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1 Introduction

Reiter’s default logic [Rei80] is one of three leading formalisms for nonmonotonic reasoning,
and is perhaps the simplest to state and the one most compatible with logic programs. There
are, however, two major obstacles to the practicality of default logic: the first is the lack
of intuitive semantics for the set of conclusions that the logic ratifies, and the second is the
high computational complexity required for drawing such conclusions.

This paper introduces a new semantics for propositional default logic that greatly over-
comes these two shortcomings; it is both more intuitive and easier to calculate then previous
proposals. In addition, it leads to the identification of new tractable subsets for default logic.

Our approach is based on the concept of meta-interpretations: truth functions that assign
truth values to clauses rather than logical symbols. Such a truth function is treated as a
model for a given default theory if each sentence it satisfies is in some extension of the theory,
By studying the properties of these models we were able to show that any finite propositional
default theory can be compiled into a classical propositional theory such that there is a one
to one correspondence between models of the classical theory and extensions of the default
theory. Thus, queries about coherence and entailment in default logics reduce to simpler
queries about satisfiability in propositional logic.

The main advantage of this mapping is that it reduces computation in default logic
to propositional satisfiability, a task that has been explored extensively in the literature.
Moreover, our method provides, for the first time, a deterministic algorithm for computing
extensions of any finite propositional default logic. Other known algorithms [Eth87] are
guaranteed to produce an extension only for ordered default theories.

In general, the translation we provide is NP-Hard. However, there is an important
sublanguage, which we call 2-Default Theories(2-DT), that is tractable and includes the so
called “network default theories” - the default-logic version of inheritance networks. Another
important subclass of 2-DT is “disjunctions free default theories” in which formulas with
disjunction are forbidden. It has been shown [GL90b] that this sublanguage can embed
extended logic programs, in the sense that answer sets of the latter coincide with extensions
of the former. Thus, techniques developed for finding extension for 2-DT"’s are applicable for
computing logic programs as well.

Once a default theory is expressed as propositional theory, it invites many heuristics and
algorithms that have been studied in the literature on propositional satisfiability. In partic-
ular, we show how topological considerations can be used to identify new tractable subsets
of default theories and how constraint satisfaction techniques can be effectively applied to
tasks of default reasoning.

The paper is organized as follows: we start with preliminary definitions and then intro-
duce the concepts of a meta-interpretation and a model for a default theory. In section 4
we state the features of our compilation, and discuss tractable subsets. Section 5 argues the
applicability of our methods to extended logic programs and extended disjunctive data bases
and section 6 provides concluding remarks.



2 Definitions and Preliminaries

We consider propositional default theories over a countable propositional language £.

A default theoryis a pair (D,1V) , where D is a set of defaults and W is a set of formulas.
A default is a rule of the form a : 3. s On/vy . where @, 31,...3, and v are formulas in £.
The intuition behind a default can be: If I believe in « and 1 have no reason to beljeve that
one of the 3; is false, then I can believe 5.

The set of defaults D induces an eztension on W. Intuitively, an extension is a maximal
set of formulas that can be deduced from W using the defaults in D. Let E* denote the
logical closure of E in £. We use the following definition of an extension:

Definition 2.1 (/Rei80] theorem 2.1 reduced to the propositional case) Let E C £ be a set
of formulas, and let (D, W) be a propositional default theory. Define

e Fo =W

o Fori 20 Eiyy = EU {vla: B1y..., Ba/v € D where o € E; and -B1,...00, ¢ E}
E is an estension for (D, W) iff for some ordering E = UZoE:. (Note the appearance of E
in the formula for E; ;).

Given a default theory (D, W) and a set of formulas $, we would like to compute answers
to the following queries: 1. (Coherence) Does (D, W) have an extension ? If so. find one;
2. (Set-Membership) Is S contained in some extension of (D, W} ? 3. (Set-Entailment)Is S
contained in every extension of (D, W) ?

We denote clauses by ¢, c;, ¢, ... and the empty clause by A. The resolvent of two clauses
c1, ¢z 1s denoted by res(cy, ¢z). An interpretation is a truth assignment for the letters in £.
Given a set of formulas S and a formula w, a model for S is an interpretation that satisfies S.
Stw means that w is provable from premises §, and Sk=w means that S entails w - i.e. that
every model of § is a model w as well. For propositional formulas, Skw iff § =w. Hence we
will use them interchangeably. The logical closure of a set of formulas S is the set {w|Stw}.

A set that represents the logical closure of a finite theory can be generated using the
notion of prime implicants [RAKS7],

Definition 2.2 A prime implicant of a set S of clauses is a clause ¢ such that 1. Ske, and
2. there is no proper subset ¢’ of ¢ such that SE=¢'.

Given a propositional theory S, PI(S) denotes its set of prime implicants. A brute
force method of computing PI(S) is to repeatedly resolve pairs of clauses of S, add the
resolvents to S, and delete subsumed clauses, until a fixed point is reached !. There are some
improvements to that method (see for example [MR72]), but clearly the general problem is
NP-Hard since it solves satisfiability. Nevertheless, for some special cases like size-2 clauses
the prime implicants can be computed in polynomial time since a resolvent of two clauses of
size < 2 is also of size < 2.

'Tt is clear that this method will not generate all the tautologies, but these exceptions are easy to detect
and handle.



3 Propositional Semantics for Default Logic

Our goal is to equip propositional default logic with the semantics of propositional logic.
The main advantage of this approach is that it leads to the development of effective metLods
for computing extensions.

We would have liked an extension for a default logic to be represented as a classical
interpretation for propositional logic such that a sentence is satisfied by the interpretation iff
it belongs to the extension. However, it is quite obvious that a straightforward representation
is not possible: in an interpretation for propositional logic, if a sentence s is not satisfied,
then its negation is, while it could certainly be the case that both s and =s are not members
of a given extension.

Our solution is to use the notion of meta-interpretation, where truth values are assigned
to sentences rather then letters. Thus, if both s and —s are absent from an extension. both
s and —s will be assigned false in the meta-interpretation. Since every sentence can be
represented in CNF the atomic syntax structures to which our interpretations assigns truth
values will be clauses.

The question is which set of clauses should be represented as atomic symbols in our meta-
interpretation. Clearly, it has to be a set of clauses containing all the prime implicants of
any extension, In the full paper we show that CLOUSES((D, W) ), defined below, is indeed
a superset of all the prime implicants of any possible extension of (D, W) .

Definition 3.1 Let (D, W) be a default theory. The set CLOUSES((D, W) ) is the union
of Cp, p((D, W) ) — {A} and PI(W), where Cp is the set of the conclusions of all defaults
in D, and p({D,W) ) is the resolution closure of Cp and PI(W) with the restriction that
no two resolvents are from PI(W). A clause belonging to CLOUSES((D, W) Yuwsll be called
an atomic clause.O

Definition 3.2 A meta-interpretation for a default theory (D, W) is a classical proposi-
tional interpretation for the set of symbols E(D W) = {clc € CLOUSES((D. W) )}. i.e. -

8 is a meta-interpretation for (D, W) iff it is a function from E(D W) to {true,false}. O
The symbol that represents the clause ¢ in ‘C(D W) will be denoted sometimes by I, 2.

Definition 3.3 A meta-interpretation § satisfies a clause ¢ (O ¢) iff either ¢ is a tautology
in classical propositional logic or there is an atomic clause ¢ C ¢ such that §(Iy) = true.
A meta-interpretation § satisfies the sentence c; Aca Ao Acy (BR 1 Aca A A en ) iff forall
1<1<n BF‘J c;. O

Note that this definition of satisfiability has the desirable property that it is not the case
that for a given sentence s, §f¢ s iff §—s,

We now want to define when a meta-interpretation for (D, W) is a model for (D, W) , in
the sense that each sentence that this model satisfies is in some extension of (D,W) .

*We chose this notation to match our intuition that ¢ will be assigned true in a meta-interpretation that
represents some extension iff it is In that extension.



Definition 3.4 Let (D, W) be a default theory, and let 6 be a meta-interpretation for
(D,W) . 6 is a weak model for (D, W) iff the following conditions hold:
1. For eachce W, 8 c.
2. For each default from D, if § satisfies its preconditions and does not satisfy the negation
of each of its justifications, then it satisfies its conclusion.

3. For each two atomic clauses ¢, ¢’ such that ¢ C ¢, if 8(c) = true then 6(c') = true.

B,

- Jor each two atomic clauses ¢, ', if O ¢, ¢ then 8k res(e, )
5. For each atomic clause ¢ such that 8|~ ¢ and ¢ ¢ W at least one of the following
conditions hold.:

o There is an atomic clause ¢y such that ¢; C ¢ and Ok c;.

o There are atomic clauses ¢y, ¢ such that BR 1, ¢; and c = res(cy, c;).

o There is a default o : By, ..., B/~ such that Ok a, for each 1 <i < n #~3; and
¥y=¢. 4

Definition 3.5 A model for (D, W) is a minimal weak model for (D, W) .

Minimality is defined w.r.t. the following partial order between meta-interpretation:
81 < 8, iff the set of clauses that #, satisfies is a subset of the set of clauses that 8, satisfy.
We will say that # is minimal among a set of meta-interpretations T iff there is no ' # 6
such that & < 4.

Our central claim is that if a meta-interpretation is a model for a default theory A, then
the set of sentences satisfied by a model for A is an extension of A, and vice versa. Formallv:

Theorem 3.6 Let (D, W) be a default theory. A set of sentences E is an extension for
(D, W) iff there is a model 8 for (D, W) such that E = {slfRe s}. O

Can the minimality of a model be recognized without having to compare it with all the
other weak models 7 We will show that a weak model is minimal iff each clause that it satisfies
has a proof, where a proof is a sequence of defaults that derive the clause from W. In order
to ensure that each proof is well-founded we assign each atomic clause an index which is a
non-negative integer, and require that if this clause is satisfied by the meta-interpretation,
the clauses used in its proof have a lower index. Clauses from PI(W) will get index 0. We
next show that it is easier to verify well foundedness when the theory is acyclic:

Definition 3.7 Let (D, W) be o default theory. The dependency graph of (D, W) (G(pw))
is defined as follows: For each c € CLOUSES((D, W) ) there is a node in the graph. There
is an edge from node c to node ¢’ iff at least one of the following conditions hold:

1.ceCd
2. There 1s a clause ¢" € CLOUSES((D, W) ) such that ¢ = res(e,c”).
3. There is a default o : B, ..., 3a/c in D and c € a.

A default theory (D, W) is acyclic iff G(p,wyis acyclic. O

The following theorem states why acyclicity is a significant property:

Theorem 3.8 Every weak model for an acyclic default theory (D, W) is a model for
(D,W) . O



4 Expressing a Default Theory as a Propositional
Theory

A model for a default theory (D, W) is actually a classical interpretation over the symbols
ot E(D W) - In the full paper we show how we can identify these classical models with a

propositional theory which they satisfv (in the classical sense). This is possible becanse the
conditions of definition 3.4 were set in such a way that they can be expressed in propositional
logic. This results in an algorithm called translate that transforms a a finjte default theory
(D, W) into a propositional theory ?(D’ W) that characterizes its models : every classical

model for that propositional theory is a model for (D, W) , and vice versa - every model for
(D, W) is a classical model for ’P(D W) - Due to space restrictions we omit the algorithm

and state only its main features. In the sequel, ?(D W) stands for the output of the
algorithm translate.

For notational convenience we use the macro in(}. It takes as an input a clause ¢ over
L and returns a sentence in E(D W) such that a meta-interpretation M classically satisfies
¥

in(c) (M = in(c)) ff M satisfies ¢ (M ¢). in(c) is simply a disjunction of all the symbols
in C(D W) that represent atomic clauses that are subsets of c.

Theorem 4.1 Let (D, W) be a finite propositional theory. Suppose ’P(D’ W) 18 satisfiable
and 8 is a model for ’P(D’ W) - and let E = {c|6(1.) = true}.
Then :

1. E contains all its prime implicants.

2. E* is an eztension of (D,W) . O

Theorem 4.2 Let E* be an estension of (D, W) . There is a model 8 for 'P(D W) such
that for each clause ¢, (in(c)) = true if c€ E*. O

Consequently, we can first compile a given default theory (D,W) into 'P(D W) and

then answer queries as follows: to test if (D, W) has an extension, we test satisfiability of
P(D W to see if a set S of clauses is a member in some extension, we test satisflability of

TD(D W) + {in(c)|c € S} and to see if § is included in the intersection of all the extension,
we do not have to compute all the extensions: we simply test if for every c € S, P i
p (D, W)

+ -lin(c)] is a contradiction.

5 Complexity Considerations

In general, the transformation we proposed is NP-Hard. However, for some special classes it
is tractable. For instance, for the class of 2-default theories the transformation can be accom-
plished in pelynomial time and the size of the propositional theory produced is polynomial
in the size of the default theory.



Definition 5.1 4 2-default theory (2-DT) is a propositional default theory (D, W) where
all the sentences in W are in 2-CNF, and for each default o : Biy..nBufv in D, & is in
2-CNF, each B; is in 2-DNF and ~ is a clause of size 2.

Once we have a tractable transformation, we can apply techniques developed in the
constraints satisfaction (CSP) literature that further characterize tractable subsets by con-
sidering the topological structure of the problem (for a survey, see {Dec91]). For instance,
we can characterize the tractability of 2-DT theories as a function of the topology of their
wnteraction graph. The interaction graph is an undirected graph, where each clauses in
[’(Dq W) is associated with a node and, for every 6 = €1,...,Cn ! Cny1, ceesCnim/Co there are
arcs 'connecting €03y €Ly +eey Cngm 10 & clique,

The first theorem considers the induced width of the interaction graph.

Definition 5.2 The width of a node in an ordered graph is the number of edges connecting

it to nodes lower in the ordering. The width of an ordering is the mazimum width of nodes
in that ordering, and the width of a graph is the minimal width of all its orderings.

Theorem 5.3 For a 2-DT (D, W) whose interaction graph has an induced width w*, ezis-
tence, membership and entailment can be decided in O(n * 2w‘+1) steps when the theory is
acyclic and O(n™ *2) steps when the theory is cyclic. O

The second theorem relates the complexity to the size of the cycle cutset. A cycle cutset
of a graph is a set of nodes that, once removed, would render the constraint graph cycle-free.
For more details about this method, see {Dec90].

Theorem 5.4 Fora 2-DT (D, W) whose interaction graph has a cycle cutset of cardinality
¢, ezistence, membership and entailment can be decided in O(n * 2°) steps when the theory
is acyclic and O(n*') steps when the theory is cyclic. O

6 Application to Disjunctive Databases

We will now demonstrate how our results can be applied to disjunctive databases. In (GL90b],
Gelfond and Lifschitz have presented an “answer set” semantics for logic programs with
classical negation. They showed that if you identify a rule

Po—DP1,..., P, 1O Pm+1y-+., 001 Pm+4n

where each p; is a literal and not is the “negation as failure operator”,
with the default:

P13 Pm P ~Pmtly s ~Pragn/Po

where ~p stands for the literal opposite to p (~P = =P, ~=P = P), you get that each
disjunction free default theory without contradictory justifications® is what they call an
extended logic program. They then establish a 1-1 correspondence between the answer sets

3They actually claim that each Justification should be a literal, but it can be generalized as above



of a program and its extensions. Consequently, our algorithms (see also [BED91a]) can be
used for computing answer sets of logic programs and their intersections.

Gelfond and Lifschitz extend the “answer set” semantics so that it can be applied to
extended disjunctive databases (EDD) as well [GL90a]. An EDD is a set of rules of the form

@1l Qe =—p1s s Pmy 1OY Pryg1, o 1OY P

We define the dependency graph of an EDD to be a directed graph where each literal is a node
and there is an edge from p to ¢ iff there is a rule where p appears in the body without the
negation as failure operator and ¢ appears in the head. An EDD is acyclic iff its dependency
graph is acyclic.

Following [GPLT91] (section 6), for each EDD D, D’ will denote the EDD obtained by

replacing each rule of the above form with & normal rules

QP15+, Pmy 0Ot Py, 0t Py, not g2, ..., 10t g

Gee—DP1s ooy Pras ROt Pryy, oo, 10 Pryyn, DOt g1, -, 00t gy

Note that D' is an extended logic program (with no disjunctions).

Our next theorem follows in part from Theorems 6.1 and 7.2 in [GPLT91]. It identifies a
large class of EDDs that have an equivalent extended (nondisjunctive) logic program which
15 not much larger.

Theorem 6.1 If an EDD D is acyclic then S is an answer set for D iff S is an answer set
for D',

Thus, if we have an acyclic EDD we can first transform it into an extended logic program
and then compute its answer set using the methods presented in [BEDS91a] and here.

7 Conclusions

This paper generalizes the results presented at [BED91a] and [BED91b] and provides propo-
sitlonal semantics to default theories with disjunctions. This new semantics leads to effective
algorithms for computing extensions and membership in intersections of extensions of any
finite propositional default theories. It also leads to the discovery of new tractable subsets
for default logic. Related results for autoepistemic logic were reported in [MT91] where it
was shown that the question of membership in every expansion of an autoepistemic theory
can be reduced to propositional provability.

We have also discussed the applicability of our results to Extended Disjunctive Databases
(EDD’s). As pointed out in [GL90a), the embedding of extended programs into Reiter’s
default logic cannot be generalized to disjunctive databases. We showed however, that when
the EDD is acyclic, we can find an extended logic program (or equivalently, a disjunction free
default theory) that has the same answer sets (extensions). In contrast, disjunctive default
theories cannot be reduced to disjunction free default theories even if they are acyclic: for
example, we can not find an equivalent disjunction free theory for the acyclic theory D = 0,
W = {pV ¢}. Thus, acyclic disjunctive default theories are more expressive then acyclic
disjunctive databases.
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