Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

STRUCTURE-DRIVEN ALGORITHMS FOR TRUTH
MAINTENANCE

Rina Dechter July 1991
Avi Dechter CSD-910045






Technical Report
R-138
February 1990

STRUCTURE-DRIVEN ALGORITHMS FOR TRUTH MAINTENANCE

Rina Dechter

Computer Science Department,
Technion - Israel Institute of Technology

Avi Dechter

School of Business administration,
Cal-State Northridge,

ABSTRACT

This paper presents distributed algorithms for performing truth-maintenance tasks on singly-
connected structures. We show that on this model the JTMS’s belief maintenance and con-
sistency maintenance tasks are linear in the network size while the ATMS task remains exponen-
tial with a reduced exponent -- the branching degree of the network. Although the model is res-
tricted, it serves three purposes. First, it helps in idendifying the source of the computational
difficulties associated with both JTMS and ATMS. Second, efficient algorithms on singly con-
nected models may be adapted to general structures by known clustering techniques. Finally,
these algorithms can serve as approximation or as heuristics for processing general truth mainte-

nance problems.



1. Introduction

Reasoning about dynamic environments is a central issue in Artificial Intelligence. When deal-
ing with a complex environment, only partial description of the world is known explicitly at any
given time. A complete picture of the environment can only be speculated by making assump-
tions, which must maintain a consistent view of the world. When new facts become known, it is
irnportant1 to maintain the consistency of our view of the world so that queries of interest (e.g., is

a certain proposition currently believed to be true?) can be answered coherently at all times.

Truth maintenance systems (TMSs) are computational schemes which are intended to
handle such situations. TMSs reason non-monotonically, namely, they allow inference systems
to draw conclusions and retract them in the context of incomplete and changing information. In
its generic form, a TMS is concerned with propositions (representing potential beliefs) which it
attempts to prove (thus tuming them into beliefs) by using a set of inference rules which consti-
tute its knowledge base. In addition, most TMSs recognize two special types of propositions
which do not require a proof: premises and assumptions. A premise is a proposition which
represents an observed fact or an a’ priori believed fact. An Assumption is a proposition which
is presumed to be true under normal conditions but may be retracted if it contradicts with the

observed facts or with other assumptions.

Two main approaches to TMS design have emerged: the JTMS (Justification-based
TMS) [10, 16] and the ATMS (Assumption-based TMS) [8]. A JTMS undertakes to determine
provable propositions and provide such proofs (called justifications) described by a mixture of
known facts, and a given set of assumptions. In ATMS the system maintains for each proposi-
tion a whole collection of assumption sets (called environments) any of which can be used to

prove the proposition given the facts.



An important part of a TMS's functions is that of constraint satisfaction. Several authors
have discussed the connections between truth maintenance systems and constraint satisfaction
problems and the potential benefits to both of better understanding these relationships, e.g. [9],
and [18]). The main thrust of these efforts has been to show search reduction techniques

developed in one area may be used to the benefit of the others.

Inithis paper we pose the basic JTMS and ATMS tasks using the language of constraints
and propose algorithms for their achievement. Our algorithms rely on special techniques that
were developed in recent years for solving "pure” constraint satisfaction problems. The main
characteristic of these techniques are that they are ‘“sensitive’” to the structure of the problem so
as to take advantage of special structures. The use of the constraint framework for examining
these tasks and for specifying the algorithms has the additional benefit of facilitating the analysis

of the complexity of these tasks.

As a departure point for the ‘‘leap’’ from TMS to CSP we use the concept of a clause
management system (CMS) proposed by Reiter and de_Kleer [19] to describe the tasks of truth
maintenance systems {ATMS in particular) in propositional logic. The language of constraints
has the same expressive power as propositional logic but expresses more naturally the idea that
certain sets of propositions are mutually exclusive and exhaustive, a notion which is implicit in

the concept of variables and relations.

The remainder of this paper is organized as follows: Section 2 summarize the Clause
management system and defines the ATMS and JTMS’s task’s, and section 3 transforms the
CMS formulation into constraint networks’ language. Sections 4,5,6 and 7 focus on algorithms
for performing the JTMS's task on singly connected networks, while sections 8, 9, 10, and 11
focus on algorithms for the ATMS task on singly connected networks. Section 12 provides a

summary and concluding remarks.



2, JTMS and ATMS Tasks

Following Reiter and de-Kleer [19] we choose to express the tasks of a JTMS and an ATMS in

propositional logic using their concept of a Clause Management Systern (CMS).

The CMS assumes a propositional language with countably infinitely many propositional
symbols and the logical connectives \ and -=. The formulas of the language are defined in the
usual way. Let S be a set of formulas and w a formula. Then § is said to entail w, denoted Sl=w

just in case every assignment of truth values to the propositional symbols of the language which

makes each formula of S true also makes w true.

A literal is a propositional symbol or the negation of a propositional symbol. A clause is
a finite disjunction of literals, with no literal repeated. Let Z be a set of clauses and C a clause.

A clause S is a support for C with respect to X iff |5 and Z|=SUC.
A support clause S for C with respect to Z has the following properties:
1. X entail SUC, i.e., T entail notS o C.

2. T does not entail S, i.e., ZU{notS} is satisfiable.
The first property means that the conjunction of literal notS is an hypothesis which, if added to

would make conclusion C true. The second property means that notS is consistent with .

The notion of support may now be used to specify two fundamental tasks which a CMS
may be expected to achieve depending on the type of query it receives from the reasoner. On the
one hand the reasoner may query the CMS with a clause § representing an hypothesis notS
which is consistent with . The task of the CMS is to find all (or some) clauses C which are sup-
ported by § with respect to Z. We refer to this as the fundamental JTMS task. On the other
hand, the reasoner may query the CMS with a clause C, representing set of potential beliefs. The

task of the CMS in this case is to determine all minimal support clauses for C with respect to Z.



This is the fundamental ATMS task.

Since the definition of S being a support to C with respect to I is dependent on S being
consistent with X, there is another task that the CMS must be able to achieve, namely, given a
clause S, determine whether it is consistent with Z, and if not, suggest a minimal subset of

literals of X such that if removed will make the set of clauses consistent with 5.

The notion of assumptions is fundamental for systems that are trying to reason non-
monotonically. To equip the CMS with such capabilities a distinct set of propositional symbols,
{Aq,...,A,]} called assumption symbols, is introduced, where a particular truth assignment to
the assumption symbols is referred to as assumptions. We now formally define the JTMS and

ATMS tasks within this model:

1. Answer the JTMS query : given a knowledge base J consisting of a set of clauses
together with a current truth assignment to the assumption symbols, and given a query «,

determine whether or not  is entailed by J.

2. Consistency maintenance in JTMS: given a consistent knowledge-base, J, consisting of
a set of clauses together with a current truth assignment to the assumption symbols, and
given an assertion & determine if J U o is consistent and if not, find a minimal subset of

assumptions whose truth assignment should be reversed to restore consistency.

3. Answer fhe ATMS query : given a knowledge-base, J, consisting of propositional
clauses and assumption symbols, and given a literal o, compute all minimal supports to o
restricted to assumption symbols. In other words, compute all sets of consistent assump-
tons {Ay,...,A,} such that (-4, |,..., | =A,} constitute a minimal support to &

w.r.t. J [8]

Since in ATMS framework no commitment to assumptions is being made, determining

the consistency of a set of clauses is part of - the task of finding consistent supports. However,



an inconsistency of the knowledge when no assumptions are committed implies an inherent

inconsistency which is not curable by changing assumptions.

Reiter et. al [19]. discuss two approaches to CMS, interpreted and compiled. In the
interpreted approach clauses submitted to the reasoner are stored as they are (maybe indexed by
their literal), and when a query arrives, query-processing algorithms produce the answers. In the
compiled approach, all answers to all possible queries are computed and saved ahead of time.
Thus, in t‘he former mode the costly operations are query processing and consistency mainte-
nance, while in the latter mode query processing takes constant time but there is a space-
overhead and an extra work for maintaining the consistency of the compiled data. Traditional
TMSs were dominated by the compiled approach presumably assuming that maintenance over-

head is compensated by a constant query answering.
3. Constraint-formulation for CMS

A constraint satisfaction problem (CSP), also referred to as a constraint-network
(CN), involves a set of n variables X {,...,X,,, each represented by its domain values, Ry, ... ,R,,
and a set of constraints. A constraint C;(X; , " ,X,-j) is a subset of the Cartesian product
R; %+ xR;, that specifies which values of the variables are compatible with each other. A
solution (also called an extension) is an assignment of values to ail the variables which satisfy all
the constraints, and the most common task associated with these problems is to find one or all
solutions. A constraint network is inconsistent if it has no solunons. A constraint is usually
represented by the set of all tuples which are not forbidden by it. A binary CSP is one in which
all the constraints are binary, i.e., they involve only pairs of variables. A binary CSP can be
associated with a constraint-graph in which nodes represent variables and arcs connect pairs of
variables which are constrained explicitly. Figure 1 presents a Constraint-Network (modified
from [14] ). Each node represents a variable whose values are explicitly indicated, and each link

is labeled with the set of value-pairs permitted by the constraint between the variables it con-



nects (observe that the constraint between connected variables is a strict lexicographic order

along the arrows.)

Figure 1: An example of a binary CN

A CMS can be viewed as a constraint network. Each propositional symbol can be
regarded as a bi-valued variable having truth values "1" (truth) and “0" (false). A clause defines a
constraint on the corresponding subset of variables given by its truth table and a set of clauses is
a constraint-network. For instance the clause T — Z can be expressed as a relation on the pair of
bi-valued variable T and Z as: TZ ={11,01,00}. Consider the following set of propositions:
{XIY>Z,T—Z L-—-X,R-Y) which can be modeled as a CSP with the four bi-valued
variables T,Z,R,L and the compound variable XY having the domain values, 00, 01,10,11 (each
pair is a name of one value). The explicit form of the constraints is generated via the truth table

of implication. The constraint graph and the explicit constraints are depicted in figure 2.

We now extend the notion of entailment to constraint network terminology. We say that
a constraint C is entailed (or believed or holds) by a network of constraints, R, if it is satisfied by

every solution of R. Following that, the notion of support for a constraint C w.r.t. network R is



T->2Z R XY
1 01
T! Z | 11
1 |1 0] 01
01 ¢ | 11
& 0 0| 00
7 10]
LoX
L | XY
i ﬁ X1Y »5Z
1 11 XY | 2
0 10 01 1
0 | 11 1o |1
01 00 11 1
0| o1 %0 |1
0 |0

Figure 2: An example CSP
defined as a consistent instantiation of a subset of the variables, (X =x,...,X; =x;) such that
C holds in the restriction of R to this subset-instantiation, namely, in any solution to the network
that satisfies the partial instantiation, C holds. (the support here is the negated version of the
support in CMS). The support is minimal if no subset of the instantiation is a support to C w.r.t.
R. To model assumptions within constraint network we allow the existence of a distinct set of
variables, called assumption variables, whose possible values are called assumptions, thus

assumption symbols are naturally mapped to assumption variables.

Assumption variables can be used to model default rules: e. g. birds fly (unless they are
dead), an adder functions correctly (unless it is faulty). This is accomplished by adding to the
constraint representing the rule an assumption variable with two values: one representing the

default assumption (e.g., that the rule "birds fly" is true) and the other representing the exception.

The JTMS task rephrased into the CN model is to determine whether or not an assign-
ment, X=x, holds in all solutions given some instantiations of the assumption variables. The

task of ATMS is to find all minimal instantiations of assumption variables which support a query



C, given a network R. Therefore, if the query is X = x, the task is to find a minimal instantiation
of assumptions which make the network consistent with the value x of X and at the same time

not consistent with any other value of X.

In this paper we present algorithms for performing JTMS and ATMS tasks. We first
assume a restricted problem structure of singly connected networks with binary constraints, then
extend it to non-binary singly connected topologies. Although it is a restricted case it serves
three pur;aoses. Being a simplified model, it helps identify the source of the computational
difficulties associated with both JTMS and ATMS. Second, efficient algorithms on this model
may be adapted to general networks using a tree-clustering transformation [6] or the cycle-cutset

method [4] Thirdly, these algorithms can also serve as approximation algorithms or as heuristics

for general networks.
4. Determining belief via support propagation

In this section we present a distributed algorithm for determining the status of each pro-
posittion of the form X =x, namely, determining whether or not it holds in all solutions. To
accomplish this task we compute for each value of a variable the number of solutions in which it
participates. We call this figure the support number to distinguish it from the notion of support
sets as defined earlier. The support numbers can be thought of as measuring the degree of belief
in the proposition represented by the value. (If the set of all solutions was assigned a uniform
probability distribution, then the of support number is precisely the marginal probability of the
proposition, namely, its "belief" in the corresponding Bayes network [17] ). In particular a pro-
position X =x is entailed if it has a positive support and at the same time the support for other
values X’s domain is 0. The support figures for all values in a variable’s domain constitute a

support vector for that variable.

It is well known that constraint networks whose constraint graph is a tree can be solved

easily [15,11,3]. Consequently, the number of solutions in which each value in the domain of



each variable participates (namely, the support number of this value), can also be computed very
efficiently. In this section we present a distributed scheme for calculating the support vectors for

all variables, and for their updating to reflect changes in the network.

Consider a fragment of a tree-network as depicted in Figure 3.

Figure 3: A fragment of a tree-structured CN
The link (X,Y) partitions the tree into two subtrees: the subtree containing X, Txy(X), and the
subtree containing Y, Txy(Y). Likewise, the links (X,U), (X,V), and (X,Z), respectively, define
the subtrees Txy (L), Txy(V) and Txz(Z). Denote by sx(x) the overall support number for value
x of X, by sx(x/Y) the partial support for X = x contributed by subtree Txy(Y) (i.e., the number
of solutions of this subtree which are consistent with X =x), and by sy(x/-Y) the support for
X =x in Txy(X). (These notations will be shortened to s(x), s (x/Y) and s (x/-Y), respectively,

whenever the identity of the variable is clear.) The support for any value x of X obeys:

s(x)= I s(x/Y), 4]

YeX’s neighbors
namely, it is a product of the supports contributed by each neighboring subtree. The support that

Y contributes to X = x can be further decomposed as follows:

s(x/Y)= Yy s(/-X), 2)
(xyXCEY)

when C (X,Y) denotes the constraint between X and Y. Namely, since x can be associated with



several matching values of Y, its support is the sum of the supports of these values. Equalities

(1) and (2) yield:

s{x)= n s(y/-X) . 3

YeX's Mighbors(x'y)eg(x‘y) (y ) ( )

Equation (3) lends itself to the promised propagation scheme. If variable X gets from each

neighboring node, Y, a vector of restricted supports, (referred to as the support vector from Y
to X):

@
GO 1/=X) ... s0u/-X)),

where y; is in ¥’s domain, it can calculates its own support vector according to equation (3) and,
at the same time, generate an appropriate message to each of its own neighbors. The message X
sends to Y, (s (x/-Y)), is the support vector reflecting the subtree Tyy(X), and can be computed

by:

forevery xe X s(x/-Y)= I =X). 5
Yy re S&/=1) ZEX':ncighbors.ZaY(x.z)Eg(x'Z)s(z ) ©)

The message generated by a leaf-variable is a vector consisting of zeros and ones representing,

respectively, legal and illegal values of this variable.

In an interpreted mode the knowledge consists of the constraint network only. Then,
when a request to determine the status of each value (i.e., whether or not, for every xe X, X =x is
entailed) arrives, the following algorithm will generate all the support vectors. The computation
consists of nodes sending to their neighbors the partial support vectors (4) whenever they are
readily computed. When all nodes have received all the partial supports the overall supports can
be computed using (3). The basic algorithm for node, X, having neighbors Y, ...,Y, is as fol-



lows:

propagate-partial supports (X,Y,...,Y,)

1. begin
2. for each neighbor Y; do
3. if received partial supports from ¥y, ... Yi1,Y54,...,Y, then
4, compute (s(x,/=Y;), ..., (x¢/—Y})) using equation (5)
and sentitto Y.
5. if received partial supports from all neighbors then
6. compute your overall support using (3).
7. end.

Clearly, when the algorithm terminates all nodes will have the partial and overall sup-
ports correctly computed. The message complexity and the time complexity is exactly 2e where
e 1s the number of edges, and it equals 2n for trees. If only the support status of variable, X, is
required the computation can be further simplified. First, a directed tree rooted at X should be
generated, and then the partial support messages will be propagated in one direction only; from
child nodes to their parents. At termination only X’s supports are computed but the amount of

message passing and the time complexity reduces from 2n to n (one message per link).

In a compiled mode we assume that the network computed and saved all the partial sup-
port vectors and the task is to update these vectors when a new input arrives. The updating
scheme is initiated by a variable directly exposed to the new input. Such variable will recalcu-
late and deliver the partial support vectors to each of its neighbors. When a variable in the net-
work receives an update-message from a neighbor, it recalculates its outgoing messages, (i.e.,
messages to all other neighbors), and at the same time updates its own support vector. The pro-
pagation generated due to a single outside change will spread through the network only once (no

feed-back), since the network has no loops.

To illustrate the mechanics of the propagation scheme in the compiled mode, consider
again the problem of Figure 1. In Figure 4a the support vectors and the different messages are
presented. The order within a support vector corresponds to the order of values in the originat-

ing variable, e.g., message (8,1) from X3 to X represents (sx,(a/=X1) , sx,(b/—X). Suppose



now that the system is forced by an outside change to restrict the value of X 2 to "b". In that case
X will originate a new message to X5 of the form (0,1,0). This, in turn, will cause X 3 to update
its supports and generate updated messages to X1,X4 and X5 respectively. The new supports

and the new updated messages are illustrated in Figure 4(b).

Figure 4: Support vectors before and after a change

Query processing takes constant time in the compiled version at the expense of a linear

space overhead of 2n. The message and time complexity for each update is exactly n.

If one is not interested in calculating numerical supports, but merely in indicating
whether a given value has some support (i.e., participates in at least one solution), then flat
support-vectors, consisting of zeros and ones, can be propagated in exactly the same way, except
that the summation operation in (3) shouid be replaced by the logic operator OR, and the multi-

plication can be replaced by AND.
5. Handling Assumptions and Contradictions

When, as a result of new input, the network enters a contradictory state, (i.c., no solution
exists) it often means that the new input is inconsistent with the current set of assumptions, and

that some of these assumptions must be modified in order to restore consistency. The task of



restoring consistency by changing the values assigned to a subset of the assumption variables is

called contradiction resolution.

The subset of assumption variables that are modified in a contradiction resolution process
should be minimal, namely, it must not contain any proper subset of variables whose simultane-
ous modification is sufficient for that purpose. A sufficient (but not necessary) condition for this
set to be minimal is for it to be as small as possible. In this section we show how to identify a
minimurﬁ number of assumptions that need to be changed in order to restore consistency.
Unlike the support propagation scheme, however, the contradiction resolution process has to be
synchronized. Assume that a variable which detects a contradiction propagates this fact to the
entire network, creating in the process a directed tree rooted at itself. Given this tree, the con-

tradiction resolution process proceeds as follows.

With each value v of each variable V we associate a weight w(v), indicating the
minimum number of assumption variables that must be changed in the directed subtree rooted at

V in order to make v consistent in this subtree. These weights obey the following recursion:

wv)=Y min &, +w(;)), (6)

y, nypeC V.Y

where (Y;) are the set of V’s children and their domain values are indicated by y;;; i.e. y; is the
j* value of variable ¥;, and 8),,.’. =11if y; is not a currently selected assumption value or "0" oth-
erwise (see Figure 5). The weights of leaf values are "0" unless they represent not currently
selected values, in which case they are "1". The computation of the weights is performed distr-
butedly and synchronously from the leaves of the directed tree to the root. A variable waits to
get the weights of all its children, computes its own weights according to (6), and sends them to
its parent. During this bottom-up-propagation a pointer is kept from each value of V to the
values in each of its child-variables, where a minimum is achieved. When the root variable X
receives all the weights, it computes its own weights and selects one of its values that has a

minimal weight. It then initiates (with this value) a top-down propagation down the tree, fol-



%4

min (wy, w4}
L w3

<>

Y;

Figure 5: Weight calculation for node v
lowing the pointers marked in the bottom-up-propagation, a process which generates a consistent
selection of assumptions with a minimum number of assumptions changed. At termination this
process marks the assumption variables that need to be changed and the appropriate changes

required.

There is no need, however, to activate the whole network for contradiction resolution,
because the support information clearly points to those subtrees where no assumption change is
necessary. Any subtree rooted at V whose support vector to its parent, P, is strictly positive for
all “relevant” values, can be pruned. Relevancy can be defined recursively as follows: the
relevant values of V are those values which are consistent with some relevant value of its parent,
and the relevant values of the root, X, are those which are not known to be excluded by any

outside-world-change, independent of any change to the assumptions.

To illustrate the contradiction resolution process, consider the network given in Figure
6(a), which is an extension to the network in Figure 1 (the constraint are strict lexicographic
order along the arrows.) Variables X, X4 and X are assumption variables, with the current
assumptions indicated by the unary constraints associated with them. The support messages sent
by each variable to each of its neighbors are explicitly indicated. (The overall support vectors
are not given explicitly.) It can be easily shown that the value a for X5 is entailed and that there
are 4 extensions altogether. Suppose now that a new variable Xg and its constraint with X5 is

added (this is again a lexicographic constraint.) The value g of Xy is consistent only with value



b of X3 (see Figure 6(b)). Since the support for a of X5 associated with this new link is zero, the
new support vector for X5 is zero and it detects a contradiction. Variable X3 will now activate a
subtree for contradiction resolution, considering only its value » as "relevant”, (since, value a is
associated with a "0" support coming from Xg which has no underlying assumptions). In the
activation process, X4 and X5 will be pruned since their support messages to X3 are strictly
positive. X; will also be pruned since it has only one relevant value ¢ and the support associated
with this value is positive. The resulting activated tree is marked by heavy lines in Figure 6(b).
Contradiction resolution of this subtree will be initiated by both assumption variables X4 and
X7, and it will determine that the two assumptions X¢ =¢ and X7 = ¢ need to be replaced with

assuming d for both variables (the process itself is not demonstrated).

Once contradiction resolution had been terminated, all assumptions can be changed
accordingly, and the system can get into a new stable state by handling those changes using sup-
port propagation. If this last propagation is not synchronized, the amount of message passing on
the network may be proportional to the number of assumptions changed. If, however, these mes-
sage updating is synchronized, the network can reach a stable state with at most two message
passing on each arc. Figure 6(c) gives the new updated messages after the system had been sta-

bilized.
6. Support propagation in acyclic networks

Acyclic constraint networks extend the notion of a tree-structured networks to those
having constraints of higher arity. Extending the notion of constraint graphs to non-binary net-
works we define the primal constraint graph which consists of a node for each variable and an
arc for each two variables related directly by at least one constraint. Altermatively, a general net-
work may be represented by a dual constraint graph, (or a hypergraph) consisting of a node for
each constraint and an arc for any two constraints that share at least one variable. The dual con-

straint graph give rise to an equivalent binary constraint network, where variables are the con-



Figure 6. Illustration of the contradiction resolution process.



straints of the original network (called a c-variable), their tuples are their legal values and the

constraints call for equality of the values assigned to the variables shared by any two c-variables.

For example, Figures 7(a) and 7(b) depict, respectively, the primal and the dual
constraint-graphs of a network consisting of the variables A,B,C,D,E,F, with constraints on the

subsets (ABC),(AEF), (CDE), and (ACE) (the constraints themselves are not specified).

o
@) @ @
AC \E

fel

(@) (o

Figure 7: A primal and dual constraint graphs of a CSP

Since all the constraints in the dual representation are equalities, any cycle for which all
the arcs share a common variable contains redundancy, and thus any arc such that each of the
variables in its label is a common variable in some cycle may be removed from the network.
The graph remaining after all such arcs have been removed is called a join-graph, and its

corresponding network is equivalent to the original network.

For example, in Figure 7(b), the arc between (AEF) and (ABC) can be eliminated because
the variable A is common along the cycle (AFE)—A —(ABC)—AC —(ACE)—AE —(AFE), so
the consistency of the A variables is maintained by the remaining arcs. Similar arguments can be
used to show that the arcs labeled C and E may be removed as well, thus transforming the dual

graph into a join-tree (see Figure 7(c)). A Constraint network whose dual constraint graph can



be reduced to a join-tree is said to be acyclic. Acyclic constraint networks are an instance of

acyclic data bases discussed at length in [1].

The support propagation algorithm for tree-structured binary networks can be adapted for

use in acyclic networks using one of their join-trees. We outline the algorithm next.

Consider the fragment of a join-tree, whose nodes represent the constraints C,

U1.U,,U4,Uy, given in Figure 8.

U‘ U]

(:(rgn({ /-C))

Z

Figure 8: A fragment of a join-tree
We denote by ¢ an arbitrary tuple of C. With each tuple, €, we associate a support number
s(¢°), which equals the number of solutions in which all values of ¢© participate. Let s(t°1U)
denote the support of + coming from subtree Ty (U), and let (¢ 1-U) denote the support for
t¢ restricted to subtree Tey(C) (we use the same notational conventions as in the binary case).

The support for ¢ is given by:

S(‘C) = Ue C"sl;lcighbons (IC \0). 0

The support U contributes to ¢ can be derived from the support it contributes to the projection

of 1 on C U, denoted by t“c ~y, and this, in turn, can be computed by summing all the sup-

ports of tuples in U restricted to subtree Tcy (L) that have the same assignments as t© for



variables in C ~\U. Namely:

sEN =50 p!D= T s@*1=C). (8)

ey =tcw

Equations (7) and (8) yield

[ 2 "
$E)=, C'sl:xIeighbors o E,c SEH=0). ®
W= cnu

The propagation scheme emerging from (9) has the same pattern as the propagation for
binary constraint. Each constraint calculates the support vector associated with each of its out-
going arcs using:

scu!l-C)= 3 seI1-0). (10)

™ ._!I‘
e =t erw

The message which U sends to C is the vector

GG cAuI-CN, 1)

where { indexes the projection of constraint I/ on C ~\U. Using this message, C can calculate its
own support-vector (using (9)) and will also generate updating messages to be sent to its neigh-

bors (using (10)).

Having the supports associated with each tuple in a constraint, the supports of individual
values can easily be derived by summing the corresponding supports of all tuples in a con-

straint having that value.

Contradiction resolution can also be modified for join-trees using the same methodology.
This process will be illustrated in the next section where these algorithms are demonstrated on a
circuit diagnosis example. Support propagation and contradiction resolution take, on join-trees,
the same arnount of message passing as their binary network counterparts. Thus, the algorithm
is linear in the number of constraints and quadratic in the number of tuples in a constraint. How-

ever, due to the spectal nature of the ‘“dual constraints’’, being all equalities, the dependency of

the complexity on the number of tuples ¢ can be reduced from 2 to rlogr, using a simple



indexing technique.
7. A Circuit Diagnosis Example

An electronic circuit can be modeled in terms of a constraint network by associating a
variable with each input, output, intermediate value, and device. Devices are modeled as bi-
valued assumption variables, having the default value "0" if functioning correctly and the value
“1" otherwise. There is a constraint associated with each device, relating the device variable
with its immediate inputs and outputs. Given input data, the possible values of any intermediate
variable or output variable is its "expected value", namely, the value that would have resulted if
all devices worked correctly, or some ‘‘unexpected

"t

value’ denoted by "e". A variable may have more then one expected value. For the purpose of
this example we assume that the set of expected values for each variable were determined by

some pre-processing and all the other values are marked by the symbol "e".

Consider the circuit of Figure 9 (also discussed in {7,2, 13]), consisting of three mult-
pliers, M {,M5,M3, and two adders, A; and A;. The values of the five input variables, A, B, C,
D, and F, and of the two output variables, F and G, are given. The numbers in the brackets are
the expected values of the three intermediate points X, Y, and Z, and of the outputs. The rela-
tion defining the constraint associated with the multiplier M, is given in Figure 10 as an exam-
ple, as well as the initial diagnostic weights associated with the tuples of these leaf constraints.
The weight of the first tuple is "0"” since the assumption variable, M is assigned the currently
assumed value, "0", while in the second tuple the assumed value is changed 1o "1". Given the
inputs and outputs of the circuit, the objective is to identify a minimal set of devices which, if

presumed to be malfunctioning, could explain the observed behavior (i.e., G =12and F =10).

The dual graph of the constraint network corresponding to this circuit is given in Figure
11. This network is acyclic, as is evident by the fact that a join-tree can be obtained by eliminat-

ing the redundant arc (marked by a dashed line) between constraint (M,,B,D.,Y) and



A=3 | X[6]
M1
B._.._z’ A1 __E=2]10
C=2_'_ ]- Y[5]
1"
D=3p-
AD G= 12
E=3 !'—9 M3 (12]

Z[8]

Figure 9: A circuit example

M, A c b4
0 2 3 [+ w =0
1 2 3 [ w=]

Figure 10: A muldplier constraint

(A2,4,7,0).

Initially, when no observation of output data is available, the network propagates its sup-
port numbers assuming all device variables have their default value "0". In this case only one
solution exists and therefore the supports for all consistent values are "1" (the support propaga-
ton algorithm is not illustrated). The diagnosis process is initiated when the value "10" is
observed for variable F which is different from the expected value of 12. The value “10" is fixed
as the only consistent value of F. At this point, the constraint (X,A ,F,Y), which is the only one
to contain F, induces direction on the join-tree, resulting in the directed tree (rootcd at itself) of
Figure 12, and conwadiction resolution is initiated. Each tuple will be associated with the

minimum number of assumption changes in the subtree underneath it, and the c-variable will



Figure 11: An acyclic constraint network of the circuit example

Figure 12: Weight calculation for the circuit example

project the corresponding weights on the variables which label its outgoing arc. In Figure 12 the
weights associated with the arcs of the three leaf constraints (i.e., the multipliers constraints), are
presented. They are derived from the weights associated with their incoming constraints (see the
weights in Figure 10). For instance, the weights associated with X is w (X = 6)=0 since "6" is the
expected value of X when M,; works correctly (which is the default assumption), and
w (X =e) =1 since, any other value can be expected only if the multiplier is faulty. Next, the

weights propagate to constraint (¥,G,A,,Z). This constraint and its weights are given in Figure



13 (note, that G’s observed value is 12).

Al z G Y Weighrs Fauiry Devices
0 5 12 [ w =0 none

0 £ 12 e W= M,

l ] 12 £ w =] An

1 & 12 e w=1l ”3 & A

Figure 13: The weights of constraint (Y,G,4,,Z)
The corresponding derived Y’s weights are indicated on the outgoing arc of constraint
(Y,G,A2,Z) in Figure 12. Finally, the weights associated with the root constraint (A {,X,Y,F) are
computed by summing the minimum weights associated with each of its child node. The tuples

associated with the root constraint and their weights are presented in Figure 14.

Ay F X Y Weighes Fanlty Devices
i a 10 6 ¢ 2 Myvdy & M,
2 0 10 4 6 1 My
3. 0 10 e ¢ 3 M & M.k (Myviy
4, 1 10 6 § 1 Ay
5. 1 10 & e 3 Ay M.k (Myv Ay
8, 1 10 e ¢ 4 Ay M.k My & (MyvAs)

Figure 14: The weights of constraint (4 |.F.X.Y) (the root)
We see that the minimum weight is associated with tuples (2), indicating M; as faulty or (4),
indicating A as faulty. Therefore, either A; or M are faulty. The weights can also be used as

a guide for additional measurement taking in order to delineate between the different diagnoses.

This example iilustrates the efficiency of the contradiction resolution process when the
special structure of the problem is exploited. See also [12]. By contrast, handling this problem
using ATMS [7] exhibits exponential behavior. In a similar manner a propagation scheme can

be devised to extract all minimal diagnoses (not necessarily the minimum-cardinality ones {5] )



for further processing by some diagnostic package.
8. Finding all minimal supports in trees

Thus far we showed that the JTMS tasks are linear for singly connected networks (i.e.
binary trees and their extensions to acyclic networks). In this and in the following sections we
focus on the ATMS task as defined earlier for constraint networks. Namely, given a constraint
network and a value x of X, the task is to find all minimal instantiations of assumption variables
that supports X =x. Notice the distinction between support sets which are of concern for the
ATMS task vs. the support numbers which were computed for the JTMS task. We will hen-
ceforth present an algorithm for computing the minimal support sets and we assume w.l.o.g. that

all variables are assumption variables.

The basic idea of the algorithm is demonstrated through the example of figure 1. Sup-
pose that all minimal supports for Z =1 are to be found. The algorithm generates a directed tree
rooted at Z (figure 15a). Then, for each value, it computes all its minimal support sets restricted
to its child nodes. For instance, the set of minimal support sets computed for XY =11 is
{(L=1,R=1)}, while for XY =01 the set is empty since no instantiation of the child variables R
and L entails XY =01. The subsets of minimal supports, restricted to children, are called minimal
support labels . The minimal support labels of a value v of V, w.r.t. some directed tree T, is

denoted by msly(v) or msi(v) when the identity of V is clear (see figure 15b).

Once all minimal support labels are computed, new supports can be generated by replac-
ing a value in a label by one of its own minimal supports. For instance, since (XY=11) is a
minimal support label for Z=1 and since XY =11 is minimally supported by (L =1,R =1), this past
set is a new support for Z=1, This property seems to suggest that the set of supports can be gen-
erated by going from leaves to root recursively generating the support sets for each value (res-

tricted to the subtree rooted at it).



Fora e {0,1)} L=()
msip ()=
msig(c)={}
msixy(01)={}
msixy(00)={}
mslyy(10)={}
msly(11D)={{L=1,R =1}}
msir(o)={}
mslz{ De={(T=1)XY=01)(X¥ =10)(XY =11))

)

Figure 15

There are two problems with the above procedure. First, the minimality property is not
maintained by this process; the set (L =1,R =1), although generated by the substtution process, is
not a minimal support for Z=1, since either L =1 or R=1 independently support Z=1. And an
even more severe problem is that not all support sets are generated. Consider, for instance, the
network in figure 15a restricted to variables (Z,XY,L). Each of the values (XY =10) and (XY =11)
is a minimal support to Z=1. However, since each one of these values is not individually sup-
ported by L=1 (L=1 is consistent with both of them), L=1 cannot substitute either X¥ =01 nor
XY =11, and will not be generated by the substitution process. Nevertheless, L =1 is a minimal

support to Z=1.

To alleviate these two problems the algorithm that follows needs to make sure that all the
support sets will be generated in the recursive substitution process. As was seen in the example,

several values of a variable can play identical role in a support label (e.g., XY =10 and XY =11



both supporting Z=1) and therefore if a disjunction of such values has a minimal support, it can
exchange any of the disjunct values in that label. For instance since L =1 supports the disjunction
XY =10 or XY =11 it can exchange either one of them in a support. In the following paragraphs

we formalize these notions.

The following notation sand definitions are needed. Let V and C be two variables having
domains Dy and D¢, respectively, and let CV be the direct constraint between them. CV stands
for the set of all legal pairs allowed by it. Let My (c) denote the set of values in Dy which are

compatible with a value ¢ of C (Figure 16a). Namely,
Mey(c)={veDy | (c,v)e CV }. (12)

We first define the notion of support label, but instead of defining it for a singleton we define it

for a subset of values in a variable’s domain.

Given a variable V with its children C,...,C; (Figure 16b) and a subset of consistent
values Ay of V, a support label for Ay is an instantiation of a subset of the child variables,
(Ci=c1,...,Cy=0¢), such that from all (the consistent) values of V Ay "matches” each of the

child’s values. Formally, the support labels satisfies

M Mcy(c)) g Av. (13)

CjECj

A support-label is minimal if no subset of it satisfies condition (13). As we had seen, in the
example of figure 15a, {Z =1} has four minimal support labels given by:
mslz(1) = {(T = 1),(XY =01),(XY = 10)(XY = 11)}. Another example given in figure 15a, is
msixy({01,10,11}) = {(L = 1),(R = 1)} and it does not contain the support (L=1,R =1) (which

is not minimal).

Given a label, I=(C;=c¢y,...,Cr=¢,,...,C; =) that minimally supports a subset
Ay of V we denote by II1(C, =c,”) the label resulting from exchanging ¢, by ¢,” in L If

I1(C, = ¢,”) is also a minimal support for Ay we say that ¢, and ¢,” play identical role w.r.t. / and



— Mev(c)
T C

\S7/

c D° GG
®)

(a)

Figure 16:

Ay and that they are exchangeable.

Given a subset Ay of V, a label /lemsi(Ay), and a variable C, in / we define the set of

label-dependent values of C,, denoted by F,4,, ;(C,), which are exchangeable in label I:
Fa,(C={c, | 1(C, =¢,) is a minimal support to Ay } (14

A given minimal support label for Ay is also a minimal support set (remember all vari-
ables are considered assumption variables). Such a label can recursively generate additional
minimal support sets. Let [ =(Cy=¢1,...,Cr =¢Cp, ..., C, =¢,) and denote by mss(A) all the
minimal support sets for set A restricted to its rooted tree. The set of minimal supports generated

via [ in the subtree rooted at V, denoted by mss;(Ay), where ! is a support for Ay, satisfies:

mss((Ay) =mss (Fa, ((C1 )X, ..., xXmss(Fy, (C))X,..., X mss(Fy, (Cp)) (15)
and
mss(Ay) = e mL:J( AV)WSI(AV) (16)

Combining (15) and (16) yield a recursive equation for calculating the minimal support-sets of a

given subset Ay of V which are restricted to its subtree:



Ay) = X ;
mss(Ay) IEWK})(AV) , CE‘CEEI}MS(FAV,[(C:)) (17)

The algorithm is described for a tree whose root is the queried variable V. The first phase
is a top down process generating all the support labels of all the relevant label-dependent sub-
sets. In this process, the root computes the support labels of the queried value, and then all the
label-dependent subsets of each of its child nodes. Next, all minimal labels of each such subset
are computed using EQ. (13) and they induce new label-dependent subsets on their own chil-
dren. The process continues top down where the label-dependent subsets of a variable are com-
puted only after their parents had already computed all their relevant support labels. The second
phase involves a recursive generation of all the support sets via a bottom up substitution process
that starts at the leaves and continues level by level until it reaches the queried variable. Each
variable, in its turn, computes, for each of its label-dependent subsets, all its minimal support
sets restricted to the subtree rooted at itself. This is accomplished by substituting a value ¢ of C

in a label / that supports Ay by one of the (already computed) minimal support sets of the subset

FAv.l(C )2

A schematic description of the algorithm’s steps is henceforth described. It assumes that
the support numbers are explicitly maintained and thus the consistency of each value is known.

Therefore, no inconsistent values participate in labels nor in label-dependent subsets.

Minimal-support-generation (V,{v})

1. begin

2. generate-label-dependent subsets and their supports-labels.

3. generate-supports-from-labels.

4. end
The following algorithm for generating the label-dependent subsets and their support labels is
described for a parent variable V and its child nodes C,C,, ...,C,. Lets denote by L (V) all the
label-dependent subsets of V. It is assumes that V had already computed the minimal support

labels for all his label-dependent subsets.



generate-label-dependent-subsets-and their-support-labels(V,C |, ...,C,)

1. begin
. foreach Ay e L(V)
foreach !/ € msi(Ay)
foreach C; e I do
compute(Fy, ,(C;)) and add Fy, ;(C;) to L(C;)
end
end
end
. foreach C; and foreach A € L (C;) do
10. compute-minimal-labels(A)
11. end.
12 end.

OO NG NN

Performing the above procedure top-down, from root to leaves, will accomplish step 2 of the
general algorithm. The computation of the label-dependent subsets (step 5) can be performed by
scanning the labels of a given set Ay and determining, for each variable, a subset of its values
that satisfies condition (14). The procedure compute-minimal-labels(A) (step 10) can be imple-
mented by a standard search algorithm, that checks condition (13) for all instantiations of one
child variable first, then goes to two variables, using values not selected previously, and contin-
ues to larger support labels. The support labels generated that way are minimal. The support

labels of leaf values are the empty sets.

The algorithm for generating the minimal supports from labels is described for a subset

Ay of a parent node V and all its child nodes C,C3,...,C;.

Generate-support-from-labels( V, C,C,, - - - C,)

1. begin
2. for each subset Ay € L (V) and for each label ! € msi(Ay) do
3.  compute mssi(Ay) = Cx lm.s's(F v 1(Ci)
i€

4. end
5. for each Ay € L (V) compute
6. mss(Ay)= U mssi(Ay)

lemsi(Ay)
7. end
8.end



Theorem 1: Algorithm minimal-support-generation generates all and only minimal support sets.

Proof: It is clear that the algorithm generates only support sets. We will therefore focus on
showing that any generated set is minimal and that any minimal support set is generated by the
algorithm. The proof is by induction on the distance of the variables in the support set from the

queried variable.

Let Z =z be the queried variable and let s = (X} =xy,...,X, =Xx,) be a generated support
set. We will show that 5 is a minimal support set. Let 4 be the the furthest distance from Z of
variables in s. For A=l it is known that only minimal support sets are generated, i.e., the sup-
port labels. Assuming that the generated supports having variables with distance 4 ~1 or less are
all minimal, we will show that s, having longest distance 4, is also a minimal support set.
Assume w.l.g. that s = (XP(I) =X (1)« - - ,XPU) =X(;) is a partial sequence of the support vari-

ables in s having distance 4 and a common parent variable, P. Let Mx? .p(X(iy) =Ap.
xyeXf

Since 5 was generated by the algorithm, ¥ must be a minimal support label of a label-dependent

subset of P. Therefore Ap must be a subset of a label dependent subset of P and therefore each

Pins, resulting in a support set with lower distance. By performing

value of Ap can replace s
this “reverse substitution” to all the variables in s having distance h we get a support set whose
utmost distance from Z is A-1 and which must have been generated by the algorithm. By the
induction hypothesis this support is minimal and since each sp is a minimal support label of the

corresponding label-dependent subset, (otherwise it would not be applied) the substitution must

resuit in a minimal support having distance A or less.

We will now show that if s is a minimal support set for Z = z it must be generated by the

algorithm. Let { 55 } be all the subsets of s having distance A from Z indexed by their parents, P;.
Let the corresponding ranges that each set of children determines on their parent be defined by:

M MXP"U-)P‘- (x(¢j)) =Ap,. We claim that for every parent, P;, each value in Ap, can replace
P.
x{peXy



the subset 57 in s to vield a minimal support set of depth not greater then 4—1, which we call
Su-1. Since, otherwise, if for some P; and for some value in Ap, the resulting s5_, is not a
minimal support set for Z=z, it can easily be shown that from the definition of a support set, s
could not be a minimal support set either. thus resulting in a contradiction. It follows that any
possible s,_;, generated by exchanging a value from Ap, with § Pt in $, is @ minimal support set.

Since s,_; has distance A—1 at the most, the induction hypothesis implies that it is generated by

the algorithm. Also, since by definition Ap, is a label dependent subset of P;, and since it is sup-

ported minimally by the label shi , the algorithm will produce s in his substitution process.

9. Complexity analysis of the ATMS task
Following we discuss the time and space complexity of the ATMS algorithm.
9.1 Time complexity

The time complexity of the algorithm can be computed along its various steps. The com-
putation of the minimal support labels and the label-dependent subsets is performed locaily,
between every node and its children. Given a parent node having 4 child variables and ¢ label-
dependent-subsets (already computed w.r.t. its parent), where k <t <2%, we can test condition

(13) on subsets of child variables, in increasing order of their size. Since, in the worst-case, ail

subsets of % variables may need to be tested, and since for every such set all combinations of

values may be involved, we get:

d| 4
T(label —generation) =0 d [k *
2

This is the worst time performance that can be attained even when the number of support labels

=82Vk ). (18)

actually passing the test is very small and is, therefore, independent of the size of the result.

Notice that in this case the tree structure does not prevent exponential computation of labels.



Once all labels are generated all label-dependent-subsets of each child variable will be generated

and this may be of O (+2) (this step may require scanning the label set for each label).

Once the minimal support labels are available the time required for generating all
minimal support sets is linear in the number of minimal support sets that will be generated since
each substitution results in a minimal support set (see procedure generate-support-from-labels).

Formally, if the number of the minimal support sets is n,
(19)
T (supports—from—labels —generation ) = O(n,).

The total time complexity of the algorithm is dominated, therefore, by the calculation of the
minimal support labels and we get that the worst-case time complexity of algorithm minimal
support generation is T = ©(exp(d) + n;). Note that label generation is a special case of support
set generation for trees with depth one hence it provides a worse-case lower bound on the

inherent exponential complexity of the ATMS on trees.
9.2 Space complexity

The space complexity of the algorithm is the space required to store the minimal support
labels and the label-dependent-subsets. Assume w.lo.g. that the tree is uniform with degree d,
that each variable has k& values and that all minimal labels are of size r. We denote by ny, the

worst-case number of minimal support labels for an arbitrary label-dependent subset. Since there
are at most [‘:) variable-subsets of size r, and since every combination of elements from these

subsets may generate a unique minimal support, the number of support labels, for all label-

dependent subsets of a variable is bounded by
o((4#n. @0)

d . .
Once more we can use r =3 as our worst-case. However, since each variable has only &

values, the size of a minimal support label (or set) cannot exceed k—1. The reason is that each



element-instantiation participating in a minimal support should decrease the intersection set (see

(14)) by at least one value. We can, therefore, assume a worst-case situation in which the
number of support labels are of size r = min (k -1, %), Substituting r = min (%,k—l) in (20) and
performing some simplification yields that the number of labels, n;, has a worst-case bound of:

'4

dd
& d—k+1 ) if k-1 < 4
. d
o2Vk)H Vif k=12

By substituting £ = % in (21) we get that the worst-case number of labels, n;, has the following

lower bound:

|

n>Qd)? (22)

As to the number of minimal-support sets ng, this number is not reduced by having a tree
structure. Given »n;, the number of minimal support labels for each value, and assuming that all
values have the same number of minimal support labels, we can compute the number of minimal
support-sets for v in the subtree rooted at V. Let n;(i) be the number of support-sets of a value

whose rooted tree has a depth {. Then n,(i) satisfies the following recursion:

ne() =1+ ny{ng (i -1)), (23)
with
n.r(o) =1.
From this recursion we get that:
,
ri-q
0 (nl 71 )o r>1
ns(i) =1 A (24)
i _ -
Il = ntt, r=1
\/=0

Since the size of a label is bounded by min(k—1,d), and denoting the depth of the tree by A, we



can conclude that the number of support-sets, n,, of an arbitrary value is:

0 m*y=0 (™
r>lk=-1<d

(25)

=Y om@y=0mh  r>lk-124.

O (nf) r=1

For bi-valued variables the number of labels per variable and the time for their generation is

reduced to d, and n; = 0(d") = O (n) .
10. The compiled approach

The minimal support sets can be computed in query time or can be pre-compiled. In
view of the previous complexity analysis we propose that only the minimal support-labels and
the label-dependent subsets will be compiled and maintained. The minimal support labels are
space exponential in a much smaller exponent then the minimal support sets (see (21) and (25))

and they enable a linear time computation of all minimal support sets.

Since a query may involve any variable, any directed tree may be invoked and thus any
partition of the neighbors of a variable into a parent node and child nodes is possible. We sug-
gest that the ree should be maintained with some defauit directionality and that all computations
be made w.r.t. it. When a query involving the root of the tree arrives, the minimal support-sets
can be generated based on the stored minimal support labels. When a query concerning an arbi-
trary variable arrives, its directed tree will be created by changing the direction only on the path
Afrom it to the root, and as a consequence, only variables on this path will have to recompute their

label-dependent subsets and their labels

When a new constraint arrives it may invalidate certain values or may present new sup-
ports, thus, resulting in two maintenance tasks: computing some new labels and maintaining the
consistency of old labels. The complexity of computing only the additional minimal support

labels of a value due to a new constraint between a new and an old variable, is in the worst case,



as complex as recomputing all its minimal labels.

Since each change to the network invokes the propagation algorithm which updates the
support numbers, and marks some values as inconsistent, the second task invoives discarding
support-labels containing elements whose values are inconsistent. This operation can be per-

formed by each variable independently, and is linear in the size of the minimal support labels.
11. The case of Horn clauses

Restricting the knowledge to Horn clauses, as in ATMS, and the queries to single vari-
able or a conjunction of variables but no disjunctions, corresponds to constraint-networks with
bi-valued variable. (The concept of a three valued variable cannot be expressed by Horn
clauses). In this case the minimal support labels, and the minimal supports have one value only,
and thus, label computation becomes both time and space linear in the degree d of a variable and
the number of support-sets is linear in n. This shows the tremendous computational savings

presented by such a restriction.

When the Homn-clauses are not binary, but still maintain a singly-connected structure,
they constitute an acyclic constraint network. The number of labels, in this case, is bounded by

#c, denoting the maximum number of constraints in which a variable participates. The number

of minimal support sets, ng, is O (#¢®3~D"), when #va, is the maximum number of variables in
a constraint, In this case, therefore, the time and space complexity of the algorithm is linear
while its output can still be exponential. As an example, consider the following set of Homn

clauses:

(D-C),(C,BoA)(E,.G,F-(C),(A,C-E).
It can be represented by the dual constraint graph given in figure 17a having the "join-tree” in

figure 17b.



)

Figure 17

Consider the value A=1. A participates in two constraints (ABC,AEC) and only within
(ABC), A=1 gets support. Its minimal support labels consist, therefore, of one set: (C=1,B=1).
In order to compute all the minimal support sets for A=1, each value in a minimal label can be
replaced by its own support coming from outside the subtree which contains A. The generation
of the minimal support sets via the support labels is the same as in the binary case. The value
B =1 has no support except itself, while C =1 is supported by its minimal labels
{(D=1),(E=1,G=1,F=1)} yielding four support sets to A=1 which are: {(A=1),(B=1,C=1),
(B=1,D=1),(B=1,E=1,G=1,F=1)}). Note that in this case there is no need to compute label-
dependent subsets and it can be shown that for Horn clauses a simplified version of the algorithm

suffices.
12. Summary and conclusions

In this paper we presented algorithms for truth-maintenance within the framework of
constraint networks. The novel idea behind these algorithms is that they exploit the network’s

structure and results in a more efficient perforrnance.



We presented two algorithms for the JTMS task, one for support propagation which
determines the belief in each proposition and the other, contradiction-resolution, for consistency
maintenance. Both algorithms are restricted to acyclic constraint networks for which they are

time and space linear.

For the ATMS task the paper presents an algorithm for finding ail minimal support sets
for each proposition. The time and space complexity of this task is exponential, although the
exponcnt<is reduced from n -- the number of variables, to 4 -- the brunching degree of the graph.
However, when restricted to Hom clause the ATMS task becomes linear thus justifying this

common restriction in most ATMSs’ implementations.

From these results it is apparent that the ATMS task is much more ambitious and much
less tractable compared to the JTMS task even on singly-connected structures. Therefore the
choice made by practitioners as to which approach to take must be carefully weighted against

this tradeoff.

When the constraint network is not acyclic, the method of tree-clustering [6] can be used
in a pre-processing mode. This method uses aggregation of constraints into equivalent con-
straints involving larger clusters of variables in such a way that the resulting network is acyclic.

The complexity of the clustering scheme is exponential in the size of the largest cluster.

The applicability of the algorithms we presented is particularly useful for cases involving
minor topological changes. This is the case when the knowledge-base models a physical or a
biological system whose structure is fixed while changes occur via value manipulations only. In
such cases the structure of the acyclic network, which may be compiled inidally via tree-

clustering, does not change.



(1]

(2]

(3]

(4]

(5]

[6]

[7]

(8]

91

[10]

(11]

[12]

[13]

References

C. Beern, R. Fagin, D. Maier, and M. Yannakakis, ‘‘On the Desirability of
Acyclic Database Schemes,”” Journal of ACM, Vol. 30, No. 3, 1983, pp.
479-513.

R. Davis, “Diagnostic Reasoning Based on Structure and Behavior,”
Artificial Intelligence , Vol. 24, 1984,

R. Dechter and J. Pearl, ‘‘Network-based Heuristics for Constraint-
Catisfaction Problems,’” Artificial Intelligence, Vol. 34, No. 1, 1987, pp. -
38.

R. Dechter and J. Pearl, ““The cycle-cutset method for improving search per-
formance in Al applications,’’ in Proceeding of the 3rd IEEE on Al Applica-
tions, Orlando, Florida: 1987.

R. Dechter, “‘Constraint-Directed approach to diagnosis,”” UCLA, Cognitive
systems Lab, Los Angeles, California, Tech. Rep. R-72-1, 1988.

R. Dechter and J. Pearl, ‘““Tree Clustering for Constraint Networks,’” in
Artificial Intelligence, 1989, pp. 353-366.

J. de-Kleer and B. Williams , ‘‘Reasoning about multiple-faults,”” in
Proceedings AAAI-86, , Phila, PA.: 1986, pp. 132-139.

J. de-Kleer, ‘‘An Assumption-bBsed TMS,’” Arrificial Intelligence, Vol. 28,
No. 2, 1986.

J. de-Kleer, ‘‘A comparison of ATMS and CSP techniques,’’ in Proceedings
of the 11th Intl. Conf. on Al (Ijcai-89, Detroit: 1989, pp. 290-296.

J. Doyle, “*‘A Truth Maintenance System,’’ Artificial Intelligence, Vol. 12,
1979, pp. 231-272.

E.C. Freuder, ‘A Sufficient Condition for Backtrack-Free Search.,”’ Journal
of the ACM, Vol. 29, No. 1, 1982, pp. 24-32.

H. Geffner and J. Pearl, *‘An improved constraint-propagation algorithm for
diagnosis,”’ in Proceedings [jcai, Milano, Italy: 1987.

M.R. Genesereth, ‘“The Use of Design Descriptions in Automated Diag-
nosis,”” Artificial Intelligence, Vol. 24, 1984, pp. 411-436.



[14]

(15]

[16]

(17]

[18]

[19]

A. K. Mackworth, “‘Consistency in Networks of Relations,”” Arrificial intel-
ligence, Vol. §, No. 1, 1977, pp. 99-118.

A.K. Mackworth and E.C. Freuder, ‘“The Complexity of Some Polynomial
Network Consistency Algorithms for Constraint Satisfaction Problems,”
Artificial Intelligence , Vol. 25, No. 1, 1984.

D. A. McAllester, ‘‘An outlook on truth-maintenance,”’ MIT, Boston, Mas-
sachusetts, Tech. Rep. Al Memo No. 551, 1980.

J. Pearl, “‘Fusion Propagation and Structuring in Belief Networks,”” Artificial
Intelligence , Vol. 3, 1986, pp. 241-288.

G. Provan, ‘‘Complexity analysis of multple-context TMSs in scene
representation,”’ in Proceedings AAAI-87, Seattle, Washington: 1987, pp-
173-177.

R. Reiter and J. de-Kleer, ‘‘Foundations of assumption-based truth mainte-
nance systems: preliminary report.,”” in Proceedings AAAI-87, Seattle Wash-
ington: 1987.



