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Abstract

Recent progress towards unifying the probabilistic and model-preference semantics
for nonmonotonic reasoning has led to two systems of ranking. The first, called system-
Z ([Pearl 90]), ranks sentences according to a consistency based criterion. The second
called rational closure ([Lehmann 89]), ranks models according to a preference-based
criterion. In this paper we show that the entailment relation defined by these two
systems are the same. Additionally, we provide a procedure for deciding entailment
that requires a polynomial number of propositional satisfiability tests, and discuss the
adequacy of this entailment relation in defeasible reasoning applications.

1 Background: System-Z and Rational Closure

1.1 Preliminary definitions

Let L be a closed set of well formed propositional formulas, built in the usual way from
a finite set of propositional variables and the connectives “v” and “-". Small case greek
letters a, 3 and v will be used to denote formulas in L.

A world w is an assignment of truth values to the propositional variables in L. Hence,
if there are n propositional variables in L there will be 2" worlds. Let I{ stand for the set

*This work was supported in part by National Science Foundation grant #IRI-88-21444 and Naval Re-
search Laboratory grant #N00014-89-J-2007.



of worlds. The satisfaction of a formula a by a world w is defined as usual, and will be
written as w = a.

Using the binary connective “—” and two formulas « and 3 from L we can construct
the conditional sentence a — 3. We will use A to denote a set of conditional sentences. A
conditional sentence & — 3 will be verified by w, if w = o and w = 3. The same sentence
will be falsified or violated by w, if w | a but w & 8. If w £ a, the sentence will be
considered as neither verified nor falsified. We define the relation of tolerance based on
these notions:

Definition 1 (Tolerance.) Let A be a set of conditional assertions a; — 8; for 0 < i < n.
A 15 said to tolerate the sentence d : a, — B, written T(d}|A), if and only if Jw € U such
that w Eapn A B, and w = A;a; O 5; ! for all i such that 0 < i < n.

Thus, a conditional sentence d is tolerated by a set A if we can find a world w that verifies
d while no other sentence in A is falsified by w. The formula o O 3 will be called the
material counterpart of @ — 3. Note that if @« — 3 is not falsified by w, then its material
counterpart is satisfied by w. We will say that a non-empty set A of conditional sentences
is confirmable if we can find a sentence d € A that is tolerated by A. Consistency and
O-entailment are defined below:

Definition 2 (Consistency.) A set A is consistent if and only if every nonempty subset
A’ of A 13 confirmable.

Thus, A is consistent if and only if we can find a tolerated sentence in every subset A’ of
A.

Definition 3 (0-entailment.) Given a consisient set A and a conditional sentence d :
a — . We will say that A O-entails d, written A |=¢ d, if and only if AU {a — =3} s

tnconsistent,

These definitions of consistency and entailment can be proven as theorems if the sen-
tences in A are interpreted as conditional probabilities arbitrarily close to 1. Consistency
assures the existence of a satisfying probabilistic model for A. The 0-entailment relation
guarantees that conclusions will receive arbitrarily high probability values in all proba-
bilistic models of A in which the premises also receive arbitrarily high probability values.
For an early motivation of probabilistic interpretation for conditional sentences the reader
is referred to [Adams 75| and more recently [Pearl 88] and [Geffner 89], in the context of
defeasible reasoning. Extensions of consistency and entailment to sets containing both de-
feasible and strict sentences can be found in [Goldszmidt & Pearl 90]. The closure defined
by 0-entailment contains the maximal set of “safe” conclusions that can be drawn from

}The symbol “2” denotes material implication.



A, namely, conclusions that remain undefeasible under augmentations of A by additional
sentences, as long as the database remains consistent. This closure was was proposed
in [Pearl 89a] as a conservative core that ought to be common to all nonmonotonic for-
malisms, and proven equivalent to the preferential closure of A, where the sentences in A
are given a preferential interpretation ([Lehmann & Magidor 88]). Due to its extremely
conservative nature, 0-entailment does not properly handle irrelevant features. For exam-
ple, if A consists solely of the sentence a — b, we are not able to conclude aAc — b, where
a,b and c are propositional variables in L. We now introduce two formalisms, system-Z
and rational closure, which extend the inferential power of 0-entailment.

1.2 System Z

The condition of confirmability required by the definition of consistency leads to a natural
ordering of the sentences in A. Given a set A, we first identify every sentence that is
tolerated by A, assign to each such sentence the label 0 and remove them from A. Next,
we attach the label 1 to every sentence that is tolerated by the remaining ones and so on.
Continuing in this manner, we build an ordered partition of A = (A, Ay,...,Ag), where

A.-:{a—rﬂ|T(a—>ﬁ||A—Ao--...—A,-_.1)} (1)

The label attached to each sentence in the partition defines the Z-ordering. The process of
constructing this partition also amounts to testing the consistency of A since it terminates
with a complete partition if and only if A is consistent. The number of propositional
satisfiability tests required to perform the partition is bounded by |A|?, and consequently
this procedure is polynomial for sublanguages in which propositional satisfiability is also
polynomial (e.g. Horn clauses see [Dowling & Gallier 84]).

The only case in which this process will fail to complete the partition, is if it reaches
a nonconfirmable subset A,, i.e. a subset in which no sentence is tolerated. We assign an
oo label to these sentences and denote this subset by A,. We introduce the definition of
an inconsistent formula:

Definition 4 (Inconsistent formulas.) A formula a is said to be inconsistent with re-
spect to a set A (or A-inconsistent), iff « — True is not tolerated by any subset in the
pariition of A.

Note that any unconfirmable set must be a subset of A, and it can be shown from Def. 4
that the antecedents of sentences in A, are all A-inconsistent formulas.

Based on this ordering we can now define three ranking functions: on the sentences in
A, on the worlds in I/, and on arbitrary formulas in L 2. Given a sentence o — 8 € A, its
rank will be equal to 7, if and only if @« — 5 € A, (if A is inconsistent, ¢ might be cc). The

2For the sake of simplicity we will use the term rank to denote all three functions.



rank of a world w € U, will be the smallest integer n such that all sentences having rank
higher or equal to n are not falsified by w. Finally, the ranking of a formula o € L as the
lowest rank of all worlds satisfying «, or rank(a) = oo if a is A-inconsistent. The total
order imposed by these ranking functions can be interpreted as preferences among worlds
(or states of affairs). It is in fact the (unique) lowest ranked preference ordering on worlds
that satisfies A, if every sentence in A is interpreted as a partial order preferring worlds
verifying o — § over those falsifying it ([Pearl 90]). Similarly, the notion of entailment
proposed below will proclaim @ — # a plausible {(or rational) consequence of A, if the
ranking function induced by A prefers worlds verifying o — 3 over those falsifying it.

Definition 5 (1-entailment.) A conditional sentence a — 3 is said to be l-entailed by
A, written A =y a — 3, if and only if

rank(a A B) < rank{a A =f3) (2)

or if rank(a) = oo.

Thus, a conditional sentence & — § is 1-entailed by A iff there exists an integer i such
that the set of sentences with rank higher than i tolerates @ — 8 but does not tolerate
a — —f3. Note that, once the partition of A is known, verifying 1-entailment takes O(log K)
satisfiability tests, where K is the number of partition sets in the Z-ordering.

Further ramifications of system Z are explored in [Pearl 90).

1.3 The rational closure

We now review the definitions of ranked models and retional closure. The reader is referred
to [Lehmann & Magidor 88} and [Lehmann 89] for details and motivation.

Definition 6 (Ranked Models.) A ranked model W is a triple (S,1,<) where S is a
set of states, | is a function mapping each s € S to a world w € U, and for which the
ordering relation < may be defined in the following way: there is a totally ordered set
(the strict order of @ will be denoted by <) and a function r : S — Q such that s < t if
and only if r(s) < t(s). A state S is said to satisfy ¢ formula a iff I(s) = a.

Additionally, < is required to satisfy the following smoothness condition: Ya € L, the set
of states @ % {s]s € S,I(s) k= a} is smooth. Where if V C U; V is smooth if and only if
vVt € V, either 3s minimal in V', such that s <t or ¢ is itself minimal in V.

A ranked model W will constitute a model for a set A of conditional sentences if and
only if for every o — § € A, it is true that for any state s minimal in &, I(s) = 3.

Let AP denote the set of conditionals @ — S such that & — 3 is satisfied by
all ranked models of A; AP constitutes the preferential closure of A. It is proven
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in [Lehmann & Magidor 88| that, given a consistent A, « — 3 € AP if and only if
A o o — 3. Thus, A? is equivalent to 0-entailment.

In [Lehmann 89], a more powerful closure of A, called rational closure (denoted here by
AT), is introduced. The proposal involves closing A? under a rule called rational monotony:
Ifa —» #isin A" and @ — —v is not, then a A¥ — 3 must be in A’. This rule of inference
allows the strengthening of the antecedent a of a conditional sentence by v, whenever 7 is
not “atypical” relative to that sentence.

A more procedural description of the rational closure rests on the following definition
which was first introduced in [Lehmann & Magidor 88] in the completeness proof between
ranked models and ranked consequence relations:

Definition 7 (Exceptional Formulas.) Let A be a set of conditional sentences, and let

a, (3 be formulas from L that are not A-inconsistent. We will say that « is more exceptional
than 3 in the context of A if and only if

aV 3 — -ac AP (3)

We can now assign a degree to each formula @ € L according to the following inductive
procedure ( [Lehmann 89]): The state zero of the induction is the set of formulas of degree
strictly less than zero is empty. Suppose that ¢ > 0 and that the set of formulas of degree
less than ¢ has been defined. The set of formulas of degree i are those formulas « that
are not of degree less than 7 and that satisfy: V3 € L such that o is more exceptional
than 3, (3 is of degree less than i. If this procedure fails to assign a degree to a, then
degree(a) = co.

Let A" denote the rational closure of A, then @ — 3 € A" if and only if degree(a) <
degree(a A ~f) or degree(a) = oc. Thus a conditional sentence & — # is in the rational
closure of A if and only if the state that satisfies both & and 3 is less exceptional than
the state that satisfies o but does not satisfy 8 (or if @ cannot be assigned a degree of
exceptionality).

2 Equivalence of Rational Closure and 1-entailment

We will prove the equivalence between rational closure and 1-entailment for finite sets
A, by first showing that Ya € L, degree(a) = rank(a). The degree(a) is defined in
terms of AP, while rank({a) is based on the notion of 0-entailment. These two forms of
entailment were proven equivalent for the case of consistent A in [Lehmann & Magidor 88),
and we now remove this restriction from the definition of 0-entailment in a way that is
compatible with the probabilistic semantics of A 3. This is accomplished by defining the
conditional probability P(8la) =1 if P(a) = 0 (as done in {Adams 66] and more recently

3See previous section



in [Goldszmidt, Morris & Pearl 90]). Thus, given a finite set A we define an extension of
O-entailment called probabilistic entaslment which does not require A to be consistent:

Definition 8 (Probabilistic entailment.) Let A be a finite set of conditional sentences,
A probabilistically entails ¢ — v iff for all ¢ > 0 there exists ¢ § > 0 such that for all
probability assignments P for L, if P(Bla) > 1—c¢ for alla — B € A then P(y|¢) > 1-6.

Thus, a sentence will be probabilistically entailed if and only if it can be assigned arbitrarily
high probability values in all probability models in which the premises receive probability
values arbitrarily close to one. This notion of entailment is similar to the one advocated
in [Goldszmidt & Pearl 90], with the exception that P is not required to be positive for
the antecedent of every conditional sentence (i.e. P is not constrained to be proper). As
a consequence of forcing improper probabilities to be 1, Def. 8 will allow sentences of the
form a — False to be probabilistically entailed even when « is logically consistent.

We now show the equivalence of probabilistic entailment and preferential entailment?,
following the strategy used in [Lehmann & Magidor 88|, where this result was proven in
the case of consistent A.

Lemma 1 ([Lehmann & Magidor 88].) Any conditional sentence preferentially en-
tailed by A 1s probabilistically entailed by A.

This lemma can be proven by showing that the rules for preferential entailment
(see [Lehmann & Magidor 88]) are sound with respect to Def. 8 in the same way that
soundness is proven in [Adams 75] or [Adams 66].

The next lemma asserts the converse of Lemma 1:

Lemma 2 If A does not preferentially entail &« — 3, then A does not probabilistically
entail a — (3.

Proof: (sketch) We use the following model construction®: given a ranked model W
with a finite set of states S, we define a probability assignment P such that all states
of the same rank will receive equal probability, and such that the weight w, of a set of
states of rank n, w, will satisfy =2*. = ¢, There is exactly one probability assignment
satisfying these requirements for each finite ranked model, and we can define a probability
assignments on formulas in the natural way. It is clear that P(a) = 0 iff the formula
« is inconsistent in W, (i.e. W satisfies « — False). Let us consider the conditional
probability P(3]a): if a is inconsistent then P(8|a) = 1 by definition. Else if W satisfies
a— 8, P(Bla) >1—¢ —&® — ... will approach one as ¢ approaches zero. If, on the other
hand, W does not satisfy & — 3, the conditional probability cannot exceed 1 — -~ where m

1We say that a sentence is preferentially entailed, iff the sentence belongs to AP.
5See [Adams 75], [Lehmann & Magidor 88].



1s the number of states at the rank which is minimal for «, and the probability is bounded
away from one as ¢ approaches zero. Given that a — J is not preferentially entailed by
A it is possible to find a ranked model W that satisfies A, satisfies &« — =3 and for which
@ 1s not inconsistent [Lehmann 89]. We can now use the probability model construction
outlined above and find a probability distribution in which all sentences in A are assigned
probabilities arbitrarily close to one, P(a) > 0, and since lim,_o P(~f8|a) = 1, P(Bla)
must approach zero and by Def. 8 o, > 3 is not probabilistically entailed.

The following theorem provides an effective procedure for deciding whether a sentence
is probabilistically entailed by A:

Theorem 1 Let A’ < AU {a — ~3}. Then A probabilistically entails a — 3 iff a —
B € AL

Proof: Assume that « — -8 ¢ A, . This implies that « — -3 belongs to some other
partition set Ay of A’ and it is tolerated by the sentences in all rankings higher or equal
to k. We can then build a probabilistic model in the manner outlined (in the discussion
preceding Lemma 2), for which P(«a) > 0 and lim,_,o P(-3]a) = 1 and consequently a — 3
is not probabilistically entailed. To prove the if part of the theorem, we use the following
result from {[Adams 66]: a sentence @ — 3 is probabilistically entailed by a set A iff there
exists a subset A, such that any truth assignment falsifying o — § must falsify at least one
member of A,, and any truth assignment not falsifying any member of A, and verifying at
least one member of A, must verify &« — 5. Now if @ —» =8 € A/_ any truth assignment
verifying « — —~f3 (i.e. falsifying o — f) must falsify at least one other sentence in A!_, or
else, @ — # would obtain a finite rank. Moreover, any truth assignment not falsifying any
member of Al and verifying at least one sentence in Al must falsify a — 3 (i.e. verify
a — f3), else this one sentence would obtain a finite rank. Thus, identifying A, with A,
a — [ is probabilistically entailed by A.

Given that preferential entailment and probabilistic entailment are proven equivalent
by Lemmas 1 and 2 we will refer to them indistinctively as p-entailment and use the symbol
“I=p”. Theorem 1 asserts that a sentence @ — 3 is p-entailed by A, if and only if adding
a — =3 to A, renders a A-inconsistent. The following is an easy corollary of Theorem 1:

Corollary 1 Given a finite set A, p-entailment can be decided in polynomial time relative
to propositional satisfiability.

All lemmas and theorems below assume a finite set A and a Z-ranking function on A
denoted ranka.

Lemma 3 ranka(a) =0 iff VB € L, aVj is consistent with respect to A’ ! Au{avg—

a}

Proof: If ranks(a) = 0 then any word w, of minimal ranking that satisfies & must satisfy
the material counterpart of all sentences in A, and therefore must also verify a V 8 — a,
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V3 € L. Thus, a V B is not inconsistent with respect to A’. On the other hand, assume
that V8 € L a V § is consistent with respect to A’, and ranka{a) > 0. Let 3 be a
propositional tautology (i.e. equivalent to True); A’ becomes A U {True — a}, and it
can only be confirmed by a world satisfying « (the sentence True — a is falsified by any
other world). But then either rank(a) must be equal to zero or A’ is unconfirmable and
therefore identical to Al , a contradiction.

Lemma 4 Va,8 € L such that a and 3 are not A-inconsistent. If ranka(B) > ranka{a)

d

then a V 8 is consistent with respect to A’ AU {aVv g —a}

Proof: Let a and B be two non A-inconsistent formulas, and let ranks(a) = i and
ranka(8) = i’ with i > i (note that neither ¢ nor i’ can be co). For all j < i the partition
sets A; and A} must be identical since every world w such that ranka(w) < i does not
satisfy either a or 4 and consequently oV — S is not falsified by any of these worlds. Now
consider a world w’, such that ranka(w’) = i, and w’ |= o. This world verifies a V 3 — o

and does not falsify any sentence with ranka > i. Thus, it follows that o V B — a €l
and 7 # oo. :

Lemma 5 Ya€ L, and0 < m < oo. Ifranka(a) =m, then 38 € L of ranka(8) = m—1,
such that a V 3 is inconsistent with respect to A’'= AU {aV 3 — a}.

Proof: Note that it is enough to show that there is an unconfirmable subset A/ of A/
such that Vv 8 — a € A}. Let 8 be the disjunction of all formulas v; € L, such that
ranka(y:) = m — 1, and each ¥, is the antecedent or consequence of some sentence in
A. Let Ap_; be the subset of A containing only sentences of ranks m — 1. Clearly
Am-1U{aV f — a} is not confirmable since any world verifying a sentence in A,,_, must
falsify a V § — « and vice versa (note that otherwise rank(a) < m).

Theorem 2 Va € L and n > 0; rank(a) = n if and only if degree(a) = n

Proof: If rank(a) = o0, @ must be a A-inconsistent formula, A =, aV 8 — ~a Vg € L,
and consequently the procedure described in the previous section will fail to assign a degree
to a (i.e. degree(a) = 00). On the other hand if degree(a) = oo, then A =, a — False
(see [Lehmann 89]) and it follows that « is A-inconsistent (i.e. rank(a) = o). For
n # oo the proof proceeds by induction on n. The basic case is essentially lemma 3. We
assume that the theorem holds for n < m and show that it is in fact true for n = m.
If rank(a) = m, then from lemma 4 it follows that V3 € L, if A =, « V § — =a then
rank(B) < m. Thus from the induction hypothesis, degree() < m for all such 3, and from
the definition of degree of previous section degree(a) = m. Similarly, if degree(a) = m,
it follows that V3 € L, if A =, &V § — —a then degree(8) < m. By the induction
hypothesis, rank(8) < m and rank(a) > m. Now, from lemma 5, if rank(a) > m then
there must exist a 3 of rank(8) = m such that A i, a v 8 — —~a. Thus, rank(a) must
be equal to m.



Corollary 2 Given a finite set A, Va,5 € L, a — § € A" if and only if A Ea— 3.

3 Discussion

The notion of l-entailment (and consequently rational closure) has attractive computa-
tional features (assuming a finite set A). We present below a decision procedure for
1-entailment which is polynomial relative to propositional satisfiability:

Input: finite set A and a sentence o — 8.

Output: answer YES/NO depending on whether A = a — .

1. TEST whether o — 3 is tolerated by A.
2. TEST whether a — = is tolerated by A.
3. CASES indexed by results from TEST1-TEST2:

(a) IF YES-YES or NO-YES then return NO.
(b) IF YES-NO then return YES.

{c) IF NO-NO then let A = A; U A,, where A, are the sentences tolerated by A
and A, = A — A;. If A, is empty, then return YES; else call the procedure
recursively with A, replacing A.

The intuition behind the procedure is as follows: if both sentences are tolerated, or if
a — f is not tolerated but its negation (o — ) is, then it follows that rank(a A 5) >
rank(aA—-p) and A f5; a — B (case 3.a). If, on the other hand a — S is tolerated, but its
negation is not, then A |=, a — 3 since rank(a A 8) < rank(a A —f3) (case 3.b). If neither
is tolerated and the set is unconfirmable, then the sentence is trivially 1-entailed since its
antecedent is A-inconsistent; else we must perform the test again since neither sentence
can be ranked at the current level and the procedure continues recursively. Note that,
once we have the rank of all sentences in A, deciding 1-entailment for an arbitrary query
a — (3 requires at most 2 « (1 + log K} satisfiability tests (using a binary search strategy),
where K is the number of ranks in A. We simply determine the lowest rank k such that
all sentences ranked k or higher tolerate a — J3, repeat for « — =3, and compare.

The computational convenience of 1-entailment and rational closure is overshadowed
by some counterintuitive inferences produced by these systems. Although rational closure
properly handles irrelevant facts, i.e. if p is a proposition not appearing in A and a —
B € A", then a Ap — € A" (see [Lehmann 89)), it is incapable of sanctioning property
inheritance across exceptional subclasses ([Pearl 90]). The problem is that the rank (or
“abnormality”) of a given world is completely determined by the sentence of highest rank
falsified in that world. The next example illustrates this point: consider A = {a —



b,e — d}, we can verify that A £, (a A ~bAc) — d (because rank(a A b A c A d) =
rank{aA-bAcA—d)), yet we have no reason to believe that the abnormality affecting @ — b
is of any relevance to ¢ — d. Another problem with rational closure is the triggering or
spurious conclusions by irrelevant elaborations. Consider A = {a — —b,¢ — b}, naturally
we cannot conclude a A¢c — bor aAec — —b Now we elaborate on the properties
of ¢ and add to A the information A’ = {¢ — d,¢ — —e,d — e}; this elaboration
suddenly renders ¢ more exceptional than a, disturbs their symmetry, and sanctions the
counterintuitive conclusion A U A’ =; a A ¢ — —b. These problems are overcome by a
formalism based on infinitesimal probabilities augmented by the principle of maximum
entropy [Goldszmidt, Morris & Pearl 90], in which a more refined ordering is induced,
sensitive to the number of rules tolerating a formula and not merely to their rank orders.

Counterexamples to the maximum entropy formalism, mostly dealing with the nature
of causation, can also be constructed. The problem with both these systems is not the
function used to rank the models, but rather their commitment to a total rank order among
worlds. In fact, it seems that any proposal for defeasible reasoning that properly respects
specificity and commits to a total order among worlds is bound to produce counterintuitive
conclusions (by elaborations similar to those in the previous paragraph). The partial order
proposed in [Geffner 89] seems to overcome these difficulties, at the expenses of an added
complexity and a greater departure from its probabilistic origin.
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