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Abstract

Reentrant arrhythmias are common in a diseased myocardium where regions of normal tissue are interspersed with
inexcitable ones. We hypothesize that reentry may occur due to unidirectional block caused solely by variations in
the pathway geometry of survival tissue in the diseased myocardium. To determine the exclusive role of pathway
geometry, two idealized cases are considered: propagation through narrow paths with parallel and tapered borders.
Borders can be of two types: "zero flux" and diminished excitability. Using the relationship between stationary
speed of wave front propagation and its curvature, it is shown that unidirectional block can occur in narrow paths
with parallel borders with "ziro flux" boundary conditions when the wave leaves the narrow path and emerges into
an open area of appropriate size. In narrow paths with parallel borders of low excitable tissue, unidirectional blocks
are impossible. For this situation, the wave blocked or propagated in both directions inside the pathway depending
on its width, The size of the opening for this case has no effect on the occurance of unidirectional
block.Unidirectional block occurs only when the narrow path has the proper tapered shape. Waves propagating from
the wide end of the pathway die out at narrow end, while waves propagating in the opposite direction are able to
pass through. It is shown for both types of border conditions that the arrangement of several pathways in parallel,
joined by a common space of a vital tissue, permits the appearance of reentry. For this purpose it is necessary that at
least one pathway should have a geometry that provides unidirectional block and that cells inside the channel with
unidirectional block have sufficient time to recover from the previcus excitation. The latter is facilitated by the an-
isotropy properties of heart muscle tissue.

1. Introduction

Reentrant arrthythmias are observed in originally normal hearts after appropriate
application of premature beats (Winfree [1], Ideker et.al[2]) and in diseased tissue
during different stages of the development of myocardium infarction (MI) when
regions of normal tissue are interspersed with ischemic regions (Janse and Wit
[3]). In the latter case, the arrangement of healthy and diseased tissues creates
paths of variied, and some times very complicated, forms. The histology of the sur-
viving areas in the infarct zone (DeBakker et.al. [4]) shows vital muscle bundles
alternated by zones of connective tissue. The surviving bundles vary markedly in
size and shape, and occasionally these bundles merge and bifurcate and abruptly
exit to a region with a big mass of healthy tissue. More - over the borders of these
paths may have different properties depending on the time elapsed after the MI oc-
curance. The cells in these regions may be surrounded by nonexcitable connective
tissue, and by tissue with decreased excitability and significantly increased cou-
pling (gap) resistance. Anisotropy of heart muscle tissue also plays an important



role in the establishment of reentry (Cardinal et.al. [5], Wit [6], Dillon et.al. [7]).

The investigation that forms the subgect of this paper was undertaken to find
the explanation for the induced reentrant arrhythmia in the presence of MI scars
and to relate this phenomenon to pathway geometry. The pathway geometry and
border conditions determine the shape of propagated wave front and its curvature.
The theory of traveling waves provide the relationship between the stationary
speed of wave propagation and the curvature of the wave front. Here we briefly
describe the basic idea used to derive this relationship. In order to facilitate the in-
vestigation, two idealized cases are considered: propagation through narrow paths
with smooth parallel and tapered borders. More complicated pathway
configurations can be considered as various combinations of these two. It is as-
sumed that the dimensions of narrow paths are considerably bigger than that of the
cell. This allows us to limit the study to macroprocesses. The results of microscop-
ic studies are described in Spach et.al [8], Rudy and Quan [9]. Two types of border

conditions are considered in this paper: "zero flux" border condition (%’E—:O, E -

membrane potential, n - direction of the normal to the border ) and borders with
decreased excitability. The case when borders cells have significantly increased
coupling resistance can be approximated by the zero flux condition.

All computer simulation results are combined in a separate report. They
affirm the correctness of the assumptions made in the course of theoretical study
and extend the study to a number of additional cases. These results were obtained
using a previously developed computer simulation approach (Kogan et.al. [10]) us-
ing the the massively parallel computer system: Connection Machine - 2 (CM).
The modified FitzHugh-Nagumo equations which include the action potential
duration restitution properties (Kogan et.al.[11]) are implemented on the CM by
creating a grid of 128x128 nodes. A new numerical integration algorithm pro-
posed in Ashour and Hanna [12] for mildly stiff integration is used to decrease the
overall time of calculation.

2. The dependence of stationary speed of propagation on wave front curva.
ture

The relationship between the speed of 2D stationary wave propagation and front
curvature was obtained first by Zykov [13] and then by Tyson and Keener [14].
Here we remind the reader briefly of these results for isotropic excitable media
with respect to the simplified FH-N model, emphasizing the specific assumptions



for which they are valid; to modify the model for anisotropic tissue and use it to
further investigations of wave propagation along narrow paths.

2.1. Isotropic tissue
For isotropic tissue, the diffusion coefficients are the same in the directions of the

fiber’s longitudinal axis x, and along the transverse axis y: D,=D,=D. Therefore,
the simplified FH-N equations have the form:

*E O0°E. OE
4 = I
%:e(E)(GsE—I) @

Here :
E - transmembrane potential (mV]

I - generalized outward current [ﬂ;]

cm
t - time [msec]
D - diffusion coefficient [i]
¢ - membrane electrical capacity [—“%]
cm

X,y - space coordinates [cm]
F(E) - fast inward current-voltage characteristic represented
as a piecewise linear approximation of a cubic parabola
£(E) - small parameter inversely proportional to the value of
time constant of the slow outward current. The
continuous function &(E) is represented by its piece
wise step approximation
Om™! ]

cm2

G, - const. [

The value of the local current at a given point on the wavefront is determined by
the Laplacian in eqn.(1). The latter can be transformed to another form in order to
introduce explicitly the influence of wavefront curvature K. For this purpose let us
take advantage of well known identity:

az—E+-(—-?—-2-E—=div VE
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Using vector analysis, this identity can be rewritten as :



div VE =(n ,grad (gradE ,n ))+(gradE ,n }div n

where (A,B) denotes the scalar product of vector A and B

Let us introduce the curvilinear coordinate z, oriented in the direction of the
current flow (which is normal to the level lines of E). The scalar products of the
right- hand side of the above equation can be represented in the form:

o’E

(gradE N )=_a_E;(n ,grad (gradE SN ))=-——
gz 822

on, on .
The components of the azlivn:a—"+a—y can be expressed in term of the curvature
X y

K, using the relevant formula of differential geometry. So we finally obtain:
oE 82E=82E xOF
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Here K < 0O for a convex front and K > O for a concave front.

3)

Substituting (3) in (1), we reduce the problem to one dimension:
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In system of eqn. (4), (5) the curvature K in the general case depends on the coor-
dinate z along the current line and time t. For stationary wave propagation, howev-
er, the curvature K is constant along the front and does not change with time. For
this particular case it is possible to simplify eqn. (4,5) further by introducing the
transformation of variables & = z + 0t ; where 8 denotes the propagation velocity,
which for stationary propagation remains constant,

d*E D . dE
L oy e (K F(EYH H 6
D= O K F B, ()
dl _
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Equations (6,7) allow one to determine the stationary propagation velocity 6 of the
front wave segments with a given curvature K. For this purpose, the well-known
and efficient numerical method proposed by Hodgkin and Huxley [15], and by
Nagumo et.al.[16] can be used. This method consists of multiple numerical in-
tegrations of the system (6,7) for a given K and constant initial conditions chosen



near the initial stationary state, but with different values of 0. Depending on the
value of 0, the solution E(&), as § — oo, tends either to + co or -co. The velocity, 6,

0,+0
is determined computationally from the relation G=+—21,where {6 sub +} and {6

sub -} are two closely spared values of © for which the solution diverge to +ee and
-oo respectevely. The results of numerical computations done by this method are
presented in Fig.1 due to Zykov [17] for eqns (6,7) with standard set of parame-
ters.

=05 0 K

Figure 1. Dependence of the stationary wave propagation rate on wave front curva-
ture.

These data manifest the following properties: the stationary propagation velocity
decreases with increases absolute value of negative wave front curvature; there ex-
ists a curvature critical value beyond which propagation becomes impossible; and
the critical curvature and corresponding critical speed of propagation are charac-
teristics of any type of mathematical model and real excitable tissue.

A different approach is based on the reduction of equations (6,7) to a form
similar to that when K = 0. For this purpose let us multiply eqn.(7) by the expres-

sion (9—%1( )% and modify eqn. (6) and (7) as:



9*=(9—%K) ®

e* =e(9—2K )l %)
¢ 6

Using this transformation of eqn. (6,7) we obtain:

2
d’E cB*dE F(E)+H

Ddéz_ d§

e*j’—fe* (G,E-T)

This system does not explicitly contain the curvature K and therefore can be con-
sidered as a system describing rectilinear wave propagation:

0*=0,,(e*) (10)
Assuming that £* is small,
0, (e* )=0,4+0,e* a1
Introducing eqn. (8), (9), and (11) in (10) and solving for 6,

1
e=%(eo+ele+~§-1< }F%[(90+91£+%K )2—4918—12—[(] 2 (12)

0 in eqn. (12) is real if:
(90+ele+%r< )2—4918%K20 (13)

An imaginary value of the velocity 8 means that propagation is impossible. So the
value of curvature K which transforms inequality (13) to an equality is the critical
value of curvature K=K,

Kc,,:—%[(eg—ﬁle)+2\f—60618] (14)

The expression under radical in eqn. (14) is always positive because 6,<0 ( 0 de-
creases with the increase of £ ). Substituting X, in eqn. (12), provide the
corresponding value of the critical propagation velocity:

Bc,, =(00+91£+%Kcr ) é— (15)

Eqn., (12), (14), and (15) give the required relationship between the propagation
velocity and the wave front curvature, but these are in terms of the velocity com-
ponents 8, and 0,. It is extremely difficult, if not impossible, to find the relation-
ships between these velocity components and the parameters of most mathemati-



cal models of cardiac cells. An exception is the simplified FN model for which ap-
proximated explicit expressions were found [Zykov 1987] to be:

Ve
8=V 45 (16)
Xl 20, 0Z(1-E
0,= ——[1-3E————— 2"’)} an
4(1— :h)Gfeo nt l
Here: d=———i~t~—-, A=V 4G, -0
In(z—~1)

th

The results of the calculation of 6 (K) for the FN model with standard parameters
values obtained by Zykov [17] from eqn. (12) and using egn. (16) and (17) are
shown as dots in Fig. 1. These data confirmed that analytical estimates give satis-
factory accuracy for the FN simplified model.

2.2 Anisotropic tissue

In the case of anisotropic tissue such as heart muscle tissue in a normal state, the
ratio of diffusion coefficients in the directions of fiber transverse axis to the fiber
longitudinal axis is in the range 1:2 to 1:10. For a diseased myocardium it can
reach values of 1:20 and greater. If x is coincides with the longitudinal axis,
D,>D,. The FN equestions for this case take the form

o’k Dy 3’6 OE
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Introducing the transformation y=y* ‘\/D—y, one can reduce this case to:
X

’E  9°E . JE

(o7 o2 e SF (EY -, (18)
-g{—=e(E)(GSE—I) (19)

Therefore, all the results described in 2.1 can be applied for this as well. The
differences from the isotropic case lie in the speed of propagation in the x and y
directions and the form of stationary propagated waves. For example, a rectilinear



Dy .
. When the excita-
DI

tion stimulus is applied to a small circular area, the generating wave has an ellipti-
cal form instead of a circular form as in isotropic tissue. As shown below, the an-
isotropy of the restricted area of the tissue introduces new and very important pro-
perties for propagation along narrow paths.

wave will propagate in y direction with a velocity 6, =9x‘\/

3. The border tissue properties and the form of wave front inside the narrow
paths

The narrow paths border tissue properties, as already mentioned, can be divided
into three groups: connective tissue with zero current flow through it (zero flux
boundary condition for PDE), low excitable tissue, and in a limit case fully unex-
citable tissue. The last two properties of border tissue can be associated with
patchy infarct and its further develooment in the course of ischemia. They can be
interpreted as an increase of the cell’s threshold level. The properties of tissue
with high coupling or gap resistance developed in the presence of ischemia can, as
a first approximation, be reduced to the first type of border tissue properties.

The form of the wave front can be defined as a function o=f (s), where o is
the angle of the tangent of the front of the wave at a point s taken on the chosen
equipotential E = const. This angle is measured in respect to the Cartesian coordi-
nate x (see Fig. 2) and can be expressed in terms of the components of grad E in

the direction of current flow, which is normal to the front of the wave at all points.

Therefore ran a=i€/a—E We now apply these results to estimate the form of the

dx ay
wave front and its curvature inside the narrow paths.

For the border tissue of zero flux type, the component of grad E along the y

axis %})%:O at all points on the border, and the angle of the tangent to the wave front

at all points of the border must be ®/2 . The wave front is rectilinear (see Fig. 3a)
with a curvature K = 0.

For the case when the borders of narrow paths consist of unexcitable tissue,
it is possible to assume that the cells of such tissue are held at the rest potential so

that the grad E component - %‘f— is equal zero at all points of the border, and angle

o equals zero at that points. Inside the narrow path this component of grad E and
the angle o increase until they reach maximum values: grad E and o = /2 at the



midpoint of wave front. It is therefore reasonable to approximate the wave front in-
side a narrow path as a semi-circle with a radius equal to W/2 and a curvature K=

2/W.

wave front

Figure 2. Wave front shape and the components of grad E

When the excitability of the border tissue has some intermediate values, the angle
of tangent at the border points is determined by the ratio of the corresponding com-
ponents of grad E. Because the path is narrow, we can approximate the wave front
as a part of a circle with radius R,=W /2cosa, and curvature K,=1/R,,

2 2 1 oF oE
K, == oS0y, =— ———=} 1g Oy =(=—)p /(=) 20)
Similarly, for any point "i" on the wave front the curvature is found to be
2 2 1 oE . , JF
K;=——costo;=——= stg o =(—=—); (=), . @n
i Wi i Wi 1+:gza‘- 8 ox i ay i
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Figure 3. Shapes of wave fronts inside narrow paths with border tissue of different
properties. a. Rectilinear wave front inside the narrow path with border tissue of
"zero flux" type, K = 0. b. Semicircular wavefront inside narrow path with unexcit-

able border tissue, K = W/2. c. Wave front inside narrow path with low excitable
1
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border tissue, K;=
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Fig. 3 a,b,c. show all the geometric constructions which were used to derive these
formulae. The grad E components necessary to determine the angle «; can be ob-
tained during computer simulation for a particular tissue model at any points on the
wave front.

4. Waves propagation along narrow paths with zero flux border tissue

Undamped wave propagation can be initiated by the application of above-threshold
excitation to one end of the infinite length path, or by application of two excitation
stimuli at appropriately chosen times and sites of application for closed loop
configurations (Quan and Rudy [18]). Due to the peculiarity of the boundary con-
ditions, the front of the propagated waves must be perpendicular to the borders at
all points. Therefore, the waves with rectilinear fronts will propagate with constant
velocities 6,, independent of the widths of the narrow paths. In the limit, when the
width of the path is equal to the diameter of the cell we come to the case of purely
one dimensional propagation, which has been considered in large number of a pub-
lications.

The case when the widths of narrow paths increase smoothly or abruptly at
the end opposite to that of the excitation application ( see Fig. 4a ) is of a special
interest. By changing the value of the angle B from zero to & /2, it is possible to
realize a continuous transfer from a narrow path with parallel borders to tapered
shape borders with expanding openings. The limit when B = m / 2 corresponds to
the abrupt opening of the narrow path to the unrestricted righthalf - plane of the
normal excitable tissue. Since the propagated wave front must be perpendicular to
the borders at all points, one can come to the conclusion that the wave front at the
points "a-a" of the expanding borders can be considered as a first approximation to
be arcs of the circles. The simple geometric drawing, shown on Fig. 4a, gives:

R=W/2sinB or K=1/R=2sinf}/W (22)

Here: R - radius of wave front at the pathway opening;

W - width of the pathway with parallel borders;

B - angle of border inclination;

K - curvature of the wave front
Equation (22) specifies a family of sinusoidal curves of amplitude A = 2/W and is
correct for all points "x-x" on the border of a tapered opening. It is necessary only
to substitute in egn. (22) the value of W at the points "x-x" (see Fig. 4a).
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As discussed above there exists a critical value of wave front curvature above
which propagation becomes impossible, i.e there is a propagation block. Physically
this means that the excited cells ( source ) do not transmit enough electrical current
to the neighboring nonexcited cells  sink ) for them to reach the excitation thres-
hold value. This critical value depends on the type of the selected cell model and
its parameters values. The direct measurement of critical wave curvature is very
difficult in physiological experiments. Computer simulation requires a compara-
tively large amount of calculations which grow with the complexity of the model.
Eqn. (22) permits us to measure the width of the narrow pathway instead of the
wave front curvature in order to obtain the critical value of front curvature. Indeed,
for = /2, K =2/W. By changing the width of the narrow pathway during
computer simulation, one can find the W=W,_, at which propagation through the
opening becomes impossible. This approach can be used for different types of the
mathematical models, for tissue cultures and pieces of real tissue. The similarity of
the results obtained using real tissue and the mathematical model can serve as an
indication of the fidelity of this model in reproducing the propagation properties.

The values for Kcr obtained by Zykov [17] for the FN model using an ap-
proximate formula and repeated solution of the original equation (Ker= - 0.79)
and that using our approach (Kcr = - 0.83) are in close agreement.

Let us consider the configuration shown on Fig. 4b where W 1is chosen so
that W = Wer and B = 7t / 2 (left opening). When the wave propagates from left to
right, its front curvature remains equal to zero until it reaches the tapered opening .
Here the curvature abruptly changes from K =0 to K = Kecr sin B so the wave
passes in this direction without obstacle. When wave is initiated to propagate from
right to left (Fig. 4b) its front takes on a concave form in the tapered pathway, and
the curvature changes from some positive value to zero at the entrance of the nar-
row path. At the left opening with 8 = m / 2, the curvature abruptly changes from K
= 0 to K = Ker, and block of propagation occurs. This is a case of unidirectional
block.

The addition of another pathway in parallel with the width dimension, pro-
vided K < Kecr (see Fig. 5), makes reentry possible. When the surviving tissue has
APD restitution properties, reentry creation requires an additional time delay
between the propagation through a pathway with unidirectional block and a paral-
lel pathway without block. This condition can be realized naturally by the anisotro-
py of the tissue and an appropriate distance between the pathways. Indeed, Cardi-
nal et.al. [5] have shown that the speed of propagation in the longitudinal fiber
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direction is 8 to 10 times greater than in the transverse direction. Therefore, wave
propagation in the transverse direction introduces an additional time delay. This
occurs when the longitudinal axes of excitable tissue inside the narrow path coin-
cides with that of the pathway. The latter is valid for the majority of real situations
(Janse and Wit [3]). The anisotropy decreases also the critical width of the narrow
path which provides the unidirectional block.

]
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Figure 5. Reentry in tissue with two channels: one with unidirectional block and
the other capable of passing the wave in both directions. The border tissue is of
"zero flux" type

This effect of anisotropy can be explained by the decrease of current consumption
in the transversal direction at the moment when the wave exits the narrow path to
the open space of survival tissue. In comparison with the case of isotropic tissue,
this leads to a decrease of the wave front curvature outside the narrow pathway.
Thus, the anisotropy of the tissue facilitates reentry in the presence of narrow paths
with unidirectional block while pronounced APD restitution has the opposite ef-
fect.
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5. Wave propagation along narrow paths with border formed by low excit-
able tissue

Let us consider two cases: one when the border tissue is fully unexcitable and
another when the excitability of the border tissue has a low value. It was shown
earlier that the front of the wave inside the narrow path with unexcitable border tis-
sue can be estimated as a semicircle of radius R = W/2 and curvature K = 2/W. If
the width of the narrow path is W>W,,, the waves propagate in both directions. If
W<Ww.,,, the waves die out inside the channel independently of the direction of pro-
-pagation. Therefore, we conclude that in narrow pathways with unexcitable paral-
lel border tissue unidirectional block is impossible.

Unidirectional block can occur only when the narrow path has the proper ta-
pered shape. Waves propagated from wide end of the tapered channel die out at the
narrow end while waves propagated in opposite direction are able to pass
through.t This can be explained by the increase of wave front curvature (Kogan
et.al. [20]) along the tapered channel toward the narrow end Fig. 6.
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Figure 6. Wave propagation through tapered pathways with borders of low excit-
able tissue.

If the curvature at this end reaches the critical value, propagation becomes impos-
sible. When a wave propagates toward the wide end of the channel, its curvature

2 cosP. If this value

n

changes from zero (rectilinear front) to the maximal value K=

+ This phenomenon was observed in course of computer simulation by A. Pang and B. Billett see Pang [19].
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is chosen so that K <X, , the wave is able to propagate.

The same reasoning can be applied to the case of border tissue with low ex-
citability. Unidirectional block is possible only in a tapered pathway with properly
chosen geometry. The expression for curvature at any border points "i" inside the
channel (Fig. 7) has a more complicated form:

1

cosQ (23)
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Figure 7. Geometry for the determination the curvature of wave fronts at the bord-
ers of low excitable tissue in tapered pathways.

The unidirectional propagation through tapered pathway for both cases of low ex-
citability can be also explained physically in terms of source and sink. However,
the wave front curvature concept has the additional advantage of establishing the
relationship between the geometry of pathway and internal wave propagation.
Reentry can be achieved by the addition, in parallel to the narrow path with uni-
directional block, of at least one channel of any form that provide bidirectional or
unidirectional propagation (Fig. 8a,b).

APD restitution properties of the tissue inside the narrow path tend to inhibit
reentry, while anisotropy of the survival tissue introduces the required time delay
for the reentering wave, which provides complete recovery from the previous exci-
tation of the tissue inside the narrow path.
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Figure 8. Reentry in tapered pathways with low excitable border tissue: a. Uni-
directional block in one channel, b, Unidirectional block in both channels.

The tissue anisotropy also decreases the grad E component in the direction
transversal to the fiber and increases it in the longitudinal direction. This increases
the curvature of the wave front in the longitudinal direction creating difficulties for
the reentering wave to penetrate the narrow end of tapered channel. Therefore, for
the case of narrow paths with low excitable border tissue, tissue anisotropy under
certain conditions produces a duatl effect on reentry - to facilitate and inhibit stmul-
taneously.

Summary of results

1. Narrow paths with zero flux border tissue

- Inside infinite length narrow paths with parallel borders, waves propagate with
rectilinear front normal to the borders. The conduction velocity does not depend
on the width or the length of the pathway. Wave front curvature is everywhere
zZero.

- When these pathways have a finite length and an opening on both of its ends, the
wave propagates with a rectilinear front only inside the part of the pathway with
parallel borders. The wave front and its curvature changes when passing the open-
ing in both directions. At the points at which the curvature reaches the critical
value, conduction block occurs. The relationship between the front curvature K
and the pathway geometry (opening angle B , width W) is K =2 sin B /W,
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2 . Narrow pathways with borders formed of low excitable tissue

- In the limit, when parallel borders are fully unexcitable, the wave propagates or is
blocked in both directions as determined by the channel width. The wave front cur-
vature is approximately K = 2/W.

- Unidirectional block for low excitable border tissue, is possible only for narrow
tapered paths. Under certain conditions, impulses entering from the narrow end of
the tapered channel propagate, while impulses entering from the wide end die out.

- For intermediate values of border tissue excitability, the curvature of the wave
front inside the tapered channel can be estimated using eqn. (23).

3. Role of APD restitution and tissue anisotropy

- APD restitution properties tend to inhibit reentry. For reentry to occur an in-
creased time delay for wave propagation in the reentry loop is required.

- For narrow paths with zero flux border tissue, tissue anisotropy greatly facilitates
the development of reentry (introduces natural delay) and at the same time expands
the range of path width (in the direction of smaller width) for which unidirectional
block and reentry are possible.

- For narrow paths with low excitable tissue, the tissue anisotropy produces a dual
effect on reentry occurance (to facilitate and inhibit simultaneously).

Conclusion

We found that the geometry and border conditions for narrow pathways inside re-
gions of homogeneous tissue have several important effects on impulse propaga-
tion:

1. In homogeneous tissue, pathway geometry alone can lead to unidirectional
block and slow conduction velocity.

2. Border conditions markedly alter the effects of the pathway geometry.

3. Reentry can occur entirely due to the effects of pathway geometry and bord-
er conditions provided the following necessary and sufficient conditions are
fulfilled:
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-- Existence of at least one channel with unidirectional block of
wave propagation

-- Existence of at least one additional channel with unidirectional
or bidirectional wave propagation connected in parallel with the first one
by a region of vital tissue

-- The existence of time delay in propagation through a vital tissue
in the direction normal to the longitudinal fiber axis

4, The concept of wave front curvature used in the present study allows us to
obtain the quantitative relationships between the wave front curvature inside
narrow pathways, the geometry of the pathways and their border properties.

In future studies we will extend these results to the cases of rough borders and 3-D
narrow paths.
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