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Abstract

In eliciting knowledge from human judgments, we use causal re-
lationships to convey useful patterns of dependencies. The converse
task, that of inferring causal relationships from patterns of dependen-
cies, is far less understood. This paper establishes conditions under
which the directionality of some interactions can be determined from
non-temporal probabilistic information — an essential prerequisite for
attributing a causal interpretation to these interactions. An efficient
algorithm is developed that, given data generated by an undisclosed
causal polytree, recovers the structure of the underlying polytree, as
well as the directionality of all its identifiable links. Conditions en-
suring the correctness of this reconstruction are provided.

1 Introduction

The study of causation, because of its pervasive usage in human commu-
nication and problem solving, is central to the understanding of human
reasoning. All reasoning tasks dealing with changing environments rely
heavily on the distinction between cause and effect. For example, a central
task in applications such as diagnosis, qualitative physics, plan recognition
and language understanding, is that of abduction, i.e., finding a satisfactory
explanation to a given set of observations, and the meaning of explanation
is intimately related to the notion of causation.

Most AI works have given the term “cause” a procedural semantics,
attempting to match the way people use it in inference tasks, but were not
concerned with what makes people believe that “a causes 4”, as opposed to,
say, “b  causes a’ or “¢ causes both @ and &7
[de Kleer & Brown 86,Iwasaki & Simon 86]. An empirical semantics for
causation is important for several reasons. First, by formulating the empiri-
cal components of causation we gain a better understanding of the meaning
conveyed by causal utterances. such as *a explains b, “a suggests 67, “a
tends to cause 5”, and “a actuaily caused b”. These utterances are the
basic building biocks from which knowledge bases are assembled. Second,
any autonomous learning system attempting to build a2 causal model of its
environment cannot rely exclusively on procedural semantics but must be
able to translate direct observations to cause and effect relationships.
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Temporal precedence is normally assumed essential for defining causa-
tion. Suppes {Suppes 70|, for example, introduces a probabilistic definition
of causation with an explicit requirement that a cause precedes its effect in
time. Shoham makes an identical assumption [Shoham 87!. In this paper
we propose a non-temporal semantics, one that determines the direction-
ality of causal influence without resorting to temporal information, in the
spirit of [Simon 54| and [Glymour at al. 87]. Such semantics should be ap-
plicable, therefore, to the organization of concurrent events or events whose
chronological precedence cannot be determined empirically. Such situations
are common in the behavioral and medical sciences where we say, for ex-
ample, that old age explains a certain disability, not the other way around,
even though the two occur together (in many cases it is the disability that
precedes old age).

Another feature of our formulation is the appeal to probabilistic de-
pendence, as opposed to functional or deterministic dependence. This is
motivated by the observation that most causal connections found in natural
discourse, for example “reckless driving causes accidents” are probabilistic
in nature Spohn 90]. Given that statisticai analysis cannot distinguish cau-
sation from covariation, we must still identify the asymmesries that prompt
people to perceive causal structures in empirical data, and we must find a
computational model for such perception.

Our attack on the problem is as follows; first, we pretend that Nature
possesses “true” cause and effect relationships and that these relationships
can be represented by a causal network, namely, a directed acyclic graph
where each node represents a variable in the domain and the parents of that
node correspond to its direct causes, as designated by Nature. Next, we
assume that Nature selects a joint distribution over the variables in such
a way that direct causes of a variable render this variable conditionally
independent of all other variables except its consequences. Nature permits
scientists to observe the distribution, ask questions about its properties,
but hides the underlying causal network. We investigate the feasibility of
recovering the network’s topology efficiently and uniquely from features of
the joint distribution.

This formulation contains several simplifications of the actual task of

scientific discovery. It assumes, for example. that scientisis obtain the
distribution, rather than events sampled from the distribution. This as-
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sumption is justified when a large sample is available, sufficient to reveal
all the dependencies embedded in the distribution. Additionally, it assumes
that all relevant variables are measurable, and this prevents us from dis-
tinguishing between spurious correlations [Simon 54] and genuine causes,
a distinction that is impossible within the confines of a closed world as-
sumption. Computationally, however, solving this simplified problem is an
essential component in any attempt to deduce causal relationships from
measurements, and this is the main concern of this paper.

It is not hard to see that if Nature were to assign totally arbitrary
probabilities to the links, then some distributions would not enable us to
uncover the structure of the network. However, by employing additional re-
strictions on the available distributions, embodying properties we normally
attribute to causal relationships, some structures could be recovered. The
basic restriction is that two independent causes should become dependent
once their effect is known [Pearl 38|. For example, two independent inputs
to an AND gate become dependent once the output is measured. This
observation is phrased axiomatically by a property called Marginal Weak
Transiitivity {Eq. 9 below). It tells us that if two variables z and y are mu-
tually independent, and each is dependent on their effect z, then £ and y
are conditionally dependent for at least one instance of z. Two additional
properties of independence, intersection and composition {Egs. 7, and 8
below ), are found useful. Intersection is guaranteed if the distributions are
strictly positive and is justified by the assumption that, to some extent, all
observations are corrupted by noise. Composition is a property enforced,
for example, by multivariate normal distributions, stating that two sets of
variables X and Y are independent iff every pair r € X and y € Y is
independent. In common discourse, this property is often associated with
the notion of “independence”, vet it is not enforced by all distributions.

The theory to be developed in the rest of the paper addresses the fol-
lowing problem. We are given a distribution P and we know that P is
represented as a singly-connected dag D whose structure is unknown (such
a dag is also called a Polytree ‘Pear! 38/). What properties of P allow
the recovery of D ? It is shown that intersection composition and marginal
weak transitivity are sufficient properties to ensure that the dag is uniquely
recoverable (up to isomorphism) and, moreover. the recovery can be accom-
plished in polynomial time. The recovery algorithm developed considerably



generalizes the method of Rebane and Pearl for the same task, as it does
not assume the distribution to be dag-isomorph [Pearl 88, Chapter 8]. The
generalization implies, for example, that the assumption of a multivariate

normal distribution is sufficient for a complete recovery of singly-connected
dags.

2  Probabilistic Dependence: Background and
Definitions

Our model of an empirical environment consists of a finite set of variables
U and a distribution P over these variables. Variables in a medical do-
main, for example, represent entities such as “cold”, “headache”, “fever”.
Each variable has a domain which is a set of permissible values. The sample
space of the distribution is the Cartesian product of all domains of the vari-
ables in U. An environment can be represented graphically by an acyclic
directed graph (dag) as follows: We select a linear order on all variables in
U. Each variable is represented by a node. The parents of a node v corre-
spond to a minimal set of variables that make v conditionally independent
of all lesser variables in the selected order. Each ordering may produce
a different graph, for example, one representation of the three variables
above is the chain headache — cold — fever which is produced by the or-
der cold, headache and fever {assuming fever and headache are independent
symptoms of a cold). Another ordering of these variables: fever, headache,
and cold would yield the dag cold — headache — fever with an additional
arc between fever and cold. Notice that the directionality of links may
differ between alternative representations. In the first graph directionality
matches our perception of cause-effect relationships while in the second it
does not, being merely a spurious by-product of the ordering chosen for
the construction. We shall see that, despite the arbitrariness in choosing
the construction ordering, some directions will be preferred to others, and
these can be determined mechanically.

The basis for differentiating among alternative representations are the
dependence relationships encoded in the resuiting dag. We regard a prob-
ability distribution as a dependency model, capable of answering queries of
the form “Are X and Y independent given Z ?” and prefer representations



that more faithfully display these answers. The following definitions and
theorems provide the ground for a precise formulation of the problem.

Definition [Pearl & Verma 87| A dependency model M over a finite set of
elements U is any subset of triplets (X, Z,Y) where X, Y and Z are disjoint
subsets of U.

The interpretation of (X, Z,Y) € M is the sentence “X is independent of
Y, given Z7, denoted also by I(X, Z,Y). When speaking about dependency
models, we use both set notations and logic notations: if (X, Z,Y) € M,
we say that the independence statement I{X, Z,Y) holds for M. Similarly,
we either say that M contains a triplet (X, Z,Y) or that M satisfies a
statement I(X,Z,Y). An independence statement I{X, Z,Y) is called an

independency and its negation is called a dependency. Every probability
distribution defines a dependency model:

Definition [Pearl & Verma 87|: Let U be a finite set of variables. A Prob-
abilistic Dependency Mode! Mp is defined in terms of a probability distri-
bution P with a sample space [], .oy d(«), the Cartesian product of d(u,),
where 4{u;) is the domain of u;. If X, Y and Z are three disjoint subsets
of U, and X, Y and Z are any instances from the domains of the variables
in these subsets, then by definition (X, Z,Y) holds for Mp iff

P(X,Y!Z) = P(X|Z)- P(Y'!Z) (1)
which is a short hand notation for
Plzy =X, 2t =X, 1 =¥ ¥m =¥m|% =21, 2n =2Zn) =
Plzy =x3..,;t=%x}{2y =27..,2a =2n) P{y; =¥1. ¥m =¥Ym|71 = Z1..., 2 = Zn)
where X = {z,...,zi}, Y = {y1..,Um}, and Z = {z,..., 2, }.

The definition above is suitable also for normal distributions, in which case
the distribution function P in Eq. (1) is replaced by a multivalued normal
density function. The conditional density functions are well defined for
normal distributions if all variances and means are finite and all variances
are non-zero.

Dependency models can also be encoded in graphical forms. The fol-
lowing graphical definition of dependency models is motivated by regarding
directed acyclic graphs as a representation of causal relationships. Desig-
nating a node for every variable and assigning a link between every cause to
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each of its direct consequences defines a graphical representation of a causal
hierarchy. For example, the propositions “It is raining” (r), “the pavement
is wet” (w) and “John slipped on the pavement” (s) are well represented
by a three node chain, from r through w to s : it indicates that rain and
wet pavement could cause slipping, yet wet pavement is designated as the
direct cause; rain could cause someone to slip if it wets the pavement, but
not if the pavement is covered. Moreover, knowing the condition of the
pavement renders “slipping” and “raining” independent, and this is repre-
sented graphically by showing node r and s separated from each other by
node w. Furthermore, if we assume that “broken pipe” (b) is another direct
cause for wet pavement, as in Figure 1, then an induced dependency exists
between the two events that may cause the pavement to get wet: “rain”
and “broken pipe”. Although they appear connected in Figure 1, these
propositions are marginally independent and become dependent once we
learn that the pavement is wet or that someone broke his leg. An increase
in our belief in either cause would decrease our belief in the other as it
would “explain away” the observation.

Rain (b) Broken pipe

Wet pavement

Slipping

Figure |

The following definition of d-separation permits us to graphically iden-

tify such induced dependencies from the network. A preliminary definition
is needed.

Definition A trail in a directed acyclic graph is a sequence of links that
form a path in the underlying undirected graph. A trail is said o pass



through the nodes adjacent to its links. A node b is called a head-to-head
node with respect to a trail ¢t if there are two consecutive links ¢ — b and

b +— con t. A node that starts or ends a trail ¢ is not a head-to-head node
with respect to ¢!,

Definition [Pearl 88]A trail ¢ is active by Z if (1) every head-to-head node
(wrt ¢t} either is or has a descendent in Z and (2) every other node along ¢
is outside Z. Otherwise, the trail is said to be blocked by Z.

Definition [Pearl 88] If X, Y, and Z are three disjoint subsets of nodes in
a dag D, then 7 is said to d-separate X from Y, denoted I(X, Z,Y)p, iff
there exists no active trail by Z between a node in X and a node in Y.

Definition A Dag Dependency Model Mp, is defined in terms of a directed
acyclic graph D. If X, ¥ and Z are three disjoint sets of nodes in D, then,
by definition, (X, Z,Y) € Mp iff X and Y are d-separated by Z.

For example, in Figure 1, {r,9,b) € Mp, (r,s,b) & Mp, (r,{w,s},b) ¢
;‘/ID, and (T’,UJ,S) = lWD.

These two distinct types of dependency meodels, graphical and proba-
bilistic, provide different formalisms for the notion of “independent”. The

similarity between these models is summarized axiomatically by the follow-
ing definition of graphoids.

Definition [Pearl & Paz 89| A graphoid is any dependency model M which
is closed under the following azioms®:

Trivial Independence

I(X, Z,0) (2)
Symmetry
I(X,2,Y)= I{Y,Z,X) (3)
Decomposition
X, 2,YLUW)= I[(X,2,Y) (4)
Weak union
IX,Z,Y UW) = I(X,ZUW,Y) (3

*The definitions of undirected graphs, acyclic graphs, trees, paths, adjacent links and
nodes can be found in any text on graph algorithms (e.g., [Even 79]).

*This definition differs slightly from that given in [Pearl & Paz 39| where axioms (3)
through (6) define semi-graphoid and dependency models obeying also (7) are called
graphoids. Axiom {) is added for future clarity.



Contraction

I(X,2,Y)& I(X,ZUY,W) = I(X, Z,Y UW) (6)

Intuitively, the essence of these axioms lies in Egs. (5) and (6). If we
associate dependency with informational relevance, these equations assert
that when we learn an irrelevant fact, all relevance relationships among
other variables in the system should remain unaltered; any information
that was relevant remains relevant and that which was irrelevant remains
irrelevant. These axioms are very similar to those assembled by Dawid
[Dawid 79| for probabilistic conditional independence, those proposed by
Smith [Smith 89| for Generalized Conditional Independence and those used
by Spohn [Spohn 80] in his exploration of causal independence. We shall
henceforth call axioms (2) through (6) graphoid azioms. It can readily be
shown that the two dependency models presented thus far, the probabilistic
and the graphical, are both graphoids. Several additional graphoids are
discussed in [Pear! & Paz 89,Pearl & Verma 87|

Definition A dag is an independence-map (I-map) of a graphoid M if
there exists a one to one mapping between elements of M and nodes in D
such that whenever X and Y are d-separated by Z in D, then I{X, Z,Y)
holds for M. In other words, Mp C M?®, where Mp is the dependency

model defined by D. A dag D is a minimal-edge I-map of M if deleting
any edge of D would make D cease to be an Lmap of M.

Definition [Pear! 88] A dag D is called a Causal network of a dependency
model M, if D is a minimal-edge Fmap of M. We also say that D represents
M.

The task of finding a causal network of a given probabilistic dependency
model P was solved in [Pearl & Verma 87,Verma & Pearl 38]. The proce-
dure consists of the following steps: assign a total ordering d : ay,...,a,
to the variables of P. For each variable a; of P, identify a minimal set
of predecessors w{a,) that renders a; independent of all its other predeces-
sors (in d). Assign a direct link from every variable in 7(a;) to a;. The

>The use of the C symbol is not precise because Mp is a set of triplets of nodes while
M consists of triplets of abstract slements. To make it precise we use the convention that
a nede named r maps to an element of M named :.



resulting dag is an Fmap of P, and is minimal in the sense that no edge
can be deleted without destroying its Fmapness. The information used
for this construction consists of n conditional independence statements,
one for each variable, all of the form I(a;,r(a:),U(a) \ 7{a;)) where U{a;)
is the set of predecessors of ¢; and (a;) is a subset of U(a;) that ren-
ders a; conditionally independent of all its other predecessors. This set of
conditional independence statements, denoted by L, is said to generate a
dag and is called a recursive basis drawn from P. For example, the list,
{I(r,0,8), I{w, {r,5},0), I(s,w, {r,b})}, is a recursive basis that generates
the dag in Figure 1.

The theorem below states that the procedure above is valid for any
graphoid, not merely for probabilistic dependency models.

Theorem 1 [Verma & Pearl 88] If M is a graphoid, and L is any recursive
basts drawn from M, then the dag generated by L is an I-map of M.

Note that a probability model may possess many causal networks each
corresponding to a different ordering of its variables in the recursive basis. If
temporal information is availabie, one could order the variables chronolog-
ically and this would dictate an almost-unique dag representation {except
for the choice of 7(a;)). However, in the absence of temporal information
the directionality of links must be extracted from additional requirements

about the graphical representation. Such requirements are identified be-
low.

3 Reconstructing Singly Connected Causal
Networks

We shall restrict our discussion to singly connected causal networks, namely
networks where every pair of nodes is connected via no more then one trail
and to distributions that are similar to normal {Gausian) in the sense that

they adhere to axioms (7) through (9) below, as do all multivariate normal
distributions with finite non-zero variances and fnite means.

Lemma 2 The following axioms are satisfied by all multivariate normal
distributions with finite non-zero vartances and finite means.
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Intersection

IX,ZUY,W)&I(X,ZUW,Y) > I(X,Z,Y UW) (1)

Composition

I(X,2,Y)&I(X,Z,W)=> [(X,Z,Y UW) (8)
Marginal Weak Transitivity

1(X,0,Y) & I(X,{c},Y) = I(X,0, {c}) or I({c},0,Y) (9)

Definition A graphoid (e.g., a distribution) is called intersectional if it

satisfies (7), semi-normal if it satisfies (7) and (8), and pseudo-normal if it
satisfies (7) through (9).

Definition A singly-connected dag (or a polytree) is a directed acyclic
graph with at most one trail connecting any two nodes. A dag is non-
triangular if any two parents of a common node are never parents of each
other. Polytrees are examples of non-triangular dags. The skeleton of a
dag D, denoted skeleton(D), is the undirected graph obtained from D if

the directionality of the links is ignored. The skeleton of a polytree is a
tree.

Definition A Markov network G, of an intersectional graphoid M is the
network formed by connecting two nodes, a and b, if and only if (a,U \
{a,b},b) 2 M. A reduced graph Gg of M is the graph obtained from G, by
removing any edge a — b for which (a,9 ,4) € M.

Markov networks are another example of dependency models.

Definition [Pearl & Paz 39| An undirected graph dependency model Mg
is defined in terms of an undirected graph G. ¥ X, ¥ and Z are three
disjoint subsets of nodes in G, then, by definition, (X,Z,Y) € Mg iff all
paths between a node in X and a node in Y pass through a node in Z. A
graph G is an Fmap of a dependency model M if Mgz C W, and it is a

minimal-edge fmap if deleting any edge of & would make G cease to be an
IFmap of M.

Theorem 3 [Pearl & Paz 89| The Markov network Gy of an intersectional
graphoid M is @ minimal-edge [-map of M.

11



Isomorphism defines the theoretical limitation on our ability to identify
directionality of links, using information about independernce.

Definition Two dags D, and D; are isomorphic if the corresponding
dependency models are equal.

For example, the two dags: @ — b — ¢ and a « b « ¢, are isomorphic
in the sense that they portray the same set of independence assertions and,
hence, are indistinguishable. On the other hand, the dag ¢ — b — ¢ is dis-
tinguishable from the previous two because it portrays a new independence
assertion, I(a,®, ¢), which is not represented in either of the former dags.
An immediate corollary of the definitions of d-separation is that any two
polytrees sharing the same skeleton and the same head-to-head nodes wrt
every trail are isomorphic. Proof is given in the appendix.

Definition A head-to-head connection in a dag is a trail ¢ consisting of

two links of the form @ — b — ¢. Note that node b is a head-to-head node
wrt .

Lemma 4 Two polytrees Ty and T» are isomorphic ff they share the same
skeleton, and the same set of head-to-head connections.

More generally, it can be shown that two dags are isomorphic iff they
share the same skeleton and the same head-to-head nodes emanating from
non adjacent sources {Pear, Geiger & Verma 89).

The algorithm below uses queries of the form I{X,Z,Y) to decide
whether a pseudo-normal graphoid M (e.g., a normal distribution) has
a polytree Lmap representation and if it does, it’s topology is identified.
Axioms (7) through (9) are then used to prove that if D exists, then it
is unique up to isomorphism. The algorithm is remarkably efficient; it re-
quires only polynomial time {in the number of independence assertions),
while a brute force approach would require checking n! possible dags, one
for each ordering of M’s variables. One should note, however, that validat-

ing each independence assertion from empirical data may require extensive
computation.



The Recovery Algorithm

Input: Independence assertions of the form I{X,Z,Y) drawn from a
pseudo-normal graphoid M.

Output: A polytree Fmap of M if such exists, or acknowledgment that
no such Fmap exists.

1.

2.

Start with a complete graph.

Construct the Markov network Gy of M by removing every edge a —b
for which (a,U \ {a,b},b) is in M.

. Construct Gz by removing from G, any link e — b for which (q, 8, 5)

is in M. If the resulting graph Gy has a cycle then answer “NO”.
Exit.

Orient every link ¢ — b in Gy towards b if b has a neighboring node
¢, such that {e,8,¢) € M and a - ¢ is in G,.

Orient the remaining links without introducing new head-to-head con-

nections. If the resulting orientation is not feasible answer “NO”.
Exit.

If the resulting polytree is not an Lmap of M, answer “NO”. Other-
wise, this polytree is a minimal-edge I-map of M.

The following sequence of claims establishes the correctness of the al-

gorithm and the uniqueness of the recovered network; full proofs are given
in the appendix.

Theorem 5 Let D be a non-triangular dag that ts a minimal-edge [-map
of an intersectional graphoid M. Then, for every link a — b in D, (a,U \
{a,b},b) € M.

Theorem 5 ensures that every link in a minimal-edge polytree Fmap,
or more precisely, a link in a minimal-edge non-triangular dag Fmap. must
be a link in the Markov network Gq {recall that a — b is a link in Gy iff
(a,U\{a,b},8) 2 M). Thus, we are guaranteed that Step 2 of the algorithm
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does not remove links that are needed for the construction of a minimal-
edge polytree Imap.

Theorem 6 below shows that by computing G, Step 3 of the algorithm
identifies the skeleton of any minimal-edge polytree Fmap T, if such exists.
Thus, if Gg has a cycle, then M has no polytree Fmap and if M does have
a polytree Fmap, then it must be one of the orientations of Gg. Hence by
checking all possible orientations of the links of G one can decide whether
a semi-normal graphoid has a minimal-edge polytree IFmap.

Theorem 6 Let M be a semi-normal graphoid that is represented by a

minimal-edge polytree I-map T. Then, the reduced graph Gg of M equals
skeleton(T).

Corollary 7 All minimal-edge polytree I-maps of a semi-normal graphoid
have the same skeleton (Since Gy is unique).

The next two theorems justify a more efficient way of establishing the
orientations of Gg.

Definition Let M be a pseudo-normal graphoid for which the reduced
graph Gr has no cycles. A partially oriented polytree P of M is a graph
obtained form Gp by orienting a subset of the links of Gz using the following
rule: Alinka — bisin P if a — b is a link in Gg, b has a neighboring node

¢, such that (a,0,¢) € M and the link a — ¢ is in Go. All other links in P
are undirected.

Theorem 8 If M is a semi-normal graphoid that is represented by a poly-
tree [-map, then M defines a unique partially oriented polytree P.

Theorem 9 Let P be a partially oriented polytree of a semi-normal graphoid

M. Then, every oriented link a — ¢ of P is part of every minimal-edge
polytree I-map of M.

Theorem 8 guarantees that the rule by which a partially oriented poly-
tree is constructed cannot yield a conflicting orientation when M is pseudo-
normal. Theorem 9 guarantees that the links that are oriented in P are
oriented correctly, thus justifying Step 4.

14



We have thus shown that the algorithm identifies the right skeleton and
that every link that is oriented must be oriented that way if a polytree
Lmap exists. It remains to orient the rest of the links.

Theorem 10 below shows that no polytree Fmap of M introduces new
head-to-head connections, hence, justifying Step 5. Lemma 4, further shows
that all orientations that do not introduce a head-to-head connection yield
i1somorphic dags because these polytrees share the same skeleton and the
same head-to-head connections. Thus, in order to decide whether or not
M has a polytree Fmap, it is sufficient to examine merely a single polytree
for Fmapness, as performed by Step 6.

Theorem 10 Let P be a partially oriented Polytree of a pseudo-normal
graphoid M. Every orientation of the undirected links of P which introduces

a new head-to-head connection to P yields a polytree that 1s not a minimal-
edge [-map of M.

Note that composition and intersection, which are properties of semi-
normal graphoids, are sufficient to ensure that the skeleton of a polytree
I-map of M is uniquely recoverable. Marginal weak transitivity, which is a
property of pseudo-normal graphoids, is used to ensure that the algorithm
orients the skeleton in a valid way. It is not clear, however, whether axioms
(7) through (9) are indeed necessary for a unique recovery of polytrees.

4 Summary and Discussion

In the absence of temporal information, discovering directionality in inter-
actions is essential for inferring causal relationships. This paper provides
conditions under which the directionality of some links in a probabilistic
network is uniquely determined by the dependencies that surround the link.
It is shown that if a distribution is generated from a singly connected causal
network (i.e., a polytree), then the topoiogy of the network can be recovered
uniquely, provided that the distribution satisfies three properties: composi-
tion, intersection and marginal weak transitivity. Although the assumption
of singly-connectedness is somewhat restrictive, it may not be essential for
the recovery algorithm, because Theorem 1, the basic step of the recov-
erv, assumes only non-triangularity. Thus, an efficient recovery algorithm

15



for non-triangular dags may exist as well. More fundamentally, the recov-
ery of singly connected networks demonstrates the feasibility of extracting
causal asymmetries from information about dependencies, which is inher-
ently symmetric. It also highlights the nature of the asymmetries that need
be detected for the task and, thus, facilitates extensions to general graphs
(see last paragraph).

Another useful feature of our algorithm is that its input can be ob-
tained either from empirical data or from expert judgments or a combi-
nation thereof. Traditional methods of data analysis rely exclusively on
statistical records which might not be available. Independence assertions,
on the other hand, are readily provided by domain experts.

We are far from claiming that the method presented in this paper dis-
covers genuine physical influences between causes and effects. First, a sen-
sitivity analysis is needed to determine how vulnerable the algorithm is to
errors associated with inferring conditional independencies from sampled
data, Second, such a discovery requires breaking away from the confines of
the closed world assumption, while we have assumed that the set of vari-
ables U adequately summarizes the domain, and remains fixed throughout
the structuring process. This assumption does not enable us to distinguish
between genuine causes and spurious correlations [Simon 54|; a link @ — b
that has been determined by our procedure may be represented by a chain
a «— ¢ — b where ¢ is an unmeasured variable, not accounted for when the
network is first constructed. Thus, the dependency between a and b which
is marked as causal when ¢ € U is in fact spurious, and this can only be
revealed when ¢ becomes observable. Such transformations are common-
place in the development of scientific thought: What is currently perceived
as a cause may turn into a spurious effect when more refined knowledge
becomes available. The initial perception, nevertheless serves an impor-
tant cognitive function in providing a tentative and expedient encoding of
dependence patterns in that level of abstraction.

Future research should explore structuring techniques that incorporate
variables outside U. The addition of these so called *hidden® variables
often renders graphical representations more compact and more accurate.
For example, a network representing a collection of interrelated medical
symptoms would be highiy connected and of little use, but when a disease
variable is added, the interactions can often be represented by a singly
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connected network. Facilitating such decomposition is the main role of
“hidden variables” in neural networks [Hinton 89| and is also incorporated
in the program TETRAD [Glymour at al. 87]. Pearl and Tarsi provide an
algorithm that generates tree representations with hidden variables, when-
ever such a representation exists [Pear] & Tarsi 86]. An extension of this
algorithm to polytrees would further enhance our understanding of causal
structuring.

Another valuable extension would be an algorithm that recovers general
dags. Such algorithms have been suggested for distributions that are graph-
isomorph [Spirtes, Glymour & Scheines 89,Verma 90]. The basic idea is to
identify with each pair of variables z and y a minimal subset Sxy of other
variables* that shields z from y, to link by an edge any two variables for
which no such subset exists, and to direct an edge from z to y if there is a
variable z linked to y but not to z, such that Iz, Sxz Uy, z) does not hold
(see Pearl 1988, page 397, for motivation). The algorithm of Spirtes et al.
(1989) requires an exhaustive search over all subsets of variables, while that
of Verma (1990) prunes the search starting from the Markov network. It is
not clear, however, whether the assumption of dag isomorphism is realistic

in processing real-life data such as medical records or naturai language
texts.
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Appendix: Proofs

Lemma 4 Two polytrees Ty and T, are isomorphic iff they share the same
skeleton, and the same set of head-to-head connections.

Sufficiency: If Ty and T, share the same skeleton and the same head-
to-head connections then every active trail in T} is an active trail in T; and

vice versa. Thus, M7, and Mr,, the dependency models corresponding to
T: and T; respectively, are equal.

Necessity: T} and T must have the same set of nodes U, for otherwise
their dependency models are not equal. If ¢ — b is a link in T, and not in
T:, then there exists a set § which is either the set of parents of a or those
of b in T3, for which the triplet (a,5,b) is in My, but not in Mry,. Thus,
if My and My, are equal, then T; and T. must have the same skeleton.
Assume T and 7% have the same skeleton and that ¢ — ¢ — b is a head-
to-head connection in T but not in T:. The trail a — ¢ — b is the only trail
connecting a and b in T, because T. is singly-connected and it has the same
skeleton as T;. Since ¢ is not a head-io-head node wrt this trail in Tsub2.
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(a,c,b) € Mr,. However, (a,¢,b) & My, because the trail a — ¢ « b is
activated by e¢. Thus, if My, and Mry, are equal, then T, and T, must have
the same head-to-head connections. O

Theorem 5 Let D be a non-triangular dag that is a minimal-edge 1-
map of an intersectional graphoid M. Then, for every link a — b in D,
(a,U\{a,b},b) Q M.

Proof: Let ay...a, be an ordering of the vertices of D. Let Mp be the
dependency model corresponding to D. Leta; — a; bealinkin D. fj=n
then (a;, U\{a;,an},an) & M, for otherwise, D is not minimal. Assume that
t < 7 < nand, by contradiction, that (a;, U\{a:, a;},2;) € M. We will show
that D cannot be minimal-edge. Nodes q; and a; cannot be both parents of
a, since this would imply the configuration a; — a,, «— a; with q; connected
to ¢; in D contrary to its non-triangularity. Thus either (a;, U\ {a;,a,}, an)
or (a;,U\ {a,an},an) is in Mp which together with (a;, U\ {a;,a;},a,) €
M imply by intersection (7), decomposition (4) and symmetry (3) that
(a;,U\{a;,a;,a,},a;} € M. Similarly, a,_, can not be a son of both g; and
a;. Thus either {(a;, U\ {a:,2n,8n_1},80-1) o (a;, U\ {a;,an,an_1},8n_1) is
in Mp which together with {a;, U "\ {a;,a;,an},a;) = M (which is derived in
the previous step) imply that (a;, U\ {a;, a;,an-1,2n},a;) € M. Continuing
this way, by descending induction we get that the triplet (a;, Ri;,q;) is in M
where R;; are all vertices in D with indices less than j not including a;. The
link a; — a; is therefore redundant {For the exact role of the intersection
axiom (7) see Ex. 3.11 in [Pear! 88|). This contradicts the minimality of
D. o

Theorem 8 Let M be a semi-normal graphoid that is represented by a
minimal-edge polytree I-map T. Then, the reduced graph Gp of M equals
skeleton(T).

Proof: Let a—bbe alink in skeleton(T ) and let My be the dependency
model defined by T. We show that ¢ — b must be a link in Gg. Since T is
a polytree, T is non-triangular and therefore, by Theorem 3, the link a — b
is part of the Markov network Gg of M. We will show that {a,0,b) ¢ M.
Thus the link a — b is not removed from G,. Consequently, 2 — b is a link in
Gg. Without loss of generality assume that @ — b is a link in T (the same
argument applies when b — a is in T'). Let 4 be the set of nodes connected
to ¢ with a trail not passing through b, B be the set of 4’s descendants and
C be the rest of the nodes in T'. Being a polytree, A, B and € are disjoint.
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By definition of the set A, node g lies on the single trail connecting each
node in A to b, and a is not a head-to-head node on none of these trails.
Thus (b,a,A) € Mr. T is an Emap of M. Hence (b,a,A) is in M as well.
Assume, by contradiction, that (b,8,a) € M. This triplet together with
(5, a, A) imply by contraction (6) that (b, AU {e}) € M. By definition of
the set C, all trails between C and AU{a} contain at least one head-to head
node, thus (C,8,AU {a}) € Mr and in M as well. This triplet together
with (5,8, AU {a}) imply by composition that (C U {b},8, 4 U {a}) must
also be in M. By weak union, (b,4UC,a) € M. Since AU C is the set of
all non-descendants of b, T is not minimal; link ¥ — a should not be part
of T, contradiction.

That the converse holds, namely, a link in G'p must be a link in skeleton(T),
is shown as follows. Let a¢ and b be two nodes not connected with a link in
T. We show that a—b is not a link in G. There are three cases to consider.
Either a is an ancestor of b (in T), b is an ancestor of a or neither is the
case. In the first two cases there is a directed path from a to & or vice versa.
The triplet (@, U\ {a,b},b) is in Mr because U\ {a,b} includes a node that
blocks this path. The graph T is an Fmap, thus (@, U {a,b},b) € M.
Hence a — b is not in Go. Consequently, it is not in Gg either. If neither
nodes is an ancestor of the other then (a,8,5) € My because each trail
that connects a and b must contain a head-to-head node. Consequently,
(a,9,b) € M, and therefore ¢ — b is not a link in Gp. O.

Theorem 8 If M is a semi-normal graphoid that is represented by a
polytree [-map, then M defines a unique partiaily oriented polytree P.

Proof: By Theorem 6, the skeleton of P equals Gp. Assume, by
contradiction, that P is not unique, namely that there exists a link a — b in
Gr that can be oriented both ways. Then, there exist a neighbor g of b for
which (a,8,q) € M and (a,U \ {a,q},q) € M that induces an orientation
from a into b and there exists another node p. neighbor of a, for which
(6.9,p) € M and (b, U\ {b,p},p) Z M that induces the reverse orientation.
Thus, Gz must contain the chain p—a—~b6—gq.

We reach a contradiction by showing that none of the eight possible
orientations of the trail p — a — & — g could be part of any minimal-edge
polytree Lmap of M. Consequently, the skeleton of T would not equal Gg,
contradicting the assertion made by Theorem 6. If neither a nor b is a head-
to-head node on this trail, then since a —4 — ¢ is the only trail connecting a
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and q and this trail is blocked by b, which implies that (a,U\{a, ¢}, q) must
be in M, contradicting the selection of q. Otherwise, a or b are head-to-
head nodes on this path. Assume b is a head-to-head node (the case where
a is a head-to-head node is symmetric, by changing the roles of a and 5).
Then p —a — b+ ¢ is part of T. In this case (5,U \ {b,p},p) € Mp C M
contradicting the selection of p. O

Theorem 9 Let P be a partially oriented polytree of a semi-normal
graphoid M. Then, every oriented link a — c of P ss part of every minimal-
edge polytree l-map of M.

Proof: By Theorem 8, P is unique and by Theorem 6, it has the
same skeleton as any minimal-edge polytree Lmap T of M. Sincea = b is
oriented in P, there must exist a node g, neighbor of b, for which (a,9,q) €
M and (a,U \ {a,q},q) € M. Thus T, having the same skeleton of P,
contains the trail ¢ — 6 — ¢. Node 4 must be a head-to-head node on this
trail in T because otherwise U \ {a, ¢} would block the trail between a and
q implying (a, U \ {a, q},9) £ Mr and conflicting with our assumption that
(a, U\ {a,q},q) ¢ M. Thus b is a head-to-head node and therefore a — b
isinT. T

Theorem 10 Let P be a partially oriented polytree of a pseudo-normal
graphoid M. Every orientation of the undirected links of P which introduces
a new head-to-head connection to P yields a polytree that is not a minimal-
edge I-map of M.

Proof: Assume, by contradiction that there exists an orientation of
the undirected links of P that yields a minimal-edge polytree Fmap T
which introduces a new head-to-head connection. Let @ — ¢ — b be a
newly introduced head-to-head connection and let b be the node that is
not a parent.of ¢ in P {namely, the link ¢ ~ b is not oriented in P). Let
C be all parents of ¢ in T, exciuding a and 4. Since T is singly-connected,
(C U {a},8,b) € Mr, where Mr is the dependency model defined by T.
The graph T is an Fmap, therefore {C U {e},D,5) is in M as well. We
will show below that all paths between C U {a} and b in G, must path
through node ¢. This will complete the proof; G, is an Fmap of M, thus
(CU{a},e,b) € M. This triplet, together with (C U {a},9,5) would imply,
by marginal weak transitivity and contraction. that either (C U {a,c¢},0,b)
or (C U {a},D,{d,c}) are in M. These would imply, by weak union and
symmetry, that either (c,C U {a},b) or (¢.C 2 {b},a) are in M. Thus,
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either link & — ¢ or ¢ — ¢ are redundant, contradicting the minimality of
T.

It remains to show that all paths between C U {a} and & in G, path
through ¢. Let B be the set of nodes connected to b not through ¢ (in T)
and let A be the rest of the nodes excluding ¢. Thus the nodes of T consist
of A, B and {c}, and these sets are disjoint. We will show that there is no
link connecting a node in B and a node in A. Consequently, there exists
no path between C'U {a} C A and b € B that does not path through e.

Any node ¥ € B is connected to a node ¢’ € A in T only through
the link & — ¢ because T is singly connected. If ¥ # b, then (V',U \
{a', ¥}, @') € Mr C M. Therefore, the pair @' ~ ¥ is not a link in Gq. If
& = b, then it cannot be connected with a link to a parent a' of ¢ because
otherwise the link & — ¢ would be oriented in P because the following two
requirements would have been met: (b, U\{a', b}, @'} & M (Go is an [-map
of M) and (a',0, b)) € M (T is an I-map). Node b also cannot be connected
with a link in Gy to any other node a' € A because (b, I/ \ {', b},d') € M;
¢ blocks the trail from b to each of ¢’s descendants (in T) and the parents

of @ block the path from & to all of ¢’s non-descendants. Thus, there exists
no link connecting a node in A and a node in B. [
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