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Introduction

The purpose of this paper is to summarize recent results in the theory of causal modeling that
may have bearing on research in knowledge discovery.

While everyone agrees that data is not knowledge, there is significant diversity of opin-
ions as to what features of the data should be captured before they qualify as genuine
knowledge. Naturally, if the data contains regularities, we expect our knowledge to exploit these
regularities to yield a more parsimonious representation of the data, i.c., a summary. Another
facility we expect our knowledge to provide is generalization power -- the power to predict the
behavior of some attributes from measurement on others.

Since every summarization of data carries the potential for generalization, most machine
learning programs have pursued the objective of compressing the data to fit a given format (e.g.,
a decision tree or a CNF expression) with the hope that the summarization will also provide the
necessary generalization. We argue that while this strategy may be adequate for concept forma-
tion, classification and prediction, it is not adequate for causal modeling. Causal knowledge
embodies a much stronger form of generalization than that achievable by data compression tech-
niques and, hence, new techniques are needed for extracting such knowledge from data. The
theories described in Appendix I and II provide a framework for developing these techniques.

Background

Given that statistical analysis cannot distinguish causation from covariation, and assuming that
the bulk of our knowledge obtains from passive observations, the questions arise how causal
knowledge is ever acquired by humans and how it should be acquired by learning robots. The
theories described in the accompanied appendices provide a characterization of the asymmetries
that prompt people to perceive causal structures in empirical data and leads to algorithms that
emulate this perception.

* This work was partially supported by the National Science Foundation, Grant #IR1-8821444 and by the Air Force
Office of Scientific Research, Grant #AFOSR-90-0136.

(0 Current Affiliation: Information and Computer Science, UCL Irvine, CA, 92717



Both theories are based on a minimal-model semantics; the first (Appendix I) is grounded
in probabilistic framework while the second (Appendix II) in categorical, constraint-based
framework. This semantics permits the determination of causal directionality without resorting
to chronological information and, additionally, provides a distinction between genuine and spuri-
ous causes even in the presence of unmeasurable factors.

Using the language of directed acyclic graphs (DAGs), the probabilistic definition of cau-
sation reads as follows:

"A variable C has a direct causal influence on a variable E if there is a directed
path from C to £ in all minimal causal models consistent with the data.”

A causal model (i.e., a DAG) is consistent with the data if it can be annotated with parameters so
as to define a probability distribution that fits the data (to a given level of fitness). A causal
model M is minimal if the set of data consistent with M is not a superset of that consistent with
some other model.

Appendix I shows that this formal definition is in line with our common intuition about
causation and, in particular, with the perception of causation as a stipulation for future control.
For example, the minimal-model semantics sanctions the following rule (Definition 14):

"X has a causal influence on Y if there exists a third variable Z, preceding X,
such that Z and ¥ are dependent and Z and Y are independent given X."

In this case, Z acts as a virtual control that influences Y via X. The difference is only that Z
need not be manipulated under the direct control of the analyst, but can be identified within the
data itself. This criterion provides the basis for discovering causal relationships in databases
comprised of bare observations, without resorting to controlled experiments. The theory pro-
vides similar rules for detecting hidden causes, with and without temporal information.

Appendix II approaches causation from a different viewpoint, appealing to the feature of
modularity as its defining characteristic. In simple terms, modularity accounts for the fact that
we can ignore the future, though not the past, when it comes to analyzing the present. A causal
ordering is any ordering of the variables along which the feasible domain of each variable is
determined solely by its explicit relationships with its predecessors; relationships with its succes-
sors can be ignored.

Remarkably, the minimal-model semantics above can be used to define an intrinsic
directionality among variables, one that depends only on the tuples in the database but is invari-
ant to the representation used in specifying the database. In this semantics we define a DAG D
to be compatible with the database if the latter can be decomposed by the following rule: Fixing
its parents in D, each variable must remain unaffected by all other variables, except perhaps its
descendants in D .



In both the probabilistic and categorical frameworks, the minimal-model semantics
yields operational methods of discovering causal relationships from passive observations, that is,
observations obtained without the controlled manipulations of quantities.

Applications to Machine Learning

While our method does not guarantee that the relationships discovered would necessarily
correspond to stable physical mechanisms (no method can guarantee that), it nevertheless consti-
tutes an effective filter to ensure that most of the learned relationships are stable rather than
spurious.

How does it fit into machine learning and knowledge discovery?

If we examine current programs for machine learning we find that what they learn are
mostly SITUATION -+ ACTION rules; given a situation § and some (often implicit) goal G,
choose an action A that is likely to bring you closer to the goal. This kind of rules represent how
an agent should react to changes in the world, but do not represent stable relationships in the
world outside the agent. The weaknesses of reactive representations are several. First, reactive
rules are unstable, as they are vulnerable to many exceptions that cannot easily be encoded. For
instance, the rule above should no longer be applicable in situations where the (implicit) goal
can be satisfied by easier means than the action A. Second, reactive representations do not tell
the agent how to react to novel situations that have not been explicitly encountered in the past.
For example, the rule: "If HUNGRY, then GO HUNTING" should be nullified by facts such as:

F ) - "there is food in the refrigerator”, or,
F - "Your wife is on her way to the supermarket”

Causal rules, in contrast, are much more stable. For example, the causal chain
HUNTING — FOOD - NOT HUNGRY

remains intact regardless of whether facts F, and F; hold in the database. As a result, a plan-
ning program based on a causal model of the environment would be able to automatically pose
the intermediate subgoal "get food", and select the appropriate action depending on the available
facts.

A major obstacle to learning causal rules has been the confusion between genuine and
spurious causes. In other words, a filter is needed to prevent the learning robot from inferring
wrong rules such as "HAVING FOOD causes HAVING DRINK", even though past experience
reveals that, invariably, drinks became available after food. Such spurious associations,
although basic to reactive learning, should be filtered out when knowledge is organized so as to
facilitate control over rapidly changing environment. The criteria described in Appendix I con-
stitute such a filter as they distinguish genuine from spurious causation (see Definitions 12-14).



Whereas in traditional learning tasks we attempt to generalize from one set of instances
to another, the causal modeling task is to generalize from behavior under one set of conditions to
behavior under another set, often a novel one. For example when we say that X causes ¥ we
claim that every means Z capable of producing a change in X will also be capable of producing
changes in Y. We make this claim without ever observing Z. Instead, we might have observed
the behavior of another variable Z* (a virtual control) from which we inferred that the depen-
dence between X and Y is genuinely causal. Thus, causal claims can be thought of as containing
an implicit quantification over situations and actions. This then is the reason that causal rules are
more stable than their reactive counterparts which, in turn, may explain why causal explanation
are much more satisfactory than evidential explanations (e.g., "the cup fell because it broke".)
This also may account for the fact that causal rules are regarded as intrinsic to the external
objects in the domain, and have become the building blocks of declarative knowledge, while
reactive rules serve merely as auxiliary control tools to improve the efficiency of the reasoning
agent.

Learning tasks that require the stability of causal theories should benefit, therefore, from
shifting their attention from reactive to causal rules. This occurs in applications such as process
control, medical diagnosis, financial and economic forecasting and analysis. It would be
interesting to examine whether the criteria defined in Appendix II, when incorporated into exist-
ing machine leaming programs would improve the stability of theories discovered by such pro-
grams.
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Abstract

This paper concerns the empirical basis of
causation, and addresses the following issues:

1. the clues that might prompt people to
perceive causal relationships in uncon-
trolled observations,

2. the task of inferring causal models from
these clues, and

3. whether the models inferred tell us any-
thing useful about the causal mecha-
nisms that underly the observations.

We propose a minimal-model semantics of
causation, and show that, contrary to com-
mon folklore, genuine causal influences can
be distinguished from spurious covariations
following standard norms of inductive rea-
soning. We also establish a sound charac-
terization of the conditions under which such
a distinction is possible. We Provide an ef.
fective algorithm for inferred causation and
show that, for a large class of data the al-
gorithm can uncover the direction of causal
influences as defined above. Finally, we ad-
dress the issue of non-temporal causation.

1 Introduction

The study of causation is central to the understapd-
ing of human reasoning.
mal distinctions between causation and logical im-
plication [Geffner, 1989, Lifschitz, 1987, Pearl, 1988a,
Shoham, 1988). In applications such as diagnosis
[Patil et al., 1982, Reiter, 1987), qualitative physics
[Bobrow, 1985), and plan recognition [Kautz, 1987,
Wilensky, 1983), a centtal task is that of finding a sat-
isfactory ezplanation to a given set of observations,
and the meaning of explanation is intimately related
to the notion of causation.

T.S. Verma
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Computer Science Department
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Most Al works have given the term “cauge” a proce-
dural semantics, attempting to match the way peo-
ple use it in reasoning tasks, but were not concerned
with the experience that prompts people to believe
that “a cauges b”, as opposed to, say, “b causes ¢"
or “c causes both a and §.” The question of choos-
ing an appropriate causal ordering received some at-
tention in qualitative physics, where certain interac-
tions attain directionality despite the instantaneous
and symmetrical nature of the underlying equations,
as in “current causing a voltage drop across the re.
sistor” [Forbus and Gentner, 1986]. In some systems
causal ordering is defined as the ordering at which syb-

[Iwasaki and Simon, 1986), in other systems it follows
the way a disturbance Is propagated from one vari-
able to others [de Kieer and Brown, 1986]. Yet these
choices are made as a matter of convenience, to fit the
structure of a given theor » and do not reflect featyres
of the empirical environment which compelled the for.
mation of the theory.

not rely exclusively on preprogrammed causal know|-
edge, but must be able to translate direct observations
to cause-and-effect relationships. Second, by tracing
empirical origins we stand to obtain an independent
gauge for deciding which of the many logics proposed
for causal Teasoning is sound and/or complete, and
which provides a Proper account of causal utterances
such as “g explains b”, 4 suggests b, “g tends to
cause ", and “a actually caused 4™, etc.

While the notion of causation is often associated with
those of necessity and functional dependence, causal
expressions often tolerate exceptions, primarily due to
Missing variables and coarse descriptions, We say, for
example, “reckless driving causes accidents” or “vou
will fail this course because of your laziness”. Sup-
Pes [Suppes, 1970] has argued convincingly that most
causal utterances in ordinary conversation reflect prob-



abilistic, not categorical relations!, Thus, probability
theory should provide a natural language for capturing
causation [Reichenbach, 1956, Good, 1983]. This is es-
pecially true when we attempt to infer causation from
(noisy) observations — probability calculus remains an
unchallenged formalism when it comes to transiating
statistical data into a system of revisabie beliefs.

However, given that statistical analysis is driven by co-
variation, not causation, and assuming that most hu-
man knowledge derives from statistical observations,
we must atill identify the clues that prompt people to
perceive causal relationships in the data, and we must
find a computational model that emulates this percep-
tion.

Temporal precedence is normally assumed essential
for defining causation, and it is undoubtedly one of
the most important clues that people use to distin-
guish causal from other types of associations. Ac-
cordingly, most theories of causation invoke an ex-
plicit requirement that a cause precedes its effect in
time [Good, 1983, Reichenbach, 1956, Shoham, 1988,
Suppes, 1970]. Yet temporal information alone can-
not distinguish genuine causation from spurious as-
sociations caused by unknown factors. In fact the
statistical and philosophical literature has adamantly
warned analysts that, unless one knows in advance
all causally relevant factors, or unless one can care-
fully manipulate some variables, no genuine causal
inferences are possible [Cartwright, 1989, Cliff, 1983,
Eells and Sober, 1983, Fisher, 1953, Gardenfors, 1988,
Holland, 1986, Skyrms, 1986]2. Neither condition is
realizable in normal learning environments, and the
question remains how causal knowledge is ever ac-
quired from experience.

This paper introduces a minimal-model semantics of
causation which provides a plausible account for how
causal models could be inferred from obeervations. Us-
ing this semantics we show that genuine causal influ-
ences can in many cases be distinguished from spuri-
ous covariations and, moreover, the direction of causal
influences can often be determined without resort-
ing to chronological information. (Although, when
available, chronological information can significantly
simplify the modeling task.) Such semaatics should
be applicable, therefore, to the organization of con-
current evenis or events whose chronological prece-
dence cannot be determined with precision, (e.g. “old
age explains disabilities®) in the spirit of Glymour
[Glymour et al., 1987) and Simon [Simon, 1954].

'See [Dechter and Pearl, 1990] for & treatment of cau-
sation in the context of categorical data.

¥Some of the popular quotes are: *No causation with-
out manipulation®, [Holland, 1986), “No causes in, no
canses out”, [Cartwright, 1989] *No computer program can
take account of variables that are not in the analysis”,
{Cliff, 1983).

This paper is organized as follows. In Section 2 we de-
fine the notions of causal modeis and causal theories,
and describe the task of causal modeling as an identifi-
cation game scientists play against Nature. In Section
3 we introduce the minimal-model semantics of causa-
tion and exemplify its operability and plausibility on
a simpie example. Section 4 identifies conditions un-
der which effective algorithms exist that uncover the
structure of casual influences as defined above. One
such algorithm (called IC) is intreduced in Section 5,
and is shown to be sound for the class of stable distri-
butions, even when some variables are not observable?.
Section 6 extracts from the IC-algorithm the essential
conditions under which causal influences are identi-
fied and proposes these as independent definitions of
genuine influences and spurious associations, with and
without temporal information. Section 7 provides an
intuitive justification for the definitions proposed in
Section 6, showing that our theory conforms to the
common understanding of causation as a stipulation
of stable behavior under external interventions. The
definitions are shown to be in line with accepted stan-
dards of controlied experimentation, save for requir-
ing the identification of “virtual” experimental condi-
tions within the data itself. In Section 8 we invoke the
“virtual control” metaphor to elucidate how causal re-
lationshipe can still be ascertained in the absence of
temporal information. We then offer an explanation
for the puzzling, yet universal agreement between the
temporal and the statistical aspects of causation.

2 The Causal Modeling Framework

We view the task of causal modeling as an identifica-
tion game which scientists play against Nature. Na-
ture possesses stable causal mechanisms which, on a
microscopic level are deterministic functional relation-
ships between variables, some of which are unobserv-
able. These mechanisms are organized in the form
of an acyclic schema which the scientist attempts to
identify.

Definition 1 A causal model of a set of variables
U 13 a directed acyclic graph (dag), in which each node
corresponds to a distincl element of U,

The nodes of the dag correspond to the variables under
analysis, while the links denote direct causal influences
among the variables. The causal model serves as a blue
print for forming a “causal theory” - a precise specifi-
cation of how each variable is influenced by its parents
in the dag. Here we assumne that Nature is at liberty
to impose arbitrary functional relationships between
each effect and its causes and then to perturb these
relationships by introducing arbitrary (yet mutually
independent) disturbances. These disturbances reflect
“hidden” or unmeasurable conditions and exceptions

*Proofs can be found in [Verma, 1991].



which Nature chooses to govern by some undisclosed
probability function.

Definition 2 A4 causal theory is a pair T =
<D.O®p> consisting of a cauvsal model D and a set
of parameters ©p compatible with D. ©p assigns a
function z; = f,[pa(z;), €] and a probability measure
gi, to each r; € U, where pa(z;) are the parents of z;
in D and each ¢; ts a random disturbance distributed
according to g;, independently of the other ¢'s and of
any preceding variable z; : 0 < j <

This requirement of independence renders the distur-
bances “local” to each parents-child family; distur-
bances that influence several families simultaneously
will be treated explicitly as “latent™ variables (see Def-
inition 3),

Once a causal theory T is formed, it defines a joint
probability distribution P(T) over the variables in the
system, and this distribution reflects some features of
the causal model (e.g., each variable must be indepen-
dent of its grandparents, given the values of its par-
ents). Nature then permits the scientist to inspect a
select subset O C U of “observed™ variables, and to
ask questions about the probability distribution over
the observables, but hides the underlying causal theory
as well as the structure of the causal model. We inves-
tigate the feasibility of recovering the topology of the
dag, D, from features of the probability distribution.

3 Model preferences (Occam’s razor)

In principle, U being unknown, there is an unbounded

number of models that would fit a given distribution, .

each invoking a different set of “hidden” variables and
each connecting the observed variables through differ-
ent causal relationships. Therefore with no restric-
tion on the type of models considered, the scientist
is unable to make any meaningful assertions about
the structure underlying the phenomena. Likewise,
even assuming I/ = O but lacking temporal informa-
tion, he/she can never rule out the poesibility that
the underlying model is a complete (acyclic) graph;
a structure that, with the right choice of parameters
can mimic (see Definition 4) the behavior of any other

‘This formulation invokes several idealizations of the
actual task of scientific discovery. It assumes, for example,
that the scientist obtains the distribution directly, rather

than events sampled from the distribution. This assump-

tion is justified when a large sample is available, sufficient
to reveal all the dependencies embedded in the distribution.
Additionally, we assume that the observed varinbles actu-
ally appear in the original cansal theory and are not some
aggregate thereof. Aggregation might result in feedback
loops which we do not discuss in this paper. Our theory
also takes varisbles as the primitive entities in the lan-
guage, not events which permits us to include “enabling”
and “preventing” relationships as part of the mechanism.

model, regardless of the variable ordering. However.
following the standard method of scientific induction,
it is reasonable to rule out any model for which we
find a simpler, less erpressive model, equally consis-
tent with the data (see Definition 6). Models that
survive this selection are called “minimal models™ and
with this notion. we can construct our definition of
inferred causation:

“A variable X is said to have a causal influence on a
variable Y if a strictly directed path from X to ¥ exists
in every minimal model consistent with the data”

Definition 3 Given a set of observable variables
O C U, alatent structure 1s ¢ pair L = <D.0O>
where D is a causal model over U.

Definition 4 One latent structure L = <D.O> 15
preferred to another L' = <D',0> (written L < ')
ff D' can mimie D over O, 1e. for every ©p there
exisis a O, s.i. Ao(<D',0p.>) = Ro)(<D,0p>)

Two latent structures are equivalent, written L' = [,
WLl and L~ L',

Note that the preference for simplicity imposed by
Definition 4 is gauged by the expressive power of a
model, not by its syntactic description. For exam-
ple, one latent structure L; may invoke many more
parameters than L, and still be preferred, if L, is
capable of accommodating a richer set of probabil-
ity distributions over the observables. One reason sci-
entists prefer simpler models is that such models are
more constrained, thus more falsifiable; they provide
the scientist with less opportunities to overfit the data
hindsightedly and, therefore attain greater credibility
(Pearl, 1978, Popper, 1959].

We also note that the set of dependencies induced by
a causal model provides a measure of its expressive
power, i.e., its power of mimicing other models. In-
deed, L; cannot be preferred to L, if there is even
one observable dependency that is induced by L, and
not by Lj. Thus, tests for preference and equiva-
lence can often be reduced to tests of induced de-
pendencies which, in turn, can be determined directly
from the topology of the dags, without ever concern-
ing ourselves with the set of parameters. (For ex-
ample, see Theorem 1 below and [Frydenberg, 1989,
Pear] et al., 1989, Verma and Pearl, 1990]).

Definition 5 A latent structure L is minimal with
respect to a class L of latent structures iff for every
L'el, L=L whenever L' < L.

Definition 6 L = <D,0> is consistent with a
distribution P over O if D can accommodate some
theory that generates P, i.e. there erists a Op s.l.
Boy(<D,0p>)= P

Clearly, a necessary (and often sufficient) condition for



L to be consistent with P, is that the structure of L
can account for all the dependencies embodied in P.

Definition 7 (Inferred Causation) Given P, 4
variable C has a causal influence on E iff there ez-
ists a directed path C —* E in every minimal latent
struclure consistent with p.

We view this definition as normative, because it is
based on one of the least disputed norms of scientific
investigation: Occam’s razor in its semantical cast.
ing. However, as with any scientific inquiry, we make
no claims that this definition is guaranteed to always
identify stable physical mechanisms in nature; it iden-
tifies the only mechanisms we can plausibly infer from
non-expiremental data.

a b * b a b
d d
(b)

d
(a) (c)
a ] a b
* t ] \C%*
d
(d) (¢)

Figure 1: Causal models illustrating the soundness of
¢ — d. The node (%) represents a hidden variable.

As an example of a causal relation that is identified by
the definition above, imagine that observations taken
over four variables {a, b, c, d} reveal two vanishing de-
pendencies: “a is independent of b” and “d is indepen-
dent of {a,b} given ¢”. Assume further that the data
reveals no ofher independence, except those that logi-
cally follow from these two. This dependence pattern
would be typical for exampie, of the following vari-
ables: a = having cold, b = having hay-fever, ¢ = hav-
ing to sneeze, d = having o wipe ones nose. It is not
hard to see that any model which explains the depen-
dence between ¢ and d by an arrow from d to ¢, or by
a hidden common cause (x) between the two, cannot

be minimal, because any such model would be abie to’

out-mimic the one shown in Figure 1(a) which reflects
all observed independencies. For example, the model
of Figure 1{c), unlike that of Figure 1(a), accommo-
dates distributions with arbitrary relations between a
and b. Similarly, Figure 1(d) is not minimal as it fails
to impose the conditional independence between d and
{a, b} given c. In contrast, Figure 1{e) is not consistent
with the data since it imposes a marginal independence
between {a, b} and d, which was not obeerved.

4 Proof Theory and Stable
Distributions

It turns out that while the minimality principle is suf-
ficient for forming a normative and operational the-
ory of causation, it does not guarantee that the search
through the vast space of mirimal models would be
computationally practical. If Nature truly conspires
to conceal the structure of the underlying model she
could still annotate that model with a distribution
that matches many minimal models, having totally
disparate structures. To facilitate an effective ptoof
theory, we rule out such eventualities, and impose a
restriction on the distribution called “stability” (or
“dag-isomorphism” in [Pearl, 1988b]). It conveys the
assumption that all vanishing dependencies are struc-
tural, not formed by incidental equalities of numerical
parameters®.

Definition 8 Let I(P) denote the set of all cond:-
tional independence relationships embodieded in P. A
causal theory T = <D,Op> genergies a stable dis-
tribution iff it contains no ertrancous tndependences,
i.e. I{P(<D,0p>)) C I{P(<D, ©7>)) for any set of
parameters ©f,.

With the added assumption of stability, every distribu-
tion has a unique causal model (up to equivalence), as
long as there are no hidden variables. This uniqueness
follows from the fact the structural constraints that an
underlying dag imposes upon the probability distribu-
tion are equivalent to a finite set of conditional inde-
pendence relationships asserting that, given its par-
ents, each variable is conditionally independent of all
its non-descendents. Therefore two causal models are
equivalent (i.c. they can mimic each other) if and only
if they relay the same dependency information. The
following theorem, which is founded upon the depen-
dency information, states necessary and sufficient con-
ditions for equivalence of causal modeis which contain
no hidden variables,

Theorem 1 [Verma and Pearl, 1990] When U =
O, two cawusal models are equivalent iff their dags have
the same links and same set of uncoupled head-to-head
nodes®.

The search for the minimal model ther boils down
to recovering the structure of the underlying dag
from queries about the dependencies portrayed in
that dag.  This search is exponential in gen-
eral, but simplifies significantly when the underlying

*It is possible to show that, if the parameters are chosen
at random from any reasonable distribution, then any un-
stable distribution has measure zero [Spirtes et al., 1989].
Stability precludes deterministic constraints. Less restric-
tive assumptions are treated in [Geiger et al., 1990).

%i.e. converging arrows emanating from non-adjacent
nodes, such as a — ¢ — b in Figure 1(a).



structure is sparse (see [Spirtes and Glymour, 199],
Verma and Pearl, 1990] for such algorithms).

Unfortunately, the constraints that a latent structure

IC-Algorithm (Inductive Causation)

Input: P 5 sampled distribution,

impose upon the distribution cannot be completelyOutput: core(?) a marked hybrid acyclic graph.

characterized by any set of dependency statements.
However, the maximal set of sound constraints can
be identified {Verma and Pearl, 1990] and it is this set
that permits us to recover sound fragments of latent
structures.

5 Recovering Latent Structures

When Nature decides to “hide” some variables, the ob-
served distribution P need no longer be stable relatjve
to the observable set O, i.e, P may result from many
equivalent minimal latent structures, each containing
any number of hidden variables. Fortunately, rather
then having to search through this unbounded space
of latent structures, it turns out that for every latent
structure L, there is a dependency-equivalent latent
structure called the projection of L on O in which ev-
ery unobeerved node is a root node with exactly two
observed children:

Definition 9 A latent sirxcture Lio)y = <Dy, 0> is
@ projection of another latent structure L :ﬂ’

1. Every wnobservable variable ofD[o] 15 a parentiess
common cause of ezactly two non-adjacent obsersp.
able variables.

2. For cvery stable distribution P generated by L,
there ezists a stable distribution P’ generaled by
L[o] such that I(P‘o]) = I(P['O])

Theorem 2 Any latent strecture has at least one pro.
Jection (identifiable in linear timej,

It is convenient to Tepresent projections by bi-
directional graph with only the observed variables as
vertices (i.e., leaving the hidden variables implicit).
Each bi-directed link in such a graph represents a com-
mon hidden cause of the variables corresponding to the
link’s end points.

Theorem 2 renders our definition of inferred causation
(Definition 7) operational; we will show (Theorem 3)
that if a certain link exists in a distinguished projec-
tion of any minimal model of P, it must indicate the
existence of a causal path in every minimal model of
P. Thus the search reduces to finding a projection of
any minimal model of P and identifying the appropri-
ate links. Remarkably, these links can be identified by
a simple procedure, the IC-algorithm, that is not more
complex than that which recovers the unique minimal
model in the case of fully observable structures,

1. For each pair of variabies a and b, search for 3 set
Sa such that (a, Sy, ) is in 1(£),
namely a and b are independent in P, conditioned
on S,i. If there is no such Sas. place an undirected
link between the variables.

2. For each pair of non-adjacent variables a and b with
a common neighbor ¢, check if ¢ € 5,
If it is, then continue.
If it is not, then add arrowheads pointing at ¢, (i.e.
a1},

. Form core( P) by recursively adding arrowheads ac.
cording to the following two ryles:?
If ab and there is a strictly directed path from a to
b then add an arrowhead at b, -
If a and b are not adjacent but gc and ¢ — b, then
dire_gt the link ¢ — &,

4. Iif ab then mark every uni-directed link b — ¢ in
which ¢ is not adjacent to q.

The result of this procedure is a substructure called
core(P) in which every marked uni-directed arrow
X — Y stands for the statement: “X has a causal
influence on Y (in all minimal latent structures con-
sistent with the data)”. We call these relationships
“genuine” causal influences (e-8. ¢ — d in previous
Figure 1).

Definition 10 For any latent structyre [, core(L) s
defined as the hybrid graph® satisfying (1) two nodes
are adjacent in core(L) iff they are adjacent or they
have a common wnobserved cause in every projection
of L, and (2) a link between a and b has an arrowhead
ponting at b iff a — b or g and b have a common
¥nobserved cause in every projection of L.

Theorem 3 For any latent structure L = <D.O>
and an associaled theory T = <D, 0p> f P(T) s
stable then core(L) = core( Ao (T)).

Corollary 1 If every link of the directed pathC —" F
is marked in core(P) then C has a causal influence on
E according to P,

6 Probabilistic Definitions for Causal
Relations

The IC-algorithm takes a distribution £ and outputs
a dag, some of its links are marked uni-directional
ab denotes adjacency, i.e. a-ba—ba—tbora—s

ab denotes either a — b or ¢ « §.
*In & hybrid graph links may be undirected, uni-directed
or bi-directed.



(denoting genuine causation), some are unmarked uni-
directional (denoting potential causation), some are bi-
directional (denoting spurious association) and some
are undirected (denoting relationships that remain un-
determined). The conditions which give rise to these
labelings constitute operational definitions for the var-
ious kinds of causal relationships. In this section we
present explicit definitions of potential and genuine
causation, as they emerge from Theorem 3 and the
IC-algorithm. Note that in all these definitions, the
criterion for causation between two variables, X and
Y, will require that a third variable Z exhibit a spe-
cific pattern of interactions with X and Y. This is not
surprising, since the very essence of causal claims is to
stipulate the behavior of X and Y under the influence
of a third variable, one that corresponds to an exter-
nal control of X. Therefore, our definitions are in line
with the paradigm of “no causation without manipu-
lation” [Holland, 1986]). The difference is only that
the variable Z, acting as a virtual control of X, must
be identified within the data itself. The IC-algorithm
provides a systematic way of searching for variables Z
that qualify as virtual controls.

Detailed discussions of these definitions in terms of
virtual control are given in Sections 7 and 8.

Definition 11 (Potential Cause) A variable X has
¢ potential causal influence on another variable Y

{inferable from P), if

1. X andY are dependent in every context.

2. There erists a variable Z and a contexi S such
that

(i) X and Z are independent given S
(i) Z and Y are dependent given S

Note that this definition precludes a variable X from
being a potential cause of itself or of any other variable
which functionally determines X.

Definition 12 (Genuine Cause) A variable X has
¢ genuine causal influence on another variable Y
if there ezists a varigble Z such that either:

1. X is a potential cause of Y and there ezisis a
contezt S satisfying:

(1) Z is a potential cause of X
(i) Z and Y are dependent given S.
(i%i) Z and 'Y are independent given SU X,

or,

2. X is a genunine cause of Z and Z is a genuine
canse of Y.

Definition 13 (Spurious Association) Two vari-
ables X and Y are spuriously associated if they are

dependent in some contert S and there ezists two other
variables Z, and Z, such that:

1. Zy and X are dependent given S
2. 22 and Y are dependent given S
3. Zy and Y are independent given S

4. 23 and X are independent given S

Succinctly, using the predicates I and - to denote
independence and dependence respectively, the condi-
tions above can be written:

1. ~I(Z,, XS)
2. =~I(Z,,Y)8)
3. I(2,,Y]S)
4. I(Zy, X|5)

Definition 11 was formulated in [Pearl, 1990] as a rela-
tion between events (rather than variables) with the
added condition P(Y|X) > P(Y) in the spirit of
(Good, 1983, Reichenbach, 1956, Suppes, 1970]. Con-
dition 1 in Definition 12 may be established either
by statistical methods (per Definition 11) or by other
sources of information e.g., experimental studies or
temporal succession (i.e. that Z precedes X in time).

When temporal information is available, as it
is assumed in the moet theories of causality
([Granger, 1988, Spohn, 1983, Suppes, 1970]), then
Definitions 12 and 13 simplify considerably because
every variable preceding and adjacent to X now qual-
ifies as a “potential cause” of X. Moreover, adjacency
(i.e. condition 1 of Definition 11) is not required as
long as the context S is confined to be earlier than S.
These considerations lead to simpler conditions distin-
guishing genuine from spurious causes as shown next.

Definition 14 (Genuine Causation with tempo-
ral information) A veriable X has a causal influence
onY if there is a third variable Z and a contert S, both
occurring before X suchk that:

1. ~I(Z,Y]S)
2. 1(2,Y|SUX)

Definition 15 (Spurious Association with tem-
poral information) Two variables X and Y are spu-
riously associated if they are dependent in some con-
tezt S, X precedes Y and there exisis a varishle Z
satisfying:

1. I(Z,Y|S)
2. ~I(Z, X|S)



7 Causal Intuition and Virtual
Experiments

This section explains how the formulation introduced
above conforms to common intuition about causation
and, in particular, how symmetric probabilistic de-
pendencies can be transformed into judgements about
causal influences. We shall first uncover the intuition
behind Definition 14, assuming the availability of tem.-
poral information, then (in Section 8) generalize to non
temporal data, per Definition 12.

The common intuition about causation is captured by
the heuristic definition [Rubin, 1989): “X is a cause
for Y if an external agent interfering only with X can
affect ¥ .

Thus, causal claims are much bolder than those made
by probability Statements; not only do they summa-
rize relationships that hold in the distribution under.
lying the data, but they also predict relationships that
should hold when the distribution undergoes changes,
such as those inferable from external intervention. The
claim “X causes Y” asserts the existence of a stable
dependence between X and Y, one that cannot be at-
tributed to some prior cause common to both, and one
that should be preserved when an exogenous control
is applied to X.

This intuition requires the formalization of three no-
tions:

1. That the intervening agent be “external” (or “ex-
ogenous™)

2. That the agent can “affect” Y

3. That the agent interferes “only” with X

If we label the behavior of the intervening agent by a -

variable Z, then these notions can be given the follow-
ing probabilistic explications:

1. Externality of Z: Variations in Z must be inde.
pendent of any factors W which precede X y Le,,
HZ,W) v w. w <ty (1)

2. Control: For Z to effect changes in ¥V (via X )
we require that Z and ¥ be dependent, written:

-I(2,Y) (2)
3. Locality: To ensure that Z interferes “only” with

X, i.e,, that its entire effect on ¥ is mediated by
X, we use the conditional independence assertion:

1(2,Y|X) (3)
to read “Z is independent of Y, given X",
Note that (2) and (3) imply (by the axioms of condi-

tional independence [Pearl, 1988b)) that X and Y are
dependent, namely, -=I(X, Y).

%
Z W Z \H'
Y ¥
Figure 2 Figure 3

Conditions (1) through (3) constitute the traditional
premises behind controlled statistical experiments,
with (1) reflecting the requirement that units seiected
for the expirement be chosen at random from the pop-
i They guarantee that any de-

be derived from probability theory together with Re.
ichenbach’s principle [Reichenbach, 1956], stating that
every dependence ~I{X,Y) requires a causal expia-
nation, namely either one of the variables causes the
other, or there must be a variable W preceding .\’ and
Y such that I(X, Y|W) (see Figure 2). Indeed. if there
is no back path from Z to ¥ through W (Eq. (1)) and
no direct path from Z to ¥V avoiding X (Eq. (3)) then
there must be a causal path from X to Y that is re.
sponsible for the dependence in Eq. (2)°.

In non-experimental situations it s not practical to de-
tach X completely from its natural surrounding and to
subject it to the exclusive control of an exogenous {and
randomized) variable Z, Instead, one could view some
of X’s natural causes as “virtua] controls” and, pro-
vided certain conditions are met, use the latter to re-
veal non-spurious causal relationship between X and
Y. In so doing we compromise, of course, condition
(1), because we can no longer guarantee that those nat-
ural causes of X are not themselves affected by other
causes which, in turn, might influence ¥ (see Figure 3).

- However, it turns out that for stable distributions, con-

ditions (2) and (3) are sufficient to guarantee that the
association between X and Y is non-spurious, thus
Justifying Definition 14 for genuine causation.

The intuition goes as follows (see Figure 3): If the de.

?Cartwright [Cartwright, 1989] offers a sufficiency proof
in the context of linear models,



pendency between Z and Y (and similarly, between
X and V) is spurious, namely, X and ¥ are merely
manifestations of some coinmon cause W, there is no
reason then for X to screen-off Y from Z, and con-
dition (2) should be violated. In case condition (2)
is accidentally satisfied by some strange combination
of parameters, it is bound to be “unstable”, as it wil]
be perturbed with any slight change of expiremental
conditions.

Conditions (2) and (3) are identical to those in Defi-
nition 14, save for the context § which is common to
both. The inclusion of the fixed context S is legit-
imized by noting that if P(X,Y,Z)is a marginal of
a stable distributjon, then so is the conditional distri-
bution P(X,Y, Z|S = 5), as long as § corresponds to
variables which precede X.

Definition 14 constitutes an alternative way of recov-
ering causal structures, more flexible than the I1C-
algorithm; we search the data for three variables
Z,X,Y (in this temporal order) that satisfy the two
conditions in some context S = 8, and when such a
triple is found, X is proclaimed to have a genuine
causal influence on Y. Clearly, permitting an arbitrary
context S increases the number of genuine causal influ-
ences that can be identified in any given data; marginal
independencies and even 1-place conditional indepen-
dencies are rare phenomenon.

Note that failing to satisfy the test for genuine causa-
tion does not mean that such relationship is necessarily
absent between the quantities under study. Rather, it
means that the data available cannot substantiate the
claim of genuine causation. To further test such claims
one may need to either conduct experimental studies,

or consult a richer data set where virtual control vari- -

ables are found.

In testing this modeling scheme on real life data,
we have examined the observations reported in Se-
wal Wright’s seminal paper “Corn and Hog Correla-
tions” [Wright, 1925]. As expected, corn-price (X) can
clearly be identified as a cause of hog-price (Y), not
the other way around. The reason lies in the existence
of the variable corn-crop (Z) that, by satisfying the
conditions of Definition 14 (with § = #), acts as' a
virtual control of X (see Figure 2). To test for the
possibility of reciprocal causation, one can try to find
a virtual controller for Y, for example, the amount of
hog-breeding (2’). However, it turns out that 2’ is not

screened off from X by Y (possibly because corn prices

exert direct influence over farmer’s decision to breed
more hogs), hence, failing condition 3, Y disqualifies as
a genuine cause of X, Such distinctions are important
to policy makers in deciding, for example, which com-
modity, corn or hog, shouid be subsidized or taxed.

8 Non-Temporal Causation and
Statistical Time

When temporal information is unavailable the condi-
tion that Z precede Y {Definition 14) cannot be tested
directly and must be replaced by an equivalent condi.
tion, based on dependence information. As it turns
out, the only reason we had to require that Z pre.
cede X is to rule oul the possibility that Z is a causal
consequence of X'; if it were a consequence of X thep
the dependency between Z and Y could easily he ex.
plained away be a common cause W of X and }' (see
Figure 2).

The information that permits us to conclude that one
variable is not a causal consequence of another comes
in the form of an “intransitjve triplet™, such as the
variables a, b and ¢ jn Figure 1(a) satisfying: I{a. b,
~I(a,c) and =~I(b,c). The argument goes as follows: [f
we create conditions (fixing S,,} where two variahles,
a and b, are each correlated with a third variable ¢ but
are independent of each other, then the third variable
cannot act as a cause of a or b, (recall that in sta-
ble distributions, common causes induce dependence
among their effects); it must be either their common
effect, ¢ — ¢ ~ b, or be associated with a and b via
common causes, forming a pattern such as g — ¢ — b.
This is indeed the eventuality that permits our atgo-
rithm to begin orienting edges in the graph {step 2.
and assign arrowheads pointing at ¢. It is also this
intransitive pattern which is used to ensure that Y is
not a consequence of ¥ (in Definition 11) and that 7
is not a consequence of X (in Definition 12). In defi-
nition 14 we have two intransitive triplets, (7,. X.})
and (X,Y, Z;), thus ruling out direct causal influence
between X and Y, implying spurious associations as
the only explanation for their dependence.

This interpretation of the intransitjve triple is in fne
with the “virtual control” view of causation. For ex-
ample, one of the reasons people insist that the rain
causes the grass to become wet, and not the other way
around, is that they can find other means of getting the
grass wet, totally independent of the rain. Transferred
to our chain a — ¢ — , we can preclude ¢ from being a
cause of a if we find another means {4} of potentially
controlling ¢ without affecting a [Peatl, 1988a, p. 396).

Determining the direction of causal influences from
nontemporal data raises some interesting philosophical
questions about the nature of time and causal expla-
nations. For example, can the orientatjon assigned to
the arrow X — Y in Definition 14 ever clash with 1em-
poral information (say by a subsequent discovery that
Y precedes X)? Alternatively, since the rationale be-
hind Definition 14 is based on strong intuitions about
how causal influences should behave (statistically), it
is apparent that such clashes, if they occur, are rather
rare. The question arises then, why? Why should ori-
entations determined solely by statistical dependencies



have anything to do with the flow of time?

[n human discourse, causal explanations indeed carry
two connotations, temporal and statistical. The tem-
poral aspect is represented by the convention that a
cause should precede its effect. The statistical aspect
expects causal explanations {once accounted for) to
screen off their effects, i.e., render their effects con-
ditionally independent!®. More generally, causal ex-
planations are expected to obey many of the rules
that govern paths in a directed acyclic graphs (e.g.,
the intransitive triplet criterion for potential causa-
tion, Section 7). This leads to the observation that, if
agreement is to hold between the temporal and statis-
tical aspects of causation, natural statistical phenom-
ena must exhibit some basic temporal bias. Indeed,
we often encounter phenomenon where knowledge of a
present state renders the variables of the future state
conditionally independent fe.g., multi-variables eco-
nomic time series as in Eq. (4) below). We rarely
find the converse phenomenon, where knowledge of the
present state would render the components of the past
state conditionally independent. The question arises
whether there is any compelling reason for this tem-
poral bias.

A convenient way to articulate this bias is through the
notion of “Statistical Time”.

Definition 16 (Statistical Time) Given an empir-
ical distribution P, a statistical time of P is any or-
dering of the vartables that agrees with at least one
mintmal causal model consistent with P.

We see, for example, that a scalar Markov-chain pro-
cess has many statistical times; one coinciding with the
physical time, one opposite to it and the others corre-
spond to any time ordeting of the variables away from
some chosen variable. On the other hand a process
governed by two coupled Markov chains,

XizaXia+8Y1 4+ & (4)
Y: =X +8Y + €,

has only one statistical time - the one coinciding with

®This principle, known as Reichenbach’s “conjunctive
fork” or “common-cause” criterion [Reichenbach, 1958,
Suppes and Zaniotti, 1981] has been criticized by Salmon
[Salmon, 1984], who showed that some events would qual-
ify as causal explanations though they fail to meet Re-
ichenbach’s criterion. Salmon admits, however, that when
a conjunctive forks does occur, the screening off variable is
expected to be the cause of the other two, not the effect
[Salmon, 1984, p. 167]. He notes that it is difficult to find
physically meaningful examples where a response variable
renders its two causes conditionally independent {although
this would not viclate any axiom of probability theory).
This asymmetry is further evidence that humans tend to
reject causal theories that yield unstable distributions.

the physical time!!. Indeed, running the 1C-algoriii;,
on samples taken from such a process, wihile uj-
pressing all temporal information, quickly identifies
the components of X,_; and ¥;_, as genuine catise~
of X; and ¥;. This can be seen from Definition 11

where X,_» qualifies as a potential cause of AT
ingZ =Y,_zand § = {X,;_3,Y,_3}. and Definition 17
where X,_| qualifies as a genuine cause of \, n-ine

Z = 1";_2 and § = {}’[_1} of ‘Y(.

The temporal bias postulated earlier can he exprosaec
as follows:

Conjecture 1 {Temporal Bias) /n most nwatvial
phenomenon, the physical time comcrdes with ot loas
one slalistical trme.

Reichenbach [Reichenbach, 1956] attributed the asvin-
metry associated with his conjunctive fork to the see-
ond law of thermodynamics. We are not sure a1 thi-
point whether the second law can provide a full ac-
count of the temporal bias as defined ahove. since
the influence of the external noise & and & renders
the process in (4) nonconservative'?. What is clear.
however, is that the temporal bias is language depen.
dent. For example, expressing Eq.(4) in a different co-
ordinate system (say, using a unitary transformation
(X3, Y) = U(X(, 11)), it is possible to make the statis-
tical time (in the (X', Y"') representation) run contrar
to the physical time. This suggests that the apparcn
agreement between the physical and statistical tines
is a byproduct of human choice of linguistic primitives
and, moreover, that the choice is compelled by a ~ur-
vival pressure to facilitate predictions at the expense
of diagnosis and planning.

9 Conclusions

The theory presented in this paper should dispel
the belief that statistical analysis can never distin-
guish genuine causation from spurious covariation.
This belief, shaped and nurtured by generations of
statisticians [Fisher, 1953, Keynes, 1939, Ling. 1983
Niles, 1922} has been a major hindrance in the wav of
developing a satisfactory, non-circular account of cau-
sation. In the words of Gardenfords [Gardenfors, 1985
page 193):

In order to distinguish genuine from spurious
causes, we must already know the causally
relevant background factors. ... Further, the
extra amount of information is substantial:
In order to determine whether C is a cause
of E, all causally relevant background factors
must be available. It seems clear that we

lig, and £) are assumed to be two independent, white
noise time series. Also o # § and v # 8.
12We are grateful to Seth Lloyd for this observation.



often have determinate beliefs about causal
relations between events, even if we do not
know exactly which factors are causally rele-
vant to the events in question!?.

This paper shows that such extra information is of-
ten unnecessary: Under the assumptions of model-
minimality (and/or stability), there are patterns of
dependencies that should be sufficient to uncover gen-
uine causal relationships. These relationships cannot
be attributed to hidden causes lest we violate one of
the basic maxims of scientific methodology: the se-
mantical version of Occam’s razor. Adherence to this
maxim expiains why humans reach consensus regard-
ing the directionality and nonspuriousness of causal
relationships, in the face of opposing alternatives, per-
fectly consistent with experience. Echoing Cartwright
[Cartwright, 1989] we summarize our claim with the
slogan “No Causes In, Some Causes Qut™.

From a methodological viewpoint, our theory should
settle some of the on going disputes regarding the
validity of path-analytic approaches to causal model-
ing in the social sciences [Freedman, 1987, Ling, 1983].
It shows that the basic philosophy governing path-
analytic methods is legitimate, faithfully adhering to
the traditional norms of scientific investigation. At the
same time our results also explicate the assumptions
upon which these methods are based, and the con-
ditions that must be fulfilled before claims made by
these methods can be accepted. Specifically, our anal-
ysis makes it clear that causal modeling must begin
with vanishing ( conditional ) dependencies (i.e. miss-
ing links in their graphical representations). Models
that embody no vanishing dependencies contain no vir-
tual control variables, hence, the causal component of
their claims cannot be substantiated by observational
studies. With such models, the data can be used only
for estimating the parameters of the causal links once
we are absolutely sure of the causal structure, but the
structure itself, and especially the directionality of the
links, cannot be inferred from the data. Unfortunately,
such models are often employed in the social and be-
havioral sciences e.g. [Kenny, 1979).

On the practical side, we have shown that the assump-
tion of model minimality, together with that of “sta-
bility” (no accidental independencies) lead to an effec-
tive algorithm of recovering causal structures, trans-
parent as well as latent. Simulation studies conducted
at our laboratory show that networks containing tens
of variables require less than 5000 samples to have
their structure recovered by the algorithm. For ex-
ample, 1000 samples taken from the process shown in
Eq. (5), each containing ten successive X,Y pairs, were
sufficient for recovering its double-chain structure {and
the correct direction of time). The greater the noise,

'3See alsc Cartwright [Cartwright, 1989] for s similar po-
sition, and for & survey of the literature.

the quicker the recovery.

Another result of practical importance is the following:
Given a proposed causal theory of some phenomenon.
our algorithm can identify in linear time those causal
relationships that could potentially be substantiated
by observational studies, and those whose directional-
ity non-spuriousness can only be determined by con-
trolled, manipulative experiments.

It should also be interesting to explore how the new

criteria for causation could benefit current research

in machine learning. In some sense, our method re-

sembles a search through elements of a version space

[Mitchell, 1982), where each hypothesis stands for a
causal theory. Unfortunately, this is where the resem-

blance ends. The prevailing paradigm in the machine
learning literature has been to define eac hyvpothesis
(or theory, or concept) as a subset of observable in-
stances; once we observe the entire extension of this
subset, the hypothesis is defined unambiguously. This
is not the case in causal modeling. Even if the train-
ing sample exhausts the hypothesis subset (in our case.
this corresponds to observing P precisely). we are stiil
left with a vast number of equivalent causal theories.
each stipulating a drastically different set of causal
claims. Fitness to data, therefore, is an insufficient cri-
terion for validating causal theories. Whereas in tradi-
tional learning tasks we attempt to generalize from one
set of instances to another, the causal modeling task is
to generalize from behavior under one set of conditions
to behavior under another set. Causal modeis should
therefore be chosen by a criterion that challenges their
stability against changing conditions, and these show
up in the data in the form of virtual control variables.
Thus, the dependence patterns identified by definition
11 through 14 constitute islands of stability as well
as virtual validation tests for causal models. It would
be interesting to examine whether these criteria. wien
incorporated into existing machine learning programs
would improve the stability of theories discovered by
such programs.
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Abstract

Normally, constraint networks are undirected, since
constraints merely tell us which sets of values are
compatible, and compatibility is a symmetrical rela-
tionship. In contrast, causal models use directed
links, conveying cause-effect asymmetrics. In this
paper we give a relational semantics to this direc-
tionality, thus explaining why prediction is easy
while diagnosis and planning are hard. We use this
semantics to show that certain relations possess
intrinsic directionalities, similar to those characteriz-
ing causal influences. We also use this semantics 1o
decide when and how an unstructured set of sym-
metrical constraints can be configured so as to form
a directed causal theory.

1. Introduction

Finding a solution to an arbitrary set of constraints is known
to be an NP-hard problem. Yet certain types of constraint
systems, usually those describing causal mechanisms,
manage to escape this limitation and permit us to construct a
solution in an extremely efficient way. Consider, for exam-
ple, the task of computing the output of an acyclic circuit
consisting of a large number of logical gates. In theory,
each gate is merely a constraint that forbids certain input-
output combinations from occurring, and the task of com-
puting the output of the overall circuit (for a given combina-
tion of the circuit inputs) is equivalent w that of finding a
solution to a set of constraints. Yet contrary to the general
constraint problem, this task is remarkably simple; one need
only trace the flow of causation and propagate the values of
the intermediate variables from the circuit inputs down to
the circuit output(s). This forward computation encounters

none of the difficulties of the general constraint-satisfaction

problems, thus exemplifying the simplicity inherent to
causal predictions.

*This work was partially supported by the National Science
Foundation, Grant #IRI-8821444 and by the Air Force Offics of
Scientific Research, Grant #AFOSR.90-0136.

Judea Pearl
Computer Science Department
University of California, Los Angeles
Los Angeles, CA. 90024
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The aim of this paper is to identify and characterize the
features that render this class of problems computationally
efficient, thus explaining some of the reasons that causal
models are so popular in the organization of human
knowledge. Note that this efficiency is asymmetric; it only
characterizes the forward computation, but fails to hold in
the backward direction. For instance, the problem of
finding an input combination that yields a given output (a
task we normally associate with planning or diagnosis) is as
hard as any constraint satisfaction problem. Thus, the
second aim of our analysis is 10 explain how a system of
constraints, each defined in terms of the totally symmetric
relationship of compatibility, can give rise to such profound
asymmetries as those attributed to cause-effect or input-
output relationships. At first glance, we might be tempted to
attribute the asymmetry 10 the functional nature of the con-
straints involved. However, functional dependency in itself
cannot explain the directional asymmetry found in the
analysis of causal mechanisms such as the logic circuit
above. Imagine a circuit containing some faulty com-
ponents, the output of which may attain one of several

. values. The constraints are no longer functional, yet the

asymmetry persists; finding an output compatible with a
given input is easy while finding an input compatible with a
given output is hard, This asymmetry between prediction
and planning seems to be a universal feature of all systems
involving causal mechanisms [Shoham, 1988], a feature we
must emulate in defining causal theories.

Our starting point i3 to formulate a necessary and
sufficient condition for a system of constraints to exhibit a
directional asymmetry similar to that characterizing causal
organizations. Basically, the criterion is that of modularity:
there should exist an ordering of the variables in the system
such that imposing constraints on later variables would not
further constrain earlier variables, Intuitively, it captures the
understanding that predictions are useless for diagnosis;
e.g., given a set of findings, we cannot improve the accuracy
of our diagnosis by concentrating our analysis on the
patient’s prospects for recovery. Likewise, in the context of
the logic circuit example, modularity asserts that if we wish
to add a new gate, then, as long as we do not connect to its
output, we can add this gate anywhere in the circuit without



perturbing the circuit's behavior. Starting with modularity
as a definition of causal theories (Section 2), we show! that
it is tantamount to enabling backtrack-free search (for a
feasible solution) along any natural ordering of the theory.
We then explore methods of constructing causal
specifications for a given relation, that is, specifications that
permit objects from the relation to be retrieved backtrack-
free along some ordering. Such methods are investigated
along two dimensions: inductive and pragmatic. Along the
inductive dimension (Section 3), we observe the tuples of
some relation p, and we seek to represent this set of obser-
vations by a causal theory that is as simple as possible. We
provide a formal definition of simplicity and show that
together with the insistence on backtrack-free predictions, it
leads 10 a natural definition of imtrinsic directionality,
matching our perception of causal directionality in logical
circuits and other physical devices.

Along the pragmatic dimension (Section 4), we start
with an unordered collection of constraint specifications,
which might represent some stable physical laws, and we
seek an ordering of the variables such that the overall sys-
tem constituies a causal theory. Clearly, not every system
of constraints can turn causal by a clever ordering of the
variables. The criterion for the existence of such an ordering
depends on both the natre of the constraints and the topol-
ogy of the subsets of variables upon which the constraints
are specified. Some constraint sysiems are amiable to
causal ordering by virtue of their topology alone, regardiess
of the content of the individual constraints. These are called
acyclic constraint systems, originally studied in the litera-
ture of relational databases, [Beeri et al., 1983]. In contrast,
Section 4 ascribes causal ordering to a more general set of
topologies, but imposes special requirements on the charac-
ter of the individual constraints.

Our basic requirement for a k-variable constraint to
qualify as a description of a primitive causal mechanism, is
that at least one set of k-1 variables must behave as inputs
(or causes) relative to the remaining k™ variable (to be
regarded as an output or an effect), that is, no value combi-
nation of these k-1 variables can be forbidden, and each
such combination must be compatible with at least one
value of the k™ variable. Additionally, in order for the sys-
tem as a whole 1o act as a causal system, mechanisms must
be ordered in a way that prevents conflicts among their
predictions, hence, we require that no two constraints
should designate the same variable as an output. We provide
effective procedures for: (1) deciding if such an ordering
exists and, (2) identifying such ordering whenever possible.
The ordering found can be used to facilitate search and
retrieval, and are similar to those used to describe the opera-

tion of physical devices [Kuipers, 1984; Iwasaki and Simon, -

1986; de-Kleer and Brown, 1986].

2. Definitions and Preliminaries: Constraint

'Proofs can be found in [Dechter and Pearl, 1991].

Specifications and Causal Theories

Definition 1 (Constraint Specification): A constraint
specification (CS) consists of a set of n variables X =
(X1,....X,), each associated with a finite domain,
domy, ..., dom, , and a set of constraints {(Cy,Cq ..., C}
on subsets of X. Each constraint C; is a relation on a subset
of variables §; = {X; , ..., X,,}, namely, it defines a subset
of the Cartesian product of dom; x,..., x dom,. The
scheme of a CS is the set of subsets on which constraints
are defined, scheme(CS)=(S,,S,...., $). Scx,
and each such subset is called a component. A solution of
a given CS is an assignment of values to the variables in X
such that all the constraints in the CS are satisfied. A con-
straint specification CS is said to define an underlying rela-
tion rel (CS), consisting of all the solutions of CS .

Definition 2 (Causal Theories): Given a constraint
specification CS, its underlying relation p = re/ (CS ), and an
orderingd = (X, X,, ..., X,), we say thata CS is a causal
theory (of p) relative to d if for all i > 1 we have

My,,....x(@) =ﬁ?} C; ()

where
J@y=1:8; <{Xy, ..., X)) (2)
Iy, ..., x(p) denotes the projection of pon (X, ..., X1,

that is, the set of all subtuples (x,,. .., x;) for which an
exXtension (X; ,.... % ,Xi41...., X, ) €xists inp, and 4 is
the join operator. Any pair <d, CS > satisfying (1) will be
called a causal theory (of p).

Although condition (1) may seem hard to verify in
practice, it nevertheless provides an operationa! definition
for causal theories. To test whether a given CS is causal
relative to ordering 4, we need to find the set of solutions o

~ the given CS, project back these solutions on the strings of

variables X .X,...., X;, 1<i £, then check whether
each such projection coincides exactly with the set of solu-
tions to a smaller CS, one consisting of only those con-
straints that are defined on variables taken from
{X1.....X;}). In Section 4 we will show that certain types
of specifications possess syntactic features that render them
inherently causal, in no need of the elaborate test prescribed
by (1). For example, the specifications provided by a collec-
tion of logic gates always constitutes a causal theory relative
to any ordering compatible with their standard assembly in
acyclic circuits (i.e., no variable can serve as an output of
two different gates). Similarly, linear inequalities and pro-
positional clauses, under certain conditions, can be assem-
bled into causal theories by finding appropriate orderings of
the variables.



From a conceptual viewpoint, Definition 2 formalizes
the notion of modularity (see Introduction) and can be given
the following temporal interpretation. If we view the vari-
ables X,,..., X; as past events, the variables
Xiep oot X, as future events, and the constraints as physi-
cal laws, then Eq. (1) asserts that the permissible set of past
scenarios is not affected by laws that pertain only to future
events. In other words, the set of scenarios we get by ignor-
ing future constraints will remain valid after including such
constraints in the analysis. This interpretation is indeed at
the very heart of the notion of causation, and is closely
related to the principle of chronological ignorance
described in [Shoham, 1988], although Shoham’s definition
of causal theories insists on functional dependencies.

We shall now show that causal theories as defined by
(1) yield a computationally effective scheme of encoding
relations; it guarantees that the tupies of these relations can
be generated systematically, without search, by simply
instantiating variables along the natural ordering of the
theory.

Definition 3 (Backtrack-free): We say that a CS is
backtrack-free along ordering 4 =(X,,..., X,) if for
every ¢ and for every assignment x,..., x; consistent
with {C;: §; o (X, ..., X; 1} there is a value x;,; of X;,4
such that x,,..., x; ,x;,; satisfies all the constraints in
{Ci:§; < (Xy,.... X;n}}. In other words, a CS is
backtrack-free w.r.t. d if rel (CS) can be recovered with no
dead-ends along the order 4.

Definition 3 is an extension of the standard notion of
backtrack-free originally stated for binary constraints
(Freuder, 1982], and later related to directional consistency
[Dechter, 1990]. Note that, given a constraint C; on a subset
§; of variables, definition 3 does not allow testing whether
some partial instantiation of S; is compatible with C;. It is
possible to weaken this restriction by considering all the
constraints projections as parnt of the problem’s scheme. In
this paper we do not consider such projections; nevertheless,
our analysis is extensible to that case as well.

Theorem 1: A constraint specification CS is backtrack-free
along an ordering d if and only if it is causal relative to 4.

In the practice of causal modeling, it is common to dep-
ict the structure of causal theories using directed acyclic
graphs (dags), not total orders. Each such dag, called a
causal model, indicates the existence of direct causal
influences among sets of variables, but does not specify the
precise nature of the influences. We will next give a formal
definition of such models, and then explore what properties
of the underlying relation are portrayed by the topology of
the dag.

Definition 4 (Dags and Families): Given a directed acyclic
graph (dag) D, we say that an ordering d = (X, ,..., X,)

of the nodes in the graph respects D if all edges in D are
directed from lower to higher nodes of 4. A dag D defines
aset of n families F,,.. ., F,_, each family F; is a subset
consisting of a son node, X;, and all its parent nodes, P, ,
which are those directed towards X, in D .

Definition 4’ (Characteristic dag): The characteristic dag,
D, of the pair (d, CS) is constructed as follows: For each
component §; in scheme(CS), designate the latest variable
{according to d) in S; as a sink and direct the other vari-
ables in §; towards it.

Figure 1 shows the characteristic dag of a CS defined on the
subsets AB, AC, BD, CD, CE, DEF, along the ordering
d=(A,B.C,D,E,F)

B___ ,D__

A » C

Figure 1: The characteristic dag of a CS

m—>Pm

»
»

Lemma 1: If D is the characteristic dag of the pair (4, CS)
then it is also the characteristic dag of (4, C5) whenever d°
respects D and, furthermore, if <d, CS > is a causal theory,
then so is <d’, CS>.0

We now define causal theories and models using dags:

Definition 5: A pair <D,CS> is a causal theory if
<d, C§ > is a causal theory for all 4 respecting D .

Definition 6 (Causal model): Given a relation p and an
arbitrary dag D, D is a causal model of p if there exists a
constraint specification C§ such that <D, CS> is causal
theory of p.

It is easy to see that not every dag D could be a causal
model of a given relation p. For example, the relation
defined by the pair of logical clauses (X vZ,Y v Z} can
be modeled by either X 2 Z Y orX « Z - Y, but not
by X =Y « Z. The reason is that while the former two
dags form causal theories with the specification above, no
such theory can be formed for the third dag, because to
determine the permissible values of X and Z we must con-
sult a later variable, ¥,

To determine whether a dag D is a causal model of a
given relation p, one need not enumerate the space of
specifications for p. The condition is simply that D should
decompose p by the following rule; Fixing its parents in D ,
each variable must remain unaffected by all other variables,
except possibly by its descendants in D. This rule reflects
another common feature of causation: once we learn the
current status of its direct causal factors, no other informa-
tion is needed for predicting the state of a given variable.



Formally, D is a causal model of p if for some ordering
Xy,.... X, respecting D and for all i, we have
M xa PN Gy ) =TIy, x (p) where P,
stands for the parents of X;. This result follows from the
theory of graphoids, as applied to database dependencies
[Pear], 1988]. The complexity of the test above is polyno-
mial in the size of p, but may be exponential in the number
of variables. Once D qualified as a causal model of P, a
causal theory <D, CS> (of p) can be formed by simply
pairing D with the projections of p on the families of D .

3. Synthesizing Causal Theories and
Uncovering Causal Directionality

Our ultimate goal is to construct causal theories for the
information we possess. In this section we analyze two
tasks. First, we assume that the information we have is a
database tabulating explicitly the tuples of some relation P,
and our task is to replace the table by a more economical
representation, one that enjoys the computational advantage
of causal organizations. Such a task would be useful in
machine learning applications, where the tuples represent a
stream of observations and the causal theory forms a con-
venient model of the environment, facilitating modular
organization and fast predictions. In our second task, the
information will be given in the form of a preformulated
constraint specification €S, and the problem will be to con-
struct a causal theory without explicating the underlying
relation of CS .

Task 1: (decomposition) Given a relation p and an ordering
d, find a causal theory for p along 4.

Barring additional requirements, a causal theory can be
obtained by a trivial construction. For instance, the com-
plete dag generated by directing an edge from each lower
variable to every higher variable is clearly a causal model of
P, and the desired causal theory can be obtained by project-
ing p onto the complete families F; = (X;,X,,..., Xi}.
We next present a scheme for constructing a causal theory
on top of an edge-minimai model of p, that is, a dag D
from which no edge can be deleted without destroying its
capability to support a causal theory of p.

The algorithm that follows constructs an edge-minimal
causal model of p.

build-causal-1 (p, d):
1. Begin
2.Fori =n to 2 by -1 do:
3. Find a minimal subset P; < (X, ,...
such that
g, 2 PN Gy @) =TIy, % (P)
4. Return a dag D generated by directing an
arc from each node in P; towards X;.
5. End.

» Xi)

To form a causal theory, we simply pair this dag with the
projections of p on its families.

The construction above shows that a causal theory can
be found for any arbitrary ordering. However, we will next
show that certain orderings possess features that render
them more natural for a given relation. It is these features,
we conjecture, which give rise to the perception that certain

relations possess “intrinsic” directionalities,

Definition 7 (Model Preference): A causal model D, is
said to be at least as expressive as Dy, denoted D, <D, if
for any causal theory <D, CS5> there exists a causal
theory <Dy, CS3> such that rel (CS,) = rel (CSy). AdagD
is said 0 be a minimal causal model of p if it is not strictly
more expressive than any other causal model of p. In other
words, the set of relations modeled by D is not a superset of
any set of relations, containing p, that can be modeled by
some other dag.

Clearly, every minimal model must be edge-minimal,
but not the converse. For example, the complete dag
Z—5X,Z-Y,X 57 is an edge-minimal causal model
of the relation given by the formula Z =X v Y, but it is not
a minimal model, because it is strictly more expressive than
the dag X - Z « Y; the latter can model only relations
where X does not constrain Y. Polynomial graphical
methods for testing preference and equivalence between
causal models are described in (Pearl et al., 1990]. How-
ever, finding a minimal model for a given relation may be
exponentially hard.

Definition 8 (Intrinsic Directionality): Given a relation P,
a variable X is said to be a direct cause of variable Y, if
there exists a directed edge from X to ¥ in all minimal
causal models of p.

Example 1. Consider a relation p specified by the table of
Figure 2(a). The table is small enough to verify that the dag
in 2(b) is the only minimal causal model of p. For example,
the arrow from X to Z cannot be reversed, because p cannot
be expressed as a set of constraints on the families of the
resulting dag, {YZ,ZX,XYW). Adding an arc Y - X 1o
the resulting dag would permit a representation of p (using
the scheme (YZ,YZX,YXW}), but would no longer be
minimal. It is strictly more expressive than the one in 2(b),
because, unlike the latter, it also models relations in which
some XY pairs are forbidden. The causal theory
corresponding to the dag of 2(b) is shown in 2(c), matching
our intuition about the causal relationships embedded in
2(a). Note that the same minimal model ensues (though not
the same theory) were we 1o destroy the functional depen-
dencics by adding the tuple 1100 to the table in 2(a). How-
ever, it is no longer unique.
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Figure 2: The directionality shown in (b) is intrinsic to the relation
in (a), because (b) is a unique minimal causal model of (a).

Verma and Pearl [1990] have used minimal model
semantics to construct a probabilistic definition of causal
directionality. They have also developed a proof theory
which, under certain conditions provides efficient algo-
rithms for determining causal directionality without examin-
ing the vast space of minimal models [Pearl and Verma,
1991]. Whether similar conditions exist in the relational

framework remains an open problem.

5. Conclusions

This paper presents a relational semantics for the direc-
tionality associated with cause-effect relationships, explain-
ing why prediction is easy while diagnosis and planning are
hard. We used this semantics to show that certain relations
possess intrinsic directionalities, similar to those character-
izing causal influences. We also provided an effective pro-
cedure for deciding when and how an unstructured set of
constraints can be configured so as to form a directed causal
theory.

These results have several applications. First, it is often
more natural for a person to express causal relationships as
directional, rather than symmetrical constraints. The
semantics presented in this paper permits us to interpret and
process directional relationships in a consistent way and to
utilize the computational advantages latent in causal
theories. Second, the notion of intrinsic directionality sug-
gests automated procedures for discovering causal struc-
tures in raw observations or, at the very least, for organizing
such observations into structures that enjoy the characteris-
tics of causal theories. Finally, the set of constraint
specifications that can be configured to form causal theories
constitutes another "island of tractability” in constraint satis-
faction problems. The procedure provided for identifying
such specifications can be used to order computational
sequences in qualitative physics and scheduling applica-
tions,
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