicated multipliers as part of the chip. In particular, the floating—point
unit consists of a 56-bit multiplier. In [Hok 90}, itis stated that the goal of the new processor
design is to include simple self—contained low latency hardware to reduce the number of
cycles required for each instruction. In this chapter we investigate three different array multi-
pliers and one array divider using ECDL. Their performance is presented and compared.

7.2 Array Multiplier

Array multipliers utilize the observation that partial products in the multiplication pro-
cess can be obtained independently in parallel. Consider two unsigned binary integers:

A = Ao 10 203 40 o LUy and B = b,,Alb,,_za,.,_g SR, blbo With Values
m-1
A = Za,-Z"
i=0
n-1
B = Yo (7.1)
j=0
The product of these two binary integers is obtained by
m-1 r-1 m-1 a1
P=AB=Yal .y b2 = > D@2 . b2
=0 =0 =0 =0
m-l n-l men-l
= > Y@ - b = Y p2 (7.2)
=0 j=0 k=0

In a conventional gate level implementation, an m x n multiplier requires m(n—1) full adders
and mn AND gates. The total multiply time of this unit is estimated as:

D=4d_+ [(n-1)+(n1)]"4d, (7.3)

AND

where d, =~ and d_ are the delays of AND gate and full adder, respectively
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Since an AND gate uses 6 transistors and a full-adder uses 30 transistors when implemented
with static CMOS, to implement a m x n array multiplier will require a total number of tran-
sistors:

(6mn + 30m(n—1)) = 36mn — 30m (74)

As mentioned in chapter 4, ECDL can be used to implement array networks (2 D itera-
tive networks). In the following section three array multipliers are implemented in ECDL.
Tradeoffs are discussed.

7.2.1 Unsigned Array Multiplier

In the nineteen sixties, various iterative array multiplication schemes have been pro-
posed. In this section an unsigned array multiplier is implemented using ECDL. This multi-
plier was first introduced by Braun and is summarized in many texts [Hwa 79] [Wes 85]. An
example of a 3x3 array multiplier is shown in Figure 7.1. There are two types of cells. The
multiplier cell which is used to build the core and the full-adder cell whichis used to generate
the final product.

v
K
O

Figure 7.1 An example of a 3x3 array multiplier with ripple carry adder
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Each of the multiplying cells has 4 inputs and 4 outputs. The logic diagram of the ith column
and jth row multiply cell is depicted in Figure 7.2.

P G A
B .Bi
FA
A 4 C] N Hi

Figure 7.2 The logic of a multiplier cell (th column and tth row)

Two of the ouputs are really inputs that are being passed through. The other two outputs can
be expressed with the following logic equations:

Py = Py @ Cy-1 @ AB;
C"i = Pi-lj—l(AéBi) + Pi_lj.lcij_1 + (A,-B,—)C,}-,l (75)

Since ECDL is a double—railed logic family, both the function and its complement are need-
ed. The following logic expressions for the two outputs and their complements are chosen to
help to maximize the sharing of terms and, thus, to minimize the number of devices needed to
implement the multiply cell.

Py = (PG +ITE-1)'-1€;}1)(AEBE) + (}_)i-lj—lcij—l +Ps—1j-1a'j.1)(AEBi)

Py = (PiyjaCin + P Ci)AB) + (Fi-lj-lcij-l + PG )(AB)
Ci = PiipiCin + Py Cina + PiinCy ABD
a'j = FHHC'H + (Fi-lj-lci_;-l +P 5-1_;—16-;;-1)(44'—135) (7.6

Method proposed by Chu [Chu 86} is used to build the N—core network which will implement
the logic equation (7.6). The final ECDL implementation of two outputs of the multiply cell
is shown in Figure 7.3 (a) and (b) respectively. However from Figure 7.1 we observe that
some of the inputs are zeros constants. Thus the multiplier cell can be simplified. The out-
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puts’ logic equations, with complement, for cells of row one and cells of column one, the two
outputs and their complements are:

P; = AB;

P; = AB; = Ai+B;

C; =0

T, =1 (7.7)
Optimized logic expression for cells at the second row:

P; = F.‘-lj—l(AiBi) + Pi—lj—l(A'—rBi)

P-Ij = E-lj—l(m + P (AB)
Cij = P iulj-nl(A.iBi)
C, = Fi-u‘-l + Pi—l}—l(A'_aBi) (78)

At the bottom of the array are ripple adder cells. The implementation of these full-adder cell
is the same as the carry—ripple—adder cell implementation presented in the previous chapter.
The block implementation of a 4x4 unsigned iterative array multiplier with controlling sig-
nals is shown in Figure 7.4, where cell M1 implements (7.7), cell M2 implements (7.8), and
cell M3 implements (7.6)
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Figure 7.3 (b) ECDL Implementation of Pij
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There are a total of 50 devices used to implement the multiplier cell M3. Out of 50, 9 of them
are P—channel devices. The two boundary cells, M1 and M2, require 14 and 32 devices re-
spectively. The carry-ripple-adder cells uses 35 devices. The total number of devices foram
x n multiplier is:

50(m—1}n-2)+32(m-1)+32(m- 1)+ 14(n+m—1) = 50mn—22m —-36n-76 (7.9)

However when the number of P-channel devices is scaled by 2 to reflect the size difference
between an N—channel and a P—channel transistor, static CMOS implementation requires
53mn+ devices and the ECDL implementation uses 57mn+ devices.

A 6x6 unsigned iterative array multiplier was laid out and fabricated through MOSIS
using a 3—micron process. The total delay from initial enable signal to the last product bit is
measured at 49 ns. This measurement compares reasonably well with the SPICE simulation
result. Table 7.1 summarizes all the simulated results.

lambda 1.5 micron | 1.0 micron | 0.8 micron | 0.6 micron
data
total delayofa | 447 g 22.0 ns 18.7 ns 123 ns
6x6 array multiplief

Table 7.1 Delays summary of an ECDL 6x6 array multiplier

By using the delay model proposed in the previous chapter, we simply substitute proper val-
ues for the variables used in equation (6.1). Thus, the average delay for a cell M3 used in an
unsigned iterative array multiplier is:

TM3), = (x+xyz+4xy)r = (2+2 4 444 2 4)'v = 661 (7.10)
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Figure 7.4 A 4x4 ECDL Unsigned Array Multiplier
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7.2.2 Radix—4 Iterative Array Multiplier

As mentioned in chapter 5, an obvious way to speed up the iterative/array networks is
to combine many cells into a single cell. Therefore the delay is only a fraction of the original
network if the resulted cell has the same delay as the original cell. In the case of the simple
unsigned array multiplier, we can improve the speed by using a similar interconnection struc-
ture between cells of a higher radix numbering representation. For example the same multi-
plication as that of the binary 4x4 array multiplier of Figure 7.4 can be realized by a 2x2 array
multiplier of radix 4. Each of the multiplier cells can be built in ECDL. If each of the radix 4
ECDL cell is the same as the original one, there would be a speedup of 2 in total multiplica-
tion delay time. However, each the resulting radix 4 multiplier cells has 8 inputs and 8 out-
puts. This causes the complexity of the cell to increase greatly. In fact, the total number of
devices used to implement an ECDL radix—4 multiplier cell is 294. This is more than 5 times
the device count in comparison with the cell of a simple binary array multiplier. However, the
total number cells needed is reduced from nxm to one~fourth of nxm. Therefore the total in-
crease in devices counts is less than expected. If a straight forward implementation of this
radix 4 multiplier cell using logic gates is used, the expected complexity should have been 16
times greater rather than five times greater per cell. The explanation for the reduction in com-
plexity is that there are many terms which are shared in using ECDL or any other CVS-like
differential logic technique to implement a complex logic function. This is because both the
output and its complement are implemented with N—channel devices. In static CMOS imple-
mentation, the function is implemented in N—channel devices while the dual of the function
is implemented with the P—channel devices. The total number of an mxn radix—4 multiplier
implemented in ECDL uses around 74mn devices.

The procedure used to build ECDL cells ais summarized in the following steps [Chu 88]:

(1) Generate truth table for each of the outputs.

(2) Establish 1-list, O-list, 01-list and 10-list

(3) Run these 4 lists through a minimization program to obtain the reduced truth table.

(4) Construct the N—channel networks for each outputs according to the whatis shown

in Figure 7.5
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Figure 7.5 The general network used in the procedure to obtain final tree
structure

An ECDL radix—4 multiplier cell is built using the above procedure. It is SPICE simu-
lated. However the delay of this cell is much slower than twice the delay of the original cell.
This is caused by the parasitic and the interconnection wiring delay. By giving the proper
values for (6.1) we obtained:

T(Rad-4 Cell) = 836t (7.11)

We did not investigate further because it is a bad implementation choice. It would be better
off if we use recoding to begin with. If we use recoding the number of cells used will be re-
duced by one—half.

7.2.3 Array Multiplier using 5-Counters

There are alternative designs which will reduce the total delay in half without increas-
ing the complexity of the cell by much. One particular method was proposed by Nakamura
[Nak 86]. This method calls for the implementation of array multipliers using 5—counters and
it looks cost effective. The 5—counter cell has 5 inputs and produces 3 outputs. The multiply
cell using the 5—counter has 7 inputs and 3 outputs. Of the 7 inputs, 4 are used to generate
partial products”. These four inputs are ANDed in pairs to produce two partial products.
These two partial products and the other three inputs form the inputs for the 5—inputs count
block. The outputs of the counts blocks are the outputs of the 5S—counter multiplier cell, and it
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is the binary representation of the number of ones in the 5 inputs to the 5—inputs count block.
Figure 7.6(a) illustrates the logic operation of a 5:3 counter used in the 5—counter multiplier

cell.

I, L I, I, I

FA | LEA

o
FA

T
A

0, O Oy

Figure 7.6 (a) 5—counter cell

Figure 7.6(b) shows the 5—counter multiplier cell. Again the same procedure as discussed in
the previous section is used to obtain an ECDL implementation of S—counter multiplier cell.
The total number of devices used in the ECDL implementation of a single cellis 124. Out of
the 124 devices 16 of them are P—channels.In comparison using static CMOS to implement
the same cellrequires 136 devices, which half of them are P—channel devices. The totalnum-

ber of an nxm multiplier uses 62nm+39m+39n~2 devices.

In A7 /
counte
| 9’\
Ai 12— A
Bi \l - g

5
T\

Figure 7.6(b) A Multiply cell using 5—counter cell
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Two other cells are also needed to build the 5—counter array multiplier. They are the 2—input
XOR and the 2-input OR cells. In Figure 7.7, a 5x5 array multiplier is illustrated which
shows the interconnection of these three cells. Again the boundary cells, cells of the first and
second columns, can be simplified since part of the inputs are always zero. However , the total
number of devices saved is not significant in large array multipliers.
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Figure 7.7 5x5 Array Multiplier with 5—counter Multiplier cell

Again, the modeled delay from (6.1) predicts that the average cell delay is:

T(5—Cir Cell) = 111z (7.12)
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A 6x6 ECDL 5—counter multiplier is built using MOSIS’ 3 micron technology. The worst
case delay is measured at 36 ns. Table 7.2 tabulates the SPICE simulation result for different
feature sizes. We observe that the total simulated delay of this 6x6 multiplier implemented
with 1.2 micron technology is 9.1 ns. This is an improvement of more than 3 ns from the sim-
ple binary array multiplier. With this value, a 32x32 5—counter array multiplier will have a
delay of 45.5 ns.

lambda 1.5 micron | 1.0 micron [ 0.8 micron | 0.6 micron
data
total delay of a 30.5 ns 17.0 ns 14.5 ns 9.1ns
6x6 array multiplier

Table 7.2 Simulated Delay Summary for Different Feature Sizes

7.2.4 Comparison

Two iterative array multipliers were fabricated using MOSIS’ 3 micron process. The
Radix~4 iterative array multiplier was not implemented, since it was too complicated to have
any speed and area gain. Results of the measurements are listed in Table 7.3.

Methods total delay
unsign array multiplier 49.0 ns
radix—4 array multiplier N/A

5—counter array multiplier 36.2ns

Table 7.3 Measurements for 3mm Implementation

Table 7.4 summarizes the simulated delay of a 6x6 array multiplier using the three different
implementation methods discussed in this chapter.
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Methods 2 mioron implementation
simple array multiplier 12.3 ns
radix—4 array multiplier 17.8 ns
S5—counter array multiplier 9.1 ns

Table 7.4 Comparison of simulated delays of three 6x6 ECDL array multipliers

Table 7.5 compares the modeled delay.

Methods model delay
simple array multiplier 66r
radix—4 array multiplier 8361
5—counter array multiplier 1117

Table 7.4 Comparison of modeled delays of three ECDL array multiplier

Table 7.6 tabulates the comparison of total devices used to implement a nxn multiplier using
three different methods.
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Methods total devices count

simple array multiplier 50nm—30m—25n+ 19
radix—4 array multiplier T4mn + 54m + 50n
5—counter array multiplier 62nm + 39m + 390 -2

Table 7.6 Compatrison of devices used for three methods

The delay of an unsigned mxn array multiplier implemented with conventional method is:

T, = (m+n-1AM, (7.13)

Where AM, is the delay of a single unsigned array multiplier cell. The delay of a radix—4
multiplier implemented with conventional methods is:

m

L =G +%—1)AM2 (7.14)

Where AM, isthe delay of a single radix—4 array multiplier cell. And the delay of a 5~count-
er array multiplier is:

Ty = mAM,+AX (7.15)

Where AM, is the delay of a single 5—counter array multiplier cell and Ax isthedelayofa
XOR cell. The delays of these three array multipliers implemented with self-timed circuits
are:

pap-d

TSD = 3 AM, + 3 AM, (7.16)
=0 =0
-y “ (7.17)
TS = D AM, + > AM, )
i=0 i=0
il 7.18
TiST) = > AM; + AX, 718

=0

108



Chapter 8

Clocking Schemes with Differential Logic

8.1 Introduction

In this thesis, so far, we have been concentrating on the design and implementa-
tion of self-timed modules using ECDL. However, ECDL is not restricted only to the imple-
mentation of asynchronous systems. It can also be used to implement digital systems with
synchronous timing disciplines. In this chapter we propose a safe single phase timing disci-
pline implemented using modified ECDL flip—flops. This timing discipline is called double—
edge triggered single clock timing discipline. Traditionally the edge—triggered single phase
timing scheme uses single—edge-triggered flip—flops (SET-FFs) to store its states. SET-FFs
change states at the time when the clock signal goes from O to 1 or at the time when the clock
goes from 1 to 0. The former is called the positive-edge—triggered flip—flops (PET-FFs) or
rising—edge—triggered flip—flops (RET-FFs) and the latter is called negative-edge—trig-
gered flip—flops (NET-FFs) or trailing—edge triggered flip-flops (TET-FFs). The advan-
tage of edge triggering is that the data inputs (D) may change anytime, outside of the interval
defined by the setup and hold time, without affecting the output of the flip—flop. This makes
system design simpler. It is also less sensitive to noise. However, these flip—flops respond
only once per clock pulse cycle. Energy and time are wasted. Unger proposed in [Unger 74],
a class of flip—flops (FFs) which will respond to both the positive and the negative edges of
the clock pulse. Using these double—edge—triggered flip—flops (DET-FFs) to implement a
single phase system has two major advantages. First, power dissipation is reduced. W ith the
conventional single—edge—triggered flip-flops, one of the two clock transitions accom-
plishes nothing. However, this transition may cause changes in the outputs of some logic ele-
ments internal to the FFs. In addition, extra energy is wasted to charge or discharge the ca-
pacitive load of the global clock line in a system using SET-FFs. This is particularly true in
CMOS where static power dissipation is small and the dynamic power dissipation is the main
contributor of energy dissipation. Second, the speed of the system is accelerated. With both
edges able to cause state transition, some redundant logic can be eliminated. Moreover, the
clock period will be shortened because there is no need to wait for the clock signal to toggle
up and down.

The main disadvantage of DET—FFs has been the substantial increase in the num-
ber of components required to build such FFs. In most cases, more than double the logic
counts is expected. This paper proposes a novel design in CMOS which will implement static
DET-FFs with relatively little increase in components. It is based on the single-phase
CMOS register proposed by Lu in [Lu 88]. An implementation of a D-type DET-FF uses
only 26 MOS devices in comparison with a typical static CMOS D—type flip—flop which re-
quires 16 MOS devices. Another disadvantage of DET-FFs is in the extra delays caused by
the extra gates needed to implement it by parallel decomposition. This CMOS implementa-
tion presented introduces littie delays. It satisfies the speed requirement of the modern digital
system. This D-FF is clocked at 50 MHz. Simulation performed with parameters obtained
from a MOSIS (MOS Implementation System) [Tomovich 897 supported 2 micron CMOS/
bulk process endorses the proposed implementation.
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8.2 Circuit Design of a D-type DET-FF

A D-type DET-FF consists of two cross—coupled latches with input gating de-
vices and some simple pass transistor logic. A circuit diagram is illustrated in Figure 8.1. Its
operation principle is similar to the one used by Mead and Wawrzynek [Waw 85]. The two
cross—coupled latches are enabled/disabled by the clock signal as in ECDL. When the clock
is low, latch I is disabled and latch 2 is enabled. With clock high, latch 1 is enabled and latch
2 disabled. A disabled latch I has both its output and the complement set to high (Vdd). A
disabled Jatch 2 has both its output and the complement set to low (GND). During the rising
edge of the clock signal, latch 1 is being enabled. Depending on the D input value, either
transistor M7 or M8 is conducting just before M9 switches off. Either output Q1 or its com-
plement will remain charged to high (Vdd) while the other is discharged to low (GND). The
setvalue will stay unchanged through out the half of the clock period while it is high. Similar-
ly, on the trailing edge of the clock signal larch 2 is being enabled. According to the value of
D input, either Q2 or its complement will remain low (GND) while the other will be set to
high. Output value remains stable for the duration of low clock signal. Thus, this DET-FF is
a static flip—flop. It consumes no static power. Table 1 gives the logic required to obtain the
final output value. We observed that when the clock is low, both Q1 and its complement are
high. The final value is the value of Q2. When clock is high, both Q2 and its complement are
low. The final takes the value of Q1. Pass—transistor logic, shown in Figure 8.1(c), 1s used to
implement the logic function.
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Figure 8.1. Circuit Digram of a D-type DET-FF
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Since the two latches operate during the “'rising” and "'trailing” edge of the clock,
the rise and fall time of the clock signal needs to be long enough for the proper operation.
Please refer to Figure 8.1 for the following explanation. When the clock is low, M1 is in the
cut—off region. M9 is on, M2 is on and either M7 or M8 is on. They are all in the linear region.
Q, Qbar and Vx are all at 5V (Vdd). M3 and M4 are also in cut—off region. There is no static
current from Vdd to ground. When the clock rises, the gate voltage of M1 rises also. When the
clock signal voltage is greater than the threshold voltage (Vth), M1 goes into saturation. Vxis
discharged by the drain current of the M1. When Vx drops more than a threshold voltage, M3
and M4 also turn on (in saturation) to discharge the output and its complement. M9 is still on.
Depending on the value of D input, either M7 or M8 is on, charging one of the output node.
This causes a different in voltage between Q1 and its complement. When the clock signal
rises to be more than Vdd-Vth(p}, M9 is off, and there is no more charging current. The value
of D input will not affect the output anymore. The voltage difference caused during the time
when the clock signal goes from Vth(n)} to Vdd-Vth(p) must be large enough to overcome any
offset voltage due to device mismatch. Similarly, the fall time of the clock needs to be long
enough to create a difference in voltage for Q2 and its complement.

CLOCK
—@—9@ clock

clock

"¢ b _))—D Q

clock

| ook |
D Qpaf-

Figure 8.2. DET-D-FF gate level implementation in [Ung 81]
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There are total of 26 transistors used in implementing this CMOS D-type DET-
FF. The realization method proposed by Unger in [Ung 81] uses 36 transistors, since we can
realize a D-latch with 8 devices, an NAND gate with 4 devices and an inverter with 2 de-
vices. Figure 8.2 shows the gate level implementation of DET-FF proposed by [Ung 81].
Table 2 summarizes the comparison. Extract circuit from layout is simulated with SPICE. A
clock signal of 50 Mhz is inputed. The D-DET FF shows a delay of less than 3ns from
CLOCK to Q and Qbar. We also observe that the D-DET-FF does change its state with the
transition of both rising and trailing edges of the clock signal. Simulation is shown in Figure
8.3.
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CLOCK INPUT OUTPUTS
Q Q Q q T
Low High High | - - A Q,
High ~ - |Low Low Q Q,
Table 1. Truth Table to obtain the final cutput
number of Eq. Cof Eq.Cof D
transistors clock signal input
a typical
SET-FF 16 5Cg Cd
DET-FF
in Figure 8.2 36 10Cg 2Cd
DET-FF
in Figure 8.1 26 6Cg 2Cg
Table 2, Comparison of SET-FF and DET-FFs
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Table 8.3 shows the State table of the implemented DET-FE

CLOCK INPUT OUTPUTS
D Q Q
T High High Low
T Low Low High
l High High Low
,L Low Low High
Low X Q q
High X Q q
Table 3.  State Table of a D-type DET-FF

8.3 Conclusion

A special CMOS logic family — ECDL is used to implement a D—type double—ed-
ge-triggered flip—flop (DET-FF). This D-type DET-FF offers speed and consumes nosstatic
power. A small price is paid in the number of devices used to build a DET-FFE. The same
method of powering up and down a cross—coupled latch with appropriate logic can be used to
build other types of DET-FFs (eg. JK—type DET-FFs...). Other logic can also be added to

form flip—flops with set/reset functions.
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Chapter 9

Conclusion

9.1 Summary

Timing constraint and clock synchronization in system design remains a difficult
problem. This problem will become more and more apparent with the continuing progress of
fabrication technology. Fully self-timed design methodology is a promising approach to im-
plementing complex systems where a global clocking scheme is the performance bottleneck.
Before a fully, self-timed system can be built, self-timed subsystems need to be available.

This thesis presents a new differential CMOS logic family called Enable/Disable
CMOS Differential Logic (ECDL). Similar to DCVSL, ECDL is a dual-rail logic family and
itis suitable to build self—timed modules. Further modification by adding simple parts to the
original ECDL together with other associated control circuitry such as C—element, allowed
the accommodation of local generation of completion and acknowledge signals. The pro-
posed ECDL is used to implement several computer subsystems as examples.

Several self-timed addition algorithms were implemented using ECDL. A first—
order modeling technique is used to predict the performance and cost of these different ad-
ders. Results from measurement, SPICE simulation as well as results predicted by the model
are tabulated and compared. First, we found that carry—skip adders are a good choice for im-
plementation in self—timed styled using ECDL. It is comparable, in speed, with carry look—
ahead adders but uses much less area. Second, we found that using ECDL to implement self—
timed interactive networks helps relief the long delay resulted from implementing logic us-
ing iterative arrays.

Several array multipliers and array dividers are also implemented in ECDL.
Again comparisons are made between different algorithms. We found that 5—counter array
multiplier is the best choice in terms of cost and performance product.

We have also studied the use of ECDL circuits in synchronous systems. We have
found that the proposed circuits are efficient in implementing double—edge triggered flip—
flops.

9.2 Future work

There is a need to bring self-timed system design environments to the same level
of support as the current synchronous design. On the physical level, we need more module
generators. These module generators should be fully automated. The generator should also
give system level performance feedback as the module is generated. On the specification lev-
el, there should be a high level language used to specify a self-timed system. In many ways
functional programming language fits the design style of a self-timed timing strategy. On the
testing and verification area, a none traditional approach must be taken. Of course the scan
path technique as used by clocked system is still applicable. However one must distinguish
between a real fault and a resulting datum taking infinite time to compute.

Another interesting question which has not been addressed in this thesis is that
what is the real system performance benefit comparing the synchronous and the self—timed
implementation. What needs to be done is to build a complete digital system using both syn-
chronous method and the self-timed method and run some real benchmark programs to eval-
uate the performance of these two different approaches.
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There is also extensive work at Caltech by A. Martin [Mar 57] [Mar 86] [Mar 90]
that is not mentioned in this thesis. Their objective is to automate the design of complex self—
timed systems. Other works by [Mol 851 [Mol 88], and works by [Chu 86] also address issues
on high-level synthesis of self-timed systems. Both the theoretical bases and practical
method of automating the design of complex asynchronous systems should be further ex-

plored.
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APPENDIX A

SPICE parameters

The corner parameters used in Chpater 2

*4 cornetrs plus typical parameters from the following runs

*NMOS: fast:m5be typical:m52s slow:m5bg
*PMOS: fast:m57q typical:m56g slow:m5bg
* TYPICAL PMOS

.MODEL PMOS PMOS LEVEL=2 LD=0.280000U TOX=510.000E-10
+NSUB=4.012077E+14 VTO=-0.754274 KP=1.342340E~05 GAMMA=0.705848
+PHI=0.600000 UO=100.000 UEXP=0.139572 UCRIT=10000.0
+DELTA=2.35927 VMAX=100000. XJ=0.400000U LAMBDA=4.720485E-02

+NFS=1.404551E+12 NEFF=1.001000E-02 NSS5=0.00000CE+00
TPG=-1.00000

+RSH=55 CGSO=4E-10 CGDO=4E-10 CJ=3.6E~4 MJ=0.5 CJSW=6.0E-10
+MJSW=0.33

* FAST PMOS

.MODEL CMOSPF PMOS LEVEL=2 LD=0.280000U TOX=500.000E-10
+NSUB=7.708465E+14 VTO=-0.784985 KP=1,545932E—-05 GAMMA=0.476981
+PHI=0.600000 UO=100.000 UEXP=0.176806 UCRIT=54557.2
+DELTA=1.46299 VMAX=100000. XJ=0.400000U LAMBDA=4.120570E-02
+NFS=4.868232E+11 NEFF=1.001000E—-02 NSS=0.000000E+00 TPG=—1.00000
+RSH=55 CGS0O=4E-10 CGDO=4E-10 CJ=3.6E—4 MJ=0.5 CJSW=6.0E-10
+MJSW=0.33

* TYPICAL NMOS

.MODEL NMOS NMOS LEVEL=2 LD=0.100000U TOX=500.000E—10
+NSUB=1.000000E+16 VT0=0.884599 KP=4.163698E-05 GAMMA=1.49569
+PHI=0.600000 UO=200.000 UEXP=1.001000E-03 UCRIT=999000.
+DELTA=1.056750 VMAX=48267.7 XJ=0.100000U LAMBDA=7.923688E—03
+NFS=1.239917E+12 NEFF=1.001000E-02 NSS=0.000000E+00 TPG=1.00000
+RSH=25 CGS0O=5.2E-10 CGDO=5.2E-10 CJ=3.2E-4 MJ=0.5 CJSW=9E-10
+MJSW=0.33

* FAST NMOS

.MODEL CMOSNF NMOS LEVEL=2 LD=0.280000U TOX=520.000E-10
+NSUB=4.575777E+15 VT0=0.587229 KP=3.848050E—-05 GAMMA=0.922197
+PHI=0.600000 UO=200.000 UEXP=1.001000E-03 UCRIT=999000.
+DELTA=1.59123 VMAX=100000. XJ=0.400000U LAMBDA=2.208002E-02
+NFS=5.033532E+11 NEFF=1.001000E-02 NSS=0.000000E+00 TPG=1.00000
+RSH=20 CGS0O=5.20E-10 CGDO=5.2E-10 CJ=4.5E-4 MJ=0.5 CJSW=6.0E-10
+MJSW=0.33

* SLOW NMOS

.MODEL CMOSNS NMOS LEVEL=2 LD=0.280000U TOX<=532.000E~10
+NSUB=1.000000E+16 VT0=0.884728 KP=2.921911E-05 GAMMA=1.60185
+PHI=0.600000 UO=335.033 UEXP=1.001000E-03 UCRIT=998000.
+DELTA=0.940357 VMAX=35918.0 XJ=0.400000U LAMBDA=9.695906E-03
+NFS=8.705501E+11 NEFF=1.001000E-02 NSS=0.000000E+00 TPG=1.00000
+RSH=20 CGS0O=5.2E-10 CGDO=5.2E-10 CJ=4.5E-4 MJ=0.5 CJSW=6.0E-10
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+MJSW=0.33

* SLOW PMOS

.MODEL CMOSPS PMOS LEVEL=2 LD=0.280000U TOX=532.000E-10
+NSUB=3.093068E+15 VTO=-0.717639 KP=1.000000E-05 GAMMA=0.643492
+PHI=0.600000 UO=100.000 UEXP=0.144944 UCRIT=23051.6
+DELTA=2,13959 VMAX=100000. XJ=0.400000U LAMBDA=4.389369E-02
+NFS=1.199305E+12 NEFF=1.001000E-02 NSS=0.000000E+0Q0
TPG=—1.00000

+RSH=55 CGSO=4E~10 CGDO=4E-10 CJ=3.6E-4 MJ=0.5 CJSW=6.0E-10
+MJSW=0.33

3 um CMOS

.MODEL CMOSN NMOS LEVEL=2 LD=0.375000U TOX=425.000000E—10

+ NSUB=2.053000E+16 VTO=0.8718 KP=4.924000E-05 GAMMA=1.016

+ PHI=0.6 UO=606 UEXP=0.21634 UCRIT=112115

+ DELTA=1.000000E-06 VMAX=61949.5 XJ=0.500000U LAMB-
DA=4.105125E-02

+ NFS=3.825579E+12 NEFF=1 NSS=1.000000E+12 TPG=1.000000

+ RSH=28.700000 CGDO=4.570337E-10 CGS0=4.570337E-10

+ CGBO=1.067298E-09

+ CJ=3.550000E-04 MJ=0.522000 CJSW=4.680000E—10 MJSW=0.339000
+ PB=0.800000

* Weff = Wdrawn — Delta W

* The suggested Delta_ W is 0.38 um

.MODEL CMOSP PMOS LEVEL=2 LD=0.327659U TOX=425.000000E-10

+ NSUB=5.636309E+15 VTO=-0.927564 KP=1.641000E-05 GAMMA=0.5324
+ PHI=0.6 UO0=202.006 UEXP=0.237246 UCRIT=85028.5

+ DELTA=0.667921 VMAX=100000 XJ=0.500000U LAMBDA=3.549174E-02
+ NFS=5.538811E+11 NEFF=1.001 NSS=1.000000E+12 TPG=-1.000000

+ RSH=110.200000 CGDO=3.993366E-10 CGS0=3.993366E-10

+ CGBO=1.155782E-09

+ CJ=2.460000E-04 MJ=0.525000 CJSW=1.450000E-10 MJSW=0.021400
+ PB=0.850000

* Weff = Wdrawn - Delta_W

* The suggested Delta_W is 0.75 um

2 um CMOS

MODEL CMOSN NMOS LEVEL=2 L. D=0.238187U TOX=397.000000E-10

+ NSUB=5.726600E+15 VT0=0.760282 KP=5.590000E-05 GAMMA=0.501
+ PHI=0.6 UO=643 UEXP=0.172352 UCRIT=35918.3

+ DELTA=2.1874 VMAX=58960.2 XJ=0.150000U LAMBDA=3.684652E-02

+ NFS=1.796157E+12 NEFF=1 NSS=1.000000E+12 TPG=1.000000

+ RSH=31.000000 CGDO=3.107660E—10 CGSO=3.107660E-10

+ CGBO=4.920272E-10

+ CJ=1.060000E-04 MJ=0.716000 CJSW=5.340000E-10 MJSW=0.306000
+ PB=0.800000

* Weff = Wdrawn — Delta_W

* The suggested Delta_ W is -0.44 um
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.MODEL CMOSP PMOS LEVEL=2 LD=0.250000U TOX=397.000000E-10

+ NSUB=5.770200E+15 VTO=-0.738663 KP=2.010000E-05 GAMMA=0.503
+ PHI=0.6 U0=230.919 UEXP=0.210543 UCRIT=22858.3

+ DELTA=2.198951E-06 VMAX=44177.9 XJ=0.050000U LAMB-
DA=5.218042E-02

+ NFS=2.106298E+11 NEFF=1.001 NSS=1.000000E+12 TPG=—1.000000

+ RSH=103.800000 CGDO=3.261786E-10 CGS0O=3.261786E—-10

+ CGB0O=5.449557E-10

+ CJ=2.430000E-04 MJ=0.550000 CJSW=3.080000E-10 MJSW=0.342000
+ PB=0.800000

* Weff = Wdrawn — Delta_W

* The suggested Delta_W is —0.20 um

1.6 um CMOS

:NM‘I PM1 DU1 DU2 ML1 ML2

*PROCESS=hp

*RUN=m96h

*WAFER=15

*Gate-—oxide thickness= 263.0 angstroms

*Geometries (W-drawn/L—drawn, units are um/um) of transistors measured were:
* 2.4/1.6, 4.8/1.6, 14.4/1.6, 14.4/4.0, 14.4/20.0

*Bias range to perform the extraction (Vdd)=5 volts

:DATE=04—aug—89

: Gate Oxide Thickness is 263 Angstroms

*

:N MOS PARAMETERS

.MODEL CMOSN NMOS LEVEL=13 VFBO=

+ —1.0374E+000,2.44562E-001,-7.9334E-002
+ 7.89709E-001,0.00000E+000,0.00000E+000
+ 1.42826E+000,-3.1383E-001,-5.9054E-002
+ 2.77692E-001,-2.3110E-002,—1.3491E-001
+ ~7.7018E-003,2.37797E-002,~4.3878E-003
+ 5.15084E+002,5.67671E-001,2.10515E-001
+ 5.15700E—002,6.42654E-002,-5.7098E~002
+ 1.68199E-001,3.13036E-001,—1.0813E-002
+ 4.60281E+000,-5.3563E+000,2.90606E+001
+ —1.1803E-003,—6.2225E-003,-2.1317E-003
+ 1.84140E-003,~1.0919E-003,-8.0964E-003
+ 5.30010E-004,—1.6370E-003,1.11525E-002
+ ~6.0318E—003,5.83179E-003,3.76801E-002
+ 6.38482E+002,2.68820E+002,~1.5919E+002
+ —1.2840E+001,2.03560E+001,6.97103E+001
+ 7.91526E+000,5.03075E+001,-3.1434E+001
+ 9.70793E-003,4.93089E-002,-2.7049E-002
+ 2.63000E-002,2.70000E+001,5.00000E+000
+ 5.59007E-010,5.59007E-010,6.86347E-010
+ 1.00000E+000,0.00000E+000,0.00000E+000
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+ 1.00000E+000,0.00000E+000,0.00000E+000
+ 0.00000E+000,0.00000E+000,0.00000E+000
+ 0.00000E+000,0.00000E+000,0.00000E+000

*N+ diffusion::

+ 60, 1.450000e-04, 5.730000e-10, 1.000000e-08, 0.8
1-0.8, 0.546, 0256, 0, O

:PMOS PARAMETERS

.MODEL CMOSP PMOS LEVEL=13 VFB0=

+ —-5.2077E-001,1.36479E-001,2.83455E-001
7.03444E-001,0.00000E+000,0.00000E+000
6.89859E-001,—1.8349E-001,-1.2756E-001
1.41097E-002,-8.3915E-003,-5.9847E-002
-1.1190E-002,2.81221E-002,1.04709E-002
1.87923E+002,3.87829E-001,4.94247E-001
1.35309E-001,4.67897E-002,-7.9921E-002
—1.0380E-002,1.53733E—-001,8.35597E-004
8.84765E+000,-1.8765E+000,2.74088E+000
—-2.6515E-003,2.07079E~003,-4.3892E-003
8.34989E-004,-1.1908E-003,-5.5170E-003
6.54914E-003,-7.1446E-004,1.38254E-003
-1.1653E-004,1.68407E-003,1.15214E-002
1.97480E+002,7.08652E+001,~2.2999E+001
8.00611E+000,1.71651E+000,7.21944E+000
-4.5868E-001,5.29499E+000,6.32307E-001
8.7254E-003,-7.7511E-004,1.24242E-003
.63000E-002,2.70000E+001,5.00000E+000
.81910E-010,3.81910E-010,7.70293E-010
.00000E+000,0.00000E+000,0.00000E+000
.00000E+000,0.00000E+000,0.00000E+000
0.00000E+000,0.00000E+000,0.00000E+000
+ 0.00000E+000,0.00000E+000,0.00000E+000

2
3
1
1

N R R R R T I e

*P+ diffusion::

+ 125, 4.380000e-04, 1.780000e-10, 1.000000e-08, 0.85
+0.85, 0.476, 0263, 0, O

*METAL LAYER — 1
MODEL PC_ML1 R
+ 5.200000e—02, 2.600000e-05, 0, 0, O
+ o, 0 0 0 O
*METAL LAYER — 2
.MODEL PC_ML2 R

+2.6000()Oe:02, 1.300000e-05, 0, 0O, O
+0, 0, O, O, O
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1.2 um CMOS

*NM1 PM1 DU1 DU2 ML1 ML2

*PROCESS=hp

*RUN=mM94x

*"WAFER=1

*Gate—oxide thickness= 205.0 angstroms

*Geometries (W—drawn/L—drawn, units are um/um) of transistors measured were:

*

1.8/1.2, 3.6/1.2, 10.8/1.2, 10.8/3.0, 10.8/15.0

*Bias range to perform the extraction (Vdd)=5 volts
"DATE=06-21-89

* Gate Oxide Thickness is 205 Angstroms

*

*NMOS PARAMETERS
.MODEL CMOSN NMOS LEVEL=13 VFB0=

-+
+
+
-+
+
-+
+
-+
-+
—+
+
.+_
=
+
+
+
+
+

-+
+
+
L
+
*

—9.81476768398887e—01,-6.07944232205915e-02, 3.72813940266165e—-01
7.96215280532583e-01, 0.000000000000006+00, 0.00000000000000e+00
1.12375519410156e+00, 7.635002058831949-02,-5.76778430194233e~01
1.49367909252274e~-01, 5.25957513987947e~-02,—-1.59207417939029¢—-01

—-1.52710038074865e-03,—1.21939637710616e-03, 1.84644642304276e-02
4.76963392775868e+02,4.63275E-001,4.50390E-001
5.68172900529153e-02, 1.46694298240633e—01,—8.95601010685062e—02

—1.06513517085362e—-02, 3.84781220289973e-01,-1.52342371740312e-01

-3.51054066298352e+00,-1.06120246756420e+01, 7.73539726134143e+01

~3.08732377847749e—04,—7.84579680593054e-03, 9.42454212302451e—03
3.91559033349604e—04,—-1.417119127080276-03,—1.54912985677184e—03

—6.86817110688544e-03,-4.78978743097258e—-03, 5.42078830292932e-02

-9.22650414845936e-03,-1.91300759014271e—-03, 4.88911878824480e-03
5.58766791868520e+02, 3.58437125293079¢+02,—3.61218524693922e+02

—1.93662258370486e+01,-8.31561646953385e+00, 1.16300507258313e+02
1.22805652202321e+01, 5.90487019134714e+01,-6.95995708607861e+01
1.27759656087596e~02, 5.430688981479076-02,—5.35165912948455e-02
05000E-002, 2.70000000000000e+01, 5.00000000000000e+00

2.
5.85276E-010,5.85276E—010,6.37954E-010
1.00000E+000,0.00000E+000,0.00000E+000
1.00000E+000,0.00000E+000,0.00000E+000
0.00000E+000,0.00000E+000,0.00000E+000
0.00000E+000,0.00000E+000,0.00000E+000

:N+ diffusion::

+
+
*

95.43, 3.320000e-04, 4.000000e—10, 1.000000e-08, 0.8
0.8, 0.9132, 0.1016, 0, O

:PMOS PARAMETERS
.MODEL CMOSP PMOS LEVEL=13 VFBO=
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—0.58010006654403e-02,-7.43065463031021e-02, 9.88280862179311e02
7.11565457028002e-01, 0.00000000000000e+00, 0.00000000000000e+00
3.75187146149665e-01, 8.71026738287991e-02,-6.427078858724748-02

~4.687440715995666-02, 4.864167613179696—02,~-2.385615659041756-02
4.35939582747579e-03, 7.46080733679095¢—03,—1.96782252069246e—03
1.76434941025661e+02,1.62276E-001,7.11957E-001
1.426132599405650—-01, 8.330585473818466—-02,—7.913033952796196-02
1.32150786102510e—01,-5.38982951472343e—-02, 1.26058729863510e—02
8.60567635665549¢+00,-4.96427689265064e+00, 8.68094496081161e+00
2.93859809367867e—05,-2.28263811012316e—03,-1.95983622038314e—-04

—2.09992856210145e-03, 1.01983507522258e—03,—1.19943847129812¢-03
9.47268450042707e—03,-1.11008998869429e-02, 1.84585316820463e—02
1.80641321431356e—02,-2.40595235835579e—02, 1.03244273320566e—02
1.75627509264429¢e+02, 1.11021361553790e+02,—3.60327926371022e+01
6.53938354630934e+00, 9.47147721225049e-01, 1.34229902278225e+01
4.99012417708664e—01, 8.16096668479774¢+00,-3.31716999871892e+00

—-1.96961539954092e-02, 2.68823801224208e—02,—4.89793456656283e—03

+2.05000E-002, 2.70000000000000e+01, 5.00000000000000e+00

+ 2.05011E-010,2.05011E-010,7.21151E-010
+ 1.00000E+000,0.00000E+000,0.00000E+000
+ 1.00000E+000,0.00000E+000,0.00000E+000
+ 0.00000E+000,0.00000E+000,0.00000E+000
+ 0.00000E+000,0.00000E+000,0.00000E+000

+At++F A+t

:P+ diffusion::

+128.2, 4.840000e-04, 1.270000e-10, 1.000000e-08, 0.85
1-0.85, 0.5044, 0.1766, 0, O

:METAL LAYER — 1
.MODEL PC_ML1R
+ 5.480000e—02, 2.600000e-05, 0, 0O, O
+ o, 0, 0, 0 O
:METAL LAYER — 2
MODEL PC_ML2 R

+ 3.600000e—-02, 1.300000e-05, 0, 0O, O
+0, 0, 0, 0, O
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