Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

A DISTRIBUTED SOLUTION TO THE NETWORK
CONSISTENCY PROBLEM

Zeev Collin July 1991
Rina Dechter CSD-910039

Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

A DISTRIBUTED SOLUTION TO THE NETWORK
CONSISTENCY PROBLEM

Zeev Collin July 1991
Rina Dechter CSD-910039

Technical Report
R-148
March 1990

A DISTRIBUTED SOLUTION TO THE NETWORK CONSISTENCY PROBLEM

Zeev Collin & Rina Dechter V)

Computer Science Department
Technion -- Israel Institute of Technology
Haifa, Israel, 32000

ABSTRACT

In this paper we present a distributed algorithm for solving binary constraint satisfaction prob-
lem. Unlike approaches based on connectionist type architectures, our protocol is guaranteed to
be self stabilized, namely it converges to a consistent solution, if such exists, from any initial
configuration. An important quality of this protocol is that it is self-stabilizing, a property That
renders our method suitable for dynamic or error prone environments.

Topic: Automated reasoning
Subtopic: Distributed Al

(1) This research was supported in part by NSF grant #IRI-8821444 and by Air Force grant
#AFSOR 880177 while the second author was visiting the cognitive systems lab at UCLA.

1. Introduction

Consider the distributed version of the graph coloring problem, where each processor
must select a color (from a given set of colors) that is different from any color selected by its
neighbors. This coloring task, whose sequential version (i.e. graph coloring) is known to be NP-
complete, belongs to a large class of combinatorial problems known as Constraint Satisfaction
Problems (CSPs) which present interesting challenges to distributed computation, particularly
to connectionist architectures. We call the distributed version of the problem the network con-
sistency problem. Since the problem is inherently intractable, the interesting questions for dis-
tributed models are those of feasibility rather than efficiency. The main question we wish to
answer in this paper is: What types of distributed models would admit a self-stabilizing algo-
rithm, namely, one that converges to a solution, if such exists, from any initial state of the net-
work.

The motivation for addressing this question stems from attempting to solve constraint
satisfaction problems within a "connectionist” type architecture. Constraints are useful in pro-
gramming languages, simulation packages and general knowledge representation systemns
because they permit the user to state declaratively those relations that are to be maintained,
rather than writing the procedures for maintaining the relations. The prospects of solving such
problems by connectionist networks promises the combined advantages of massive parallelism
and simplicity of design. Indeed, many interesting problems attacked by neural networks
researchers involve constraint satisfaction [1, 16, 3], and, in fact, any discrete state connectionist
network can be viewed as a type of constraint networks, with each stable pattern of states
representing a consistent solution. However, whereas current connectionist approaches to CSPs
lack theoretical guarantees of convergence (to a solution satisfying all constraints), the distri-
buted model which we use here is the closest in spirit to the connectionist paradigm for which
such guarantees have been established. Other related attempts for solving CSPs distributedly
were either restricted to singly connected networks [4, 15], or, were based on general constraint
propagation, thus not guarantee convergence to a consistent solution [12].

Our distributed model consists of a network of interconnected processors in which an
activated processor reads the states of all its neighbors, decides whether to change its state and
then moves to a new state. The activation of a processor is determined by its current state and
the states of its neighbors. We also assume that all processors but one are identical (this assump-
tion is not part of classical connectionist models, but is necessary for our protocol). Under these
architectural restrictions the network consistency problem is formulated as follows: Each proces-
sor has a pre-determined set of values and a compatibility relation indicating which of its neigh-
bors’ values are compatible with each of its own. Each processor must select a value that is
compatible with the values selected by its neighbors. We shall first review the sequential variant
of this problem and then develop a distributed self-stabilizing solution.

A Network of binary constraints involves a set of n variables X,,....X,, each
represented by its domain values, D, ...,D,, and a set of constraints. A binary constraint R
between two variables X; and X; is a subset of the cartesian product D;xD; that specifies which
values of the variables are compatible with each other. A solution is an assignment of values to
all the variables which satisfies all the constraints, and the constraint satisfaction problems
(CSP) associated with these networks to find one or all solutions. A binary CSP can be associ-
ated with a constraint-graph in which nodes represent variables and arcs connect pairs of vari-

ables which are constrained explicitly. Figure 1a presents a constraint network where each node
represents a variable having values {a, b, ¢} and each link is associated with a strict lexico-
graphic order (where X; < X ;1ff i <). (The domains and the constraints explicitly indicated on
some of the links.)

{a.b,c)

{a,b)

{(a,c)
(b.c)

(a) &)
Figure 1: An example of a binary CN

General constraint satisfaction problems may involve constraints of any arity, but since network
communication is only pairwise we focus on this subclass of problems.

The rest of this paper is organized as follows: Section 2 provides the sequential algorithm
for solving a CSP that is the basis for our distributed protocol. Section 3 introduces the distri-
buted model and the requirements for self-stabilization, secton 4 provides the self-stabilizing
distributed protocol for solving the network consistency problem, while section 5 presents some
worst-case analysis of the performance of our protocol.

2. Sequential Algorithms for Constraint Satisfaction

2.1 Backtracking

The most common algorithm for solving a CSP is backtracking. In its standard version,
the algorithm traverses the variables in a predetermined order, provisionally assigning consistent
values to a subsequence (X, . .. ,X;) of variables and attempting to append to it a new instantia-
tion of X;,; such that the whole set is consistent. If no consistent assignment can be found for
the next variable X;,;, a deadend situation occurs; the algorithm ‘‘backtracks’ to the most
recent variable, changes its assignment and continues from there. A backtracking algorithm for
finding one solution is given below. It is defined by two recursive procedures, Forward and
Backword. The first extends a current partial assignment if possible, and the second handles
deadend situations. The procedures maintain lists of candidate values (C;) for each variable X;.
The procedure compute-candidates(x, .. .,x;,X;,;) selects all values in the domain of X;,,
which are consistent with the previous assignments.

Forward (x;,..., X} Backword(x,,....x;)

Begin Begin
1. if i = n exit with the current assignment. 1. if i=0,exit [No solution exists)
2. Ci, «— Compute-candidates(x,, ..., x;,.X;) 2. if C; is not empty then
3. if C;4; is not empty then 3. x;efirstinC;, and
4, x4 « firstelementinC;,y,and 4, remove x, from C;, and
5. remove x;,; from C;,,, and 5. Forwsard(r,,....x,)
6. Forward(x,,...,Xi.Xis) 6. else
7. else 7. BaCkWOI'd(Il I,‘_;)
8. Backword(xi,....x;) End

End.

2.2 Backjumping

Many enhancement schemes were proposed to overcome the inefficiency of "naive"
backtracking [14, 13,9, 11]. One particularly useful technique, called backjumping [5] consults
the topology of the constraint graph to guide its "backword” phase. Specifically, instead of going
back to the most recent variable instantiated it jumps back several levels to the first variable
connected to the deadend variable.

Consider again the problem in figure la. If variables are instantdated in the order
X1,X2,X4,X3,X7,X5,X¢ (see figure 1b), then when a dead-end occurs at X7 the algorithm will
jump back to variable X ,; since X7 is not connected to either X 3 or X4 they cannot be responsi-
ble for the deadend. If the variable to which the algorithm retreats has no more values, it backs-
up further, to the most recent variable connected either to the original or to the new deadend
variables, and so on.

2.3 Depth first search with backjumping

Whereas the implementation of backjumping in an arbitrary variable ordering requires a
careful maintenance of each vanable’s parents set [5], some orderings facilitate a specially sim-
ple implementation. If we use a depth-first search (DFS) on the constraint graph (to generate a
DFS tree) and then conduct backjumping in an inorder traversal of the DFS tree [8], finding the
jump-back destination amounts to following a very simple rule: if a deadend occurred at variable
X, go back to the parent of X in the DFS tree. Consider once again our example of figure 1. A
DFS tree of this graph is given in figure 2, and an inorder traversal of this wee is
(X1,X2,X3,X4,X5,X6X7). Hence, if a deadend occur at node X 5 the algorithm retreats to it
parent X 5.

The nice property of a DFS tree which makes it particularly suitable for parallel imple-
mentation is that any arc of the graph which is not in the tree connects a node to one of its tree
ancestors (i.e., along the path leading to it from the root). Namely, the DFS tree represents a
useful decomposition of the graph: if a variable X and all its ancestors are removed from the
graph, the subtrees rooted at X will be disconnected. This translates to a useful problem-
decomposition strategy: if all ancestors of variable X are instantiated then the solution of each of
its subtrees are completely independent and can be performed in parallel. The idea of using a
DFS tree traversal for backtracking and its potential for parallel implementation is not new. It
was introduced by Freuder and Quinn [11]. However the parallel algorithm they present

Figure 2 : A DFS tree

assumes a message passing model, is not self-stabilized and it is targeted for implementation on
a multiprocessor [10]. We believe that the use of DFS-based backjumping for a connectionist
type architecture and its self-stabilizing property is novel to this work.

3. Basic Definitions for Distributed Computations

3.1 The model

Our general communication model is similar to the one defined in [7]. A distributed sys-
tem consists of n processors, Pg, Py, --- P,_;, connected by bidirectional communication
links. It can be viewed as a communication graph where nodes represent processors and arcs
corresponds to communication links. We use the terms node and processor interchangeably.
Some (or all) edges of the graph may be directed, meaning that the two linked processors (called
a child and a parent respectively), are aware of this direction (this, though, is unrelated to com-
munication flow). Neighbors communicate using shared communication registers, called state
registers, and state; is the register written only by node i, but may be read by several processors
(all i’s neighbors). The state register may have a few fields, but it is regarded as one unit. This
method of communication is known as shared memory multi-reader single-writer communi-
cation. The processors are anonymous i.e. have no identities. (We use the term node i or proces-
sor P; as a writing convenience only). A configuration C of the system is the state vector of all
PTOCESSOrs.

Processor’s activity is managed by distributed demon defined in. [2,7] In each activa-
tion the distributed demon activates a subset of system’s processors, all of which execute a sin-
gle atomic step simultaneously. That is, they read the states of their neighbors, decide whether
to change their state and move to their new state. An execution of the system is an infinite
sequence of configurations £ =c¢;, ¢y ‘- such that for every i ¢;4 is a configuration reached
from configuration c; by a single atomic step executed by any subset of processors simultane-
ously. We say that an execution is fair if any node participates in it infinitely often.

A processor can be modeled as a state-machine, having a predetermined set of states.
The state transition of a processor is controlled by a decision function, f;, which is a function of
its input, its state and the states of its neighbors. The collection of all decision functions is called
protocol.

A uniform protocol is a protocol in which all nodes have identical decision functions.
Following Dijkstra’s observation {6] regarding mutual exclusion task, we can show that solving
the network consistency problem using a uniform protocol is impossible. We, therefore, adopt

the model of “"almost uniform protocol” namely, all processors but one are identical and have
identical decision functions. We denote the special processor as Py.

3.2. Self stabilization

Our requirements from self stabilizing protocol are similar to those in [6]. A self stabiliz-
ing protocol should demonstrate legal behavior of the system, namely when starting from any
initial configuration (and with any input values) and given enough time, the system should even-
tually converge to a legal set of configurations for any fair execution. The legality of a
configuration depends on the aim of the protocol. Formally, let L be the set of legal
configurations. A protocol for the system is self stabilizing with respect to L if every infinite
fair execution, £, eventually satsfies the following two propertes:

1. E enters a configuration c; that belongs to L.

2. For any j>i and ¢;,c;€E, if c;e L then c;e L (i.e. once entering L it never leaves it).

In our case a legal configuration is a consistent assignment of values to all the nodes in
the network if one exists and, if not, any configuration is legal.

4. A Distributed Consistency-Generation Protocol

This section presents a self stabilizing protocol for solving the network consistency prob-
lem. It consists of two subprotocols; one simulates the sequential backjumping on DFS (section
4.3), and the other facilitates the desired activation mechanism (section 4.2).

4.1 Neighborhoods and states

We assume the existence of a self-stabilizing algorithm for generating a DFS tree, as a
result of which each internal processor, P;, has one adjacent processor, parent (P;), designated as
its parent, and a set of children nodes denoted children (P;). The link leading from parent (P;) to
P; is called inlink while the links connecting P; to its children are called outlinks. The rest of
P;’s neighbors are divided into two subsets: ancestors (P;), consisting of all neighbors that reside
along the path from the root to P; and the set of its successors. For our algorithm a processor
can disregard its successors (which are not its children) and observe only the three subsets of
neighbors as indicated by figure 3a (for internal nodes) and figure 3¢ (for leaves). The root,
having no parent is played by the special processor P (figure 2b).

We assume that processor P; (representing variable X;) has a list of possible values,
denoted as Domain;, one of which will be assigned to its state (i.e. to its value field in the state
register), and a pairwise relation R;; with each neighbor P;.

The state-register of each processor contains the following fields:

1. A value field to which it assigns either one of its domain values or the symbol "*" (1o
denote a deadend).
2. A mode field indicating the processor’s "belief" regarding the status of the network. A

processor changes the mode from "on™ to “off and vice-versa in accordance with the pol-

{8) P= internal processor (b} P=root (c) P=leaf

Figure 3: A processor’s neighborhood set.

icy described in section 4.3. The modes of all processors also give an indication whether
all processors have reached a consistent state (all being in "off" mode).

3. Two boolean fields called parent_tag and children_tag, which are used to control the
activity of the processors (section 4.2.)

Additionally, each processor has an ordered domain list which is controlled by a local
domain pointer (to be explained later), and a local direction field indicating whether the algo-
rithm is in its forward or backward phase (to be discussed in section 4.3).

4.2 Activation Mechanism

The control protocol is handled by a self-stabilizing activation mechanism. According to
this protocol a processor can get a privilege to act, granted to him ecither by its parent or by its
children. A processor can change its state only if it is privileged.

Our control mechanism is based on a mutual exclusion protocol for two processors called
balance/unbalance. The balance/unbalance mechanism is a simplified version of Dijkstra’s
protocol for directed ring [6, 7], and is summarized next.

Consider a system of two processors, Py and P, each being in one of two states "0" or
"1". Py changes its state if it equals P, s state, while P, changes its state if it differs from Pg's
state. We call a processor that is allowed to change its state privileged. In other words, Py
becomes privileged when the link between the processors is balanced (i.e. the states on both its
endpoints are identical). It then unbalances the link and P, becomes privileged, (the link is
unbalanced). P; in its turn balances the link. It is easy to see that in every possible
configuration there is one and only one privileged processor. Hence this protocol is self stabiliz-
ing for the mutual exclusion task and the privilege is passed infinitely often between the two pro-
cessors. We next extend the balance/unbalance protocol to our needs, assuring, for instance that
a node and its ancestor will not be allowed to change their values simultaneously.

Given a DFS spanning tree, every state register contains two fields: parent_tag, referring
to the inlink and children_tag, referring to all the outlinks. A node, i, becomes privileged if its
inlink is unbalanced z 1 all its outlinks are balanced, namely if the following two conditions are
satisfied:

1. for j =parent (i) : parent_tag; + children_tag; (the inlink is unbalanced)

2. Vke children (i) : children_tag; = parent_tag,'") (the outlinks are balanced)

A node applies its decision function (described in section 4.3), only when it is privileged
(otherwise it leaves its state unchanged), and upon its execution, it passes the privilege accord-
ingly. The privilege can be passed backwards to the parent by balancing the incoming link, i.e.
by changing the paren:_tag value, or forward to the children by unbalancing the outgoing links,
i.e. by changing the children_tag value.

We define the set of legal configurations to be those in which exactly one processor is
privileged on every path from the root to a leaf. Figure 4 shows such a configuration. Note how
the privilege splits on its way "down”. We claim that the control mechanism is self stabilizing,
with respect to these legal configurations. (The proof is presented in the extended paper.)

Q - Privileged Processor

Figure 4: An example for a legal privileges configuration

Once got privileged, a processor cannot tell where the privilege came from (i.e. from its
parent or from its children). Thus, a processor uses its direction field to indicate the source of
its privilege. Since in a stable period exactly one processor is privileged on every path from the
root to a leaf, the privileges travel along their paths backwards and forwards. The direction field
of each processor indicates the direction that the privilege was recently passed by this processor.
When passing the privilege to its parent, the processor assigns its direction field the "backward"
value, while when passing the privilege to its children it assigns the "forward" value. Thus,
upon receiving the privilege again, it is able to recognize the direction it came from: if direction
= "forward", the privilege was recently passed towards the leaves and therefore it can come only
from its children; if direction = "backward’, the privilege was recently passed towards the root
and therefore it can come only from its parent. Following are the procedures for privilege pass-
ing by P;.

procedure pass-privilege-to-parent

Begin

1. parent_tag; « children_tag,uren i) { balance inlink }
2. direction; « “backward”

End.

procedure pass-privilege-to-children

Begin

1. for kechildren (i) children_tag; « —parent_tag, [unbalance outlinks }
2. direction; « "forward"
End.

(1) Note that this is well defined since we can prove that all siblings have the same parent-tag.

4.3 Protocol description

The protocol has a forward and a backward phases, corresponding to the two phases of
the sequential algorithm. During the forward phase processors in different subtrees assign con-
sistent values (in parallel) or verify the consistency of their assigned values. When a processor
realizes a deadend it assigns its value field a "*" and initiates a backward phase. When the net-
work is consistent (all processors are in an "of" mode) the forward and backward phases con-
unue, whereby the forward phase is used to verify the consistency of the network and the back-
ward phase just returns the privilege to the root to start a new forward wave. Once consistency
verification is violated the offending processor moves to an "on" mode and continues from there.

A processor can be in one of three situations:

1. Processor P; is activated by its parent which is in an "on" mode (this is the forward
phase of value assignments). In that case some change of value in one of its ancestors
might have occurred. It, therefore, resets the domain pointer to point to the beginning of
the domain list, finds the first value in its domain that is consistent with all its ancestors,
put itself in an "on" mode and passes privilege to its children. If no consistent value
exists, 1t assigns itself the "*" value (a deadend) and passes privilege to its parent (initiat-
ing backward phase).

2. Processor P; is activated by its parent which is in an "of" mode. In that case it
verifies the consistency of its current value with its ancestors. If it is consistent it stays in
an "off"' mode and moves privilege to its children. If not, it assigns itself a new value
(aftir resetting the domain pointer to start), moves to an "on" mode and passes privilege
to children.

3. Processor P; is activated by its children (backward phase). If one of the children has a
"*" value, the processor selects the next consistent value (after the current pointer) from
its domain, resets its domain pointer to point to the assigned value and passes the
privilege to children. If no consistent value is available, it assigns itself a "*" and passes
privilege to its parent ‘'), If all children has a consistent value, P; passes privilege to its
parent.

In the following we present the algorithms performed by processor P;, i # 0, (see figure
5) and the root (figure 6).

The procedure compute-next-consistent-value (in figure 5) tests each value which is
located after the domain pointer, for consistency. Namely the value is checked against each
ancestor (P;)’s values and the first consistent value is returned. The pointer’s location is read-
justed accordingly (i.e., to the found value). If no legal value was found the value returned is "*"
and the pointer is reset to the beginning of the domain. The procedure verify-consistency
checks the consistency of current value with ancestors and returns a truth-value (i.e. "frue” if it is
consistent and "false” otherwise). For details see the extended paper.

The algorithm performed by the root, Py, (see figure 6) is slightly different and in a way
simpler. The root does not check consistency. All it does is assigning a new value at the end of
each backward phase, when needed, then initiating a new forward phase.

(1) Due to the privilege passing mechanism, when a parent sees one of its children in a deadend
it has to wait until all of them have given him privilege. This is done to guarantee that all
subtrees have a consistent view regarding their ancestor’s values. A more relaxed privilege
passing mechanism is presented in the extended paper.

procedure update-state (for any processor except the root)
Begin
1. read parent (P;) and children (P;)
2. if direction = "backward" then { privilege came from parent }

3. if parent's mode is "on" then
4, mode « "on"
5. value < compute-next-consistent.value
6. if value = "™" then
7. pass-privilege-to-parent
8. else { there is a legal consistent value)
9, pass-privilege-to-children
10. else { parent’s mode is "off" }
11. if verify-consistency = "frue"” then
12 mode « "off", pass-privilege-to-children
13. else { verify-consistency = "false" }
14. mode « "on"
15. value « compute-next-consistent-value
16. if value = "*" then
17. pass-privilege-to-parent
18. else { there is a legal consistent value }
19. pass-privilege-to-children
20. else (direction = "forward" i.e. privilege came from children }
21. if dke children (P;) valuey = "*" then
22, mode « "on"
23. value « compute-next-consistent-value
24, if value = "*" then { no consistent value was found }
25. pass-privilege-to-parent
26. else { there is a legal consistent value)
27. pass-privilege-to-children
28. else { all children are consistent)
29, pass-privilege-to-parent
End.

Figure 5: The decision function of P; ,i # 0.

procedure root-update-state

Begin

. read children (P g)

2. if 3ke children (P o) value, = "*" then
3. mode « "on”

4. value «- next-value
5
6
7

Pt

. else { all children are consistent }
. mode « "off*
. pass-privilege-to-children

End.

Figure 6: The decision function of P .

The procedure next-value returns the value pointed by the domain pointer and readjusts
the pointer’s location. If the end of the domain list is reached, the pointer is reset to the begin-

ning.

10

In the extended paper we will prove the correctness of our protocol. The self-
stabilization property of our activation mechanism assures an adequate control activation
mechanism for distributedly implementing backtracking. Having this property we can prove the
self-stabilization of the "consistency-generation" protocol, namely that eventually the network
converges to a legal solution, if one exists, and if not it keeps checking all the possibilities over
and over again.

5. Complexity Analysis

The precise time complexity of the protocol has yet to be formally analyzed. However, a
crude estimate can be given of the maximal number of state changes from the time the activation
mechanism has stabilized until final convergence. The worst-case number of states changes
depends on the worst-case time of the sequential backjump algorithm. We will present a bound
on the search space explored by the sequential algorithm and show that the same bound applies
to the number of state changes of our protocol. Qur bound improves the one presented in [11].

Let T, stands for the search space generated by DFS-backjumping when the depth of the
DFS tree is m or less. Let b be the maximal brunching degree in the tree and let k bounds the
domain sizes. Since any assignment of a value to the root node generates b subtrees of depth
m—1 or less that can be solved independently, T, obeys the following recurrence:

Th=kbTy, ¢}
with Tg = k. Solving this recurrence yields

(Note that when the tree is balanced we get that T,,, = nk™*!))

It is easy to show that the number of state changes of our protocol satisfies exactly the
same recurrence. The reason is as follows. Any sequential DFS-backjumping produces a search
space smaller or equal to the number of state changes of the distributed protocol, however there
is exactly one run of the sequental algorithm whose search space is identical to the number of
state changes in the protocol, thus the two worst-case are identical.

6. Conclusions

We have shown that the network consistency problem can be solved distributedly within
a connectionist type architecture. The protocol we presented is self-stabilizing, namely its con-
vergence to a consistent solution is guaranteed. The self-stabilizing property renders our model
suitable for solving CSPs in dynamic environments. For instance, unexpected changes of some
of the domains or some of the constraints will trigger a transient perturbation in the network but
it will eventually converge to a new solution. Similarly, the protocol can adjust to changes in
network’s topology. Such changes demand the generation of a new DFS spanning ee. A self
stabilized DFS protocol will be presented in the extended paper.

Although we are attacking an NP-complete problem, we have shown that our protocol’s
complexity is polynomial in networks of bounded DFS depth. Thus the DFS depth can be
regarded as a crucial parameter that determines the rate of convergence in our model. It will be
interesting to explore whether the speed of convergence in connectionist networks is related to a

similar network parameter.

11

(1]

(2]
[3]

[4]
(51

[6]
(7]
(8]
(9]

[10]

[11]

{12

[13]
[14]

[15]

[16]

References

Ballard, D. H,, P. C., Gardper, and M. A ,
cl:zc‘):nne_[qlt{lomg}t alrézg itectures., e}iinwersny of gnm\crsat%r F({jcfg gstglr.o%g’m%gc{] d
P)

Go
20:h ffnnua:' Intl. %qc?nf on ?ystem Sc:encessillgarlaaﬁlhldgg t;%‘ eglgyitein

Dahl E.D “Ncural networks algorithms for an NP-complete problem: map
gxa c IEEE i
B}eg 1"9%7 opgnn 138, rst intl. Conf. on Neural Nerworks, San

Dechter, R. and A. Decht ligf ten i i i -
works, ’ in JPrcu:eea’nr:gffs'AS}Q-AI%§1 thgltﬁ rr}gg&dwggu ¢ constraint net

Dcchter ‘*Enhancement schemes for, constrgint processing: back
g{lg, 3v.:arrung, Jl cutset dccomposeinon. ?rl:lalplmelifgegce, Jlumétpi

Dijks E. W., “‘Self b"' t i ite of distri M
Cd]mn;rg’mcanon of the ACM. gigﬁy%c&n i 1‘"159‘1'.’ of distributed control,

Dolev, S., A. Israelj, and S. M ‘Self stabiljzapion of d
assuming oni yrcad/lw%rtle atom?g;fl Techmson l-izafu ?s?ael Y%lc Systems

]15:3768 S., Graph Algorithms, Maryland, USA: Computer Science Press,

f}fglhdfﬁd EVC0 i 26\ ﬂlomtilcné gfn;%ngg_gabacku'ack -free search.,”” Journal of

Freudetr F "Pa.rrulchsm in al onth{ns that take adven-
8 'stab vanab es to solve constram sattsfacgon problems.
wgrsxty o cw ampshlrc Durham, New Hampshire., Tech. Rep. ¥5- 21

Freuder, E. C. and M. J. Quinn, ‘‘The use of lineal sg{anmn trees to

t t bl U f R
Dlrham, °“sﬁ%‘£p§ﬁif€“%2é‘hpﬁp°‘§’m gty ampshire

S ?;‘ﬁi%\;,ga%ngnj FRRELE Intellgence Toumal o 367 Ro1 5 58Y,

Haralick, R, M. and G.L. Elliot, “Increasn\}% 7%, tree search efﬁmggxcgll for con-

straint satisfaction problems,”* A7 Journal 1980, pp. 2
Mackwo , L‘Cqnsistency in networks of relations,’’ Artificial intelli-
gence, Vo 8 No 1, 137§l 3'9 f

Rossi, F and U. Montanari, **Exact sola_uo of networks of congtraints using
act relaxation,”” in First_Int 5§ iples of Knowledge
epresenzation and Reasoning, Toronto,

Topiacink C.ABLE. W age S0ie T

Diego, 7, pp. Y41-747

12

