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Abstract

This paper describes and compares two paradigms for processing incomplete
specifications of probabilistic knowledge. The first computes provable proba-
bility statements by treating the specifications as constraints over probabili-
ties. The second computes how probable it is that a proposition is provable,
treating the specifications as randomly sampled assumptions added onto logi-
cal theories. We first examine the representational power of the sampled-
assumptions paradigm and then we identify and assess two of its major
shortcomings: Failing to represent dependencies among events with unknown
probabilities, and failing to represent domain knowledge cast in the form of
defeasible conditional sentences.

* This work was supported in part by National Science Foundation Grant #IRI-
8821444 and the Naval Research Laboratory Grant #N00014-89-J-2007. Paper
presented at the Eighth Canadian Conference on Artificial Intelligence, Ottawa,
CA., May 1990.



1. Introduction

Consider the following problem: We are given a set F of propositional formulas,
each formula f e F is assigned a degree of certainty P(f), and we are asked to
determine how strongly one should believe in some other formula ¢ (¢ stands for

L3 ‘quer}', ,).

We purposely phrased the problem using the vague terms “‘certainty’’ and
“‘belief,”” since problems of this nature permit a variety of interpretations. Had
the set of specified certainties S={P(f):feFf} been sufficient for defining a
coherent probability function P on the models of the language (by a model we
mean a truth valuation of all literals) the answer would then be given simply by
equating “‘belief in ¢’’ with P(g). But if the input information is insufficient, two
approaches are feasible, representing two complementary conceptions of partially
specified knowledge. In one, we consider S as a set of properties that a probability
function should satisfy or, equivalently, as a set of constraints over an implicit
family P of coherent probability functions. The answer to our problem would then
be given in a form of an interval

P(q)SP(@)SP (q)

where P. and P° represent the lowest and highest value that P(g) can attain by
any member of P. The second alternative is to regard S as a policy for selecting
assumptions (or axioms) from F and examining their logical consequences. Given
a probability distribution over a set F of assumptions, our problem can be inter-
preted as that of assessing the certainty that ¢ is provably true, namely, the proba-
bility that an assumption (or a set of assumptions) be selected, from which a proof
of ¢ can be assembled.

We will denote the first interpretation by P.(¢) and the second by Bel(g).
Formally,

Pu(g)=min{P(¢): PeP J=max[t: P(q) 2t}
and
Bel(q)=P(f:f oq)

Thus, P. measures the highest level that we can ‘‘provably’’ attribute to P(g),
while Bel measures the probability that ¢ is provable. To contrast this difference
syntactically, we can make an unorthodox usage of the symbol & to denote "it is
provably true that ...", and write:

Pu(g)=max {¢:E[P(g)21]}

Bel(g)=P (Fq)
P.(q) uses probability theory as the object language and logic as a meta-language;



Bel (g) reverses these roles. 1)

Historically, the lower probability measure P. has been studied by Baye-
sians philosophers such as de Finetti {1974], Good [1950], and Smith {1961] and
more recently introduced into the Al literature by Nilsson [1986)]. The function
Bel, on the other hand, corresponds to the measure developed by Dempster [1967]
and Shafer [1976] under the name ‘‘belief functions’’, and has recently been
given an ATMS formulation [de Kleer 1986] by attaching probabilities to the
ATMS assumptions [Laskey and Lehner 1989; Provan 1989].

The purpose of this paper is two-fold:

1. To characterize the notions of probably-provable vs provably-probable, il-
lustrate their semantic differences and highlight their distinctive patterns
of behavior.

2, To compare the expressional power of these two conceptions and assess
their adequacy as representations of incomplete knowledge and uncertain
evidence.

2. An Dlustration

A natural question to ask is whether it makes a substantial difference how we for-
mulate a problem; in terms of assumptions about probabilities or probabilities
about choosing assumptions. A second question is whether every problem of in-
complete knowledge can be conveniently represented in either one of the two for-
mulations. Example 1 illustrates these two issues.

Example 1: The Peter, Paul and Mary Sandwich

Mary challenges Peter to guess what kind of sandwich she happened to prepare for lunch that day,
ham or wrkey. She also promises to pay Paul 1,000 dollars if Peter guesses correctly. Peter says
that, for lack of even the slightest clue, he is going to toss a fair coin and guess “*ham’’ if it turns
up heads, *‘turkey”’ if it turns up tails. Mary asks Paul if he is not anxious to know what sandwich
she actually prepared, but Paul brushes her off saying that he already had lunch and that it makes
no difference to him; regardless of whether it is ham or turkey, in either case he has exactly a 50%
chance of winning the 1,000 dollars.

Mary retorts that Paul is behaving like an incurable Bayesian, and that instead of considering the

(1) J. Halpern (in conversation) has pointed out that the logics used in the two paradigms are not the same;
the former uses the axioms of probabiity theory to deduce assertions about probability inequalities, while the
latter uses propositional logic as the object language. Likewise, the probabilities in the two paradigms are not
defined on the same space; in the former, probabilities are defined on propositions, while in the latter,
probabilities are defined over logical theories. Note also that our notion of "provability” is semantical (being
a logical consequence) rather than syntactical and is independent, therefore, of the axiomatic system used.



chances of winning, he should be considering the chances that winning is ASSURED by the
specific evidence at hand, namely, by Peter’s guessing policy. She claims that Paul's current “‘be-
lief”” of winning is, in fact, zero, because cither outcome of the coin, heads or tails, would leave
him with no assurance of winning. However, if he would only listen to her for a moment, his be-
lief would immediately jump to 1/2, because, knowing what kind of sandwich it is would give him
a 50% assurance of winning.

Paul answers that he gets enough assurance just thinking about Mary’s sandwich: “‘If I have a
50% assurance assuming it is ham, and 50% assuming it is turkey, then I have a 50% assurance,
period!*’

Mary does not give up: “‘No, Mr. Wise Guy, you can’t have a 50% assurance of winning, be-
cause it leads to a paradoxical conclusion: If you win, you can do it in one of two ways, either
matching heads with ham or tails with turkey, with equal chance to each way. Similarly if you
lose, you either mismatched heads with turkey or tails with ham, with equal chances. Thus, having
a 50% assurance of winning permits you to conclude that there is a 50% chance that the sandwich

I'made is ham while, in fact, you know nothing about my sandwich.”’

The sandwich story illustrates two points. First, it does make a qualitative
difference how we interpret ‘‘degree of belief,”’ as a provable probability (P.) or
as the probability of provability (Bef), with each interpretation leading to a dif-
ferent action and a different information gathering strategy. The P. interpretation
proclaims Mary’s information (regarding the sandwich) useless, while the Bel in-
terpretation values it as useful, capable of lifting one’s belief from zero to % re-
gardless of the outcome.

This feature is characteristic to the probably-provable interpretation of be-
liefs, because it is quite possible that a proposition A is not provable from any one
of the sampled assumptions, thus rendering Bel(A)=0, but if we add either B or
—B as an axiom, then A will be provable under some assumption (through not the
same), thus rendering both Be/(A1B) and Bel(A1-B) greater than zero. Whereas
the value of P.(A) must be ‘‘sandwiched’’ somewhere between P. (AlB) and
P.(A1-B), Bel(A) might violate this principle'“’ and satisfy

Bel(A) <min [Bel(AiB), Bel (A1-B)] .

Consequently, decision strategies based on the magnitude of Bel (") might exhibit
peculiar behavior, such as the chasing after useless information sources.

The second feature demonstrated by the sandwich story is that the task of
encoding partial knowledge in terms of randomly chosen assumptions is not as
easy as it might seem. The assignment of probabilities to some propositions often
induces definite probabilities on other propositions and one may be faced with an
unresolvable dilemma of whether to add those other propositions to the set of as-
sumptions or not. If we leave them out, the analysis might never recover the in-
formation lost. If we let them in, we must decide how to combine them with oth-

(2) The "‘sandwich’ metaphor is due to0 Alelivnas [1988] and was termed the **Principle of the hypothetical
middle’” in Pearl [1988].



er assumptions, and any such decision might produce spurious conclusions, pre-
tending to knowledge we do not in fact have.

In our example, since Peter’s coin is independent of Mary’s sandwich, the
assertion P(win)=1'% follows as a straight forward consequence of P (heads)=1.
The question is how to er}%)dc these two items of information as a procedure for
sampling  assumptions. If we encode only one item, say
(P (heads) = ‘A, P (tail) = 4}, the other will not be recovered correctly; Bel (win) com-
putes to zero instead of !4, because there is no way to prove *“‘win’’ from either
“‘heads’’ or “‘tail’’. If we try to encode both items, we do not know with what
probability the joint assumption heads A win should be sampled and, whatever we
assume for this joint probability, we find that we suddenly know more than we
should about the third item, the sandwich. For example, assuming (as Mary did
in the last paragraph of Example 1) that ‘‘win’’ and ‘‘heads’’ are to be chosen in-
dependently of each other, the probability of proving ‘*ham” calculates to 4
while in reality we have no information about Mary’s sandwich.

A mathematical basis for recognizing when partial knowledge is encod-
able as random assumptions has been developed in the literature on belief func-
tions (though not from this perspective nor with this terminology) and will be
summarized next.

3. Mathematical Summary

Belief functions result from assigning probabilities to sets rather than to the indi-
vidual points, with points representing specific worlds and sets reflecting proposi-
tions about those worlds. Given an initial probability assignment m(-) to a select
set F of propositions (called focal elements), namely,

3 m@B)=1, m@B)z20, (1)
BeF

every proposition in the language then acquires a pair of measures, Be!(-) and Pi(-),
such that

Bel(A)= ¥, m(B) 2)

BoA
and
Pl(A)y=1-Bel(-A).

Any measure Bel(-) constructed in such a manner is called a belief function, and its
associated measure Pi(-) is called plausibility.

(3) The third variable, Mary’s sandwich, does not qualify as an assumption because it is not given a definite
probability.



A necessary and sufficient condition for a function Bei(:) to be a belief
function is that it satisfies:

Bel(D)y=0, Bel(A v—A)=1, and

Bel(A v .. vA,)ZZBeI(A;)— 2 Bel(A; AA))+ - ..

i<j
(3)
Ay, Ay ... A,, being any collection of propositions.

Given two belief functions Bel, and Bel,, their orthogonal sum Bel, @ Bel,,
also known as Dempster’s rule of combination, is defined by their associated pro-
bability assignments

(m © m)(A)=K T md)my4) A =D (4)
A:M1=A
where
K'= ¥ mA)maAay (5)
Arads n D

The operator © is known to be commutative and associative.

As a special case of Eq. (4), if m, establishes the truth of proposition B,
1.e., my(B) =1, the combined belief functions becomes

Bely(A v —B)—Bel (~B
Bely(A1B) = 2% lV—Belz(—'Be)l( ) ©

This formula is known as Dempster’s conditioning.

A belief function is called additive or Bayesian if each of its focal ele-
ments is a singleton, i.e., an elementary event or a possible world. Bayesian be-
lief functions satisfy Bel(A)=Pl(A)=1~Bel(~A). If Bel, is Bayesian, then
Bel, ® Bel, is also Bayesian, and Dempster’s conditioning reduces to ordinary
Bayesian conditioning [Shafer 1976].



4. Belief Functions and the Sampled-Assumptions Paradigm

The correspondence between belief functions and the sampled-assumptions para-
digm is made clear in Eqs. (1) and (2). We are given a collection of logical
theories, T, ..., T,; each theory is characterized by an assumption formula B € F
corresponding to one focal element and each theory is assigned a probability
P; =m(B), such that the sum of the probabilities is 1. The belief in a formula A is
the sum of the probabilities of the theories from which A follows as a logical
consequence. Note that the basic probability assignment m(8) in Eq. (1) does not
specify the net overall probability of &, since the truth of 8 may be implied by
other focal elements as well. Instead, it specifies the probability that the theory
defined by B alone is adopted, and accordingly, Bel(A) represents the probability
that A is provable in some randomly adopted theory.

This interpretation provides a simple semantics for Dempster’s rule, Eq.
(4), which has been used extensively for combining independent pieces of evi-
dence. Each piece of evidence, say e, and e,, defines a probability mass over a
collection of potentially adaptable theories, F, and F,, and the combined evidence
e; ® e,, likewise, defines a probability mass over a collection of joint theories.
Each joint theory is characterized by the conjunction of two assumptions, one
sampled from F, and one from F, The mass assigned to such conjunction is the
product of the individual masses (thus reflecting evidence independence), while
the mass attributed to any contradictory theory is redistributed among the non-
contradictory theories in proportion to their weights. Thus, the belief function
resulting from this combination rule is simply the conditional probability of pro-
vability, given that the two pieces of evidence are noncontradictory [Pearl 1988].

S. Encoding Probabilistic Specifications as Sampled Assumptions

A specification is any assertion ( or constraint) about properties of a probability
function, for example, P(A AB)=p,P(BIA)=q ,P(AIB AC)=P(AIB),

P(B)>P(A), etc. LetS be a set of specifications and let P be the set of all (addi-
tive) probability functions that satisfy §. A family P of probability distributions is
said to be compatible with a belief function Bet, if for every proposition A, we
have

Bel(A)=min {P(A):P € P}AP.(A)
A set of specifications § is said to be SA-encodable ("SA" standing for

“‘sampled-assumptions’) if there exists a belief function that is compatible with
P;.



It is well known [Dempster 1967] that, while every belief function has a
compatible family of probability functions, the converse is not true; there are
families of probability functions that have no compatible belief function. This
means that certain types of probabilistic specifications, corresponding to certain
types of partial knowledge, cannot be expressed in the language of randomly
chosen assumptions. Examples of such cases presenting common types of partial
knowledge will be given next.

5.1 The Representation of Unknown Interactions

Example 2: We have two events, £, and E,. We know their individual probabili-
ties, P(E\)=P(E»)=%, but we know nothing about their interaction. The
specification set in this case is

S={P (E)="%, P(E)="4],

which permits the probability of each of the four joint events {E; AE, E; A—E,,
—EyAEy —EA-E;) to range between 0 and . Thus, P. =0 and P* = % for each
of these joint events. This specification set is not SA-encodable because any as-
signment of zero belief to four individual points and, simultaneously, a belief of
% to four pairs of these points (as required by §) would violate Eq. (3).

The failure to represent ignorance about interactions does not present a
severe limitation on the practical applications of the SA paradigm. Faced with
such ignorance the naive user would normally encode § as two separate belief
functions:

m(E)="%4 myE) =Y

ml(—-El)zlﬁ m;(—uE2)=—1/ﬁ

which, combined by Dempster’s rule, would yield a probability mass of quarter
for each of the four joint events. This amounts to assuming that the assumptions
E, and E, are sampled independently of each other (to form joint theories) as if £,
and E, were known apriori to be independent events. The fact that independence
was not really part of the specification set is not too disturbing because it con-
forms to the discourse convention that, unless warned otherwise, events can be
presumed to be independent of each other. This convention underlies most work
in default reasoning and can also be traced to the maximum-entropy principle
[Pearl 1989].

5.2 The Representation of Independent Events

Example 3: We have two independent events, E, and £,. We know the uncondi-
tional probability P (E,) =1, but we know nothing about E,, except its being in-
dependent of E,.



The specification set is
§=(P(E)="%, PEE)=PE))},

which corresponds exactly to the knowledge available in the sandwich story of
Example 1 (with E| = heads and E, = ham). S permits P(E,) to range over the inter-
val [0, 1], and also dictates definite probabilities on certain formulae involving E,,
for example,

and
PE,A-E)}Vv(mE AE)N]=%.

No belief function exists which is compatible with these equalities, while simul-
taneously reflecting our state of ignorance about E,, namely, Bel(E,) = 0. Thus, § is
not SA-encodable.

The limitation shown in Example 3 represents a more serious impediment
to the applications of the sampled-assumptions approach. The sandwich story of
Example 1 shows indeed that failing to represent
Bel[(Ey AEQ) v (= E| A— E] =Bel(win) =% can lead to a major clash with intuition.
This transcends to practical problems as well. Consider a circuit diagnosis system
using the SA-TMS approach, in the spirit of Laskey and Lehner [1989] or Provan
[1989]. Imagine that we need to calculate the belief that the output ¥ of an
exclusive-OR gate is ON, knowing that one of the inputs has a 50% chance of be-
ing ON, P (X, =ON)=, while the other input, X, is totally unknown (see Figure
1).

Unknown X X 50% chance
Probability] 2\ / '*1  of being ON
XOR
GATE
Y
Find: Belief (Y is ON)
Figure 1

The TMS engineer will now face the dilemma we discussed in the sandwich sto-
ry: What propositions should be considered as assumptions? The naive approach
would be to take as assumptions only propositions that are assigned explicit pro-
babilities, namely, X, =ON and X,=0OFF. Sampling these two assumptions with
50% probability each yields:



Bel(Y =ON)=0  Bel(Y =OFF)=0
Bel(X;=ON)=0 Bel(X,=0FF)=0

This result ignores the information that X, and X, are independent, which should
yield P(¥ = ON) = % regardless of the value of P (X, =ON).

In case the TMS engineer becomes aware of the inevitability of
P(Y =ON)=1%, and wishes to include it in the set of sampled assumptions, the
SA-TMS will produce a paradoxical result regarding X,; sampling X, € {ON, OFF)
and Y e (ON,OFF} independently (giving 50% chance to each choice) yields
Bel(X,=0N)=14. Moreover, regardless of the probability value by which we
choose to sample the joint assumption (X;=0ON)A (¥ = ON), we always get the
equality Bel(X,=ON) =1~ Bel(X = OFF)=P1(X,=ON). This cormresponds to having
precise knowledge of P(X;=ON), which contradicts our starting hypothesis that
P(X2=0N) is totally unknown. In large circuits, where X, may serve as an input
and an output of other components as well, this might lead to erroneous predic-
tions and diagnoses. For example, if X,= ON signifies the failure of a component
{ of which X, is the output), the calculation of Bel(X,=ON)= % may trigger an ac-
tion to replace that component while, in reality, we possess no evidence whatso-
ever to that effect, since X, and X, were presumed independent.

5.3 The Representation of Conditional Information
Example 4;: We are given a specification of two conditional probabilities,
§=(P(AiB)=p,P(Al-B)=¢q), €

O<l-¢gs<sp=sg<l,
but we are not given any of the unconditional probabilities. The information

given in (7) induces several constraints on the probabilities of other propositions,
including for example:

O0<P(A AB)Sp
psPA)s<q
1-¢g<sP[AAB)Yv(—nAA-B)l<p

Again, no belief function exists that matches these upper and lower probabilities
without violating the basic conditions in (3). Thus, § is not SA-encodable.

Example 4 reveals a second limitation of the random-assumptions model,
showing it incapable of representing the specification of conditional probabilities.
This means that large fragments of empirical knowledge cast in the form of con-
ditional probabilities (such as the relation between symptoms and diseases), or
conditional sentences (such as, “‘Birds fly,”’ ‘‘Fire causes smoke’’ and ‘‘Smoke
suggests fire.”’) cannot be properly encoded in the random-assumptions frame-

10



work, until we have sufficient information to form a complete probability model.
Since conditional sentences make up the bulk of human knowledge, this limita-
tion essentially means that domain knowledge as we know it is not SA-encodable.

The prevailing practice in the design of SA-TMS systems (e.g., Laskey
and Lehner 1989) has been to represent the rule "If A then B" by the material im-
plication formula A > 8 =(—~ A v B) and assign 10 this formula some weight w that
measures the strength of the rule or its validity, thus converting the rule into a
bona fide belief function satisfying m(4 >B)=w. This practice is not entirely
without merit. For example, combining the resulting belief function with the evi-
dence A =rue does give the expected result Bel(BlA)=w. Moreover, if we are
given a full specification of a joint probability, we can replace every conditional
probability by its material implication counterpart, combine these functions using
Dempster’s rule, and the result would be equivalent to the original probability
model. The problem begins when the probabilistic model is incomplete and some
of the conditional probabilities (or the priors) are missing. In such cases, the ma-
terial implication scheme may yield very undesirable effects, examples of which
are shown next.

Example 5 (Chaining): Consider the following two rules:

ry: If the ground is wet, then it rained last night (m,),

ra: If the sprinkler was on, then the ground is wet (m,).

If we find that the ground is wet, rule r, tells us that Bel/ (Rain) = m,. Now, suppose
we learn that the sprinkler was on. Instead of decreasing Bel(Rain) by explaining
away the wet ground, the new evidence leaves Bel (Rain) the same. More serious-
ly, suppose we first observe the sprinkler. Rule r, will correctly predict that the

ground will get wet, and without even inspecting the ground, r, will conclude that
it rained last night, with Bel (Rain) = m m..

Rule chaining can be especially bothersome when combined with contra-
position, (@ — #) = (— b - —a), another feature inherent to the material implica-
tion.

Example 6 (Contraposing): Consider the rules:

If a person is kind, then that person is popular (n)
If a person is fat, then that person is unpopular (m)

Learning that Joe is fat produces the strange result that Joe is believed to be unk-
ind with strength m?.

11



The last two examples represent difficult challenges to any logic that sanc-
tions indiscriminate contraposition, oblivious to the direction of causation (Hanks
and McDermott 1986). In the probability bounds approach causation is encoded
as specifications of conditional independence relations, usually in graphical forms
[Pearl 1987, 1988]. The sampled assumptions approach cannot admit such
specifications when rules are encoded as randomized material implications, be-
cause the latter are invariant to contraposition: Bel (4 DB)=Bel (=8B 5—4A).

Example 7 (Reasoning by Cases): Suppose we are given the following two
rules:

If A then B, with certainty 0.8
If —A then B, with certainty 0.7.

Common sense dictates that even if we do not have any information about A we
should still believe in B to a degree at least 0.7. The sampled-assumptions ap-
proach does not support this intuition. If we try to encode the rules as material im-
plication formulae, sampled according to:

ml(A DB)=0.8 mz(—|A DB)=0.7
m(True)=0.2 m,(True)=03

and combined by Dempster’s rule, we obtain Bei(B)=0.56, in clear violation of
common sense.

Example 8 (Specificity): Consider the following set of rules:

Rule-1: Typically penguins do not fly
Rule-2: Penguins are birds
Rule-3: Typically birds fly

Suppose we know that Tweety is both a penguin and a bird, and we wish to assess
the belief that Tweety flies. Any assessment method based on sampling these
rules as independent Boolean assumptions will remain oblivious to the second
rule, stating that all penguins are birds, because knowing that Tweety is both a
penguin and a bird subsumes the information provided by that rule. Thus, the
computed value of Bel(Tweety flies) will be solely a function of the weights as-
signed to Rule-1 and Rule-3, regardless of whether penguins are a subclass of
birds or birds are a subclass of penguins. This stands contrary to common
discourse, where people expect class properties to be overridden by properties of
more specific subclasses. By comparison, the probability-bound approach does
yield the expected results (i.e., that Tweety most likely does not fly) if the rules
are treated as conditional probability specifications, infinitesimally close to 1
[Pear]l 1988, 1989].

12
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6. Conclusions

We have described two paradigms that deal with incomplete specifications of pro-
babilistic knowledge; one based on probability-bounds, and the other on
sampled-assumptions. The former treats the specifications as hard constraints
over probabilities and computes the highest level that can provably be attached to
the probability of a query. The latter weats the specifications as instructions for
sampling and adopting assumptions and, after examining their logical conse-
quences, it computes the probability that a query is provable.

We have identified and exemplified two major shortcomings of the
sampled-assumptions approach. First, the failure to represent independencies
among events with unknown probabilities. This leads to peculiar behavior in ap-
plications such as circuit diagnosis, where the computed beliefs stand contrary to
the available information, and might lead to unreasonable decisions and test stra-
tegies. Second, the failure to represent domain knowledge cast in the form of de-
feasible conditional sentences. This limits the applications of sampled-
assumptions techniques to cases where domain knowledge is articulated in purely
categorical terms. These include, for example, strict taxonomic hierarchies, termi-
nological definitions and descriptions of deterministic systems (electronic cir-
cuits), but exclude domains in which the rules tolerate exceptions (e.g., medical
diagnosis and default reasoning).

Future studies should determine whether there are restricted forms of

knowledge representation that are amenable to sampled-assumptions strategies,
safe from the paradoxes uncovered in this paper.
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