Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

OPTIMISTIC ALGORITHMS FOR DISTRIBUTED TRANPARENT
PROCESS REPLICATION

Arthur Paul Goldberg July 1991
CSD-910050

UNIVERSITY OF CALIFORNIA
Los Angeles

Optimistic Algorithms for Distributed Transparent Process Replication

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Computer Science

by

Arthur Paul Goldberg

1991

© Copyright by
Arthur Paul Goldberg
1991

The dissertation of Arthur Paul Goldberg is approved.

Voo Hcomas

Nathaniel Grossmau

Wsos O Pibe
/ Kirby Baker
BG4k

(s 2.5
= 7

Jack Carlvle

-

Mario Gerla

el)

David Rf%rson, Committee Chair

University of California, Los Angeles

1991

i

I dedicate my dissertation to my parents, Alan and Barbara, and to my two

loves, Meira Weinzweig and La Meira.

i

TABLE OF CONTENTS

1 Introduction. 1
1.1 Purpose and goals of process replication 2
1.2 Optimism, 7
1.3 Objectives of this dissertation 8
1.4 Differences from related work | 9

2 Related Work on Replication 11
21 Introduction 11
2.2 Replication to improve performance 11
2.3 Replication to increase availability 14

3 Our Model of Distributed Computation 17
3.1 Assumptions about the environment 21

4 Architecture of Process Replication Mechanisms 22
4.1 System architecture 22
4.2 The basic structure of the replication mechanism 23
43 READ and WRITEmessages 24

4.3.1 Distinguishing READ messages from WRITE messages 24
4.3.2 Correctness of replication algorithms 27
4.3.3 Replicationerrors 29
4.3.4 Replication synchronization strategies 30
44 Process toreplicamapping 34

5 Pessimistic Process Replication 36

5.1 Pseudocode implementation of pessimistic replication mechanism . 42
5.1.1 Livemess 47
9.2 Performance 49

6 Replicating the Processes of Virtual Time Applications 50
6.1 Virtwal Time, 50
6.2 Replicating VT processes 51
6.3 TimeWarp 57

7 Virtual Time Synchronization of Executions of Distributed Ap-

plications with Replicated Processes 60
7.1 Introduction, 60
7.2 Sender assignment of event times to messages, . 60

v

7.3 Architecture, 61
7.4 Incorporating replication into Time Warp. 65
7.5 Pseudocode that incorporates replication into Time Warp 69
7.5.1 Distinct event times at areplica 73
7.5.2 Antimessages and annihilation 74
7.5.3 Commitment and termination 75
7.5.4 Deterministicreplay 76
76 Conclusions 7
8 A Dependency-Tracked Mechanism for Optimistic Process Repli-
cation 78
81 Motivation 78
8.2 Principlesofoptimism 79
8.3 Tracking dependencies 80
84 Updateprotocol 84
841 Anexample 84
8.4.2 Committinganupdate 86
843 Rollback 87
8.5 The replica historymanager 91
8.6 Application interfaceservices 95
8.6.1 Sendandoutput 95
8.6.2 Receive and delivering messages to a replica 95
8.7 Replication system interface services 96
8.7.1 Handling READ, WRITE and CONSISTENCY messages 97
8.7.2 Handling COORDINATE and DEPENDENCIES messages 97
8.7.3 Handling COMMIT messages 98
8.7.4 Handling ROLLBACK messages 99
8.7.5 Detecting dependency loops 100
8.8 Correctnessissues 101
8.8.1 Distinguishing among the multiple update protocols of a
WRITE e e e e e e e e e e 101
8.8.2 Replay and determinism 101
8.83 Correctnessproof 102
8.9 Important optimizations 103
8.9.1 Targeted routing of ROLLBACK and COMMIT messages . . . 103
8.9.2 Distribution of primary replica functions 104
8.9.3 Distributed sequence number creation. 105
8.9.4 Pseudocode for distributed sequence number creation 109
89.5 Correctness 111
8.9.6 Complexity 111
8.10 Performance characteristics 112

9 Transparent Read and Write Message Classification 113

9.1 Other uses of state change detection. 114
9.2 Whatisastate?. 115
9.3 State change detection mechanisms 115
9.3.1 Hardware assisted state change detection 116
9.3.2 Compilation to code that automatically detects state changes 119
9.4 Comparison of state detection mechanisms 120
9.5 Replication with message classification 121
9.5.1 Message classification integrated into RTW 122

9.5.2 Message classification integrated into dependency tracked
replication L L L 123
9.5.3 Message classification integrated into pessimistic replication 124
96 Conclusions 125
10 Performance of Process Replication 127
10.1 Speedup available from replication. 127
10.1.1 Tandem application. 128
10.1.2 Client-server application 131
10.2 Comparative performance of replication mechanisms. 136
10.2.1 Comparison of pessimistic and optimistic 136

10.2.2 Comparison of RTW and dependency-tracked process repli-
catlom 136
10.3 Conclusions 141
11 Conclusions 143
11.1 Faturework 143
Bibliography, 145

vl

1.1
1.2
1.3
14
1.5

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3
5.4
5.9
5.6
5.7

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2
7.3
7.4
7.5
7.6

LIST OF FIGURES

A four process application 3
Replicas placed twotoa processor 3
A small execution of a four process application 4
A small execution with a replicated bottleneck process 5
A small execution with a writemessage 5
Template for an application processscode 18
Communicationterms 20
A set of messages update a replicated process 25
Replication messagefields,. 26
Write-write (W-W)error 29
Write-read (W-W)error 30
Application level of example computation with C-D error 31
C-DEITOT. i i it e it et e e et e e e e e et e 31
LoopinC-Derror, 32
Message execution timings of optimistic and pessimistic mechanisms 33
Pessimistic process replication architecture 36
Update protocol 40
Data types for process replication mechanisms 42
Replication code state, 43
Replica interfacecalls 45
Code executed on arrival of a user messagem 46
Code executed on arrival of a system messagem 48
A virtual timeevent message 52
VT process replication architecture 52
Onereplica 54
A READ message sent to a replicated VT process. 55
A WRITE message is sent to a replicated VT process 56
Pseudocode for the replication layer 58
Architecture of a replicated application on top of Time Warp 62
Data typedefinitions, 62
Pseudocode for replication on top of Time Warp 63
Message M causes rollback at process S 65
Message RVT equals real-time of message arrival 66
Replication time warp (RTW) architecture 67

vii

7.7 Replication time warp (RTW) architecture (detail) 69

78 RTWdatatypes 70
7.9 Pseudocode for RTW ‘front end’ for Time Warp 71
7.10 Pseudocode for RTW arriving message handler 72
8.1 Optimistic process replication system architecture 81
8.2 Dependency trackingexample 83
8.3 Optimisticprotocol L 85
8.4 A dependency loop in the optimistic protocol 88
8.5 Dependency loop detected 90
8.6 Dependency loop e e e e e e e e e e e 90
8.7 Commit afterrollback 91
8.8 Contents of messages in the IMQ and states inthe SQ 94
8.9 Sequence number protocol messages 106
8.10 SNQentry 107
8.11 A sequence number protocol execution history 108
9.1 Hardware assisted state change detection code fragments 118
9.2 Dependency tracked replication with message classification 124
9.3 Pessimistic replication with message classification 126
10.1 Tandem application 128
10.2 Placement of tandem replicas on processors 130
10.3 Speedup of replicated tandem application 130
10.4 Replicas of a server and its clientsonaring 132
10.5 Replicas of a server and its clients on a fully connected network . . 133
10.6 Speedup of replicated client-server application 134
10.7 Time Warp initialrollbacks, 138
10.8 Falsedependency 139
10.9 Dependency-tracked initial rollbacks. 140

viil

ACKNOWLEDGEMENTS

David R. Jefferson has been my advisor for the last 7 years at UCLA, guiding me
patiently forward. I thank David for giving his time generously and teaching me
how to do research.

I thank the other members of my committee for their time. D. Stott Parker,
Algirdas Avizienis and Rosser Nelson were on the qualifying oral committee. I
thank Mario Gerla, Jack Carlyle and Nathaniel Grossman for attending my final
defense on short notice. And I thank Kirby Baker for remembering me from one
presentation to the next!

Shaula Yemini's pestering helped propel this dissertation towards completion.
I appreciate her decision to have IBM pay my wages during the final stages of this
work.

My physicians at the UCLA IBD clinic, especially Dr. Stephan Targan, have
played a major role in helping me improve my health so I could finish this work.
Dr. Peter Wolfe's advise has also been helpful.

Several friends and colleagues, including David Bacon, Peter Reiher, Kong Li
and Sung Hyun Cho have read parts of this dissertation and provided helpful
comments. Thomas Marlowe read text and provided comments more quickly than
a faculty member is allowed by law.

I thank Jaime Moreno, Frank Schaffa and Miquel Huguet for responding to my

impatient questions about WTRX typesetting.

ix

Rob Strom and David Bacon provided helpful comments in discussions about
the dependency-tracked replication in Chapter 8.

Richard and Irina Sher have generously allowed me to camp on their sofa while
I presented my final oral and filed this dissertation. I wish them many healthy and
happy children. Thank you, Malcolm Gordon, for the sleeping bag.

David Rapkin deserves profound thanks fo; helping me through the dark times,
and endlessly reminding me that there was light to be found if I looked hard enough.

Verra Morgan brought the UCLA bureaucracy to its knees so that I could
graduate. She'’s been a source of administrative help, wise advice and enriching
friendship.

My family and friends have always stood by my side.

[thank the Torfs. Andy and Mike would have been thrilled that I'm finally no
longer a student. Ady’s excitement at my accomplishments always enhances my
pleasure in them. I thank Lois for having so much faith that I would finish my
degree that she presented me a graduation gift in advance.

I thank my brother Bennett and sisters Anne and Marcia for their support.
Anne, my California sibling, has often provided shelter from the storm.

For over 3 decades my parents have encouraged me to do what I want, but do
it as well as I can. Without their loving encouragement I wouldn’t be finishing my
degree today.

And I thank Meira for loving me, and being uncontrollably thrilled at my

achievement. Tu eres mi alma, too.

VITA

August 17, 1955 Born, Boston, Massachusetts
1977 A.B. Harvard College, Magna cum laude, Astrophysics
1984 MS, UCLA, Computer Science
1986 - 1989 IBM Graduate Student Fellowship
1989 - 1991 RSM, IBM Waison Research Lab
PUBLICATIONS

Arthur P. Goldberg. An Object-Oriented Simulation of Pool Ball Motion. UCLA
Masters Thesis, 1984.

- -, Ajet Gopal, Kong Li, Robert E. Strom, and David F. Bacon. Transparent re-
covery of mach applications. In First USENIX Mach Workshop, Burlington,
VT, October 1990.

- -, Ajei Gopal, Andy Lowry, and Rob Strom. Restoring consistent global states of
distributed computations. In Proceedings of the Workshop on Parallel and
Distributed Debugging, Santa Cruz, CA, May 1991.

- - and David Jefferson. Transparent process cloning: A tool for load management
of distributed systems. In Proceedings of 1987 International Conference on
Parallel Processing, pages 728 - - 734, August 1987.

- -, Steve Lavenberg, and Gerald J. Popek. A Verified Distributed System Perfor-
mance Model of Locus. In Proceedings of the 1988 Sigmetrics Conference of
Fvaluation of Computer System Performance, Seattle Wash., 1983.

Andy Lowry, James R. Russell, and Arthur P. Goldberg. Optimistic failure re-
covery for very large networks. In Proceedings of the Symposium on Reliable
Distributed Systems, Pisa, Italy, September 1991.

Robert E. Strom, David F. Bacon, Arthur P. Goldberg, Andy Lowry, Daniel Yellin,
and Shaula Alexander Yemini. Hermes: A Language for Distributed Com-
puting. Prentice Hall, January 1991.

ABSTRACT OF THE DISSERTATION

Optimistic Algorithms for Distributed Transparent Process Replication
by

Arthur Paul Goldberg
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1991

Professor David R. Jefferson, Chair

Process replication is an operating system function that can represent any se-
quential process in a distributed application as a set of concurrently executing
instances, called replicas. The purpose of process replication is to speed up the
execution of distributed applications. Suppose an application contains a bottleneck
process—a process whose speedup would speedup the entire application. If most
messages executed by a bottleneck process do not modify its local state, then ex-
ecuting multiple replicas of the bottleneck can speedup an application’s execution
in two ways. First, communication delays can be reduced by locating the replicas
near processes communicating with the bottleneck. Second, parallelism can be
increased by executing the replicas concurrently on multiple processors.

To be convenient process replication must be transpareni—execution of a mes-
sage that modifies a replicated process’s state must appear to the application to

simultaneously modify the states of all the process’s replicas. Implementing repli-

cation is challenging because it is difficult to achieve both transparency and good
performance.

We present several optimistic algorithms for transparent process replication.
The algorithms are optimistic in that they “guess” that a message whose execution
modifies a replica’s state can be executed before applying the modification to
the process’ other replicas, without having the application observe the delayed
consistency. If the guess is wrong then execution of the message may have to
be undone. However, if the probability the guess is correct is sufficiently high
then the advantages of executing parts of a computation earlier will outweigh
the cost of support for undo plus the cost of undoing incorrect executions. We
present two optimistic replication algorithms. The first modifies the Time Warp
optimistic distributed simulation system into a replication mechanism. The second
implements a dependency-tracked mechanism based on the Optimistic Recovery
fault-tolerance algorithm. We present designs for these algorithms, and discussions

of their performance.

xiii

CHAPTER 1

Introduction

Communications networks connecting distributed systems, such as Ethernet,
AppleTalk, DECnet, NetLan, SNA, IBM’s token ring, the internet and NSFNet,
have become widely used in the last decade. Distributed applications, such as
network routing protocols, electronic mail, banking systems, network management
tools, electronic bulletin boards, distributed simulation, software development en-
vironments, and health-care systems, have taken advantage of the increased com-
munication.

To provide good service to interactive users these applications must perform
well. One characteristic shared by these applications is frequent and distributed
use of important data and services, such as routing tables in routing protocols,
distribution lists in electronic mail systems, environmental state in distributed
simulations, and documentation and programs in software development environ-
ments. To improve performance these applications often replicate the files storing
important data, distributing copies of the files to many of the computers running
parts of the application. For example, routing tables, documentation and pro-
grams are usually widely replicated. Without replication, access to the files could
become a bottleneck and slow down the computation. The frequency of access
would overburden the computer storing the file, and the widely distributed sources
of the accesses would cause excessive communication delays.

In this dissertation we extend this concept of replication in several directions:

¢ We replicate processes, rather than files, so that distributed applications
composed of communicating processes can obtain the performance benefits

of replication.

o We embed the functionality of replication in the distributed operating sys-

tem, so that it need not be reimplemented in each application.

e We design algorithms that manage a replicated process so that the applica-
tion cannot detect the replication and can be written as if the process were

not replicated.

1.1 Purpose and goals of process replication

We assume that the operating system implements an interface which executes
application programs composed of sets of communicating processes. From the
programmer’s point of view each process consists of a set of variables accessible only
to the process (the process's state) and a sequential program which describes the
process’s behavior. Processes communicate with one another and external systems
only by sending and receiving messages. The operating system reliably transmits
a message from the process sending it to the receiving process designated by the
sender. See [SY83, PS83, BS89, Hoa81, Par72| for a more thorough discussion of
these ideas.

This dissertation proposes that process replication be used to improve the per-
formance of distributed application programs written in this process-model ab-
straction. We assume these applications are long-lived programs composed of
possibly large numbers of communicating processes. These application programs
run on distributed computer systems composed of a potentially large number of
processors interconnected by communications networks.

This dissertation presents algorithms for transparent process replication, a new
technique for speeding up the execution of distributed application programs. A
distributed multi-processor operating system can replicate the bottleneck processes
of a multi-process application, and position the replicas on processors to reduce
the application program’s communication delays and increase its parallelism. The

replication algorithms we describe are transparent to any application whose pro-

cesses are replicated; the operating system makes the collective behavior of the
replicas of a replicated process logically identical to the behavior of a single instance
of the process, so that no executing process or replica can detect the replication of
any process.

Replicating a bottleneck process can improve the performance of a distributed
application if a sufficient fraction of messages received by the process do not modify
its state. The simplest example is a read-only server process, one that accepts
request messages, performs some computation and/or data retrieval, and sends a
reply, all with no net change in the server process’s internal state.

Replicating such a process can decrease the communications distances between
the process and its communicants. For example, consider an application with 4
processes and its communications patterns as shown schematically in Figure 1.1.

If this application runs on a system that limits two processes to a processor then

Figure 1.1: A four process application

B must communicate remotely with at least 2 processes. However, if B executes

as 3 replicas, as in Figure 1.2, then it can communicate locally with each of the

B, Q| BR|B; S

Figure 1.2: Replicas placed two to a processor

other three processes.

In addition, if a process like B becomes a bottleneck in a computation because
it does not have enough computing resources to execute the messages sent to it then
performance can be improved by representing the process by multiple replicas so
that several requests may be served in parallel by replicas on separate processors.

Figure 1.3 shows a tiny execution history of the application shown in Figure 1.1

Figure 1.3: A small execution of a four process application

in which the communication delay between processes is fixed at 0.5 time units and
the execution time of a message is 2.0 time units. B is a central server for the other
processes, which repeatedly send it requests. (The solid line indicates a message
sent from P to B; the execution of the message by B; and the reply message from
B back to P. The dashed line indicates the same communication with @, and
the dotted line the communication with R.) B executes the messages from P, @
and R sequentially, so it takes 7.0 time units for the computation to complete. If
B 1s a read-only process then a replicated execution with the same performance
parameters as Figure 1.3 could complete the same execution in only 3 time units,
as shown in Figure 1.4.

Not only can replicating a read-only process speed up an application; it often
may pay to replicate processes that are not read-only as long as the cost of keeping

the replicas consistent is offset by increased parallelism and shorter communica-

-
-~
e
-
LY

Figure 1.4: A small execution with a replicated bottleneck process

tion delays. For example, Figure 1.5 shows another replicated execution of the
unreplicated program in Figure 1.3 in which the message from Q to B causes a
change of state at B. Therefore the message is executed at all three replicas of B
to cause the same state change everywhere. Figure 1.3 shows the message being

executed last at each replica. This execution completes in 4.5 time units, which is

-
.
el] g

.
Y
.
.
.
[}
»
e LT

Figure 1.5: A small execution with a write message

still faster than the 7.0 time units execution of the unreplicated computation.
The fundamental challenge to implementing process replication in an operating
system is controlling the replicas so that the application program cannot observe

any replication. In effect, the operating system manages replicas to create the

illusion that all replicas of a process have the same state at all times, so com-
munication with one replica of a process is equivalent to communication with any
other. Since replicas execute on different processors, the operating system must
create this illusion without actually requiring synchronous replica execution.

The replication mechanism must classify messages into two kinds—READ mes-
sages and WRITE messages. An input message received by a replica of a process
is a READ message if executing the message does not cause a net change in the
replica’s state; otherwise it is a WRITE message. An input message can be a READ
message even if its receiver sends messages in response, and even if the receiver’s
state temporarily changes—as long as any changes are reversed before the next
message arrives. Note that being a READ message is not a property of the mes-
sage alone, but of its interaction with its receiver. Whether an input message is a
READ message depends on the state of the receiver when the message arrives; the
same message received by the same process in a different state may not be a READ
message.

Unless messages are labeled as READ or WRITE messages by the application,
it is not generally possible to determine whether a message is a READ message
until after it has been executed; our replication mechanism classifies messages by
observing their executions (see Chapter 9).

Severe bottleneck processes will be represented by more replicas than other
processes, while processes that are not bottlenecks will not be replicated. The load
management policy system component decides the number of replicas of a process
and the placement of those replicas on processors. In this work we concentrate on
the algorithms for a process replication system; we ignore the policy issues about

when and where to place replicas.

.

1.2 Optimism

A new style of distributed algorithm has emerged recently [Jef85, SY85, SY87].
Optimistic protocols are a general approach to speeding up distributed algorithms.
An opportunity for optimistic execution arises whenever an algorithm must decide
how to proceed, but the information on which to base the decision is not locally
available. The usual—pessimistic—approach is to block, waiting until the infor-
mation is collected. The optimistic approach guesses the information and proceeds
with the computation.

For example, consider a login program that verifies a password and then starts
program X. A pessimistic implementation will wait until the password is verified
before starting X. An optimistic implementation would guess that the password
will be correct and start X in parallel with verification of the password.

If the guess turns out to have been correct then the program will have executed
more quickly. If the guess was incorrect then the computation that depended on
the guess will have to be undone. Optimistic algorithms must provide general
undo and commit support so that appropriate action can be taken when the cor-
rectness of a guess is determined. An optimistic algorithm can run faster than
a pessimistic algorithm that solves the same problem if guesses are correct with
high enough probability that the advantages of executing parts of a computation
earlier outweigh the cost of support for undo plus the cost of undoing incorrect
executions.

We present optimistic protocols for process replication. Optimism iz a good
strategy to use for process replication because a guess can be made which will
often be correct and will avoid considerable blocking. Consider a WRITE message
m that arrives at a replica of process P. A pessimistic replication algorithm must
obtain a consensus among all the replicas of P before executing m. Our opti-
mistic algorithms guess that the consensus can be obtained, and execute m before

communicating with the other replicas.

Two styles of optimistic computations have been extensively explored. Time
Warp [JBW*87] optimistically executes Virtual Time [Jef85] programs like dis-
tributed discrete event simulations. In the Virtual Time model an application
indicates the relative order in which a message should be executed by attaching
an event fime timestamp to each message. The semantics of Virtual Time exe-
cutes the messages in a computation in the order of their event times. Time Warp
executed Virtual Time programs optimistically, achieving Virtual Time semantics
without actually executing messages in event time order. Time Warp implemen-
tations have demonstrated impressive speedups relative to sequential simulation
(WHF*89, Fuj88a] through the parallel execution of Virtual Time programs.

The family of optimistic algorithms presented by Strom and his co-workers
[SY85, YSB87, SY87, ABG*91] track a partial order in the execution history of a
computation. The partial order is determined by the computation’s communication
pattern. Consider events A and B in the computation. Event A follows event B
in the partial order if and only if data created at A can be communicated to B
by being stored in processes’ states and transmitted in messages. This is called
dependency tracking. These algorithms have been applied to the problems of fault-
tolerance in network based distributed systems [SY85, SBY87, Bac90, LRG9I,
GGL*90, SYB88|, automatic parallelization of sequential programs [BS91], and
design of distributed recovery and concurrency control protocols [YSB87, SY87].

We present optimistic process replication algorithms in both the Virtual Time

model and the dependency tracking model.

1.3 Objectives of this dissertation

The primary objective of this dissertation is explore optimistic process replica-

tion. In pursuing this objective we achieve the following accomplishments.

® We extend the common notion of file replication to the new and more general

concept of transparent process replication.

¢ We enumerate the ways a process replication system could erroneously allow

an application to detect that its processes were replicated.

o We introduce use of optimistic protocols in the management of replicated

processes.

¢ We design and present two novel optimistic replication algorithms, one based
on Time Warp, and the other based on the dependency-tracked style of opti-
mism. We compare the expected performance of these two optimistic repli-

cation algorithms.

¢ We present mechanisms that automatically classify messages as READ mes-
sages and WRITE messages and incorporate these mechanisms into the repli-

cation algorithms.

1.4 Differences from related work

There has been considerable work on replication in distributed systems, most
of which addresses the problem of replicating data, such as records or relations
in a database, or files in a file system [Her86, JB86, BDS84, DS83, WB84, Allg3,
GMT79, FM82, Lei84]. The major distinguishing features of our work are that:

¢ we advocate replicating executing processes, not just data or abstract data

types [Her86|;

¢ we recommend replication for load management, instead of fault-tolerance

[PGPH90, GP91, PGPH91};

e we present mechanisms for maintaining replica consistency even though a
message cannot be identified as a READ or a WRITE message until after it is

executed; and

¢ we analyze some of the performance improvements possible with replication,

and present the conditions under which to expect them.

There are several issues related to process replication that we do not discuss
in this dissertation. First, we do not describe any load management policies for
deciding which processes to replicate, when to increase or decrease the number
of replicas, or where to place the replicas. Second, we discuss mechanisms for
maintaining the consistency of processes already replicated, but do not discuss
mechanisms for creating or destroying replicas. Finally, we hide certain low-level
protocol issues such as flow control. These are all important issues that must
be dealt with before replication can become a practical and routine tool for load

management.

10

CHAPTER 2

Related Work on Replication

2.1 Introduction

This chapter reviews related work on replication. This work falls into two
categories: replication to improve performance, and replication for fault-tolerance.
While our work falls into the first category, we also review the second because it
is 30 closely related and such an active field of research.

It is fundamentally important that while replication for performance improve-
ment and replication for fault-tolerance may be achieved by logically similar soft-
ware architectures, they tend to use significantly different algorithms. This is
because performance improvement algorithm design seeks to reduce the length of
communications channels and the number of messages, whereas fault-tolerance al-
gorithm design forces an increase the number of messages and the distances they
travel in order to achieve redundancy and increase the likelihood that the failures

of replicas are independent.

2.2 Replication to improve performance

Chu [Chu69] was apparently the first researcher to observe that replicating a
file could improve a distributed system’s performance. He introduced the following
optimization problem. Suppose multiple computers in a distributed system access
a file. Which computers should store copies of the file to minimize the total cost
of using it? Chu modelled the cost of using a file as a sum of file storage and
transmission costs. The model constrains a solution to limit the mean delay to

access each file at each processor and limit the file storage used at each processor.

11

The transmission costs includes the expense of sending data to all copies of a file
for an update.

The model has several drawbacks. The cost for synchronization of concurrent
updates is ignored. The model does not vary the number of copies of a file—it
fixes the number and then optimizes their locations. And the expression for the
constraints is extremely complex. Chu formulated the optimization problem as a
0-1 linear programming problem (by using an innovative method that transforms
a polynomial problem to a linear problem) and presented a sample solution.

Chu’s work initiated much further research. Casey [Cas72] reexamined the
optimization problem and devised a simple linear cost function. The cost function
sums the cost of communication for updates and reads, and the cost of file storage.
Casey’s model still ignores synchronization cost, but the number of copies of a file
is a free variable. Like Chu, Casey ignores the design of algorithms to synchronize
updates to a replicated file, and their influence on the cost function. The cost
function is shown to be equivalent to a model for determining the economically
optimal locations of manufacturing plants and warehouses. Methods for obtaining
optimal solutions to the cost function are exponential in the number of processors
in the network, so Casey just derives bounds on the optimal number of copies of
the file.

In Casey’s model R and U represent the number of read and update operations
per unit time, respectively, emanating from each node. He shows that any alloca-
tion of r copies of the file for which » > 1+ R/U is more costly than the optimal
one copy assignment, independently of communications costs. He proves this by
comparing the cost of the optimal one copy assignment with the cost of a multiple
copy assignment and showing that when the above inequality holds the increased
cost of updating multiple files exceeds the decreased cost of reading more nearby
files. This implies that if each node generates at least half of its traffic in the form
of updates then the optimal assignment allocates only one copy of the file.

These conclusions do not apply directly to process replication. First, the cost

12

function ignores the increased performance parallel access to multiple file copies
offers. For example, if file reads can keep several file servers fully busy, it may
pay to replicate the file even if replication does not decrease communications cost.
Second, since the cost function assumes a linear cost for all communications it
assigns the same cost to the critical path in a computation as to updates of files
that could be done in parallel using optimistic computation.

Casey presents a heuristic that can reduce the effort to find the optimal allo-
cation of multiple copies of a file. He considers a graph, G, in which each vertex
corresponds to an allocation of the copies of a file to the computers in a network. If
adding or deleting one copy of the file changes one allocation into another then an
edge in G connects the two corresponding vertices. He shows that all paths from
the vertex which allocates zero copies of the file to the optimal allocation vertex
have monotonically decreasing cost functions. His algorithm to find the optimal
assignment explores only nodes on these paths.

Morgan and Levin [ML77] extended this work by more realistically modeling
file access. They represent a file access as a user communication to a program
followed by the program’s communication to a file. The user, the program, and
the file may all reside on different nodes in the network. Thus, minimizing a cost
function involves finding the optimal location of both programs and file copies.
Despite the revised model, Morgan uses the same methods as Casey to represent
and solve the optimization problem. Beyond extending the modelling, the work
offers no new insight.

Ruaa and Tichy {RT87] also studied file replication. They developed a Markov
chain that models the number of file transfers between sites. The model can
characterize the interdependence of file accesses: the tendency of one site to be the
main user of a file, and the tendency of a site to re-access a file it just used. They
assume that a file access reads or updates the entire file. The performance of three
file access patterns are examined. They assume some synchronization protocol will

keep the files consistent. Remote access is their no replication baseline case—an

13

access simply reads or updates the single file copy. In the Pre-replication protocol
a read accesses a local file if it exists or else transfers one over the net, thereby
creating a new file copy, and a write access updates all file copies. The Demand
access protocol updates a file copy only when necessary. A read accesses the local
copy if it is current, otherwise it copies the primary copy. A write updates only
the primary copy.

Their cost function is equal to the total number of file transfers in a computa-
tion. Under the assumption of a fully connected network the analysis shows that
demand access incurs the fewest file transfers.

Like earlier work, Ruan and Tichy ignore concurrency control costs, assuming
that quantity of data transferred is the main performance predictor and that files
are much larger than control messages. In addition, their model ignores perfor-
mance timing.

Whether this assumption holds depends on the application. If response time is
critical, then delay must be minimized even if bandwidth is expensive. However,
if bandwidth is cheap, as we expect, then delay should be avoided. Delays due to

synchronization algorithms and contention for file servers must then be modelled.

2.3 Replication to increase availability

Considerable work has focussed on the use of replication for fault-tolerant
availability [AD76, Tho78, Gif79, PPR*83, BBG83, DS83, Gun83, Her84, BDS84,
Bir86, Her86, PGPH91, GL91, PGPH90, GP91]. Replication can make files more
accessible when machines or communications links fail. A key issue in the design
of fault-tolerant replication algorithms is whether to allow concurrent update of
multiple copies when there is no communication between them, that is, when a
partition occurs.

One approach prevents application programs from detecting that files are repli-

cated by keéping file copies consistent. This approach does not allow concurrent

14

updates on different sides of a partition. This work prefents replicas from becoming
inconsistent by many different methods. Primary copy [AD76], majority consensus
[Tho78], weighted voting [Gif79] (which has many variants) and quorum consen-
sus [Her86] are all varieties of the same strategy: allow an update to occur in at
most one connected subnetwork. By comparison with our work these approaches
are ‘pessimistic’-—they do not allow a file to execute a write request until some
protocol has assured that the write will not make the file inconsistent.

An example of this approach applied to processes instead of files is Cooper’s
work [Coo85], which proposes that a process execute as a “troupe”—a set of repli-
cas executing on machines that have independent failure modes. Processes are
assumed to communicate via remote procedure call. The operating system trans-
forms a remote procedure call into a fault-tolerant communication between two
troupes that is called a “replicated procedure call”. The replicated procedure call
sends a message from each member of the calling troupe to each member of the
receiving troupe.

A member of the receiving troupe collects the messages from each member of
the sending troupe, selects the most common message, executes it and returns a
reply to each member of the sending troupe. If the messages differ too much then
the receiver aborts. A member of the sending troupe collects the reply messages
and returns the most common reply to the application. This algorithm does not
scale with the degree of replication because the message cost is quadratic in the
number of replicas. However, for fault-tolerance the cost would be acceptable.

The other approach to dealing with failures allows concurrent updates to copies
of a replicated file on opposite sides of a communication partition [PPR+83, FM82,
PGPH91, PGPH90, GP91]. The objective is to make makes files more available,
so that if any copy can be accessed it can be written and read. The cost is that
files can become inconsistent and application programs may need to reconcile the
inconsistencies. This strategy is based on the belief that actual conflicting updates

in a general purpose filing system are infrequent. This work differs from our work

15

in that we do not allow the inconsistent states arising from optimistic execution
to be seen by an application.

The Ficus file system [PGPH90, GP91] allows updates on two sides of a par-
tition and then uses version vectors [PPR*83] to detect inconsistent updates. Es-
sentially, the version vector counts the updates to each copy of a file.! If file X is
replicated twice and copies X; and X; get updated concurrently in two different
partitions then when communication is re-established between the partitions the
conflicting update will be detected.

However, consistency is defined only with respect to a single file—programs
that interact with several files will not be notified of inconsistent updates. For
example, consider two processes, P and @, and two files, X and Y, each replicated
twice. Suppose a failure separates the system into a partition with process P, file
copy X1 and file copy Y; and another partition with @, X3 and Y. Let process
P’s program be: write X; read Y. Let @’s program be: write Y; read X. When
communication is re-established between the partitions no conflict is found because
each file was updated in only one partition. However, a conflict may in fact exist
because if the files had not been replicated the reads could not have preceded the
writes at both files.

There is too much work on using replication to achieve fault-tolerance to fairly
survey it here. See [Sch90], which reviews a general method for implementing a

fault-tolerant service by replicating servers, and the references therein.

1A count is needed, rather than a modification bit. Partitions can be created and reconnected
arbitrarily. Suppose there are three replicas of a file, all members of one partition. Suppose copy
1 gets partitioned from the other two, and then copies 2 and 3 get partitioned from each other.
Then copy 2 gets updated. Copies 2 and 3 rejoin, and 3 is updated to the content of 2. If the
version vector stored only a modification bit then 2 and 3 would have to have the bit reset to
unmodified, in case they partitioned again. However, this would lose a record of their update
with respect to copy 1.

16

CHAPTER 3

Our Model of Distributed Computation

To provide a context for the discussion of process replication we present the
following model of a distributed application program. This is the model that
the programmer has in mind when writing an application, and the semantics we
describe will be preserved by our process replication mechanisms. Although we
will present process replication mechanisms in the context of this model, they
are in fact more generally applicable because this model can emulate most other
distributed computing paradigms.

We assume that an application is composed of concurrently executing processes
that communicate only via asynchronous messages and do not share memory. Each
application process is a sequential program structured like the program in Fig-
ure 3.1. We choose this particular structure because it is pedagogically convenient
for describing process replication.

Each process can access a set of state variables (State_Vars in the template)
that exist for its entire lifetime. The values and sizes of the state variables may
change, but their names remain. The body of a process is a while-loop. At
the start of each while-loop iteration the process receives one message (called
Input_Message in the template) sent by some (most likely another) process. De-
pending on the value of State_Vars and Input_Message, the process may then
modify its state variables and/or send messages. We encapsulate the details of
creating an output message in the function Output_Message. Since a process can
send a message only after receiving one, we refer to output messages as responses
to the input message received at the start of the outer loop. Observe that the

State_Vars are the only variables in the program’s scope when it receives a mes-

17

begin
declare State_Vars := Initial_Valuesi;
while Conditioni(State_Vars) do
Receive(Input_Message);
begin
declare Temp_Vars := Initial_Values2;
if Condition2(State_Vars, Temp_Vars, Input_Message)
then Modify(State_Vars, Temp_Vars);
end if
while Condition3(State_Vars, Temp_Vars, Input_Message)
do
Send(Cutput_Message(State_Vars, Input_Message,
Temp_Vars));
end while
end
end while
end

Figure 3.1: Template for an application process’s code

sage. As shown, the program may declare additional temporary variables and
use them in modifying the state variables or in generating responses to the input
message.

A process can receive a mixture of read and write messages, but the application
code need not be concerned with determining a message’s classification. The pro-
cess replication layer, with hardware assistance if possible, will determine during
a Receive() call (or at the termination of a process) the classification of the mes-
sage passed to the process during the previous Receive() call. This is discussed
in Chapter 9.

In this model, application messages are addressed directly to application pro-
cesses by name. The call Send (Output_Message()) does not block—it returns as
soon as the operating system has buffered the output message, without waiting for
the message to arrive at the receiver. We assume messages are reliably delivered,

but with arbitrary delay.

18

The application programmer should expect all messages addressed to a pro-
cess to be funneled into a single input queue. When the process executes the
Receive(Input_Message) system call, if the input queue holds any messages the
operating system returns the next one; otherwise the call blocks until one arrives.
Messages are not necessarily passed to a process in the same order that they were
sent, even if they were sent by the same process.

A computation is initiated by the arrival of one or more messages from outside
the system. Communication outside the system (input and output) passes through
special input and output mechanisms provided by the process replication layer.

To simplify our presentation we assume that application processes are neither
created nor destroyed dynamically, although this restriction could be lifted.

We require the object (run-time) code for each application process to be deter-
ministic. The sequence of states it passes through and the sequence of messages
it sends depend only on the process’s initial state and the sequence of messages it
receives. Therefore, any non-deterministic event, such as reading a real-time clock
or executing a non-deterministic programming construct, must be implemented as
an input message to the process. We require deterministic object code so that the
replicas of a process can be kept consistent by executing the same messages, and
so that optimistic algorithms can roll back a replica and replay its execution.

Although each process in this model is deterministic, the behavior of a collec-
tion of communicating processes is generally non-deterministic because messages
concurrently transmitted to a process may arrive in any order. In our model, all
non-determinism in a distributed program’s behavior results from this cause.

This model can emulate many other distributed computing and synchronization
paradigms. With suitable choices for the state variables, message formats, and
conditional logic in the processes, it can express any computable, deterministic
sequence of computation and communication events. For example, such a program
can behave as though it communicates by asynchronous FIFO channels, or by

rendezvous, or by remote procedure calls. FIFQ channels between application

19

processes can be emulated by inserting sender names and sequence numbers into
each message and endowing each receiving process with enough buffer space and
logic to execute the messages from each sending process in increasing sequence
number order. (One paradigm that cannot be directly emulated because of its
non-deterministic control structures, however, is Hoare’s CSP [Hoa85], although
any version of it with only deterministic control structures could be.)

In our presentation of the process replication mechanisms we will consistently

use the communication terms shown in Figure 3.2. An executing process that

executing process | message sent
in transit
. engqueu
Time
delivered received
¥ executed
¥ Y

Figure 3.2: Communication terms

wants to communicate sends a message (in its inner loop). The message stays in
transit for an unspecified period of time, after which it arrives at its destination
and is immediately enqueued by the operating system in the receiving process's
input queue. At some later time the message is delivered by the operating system
to the receiving process, which receives and then ezecutes it. Similar terminology

will be employed when the communicants are replicas.

20

3.1 Assumptions about the environment

We assume that the replication layer’s knowledge of the application running
above it is limited to the interaction across the application program interface—
sending WRITE and READ messages, and receiving messages. The replication layer
has no knowledge of the application program semantics. This enables a replication
mechanism to execute any message passing application which satisfies this sim-
ple model, and saves the application programmer the trouble of imparting other
complicated semantic information.

We also assume that the replication mechanism, the subject of this thesis,
interacts with a replication policy system over a well defined interface. The policy
system tells the mechanism when and where to create and destroy replicas. These
operations can be invoked at any time and requested of any part of the mechanism.

Therefore, the mechanism must assume that many processes may be replicated.

21

CHAPTER 4

Architecture of Process Replication Mechanisms

4.1 System architecture

A system using process replication consists of 3 run-time software layers, the
Application program layer, the Replication mechanism layer, and the Distributed
operating system layer.

The application is a distributed program composed of communicating processes.
It was written fo run in a distributed computing environment with the properties
and application programming interface described in Chapter 3.

The replication mechanism is one part of a complete load management system.
The system consists of a load management policy component which collects per-
formance measurement data and makes decisions about the number of replicas of
each process and the placement of replicas on processors.

This chapter sketches the architecture of the design of the replication mecha-
nism layer. An application process is represented by a non-empty set of executing
replicas. (A singly-replicated process is simply a boundary case.) The replicas of
a process P replicated k times are identified Py, P,, ..., Pi. In our later chapters
we present the algorithms which control the execution of running replicas, mes-
sage communication between the replicas, and synchronization and consistency
maintenance among replicas. Since the replicas communicate only via messages,
the replication algorithms are primarily contained in the implementation of the
Send () and Receive() message communication calls implemented by the replica-
tion layer. Replica dynamics—the creation and destruction of replicas—would also
be implemented in this layer, but we do not discuss these issues in detail, except

to make certain that the create and destroy system calls would not be excessively

22

.

difficult to implement.

The bottom layer, the Distributed operating systern layer, provides the basic
message communication services used by the replication algorithms. From the
point of view of the distributed operating system, each replica is a separate process.
Thus, sending a message to a distributed operating system process will reliably
deliver it to one executing replica. The replication layer will also use services that
manage its virtual memory, timeshare a processor, etc. We assume that a function
to checkpoint a process’s state can be implemented in terms of the the distributed
OS functionality.

Several widely used operating systems could provide these services, such as
Mach [ABB*86, BBB*90, WT89], 4.3 BSD Unix [LMKQ89], and others discussed
in [Bal89]. A small amount of our work would need to be incorporated in this
layer—some of the message classification mechanism discussed in Chapter 9.

In a real system the replication code would be integrated into the distributed
operating system, primarily to realize performance optimizations the integration
would allow. We discuss the replication code separately so the algorithms can be

presented in isolation.

4.2 The basic structure of the replication mechanism

The replication layer represents an application process by a non-empty set of
replicas. The replicas of a process can execute on any processor in the system.
All replicas of an application process execute the same code. The replication code
implements Send() and Receive() system calls, and controls the scheduling of
the multiple replicas of a process so that they cooperate to mimic the behavior of

one un-replicated process.

23

4.3 READ and WRITE messages

We assume that after a replica receives a message M it executes the message
for a while and then receives another message or terminates. If the value of the
replica’s state, including all variables it can access, is the same after executing M
as it was before executing M, then we say that M is a READ message. If the value

of the replica’s state changed, then we say that M is a WRITE message.

4.3.1 Distinguishing READ messages from WRITE messages

To simplify presentation of the replication algorithms we assume, for much of
the dissertation, that the application labels a message as a WRITE or a READ.
Unfortunately, obtaining this information from the application may require the
application programmer to modify the program to make it able to run on top of
process replication. Another drawback of having the application label messages
as WRITE or READ is that the label must be pessimistic since the application
cannot anticipate the receiver’s state at the time the message will be executed. In
addition, changing a receiving process’s code may require changing the message
label given by the sender, since whether the message is a READ or WRITE may also
have changed. This lack of modularity would be a great inconvenience.

Therefore, after presenting the replication algorithms, in Chapter 9 we present
designs for replication-level code that observes message execution so it can dis-
tinguish between WRITE and READ messages transparently. Following that, in
Section 9.5, we show how to integrate the replication algorithms with the code
that distinguishes between kinds of messages.

Just as an application process is represented by a set of replicas, a message
sent by the application layer is represented by a set of messages between replicas.
Because we are replicating processes to improve performance {assuming that fault-
tolerance is provided by other software) and we assume that almost all messages

received by a replicated process are READ messages, we optimize the performance

24

of READ messages. Therefore, a READ is routed to only one replica, while a WRITE
message must update all replicas.
The replication mechanism keeps the replicas of an application process consis-

tent by using one of a class of protocols illustrated in Figure 4.1. Suppose that Q

Q

AN
r other replicas \
e

P i

¢)
% ?ENK.
.
‘%l'q P . e 0
Y Y Y \J

Figure 4.1: A set of messages update a replicated process

is represented by n replicas. An application’s WRITE message sent to Q is repre-
sented by a collection of n messages, one called the original WRITE message, and
n — 1 others, called CONSISTENCY messages. The replication code routes the mes-
sages so that exactly one of the replicas, Q;, executes the original WRITE message,
and each other replica receives a CONSISTENCY message. On the other hand, a
READ is represented by only the original READ message, executed by just one of
the replicas.

Figure 4.2 shows the contents of a replication message. Application code iden-

tifies a message’s Receiving_process and creates its Data. The message also

25

contains the identity of the sending process. And, as indicated above, we assume
in the first part of the dissertation that the application indicates whether the mes-

sage i3 a READ or a WRITE message.

Field Data Type Used by Layers
Sending_process process_name Application Layer
Receiving_process proecess_name and layers below

Data anything

Read_or_vwrite boolean

Sending_replica replica_name | Replication Mechanism Layer
Receiving replica replica_name and layers below
Original or_consistency | boolean

Control_information unspecified

Figure 4.2: Replication message fields

A replication message contains the names of the sending and receiving repli-
cas, and a field that distinguishes original from consistency messages. The field
Control_information indicates information used by the replica synchronization
algorithms we present below.

When we say “a replica received a CONSISTENCY message” we mean that the
replication code received a CONSISTENCY message addressed to the replica and
passed its application-visible portion to the replica. Application code sees only
message contents written by a sending replica and cannot distinguish between
receiving a WRITE message and a CONSISTENCY message.

Whenever a replica executes a message it may generate one or more application
messages in response, as indicated by the Send () call inside the while loop in Fig-
ure 3.1. However, the replication code transmits only output messages generated
in response to an original READ or WRITE message and discards all those generated

in response to a CONSISTENCY message.

26

An original message transmitted by the replication code is routed to one of the

replicas of its receiver, preferably one nearby the sender.

4.3.2 Correctness of replication algorithms

In this section we briefly discuss the correctness of replication algorithms. Our
replication algorithms make replication transparent to the application.

In the previous chapter we defined our programming model. An application is
composed of communicating processes. A process consists of state variables, which
encode its state, and a sequential program, which determines what the process does
when it receives a message. While a process executes a message (computes from
the instant it receives the message until it receives the next message) it can modify
its state variables and/or send messages.

A process’s program is deterministic—all state variables changes and messages
sends during the execution of message m are completely determined by the pro-
gram, the content of m, and the value of the state variables at the time the process
receives m. Messages are executed by a process one at a time; that is, one message
execution is atomic with respect to all other message executions.

In an unreplicated execution messages are processed in an order that is consis-
tent with potential causality [Lam78]. Therefore, an application process sending
a message can make the following assumption about the order in which messages

are executed:

o Causality. If the fact that message m was sent to process P by process @
could have caused a message m' to be sent by Q' to P, then P executes m

before m’.
As stated in [Sch90], a replication algorithm is correct if it ensures the following:

¢ Replica Coordination. For each process, all replicas of the process receive

and execute the same sequence of messages.

27

This requirement can be decomposed into two separate requirements concerning

the dissemination of messages to the replicas of a process:

e Agreement. Every replica of a process receives each message sent to the

process.

¢ Order. Every replica of a process executes the messages it receives in the

same relative order.

We relax Agreement in two ways. The first relaxation is possible because we
identify messages that do not change a process’s state. A READ message r, whose
execution does not modify the state variables of the replica that receives it, need
only be sent to a single replica. This is because the response from this replica
will be correct, and because the state of the replica that executes r will remain
identical to the states of replicas that do not.

Second, we can relax agreement because we assume the system is failure-free.
Only one replica of a process need send the messages produced in response to an
input message. Therefore, if executing a message w changes the state of a replica
of process P, rather than send the same message w to each replica of P we send w
to one replica of P and a CONSISTENCY message ¢ to each other replica. When a
replica executes c its state undergoes the same change as it would if it had executed
w, but none of the messages the replica sends are transmitted.

More formal theories for constructing replication algorithms that do not sat-
isfy Replica Coordination are proposed in Aizokowitz [Aiz89] and Mancini [MP88].
Both theories are based on proving that an ensemble of replicas implements the
same specification as a single replica. Aizokowitz uses temporal logic descriptions
of state sequences, whereas Mancini and Pappalardo use an algebra of action se-

gquences.

28

4.3.3 Replication errors

We now exhibit three classes of replication errors, or three different ways that
a replicated execution could be incorrect. Error classification gives insight into the

challenges of designing replication mechanisms.

¢ In a write-write (W-W) error two replicas of a process are updated in different
orders, as shown in Figure 4.3. If a W-W error occurred then the Order

condition would be violated.

A
P (1 2\ S
&

%
4{5}&
2
,éc* Cy
<p

Figure 4.3: Write-write (W-w) error

o In a read-write (R-W) error a message that depends on an update to a one
replica of a process accesses a different replica of the process before the update
has been applied there, as shown in Figure 4.4. This violates Causality. In
the example, the fact that the WRITE was sent to R could have caused the
READ to be sent to R, which means that the READ should be executed after

the CONSISTENCY message at R;.

29

Figure 4.4: Write-read (W-W) error

¢ In a circular-dependency (C-D) error multiple replicated processes would com-
municate and violate Causality, as shown in Figure 4.6. Figure 4.5 shows an
unreplicated computation involving 4 processes. Figure 4.6 shows the same
computation with two processes replicated and incorrectly managed so that
a C-D error occurs. Why does this execution violate Causality? Both pro-
cesses () and R execute a READ message and a WRITE message. Based on
the execution of the CONSISTENCY messages, the READ is executed before
the WRITE at each process. However, this is impossible because the READ
message sent to R is a response to the WRITE sent to @ and the READ mes-
sage sent to) is a response to the WRITE sent to R. Thus the execution has

a circular causality, as shown in Figure 4.7.

4.3.4 Replication synchronization strategies

This dissertation considers two dramatically different sirategies for replica-

tion synchronization, pessimistic replication and optimistic replication. Figure 4.8

30

REAP RE4p

Y Y Y Y

Figure 4.5: Application level of example computation with ¢-D error

C
.‘Sﬁﬁ

Figure 4.6: C-D error

31

- -
Y ’ “

"
1 Y rd
\ ’
| \ ’
* \ ’
\ ’

AWRITEsQ / BWRITEsR
1 A I
: |

Y I\ v

U \

AREADsR / “. BREADsQ

Figure 4.7: Loop in C-D error

schematically compares the message execution timing of these two strategies.

A pessimistic mechanism blocks execution of a message until it knows the execu-
tion could not cause a replication error. To establish this knowledge a distributed
consensus must be reached before an arriving WRITE message can be executed.
Figure 4.8 shows a pessimistic mechanism—the WRITE is executed only after com-
pletion of a distributed protocol involving the CONSISTENCY messages. We discuss
a pessimistic replication mechanism to present the usual approach, and to illustrate
its performance drawbacks.

An optimistic mechanism can execute messages earlier than the pessimistic
mechanism. In particular, the optimistic mechanisms allows a replica to execute a
WRITE tn parallel with the distributed consensus protocol that determines whether
the execution could cause a replication error, as illustrated in the bottom of Fig-
ure 4.8. The consensus protocol will eventually decide whether the WRITE ex-
ecution causes a replication error. The mechanisms are ‘optimistic’ in that they
optimistically assume that the message execution will not cause a replication error.
If it does not, which for good performance must be the usual outcome, then the
execution commits; if it does cause replication errors then optimistic mechanisms

must ‘undo, or roll back, the message execution. If, in the example of Figure 4.8,

32

Pessimistic:

Optimistic:

COMMIT or
ROLLBACK
execute WRITE
and dependent
computation

Figure 4.8: Message execution timings of optimistic and pessimistic mechanisms

33

the consensus protocol determines that the execution does not cause an error then
the WRITE execution and the message sent from @, to P commit; otherwise the
execution and the transmission must be undone.

We have designed two different optimistic replication mechanisms. The first
(described in Chapter 7) use Time Warp [Jef85, JBW*87|, a mechanism originally
intended to execute distributed discrete-event simulation (DES) programs. This
replication mechanism transforms a.n application program of replicated processes
into a DES and then runs the program on Time Warp.

The second optimistic approach (described in Chapter 8) uses techniques sim-
ilar to the algorithms in {SY85, BS91, YSB87, SY87, LRG91, GGL*90]. It looks
for replication errors by tracking dependencies on updates to processes. A po-
tential replication error is detected by observing a loop in the dependency graph.
Some replication errors can be averted; others must be undone by rolling back the

replicas involved.

4.4 Process to replica mapping

A replica map in the replication layer contains the mappings between applica-
tion processes and executing replicas. The replica map provides several functions
which map an application process identifier into the identity of one or more replicas

of the process:

¢ The best replica function (replicamap(’bestreplica’, receiver })
identifies the replica of the process receiver which the load management
software predicts will most quickly execute a message. Note that the best
replica is not necessarily the closest replica. Instead, it may be a nearby
replica running on the least-loaded processor, or running on the physically

fastest processor, or some combination thereof.

Load management policy algorithms control a process’s degree of replication

and the locations of its replicas. These algorithms change the contents of

34

the replica maps as they adjust the configuration of replicated processes to
changing performance conditions. To give the load management software as
much freedom as possible we assume that the best replica of a process will
vary arbitrarily from processor to processor at a given time, and from time to
time on a given processor. The difficult problem of dynamically determining

the best replica is beyond the scope of this thesis.

A READ message is always routed to the best replica of its receiver.

¢ The all replicas function (replicamap(’all replicas’, receiver))re-
turns a list of all replicas of process receiver. It is used to find replicas other

than the best replica.

Some of our algorithms distinguish between a process’s ‘primary’ replica and

its ‘secondary’ replicas.

o The primary replica function, (replicamap(’primary replica’,
receiver)), maps an application process name into the process’s unique
primary replica. In some algorithms, WRITE messages are directly routed to

the primary replica to co-ordinate their synchronization.

We refer to the replica map and use the replicamap() functions elsewhere.
The function call data type set.of_replica map functions will refer to these

replica map functions.

35

CHAPTER 5

Pessimistic Process Replication

We introduce process replication by first presenting a distributed pessimistic
mechanism. This pessimistic mechanism illustrates the fundamental architecture of
a system whose performance will be improved by being implemented optimistically
in the following two chapters.

Figure 5.1 shows the architecture of the process replication system, The three

Application Replica
Code and state

SEND_WRITE(receiving_process, data)
SEND_READX receiving process, data)
output(data)

receive(var data)

One OS Process:

L
Replication Code

system messages: user messages:
COORDINATE(update_number) READ(receiving_replica, data)
COMMIT(update_number) WRITE(receiving_replica, update_number, data)
CONSISTENCY(receiving _replica,
update_number, data)

/

Distributed Operating System

Figure 5.1: Pessimistic process replication architecture

36

boxes represent the three software layers enumerated at the beginning of Chap-
ter 4. The application code in the applicetion program layer makes the four calls
indicated. These calls are supported by the replication mechanism layer, which
implements the calls made by the application code. We assume that these two lay-
ers execute on top of some standard distributed operating system. Most likely the
application process code is linked to the replication mechanism code, and together
they run as a single OS process.

We assume that the application does not circumvent the replication mechanism
by communicating directly with the distributed OS, nor does it modify variables
used by the replication code.

As Figure 5.1 shows, we assume an application makes the following calls on the

replication code:

o SEND_WRITE(receiving_process, date) sends a WRITE message containing

data to the application process receiving.process.

o SEND_READ(receiving_process, data) sends a READ message containing

data to the application process receiving_process.
e output(data) outputs data.!

e receive(var date) which receives the content of the next input message into

the variable data.

The replication code implements the application’s communications calls. To
implement the replication algorithm one instance of the replication code commu-
nicates with other instances of the replication code via the messages indicated in
Figure 5.1. The messages are categorized into two kinds, user messages (shown
on the right side of the Figure), which contain data for replicas to receive, and

system messages (shown on the left side), which contain control information for

Input to a replicated process must be disseminated to the replicas. This can be handled by
an unreplicated process that reads the input and sends it in a message to the replicated process.

37

the replication mechanism. WRITE and CONSISTENCY messages are collectively
called UPDATE messages because they update the state variables of the replica
that executes them.

When a replica sends a message it is routed to the ‘best’ replica of its receiving
process. As stated in Section 4.4 the identify of the ‘best’ replica of a process
varies with processor and time as the system’s performance changes. Therefore, a
message can be routed to any replica of its receiving process. The message will be
executed by the replica to which it was routed. If the message is a WRITE message
then the replication mechanism will create and transmit CONSISTENCY message
copies of the WRITE to each other replica of its receiving process. A CONSISTENCY
message i3 identical to the WRITE message, except for the field identifying it as a
CONSISTENCY message.

Messages are buffered in an input message queue (IMQ) at each replica. Mes-
sages are executed by the replica in the order they are dequeued from the front of
the IMQ. A message’s execution must be delayed until it can be certain that the
correctness requirements given in Section 4.3.2 will be satisfied.

The Order requirement can be satisfied by assigning unique numerical identi-
fiers to the messages sent to a process and having all replicas of the process execute
the messages according to the order of the identifiers.

A message m is defined to be committed? at a replica r once no message with
an identifier less than or equal to the identifier on m can be subsequently delivered
to r. Then, the Order requirement is implemented by having a replica (1) execute
only committed messages and (2) always execute the committed message with the
smallest unique identifier.

A WRITE message is stamped with a unique numerical identifier called an
update number (un) by the replication code running its receiving replica. The

CONSISTENCY message copies of a WRITE have the same un as the WRITE. The

3Schneider [Sch90] uses the term stable to describe the same situation. We use the term
commit because it is more widely used in optimistic computation, as in [SY85, JBW+87).

38

UPDATE messages received by a replica are executed in un order. The un values
created by the replication code running the replicas of one process are all distinct.?
A message M with un u is denoted M(u), as in WRITE(u), CONSISTENCY(u),
UPDATE(u), etc.

The replication mechanism maintains the following invariant.

¢ Increasing un values (IUV). After the replication code receives or stamps
a message with un value u, the code will only stamp messages with un values

z such that z > u.

For this algorithm, we assume that the messages sent by the replication code
running one replica to the replication code running another replica arrive in the
order they are sent. If If this functionality is not provided by the distributed OS
then it can be easily implemented by assigning sequence numbers to the messages
sent over the channel and delivering messages in sequence number order.

The key issue in this algorithm is determining when a message becomes com-
mitted. When an UPDATE(u) message arrives it is uncommitted, because another
replica of the process might send a CONSISTENCY(z) message with z < u. By
invariant IlUV an UPDATE(u) message enqueued in the IMQ at R; becomes com-
mitted when all other replicas of R have received an UPDATE(u) message.

Every WRITE message receipt initiates a three-phase protocol we call the update
protocol, shown in schematically Figure 5.2.* The replica that will execute the
WRITE is called the protocol controller. After assigning un u to WRITE(u) the

replication code at the controller does the following:

1. create and transmit a CONSISTENCY(u) messages to each other replica of the

process,

2. receive a COORDINATE(u) message from each other replica, and

3There is no relation between the un values of messages received at different processes. The un
values are sequence numbers for the receiving process and not globally comparable timestamps.

*This protocol, and the rest of the pessimistic replication algorithm, depends on the assump-
tion that the number of replicas are static and known to the controlling replica.

39

One Application Process

Controlling
Replica
% e o 0
CONSISTENCY
COMMIT
Y Y Y

Figure 5.2: Update protocol

40

3. transmit a COMMIT(u) message to each other replica.

When a CONSISTENCY(u) message arrives the replication code enqueues it in the
IMQ and sends an COORDINATE(u) message back to the controller. When a
COMMIT(u) message arrives the UPDATE(u) message in the IMQ is marked commit-
ted. An UPDATE(u) message must be in the queue because the replica has already
sent a COORDINATE(u) message.

By invariant IUV and the FIFO transmission of messages, when the controller
has received an COORDINATE(u) message from each other replica WRITE(u) is
committed. Since we assume message deliveries are reliable and are no failures,
this will eventually happen. All of the UPDATE(x) message can then be executed,
so the controller sends a COMMIT(u) message to each replica. Figure 5.2 indicates
the time at which a WRITE message or CONSISTENCY message can be executed by
a thick vertical line.

A READ is not stamped with an un. If it were then there would need to be some
coordinating communication between the replica that receives the READ and the
other replicas of the process before the READ could be executed. We want to avoid
this coordinating communication to optimize performance for READ execution.

The UPDATE messages in a replica’s IMQ are ordered by their un values. When
a READ arrives at a replica the message is enqueued at the end of the IMQ, so it
will be executed after all messages already in the queue. This queuing discipline
and the update protocol above ensure that this algorithm satisfies the Causality
requirement given in Section 4.3.2, which we now show.’

Consider message m sent to process P. Either m updates the state of P or it
does not. If m updates the state of P then m is represented by a WRITE executed
at one replica of P and CONSISTENCY messages executed at all other replicas of
P. These messages cannot cause some message m' to be sent to P until they are

executed, but they are not executed until they are committed. By IUV no WRITE

5The Causality requirement says that if the fact that message m was sent to process P by
process () could have caused a message m’ to be sent by Q' to P, then P executes m before m'.

41

message m' that arrives after m is committed can be executed before m. By the
queuing discipline, no READ message m' that arrives after m is committed can be
executed before m. Therefore, m' must be executed after m at all replicas of P.
If m does not update the state of P then m is represented by a READ executed
by one replica of P. Since m is represented by only one message, any message m'

caused by the execution of m must be executed at P after m.

5.1 Pseudocode implementation of pessimistic replication mechanism

We now present a pseudocode implementation of the pessimistic replication

mechanism. Data types for this pessimistic replication mechanism are defined in

Figure 5.3.
replica_name : record (
process_name : charstring,
replica_index : integer);

message_kinds : enumeration (*WRITE’, ’READ’, ’CONSISTENCY’,
?COORDINATE’, ’COMMIT’);

msg : record (
sender, receiver : replica_name,
data : charstring,
kind : message_kinds,
un : real,
committed : boolean);

message_queue : queue of msg;

uncommitted_q_entry : record (
msg : msg,
coordinates_needed : integer,
reads : message_queue)

Figure 5.3: Data types for process replication mechanisms

We assume that a queue, such as message_queue, supports the following oper-

ations.

42

e enqueue(imq : message queue, m : msg) enqueues m as the last mes-

sage in imgq.

e dequeue(imq : messagequeue, var m : msg) is an operation that

dequeues the first message in imq and stores it in m.

e empty(imq : message.queue) returns ’true’ if imq is empty, ’false’

otherwise.

We assume that a queue can be shared by different parts of the replication code,
and that a dequeue operation on an empty queue will block. The variables and
constants used by the replication code are declared in Figure 5.4. The shared

variable and queues are marked as SHARED in comments following their declarations.

declare:
highest_un : real -- SHARED
committed_q : message_queue -~ committed message queue, SHARED
unique_id : real -- unique value for this replica, in (0, 1)
uncommitted_q : queue of uncommitted_q_entry indexed by

*.msg.un -- SHARED

this_replica : replica_name -~ initialized constant
num_replicas : integer -- initialized constant
executing_consistency : boolean
replica_map : set_of_replica_map_functions

Figure 5.4: Replication code state

The code splits a replica’s IMQ into two parts, the committed_q and the
uncommitted q. The committed_q contains messages that can be executed im-
mediately, whereas the uncommitted q contains messages that cannot yet be exe-
cuted.

To make the code shorter, we assume the uncommitted.q is stored in an asso-

ciative queue. A queue of t indexed by *.f is a queue containing entries with

43

data type t which is ordered and indexed by the field f of each entry.® The data
type of £ must have a total ordering.

Each field in the uncommitted_q contains one UPDATE message and a set of
READ messages. uncommitted q is ordered and indexed by the msg.un fields of
its entries. For example, uncommitted q[r] .msg is the message msg in the entry
indexed by r.

Given the declarations
q : queue of t indexed by *.f
m: t
and assuming r has the same type as m.f, we assume the indexed queue q supports

the following operations:
¢ ql{r] := mstores minto the entry indexed by r
e delete(q, r) deletes the entry indexed by r from q

e n := next_entry(q, r), as used in the processing of a COMMIT message
in Figure 5.7, returns the index of the next entry in q following r in n, or

infty if there are no more entries.

e 5 := smallest_entry(q) returns the index of the entry with the smallest

index in s (or infty if there are no entries).

Code for this pessimistic replication protocol is outlined in Figures 5.5, 5.6 and
5.7. Figure 5.5 shows the code which interfaces with application replicas. The
other code handles messages as they arrive at the replication code. The code in
Figure 5.6 handles user messages; the code in Figure 5.7 handles system messages.

The replica interface in Figure 5.5 is simple. To shorten the code we have
incorporated SEND_WRITE and SEND_READ into a single send call with the kind of

the message as an argument. We assume that the operating system call transmit(

5This is a modification of the table data type supported by the Hermes language, as described
in [SBG*91].

44

m) transmits message m to the replica indicated in m.receiver, and that print ()

produces output.

receive(var data)
dequeue(committed_q, m)
executing_consistency := (m.kind = *CONSISTENCY’)
data := m.data

output{ data)
if (not executing_consistency) then
print(data)
end if

send(receiver, data, kind)

if (not executing_consistency)

then
m.sender := this_replica
m.data := data
m.kind := kind
m.receiver := replica_map(’best_replica’, receiver)
transmit(m)

end if

Figure 5.5: Replica interface calls

receive dequeues messages in order from the committed.q message queue. It
will block if the queue is empty.

No output is produced, or messages are sent, while a replica is executing a
CONSISTENCY message. send routes a message to the ‘best’ replica of a receiving
process. (The replica map functions are described in Section 4.4.)

Code executed on arrival of a user message m is shown in Figure 5.6. The
highest un of any message ever received at a replica is stored in highest un. When
a CONSISTENCY message arrives highest_un is set to the maximum of itself and
the message’s un. When a WRITE message arrives it is assigned a un greater than

highest_un; then highest un is set to the un.

45

'WRITE?:
m.un := ceiling(highest_un) + unique_id
highest _un := m.un
m.committed := ’false’
uncommitted_q(m.un] .msg := m
uncommitted_q[m.un] .coordinates_needed := num_replicas - 1

-- disseminate CONSISTENCY messages
m.kind := 'CONSISTENCY’
m.sender := this_replica
for replica in
replica_map(’all_replicas’, this_replica.process_name) do
if not((replica = this_replica)) then
m.receiver := replica; transmit(m)

end if
end for
'CONSISTENCY?:
highest_un := max(m.un, highest_un)
uncommitted_q[m.un] .msg := m

m.kind := *COORDINATE’
m.receiver := m.sender
m.sender := this_replica; transmit(m)

'READ’ :
if empty(uncommitted_q) then
enqueue(committed_q, m)
else
enqueue(uncommitted_q{ highest_un].reads, m)

end if

Figure 5.6: Code executed on arrival of a user message m

46

The unique_id is a real in (0,1) that is distinct for each replica of a process.

When a WRITE message arrives it 1s assigned a un that is

e unique with respect to any un given to any WRITE by any replica of this

process, and

¢ larger than the un of any UPDATE yet seen at this replica.

The WRITE is marked uncommitted and inserted in the uncommitted_q in a posi-
tion indexed by its un. CONSISTENCY message copies of the WRITE are dissemi-
nated to all other replicas of the process.

When a CONSISTENCY message arrives it is inserted in the uncommitted_q and
a COORDINATE message i3 sent back to the replica that received the WRITE.

When a READ message arrives, if the replica is not waiting for an UPDATE to
commit then the READ message can be executed without waiting for a COMMIT
message, so it is enqueued in the committed_q; otherwise it is enqueued in the
uncommitted_q behind the last UPDATE.

Figure 5.7 shows the code executed on arrival of a system message m. If an arriv-
ing COORDINATE(u) message is the last COORDINATE(u) reply to CONSISTENCY(u)
from another replica, then UPDATE(u) messages have committed, so a COMMIT(u)
is sent to every replica.

When a COMMIT(u) message arrives UPDATE(u) is marked committed. Then
all messages in the uncommitted q earlier than the first uncommitted message
are transferred from the uncommitted_q to the committed.q. Since messages are
received by the replica from the committed q in order, this ensures that (1) only
committed messages are executed, and that (2) committed messages are executed

in un order.

5.1.1 Liveness

This protocol is live. Assuming reliable message delivery and that the replica-

tion system works fast enough to handle incoming message traffic, each UPDATE(u)

47

'COORDINATE? :
decrement{ uncommitted_q(m.un].coordinates_needed)
if (uncommitted_g[m.un].coordinates_needed = 0)
then
m.un := m.un
m.sender := this_replica
m.kind := *COMMIT’
for replica in
replica_map(’all_replicas’, this_replica.process_name) do
m.receiver := replica; transmit(m)}
end for
end if
'COMMIT :
uncommitted_q[m.un] .msg.committed := ’true’
-- transfer committed messages from uncommitted_gq to committed_q
i := smallest_entry(uncommitted_q)
while (i <= highest_un) do
if (uncommitted_qfi].msg.committed) then
enqueue{ committed_q, uncommitted_q[i] .msg)
delete(uncommitted.q, i)
while not(empty(uncommitted_q[i].reads)) do
dequeue(uncommitted_q[i].reads, m)
enqueue(committed_q, m)
end while
i := next_entry(uncommitted_q, i)
else
exit while
end if

end while

Figure 5.7: Code executed on arrival of a system message m

48

will eventually commit. Therefore all messages in IMQs will eventually be received.
Thus, messages sent by an executing replica of an application process will be re-

ceived and executed by a replica of its receiving process.

5.2 Performance

The performance drawback of this pessimistic mechanism is that the replicas of
a process cannot receive any newly arrived messages during the update protocol.
In particular, if UPDATE message m is enqueued in the uncommitted_q IMQ of
replica R at real-time ¢, then a READ message that arrives at R after ¢ cannot be
executed until after m is committed and executed. This interval must be at least
as long as the round trip delay to the controlling replica.

The drawback of the pessimistic strategy of this protocol is that if WRITE
messages are rare, as we assume, then in most cases waiting for an UPDATE to
commit is an unnecessary delay. Most UPDATE messages were committed before
the protocol was able to determine so, and could have been executed earlier than
they were.

Qur optimistic replication algorithms, presented in the next three chapters,

take advantage of this observation.

49

CHAPTER 8

Replicating the Processes of Virtual Time Applications

6.1 Virtual Time

Virtual Time (VT) [Jef85] is a fundamental paradigm for synchronizing the
interactions of processes in a concurrent program. The processes in a VT program
communicate solely by scheduling events for each other. A process schedules an
event by sending a message which specifies the event’s receiving process and receive
virtual time (RVT). The RVT is an element of a totally ordered type (such as the
reals) with a positive infinite value (o0).

An event is the processing of a message by its receiving process; i.e. all execution
by the receiving process from receiving the message to the next receive. A VT

message contains the following components:
e sending process
o send virtual time (SVT)
® Treceiving process
o receive virtual time (RVT)
o event data

All fields are written by the sending process and read by the receiving process.

A process’s local virtual time (LVT) is defined to be either the RVT of the
message the process is currently executing, or oo if the process is not executing a
message. A message’s send virtual time (SVT) equals the LVT of the process that

" sends it.

50

Virtual time enforces a natural notion of causality—the arrow of causality
points in the direction of increasing virtual time. This is enforced by the two

fundamental rules of VT semantics [Jef85]:
1. The events at a process are executed in increasing RVT order.
2. The SVT of a message must be less than its RVT.

VT is an extremely powerful synchronization model. For example, one process
can make a pair of events at two different processes appear to execute atomically
by scheduling the two events to happen at the same RVT.!

We can think of a VT program as the evaluation of a function defined on a
space-time plane, where the virtual space position corresponds to process identity.
(The function is defined sparsely—only at the space-time points of events.) Fig-
ure 6.1 shows one message on this plane. The input to the function is the set of

processes and their initial states, and the set of input messages.

6.2 Replicating VT processes

We now show how to transform a VT application program into a VT program
whose processes can be replicated. Because VT requires application processes to
state the virtual time of every interaction it is easy to replicate the processes of a
VT application.

To implement the transformation we place a layer of replication code below
the application (see Figure 6.2). The replication code intercepts all application
communication calls. The combined application and process replication code is
still a VT program. A Virtual Time Machine is any system that executes VT
programs, such as a sequential discrete-event simulation (DES) engine or the Time

Warp [JS82] distributed simulation engine.

!We assume that two event messages received by a process cannot have the same RVT.
Alternatively, events with the same RVT can be ordered by the remaining content of the message,
as is done in the Time Warp Operating System [JBH™*85].

51

Virtual Space

Sending Receiving
Process Process

Increasing

Yirtual Time Send virtual time —

— Receive virtual time

Figure 6.1: A virtual time event message

Application code
Virtual Time Program:
Replication code
Virtual Time Machine: | Time Warp or other DES engine

Figure 6.2: VT process replication architecture

52

We abstract the interface provided by a Virtual Time Machine into four essen-

tial functions:

¢ vt_send(data, receiving process, receive_time) is a command that
sends an event message which will be executed by the receiving process
receiving process at RVT receive_time. (The message’s sending process

and SVT are filled in by the operating system.)
o vt_receive(data) receives the next message into the variable data.

e vt output(data, receive_time) outputs data. OQutput from a process is
displayed in receive_time order; output with the same receive_time must

be displayed in the order it was created.

o vt_virtual_time() returns the process’s LVT.

As stated in Chapter 4, we assume that the application identifies each message
it sends as either a READ message or a WRITE message. The replication code
implements almost the same set of functions as VT except that it distinguishes

between WRITE and READ messages.

o READ(data, receiving process, receive_time) sends a READ message

to the process receiving process.

e WRITE(data, receiving process, receive.time) sends a WRITE mes-

sage.
¢ receive(data) receives the next message.
e output(data, receive_time) outputs data.

A replicated process R is represented by a set of replicas, each one of which
is a separate VT process, as illustrated in Figure 6.3. Although the application

code and the replication code may occupy the same address space, we assume the

53

application does not modify the replication code’s state. We also assume that the
application code does not circumvent the replication code by interacting directly

with the Virtual Time Machine.

Application Process
Code and state

WRITE
READ

One replica: output

receive
) |

Replication
Code and state

Virtual Time Machine

Figure 6.3: One replica

We assume that the replication code can access replica map functions (described
in Section 4.4) which identify the replicas of a process. The replication code routes
a READ message sent to process R to the ‘best’ replica of process R (Figure 6.4).

The replication code keeps the replicas of a replicated process consistent by
transforming a WRITE message sent to process R into a set of messages with the
same RVT—one WRITE routed to one of R’s replicas and a set of CONSISTENCY
messages routed to R's other replicas (Figure 6.5). Because the VT paradigm
guarantees that all processes execute messages in RVT order, executing the WRITE

message and the set of CONSISTENCY messages becomes an atomic update to the

54

S ‘best’

Send virtual time —

Receive virtual time __

Figure 6.4: A READ message sent to a replicated VT process

55

Send virtual time —

4,% Dp~Nsssy,,

&% N
%\-
Receive virtual time __ oo e

Figure 6.5: A WRITE message is sent to a replicated VT process

56

message’s recetving process.

The replication code is outlined in Figure 6.6. The state has several variables.
replica map is a set of capabilities to the process to replica mapping functions
defined in Section 4.4. executing consistency is true when the replica is exe-
cuting a CONSISTENCY message. this_replica is a constant that gives the name
of the local replica. If the simulation is executing a CONSISTENCY message then
sending a message or producing output is a no-op. Otherwise a READ operation
sends a READ to the ‘best’ replica. A WRITE operation sends a WRITE message to
the ‘best’ replica and a CONSISTENCY message to each other replica.

A receive operation receives a message from the VT machine, records whether
the message is a CONSISTENCY and then passes the message’s data to the simula-

tion process.

6.3 Time Warp

Time Warp is an operating system that executes process-oriented discrete-
event simulation programs in parallel. That is, Time Warp executes VT pro-
grams. Experimental and analytic performance analysis indicates that Time Warp
is currently the best system for executing VT programs in parallel [Fuj87, Fu;j88a,
Fuj88c, Fuj88b, RMM88, RM83|.

Time Warp’s innovative feature is optimistic, parallel, execution of VT pro-
grams. At an instant of real time Time Warp executes processes at different virtual
times on many processors. In a correct computation the messages sent to a process
must appear to be executed in RVT order. Of course, only a process’s currently
available input messages can be executed. Time Warp optimistically executes the
available messages in RVT order.

If the optimism proves unfounded, then a process’s execution must be undone.
For example, consider a process R that has already executed message M. Suppose

a message N such that N.EVT < M.RVT arrives for process R. N is called

57

declare
executing_consistency : boolean
replica_map : application_proc_to_replica_function
m : application_message
replica, this_replica : replica_identifier
READ(data, receiver, receive_time)
if (not executing_consistency) then
m.data := data; m.kind := *READ’
vt_send(m, replica_map(’best_replica’, receiver),
receive_time)
end if
WRITE(data, receiver, receive_time)
if (not executing_consistency) then
m.data := data; m.kind := *WRITE’
vt_send(m, replica_map(’best_replica’, receiver),
receive_time)
m.kind := *CONSISTENCY’
for replica in replica_map(’all_replicas’, receiver) do
if not((replica = this_replica) then
vt_send(m, replica, receive_time)
end if
end for
end if
output(data)
if (not executing_consistency) then
vt_output(data)
end if
receive(data)
vt_receive(m)
executing consistency := (m.kind = *CONSISTENCY’)
data := m.data

Figure 6.6: Pseudocode for the replication layer

58

a straggler message, because it has arrived late. R’s state rust be restored to
the content it would have had just before executing message N. In addition, all
consequences of events with virtual times greater then or equal to N.RVT must
be undone. That is, R must be rolled back to before N.RVT.

Time Warp implements these requirements with a general distributed rollback
and commitment mechanism. Time Warp’s design and implementation have been
fully described elsewhere [Jef85, JM84], so we do not do so here. Experimental
results [WHF+89, JBW*87] have demonstrated that Time Warp can efficiently use
many processors to execute a single parallel VT (simulation) program.

Since its invention at Rand in 1982 [JS82, JS85, Jef89], Time Warp has been
extensively investigated by Jefferson and others. The investigations include ex-
perimental prototypes developed at JPL [JBH*85, WHF+89, JBW*87, HBL*89,
RFBJ90, ELP*89, PEWJ89], The University of Utah [Fuj88a, Fuj88c, Fuj87,
Fuj88b, Fuj89], and elsewhere [TK88]; theoretical research at UCLA [Jef85, Sam84]
and USC [JM84, Gaf88, Gaf85, BJ85, Ber86]; design of specialized hardware by
Fujimoto [FTJJG88, Fuj88c|; and performance analysis [RMM88, RM88, LL89a,
LLS0, LL89b, LL89c, Nic89, LMS83]. Research by the Jade project at the Univer-
sity of Calgary [LU85, UDCB86, LCWUB88, Lom88, Wes88, BCLU89| has led to a
commercial Time Warp system. For a survey of distributed simulation work see

(Kau87, Mis86].

59

CHAPTER 7

Virtual Time Synchronization of Executions of Distributed

Applications with Replicated Processes

7.1 Introduction

In Chapter 6 we showed how to replicate the processes of a Virtual Time (VT)
application program. In this chapter we show how to replicate the processes of a
distributed application that has been programmed according to the model of Chap-
ter 3. Thus, this chapter describes the first of our two optimistic algorithms for
process replication. We transform the distributed application into a VT program,
thereby enabling us to reuse some techniques from Chapter 6.

Since Time Warp is the best known general engine for distributed execution
of VT programs we first consider the performance of the transformed application
program on top of Time Warp. We show that the transformed computation will
cause unnecessary rollbacks and excessively delay commitment. We fix this prob-
lem by incorporating replication into Time Warp, thereby creating a new operating
system, Replication Time Warp (RTW). RTW runs applications with replicated
processes with few rollbacks—WRITE and READ messages will not cause rollbacks

when they arrive, although CONSISTENCY messages may.

7.2 Sender assignment of event times to messages

The central issue in this chapter is the selection of the virtual times imposed on
the distributed application. The replication code selects the RVT of every message
sent by the application. The RVT values must be selected so the computation is
correct. In addition, the choice of RVT values makes a big impact on the resulting

60

-.

system’s performance.

7.3 Architecture

In this section we insert a layer of replication code between the application
code and the Virtual Time Machine, which we assume is Time Warp. This layer
intercepts the communication primitives calls made by the application’s replicas.
It assigns RVT values, or event times, to the messages sent by the application
code. We assume, for the present, that the replication code runs on top of TW.
The code run by each Time Warp process consists of the replica’s application code
linked together with the replication code we will present. We assume that the

application code ‘behaves’. In particular, it does not
¢ circumvent the replication code by communicating with TW directly, or

e modify the variables used by the replication code, even though it may be

able to do so because they share an address space.

This system’s architecture is illustrated in Figure 7.1.

To produce a program that satisfies Virtual Time semantics the replication
code must assign RVT values so that each message’s RVT is greater than its
SVT. This requirement is easily satisfied by simply setting message m’s RVT to
be m.SVT + 1.

Figure 7.3 shows an implementation of the replication code. The data types
used are defined in Figure 7.2.

The variables the replication code uses are declared above the code. Each of
the three interface calls, receive, send! and output are shown. The replica is
sequential, so at most one piece of replication code is active at a time.

We assume the following services are provided by the TW virtual time machine:

e vt.receive(m) receives the next message, storing it into m.

1We have combined the READ and WRITE calls into a single send call to shorten the code.

61

Application Process
Code and state

WRITEC(receiving_process, data)
READ(receiving_process, data)
Time Warp output(data)

Process: receive(data)

Replication
Code and state

vt_send(message)
vt_output(data)

vt_receive(message)

Time Warp

Figure 7.1: Architecture of a replicated application on top of Time Warp

replica_name : record (
process_name : charstring,
replica_index : integer);

virtual_time : real;

message_kinds : enumeration({ 'WRITE’, 'READ’, ’CONSISTENCY’);

message : record (
SVT, RVT : virtual_time,
sender, receiver : replica_name,
data : charstring,
kind : message_kinds);

Figure 7.2: Data type definitions

62

declare
executing consistency : boolean
local_virtual_ time : virtual_time
replica_map : set_of_replica_map_functions
this_replica : replica_name -- init to this replica’s name
m : message

—— — - ———— . . e " e

receive(var data)
vt_receive(m)
local_virtual_time := m.RVT
executing_consistency := (m.kind = *CONSISTENCY’)
data := m.data

send(receiver, data, kind)
if (not executing_consistency) then
m.data := data
m.kind := kind
m.receiver := replica_map(’best_replica’, receiver)}
n.RVT := local_virtual_time + 1
vt_send(m)
if (kind = *WRITE’) then
m.kind := 'CONSISTENCY’
for replica in replica_map(’all_replicas’, receiver) do
if not((replica = this_replica)) then
m.receiver := replica
vt_send(m)
end if
end for
end if
end if

output(data)
if (not executing_consistency) then
vt_output(data)
end if

Figure 7.3: Pseudocode for replication on top of Time Warp

63

e vt_send(m) sends the message m to the destination specified in the message

field m.receiver.
e vt_output(data) outputs the data given at the current virtual time.

The RVT of the message currently being executed, called the local virtual
time (LVT) [Jef85], is stored into local virtual_time. The local virtual time is
always copied into the SVT of a message that is sent, so the statement m.RVT :=
local_virtual time + 1 sets the message's RVT to be one greater than its SVT.

The replicas of a replicated process are kept consistent by assigning the same
RVT to all CONSISTENCY message copies of a WRITE message, and disseminating
the CONSISTENCY messages to each replica of the process.

The result is a completely deterministic execution of the application program.
All events which are n message transmissions away from the beginning of the
computation execute at the same virtual time, n. This deterministic execution may
perform extremely poorly, because the replicas’ LVTs can drift apart. In fact, the
difference between the LVT of two replicas at a given real time is unbounded. For
example, consider the computation shown in Figure 7.4, which labels each message
with its RVT. Virtual time advances quickly at processes P and S because they
communicate among themselves frequently, whereas virtual time advances slowly
at process T. When message M sent by T arrives at S it causes S to roll back
two message executions, since two messages with earlier RVT values have already
been executed.

Another consequence of the fact that the LVTs may differ so greatly is that
parts of a computation can wait a long time to commit. In the example, the
message with RVT of 6 executed at P will not commit until replica T executes a
message with SVT greater than 6.

These problems arise because the RVT values assigned to messages bear no
relation to real time. In the next section we show how the RVT of a message can

approximate the real time as which it is received, so virtual time advances more

64

Real
Time

Figure 7.4: Message M causes rollback at process S

smoothly.

7.4 Incorporating replication into Time Warp

Imagine that all replicas can read accurate real-time clocks and that all com-
munication delays are precisely known. Then a message sender could precisely
predict the real-time of the message’s arrival. Figure 7.5 shows a computation in
which the sending replication code sets each WRITE and READ message’s RVT to
precisely the real-time of the message’s arrival at its receiving replica.

We assume the application runs on the network system in the top of Figure 7.5,
which shows the placement of replicas on processors and the deterministic delay of
1 time unit between adjacent processors. Every READ and WRITE message arrives
at a replica when the local real-time equals the message’s RVT. These messages
cannot cause a rollback because no message with a larger RVT could have arrived
earlier. A CONSISTENCY message can cause a rollback, however, because it must
have the same RVT as a WRITE, but is delivered to a different processor at a

later time. Although the first WRITE sent from S to R in Figure 7.5 updates both

65

0~ REAp
- l 5 e —
Tl M / nE
Real ;- REap oY |35 wE
. 4 coﬂsls'ﬁﬁ
Time - ‘3/
5
6 —
Y Y Y)

Figure 7.5: Message RVT equals real-time of message arrival

66

replicas of R without a rollback, the second one rolls back R;. The execution of
the READ sent by P at real-time 3 will be rolled back.

This design is idealized, because the assumptions that clocks are perfectly syn-
chronized and message communication delay is precisely predictable are both un-
realistic. However, we have designed a new operating system which has the same
performance results by incorporating replication inte Time Warp, thereby creating
Replication Time Warp (RTW). RTW is a modified version of Time Warp that
runs applications with replicated processes.

With replication incorporated into the OS there is greater freedom to manip-
ulation virtual times. RT'W sets the RVT of a READ or WRITE message after the
message arrives at its receiving replica, so that enqueuing the message cannot cause
a rollback. In addition, RTW sets the RVT to be as large as the local real-time,
so that virtual time advances at approximately the rate of real-time. RTW is a
combination of all the functionality of Time Warp to execute VT programs with
the functionality of the replication code to manipulate virtual times and keep the
replicas of a process consistent.

Application replicas run directly on RTW, as shown in Figure 7.6. Each appli-

Application
Replica

Replication Time Warp

Figure 7.6: Replication time warp (RTW) architecture

cation replica is a single RTW process. Whereas Time Warp runs Virtual Time
programs, RTW runs applications with replicated processes.
Unlike a Time Warp process, an RT'W application replica never reads or writes

virtual time values. While executing a message a replica cannot read its LVT.

67

When a replica sends a message the application code does not assign the message’s
RVT.

Whereas every Time Warp message always contains an initialized RVT, in
RTW the RVT of a READ or WRITE message is still uninitialized while the message
is in transit from its sender to its receiver. Instead, RTW assigns the RVT of a
READ or WRITE message at the last possible moment—just before the message is
enqueued in its receiver’s IMQ. By postponing assignment of the RVT, RTW can
guarantee that enqueuing the message will not cause a rollback.

RTW maintains a logical clock C [Lam?78] for each replica. C always satisfies an

important invariant:

¢ Invariant LC (logical clock): The value of C maintained for a replica is always
greater than the largest RVT of any message that has been executed by the

replica.

This invariant is maintained by ensuring that the value of C maintained for a replica
exceeds the RVT of each message that arrives at the replica before the message is
enqueued in the replica’s IMQ.?

We also assume that RTW can read a local real-time clock T. T need not be
globally synchronized, nor does it need to be highly accurate. The algorithm will
work correctly even if T stops advancing entirely. We do assume that failure does
not set T backwards.

The purpose of T is to provides a source for RVT timestamps. The RVT
assigned an original message is always at least as large as the local clock T. If the
T clocks at different replicas are synchronized then the RVT assigned a message at
globally synchronized real-time gt will be g¢. In this situation, GVT will advance
to gt when all messages whose RVT values were assigned by real-time gt are
executed or unsent by rollback. This avoids the slow commit problem described in

Section 7.3.

3¢ is not part of a replica’s state, so it does not get restored when the replica is rolled back.

68

When a READ or WRITE message m arrives at a replica, RTW stores the max-
imum of ¢, T and m.SVT + 1 into the message’s RVT. Invariant LC guarantees
that enqueuing m will not cause a rollback. When a CONSISTENCY message arrives

at a replica, its RVT is already initialized. Enqueuing it may cause a rollback.

7.5 Pseudocode that incorporates replication into Time Warp

This section shows the replication code that will be combined with Time Warp
to make RTW. Almost all of RTW is implemented by adding two pieces of code to
Time Warp (see Figure 7.7).3 The first piece (shown in Figure 7.9) handles calls

Application Replica Application Replica
‘Front-end’ interface ‘Front-end’ interface
Time Warp Time Warp
Arriving message handler | Arriving message handler

Figure 7.7: Replication time warp (RTW) architecture (detail)

made by an application replica, and can be thought of as a ‘front-end’ for Time
Warp. The second piece (shown in Figure 7.10) of code handles user messages as
they arrive at an RTW operating system. It maintains C and assigns RVT values
to WRITE and READ messages.

Figure 7.9 shows the RTW front-end for Time Warp.* Most data types used in
this code were shown earlier, in Figure 7.2; the new ones are shown in Figure 7.8.

We assume that the type input_message_queue is the type of the TW IMQ. The

3Some other small changes to TW are discussed in Sections 7.5.2 and 7.5.3
4We have combined the READ and WRITE calls into a single send call to shorten the code.

69

IMQ is shared by several pieces of code, so we assume the shared use is controlled
so each access is atomic.
rtw_message : record (

SVT, RVT : virtual_time,

sender, receiver : replica_name,

data : charstring,

kind : message_kinds,
uid : unique_identifier);

input_message_queue : ~-- data type declared in TW

Figure 7.8: RTW data types

The receive call obtains the replica’s next input message. We have assumed
that tw_next.message is the internal Time Warp call which advances the IMQ
pointer to the next message, and returns a copy of the message. (An efficient
implementation would access the message directly, rather than copy it.)

receive records whether the message the replica receives is a CONSISTENCY
message. If so, then send and output calls are no-ops.

send builds a message. It simply records whether the message is a READ or a
WRITE in m.kind and transmits m to the ‘best’ replica of the receiving process.’

We assume that tw_transmit(m) is the internal Time Warp call which trans-
mits message m to the destination indicated in m.receiver, and does related work,
such as enqueuing a copy of m’s antimessage in the sender's OMQ. We have ex-
plicitly shown the assignment of a message’s SVT to show that all fields of a
message but the RVT have been initialized before it is transmitted. The function
replicamap was defined in Section 4.4.

Figure 7.10 shows the code executed when a user message m arrives at RTW.
This code assigns an RVT to each READ or WRITE message so that a message’s

RVT exceeds its SVT, and maintains invariant LC. It then enqueue the message

$We ignore error recovery code, which would recover from an incorrect kind or a non-existent
receiver, etc.

70

declare

m : TItv_message

executing_consistency : boolean

IMQ : input_message_queue

replica_map : set_of_replica_map_functions

this_replica : replica_name -- init to this replica’s name
receive({ var data)

-- advance IMQ pointer and return next message

m := tw_next_message(IMQ)

data := m.data

executing_consistency := (m.kind = 'CONSISTENCY’)
send({ receiver, data, kind)

if (not executing_consistency) then

m.data := data
m.SVT := LVT()
m.kind := kind
m.sender := this_replica
m.receiver := replica_map(’'best_replica’, receiver))
m.uid := create_unique_id()
tv_transmit(m)
end if

output(data)
if (not executing_consistency) then
tw_output(data)
end if

Figure 7.9: Pseudocode for RTW ‘front end’ for Time Warp

71

in the replica’s IMQ; we have assumed that tv_enqueue(m, IMQ) is the TW
procedure that enqueues an input message m in the queue IMQ.
declare

C : virtual_time
IMQ : input_message_queue

replica_map : set_of_replica_map_functions
this_ replica : replica_name =-- init to this replica’s name
'CONSISTENCY’:

C := max{ C, m.RVT + 1)
tw_enqueue(m, IMQ)
'WRITE® OR 'READ’:

m.RVT := max(T, C, m.SVT + 1)
C :=m.RVT + 1
tv_enqueue(m, IMQ)
if (m.kind = *WRITE’) then

m.kind := CONSISTENCY’

for replica in

replica_map(’all_replicas’, m.receiver.process) do
if not((replica = this_replica)) then

m.receiver := replica
tv_low_level_transmit(m)
end if
end for
end if

Figure 7.10: Pseudocode for RTW arriving message handler

If the arriving message m is a CONSISTENCY message then the code ensures that
invariant LC will hold after the message is enqueued by doing:
C := max(C, m.RVT + 1)
If the arriving message m is a WRITE or a READ message then m.RVT is uninitialized.

The statement m.RVT := max(T, C, m.SVT + 1) does several things.

e First, C is set to be as large as the real-time clock T.

72

e Second, because invariant LC holds and the statement makes m.RVT >= C,

this statement ensures that enqueuing m cannot cause a roliback.

o Third, this statement ensures that the RVT of message m will be greater
than m.SVT.

The next statement, C := m.RVT + 1, ensures that LC will hold after m has
been enqueued in the IMQ.

To keep replicas consistent, when a WRITE message arrives at a replica, RTW
creates and transmits CONSISTENCY messages to all other replicas of the process.

The CONSISTENCY messages have the same RVT as the WRITE message.

7.5.1 Distinct event times at a replica

An important improvement on this RVT selection method can guarantee that
no replica ever receives multiple messages with the same RVT. This avoids the
need to sort the messages received by one replica at a single virtual time by their
content field, as must be done to make the execution of a VT program deterministic
by Time Warp [JBH*85].

We assume each replica of a process has a unique identifier, replica unique_id,
which is a real in (0,1).® The statement in the processing of WRITE and READ
messages
m.RVT := max{ T, C, m.SVT + 1)
is replaced by the statement
m.RVT := ceiling(max(T, C, m.SVT + 1)) + replica unique.id
The ceiling function makes the result of the maximum operation integer, so that
replica unique_id determines the RVT value’s fractional part.

A replica never receives multiple messages with the same RVT for the following
reasons. The RTW running replica R; determines the RVT values of all the WRITE

and READ messages R; receives. By the statement above that assigns m.RVT,

SReplicas of different processes can have the same identifier.

73

the RVT values assigned at one replica are an increasing sequence, so they all
differ. The RVT values of CONSISTENCY messages executed at R; are assigned at
replicas R;;x;. CONSISTENCY message RVT values assigned at one replica are an
increasing sequence, so they all differ. CONSISTENCY message RV T values assigned
at different replicas differ because, by the uniqueness of replica unique_id, they
all have a different fractional part. Therefore, each message executed by a replica
has a different RVT.

7.5.2 Antimessages and annihilation

Time Warp undoes the sending of a message by transmitting the message’s
antimessage. A Time Warp message has a sign field, which can store either +
or —. When a TW process sends a message m, one copy with a + in the sign
field, denoted +m, is transmitted to m’s receiver; another copy of m with a — sign
field, —m, is saved in the sender’s OMQ. When the sending of m must be undone
because of a rollback, —m is removed from the sender’s OMQ, transmitted to m’s
receiver and enqueued in the receiver’s IMQ, where +m and —m annihilate’—both
messages are discarded. If the +m message that had been in the IMQ had already
been executed, then the process is rolled back to before that execution.

As stated in [Jef85], To “unsend” a message it suffices simply to transmit its

antimessage. Thus, Time Warp’s annihilation rule is that

o Two messages annihilate if they have the same content (sending process,

SVT, receiving process, RVT and data) and different signs.

Because RTW assigns a READ or WRITE message’s RVT after the message
arrives at its receiver, the —m copy in the OMQ does not store the RVT. Therefore,
RTW cannot use TW’s annihilation rule—the messages would not match. To solve
this problem, RTW creates a unique identifier (uid) each time a message is sent

by an application replica. Thus, Figure 7.9 contains the statement

TLike subatomic particles and anti-particles annihilate, hence the name.

74

m.uid := create.unique_id()

which assigns a unique identifier to m before it i sent. The same uid is written on
both the +m transmitted to m’s receiver and the —m saved in the sender’s OMQ.
In RTW, two messages annihilate if and only if they have opposite signs and the
same uid.

This approach loses the elegance of matching and annihilating messages solely
on the basis of their content. (Other TW implementations have modified the
mechanism that matches a message with its antimessage. For example, Fujimoto’s
[Fuj88a] shared memory TW stores a pointer to a transmitted message in the
OMQ. To send an antimessage the algorithm follows the pointer and annihilates
the message it finds.)

How is the sending of a CONSISTENCY message undone? Suppose replica R;
sent WRITE message w to replica P;. If R; is rolled back and the sending of
w is undone, then sending the CONSISTENCY message copies of w must also be
undone. Therefore, if —w is transmitted from R; to P;, RTW also transmits an
antimessage —w to each other replica of process P.% (This part of the code is not
shown since it is buried in the rollback implementation.) —w has the same uid
as the CONSISTENCY messages because the code (in Figure 7.10) that creates the
CONSISTENCY messages copies the uid already in the WRITE message. Therefore,
when —w arrives at the other replica it will annihilate the CONSISTENCY message.

As part of this mechanism, when a CONSISTENCY message is created no neg-
ative signed message is saved in the OMQ. We assume that the TW function
tw_lov level transmit(m) used in Figure 7.10 to send CONSISTENCY messages

simply transmits a message without enqueuing a negative message in the OMQ.

7.5.3 Commitment and termination

Time Warp defines GVT at real time r is defined as the minimum of (1) all
virtual times in all virtual clocks at time r, and of (2) the RVT of all messages

8This assumnes that the RTW running R; statically knows the set of all replicas of R.

75

that have been sent but have not yet been processed at time r.

Because the C clocks do not advance when a replica does not receive messages,
for RTW we modify the definition of GVT as follows: GVT at real time r is the
minimum of (1) all clocks T at time r, and of (2) the RVT of all messages that
have been sent but have not yet been processed at time r. (This assumes that T
will not be set backward for any reason.)

We change the definition of GVT because a READ or WRITE message in transit
in an RTW system will have an unknown RVT. GVT is at least as small as the
global minimum of all T clocks because the smallest RVT that can be assigned at
real-time r or later is at least the minimum of all clocks T at time r.

Unlike Time Warp, RTW will never advance GVT to o0, so the TW termination
criteria of GVT = oo would never be satisfied. Instead, an RTW computation
terminates when there are no messages which have been sent but have not been

completely executed.

7.5.4 Deterministic replay

It would be a performance drawback to require that optimistic systems like
Time Warp save a process’s state before each message execution. Therefore, Time
Warp checkpoints a process’s state only intermittently. It recreates an intermediate
state needed by a rollback by restoring the process to an earlier state and then re-
executing messages from the process’s IMQ until the process achieves the desired
state. It is essential that the replay be deterministic, that is, that re-executing
messages precisely recreate the process’s state.

Clearly, reading a real-time clock is not a deterministic action. Therefore,
when RTW rolls back a replica and re-executes WRITE and READ messages from
the replica’s IMQ, RTW does not re-assign new RVT values to the messages. An
RVT value is only assigned to a WRITE or READ message once—when the message
arrives at processor running the replica.

Thus, replay of an RTW replica is deterministic,

76

7.6 Conclusions

We have presented Replication Time Warp (RTW), a new operating system
that executes applications with replicated processes. This is the first of our two
optimistic replication algorithms. RTW uses the synchronization power of VT to
update the replicas of a process atomically.

RTW is a small extension to the Time Warp distributed simulation system. It
incorporates all the mechanisms of Time Warp. In addition, RTW internally deter-
mines the RVT of each message. RVT values are chosen so that a READ message
or a WRITE message cannot cause a rollback when it is enqueued. CONSISTENCY
message copies of a WRITE are created with the same RVT as the WRITE message
so that the replicas of a process are kept consistent. A CONSISTENCY message can
cause a rollback.

77

CHAPTER 8

A Dependency-Tracked Mechanism for Optimistic Process Replication

8.1 Motivation

Pessimistic process replication suffers from a major performance drawback:
the update protocol prevents each replica from receiving new messages for a long
interval. The interval is at least as long as the replica’s round-trip communications
delay to the primary replica. The interval begins when the receive service enqueues
a CONSISTENCY(z) message in the IMQ and does not finish until the service receives
the COMMIT(3) message, as shown in Figure 5.2. Thus, a single WRITE ties up all
the replicas of a replicated process for an extended period.

This poor performance frustrates us as designers, because the pessimistic repli-
cation mechanism slows execution to prevent replication errors that we believe
would almost never occur. For example, suppose a READ arrives at a replica of
process R while the replica cannot receive the READ because it has enqueued an
uncommitted CONSISTENCY. If the READ does not depend on the update by the
uncommitted CONSISTENCY message or any other uncommitted UPDATE, then the
READ could be received by R’s replica without causing a replication error. Com-
munication paths make it unlikely that the READ depends on the update by the
uncommitted CONSISTENCY; the CONSISTENCY message traveled directly from the
primary replica, whereas the READ traveled from another process which had earlier
received a reply from a replica of R. We see these differences in speed in the figures
showing prototypical replication errors, like Figure 4.4. Of course, the replication
mechanism must prevent these errors. Because we assume message delivery can
take arbitrarily long, the mechanism must protect against the worst cases.

Since actual replication errors will be extremely infrequent the pessimistic

78

mechanism needlessly delays execution. This optimistic mechanism takes a dif-
ferent strategy. It tracks dependency in the computation so it knows which state
changes must have taken place before each point in a computation. The depen-
dency tracking enables the optimistic mechanism to prevent W-w and R-W errors
and detect and undo C-D errors. If C-D errors occur extrernely rarely, as we believe,

then undoing them will be an insignificant performance cost.

8.2 Principles of optimism

Optimistic concurrent computation can perform better than an equivalent pes-
simistic computation by executing input that may not be ‘correct’; the optimistic
computation performs better because it is active while the pessimistic computation
would be idle waiting for the input to be proven ‘correct’. The optimistic compu-
tation makes a ‘guess’ that the input is correct. The term ‘correct’ describes the
state of the input with respect to some condition of the distributed algorithm. For
example, in process replication an inputr message is ‘correct’ if executing it cannot
cause replication errors.

The performance of an optimistic computation should be evaluated by com-
paring it with the performance of the equivalent pessimistic computation. An
optimistic computation’s performance will depend on the trade-offs between the
benefits of executing inputs earlier and the costs of undoing the execution of ‘in-
correct’ inputs plus the costs of saving the history that make undoing possible.

An optimistic computation is a complicated algorithm because it must have
the capability to undo the distributed effects of executing ‘incorrect’ input. An
optimistic computation tracks the effects of one part of a computation on another.
This tracking, called dependency tracking, supports the propagation of commitment
and rollback:

Commit Part of a computation commits when it is correct and all parts of the

computation it depends on have committed.

79

Rollback Part of a computation must be rolled back if it depends on input that

will never commit.

An optimistic computation postpones actions that cannot be undone, such as
producing output, until the action depends only on committed input.

The optimistic process replication system architecture (see Figure 8.1) is cen-
tered around the replica history manager. The replica history manager provides
the same application program interface as the pessimistic and Time Warp based
optimistic replication mechanisms discussed earlier. It stores the data and imple-
ments the algorithms that support commitment and rollback.

The history manager’s actions center around two data structures:

® an input message queue (IMQ) which stores an ordered sequence of the

replica’s recently executed and as yet unexecuted input messages’, and
® a state queue (SQ) which stores copies of the replica’s recent states.

These will be discussed more thoroughly in Section 8.5. In the next few sections we
will discuss how optimistic process replication tracks dependencies, how it commits

part of a computation and how it rolls back part of a computation.

8.3 Tracking dependencies

Tracking dependencies serves two purposes. First, dependency information is
used to prevent W-w and R-W errors and detect C-D errors. Second, dependency
information helps propagate commitment and rollback.

The dependencies the system tracks are updates of replica states. A dependency
is denoted P, which indicates the ith update of process P’s state.

Since execution of a READ does not change its recipient’s state it does not

create a dependency to track. Any later message that accesses the replica cannot

1A note on wording: Given an IMQ ---, M,---, N,--- whose messages will be executed from
left to right, M before N, we say message M comes before N, or is earlier than N , OF i8 older
than N; symmetrically N follows M, or is younger than M, or comes after M,

80

Replica

READ output

WRITE access_state

receive

Replica history manager

IMQ

sQ

]
—3

cutrent_input_message

 —

current_siate

replica_data

dependency_map
update_number

[}
READ

WRITE

COMMIT
receive | ROLLBACK

CONSISTENCY
COORDINATE
ANTECEDENTS

} sond

Distributed Operating System

do_output
halt_replica
restore_state

controi
nearest_replica
primary_replica
secondary_replicas Replica

.
map

Figure 8.1: Optimistic process replication system architecture

81

determine whether the READ has been executed, so there is no need to require that
the READ was executed earlier.

The state updates that “happen before” [Lam78] a particular event in a com-
putation are those that can be traced forward to the event through communication
in messages and states. The dependencies of a message or state are stored in its
dependency map (like an Optimistic Recovery dependency vector, as in [SY85],
which is denoted by a set in comparison signs: < P, @;,R¢--- >. Since P; pre-
cedes P, by deﬁnition', a dependency map contains at most one entry for each
process—the most recent previous update at that process.

Dependencies are tracked by including a dependency map in every message.
When a replica sends a message, the replication mechanism appends a copy of the
dependency map of the replica’s current state to the message. When a replica
receives a message, the message’s dependency map is merged into the dependency
map of the replica’s current state. The merged dependency map contains a union
of the dependencies in the message ard state dependency maps. If both the mes-
sage and state maps depend on the same process, then the merged map shows a
dependency on the latest of the two dependencies.

When a replica receives an UPDATE message, the update’s dependency is spe-
cially merged into the replica’s state. Thus, when a replica of process Q executes
WRITE(?) or CONSISTENCY(1) it adds @, to its dependency map. Figure 8.2 illus-
trates dependency tracking in a small computation. The dependency map carried
by a message is shown as a <> enclosed list following the message. The dependency
map of a replica’s state is shown beside the state line.

The update protocol attempts to commit an update to a process’s state. Unless
it has been committed, we say that the update is uncommitted.

An important performance optimization comes from the recognition that com-
mitted dependencies do not need to be tracked because executing a message that
depends on only committed updates cannot cause a replication error. If a depen-

dency map does not depend on any uncommitted update of process P then the

82

Figure 8.2: Dependency tracking example

83

Q R
A A
F 1 2\ r 1 n
< <> < < <
YRimg; WRITED
\ o . C{@ /
B PG W Rj>
. . c
<Qi> \
. <Qi> <Ri
M e, &an_
+1> - .
<Qi+l> <@ e [} Q&
<Qi+l> <Qi, Rp>
\ AG
R g,
Y v L Y QLR

map need not store any entry for P.

8.4 Update protocol

A WRITE message is routed to its receiving process’s primary replica, whose
replica history manager assigns the next un to the WRITE. (We initially discuss
a protocol coordinated by a primary replica because we feel it is easier to rea-
son about than a fully distributed protocol. Later, in Section 8.9.2, we describe
a distributed update number server that can decentralize the functions of the
primary replica without changing the design of the update protocol.) For un i a
CONSISTENCY(i) message is sent to each of the process’s secondary replicas, and the
WRITE(:) message is enqueued in the primary replica’s IMQ. A CONSISTENCY(z)
message has the same user message content and the same dependency map as

WRITE(z).

8.4.1 An example

Figure 8.3 shows a sample execution of the optimistic update protocol in which
the update commits without a rollback. A WRITE is sent by process A to replicated
process R. R’s primary replica? assigns un i to the WRITE and begins the update
protocol. WRITE(?) is delivered to the primary replica, which begins executing it
immediately, as shown by the thick vertical line. Process R sends a message called
M back to process A. R sends M after receiving WRITE(:) so M’s dependency
map contains R;. While process A executes M it produces some output; since the
output depends on the uncommitted update R;, the replica history manager for A
delays the output.

Meanwhile, process R performs the update protocol. CONSISTENCY(3) is sent
to the other replica, which sends back a COORDINATE(i) message. A special de-

pendency map (shown in parentheses) is carried in the COORDINATE() message

When we say “R's primary replica” we mean “the replica history manager managing R’s
primary replica”. :

84

A Primary Secondary
CONsyg
TEN, 0
ATEOR -~
COORDE2-

output

solid line - user messages -

dashed line - control messages
------------------ .

Figure 8.3: Optimistic protocol

85

to indicate all new additional dependencies picked up at the secondary replica.
In the example, the COORDINATE(:) message’s dependency map is empty because
update R; did not acquire any additional dependencies.

When COORDINATE(:) arrives, R’s primary examines the status of update i.
First, COORDINATE(z) messages have arrived from all secondary replicas. Second,
update : does not depend on any uncommitted dependencies. Satisfying these two
conditions commits update R;, so R broadcasts COMMIT(R;). When A’s replica
history manager receives COMMIT(R,) everything the output depends on has com-
mitted, so the output can actually be written.

This example illustrates the performance benefits of optimism. Optimism has
enabled R’s primary replica to execute WRITE(:) earlier than the pessimistic pro-
tocol would have allowed. As a result M was returned to process A earlier, thereby
allowing A to execute it in parallel with the update protocol. When the update
committed, A had already completed the execution of M. The output has been
produced earlier. It was sped up by an amount of time slightly less than the sum

of the execution times of the WRITE message and M.

8.4.2 Committing an update

An update commits if executing its UPDATE messages cannot cause replication

errors. To commit an update, the following conditions must hold:

C1 All replicas of the process have been told about the update.

C2 All other updates earlier than the update have already been committed.

If these conditions have been satisfled for update 7 at process R then executing its
messages cannot cause replication errors. We show this in Section 8.8.3.

The primary replica determines that these conditions hold for update ¢ when

it finds that:

1. All other replicas have replied to the CONSISTENCY(7) message by sending a

COORDINATE(:) message.

86

2. All updates that the update depends on, including the dependencies com-

municated in COORDINATE(z) messages, have committed.

The protocol implements this as follows. A WRITE in the IMQ has fields in-
dicating the message’s un (update number) and the remaining number of ac-
knowledgements from other replicas it needs (coordinatesneeded). (See Fig-
ure 8.8). When a COORDINATE(:) message arrives the coordinates needed count
in WRITE(:) is decremented. R’s primary replica commits update ¢ when the
coordinates needed count in WRITE(:) goes to 0 and the dependency map in
WRITE(?) becomes empty. Unless the update is in a “dependency loop”, this will

eventually happen. Other some replica will need to be rolled back.

8.4.3 Rollback

If the timing of message arrivals never causes a potential C-D error (like the
one in Figure 4.6) then all updates will eventually commit.

Potential W-W errors and potential R-W errors are resolved by using local in-
formation to order messages correctly. However, if a dependency loop occurs then
at least one of the updates in the loop must be rolled back to enable commitment
to continue.

If a dependency loop occurs (see Figure 8.4) then the updates involved cannot
commit because condition C2 is not satisfied. In Figure 8.4 both primary replicas
have received COORDINATE messages from their secondary replicas. However, Q
cannot commit update ¢ because it depends on uncommitted dependency R;. Let
us use £ — y to indicate y depends on z. In this example @’s primary replica
observes that R, — Q;. Symmetrically, R's primary replica observes that Q; — R;.
This is a dependency loop.

Neither primary replica can commit the update. (Note that Figure 8.4 shows an
C-D error involving the two processes with two replicas each. This is the minimum

number that can participate in a dependency loop. Other loops involving more

87

Figure 8.4: A dependency loop in the optimistic protocol

88

processes and/or replicas can occur.)

This dependency loop must be broken so the computation can progress. Since
both @ and R’s secondary replicas have executed the READ at least one of them
will have to be rolled back.

To make sure the computation makes progress, one of the updates in the loop
is not rolled back. Otherwise the dependency loop could form repeatedly.

To ensure that an update does not get starved—that is, to prevent an update
from repeatedly becoming part of a dependency loop and then being rolled back—
we always do not rollback the update with the earliest real time timestamp. The
timestamp is assigned when a WRITE arrives at a primary replica. These times-
tamps can be picked from the physical clocks described in Section 7.4, which only
need to be logical clocks for correctness.

A primary replica detects that it must roll back an update when it determines
that the update participates in a dependency loop and that the update is not the
earliest update in the loop.

When the coordinates needed count in WRITE(Z) goes to 0, if the message’s
dependency map still contains dependencies other than R, then the primary replica
sends a DEPENDENCIES message to the primary replica of each process in the
dependency map. The DEPENDENCIES message indicates an edge in a potential
dependency loop and the timestamp of the update. For example, in the execution
of Figure 8.4 Q’s primary will send a DEPENDENCIES (Q;, 1.0)(R,) message to R’s
primary replica, as shown in Figure 8.5. The message indicates that Q’s primary
knows R; — @, and that the timestamp of Q; is 1.0.

Process R’s primary detects the loop shown in Figure 8.6 and rolls back R;
because its timestamp, 2.0, is greater than the timestamp of Q;, 1.0. R broadcasts
ROLLBACK(R;) messages.

When a replica’s history manager receives a ROLLBACK(R,) message it undoes
all computation that depends on dependency R; and removes dependency R; from

all dependency sets. In this example, the rollback will undo message M2, the READ

89

Q
AN
A @mary Sccondg

Figure 8.5: Dependency loop detected

Qi, 1.0 Rj, 2.0

rollback breaks

Figure 8.6: Dependency loop

90

M?2’s execution sent, and CONSISTENCY(3).
After the rollback, @’s primary will be able to commit update i because it will
no longer depend on uncommitted update R;. R will resubmit WRITE(z) and it

will commit after R;. The final outcome is shown in Figure 8.7.

COORD

-
-
-

N+
____:f[@o
- COMMIT®j) ~ ==~
Y Y Y P R N

Figure 8.7: Commit after rollback

A complete discussion of rollback and detecting and breaking dependency loops

1s presented after a discussion of the structure of the replica history manager.

8.5 The replica history manager

A replica history manager controls one replica of a replicated process (see Fig-

ure 8.1). The manager makes the replica’s execution consistent with its local view

91

of causality. This section discusses the detailed design of an optimistic replica
history manager.

The history manager controls a replica’s execution by handling its message
sends and receives, and its output operations. An optimistic manager also needs
the capabilities to interrupt the replica’s execution, save its state and restart it
from a saved state. We assume these services are provided by the local operating
system or can be written in terms of its function.

Recall that the primary data structures in a replica history manager are the
input message queue (IMQ) and the state queue (SQ).

An entry in the SQ stores a snapshot of the replica’s state, and some control
information. The snapshot contains a copy of all the data accessible to the replica’s
code, such as the stack, the heap, etc. The snapshot, or checkpoint, is taken while
a replica is suspended in between message executions. Thus, a state in the SQ fits
into a particular slot in the sequence of messages in the IMQ. There can be several
WRITE message executions in between checkpoints.

Performance considerations determine the best times to take checkpoints; the
storage and computation cost of taking checkpoints must be traded-off against the
benefit of short rollbacks. Evaluating these trade-offs quantitatively is beyond the
scope of this dissertation.

The history manager stores a replica’s recent states and input messages to give
it the ability to undo uncommitted message executions. To support rollback, the
SQ must store one state older than the earliest uncommitted input message. This is
a committed state. Allinput messages younger than the youngest committed state
must be retained in the IMQ. As older input messages get committed, unnecessary
input messages and states should be discarded to reclaim storage.

A message in the IMQ stores the contents of the message the sending process
sent and control data used by the replication algorithm. Some of the contents of

an input message are described by the Hermes [SBG*91]® data type definitions

3A record type is declared by typename : record (field.name : field type , ...

92

in Figure 8.8. The message content field stores the message contents created by
the sending process. kind identifies whether a message is a WRITE, a READ or a
CONSISTENCY. dependencies stores the message’s dependency map, as discussed
above. As COMMIT messages convey the information that dependencies have been
committed, the dependencies are removed. Conversely, as ROLLBACK messages
convey the information that updates are being undone, input messages containing
these dependencies are discarded. Eventually, an input message’s dependency
map must become empty. If an input message's execution might be undone, then
output produced while executing the message is buffered until the rollback cannot
occur. output messages stores the buffered output. Figure 8.8 assumes output is
a charstring, although any type of data could be output, of course.

end_of replay supports replay after a rollback. A rollback sets it to 'true’
in the message whose execution marks the beginning of normal execution after the
replay.

The last four fields are not used in READ messages. Only UPDATE mes-
sages maintain update number. It is the update number of this state update,
as we have discussed. Only WRITE messages maintain timestamp, which is the
real time the WRITE arrived at the primary replica, coordinates needed, which
counts the remaining COORDINATE messages expected from secondary replicas, and
descendants, which stores the updates that must follow this update, as indicated
in DEPENDENCIES messages sent by other replicas.

The message in the IMQ most recently or currently being executed is called
the current input message. Many operations on the IMQ refer to it.

A state in the SQ contains the replica’s checkpoint and some control informa-

tion. The dependencies records the state’s dependencies. The last state in the

). An enumeration is a type with a finite set of values. A polymorph is a type that can hold any
type. A table stores a set of elements. Its type is declared by table_typename : [ordered
] table of [xeys(fieldlist)] { typestate } . ordered indicates that the table has
an ordered sequence of elements. eys(field.list) indicates that the value in the fields in
field.list must be unique in each elements. The typestate can be ignored.

93

enqueued_message : record (
message_content : message_content,
kind : message_kinds,
committed : boolean,
dependencies : dependencies,
output_messages : output_messages,
end_of_replay : boolean,

update_number : update_number,
timestamp : real_time,
descendants : dependencies,
coordinates_needed : integer);
enqueued_state : record (
checkpoint : checkpoint,
dependencies : dependencies,
update_number : integer,
in_replay : boolean);

message_kinds : enumeration('WRITE’, ’READ’, ’CONSISTENCY’);
message_content : polymorph;
checkpoint : polymorph;

dependency : record
(process : charstring;
update_number : integer;
timestamp : real_time);
dependencies : table of dependency keys(process) {full};
real_time : real;
output_message : charstring;

output_messages : ordered table of output_message {full};

Figure 8.8: Contents of messages in the IMQ and states in the SQ

94

SQ is the current_state, the state the replica references when it accesses data. The

in_replay field is *true’ when a replica is replaying its input after a rollback.
The next two sections describe the replica history manager’s algorithms: the

services it provides to a replica, and the response it makes to messages from other

replica managers.

8.6 Application interface services

The history manager supports send, output and receive operations by the ap-

plication process.

8.6.1 Send and output

Both a message send and output do nothing if the message being executed
is a CONSISTENCY message or the replica is in replay, because in both cases the
execution is simply recreating the replica’s state.

This chapter assumes that the application indicates whether the message is
a2 READ or a WRITE. As discussed earlier (page 34) the replicamap provides
a nearest._replica destination to route READ messages and a primary replica
destination to route WRITE messages. When a message is sent the dependency
map of the current_state is copied into the message’s dependency map.

Qutput should be immediately sent to the outside world if the replica execution
has committed up through the current input message, as would be indicated by an
empty dependency map for the current state. Otherwise output must be buffered

in the input message’s output_messages field.

8.6.2 Receive and delivering messages to a replica

A history manager’s performance objective is to execute its replica’s input
messages as fast as possible.

A replica requests another input message by issuing a receive call. The history

95

manager delivers the next input message from the IMQ to the replica. The history
manager will delay delivering the next message if it depends on ‘missing’ UPDATE
messages. Essentially, this delay is an optimization to prevent future rollbacks.
For example, if the next message in the IMQ of a replica of process P has P; in its
dependency map and UPDATE(8) has not already been executed, then the history
manager waits until UPDATE(8) arrives before executing the message that depends
on 1t. This delay cannot deadlock because it always waits for a message that must

already be in transit.

8.7 Replication system interface services

This section discusses the actions of a history manager processing a message
from another history manager.

A user message (WRITE, READ or CONSISTENCY) is the IMQ enqueued after
messages that have been executed. In addition, it is enqueued so that the se-
quence of messages in the queue is consistent with dependency. A message must

be enqueued ahead of messages that depend on it:
o An UPDATE(t) is enqueued ahead of an UPDATE(;) message for all j > i.

o At a replica of process P an UPDATE(¢) must be enqueued ahead of all other

messages that depend on F;.

For example, if an IMQ at a replica of process P contains the messages:

CONSISTENCY(9), READ < Pjg >, CONSISTENCY(11)

then CONSISTENCY(10) must be inserted between CONSISTENCY(9) and the READ.
Another degree of freedom is available in manipulating the IMQ. The history

manager can temporarily delay enqueuing a CONSISTENCY message. If the replica

1s not ready to execute them this could be used to give priority to the execution

of READ messages. A READ would be enqueued before CONSISTENCY messages

so that it could be executed earlier and depend on fewer uncommitted updates.

96

However, inserting the READ earlier in the queue would slow commitment of the

updates brought by the CONSISTENCY message.

8.7.1 Handling READ, WRITE and CONSISTENCY messages

A READ is enqueued in the replica’s IMQ.

A WRITE is assigned the replica’s next update number and a real-time times-
tamp. The coordinates needed field is initialized to the number of replicas of
the process minus 1. The committed field is marked false. CONSISTENCY mes-
sage copies of the WRITE are made and sent to each other replica. The WRITE is
enqueued in the primary replica’s IMQ.

When a CONSISTENCY is enqueued in the IMQ The uncommitted dependencies
in messages ahead of the CONSISTENCY in the IMQ are merged together and stored

in a COORDINATE message, which is sent back to the primary replica.

8.7.2 Handling COORDINATE and DEPENDENCIES messages

When a COORDINATE(:) message arrives the dependencies in the COORDINATE
message are merged into the dependencies in WRITE(:). The history manager
checks whether update : participates in a loop, as discussed in Section 8.7.5. The
coordinates.needed count in WRITE(7) is decremented. If the count drops to
0 the primary replica examines the WRITE message’s dependencies. If the set is
empty then update : commits. The primary replica processes the newly committed
input message, as described in Section 8.7.3.

If the dependencies set is not empty then a dependency loop may exist. Suppose
P’s primary replica is considering update i has received the last COORDINATE(?)
message. For each dependency R; in the dependencies set, the replication code
managing P sends a DEPENDENCIES (P,)(R;) message to R’s primary replica.

When a DEPENDENCIES (P;)(R,) message arrives, R's primary replica inserts
P; into the descendants set of WRITE(:). R’s manager checks whether update i

97

participates in a loop, as discussed in Section 8.7.5. Note that the descendants
set must be stored because either a COORDINATE or a DEPENDENCIES message can

arrive and detect a loop.

8.7.3 Handling COMMIT messages

When update 1 of process P commits, the replication code running P’s primary
replica broadcasts a COMMIT(P;) message. (Section 8.9.1 describes an optimization
that may decrease message traffic by replacing a broadcast with point-to-point
message transmission to the replicas that need the COMMIT message.)

When a history manager receives COMMIT(;) it deletes P; from the dependency
maps and descendants maps of all messages in the IMQ and all states in the SQ.

Removing these dependencies will commit all READ and CONSISTENCY mes-
sages that depend only on uncommitted dependency P;, and all WRITE mes-
sages that depend only on uncommitted dependency P; and have received all
COORDINATE messages. These are newly committed messages, and their actions
can be released to the outside world.

For all newly committed input messages the manager does several things:

o If the input message is WRITE(7) message update j has committed. A

COMMIT(7) message is broadcast.

o Output produced while executing the input message and buffered in its

output messages filed is transmitted to the outside world.

Some irreversible actions are done by the operating system, such as reporting a
replica’s ‘divide by 0’ or ‘memory access violation’ error. These irreversible actions
must be delayed until they commit. Thus, an error that would cause a replica to
fail and be killed must delay killing the replica. The replica may roll back and not
die.

Data in the IMQ and SQ that are no longer needed can be discarded to reclaim

storage. A state in the SQ commits if all earlier messages in the IMQ have com-

98

mitted. States in the SQ earlier than the latest committed state can be discarded.
All messages that have already been executed and are earlier in the IMQ than the
earliest remaining state can also be discarded.

COMMIT(F;) and ROLLBACK(P;) broadcasts must ferret out all dependencies
on F;, including those in messages in transit.

This problem arises because a user message which depends on P; could still be
in transit to replica R when COMMIT(P;) arrives at R’s history manager.4

For this kind of network, each history manager must store a list of the com-
mitted dependencies, and use the list to delete the committed dependencies from
arriving user messages. Each history manager must also store a list of the rolled
back dependencies, and use the list to discard arriving user messages that depend
on rolled back dependencies.

Unnecessary entries can be discarded from these lists as the computation pro-
gresses. If F; has been committed, then all P; for ; < ¢ has been committed, In
principle, an entry in the rolled back dependencies list can never be discarded,
since a message that depends on the dependency could arrive after an indefinite
delay. However, other techniques, such as message aging, can be used to eliminate

such messages.

8.7.4 Handling ROLLBACK messages

On receiving a ROLLBACK(F;) message the history manager discards all mes-
sages in the IMQ and states in the SQ that depend on P,. Let M be the earliest
message that depended on P,. If the replica had executed M then the manager
must roll back the replica. Conceptually, the replica’s state is restored to the value
it had just before the replica executed M and the replica begins executing the

remaining messages in the IMQ. To restore the replica to that state, its state

*If the network is order-preserving and the history manager processes messages in order, then
a broadcast of COMMIT(F;) can spreads out as a flood from P’s primary replica and ‘captures’ and
eliminates all the dependencies on P; in its wake. Such a network would not need the mechanism
below, but we think these assumptions are unreasonable.

99

is restored from the snapshot in the previous state in the SQ, and messages in
the IMQ between the previous state and M are executed in replay. Replay only
recreates the replica’s state. Side-effects, such as message sends and output, are
ignored.

Replay must exactly recreate the replica’s state. Therefore, the state’s value
must have been completely determined by the replica’s execution of the messages
in the IMQ. Deterministic replay can be difficult to achieve, as we discuss more
fully in Section 8.8.2.

If a replica that needs to be rolled back is actively executing a message, then
it must be interrupted and halted, as discussed by Jefferson in [JBW+87]. The
replica’s execution must be interrupted because it

The message execution must be interrupted because the replica may be in
an infinite loop because it is executing a message out of order. If the execution
were not interrupted then the rollback would never happen. Such an infinite loop
would occur, for example, if the application code implemented “if I detect that I'm

replicated then enter an infinite loop”.

8.7.5 Detecting dependency loops

A History manager looks for a dependency loop whenever a COORDINATE or a
DEPENDENCIES message arrives. A WRITE message’s dependencies field contains
the updates which precede it, while the descendants field contains updates which
follow it. A dependency loop exists if an update is in both fields. Thus, a loop
always involves a pair of updates. The update with the later timestamp is rolled
back. For example, if P’s primary replica detects a loop involving WRITE(z) and
the timestamp of P; is later than the timestamp of the other update in the loop,
then it will broadcast ROLLBACK(P;) messages.

All the updates that precede a WRITE will have been stored in its dependencies
field when a COORDINATE message has arrived from every secondary replica. The

descendants field will eventually contain all updates which follow the WRITE

100

because dependencies fields become complete and when one does the history
manager sends DEPENDENCIES messages to the primary replica of each update in

the dependencies fields. Thus, all loops will eventually be detected.

8.8 Correctness issues

8.8.1 Distinguishing among the multiple update protocols of a WRITE

After an update is rolled back it is re-submitted, that is, the update protocol
is done again. The dependency labels of these two updates must differ, so that
the rollback of the first does not affect any of the second. To implement this each
primary replica maintains an attempts table mapping each update number to the
number of its attempts. The attempt number distinguishes different attempts to
do the update, so a dependency identifier becomes a four-tuple: (process, update
number, timestamp, attempt).

When a primary replica conducts its first update ¢ protocol it inserts (i, 1)
into the attempts table. Each subsequent attempt to do update i increments
the attempt count for i. When update ¢ commits, its entry is removed from the
attempts table,

These four-tuple dependencies carry implicit rollback information. If a message
with dependency (P, i,t,z) arrives then computation that depends on (P, 1,¢,y) is
rolled back if y < z. Similarly, the merge operation considers a dependency larger
if it has a larger attempt field. All other operations with dependencies remain the

same.

8.8.2 Replay and determinism

For best performance, a replica’s state should not be checkpointed too fre-
quently. Therefore we place no restrictions on the spacing between checkpoints.
As we said in Section 8.7.4, to restore a replica to a state that was not checkpointed

the replica’s state is restored to an earlier checkpoint and the desired checkpoint

101

is recreated by replaying the replica’s execution of messages from the IMQ.

The replay must be deterministic—that is, it must recreate the exact state that
the replica had before it executed the particular message. This requires that all
messages and other input which determine the replica’s state must be retained in
the IMQ. The replay must be deterministic because if it were not the replica would
have followed a new and different execution path during the replay than it did when
previously executing the input messages. The messages the replica sent during the
previous execution were already sent to other replicas. Their content will indicate
that the replica followed the previous path. Clearly, these two different execution
paths are inconsistent.

Describing the determinism requirement abstractly takes no effort; however
real systems are messy, and recording all the input which determines a process’s
behavior can be challenging. Other work done to implement another optimistic
algorithm, Optimistic Recovery, on top of the Mach operating system describes
some of these problems [GGL*90]. Note that the determinism requirement can
be circumvented, if necessary, by checkpointing a replica’s state in between each

execution of an UPDATE message.

8.8.3 Correctness proof

An update commits if executing its UPDATE messages cannot cause replication

errors. It can commit if the following conditions hold:
C1 All replicas of the process have been told about the update and,
C2 All other updates earlier than it have already been committed.

If these conditions have been satisfied for update i at process R then the update
cannot cause replication errors.
It cannot cause a W-W error because condition C2 forces all updates jfory <1

to have already committed. C1 applied to update j implies that all UPDATE(7)

102

messages will have already been enqueued. Thus, no UPDATE(Z) message could be
executed earlier than an UPDATE(;j) message.
Recall that a CONSISTENCY(%) message is enqueued ahead of messages which

logically follow it:
* An UPDATE(:) is enqueued ahead of any UPDATE(;) messages for all j > i.

o At a replica of process P an UPDATE(:) must be enqueued ahead of all other

messages that have P; among their dependencies.

Update 2 cannot cause a R-W error because any message M that depends on
R; cannot have its results committed until update i commits. At all replicas of R,
UPDATE(¢) messages will be executed before message M.

Update 7 cannot participate in an C-D error because condition C1 implies that
each other replica of R has replied to CONSISTENCY(i) with a COORDINATE(?)
message and C2 implies that none of those replicas can depend on an uncommitted

update.

8.9 Important optimizations

To simplify this exposition we have left out several important optimizations

that we now describe.

8.9.1 Targeted routing of ROLLBACK and COMMIT messages

To reduce message traffic ROLLBACK and COMMIT messages should be sent to
only the replicas that need them, instead of being broadcast. This approach can
significantly reduce message traffic if broadcasts are expensive, or uncommitted
messages are rare. To support this, each replica history manager maintains a map
from dependency to the set of replicas that have been sent messages containing the
dependency. When a replica receives or generates a ROLLBACK or COMMIT message

it forwards the message to all replicas which have been sent the dependency. The

103

dependency can then deleted from the map, because a ROLLBACK or COMMIT

message will not need to be forwarded for it again.

8.9.2 Distribution of primary replica functions

Using a primary replica to coordinate a replicated process presents several per-
formance disadvantages. First, relative to secondary replicas the primary replica
and the network near it must handle a disproportionately large amount of mes-
sage traffic. Second, because a WRITE message must be routed to a primary replica
rather than a secondary replica that may be more nearby, an uncommitted message
sent in reply to the WRITE incurs an unnecessary communications delay.

To resolve these performance problems we eliminate the distinction between
primary and secondary replicas. In the resulting “fully” distributed replication
algorithm a WRITE is routed to any replica. The replica executes the message and
runs its update protocol.

The un sequence, which had been coordinated by the primary replica, is created
distributively. Essentially, creating the un sequence is necessary to prevent wW-w
errors. In keeping with the spirit of optimistic computation, we propose that the
update number sequence be created optimistically.

First, we outline the structure of fully distributed process replication:

o The replica guesses that the WRITE will sequentially follow the last update
the replica knows about. It assigns the WRITE message the next un, and

does the update protocol. In parallel the replica attempts to commit its un
guess.

o If only one replica used the un then the guess will commit. However, if

multiple replicas used the same un then but one of them will roll back.

The sequence number protocol creates its own set of dependencies. These de-

pendencies must be propagated, and eventually committed or rolled back. This

104

does not require a separate history manager. Rather, the sequence number gen-
erator uses the dependency tracking, commitment and rollback functionality of
the optimistic replica history manager: Dependency tracking tracks both sets of
dependencies; a point in the computation does not commit until all its dependen-
cies commit; and a point in the computation rolls back if any of its dependencies
roll back. The optimistic sequence number generator uses the IMQ and SQ data
structures maintained by the optimistic replica history manager.

This illustrates an important general principle of optimistic computation which
we also saw in Chapter 6 which discusses replication of Time Warp processes: once
a mechanism provides the basic foundation of optimistic computation—dependency
tracking, history recording, rollback and commit—other optimistic protocols can

readily use the foundation. It pays to think optimistically.

8.9.3 Distributed sequence number creation

This section focuses on the problem of optimistically creating sequence num-
bers. This algorithm can be composed with the with the process replication mech-
anism above to make fully distributed replication.

We abstract the problem as follows. Consider a distributed team of clerks
serving a set of customers. The team’s job is to give customers a dense sequence
of integers. (This abstraction maps simply to the replication problem. Each clerk
in the team corresponds to one replica of a replicated process.)

The customers are impatient, so they demand that a clerk to respond imme-
diately to a request for a sequence number, even though another clerk, who is far
away, may use the same number. Thus, the clerks must guess sequence numbers.

In exchange for their impatience, the customers are prepared to undo any work
dependent on a guessed sequence number. The customer expects to eventually
be told by the clerk whether the number guessed was correct or incorrect. If the
guess was incorrect then the clerk will guess another number, eventually obtaining

a correct guess.

105

Essentially, the team of clerks are a replicated process that stores a single
integer and provides the service “get value and increment”. Process replication
cannot be used to implement this replicated process, because it will be used to
implement process replication.

Customers interact with the clerks via four messages. (See Figure 8.9.)

REQUEST_SN USE_SN(n, 1)
EEEEEEEE——— pr—————
Customer — clerk i CLOCK_SN(1) clerk j
e
SUPPLY_SN(n)
COMMIT _SN(a)
ABORT_SN(a)

Figure 8.9: Sequence number protocol messages

¢ A customer sends a REQUEST_SN message to a clerk to get a sequence number.
® SUPPLY SN(n) is sent by a clerk to give a customer sequence number n.

® A clerk sends COMMIT_SN(a) to tell a customer that the sequence number

guess g committed.

® A clerk sends ROLLBACK_SN{a)} to tell a customer that the sequence number

guess a was uncorrect.

Each clerk maintains a clock which must keep logical time [Lam78] and hope-
fully keeps good real time. We discussed this kind of clock in Chapter 7. We
assume every time value is unique, which can be implemented by using a process’s
unique identifier as a fractional part of the time values it generates.

When a clerk receives a REQUEST_SN message, it timestamps the request with
its local clock value. The committed sequence of sequence numbers given out by
the clerks will be in timestamp order. Clerks keep a queue of all sequence number

uses, called the sequence number queue (SNQ). The fields of an SNQ entry are

106

sn_use : record (

timestamp : real_time -- real-time when the request arrives
sequence_number : integer -- the sequence number

request_or_use : boolean -- was request received here?
customer : process_name -- name of the customer

unique_id : real -~ identifier for this SN guess
dependencies : dependencies -- other dependencies of the request

Figure 8.10: SNQ entry

listed in Figure8.10. The SNQ is ordered by request timestamp. A clerk responds
to a REQUEST.SN by sending next sequence number, one greater than the largest
one in the SNQ, to the customer in a SUPPLY SN(n) message.

Because the clerks keep logical time, the local time is later than the reported
time of any other clerk. Therefore, the timestamp of the new requést is larger
than the timestamp of any other request in the SNQ. The request is recorded by
appending an entry to the end of the SNQ.

A clerk informs other clerks that it used a sequence number by sending them a
USE_SN(n, t) message, which indicates the sequence number and its timestamp, as
shown in Figure 8.11. When a clerk receives a USE_SN(n,t) message it inserts the
message in timestamp order in its SNQ. Hopefully, the message will be inserted
after all requests. Otherwise, the clerk rolls back and recalculates the sequence
numbers of the remaining SNQ entries. If a request in the SNQ obtains a new
sequence number then the clerk does a ROLLBACK for the request’s current unique
1d, guesses the new sequence number, creates a new unique id for the new guess, and
sends the customer a new SUPPLY SN(n) message with the new sequence number.

When a clerk receives a ROLLBACK unique id A message, it deletes all mes-
sages containing A from the SNQ and rolls back as when it obtains a USE_SN(n, t)
message.

A clerk responds to a USE_SN(n,t) message by sending its new local time in a

107

customer A r 1 2\ customer B

0 RE,
QUESTZ-SNO
3 —
Real _
Time _
- supeLY sNCL
6 RO‘J*BP’C‘L)
-
- com
Y Y Y Y

Figure 8.11: A sequence number protocol execution history

108

CLOCK_SN({t) message to the clerk that used the sequence number.

This sequence number algorithm must be viewed as part of a larger optimistic
computation, so dependencies are tracked, committed and rolled back. A clerk
creates a unique id for each sequence number guess. The unique id is recorded
in the request’s entry in the SNQ. The SUPPLY_SN(n) message and guesses with
larger timestamps depend on this guess.

How is a sequence number guess committed? We define the global time (GT)
(similar to Virtual Time's Global Virtual Time, Jefferson [Jef85]) as the earliest
time of all the clerks’ clocks. To obtain a lower bound on GT each clerk tracks the
progress of all clocks. When clerk ¢ receives a message with timestamp ¢ from clerk
J, clerk i knows that j’s clock is at least at time t. We assume the messages sent
between a pair of clerks are delivered in order. When GT passes the timestamp of
a sequence number request, the request’s unique id commits, because all requests

with earlier timestamps must already be in the SNQ.

8.9.4 Pseudocode for distributed sequence number creation

This section lists pseudocode for this protocol.

state:
SNQ : table of sn_use -- queue of sequence number use
clerk_id : integer -- identifier of this claerk
clocks : table of clock -- array of clerks’s times

—= customer requests a sequence number
requestSN(customer, dependencias)
timestamp the request with current clock
create unique id for request
8 := last sequence number used in SNQ
increment s
request.sequence_number := s
insert request at end of SNQ
send supplySN(s) back to customer
send useSN(s, timestamp) to each other clerk

Tt — ———— T o ———

109

-- clerk indicates it used sequence number at timestamp
useSN(clerk, timestamp)
insert useSN in SNQ in timestamp order
call clock(clerk, timestamp)
for M in SNQ following useSN do
increment M.sequence_number
if (M.request_or_use) then
-- new guess
rollback(M.unique_id)
M.unique_id := create_unique_id()
send supplySN(M.sequence_number) to M.customer
end if
end for
-- clerk’s clock is at least time
clockSN(clerk, time)
clocks(clerk] := max(clocks[clerk], time+1)
-- commit as far as clocks allow
global_time := min(clocks)
for M in SNQ do
if (M.request_or_use and M.timestamp <= global_time) then
commit(M.unique_id)
end if
end for

T e ———— A ———

-- rollback all computation dependent on unique_id
rollback(unique_id)
remove entries in SNQ with unique_id in dependencies
-- recalculate sequence numbers
for M in SNQ do
if (M get a new sequence_number and M.request_or_use) then
-- new guess
rollback(M.unique_id)
M.unique_id := create_unique_id()
send supplySN(M.sequence_number) to M.customer
end if
end for

110

8.9.5 Correctness

The protocol clerks must eventually satisfy every REQUEST_SN message, that
is, it must not deadlock or starve a request.

Assuming all other dependencies eventually commit or rollback, a sequence
number request of a clerk will eventually commit. The request is assigned a per-
manent timestamp. Because sequence numbers are allocated in timestamp order,
once all other requests with earlier timestamps are known, the request commits.

Messages are reliably delivered, so eventually each other clerk will reply to a
USE_SN(n, t) message with a clock message that says its clock has past the time of
the request’s timestamp. Messages are delivered in order, so once another clerks’
clock is known to have passed some time, no other requests with timestamps less

than the time will arrive. Thus, the request will commit.

8.9.6 Complexity

Consider a system of ¢ clerks. Wé calculate the message count bounds for
generating sequence numbers, under the assumption that the rest of the replication
system does not introduce rollbacks, which could undo an arbitrary amount of this
algorithm and increase the message count per committed sequence number.

The message count lower bound for generating one sequence number is 2¢.
One request geﬁcrates ¢ —1 USE_SN(n,t) messages and each USE_SN(n,) message
produces one CLOCK.SN(t) message. The clerk sends a SUPPLY_SN(n) message a
COMMIT_SN(a) message to the customer.

The message count upper bound for generating one sequence number is O(c).
Consider a set of n concurrent requests. Each request generates ¢ — 1 USE_SN(n, 1)
messages plus ¢ — n CLOCK_SN(t) messages. Possibly all of the clerks will send
their customer a ROLLBACK_SN(a) message, 2 SUPPLY_SN(n) messages, and a

COMMIT_SN(a) message. Thus, the total message count will be 2¢ + 2.

111

8.10 Performance characteristics

What will be the ‘typical’ response times of a message sent to a replicated
process? How long will it take to commit? These questions cannot be answered
with hard bounds, because every message execution might have to wait to commit.
However, we can give some insight into performance by considering the most likely
scenarios.

We assume a well ‘tuned’ replication system in which WRITE messages are
infrequently received by replicated processes; in all situations they should be fewer
than bhalf the messages, in most situations they should be fewer than one-tenth
the messages. Since WRITE messages are infrequently sent to replicated processes,
very few replicas will depend on uncommitted dependencies. Therefore, most
messages—READ messages executed by a replicated process and most messages of
any kind executed by an unreplicated process—will be committed before they get
executed. Most output will be generated instantaneously. Most replicas will store
only the current state in the SQ.

A process sending a WRITE message to a replicated process will receive a reply
in the time it takes to execute the message (plus other queuing delays, of course).
The reply will carry the dependency for committing the WRITE message; a COMMIT
message for this dependency will arrive later, delayed by the maximum round-trip
delay between the primary replica and the other replicas of the process. Figure 8.3
showed this execution example.

We believe that the primary cost of replication will be checkpointing a second
copy of a replica’s state before executing a WRITE. If possible, this checkpoint
should be taken earlier during a period when the replica is idle, so the additional
cost does not be on the critical path.

Statistically, we believe rollbacks will rarely occur, so they should not be an im-
portant consideration in the system’s performance. Qur future work will simulate

optimistic replication to evaluate its performance quantitatively.

112

CHAPTER 9

Transparent Read and Write Message Classification

A highly desirable property of any operating system change is that all programs
that ran on the original operating system should run on the changed operating sys-
tem. The change may require that programs be recompiled, but the source code
should not need modification. A change that satisfies this property is called trans-
parent, because an application program cannot ‘see’ the change. A change that
is not transparent is undesirable because it forces programmers to ‘fix’ programs
‘broken’ by the change. We have designed process replication to be a transparent
improvement o existing operating systems. An important requirement of this de-
sign is that the operating system classify each user message execution as a READ
or a WRITE message execution, without help from the application.

By definition, executing a WRITE message makes a net change to a replica’s
state, whereas executing a READ message makes no net change. In brief, to classify
a message the operating system observes its execution. If the replica’s state changes
then the message is a WRITE, otherwise it is a READ. This chapter presents several
classification mechanisms and compares their performance characteristics.

The following criteria should be used to evaluate the quality of a state modifi-

cation detection mechanism:

1. No WRITE message is classified as a READ message. Otherwise the mechanism
incorrectly classifies a WRITE message and the replicas of a process may

become inconsistent.

2. Few READ messages are classified as WRITE messages. Incorrectly classify-
ing a READ message generates unnecessary CONSISTENCY messages, thereby

slowing down the computation and counteracting the purpose of replication.

113

3. The state modification detection should not take ‘too much’ computing time
or consume ‘too much’ memory. In the final analysis the detection method
must use few enough resources so that process replication can speed up the

application, which can only be determined by actual experience.

9.1 Other uses of state change detection

Determining whether a process’s state changes is an old problem. A similar
issue arises in virtual memory systems. For example, in a demand paged system
the primary copies of a running process’s data pages are stored on a secondary
storage paging device. A subset of these pages also reside in memory. When the
memory that a page occupies (called a page frame) needs to be used for another
purpose the page is removed from memory. If the page has been modified while
occupying the page frame then its contents must replace the primary copy on the
paging device [Den70]. Otherwise, the page can simply be thrown away, without
incurring the expense of writing it to the paging device. Determining whether
a page has been modified is an important enough performance optimization that
virtual memory hardware almost always associates a modification bit with each
page in the page table. The hardware sets the bit whenever an instruction writes a
memory location in the page. When the virtual memory software loads a page into
memory it clears the modification bit; when the page is discarded the modification
bit indicates whether it must be written to disk. One of the message classification
mechanisms we propose uses virtual memory modification bits.

This virtual memory example is one instance of a general principle; many sys-
tems use knowledge that some data has not changed to avoid the effort to write
a redundant copy of the data. Both optimistic replication mechanisms occasion-
ally save a replica’s state. Clearly, a state should be saved only if it differs from
the previously saved state. Implementing this optimization requires determining

whether executing a message modifies a process’s state.

114

=

9.2 What is a state?

We begin with an informal definition of a process’ state. Intuitively, a process’s
state is the minimum set of data that, together with its future input messages, will
completely determine its future behavior. (Recall that we assume deterministic
processes.) We must be careful not to take this definition too literally. Some of a
process’ future behavior may depend on external errors, such as hardware failures,
communications deadlocks, or insufficient memory problems. The state cannot
include data on external conditions like these.

For example, the state may be a process’ entire address space and machine
register state. Virtual memory saves this data when it swaps a process out of
memory. This set of data certainly determines a process’ future behavior.

However, we do not want to include the entire address space in a state because
some of it may be inaccessible. For example, stacks and heaps can contain inacces-
sible memory. A process cannot reliably use data below the bottom of a stack that
grows downward or unreferenced heap memory. Including inaccessible memory
in the state will harm performance by causing READ messages to be incorrectly
classified as WRITE messages. For example, suppose a process receives a message
and uses temporary stack space to compose a reply. The contents of the stack may
change but the process will still have the same state when the message execution
finishes.

Garbage collection of heap storage can also cause spurious WRITE message
classification, because it will change the content of heap pages. If possible, it

should not be done during a message execution.

9.3 State change detection mechanisms

We now present three mechanisms that can detect state modifications; the
first simply compares states, the second relys on virtual memory hardware page

modification bits, and the third recompiles a user program so its execution records

115

state modifications in a special state variable.

Perhaps the most obvious method to detect a state modification copies the
process’ state before it executes the message, and then compares the copy with
the state after the execution completes. This method uses time and space linear
in the size of the state. It might take too long, so we present two other methods

to detect state modification.

9.3.1 Hardware assisted state change detection

We now proceed in two phases; first we describe the ideal hardware for state
change detection, and then we describe how it can be emulated using current
virtual memory hardware. Ideally, the hardware would provide a StateChange bit
for each process (stored in the process control block) and an In_State bit for each
page (stored in the page table). When the state change detection code creates a
process it sets the In_State bit for each page that stores StateVariables. Before a
process begins executing a message the operating system clears the StateChange
bit. When a message execution completes the value of StateChange indicates
whether the message was a WRITE.

The hardware works as follows. While a user process runs, any instruction that
writes into a page with In State true makes the process’ StateChange bit true.
The StateChange bit can be set in parallel with the instruction execution, in the
same way that a page modification bit is set in parallel, so it should not slow down
a process’ execution.

This hardware does not exist, but state change detection can be implemented
on existing hardware that provides virtual memory page modification bits. (In
fact it can be implemented so easily that special purpose hardware should not
be built.) The implementation involves two pieces of system software—the state
change detection code and the virtual memory code.

In our design the hardware Page Mod bit will be used both to detect page

modification for virtual memory and to detect state changes. The bit is reset

116

whenever a new page is loaded or a new message execution begins. But before it
is reset the value is saved.

The system maintains a table with two new boolean variables for each page:

¢ State Mod indicates, along with the hardware, whether a page has been

modified during a message execution.

¢ Saved Page Mod indicates, along with the hardware, whether a page has been
modified while resident.

These variables should be viewed as additional fields in the page table, which are
stored elsewhere in memory because the page table contents are determined by the
machine architecture.

These booleans are manipulated when pages are loaded and unloaded and mes-
sage executions start and finish. Virtual memory software is changed to do the
following. Before a page is removed from memory (unloaded) the page’s State Mod
bit is set to true if its hardware Page Mod is set. The page has been modified while
resident if its hardware Page Mod bit OR’ed with its Saved.Page Mod is true. As
in existing virtual memory code, when a page is loaded its hardware Page Mod is
cleared.

Before a message execution starts all the receiving process’s State Mod bits
are cleared. For each page in the process’s state, if the hardware Page Mod bit is
true then Saved Page Mod is set true. Then all Page Mod bits are cleared. When
a message execution finishes the receiving process’s state has been modified if and
only if any page in the state has State Mod or Page Mod set,

Pseudocode for state change detection is presented in Figure 9.1. It is imple-
mented in the process replication receive() system call and some small revisions
to the virtual memory software.

This state change detection mechanism costs little. The time and storage costs
to detect a state change are linear in the number of pages in the replica’s state. A

constant number of operations are added to each virtual memory page swap.

117

e e e o o o D L

Incorporate into receive():

R S s
-- at finish of receive():
== Did the message execution just completed change the state?
State_Change := false
for page in state do
begin
State_Change := State_Change or
Page_Mod[pagel or State_Mod(page]
end for
-- State_Change indicates whether the state changed
iR S S R R R R RS
-- at start of receive():
-- Prepare for next message execution
for page in state do
begin
Saved_Page_Mod := Saved_Page_Mod or Page_Mod
Page _Mod := false
State_Mod := false
end for

o o o o 0t o Al L L L . o —————— "2

Incorporate in the virtual memory code:
it e L S T

-- when unloading a page:

if Page_Mod
then State_Mod := true end if
I L L T

~- replace line in virtual memory code which reads Page_Mod
== to determine whether a page is dirty:
page_dirty := Saved_Page_Mod or Page_Mod

aaliE 2 L S Ry
-- add to end of virtual memory code which loads a page:
Saved_Page_Mod := false

Figure 9.1: Hardware assisted state change detection code fragments

118

If two conditions exist then using hardware support is the best way to detect
a state change. First, the machine must have hardware page modification support
for virtual memory. And second, the virtual memory code must be available for
modification. If these conditions do not hold then another technique to detect state
changes may be implemented for programs written in languages with appropriate

semantics.

9.3.2 Compilation to code that automatically detects state changes

Applications written in some programming languages could be compiled by an
enhanced compiler that produces code that automatically detects state changes.
This is possible, of course, only when source code for the application program is
accessible, and the compiler is accessible and can be modified.

In addition to generating object code the enhanced compiler defines a run-time
boolean variable called State_Change which records whether executing a message
modifies a process’ state. Each straight line section of code containing operations
that modify the state is followed by an operation that sets State_Change. Com-
piled user operations never access State_Change.

At run-time, the operating system sets State_Change to false just before be-
ginning a message execution. If State_Change is true after the replica executes
the message then it changed the process’ state.

The challenge is to find the state altering operations statically. Clearly, if x is a
state variable, then adding 10 to x alters the state. Modifying a temporary variable
inside the scope of the block containing the receive() call does not modify the
state. Pointers and aliasing make finding state altering operations more difficult.
Modifying the variable pointed to by p may not change the state, but this cannot
be determined at compile time. In this case the compiler has to be pessimistic,
and assume that the state is modified. Languages that do not have pointers or
aliasing, like Hermes {SBG*91], eliminate this problem.

How will this state change detection mechanism perform? In the worst case

119

code produced by the enhanced compiler runs only twice as slow as normal code.
Each operation that sets State_Change accompanies at least one operation that
modifies a state variable. Thus, the number of operations doubles at worst. Since
code ordinarily includes many instructions per straight line segment it would be
reasonable to expect execution to slow by much less than a factor of 2.

The computational cost of this method also compares favorably with that of
brute force state comparison. Assume that comparing one StateVariable takes
one instruction. Only if the state is completely modified more than once will this
method add more steps to a message execution than a comparison of complete
states. That is, the number of set State_Change true instructions during the
execution of a message is less than the number of instructions used to compare
states. It is unlikely that a program would change its state so extensively, because

only the last value of a variable remains.

9.4 Comparison of state detection mechanisms

We now compare the complexity of these state modification detection mecha-
nisms; the brute force state comparison, the hardware assisted method, and the
enhanced compiler method. The user must decide at compilation time whether to
use the enhanced compiler method. If the process is written in a language that
can determine StateVariable accesses at compile time then a recompilation based
method would be best since it bounds the mechanism’s time to less than 50 per-
cent of the message execution time and does not depend on the availability of page
modification bits. Among the other two methods, the hardware assisted method
is preferable to brute force state comparison in both time and space by a large
constant factor—the page size.

So far we have discussed how to detect state modification of processes that
adhere to the rigid computing model presented in Chapter 3. The state of a

process described by arbitrarily structured code is considerably more complex. The

120

operating system observes the process’ state when it calls receive. If a process
calls receive at multiple places in its code then its state includes the process’s
program counter, all variables in its scope when it makes the call, and its run-time
stack. Determining that a process with this structure receives a READ message is
nearly impossible, since all of the process’ address space must be considered as its
state, and any execution will change some of the contents of the address space.
Thus, only processes that adhere to the computing model above are appropriate

to test for state modification.

9.5 Replication with message classification

To have real transparency the process replication mechanism must use state
change detection to distinguish between READ and WRITE messages. Any of the
message classification mechanisms of the previous sections can be integrated with
a replication mechanism.

In a replication system with transparent message classification the kind of a
message whose execution has not completed is unknown, because the message’s
kind depends on the state of its receiving replica at the completion of its execution.
Therefore, we add another member to the set of message kinds, UNKNOWN, which
is the kind of an original message whose execution has not finished. When the
execution of an UNKNOWN message completes, its kind is changed to READ or
WRITE.

We now discuss integration of transparent message classification with our three
replication mechanisms: pessimistic, RTW optimistic, and dependency-tracked
optimistic. It is easier to integrate message classification into the optimistic repli-
cation algorithms because they can easily run the update protocol after executing
an UNKNOWN message to determine its kind, so we discuss them first.

Transparent message classification delays the replication mechanism actions

that depend on knowing whether a message is a READ or a WRITE. When a

121

UNKNOWN message is executed the replication mechanism must be prepared—in
case the message is determined to be a WRITE—to appropriately synchronize the

WRITE message’s execution.

9.5.1 Message classification integrated into RTW

When an UNKNOWN message m arrives at a replica R, RTW assigns m an RVT
as described in Section 7.4.

If message classification determines that m’s kind is READ then RTW does
nothing when m’s execution completes. If message classification determines that
m’s kind is WRITE then RTW creates and transmits CONSISTENCY message copies
of m. This mechanism has the same logic as the mechanism described in Sec-
tion 7.4. However, it may perform worse, because the CONSISTENCY messages are
sent later than they would have been had m been labeled by its sender, so they
are more likely to cause a rollback.

If m is determined to be a WRITE then sending its CONSISTENCY message copies
is ‘part of’ m’s execution. In particular, GVT must not be allowed to progress past

m.RVT until the CONSISTENCY messages have all been executed.

9.5.1.1 Rollback

Although m’s kind may be determined to be READ after one execution, its
kind may not stay READ. If R receives a straggler CONSISTENCY message with an
RVT less than m.RVT, then RTW will roll back R to before m’s execution. If
m’s kind had been determined tc be READ then the rollback must reset m’s kind
to UNKNOWN. This is necessary because the state of R when m is re-executed
may differ from the state of R when m was previously executed. The state can
be different because the straggler may have altered it. As a result of the different

state, m's re-execution may behave differently and modify R's state.!

1The kind of a WRITE could aiso be reset to UNKNOWN, but doing so would accomplish nothing
unless the CONSISTENCY messages sent to other replicas were annihilated, which might be more

122

Incorporating message classification into RTW requires these changes to RTW.
In the next section we discuss incorporation of message classification into dependency-

tracked optimistic replication.

9.5.2 Message classification integrated into dependency tracked repli-

cation

Incorporating message classification into dependency-tracked replication is sim-
ilar to incorporating message classification into RTW. When the execution of an
UNKNOWN message completes, the message’s kind might be determined to be
WRITE, so the mechanism must be prepared for this possibility.

Suppose an UNKNOWN message m is executed by replica P;. In case m becomes
a WRITE the replication mechanism assigns m update number Pj. Messages sent
during m’s execution depend on Pj. If m is determined to be a WRITE then the
replication mechanism uses Pj as m's update number as if m had been classified
as a WRITE by its sender. If m is determined to be a READ then Pj is ‘thrown
away'—dependency on Pj stops being an obstacle to commitment.

For example, Figure 9.2 shows the execution of a message m with no depen-
dencies by a replica P; with no dependencies. Update number Pj is assigned to
m, so message m2 sent during m's execution carries a dependency on Pj. If m
is determined to be a READ, as on the left of Figure 9.2, then update number Pj
commits immediately, so COMMIT(Pj) is sent to the receiver of m2. If m is deter-
mined to be a WRITE, as on the right of Figure 9.2, then the replication mechanism
begins the update protocol immediately, sending CONSISTENCY(%} copies of m to
the other replicas of P.

The example in Figure 9.2 is simplified, because neither m nor P, have uncom-
mitted dependencies when m is executed. Actually they both may have depen-
dencies. Suppose that m carries dependencies m.d and P,’s state has dependencies

s.d when P; executes m. If m is determined to be a READ, then update num-

work than leaving m classified as a WRITE.

123

<>

<>

mis a READ

Figure 9.2: Dependency tracked replication with message classification

ber Pj commits automatically if m.d and s.d commit. If m is determined to be a
WRITE then the standard dependency-tracked update protocol determines whether
Pj commits.

Like RTW with message classification, when dependency-tracked replication
with message classification rolls back a replica it may need to undo earlier READ
classifications. In particular, if a READ message can be re-executed by a replica
in a different state (than the previous time the message was executed) then the

message must be reclassified as an UNKNOWN message

9.5.3 Message classification integrated into pessimistic replication

Incorporating message classification into pessimistic replication is extremely
difficult because the replication mechanism normally does the update protocol for
a WRITE before the message is executed. However, with message classification the
update protocol cannot be done until the message’s execution determines that it
is a WRITE.

Therefore, the pessimistic replication mechanism must do a ‘test execution’ of

124

an UNKNOWN message to determine whether the message is a READ or a WRITE
as shown in Figure 9.3. Before doing the ‘test execution’ the mechanism saves
the replica’s state. During the ‘test execution’ messages output by the replica are
buffered.

If the message is determined to be a READ, then the buffered output can be
sent.

If the message is determined to be a WRITE, then the buffered output must be
discarded and the replica’s state is restored to the checkpoint saved before the ‘test
execution’. Then the update protocol is done for the message, and the message is

executed again for its ‘real execution’.

9.6 Conclusions

An important advantage of transparent process replication is that by using
message classification the kinds of messages can be determined at run-time by the
replication mechanism. Incorporating message classification into the replication
mechanisms is much easier for the optimistic mechanisms than for the pessimistic

mechanisms.

125

test

execution:

-

READ:

WRITE:

-
-

Y

Figure 9.3: Pessimistic replication with message classification

126

CHAPTER 10

Performance of Process Replication

In this chapter we consider the performance of process replication. First, we
consider the question “What is the maximum speedup replication can achieve?”
by simulating the performance of two small applications with their bottleneck
processes replicated. Our simulation results show that replicating a bottleneck
process can substantially speed up a distributed computation, provided that only
a small fraction of the messages the process receives are WRITE messages. Next, we
qualitatively compare the performance of pessimistic replication with the perfor-
mance of optimistic replication. Last, we consider the tradeoffs between through-
put and response time for our two optimistic replication mechanisms: RTW, and

dependency-tracked replication.

10.1 Speedup available from replication

To estimate the maximum speedup achievable from process replication we have
developed two simple simulation programs. We recognize that performance mea-
sures would ideally be obtained by observing an implementation of process repli-
cation running on an actual distributed system, but building such a system was

beyond the scope of this research. Two simple application programs were modeled:

tandem application Several processes communicated in tandem, like a Unix

pipeline of processes. One process was a bottleneck.

server application Multiple client processes accessed a single server process.

The server was overloaded by requests from the clients.

127

The simulations modeled the execution of each of these application on several
multiprocessor architectures. We concentrated on throughput performance, so the
performance measure we present is the speedup achieved by a program’s replicated
execution, s, which we define as the ratio of the program’s execution time from
start to finish without replication to the program’s execution time with replication.
We assume that enough processors are available to run each replica on its own
processor, so a given application used more processors when it was executed with

a replicated process than when it was executed without replication.!

10.1.1 Tandem application

We considered a tandem application of 3 processes, a first process (F7), a bot-

tleneck process (B}, and a last process (L), as shown in Figure 10.1. The mean

first bottleneck last
outside o o
service time: | b 1

Figure 10.1: Tandem application

execution time of messages at F and L was 1 time unit, while at the bottleneck
B it was b, with b > 1time unit. We replicated process B. We assumed that each
time a process received a message it sent a message, and that process F received N
messages from an outside source, with the messages separated by mean interarrival
times of 1 time unit.

A tandem program is appropriate to study for several reasons. First, a larger,
arbitrarily shaped, computation may contain a subset of processes connected in

tandem. If that subset is a bottleneck in the large computation then speeding it

!An alternative speedup measure would compare the times of two executions running on the
same hardware. This would not take advantage of the full potential of replication, and might
yield a lower speedup. However, it would model situations with fixed resources more fairly.

128

up can speed up the entire computation. Second, a three process application in
which only one process is replicated is easy to study.
First, we consider the mean maximum speedup, Smaz, that could be achieved

by replicating B. Let the following parameters describe the system.
b - the mean service time of a message at B

n - the number of replicas of B

w - the probability that a message sent to B is a WRITE

The speedup is bounded from above in two ways. First, s cannot exceed b because
the fastest rate at which processes ' and L (which, we assume, are not replicated)
can execute messages is 1 per time unit. Second, s cannot exceed the number of
replicas of B times the proportion of time they spend executing READ and WRITE

messages when they are fully utilized. Thus, we have
Smaz S min(b,n/(wn +1 — w))

We simulated the execution of this tandem application on a pipeline connected
multiprocessor. The single link communication delay was 1 time unit. We did
not model contention for link access, so the communications delay between any
two replicas was the number of links on the shortest path between the proces-
sors running them. The message execution times were sampled from exponential
distributions with the means discussed above.

The replicas were placed on processors as shown in Figure 10.2. We assumed
that the multiprocessor had enough idle processors so that each replica of the
bottleneck could run on its own processor. The simulation assumes that process F
labels a message sent to process B as a READ or a WRITE. Because the simulation
did not implement any replication synchronization mechanism, it provides an upper
bound on the speedup that replication can provide in the system we assumed.

The destination of a message sent by process F was selected from the replicas of

129

HHOHEE - 4®OHE

Figure 10.2: Placement of tandem replicas on processors

process B in a round-robin pattern: the i*h message sent by F’ was routed to replica
By mod nj+1- When process F sent a WRITE message, a CONSISTENCY message was
routed to each other replica of B.

We wrote a discrete-event simulation of this system, and then varied the input
parameters b, n and w. Speedup curves are presented in Figure 10.3. In the left

graph in Figure 10.3, 5 = 2; in the right graph & = 8. The simulations achieve

%- 1 cione
‘0~ 2 ciones
2 °°n<g-d-c-g 8.0Q
1.50 _0335: §.00 |- 4 clones
Speedup 1. 000—0-0—0-0—0-0-0.'0'3-5 Speedup 4.00.\.:E O- § ciones
|
050 200°-o hc
m#—.ﬂmﬂ'@'ﬂ
oQo-* ~ 0. 00 T——
0 02 04 06 08 1 0 02 04 06 08B 1
Write probability Write probabiiity

Figure 10.3: Speedup of replicated tandem application

speedups DEAr Smq, for all ranges of the input parameters.

These results illustrate several points. First, s decreases monotonically with
increasing probability that B receives a WRITE message, dropping to s = 1 at
w = 1. Second, as the upper bound model predicts, increasing the number of

replicas may not increase s. When b is only 2, increasing n from 4 to 8 generates

130

no more speedup, because 4 replicas are enough to relieve the bottleneck at B.

10.1.2 Client-server application

We simulated the performance of a client-server application composed of a
single server process S and a set of client processes. Each client process repeatedly
sent a message to 5, waited until it received a reply, and then used its cpu to
execute the reply. S repeatedly waited for a request from some client, executed
the request as soon as it finished executing earlier requests, and sent a reply back
to the client. A message sent to S was identified as either a WRITE message or a
READ message.

We wrote a DES of a system that executes this application with S as a replicated
process. We selected performance parameters that make S a bottleneck process.

Several parameters described the system:

¢ - number of client processes

n - number of replicas of §

r - probability a message sent to S is a READ

Message service times at the processes were determined as follows:

¢ message execution time at any replica: exponentially distributed, mean = 1

time unit
¢ communications link delay: constant value, mean = 1 time unit

We simulated the client-server application running with a replicated server on
two different communications topologies, a ring network and a fully-connected
network. The model ignored contention for communications links. On the ring
the communications delay between two replicas equaled the number of hops be-
tween their processors. On the fully-connected network the communications delay

equaled the single hop delay. We parameterized the performance of the network by

131

varying the ratio of the communications delay over one network link to the mean
execution time of a message, which we call d.

We did not implement a process replication mechanism. Instead we simulated
the performance of a hybrid dependency-tracked mechanism. The hybrid is sim-
ilar to a primary replica mechanism in that all WRITE messages are sent to the
primary replica. The hybrid is similar to a distributed sequence number selection
mechanism in that the primary replica attached an update number to a WRITE
message. The primary replica then forwarded the WRITE to the replica of S nearest
the client, where the message was executed.

The simulation did not model rollback. This simplification was not, in fact, an
inaccuracy in modeling an execution of the client-server application running with
a replicated server. In a primary replica dependency-tracked replication with only
one replicated process no rollbacks will occur. The model also ignored the costs of
dependency tracking and state saving.

The client processes, represented by single replicas, and the replicas of § were
symmetrically located on the processors of the multiprocessor. Suppose the system
is represented by 2 replicas of S (S; and $;) and 4 client processes (client-A, client-
B, client-C and client-D). Figure 10.4 shows the replicas located on the 6 Processors

of a ring, and Figure 10.5 shows the replicas located on a network of fully connected

2 3

1
®

Figure 10.4: Replicas of a server and its clients on a ring

132

Processors.

®||®

4 A
fully connected network

e W,

®

Figure 10.5: Replicas of a server and its clients on a fully connected network

Representative simulation results for a client-server application with 8 clients
are shown in Figure 10.6. Each curve gives the speedup as a function of the
topology of the underlying network, 4, r and n. Simulation of ring network per-
formance is shown in the left column; the right column shows the performance
on the fully-connected network. The rows show results from different values of d,
0.01, 1 and 100, as indicated on the right-hand side of Figure 10.6. At d = 0.01
communication is essentially instantaneous; at ¢ = 100 computation is essentially
instantaneous. The simulations were run with » = 0.0, 0.3, 0.5, 0.7, 0.8, 0.9, 0.95
and 1.0.

A set of simulations was run with different random number seeds—the vertical
bars about a data point indicates one standard deviation about the mean.

What do these simulation results say about the performance of the client-
server application with a replicated server? As expected, the speedup, s, increases
monotonically with the READ probability r.

When ¢ = 0.01, communication is essentially instantaneous so only replica-

tion’s increased parallelism can improve performance. Thus, in the top row the

133

R.ng Neraork Fully Connected “amaarx

3 T

&repucas of server 4
-------- 16 repiicas of semver

Speedup

Spccdup 4 — '

Speedup

Figure 10.6: Speedup of replicated client-server application

134

performance of both networks is almost exactly the same.

When d = 100, computation is essentially instantaneous so replication can
only improve performance by decreasing communications distances. Thus, in the
bottom row of data, the ring network shows some speedup, but the full-connected
network shows no speedup. Replication can obtain speedup on the ring network by
decreasing communications distances; by contrast, on the fully connected network
all processes are equally distant whether or not they are replicated, so replication
can improve performance only by increased parallelism.

When communication is instantaneous (d = 0.01) speedup is independent of
the topology of the network. At r = 1 the speedup is 4 with 4 replicas of S because
the replicas are fully occupied with useful work; 16 replicas only achieves a speedup
of 8 because there are only 8 clients to keep the replicas of 5§ busy. At r = 0 there is
no speedup because the replicas of S are busy executing CONSISTENCY messages.

When computation is essentially instantaneous (d = 100) speedup depends
greatly on the topology of the network. On a fully connected network with r < 1
replication slows down the execution because a WRITE message has a three hop
path—irom client to primary replica to replica nearest client to client—rather than
the two hop path—client to only replica to client—without replication. A full
implementation of optimistic sequence numbers should eliminate this slowdown.
On the ring network this slowdown effect trades off against the speedup obtained
by placing replicas of S nearer the clients. The crossover point is about at » = 0.5.
s at n = 16 is slightly worse than s at n = 4 because at n = 16 the ring has more
processors (24 versus 12) so the communications delay around the ring increases
and the computation slows down.

When computation and communication are equally expensive we see the effects
of both situations in which they are instantaneous. These performance parameters
are the most realistic.

These simulation results show that replicating a bottleneck server process of

a client-server application can substantially speed up a distributed computation,

135

provided that only a small fraction of the messages received by the server are

WRITE messages,

10.2 Comparative performance of replication mechanisms

In this section we compare the performance characteristics of our replication
mechanisms. We consider the storage and computation costs of replication because
they affect the speedup replication can provide. We also examine the response time
of an algorithm running on top of a replication mechanism, which is the time the
system takes to respond to an input from outside the system.

First we examine the performance of pessimistic replication. Then we compare
the performance of our two optimistic replication mechanisms: RTW replication

and dependency-tracked replication.

10.2.1 Comparison of pessimistic and optimistic

To execute a WRITE message pessimistic replication must block all replicas for
at least one maximum round-trip delay among them. Optimistic replication will
let the computation continue in parallel with the protocol to update all secondary

replicas.

10.2.2 Comparison of RTW and dependency-tracked process replica-

tion

We now compare the performance of RTW, the Time Warp synchronized repli-
cation algorithm, with the performance of the dependency-tracked replication
mechanism. We assume that the real-time clocks RTW uses are synchronized,

and that the dependency-tracked mechanism is fully distributed.

136

10.2.2.1 Costs

The two optimistic replication mechanisms have some costs that are similar and
some costs that differ. Both mechanisms must save enough of a replica’s history
to support rollback. They must occasionally save a replica’s state, and they must
save input messages until the messages are no longer needed to support rollback.

We now consider the differences between the two mechanisms. Let P be the
number of replicated processes, and R be the maximum number of replicas of
a process. To support rollback and commit both RTW and dependency-tracked
replication must track the causality between parts of the computation. A piece of
causality data is stored in each message and state. To track causality RTW keeps
a size O(1) virtual time value in each state and message. Dependency-tracked
replication maintains a size O(P) dependency set per message and state.

Therefore, RTW has a smaller cost for causality tracking than dependency
tracked replication. However, heuristic optimizations may reduce the dependency-
tracked information per message to less than O(P). Suppose the messages com-
municated between two replicas are received in FIFO order. Then, when S sends
message m to R, the only dependencies that m must carry are the new depen-
dencies that § has acquired since it last sent a message to R. This can be done
extremely efficiently [Gol91]. We speculate that when a distributed computation
exhibits “locality of reference” in its communications patterns—most messages go
between replicas that frequently communicate—then most messages will carry few
new dependencies.

These two mechanisms have very different approaches to commitment. Consider
the cost when there are not rollbacks. Time Warp runs a GVT [Jef85, Sam84
algorithm periodically. The cost of the algorithm is O(N) messages, where N is
the number of processors in the system. Since GVT is calculated periodically, an
arbitrary number of update messages can be committed per GVT calculation, so

the commitment cost per WRITE can be arbitrarily low. However, the response

137

time grows as the delay between GVT calculations grow.

The message cost of committing an dependency-tracked update which doesn’t
roll back is O(R), because there are R — 1 COORDINATE messages sent.

With respect to state saving costs, the two optimistic replication mechanisms
have similar costs. To minimize rollback both mechanisms should save state af-
ter each WRITE, although deterministic replay enables them to save state less

frequently.

10.2.2.2 Rollback costs

Rollbacks are an important cost in optimistic computations. In general, the
amount of work undone by a rollback is unbounded. However, we can obtain a
little intuition by counting the initial rollbacks of the replicas of a process receiving
a WRITE, where an initial rollback is the first rollback in a (potential) cascade of
rollbacks. Figure 10.7 shows some initial rollbacks in a Time Warp synchronized

system.

3- 1
Real : %

Time _ 1Y, !
l 6~ ROLLBACK
- Y Y Y Y Y

Figure 10.7: Time Warp initial rollbacks

138

In an execution with only one WRITE there will be no rollbacks, so we consider
executions with two WRITE messages.

Suppose the two WRITE messages go to the same process. Because Time Warp
based replication uses RVT to determine dependency, a CONSISTENCY message
can cause rollbacks that are not logically required by process replication. For

example, see Figure 10.8. We say that the READ from process P to replica R;

R
A\

Real _
Time _

ROLLBACKS

Figure 10.8: False dependency

has a false dependency on the CONSISTENCY message from R; to R,, because the
CONSISTENCY message rolls back the READ, although the READ message could
correctly execute first.

Two WRITE messages can cause as many as 2(R — 1) initial rollbacks, because
every CONSISTENCY message can arrive at a replica out of order. There cannot
be any more initial rollbacks because READ and WRITE messages get their RVT
values assigned when they arrive and cannot cause a rollback.

A dependency-tracked replication system (with distributed sequence number

selection) has a smaller upper bound on initial rollbacks because does not have

139

false dependencies. Figure 10.9 shows the same computation as in Figure 10.8,

but synchronized by dependency-tracked replication. Assume that the USE_SN(n, t)

READ <R1>»

Figure 10.9: Dependency-tracked initial rollbacks

and CONSISTENCY messages are piggy-backed together. The USE_SN(n,t) message
from R; to R; rolls back the WRITE execution at R; because the timestamp of
sequence number 1 at R, is smaller, but the USE_SN(n,t) message from R, to R
cannot cause a rollback, because nothing can have executed at R; that depends
on WRITE(,2.0). In general, two WRITE messages sent to one process can cause
at most R — 1 initial rollbacks.

Continuing the comparison, we now consider 2 WRITE messages sent to 2 dif-
ferent processes. Suppose each process is replicated R times. A Time Warp based
replication can have 2(R — 1) initial rollbacks, because, as discussed above, each
CONSISTENCY message can cause a rollback. In addition, commitment requires a
GVT computation.

The dependency-tracked replication may rollback to avoid an C-D error. This
will cause an initial rollback for each CONSISTENCY message of the rolled back

update, or R — 1 initial rollbacks. Committing the 2 WRITE messages requires

140

3(R — 1) CONSISTENCY messages and 2 DEPENDENCIES messages, in the worst
case~—the WRITE that is not rolled back sends one set of CONSISTENCY messages,
and the message that is rolled back sends two sets, one that is rolled back and one

that 1s not.?

10.2.2.3 Response time performance

The response time performance of the two optimistic mechanisms differs greatly.
Response time is the time it takes a system to respond to an input——-—in an opti-
mistic system this is the time interval between sending an input to the system and
receiving a committed response to the input. We consider lower bounds to the
response time,

The dependency-tracked mechanism can sometimes respond to an input mes-
sage in the time it takes to execute the input. When a replica that does not
depend on uncommitted dependencies executes a READ input message the execu-
tion commits immediately. Also, an unreplicated process that does not depend on
uncommitted dependencies can commit the execution of a WRITE immediately.

Define D(Q) as the longest communications delay between replicas of process
Q. The time to execute a WRITE input message at Q is bounded from below by
2D(Q) because each other replica must reply to a CONSISTENCY messages.

Because it tracks dependencies less precisely, Time Warp synchronized replica-
tion has a longer response time. The response time is bounded by the time to do
a GVT calculation, which is at least 2D, where D is the longest communications

delay between any two replicas.

10.3 Conclusions

Our two optimistic replication mechanisms trade off space against time. Time

Warp minimizes the storage and communication bandwidth costs by summariz-

*The second set of CONSISTENCY messages contains the same data as the first, so the data
does not need to be resent.

141

ing causality information in a single VT value. As a consequence, it risks ‘false
dependencies’ which cause unnecessary rollbacks.

Dependency-tracked replication stores O(P) dependency information per mes-
sage and state, where P is the number of replicated processes. This additional
information reduces the likelihood of a ‘false dependency’, thereby reducing the
number of rollbacks.

Because Time Warp tracks less dependency information, commitment using
GVT requires communication with all the replicas in a computation. Dependency-
tracked replication can commit updates by just communicating with the replicas
of a replicated process, which can take place more locally and more quickly.

On the other hand, since Time Warp tracks less dependency information, it can
postpone commitment and commit many updates with a single GVT. Dependency-
tracked replication must use control messages (COORDINATE and DEPEN DENCIES)
to detect C-D errors. The number of control messages is in proportion to the

number of updates.

142

CHAPTER 11

Conclusions

We shine a spotlight on optimistic transparent process replication. We intro-
duce the concept of process replication. Small examples and simulations illustrate
the ability of process replication to speed up the execution of distributed applica-
tions. Because traditional, pessimistic algorithms for managing replicated objects
block access to the object when it is being modified, we propose optimistic algo-
rithms for process replication.

We present optimistic replication algorithms in each of the two major styles of
optimistic protocols, Time Warp distributed simulation and dependency-tracked
optimism. Both algorithms implement process replication, but their approaches
are dramatically different. Comparing the performance of these two styles indicates
that the dependency-tracked replication algorithm may have faster response time
than the Time Warp based algorithm, but at the expense of increased bandwidth
and storage for tracking dependencies.

To make process replication transparent we explore mechanisms to distinguish
READ messages from WRITE messages. These mechanisms are integrated with the

process replication algorithms.

11.1 Future work

e To better understand their performance we intend to implement and/or sim-

ulate both optimistic process replication mechanisms.

o The load management policy algorithms that determine the number and

location of process replicas need to be designed.

143

e For load management, process replication dynamics must be supported. This
includes mechanisms to create, kill and move a replica, and routing algo-

rithms to deliver messages to dynamically changing sets of replicas.

144

[ABB*86]

[ABG*91]

[AD76]

[Aiz89]

[A1183]

[Bac90]

[Bal8g]

[BBB+90]

[BBG83]

Bibliography

Mike Acetta, Robert Baron, William Bolosky, David Golub, Richard
Rashid, Avadis Tevanian, and Michael Young. Mach: A new ker-
nel foundation for UNIX development. In Proceedings of the Summer
Useniz Conference, July 1986.

J. S. Auerbach, D. F. Bacon, A. P. Goldberg, G. S. Goldszmidt, M. T.
Kennedy, A. R. Lowry, J. R. Russell, W. Silverman, R. E. Strom, D. M.
Yellin, and S. A. Yemini. High-level language support for programming
reliable distributed systems. Technical Report RC16441, IBM T. J.
Watson Research Center, January 1991.

P. A, Alsberg and J. D. Day. A principle for resilient sharing of dis-
tributed resources. In Proceedings of the Second International Confer-
ence on Software Engineering, October 1976.

J. Aizikowitz. Designing distributed services using refinement map-
pings. PhD thesis, Cornell, 1989. Available as TR 89-1040.

J. E. Allchin. A suite of robust algorithms for maintaining replicated
data using weak consistency conditions. In Proceedings of the Third
Symposium on Reliability in Distributed Software and Database Sys-
tems, October 1983.

David F. Bacon. How to log all filesystem operations (while only writ-
ing a few to disk). Technical Report RC, IBM T.J. Watson Research
Center, 1990.

Henri E. Bal. The Shared Data-Object Model as a Paradigm of Pro-
grammang Distributed Systems. PhD thesis, Vrije Universiteit te Ams-
terdam, 1989.

Robert V. Baron, David Black, Willism Bolosky, Jonathan Chew,
Richard P. Draves, David B. Golub, Richard F. Rashid, Jr.

Avadis Tevanian, and Michael Wayne Young. Mach kernel interface
manual. Technical report, CS Department, CMU, April 1990.

Anita Borg, Jim Baumbach, and Sam Glazer. A message system sup-
porting fault tolerance. In 9th ACM Symposium on Operating Systems
Principles, October 1983.

145

[BCLU8Y] D. Baezner, Cleary, Lomow, and Unger. Algorithmic optimizations

[BDS84]

[Ber86]

[Bir86)

[BJ85]

[BS8Y]

[BS91]

[Cas72]

[Chu69]

[Coo85]

[DenT0]

[DS83]

of simulations on Time Warp. In Proc. 1989 SCS Multiconference on
Distributed Simulation, pages 73-78, March 1989.

Joshua Bloch, Dean S. Daniels, and Alfred Z. Spector. Weighted voting
for directories: A comprehensive study. Technical Report CMU-CS-84-
114, CMU, 1984.

Orna Berry. Performance Evaluation of the Time Warp Distributed
Simulation Mechanism. PhD thesis, University of Southern California,
May 1986.

Ken Birman. Low cost management of replicated date in fault-
tolerant distributed systems. ACM Transactions on Computer Sys-
tems, 4(1):54-70, Feb. 1986.

Orna Berry and David Jefferson. Critical path analysis of distributed
simulation. Proc. 1985 SCS Multiconference on Distributed Stmulation,
pages 57-60, 1985.

David F. Bacon and Robert E. Strom. Implementing the Hermes pro-
cess model. Technical Report RC 14518, IBM T.J. Watson Research
Center, 1989,

David F. Bacon and Robert E. Strom. Optimistic parallelization of
communicating sequential processes. In Proceedings of the Third ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, April 1991.

R. G. Casey. Allocation of copies of a file in an information network.
Proc AFIPS SJCC, 40:617-625, 1972.

Wesley W. Chu. Optimal file allocation in a multiple computer system.
IEEE Transactions on Computers, c-18(10):885-889, Oct. 1969.

Eric C. Cooper. Replicated distributed programs. In Proceedings of
the Tenth ACM Symposium on Operating Systems Principles, pages
63-78, December 1985.

Peter Denning. Virtual memory. Computing Surveys, 2(3), September
1970.

Dean Daniels and Alfred Z. Spector. An algorithm for replicated di-
rectories. In Proceedings of the Second Annual ACM Symposium on
Principles of Distributed Computing, August 1983. Montreal, Canada.

146

[ELP*89]

[FM82]

[FTJIGSS)

[Fuj87]

[Fuj88a]

[Fuj88b]

[Fuj88c|

[Fu;89]

[Gai85]

[Gaf88]

[GGL*90]

[Gif79]

M. Ebling, M. Loreto, M. Presley, Fred Wieland, and David Jefferson.
An ant foraging model implemented on the Time Warp operating sys-
tem. Proc. 1989 SCS Multiconference on Distributed Simulation, pages
21-26, 1989.

Michael Fischer and Alan Michael. Sacrificing serializability to attain
high availability of data in an unreliable network. In Proceedings of
the ACM Symposium on Principles of Database Systems, March 1982,
Los Angeles, California.

Richard M. Fujimoto, Tsai, J.-J., and G. Gopalakrishnan. Design and
performance of special purpose hardware for Time Warp. Proc. 15th
Symp. on Computer Architecture, 1988.

Richard M. Fujimoto. Performance measurements of distributed sim-
ulation strategies. Technical Report UUCS-87-026a, Department of
Computer Science, University of Utah, November 1987.

Richard Fujimoto. Time Warp on a shared memory multiprocessor.
Technical Report UUCS-88-021, University of Utah, December 1988.

Richard M. Fujimoto. Lookahead in parallel discrete event simulation.
International Conference on Parallel Processing, August 1988.

Richard M. Fujimoto. Performance measurements of distributed simu-
lation strategies. Proc. 1988 SCS Multiconference on Distributed Sim-
ulation, pages 14-20, 1988.

Richard M. Fujimoto. Time Warp on a shared memory multiproces-
sor. Technical Report UUCS-88-021a, Computer Science Department,
University of Utah, January 1989.

Anat Gafni. Space Management and Cancellation Mechanisms for
Time Warp. PhD thesis, University of Southern California, 1985. Also
available as TR-85-341.

Anat Gafni. Rollback mechanisms for optimistic distributed simula-
tion. Proc. 1988 SCS Multiconference on Distributed Simulation, 1988.

Arthur P. Goldberg, Ajei Gopal, Kong Li, Robert E. Strom, and
David F. Bacon. Transparent recovery of mach applications. In First
USENIX Mach Workshop, Burlington, VT, October 1990.

David K Gifford. Weighted voting for replicated data. In Proceedings
of the Seventh Symposium on Operating Systems Principles, December

1979.

147

[GL91]

[GMT9]

[Gol91]

[GP91]

[Gun83]

[HBL*89]

[Her84]

(Her86]

[Hoa81]

[Hoa85]

[JB86]

[JBH*85]

Richard Golding and Darrell D. E. Long. Accessing replicated data in
a large-scale distributed system. Technical Report 91-01, Concurrent
Systems Laboratory, UC Santa Cruz, 1991.

Hector Garcia-Molina. Performance of Update Algorithms for Repli-
cated Data in Distributed Databases. PhD thesis, Stanford University,
1979.

Arthur P. Goldberg. Efficient dependency tracking in distributed com-
putations. Technical report, IBM research, 1991. In preparation.

Richard G. Guy and Gerald J. Popek. Algorithms for consistency in
optimistically replicated file systems. Technical Report CSD-910006,
UCLA Computer Science Department, 1991.

Per Gunningberg. Fault-Tolerance Implemented by Voting Protocols in
Distributed Systems. PhD thesis, Uppsala University, Sweden, 1983.

Phil Hontalas, Brian Beckman, Mike Di Loreto, Leo Blume, Peter Rei-
her, K. Sturdevant, L. Warren, J. Wedel, Fred Wieland, and David
Jefferson. Performance of the colliding pucks simulation on the Time
Warp operating systems (Part 1: Asynchronous behavior & sectoring).
Proc. 1989 SCS Multiconference on Distributed Simulation, pages 37,
1989.

Mauricy Herlihy. Replication methods for abstract data types. PhD
thesis, MIT, 1984.

Maurice Herlihy. A quorum-consensus replication method for abstract
data types. ACM Transactions on Computer Systems, 4(1):32-53,
February 1986.

C. A. R. Hoare. The emperot’s old clothes. Communications of the
ACM, 24(2):75-83, Feb. 1981.

C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall
International Series in Computer Science, 1985.

Thomas A. Joseph and Kenneth P. Birman. Low cost management of
replicated data in fault-tolerant distributed systems. ACM Transac-
tions on Computer Systems, 4(1), February 1986.

David Jefferson, Brian Beckman, Steve Hughes, Eric Levy, Todd
Litwin, John Spagnuolo, Jon Vavrus, Fred Wieland, and Barbara Zim-
merman. Implementation of Time Warp on the caltech hypercube. In
Proc. 1985 SCS Multiconference on Distributed Simulation, January
1985.

148

[JBW+87]

[Jef85]

[Jef89)]

[TM84)

7582

[7585]

[Kau87)

[Lam78]

[LCWUSS]

[Lei84]

[LL89a]

David Jefferson, Brian Beckman, Fred Wieland, Leo Blume, Mike Di
Loreto, Phil Hontalas, Pierre Laroche, Kathy Sturdevant, Jack Tup-
man, Van Warren, John Wedel, Herb Younger, and Stebe Bellenot.
Distributed simulation and the Time Warp operating system. In Proc.
11th ACM Symposium on Operating Systems Principles, pages 77-93,
August 1987. Also available as UCLA Technical Report 870042.

David Jefferson. Virtual time. ACM Transactions on Programming
Languages and Systems, 7(3):404, July 1985.

David Jefferson. Virtual time II: The cancelback protocol for storage
management in Time Warp. In Principles of Distributed Computing,
August 1989. Quebec City.

David R. Jefferson and Ami Motro. The Time Warp mechanism for
distributed database concurrency control. Technical Report TR-84-
302, University of Southern California, January 1984.

David Jefferson and Henry Sowizral. Fast concurrent simulation using
the Time Warp mechanism, part I: Local control. Technical Report
N-1906-AF, Rand, December 1982.

David Jefferson and Henry Sowizral. Fast concurrent simulation us-
ing the Time Warp mechanism. Proc. 1985 SCS Multiconference on
Distributed Simulation, pages 63—69, January 1985.

F. J. Kaudel. A literature survey on distributed discrete event simula-
tion. Simuletter, 18(2):11-21, June 1987.

Leslie Lamport. Time, clocks and the ordering of events in a dis-
tributed system. CACM, 21(7):558-565, July 1978.

Lomow, Cleary, West, and Unger. A performance study of Time
Warp. In Proc. 1988 SCS Multiconference on Distributed Simulation,
volume 19, pages 50-55, February 1988.

Gerald Leitner. Stylized interprocess communication - a kernel prim-
itive for reliable distributed communication. In Fourth Symposium
on Reliability in Distributed Software and Database Systems, October
1984.

Y.-B. Lin and E.D. Lazowska. Exploiting lookahead in parallel simu-
lation. Technical Report 89-10-06, Department of Computer Science
and Engineering, University of Washington, 1989.

149

[LL89b)]

[LL89¢]

[LL$0]

[LMKQ89]

[LMS83]

[Lom88]

[LRG91]

[LU85]

[Mis86]

[ML77)

[MP8s]

[Nic89]

Y.-B. Lin and E.D. Lazowska. The optimal checkpoint interval in Time
Warp parallel simulation. Technical Report 89-09-04, Department of
Computer Science and Engineering, University of Washington, 1989.

Y.-B. Lin and E.D. Lazowska. A study of Time Warp rollback mech-
anisms. Technical Report 89-09-07, Department of Computer Science
and Engineering, University of Washington, 1989.

Y.-B. Lin and E.D. Lazowska. Optimality considerations for “Time
Warp” parallel simulation. Proc. 1990 SCS Multiconference on Dis-
tributed Simulation, 1990.

Samuel J. Leffler, Marshall K. McKusick, Michael J. Karels, and
John 8. Quarterman. The Design and Implementation of the {.3BSD
UNIX Operating System. Addison-Wesley Publishing Company, 1989.

Steve Lavenberg, Richard Muntz, and Bekrokh Samadi. Performance
analysis of a rollback method for distributed simulation. In A.K.
Agrawala and S.K. Tripathi, editors, PERFORMANCE ‘83, pages 117-
132. North-Holland Publishing Company, 1983.

Greg Lomow. The Process View of Distributed Simulation. PhD thesis,
University of Calgary, 1988.

Andy Lowry, James R. Russell, and Arthur P. Goldberg. Optimistic
failure recovery for very large networks. In Proceedings of the Sympo-
sium on Reliable Distributed Systems, Pisa, Italy, September 1991.

G.A. Lomow and B.W. Unger. Distributed software prototyping and
simulation in jade. Canadian INFOR, 23(1):69-89, February 1985.

J. Misra. Distributed discrete-event simulation. Computing Surveys,
18(1):39-65, March 1986.

Howard L. Morgan and K. Dan Levin. Optimal program and data
locations in computer networks. Communications of the Association
for Computing Machinery, 20(5):315-322, May 1977.

Luigi Mancini and Guiseppe Pappalardo. Towards a theory of repli-
cated processing. In Formal Techniques in Real-Time and Fault-
Tolerant Systems, pages 175-192. Springer-Verlag Lecture Notes in
Computer Science, 331, September 1988.

D.M. Nicol. The cost of conservative synchronization in parallel dis-
crete event simulations. Technical report, Department of Computer
Science, College of William and Mary, 1989.

150

[Par72)

[PEWJ89]
[PGPHY0]
[PGPH91]

[PPR*83]

[PS83]
[RFBJ90]
[RM88]
[RMM88]
[RT87]

[Sam84]

David 1. Parnas. On the criteria for decomposing systems into models.
CACM, 15(12):1053-1058, December 1972.

M. Presley, M. Ebling, Fred Wieland, and David Jefferson. Bench-
marking the Time Warp operating system with a computer network
simulation. Proc. 1989 SCS Multiconference on Distributed Simula-
tion, pages 8-13, 1989.

Thomas W. Page, Jr., Richard G. Guy, Gerald J. Popek, and John S.
Heidemann. Architecture of the Ficus scalable replicated file system.
Technical report, UCLA Computer Science Department, 1990.

Gerald J. Popek, Richard G. Guy, Thomas W. Page, Jr., and John S.
Heidemann. Replication in Ficus distributed file systems. Technical
Report CSD-910006, UCLA Computer Science Department, 1991.

D. Stott Parker, Jr., Gerald J. Popek, Gerald Rudisin, Allen Stoughton,
Bruce J. Walker, Evelyn Walton, Johanna M. Chow, David Edwards,
Stephen Kiser, and Charles Kline. Detection of mutual inconsistency
in distributed systems. IEEE Transactions on Software Engineering,
SE-9(3), May 1983.

Francis N. Parr and Robert E. Strom. NIL: A high-level language for
distributed systems programming. IBM Systems Journal, 22(1-2):111-
127, 1983.

Peter Reiher, Richard M. Fujimoto, S. Bellenot, and David Jefferson.
Cancellation strategies in optimistic execution systems. Proc. 1990
SCS Multiconference on Distributed Simulation, 1990.

D.A. Reed and A. Malony. Paralle] discrete event simulation: The
chandy-misra approach. Proc. 1988 SCS Multiconference on Dis-
tributed Simulation, pages 8-13, 1988.

D.A. Reed, A.D. Malony, and B.D. McCredie. Parallel discrete event
simulation using shared memory. IEEE Transactions on Computers,
14(4):541-553, April 1988.

Zuwang Ruan and Walter F. Tichy. Performance analysis of file replica-
tion schemes in distributed systems. In Proceedings of 1987 Sigmetrics
Conference, 1987.

Behrokh Samadi. Distributed Simulation: Algorithms and Perfor-
mance Analysis. PhD thesis, University of California at Los Angeles,
1984, '

151

[SBG+91]

[SBYS7]

[Sch90]

[SY83]

[SY85]

[SY87]

[SYBS8]

[Tho78]

[TKSS]

[UDCBS6]

[WB84]

Robert E. Strom, David F. Bacon, Arthur Goldberg, Andy Lowry,
Daniel Yellin, and Shaula Alexander Yemini. Hermes: A Language for
Distributed Computing. Prentice Hall, January 1991,

Robert E. Strom, David F. Bacon, and Shaula Alexander Yemini.
Volatile logging in n-fault-tolerant distributed systems. Technical Re-
port RC 13373, IBM T.J. Watson Research Center, 1987.

Fred Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. Computing Surveys, 22(4):299-320,
December 1990.

Robert E. Strom and Shaula Alexander Yemini. NIL: An integrated
language and system for distributed programming. In SIGPLAN ’89
Symposium on Programming Language Issues in Software Systems,
June 1983.

Robert E. Strom and Shaula Alexander Yemini. Optimistic recov-
ery in distributed systems. ACM Transactions on Computer Systems,
3(3):204-226, August 1985.

Robert E. Strom and Shaula Alexander Yemini. Synthesizing dis-
tributed and parallel programs through optimistic transformations.
In Yechiam Yemini, editor, Current Advances in Distributed Com-
puting and Communications, pages 234-256. Computer Science Press,
Rockville, MD, 1987.

Robert E. Strom, Shaula Alexander Yemini, and David F. Bacon. A re-
coverable object store. In Hawaii International Conference on System
Sciences, volumne II, pages 215-221, Kailua-Kona, HI, January 1988.

R. H. Thomas. A solution to the concurrency control problem for
multiple copy databases. In Proceedings of the 16th IEEE Computer
Society International Conference, Spring 1978.

Pete Tinker and Murry Katz. Parallel execution of sequential Scheme
with ParaTran. In Lisp and Functional Programming Conference,
pages 28-39, 1988.

Unger, Dewar, Cleary, and Birtwistle. A distributed software proto-
typing and simulation environment: Jade. In Proc. 1986 SCS Multi-
conference on Distributed Simulation, volume 17, pages 63-71, January
1986.

Gene T.J. Wuu and Arthur J. Bernstein. Efficient solutions to the
replicated log and dictionary problems. In Proceedings of the Third

152

[Wes88]

[WHF+89]

[WT89)

[YSBS7]

Annual ACM Symposium on Principles of Distributed Computing, Au-
gust 1984. Vancouver, Canada.

Darrin West. Optimising Time Warp: Lazy rollback and lazy reevalu-
ation. Master’s thesis, University of Calgary, January 1988.

Fred Wieland, L. Hawley, A. Feinberg, M. Loreto, Peter Reiher
Leo Blume, Brian Beckman, Phil Hontalas, S. Bellenot, and David
Jefferson. Distributed combat simulation and Time Warp: The model
and its performance. Proc. 1989 SCS Multiconference on Distributed
Stmulation, pages 14-20, 1989.

Linda R. Walmer and Mary R. Thompson. A programmer’s guide
to the mach system calls. Technical report, CS Department, CMU,
December 1989.

Shaula Alexander Yemini, Robert E. Strom, and David F. Bacon. Im-
proving distributed protocols by decoupling recovery from concurrency
control. Technical Report RC 13326, IBM T.J. Watson Research Cen-
ter, 1987.

153

