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ABSTRACT

This paper investigates design issues associated with representing relations in binary networks
augmented with hidden variables. The trade-off between the number of variables required and
the size of their domains is discussed. We show that if the number of values available to each
variable is just two, then hidden variables cannot improve the expressional power of the net-
work, regardless of their number. However, for k23, we can always find a layered network
using k-valued hidden variables that represent an arbitrary relation. We then provide a scheme

for decomposing an arbitrary relation, p, using —l% hidden variables, each having k values
(k>2).

Topic: Knowledge representation.
Subtopic: connectionist architectures.
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1. Introduction

Hidden units play a central role in connectionist model, without which the model would not
represent many useful functions and relations. In the early days of the Perceptrons [4] it was
noted that even simple functions like the XOR were not expressible in a single layer perceptron;
a realization that slowed research in the area until the notion of hidden units had emerged [6, 3].
Nevertheless, a formal treatment of the expressiveness gained by hidden units, and systematic
schemes for designing systems with hidden units within the neural network paradigm are still not
available.

Qur intention is to investigate formally the role of hidden units and devise systematic
schemes for designing systems incorporating hidden units. Specifically, we address the follow-
ing task: given a relation on 7 variables, called visible, we wish to design a network having n +h
units whose stable patterns, (relative to the visible units) coincide with the original relation. This
task is central to most applications of connectionist networks, in particular to its role as associa-
tive memory, The task will be investigated for a connectionist architecture which is different
from classic connectionist networks in that it is based on constraint networks. The sequential
constraint network model is defined next.

A Network of binary constraints involves a set of n variables X,,..,X,, each
represented by its domain values, Dy, . ..,D,, and a set of constraints. A binary constraint R;;
between two variables X; and X; is a subset of the cartesian product D; x D; that specifies which
values of the variables are compatible with each other. A solution is an assignment of values to
all the variables which satisfy all the constraints, and the constraint satisfaction problems
(CSP) associated with these networks is to find one or all solutions. A binary CSP can be asso-
ciated with a constraint-graph in which nodes represent variables and arcs connect pairs of
variables which are constrained explicitly. Figure la presents a constraint network where each
node represents a variable having values {a, b, ¢} and each link is associated with a strict lexi-
cographic order (where X; < X; iff i < j). (The domains and the constraints explicitly indicated
on some of the links.)

Xy (a,0)

(a,b)
(b,0)
(a,0)

X
Figure 1: An example of a binary CN

Our constraint-based connectionist architecture assumes that each unit plays the role of a
variable having & states, and that the links, representing the constraints, are quantified by compa-
tibility relations between states of adjacent units. Each unit asynchronously updates its state
(i.e., assigns itself one of its values) using a decision function based only on the states of its
neighboring units and its compatibility relations with them. In a companion paper we provide a
communication protocol for this model which is guaranteed to converge to a global consistent
assignment of values [1]. Although this constraint-based architecture differs from classical con-
nectionist architectures the resemblance is strong enough to shed interesting light on the latter



architectures as well.
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The paper is organized as follows. Section 2 continues with definitions and prelim-
inaries. In section 3 we show that bi-valued hidden variables add no expressional power, while,
in section 4 we show that if the hidden variables have 3 values or more they can decompose any
relation. Bounds on the trade-off between the number of hidden variables and the cardinality of
their values are given as well. Section 5 extends the decomposition scheme to those having
some initial inner decomposition, section 6 presents exafples and section 7 provides concluding
remarks. Due to space limitation most results are presgnted with sketchy or no proofs. For for-
mal proofs see [2]. )

2. Definitions and preliminaries

Since communication links are pairwise our constraint-based architecture is restricted to
expressing binary constraint networks only, A general relation on n variables is not necessarily
expressible as a binary network of constraints on the same set of variables. The question we
pose, therefore, is how to express any relation in a binary constraint network, with the aid of new
hidden variables.

Let rel (R) denotes the relation associated with network R. (i.e., rel (R) is the set of all
solutions to R). Let p be an n-ary relation over variables X = {X,,...,X,}, each having &
values. We now define the notion of decomposability with hidden variables.

Definition: Relation p is h-network-decomposable if there exist 4 additional variables,
Y ={Y,,...,Y,}, having k values or less, for which there is a binary network R = R (X,Y), on
XY, such that

p = yrel (R (X, V). M
I1y(p) denotes the projection! of relation p on subsets of variables U. When no hidden vari-
ables are required for network decomposability we say that the relation is network decompos-
able. Any relation, p, can be associated with a unique binary network that is generated by pro-
jecting the relation on each pair of its variables. This network is called the minimal network {5]
and it is known to provide the best approximation to p. Namely, p < rel/ (M) and if R is any other
binary network on the original set of variables s.t. p < rel (R) then p < rel (M) g rel (R). It fol-
lows that the minimal network can determine whether a relation is network decomposable or not.

Theorem 1: A relation is network decomposable if and only if its minimal network represents it
precisely. Namely, if p = rel (M).
d
Every non-decomposable relation has a trivial star-decomposition using one hidden
variable and an unrestricted number of values. In this decomposition the hidden variable, ¥,
needs f values, when ¢ is the cardinality of the relation. Each value of Y is needed to "index" each
tuple in the relation. This is achieved by constraining the hidden variable with each original
variable as follows. The constraint between the hidden variable, ¥, and an original variable X;
makes the i* value of ¥ compatible with one and only one value of X;, the value that appears in
the i# tuple of the relation. That way each value of Y is made consistent with exactly one tuple

X

, on relation p is given by:

(1) The projection of variables X;,..
I'le.w__x’.,(p) = {(x,-l, e .x,-,)!SJ_ce ps.t v .l'j f,'j =X,‘I.}



(see Fig 2). The resulting constraint network, which has a star shape (hence its name), clearly
represents the target relation (i.e. projecting it on all original variables yields the original rela-
tion).

P
X, ... X ...x
1 ’
. =

Figure 2: A star decomposition

Having the minimal network on one extreme, (a potential decomposition with no hidden
variable) and the star network (requiring one hidden variable and unrestricted number of values)
on the other, we are now interested in exploring middle ground cases. In particular, we wish to
establish how many hidden variables are required, were we to restrict the size of their domains.

3. Using bi-valued hidden variables
When the hidden variables have only two values we get a surprising negative result:

Theorem 2: Relations which are not network decomposable cannot be decomposed by adding
any number of 2-valued hidden variables.

Sketch of proof: Lets p be a relation that is not network decomposable and let M be its minimal
network. The minimal network, since not representing p, allows a tuple X =x,, ... ,X, which is
not part of p. The task of any hidden variable is to disallow such tuple while at the same time
allow all tuples in p. Assume Y is such bi-valued hidden variable that when added to the network
M it is inconsistent with X while consistent with any tuple in p. Y has to be consistent with each
value of X (since X’s values are generated from the minimal network). Namely, each value of X is
consistent either with ¥’s "0" or with ¥'s "1". We further claim that all X’s values are consistent
either with the "0" or with the "1". Since if not there is a value, X;, not consistent with Y=0 and a
value, X;, not consistent with ¥'=1 and the pair (x;,X;) is not consistent with any value of Y. How-
ever, since this pair is allowed by the minimal network, excluding it must eliminate a legal tuple
of p which yields a contradiction. The argument can be extended by induction to any number of
hidden variables [2].

O

4. Multi-valued hidden variables

4.1 A conditional decomposition scheme

This section investigates decomposition schemes utilizing multi-valued (i.e., more then 2
values) hidden variables. In particular we wish to explore the rade-off between r, the number of
hidden varniables, and £, their domain sizes, required for decomposing an arbitrary relation.

We first restrict ourselves to r = 1. Clearly, a relation having r tuples is 1-decomposable
by the star network. One may expect that when using also the minimal constraints between the
original variables as part of the network decomposition the number of values needed by the



centered hidden variable can be reduced. It can be shown, however, that for some relations, ¢, is
also the smallest number of values required for decomposition (when using one hidden variable).

Let us define the unit relation, U,, to be the "0-1" relation on n variables whose i tuple
consists of a value "1" for variable X; and a value "0" for all other variables (see Figure 3a).
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Figure 3. (a) the unit relation U ¢, (b) relation U o 3

It can be shown that relation U, cannot exploit the minimal constraints in order to reduce
the value cardinality of the hidden variable:

Theorem 3: The smallest value, &, for which the unit relation U, is 1-decomposable is k =n.

Sketch of proof: The minimal network of U, allows the extra all "0" tuple. To exclude it any
value of the hidden variable must be inconsistent with at least one X; = 0 and therefore consistent
with X; = 1. As such it can "extend" only the i** tuple of U, hence we need n values.
O
Let us define H () to be the the minimum number of values (per variable) required for
an h-decomposition of relation p. We can conclude:
Corollary 1: For every p, H,(1) < Ip| and for some p's, Hy(1)=1pl.
a
A straightforward extension of the star decomposition to two hidden variables presents
itself by expressing the Ip| values of one hidden variable by Ip! different pairs of values on
the p?li}' of hidden variables as follows. All pairs of values are of the form (i, ®) or (0,), where

_Ig_l_ 21 > 0, and the value (i, 0) is associated with the i tuple while the pair (0,i) is associ-
ated with the —|£L| +i tuple. Since Ip! different pairs can be expressed in this way by two

(—léL[)-valued hidden variables, we can infer that & p(2) < —ISL' It can be shown, however [2]
that this bound is tight, namely:

Corollary 2: For every p, H,(2) < _lg_l_ and for some p* (e.g.. U,) Hp(2) = —l-;LI

a
The above property is extensible to any number of hidden variables and we can show that

the unit relation U, needs at least r, (%)—valued hidden variables in order to be decomposed.
We conclude that:

(1) For notational convenience we assume that all fractional expressions represent the ceiling integer of
that fraction.



Corollary 3: For some p’s Hy(r) 2 -l-l:—l-

O

Our approach for systematically decomposing a relation is to start from a star decomposi-

tion using a |pl-valued hidden variable, and then, if only k-valued variables are available, to

simulate the star hidden variable by a relation that obeys the value restricdon and that can be

network decomposed. If the latter relation is not network decomposable we will apply the same
principle to it and so on. This approach is detailed in the following paragraphs.

Let us extend the notion of unit relation into a k-valued relation as follows: the k-valued

unit relation, U, ; has n tuples and r = ki N variables such that the (i(k—-1)+ j)"' tuple,
i <r, j < k-1, has zero everywhere accept the i variable whose value is J (see Fig. 3b).

We focus, first, on the decomposition of U,. The unit relation U, can be conditionally
n

star-decomposed via P k-valued hidden variables. We first generate the concatenated rela-

tion U, U, ¢, and then decompose it via a two layered network. The first layer consists of the ori-
ginal variables X,,...,X, and the second layer has the hidden variables Yy, ..., }’k’l The

only constraints in the decomposing network are those relating each hidden variable with an ori-
ginal variable (see Figure 4a). The constraints themselves are generated by projecting the con-
catenated relation U, U, ; on the corresponding pairs of variables (Figure 4b). We say that U, ;
"conditionally” decomposes U, in the following sense: for any instantiation of the hidden vari-
ables to a legal tuple in U, ; the network allows only legal tuples among the original variables,
namely, those participating in U,.

Let p, and p; be two relations, having the same number of tuples, on disjoint sets of
variables. Let us denote by R(p,,p2) the two layered network in which the top layer contains
p1’s variables, the bottom layer contains p;’s variables and there are constraints between any
variable in p; and any variable in p;. The constraints themselves are the projection of the con-
catenated relation p;p; on the comresponding pairs of variables. Using this notation we can say
that R(U,,U, ) is a conditional decomposition of U,,.

The problem now is that the new appended relation U, ;, by itself, is not network decom-
posable. Namely, even if we add all the minimal constraints between the hidden variables it will
not exclude the "0" tuple on the hidden variables which in turn will allow any combination of
values on the original variables. As its name indicates it is just a conditional decomposition, i.e.
conditioned on our ability to further decompose U, ;.

X L L

(e} (o
Figure 4. Decomposing Ug by Ugs



4.2. A general decomposition scheme

It seems as though we didn’t solve anything! just transferred the decomposability prob-
lem from one unit relation (U/,,) to another (Un ). Nevertheless, since the number of variables in

Un,k is

k—l <n, {for k>2) we can now decompose it with a new k-valued unit "relation",

denoted U'!, ; having even a smaller number of variables. The unit relation /1 nk iS a pseudo-
relation since it is a set of tuples which are not necessarily different. U 1“ has (—-——? vari-
ables and it is generated by taking the unit relation, U " ., and duplicating each tuple in it (see

Figure 5). The intention being that each tuple in U}, , will not distinguish between tuples in
Upn i having non-zero values for the same variabie. nf U’pkcan condmonally decompose U, ; in
the same rnanner that U, conditionally decompose U, using-the two layered network
RUn iU ).

This results in having a sequence of "pseudo” unit relations, each with a smaller number
of variables and each disallowing a smaller tuple of "0"’s in the preceding relation. The result-
ing relation is a concatenation of "inflated" unit relations each having a (k- 1) fraction of the
variables of the preccdmg relation. Let us denote the resulting relation by U*, (see Figure 5).
Clearly U, =Ty U*,

-
~
-
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Figure 5: U™ |5; the relation generated from decomposing U ;2

The network that decomposes U, is a layered network where each set of new hidden
variables are connected t all variables in thc preceding layer and the constraints are the projec-
tion of U", on the corresponding pairs of variables. The bottom layer consists of one or two
variables whose allowed tuples can be controlled by a direct constraint. A schematic description
of the network decomposition for U 1 is given in Figure 6.

To summarize, U, can be decomposed by intersecting sequences of two layered net-
works. The resulting network, R, is defined by: ("" denotes the intersection operation)

hd 1 i - a 4
R = R(UpUpg) RWUntnU o) - RWN U 0), - o - REUSA U™ ) ., - REUSR, gomn 3 @)

We can now apply the same idea to an arbitrary relation. Namely, in order to decompose
a given relation p using k-valued hidden variables we will generate the network
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Figure 6: A layered decomposition of U* |,
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Let H1 p(k) denotes the minimum number of k-valued hidden variables needed for
decomposing p. We get the following theorem:

Theorem 4: Any relation is dec»:)mposabh:,\—'-;cI_L;2 k-valued hidden variables, when & > 2.

Proof: Let p be an arbitrary non-decomposable relation. It can be shown by simple algebraic

manipulations that the decomposition presented in (5) requires —Ii!——z— variables.
0
From corollary 3 and from Theorem 4 it follows that the unit relation’s decomposition

cannot be substantially improved. Namely,

2 <H! <2
2 <o s 22 ®

To summarize, the decomposition scheme presented by (5) is optimal in the sense that
for some relations (the U,’s) a better decomposition does not exist. Nevertheless, we still wish
to find the minimum number of values needed for the star-decomposition, since it will provide a
better bound for any general decomposition, namely:

Hy(1)-2
k-2
5. Decompositions of partially decomposable relations

H (k) < 7

One way of improving our scheme can be hinted by investigating the level of inner
decomposition of the relation using only its original variables. We assumed that the relation is
not binary network decomposable, however it may be losslessly decomposed to relations having
arity greater then 2 yet smaller then n. Let a relation scheme R =R, ...,R; be a set of subsets
of attributes of the original relation. We say that the scheme R is a lossless decomposition of p
if:

p=p1XPVpy X, ..., Xp;. ®

We claim that if a lossless decomposition of the relation is available and if we use hidden vari-

(1) is the relational database join operator.



ables to decompose each component separately without introducing any conflicts between the
components, the combined network is a decomposition of the target relation. The general
scheme is as follows: given a lossless decomposition R =R,,R3,,..., Ry of p which is
defined over variables X =X, ...,X,, and given a binary network decomposition, R";, for each
subrelation p;, utlizing a set of hidden variables Y:, (e, pi=TIxrel (R’))), and denoting by
p'=rel(R"1)x,..., xrel(R"), itis always true that

Mxp’ < [xrel®' D)X, . .., X (TIxrel®R') = p &
If we take special care to ensure that the hidden variables used in different components will not
interfere with each other (by utilizing disjoint subsets, for instance) and will not eliminate a legal
tuple of p we will have an equality in the left hand side of (9). In that case the combined network

MR, is a network decomposition of p utilizing a set of hidden variables UY;.
i i

We can associate a star decomposition with each component separately. Namely, if !
hidden variables are available, each devoted to a star decomposition of one subrelation, then the
hidden variable Y; of subrelation p; will need Ip;{ values. We will get therefore that

H™'y(maxip;1) <! (10)
[

If only k-valued hidden variables are available we can decompose each component subre-
lation using disjoint subsets of k-valued hidden variables. This way the non-interfering property
is maintained. When applying the bound of Theorem 4 to each component separately and sum-
ming over all components we get:

i
Ip;1 =21
H s 3 il 2 5" (1)
P Ei k=2 k-2
We see, therefore, that the "level” of inner decomposition can affect p's decomposability.
We further conjecture that if p cannot be losslessly decomposed at all then 4 p(1)=Ipl. Exam-

ples conforming with this conjecture is the unit relation and the parity relation {2].

6. Examples

The following two examples, taken from chapter 8 of [7], demonstrate the use of inner
decompositions once they are available.

Example 1: addition

Consider the problem of adding two-digit numbers, where the digits are 0 or 1. Denote the first
number by XY, the second number by X,Y,, let T stand for the carry and let Z 1£2Z4 stand
for the resulting sum., The add relation is given in figure 7a.

A star decomposition of add with one hidden variable requires 16 values, namely
Hz44(1) £ 16. Using 3-valued variables our scheme requires 14 variables (EQ. (7)). Consider
now the lossless decomposition of the add relation given by R =R ,Ry where R, =T,¥,Y,.Z 3
and R; =T,X,X7,Z,,Z, (see figure 7b.) By decomposing each component separately we get
that one 8-valued variable is needed for rel(R,) and a 4-valued variable is needed for rel (Ry),
each of the two can star-decompose its corresponding subrelation. In that case nothing is gained
by the inner decompo$ition since a decomposition of the relation with 8-valued variables can be
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Figure 7: (a) The add relation, (b) A lossless decomposition of add

directly applied to the overall relation using just two variables. However, if only 3-valued vari-
ables are permitted available, rel/(R) would require two such hidden variables while rel(R ;)
will require 6 variables, resulting in a total of 8, 3-valued variables as in Figure 8.

Figure 8: A 3-valued decomposition of add.

Example 2: the negation problem:

Consider a situation where the input to a system consists of a pattern of n+1 bits and n output
bits. One of the input bit is called "the negation bit". When it is "0" the rest of the n input bits
should be mapped directly to the output patterns. If it is "1” then each bit should be mapped to its
negation. Figure 9a describes the relation defined over the negation variable N, the input vari-
ables X |,X»,X 3 and the output variables Y,Y,,Y5.

A direct decomposition of this relation requires 2" values for a star decomposition and
when 3-valued variables are available 2" -2 hidden variables are required. Consider now the
following lossless decomposition

(12)
neg, =rel(R),N,...,MrelR,)

where rel(R;) is given in figure 9b.

Two 3-valued hidden variables can be used for each rel(R;), resulting in a total of 2n 3-
valued hidden variables. The constraint graph of this decomposition is given in Figure 9c.

10
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Figure 9: (a) The neg ;3 relation, (b) Subrealtion R;, (¢) A network decomposition
7. Conclusions

We have shown that any relation can be expressed as a network of binary relations if
augmented by hidden variables having three values, while no expressional power is gained by
hidden variables having only two values. Specifically, a constructive scheme is presented that

decomposes any relation, p, into a layered network using -lgs—z k-valued hidden variables

when k >2. We also showed that the scheme is worse-case optimal, meaning that some relations
require that many hidden variables. We extended the scheme to exploit an initial lossless
decomposition of the relation, if one is available.

Comparing our decomposition scheme with current techniques used in the neural net-
works community we should consider two systems; those based on the Hebbian rule and those
using feedforward networks. The former are restricted to orthogonal vectors, and thus our
scheme is more general. The latter have no established theoretical guarantees and often require
a long time to converge. In contrast our scheme is complete and it works in time linear in the
size of the initial relation. Its drawback, however, is that it requires an a-priori knowledge of the
entire relation. Nonetheless, understanding the basic theoretical limitations of architectures
using hidden variables should facilitate the development of effective generalizing scheme based

on partial relations.
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