Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

DEFAULT LOGIC, PROPOSITIONAL LOGIC
AND CONSTRAINTS

Rachel Ben-Eliyahu July 1991
Rina Dechter CSD-910032

T eesngd UL oannl=Yl,

Anaheim, CA., July 1991,

TECHNICAL REPORT

R-162
April 199

Default Logic, Propositional Logic and Constraints *

Rachel Ben-Eliyahu

< rachel@cs.ucla.edu >
Cognitive Systems Laboratory
Computer Science Department

University of Californija
Los-Angeles, California 90024

Abstract

We present a mapping from a class of default theories to
sentences in propositional logic, such that each model
of the latter corresponds to an extension of the former.
Using this mapping we show that many properties of
default theories can be determined by solving proposi-
tional satisfiability. In particular, we show how CSP
techniques can be used to identify, analyze and solve
tractable subsets of Reiter’s default logic.

1 Introduction

Since the introduction of Reiter's default logic
[Reiter, 1980], many researchers have elaborated its
semantics ([Etherington, 1987], [Konolige, 1988]) and
have developed inference algorithms for default the-
ories ([Etherington, 1987],(Kautz and Selman, 1989],
[Stillman, 1990]). 1t was clear from the beginning
that most of these computations are formidable (not
even semi-decidable), and so research has focused
on restricted classes of the language, searching for
tractable subclasses of default theories. Unfortunately,
many simplified sublanguages still remained intractable
({Kautz and Selman, 1989), [Stillman, 1990)).

Since Reiter’s logic is an important formalism for
nonmonotonic reasoning, it is worth exploring new di-
mensions along which tractable classes can be identi-
fied. The approach we propose here examines the struc-
tural features of the knowledge base, and leads to a
topological characterization of nonmonotonic theories,

One language that has received a thorough topo-
logical analysis is consirgin? networks. This ptoposi-
tional language, based on multi-valued variables and
relational constraints is also intractable, but many of
its tractable subclasses have been identified by topo-
logical analysis. A constraint network is a graph (or
hypergraph) in which nodes represent variables and
arcs represent pairs {or seta) of variables that are in-
cluded in a common constraint. The topology of such a
network uncovers opportunities for problem decompo-

*Supported by Air Force Office of Scientific Research,
AFOSR 900138.

Rina Dechter
< dechter@ics.uci.edy >
Information & Computer Science
University of California
Irvine, California, 92717

sition techniques and provides estimates of the prob-
lem complexity prior to actual processing. Graphi-
cal analysis has led to the development of effective
solution strategies and has identified parameters such
as width and cycle-cutset that govern problem diffi-
culty ([Freuder, 1982), [Mackworth and Freuder, 1984],
[Dechter, 1990}, [Dechter and Pearl, 1989]).

Our approach is to identify tractable classes of de-
fault theories by mapping them into tractable classes
of constraint networks. Specifically, we reformulate a
default theory within the constraint network language
and use the latter to induce the appropriate solution
strategies,

Rather than attempting a direct translation to con-
straint network, this paper describes an intermediate
translation of default theories into propositional logic.
Since propositional logic can be translated into con-
straint networks this yields a mapping from default the-
ories to constraint networks. The intermediate trans-
lation into propositional logic may point to additional
tractable classes and can shed new light on the seman-
tics of defauit theories.

In the first part of this paper we show that any
disjunction-free propositional default theory with semi-
normal ruies can be translated in polynomial time to a
propositional theory such that all the interesting prop-
erties of the default theory can be computed by solving
the satisfiability of the latter. In the second part we
show how constraint networks can be utilized to iden-
tify tractable classes of default theories.

The paper is organized as follows. Sections 2 and
3 describe Reiter’s default logic and introduce neces
sary notations and preliminaries. Section 4 presents
our transformation and describes how tasks on a de-
fault theory are mapped into equivalent tasks in propo-
sitional logic. Section 5 discusses cyclic and ordered
theories, while Section 6 presents new procedures for
query processing and identifies tractable classes us-
ing constraint networks techmiques. Section 7 pro-
vides concluding remarks. Due to space considera-
tions all proofs are omitted. For more details see
(Ben-Eliyahu and Dechter, 1991a].

2 Reiter’s Default Logic

Let £ be a first order language. A default theory is a
pair (D, W), where D is a set of defaults and W is a set
of closed wifs (well formed formulas) in £. A defoult is
arule of the form a : B, ..., Bn /7, where a, M. ...5, and
7y are formulas in £. The intuition behind a default can
be: If o is believed and there is no reason to believe
that one of the 3; is false, then ¥ can be believed. A
default a : 3/v is normal if ¥y = 3. A default is sems-
normal if it is in the form a : AAv/v. A default theory
is closed if all the first order formulas in D and W are
closed.

The set of defaults D induces an eztension on W. In-
tuitively, an extension is a maximal set of formulas that
can be deduced from W using the defaults in D. Let E*
denote the logical ¢losure of E in £. We use the follow-
ing definition of an extension ({Reiter, 1980],theorem
2.1
Definition 2.1 Let E C £ be a set of closed wffs, and
let (D, W) be a closed default theory. Define

.Eo:W

® Fori>0 Eiy: = E;i°|J {vla: 1y Bn/¥ € D where
a e E.’ and -lﬂi,...ﬁ,@n e E}

E is an eztension for (D, W) iff for some ordering E =
UiZoEi. (Note the appearance of E in the formula for
i+1 /)
Most queries on a default theory (D, W) fall into one
of the following classes:

Existence: Does (D, W) have an extension? If so, find
one.

Set-Membership: Given a set of formulas S, Is S con-
tained in some extension of (D, W)?

Set-Entailment: Given a set of formulas S, Is S con-
tained in every extension of (D, W)?

In this paper we restrict our attention to Proposi-
tional Disjunction-free Semi-normal Default theories,
denoted PDSD (where formulas in D and W are
disjunction-free). This is the same subclass studied by
Kautz and Selman [Kautz and Selman, 1989]. Clearly,
when dealing with PDSDs, every extension E* is a log-
ical closure of a set consisting of literals only. We as-
sume, w.l.g. that the consequent in each rule is a single
literal, We can also assume, w.l.g., that W is consistent
and that no default has a contradiction as a justifica-
tion; when W is inconsistent, only one trivial extension
exists and a default having contradictory justification
can be eliminated by inspection.

3 Definitions and Preliminaries

We denote propositional symbols by upper case let-
ters P, Q, R..., propositional literals (i.e. P,-P) by
lower case letters p, gq,r... and conjunctions of literals
by a, 3.... The operator ~ over literals is defined as fol-
lows: f p = =@, ~p = Q, If p = Q then ~p = -Q.

If 6 = a: 3/v is a default, we define pre(d) = o,
just(é) = 3 and concl(§) = +.

Given a set of literals E, we say that E satisfies the
preconditions of § if pre(§) € E and for each g € just(§)
~q & E '. We say that E satisfies the rule 5 if it does
not satisfy the preconditions of & or else, it satisfies both
its preconditions and includes its conclusion.

A proof of a literal p, w.r.t. a set of literals F and a
PDSD (D, W) is a sequence of rules 81, ...,6, such that
the following three conditions hold:

i. concl(é,) = p.
2. For all 1<i < n and for each ¢ € just(é;). ~q ¢ FE

3. For all 1<i< n
pre(6;)CW{ J{concl(,)...., concl(6;_,)}.

The following lemma is instrumental throughout the
paper. It can be viewed as the declarative counterpart
of lemma 1 in [Kautz and Selman, 1989].

Lemma 3.1 E*is an extension of a PDSD (D, W) tff
E” 15 a logical closure of a set of literals E that
satisfies:

I.WCE
2. E satisfies each rule in D.
3. For eachp € E, there is a proof of pin E. O

We define the dependency graph G(p wyof a PDSD
(D, W} to be a directed graph constructed as follows:
Each literal p appearing in D or in W is associated with
a node, and an edge is directed from p to r iff there is
a default rule where p appears in its prerequisite and
r is its consequent. An acyclic PDSD is one whose
dependency graph is acyclic, a property that can be
tested linearly.

4 Expressing PDSD in Propositional
Logic

The common approach for building an extension, used
by [Etherington, 1987, [Kautz and Selman, 1989], and
others, is to increment W ‘using rules from D. We take
a totally different approach by making a declarative ac-
count of such process: using lemma 3.1, we formulate
the default theory as a set of constraints on the set of
its extensions.

We first present the transformation of acyclic PDSDs
and then extend it to the cyclic case.

4.1 The Acyclic Case

Extensions of acyclic PDSDs can be expressed and
generated in a simpler fashion. This is demonstrated
through Lemma 4.1, a relaxed version of the general
Lemma 3.1. We can show that (note the change in
item 3):

!Note that since we are dealing with PDSDs, if o is not
a contradiction, the negation of one of its conjuncts is in the
extension iff the negation of a is there too.

Lemma 4.1 E® is an ertension of an acyclic PDSD
(D, W) 1ff E*is a logical closure of a set of literals
E that salisfies:

. WCE

2. E satisfies each rule in D.

3 for each p € £ — W there is § € D such that

concl(8) = p and E satisfies the preconditions of 6.

a

Expressing the above conditions in propositional logic
results in a propositional theory whose models coincide
with the extensions of the acyclic default theory. Let
L be the underlying propositional language of { D, W),
For each propositional symbol in £ we define two propo-
sitional symbols, Ip and I.p, yielding a new set of sym-
bols: £’ = {Ip, ..plP € L£}. Intuitively, Ip stands for
“P is in the extension” while I.p stands for “—P is in
the extension”.

To simplify notations we use the notions of in(a) and
cons(a) that stand for “a is in the extension”, and “« is
consistent with the extension”, respectively. Formally,
in(a) and cons(a) are defined as functions from con-
juncts in C to conjuncts in £’ as follows:

o if o = P then in(a) = Ip, cons{a) = -~I.p.
¢ if @ = =P then in{a) = I.p, cons(a) = =Ip.
o if a = Ay then in(a) = [in(8)) A [in(7)], cons(a) =

[cons(B)] A [cons()].

The following procedure,translate-1, translates an
acyclic PDSD (D, W) into a propositional theory
'P(D,w) as follows:

translate-1({D, W))
1. for each p € W, put I, into 'P(D, W)

2. for each a : /vy € D, if v+ ¢ W, add in(a) A
cons(3)—in(vy) into ‘P(D, Wy

3. Let S, = {{in(a) Acons(3)]|36 € D such that § = a :
A/p}-
For each p ¢ W, if S, # @ then add to ‘P(D‘ W) the
formula I, —[Vaes,al.
else, (If p ¢ W and S, = 9), add to p(D, W) the
formula =I;. O
We claim that:

Theorem 4.2 Procedure translate-l1 transforms an
acyclic PDSD (D,W) inte a propositional theory
‘P(D‘ W) such that @ is & model for ‘P(D’ W) if
{pl8(Ip) = true}” is an estension for (D,W). O
Algorithm translate-1 is time and space linear in |[D+
W| (assuming W is sorted).
Example 4.3 (based on Reiler’s example 2.5)
Consider the following acyclic PDSD : D = {A : P/P,
t AfA, ~A[-A} W =‘0.
P(D,W) = { (remains empty after step 1),

(following step 2:) Ix A =I.p—Ip, ~I o —I,,
la—1.4,

(following step 3:) Ip—I4 A=l p, Is——I.,,
Ia—-Is , -L.p})

p(D W) has only 2 models : {I4 = true I.4, =

false, I.p = false, Ip = true}, that corresponds to the
extension {A, P}, and { I, = false, I_4 = true, [.p =
false, Ip = false}, that corresponds to the extension
{—4}. D

4.2 The Cyclic Case

Since procedure translaie-! assumes acyclic PDSD, it
does not exclude the possibility of unfounded proofs. If
applied to cyclic PDSD, the resulting transformation
will possess models that correspond to illegal exten-
810N8.

Consequently, in order to adjust our translation to
the cyclic case we need to strengthen the constraint in
step 3 of translate-1. Namely, we must add the con-
straint that if a literal, not in W, belongs to the exten-
sion, then the prerequisite of at least one of its rules
should be in the extension on its own rights, namely,
not as a consequence of a circular proof. One way to*
avaid circular proofs is to impose indexing on literals
such that for every literal in the extension there exists
a proof with literals having lower indices.

To implement this idea, originally mentioned at
[Dis89, |, we associate an indez variable with each lit-
eral in the transformed language, and require that p
is in the extension only if it is the consequent of a
tule whose prerequisite’s indexes are smaller. Let #p
stand for the “index associated with p”, and let k be its
number of values. These multi-valued variables can be
expressed using k propositional literals and additional
O(k?) clauses [Ben-Eliyahu and Dechter, 1991a]. For
simplicity, however, we will use the multi-variable no-
tations, viewing them as abbreviations to their propo-
sitional counterparts.

Let £” be the language L'l J{#plp € £ }, where £’
is the set {I,,I.p|P € L} defined earlier. Procedure
translate-2 transforms any PDSD (cyclic or acyclic)
over L to a set of propositional sentences over £, It is
defined by modifying step 3 of translate-1 as follows:

procedure translate-2(D, W) - step 3

3. Let C, = {[in(g1 A q2... A gn) A cons(B)] Al#q; <
#p|A.. A[P#Qn < #p] |36 € D such that § = g1 Ags... A
an : B/p

For eac.h p € W, if C, is not empty then, add to

(D, W) the formaula I p—[Vaec,a].

Else, (If p ¢ W and C, = 9) add =1 to P(p . O

The complexity of this translation requires adding n
index variables, n being the number of literals in £, each
havmg at most n values, Since expreumg an mcquahty
in propositional logic requires O(n?) clauses, and since
there are at most n poesible inequalities per default,

the resulting size of this transformation is bounded by
O(|W| + | D|n3) propositional sentences.

The following theorems summarize the properties of
our transformation. In all of them, P(D. W) is the set

of sentences resulting from translating a given PDSD
(D, V) using translate-2 (or translate-1 when the the-
ory is acyclic).

Theorem 4.4 Let (D, W) be ¢« PDSD. If 'P(D W)
15 satisfiable and 1f @ is a model for 'P(D wy then
{pl6(,) = true}” is an ertension for (D, W), a

Theorem 4.5 If E*:1s an ertension for (D,W) then
there 1s @ model 8 for P(D W) such that §(in(p)) =

true iff pe E*. O

Corollary 4.6 A PDSD (D, W) has an ertension ioff
P(D W) ts safisfigble. O

Corollary 4.7 A4 set of literals 5 is contained in an
ezxtension of (D, W) iff there is a model for 'P(D W)
L)

which satisfies the set {I,|p€ S}. O

Corollary 4.8 A literal p is n every ertension of a
PDSD (D, W) iff there is no model for ‘P(D W) which

satisfies =I,. O

The above theorems suggest that we can first trans-
late a given PDSD (D, W) to ’P(D W) and then answer

queries as follows: to test if (D, W) has an extension,
we test satisfiability of ’P(D, W) to see if a set S of liter-

als is a member in some extension, we test satisfiability
of P(D, W)U{I,,Ip € S}, and to see if S is included in

every extension, we test if for every pe § , 'P(D, W) U
{—1I,} is not satisfiable.

4.3 An Improved Translation

Procedure translate-2 can be further improved. If a
prerequisite of a rule is not on a cycle with its con-
sequent, we do not need to index them, nor to en-
force the partial order among their indexes. Thus,
only literals which reside on cycles in the depen-
dency graph need indexes. Furthermore, we will never
have to solve cyclicity between two literals that do
not share a cycle. We show that the index vari-
able’s range can be bounded by the maximal length
of an acyclic path in any strongly connected compo-
nent in G(p w)(Ben-Eliyahu and Dechter, 1991a]. The
strongly-connected components of a directed graph is a
partition of its set of nodes such that for each subset
C in the partition, and for each z,y € C, there is a
directed path from z to y and from y to z in G. The
strongly connected components can be identified in lin-
ear time [Tarjan, 1972).

Procedure transiate-3incorporates these observations
by revising step 3 of translate-2. The procedure asso-
ciates index variables only with literals that are part of
a non-trivial cycle (i.e. cycle with at least two nodes).

pProcedure translate-3((D. W))-step 3

3.a Identify the strongly connected components of
Giow).

3.b Let S, = {[in(g; A gaui. A gn) A cons(3)] Al#q <
#D)A .. A [#9- < #p| 136 € D such that § = g1 A
92:- Aqn : 3/p, and q1,....,¢, (0 € r < n) are in p's
component }

For each p ¢ W add Ip,—{Vaes,a] to ‘P(D W)
[Epg W and S, = 0 add ~1; to Py /). O

Procedure translate-3 will behave exactly as
translate-1 when the input is an acyclic PDSD. The
number of index variables produced by translate-3. is
bounded by Min{k=+c, n}, where & is the size of a largest
component of G(p,w), ¢ is the number of non-trivial
components and n the number of literals in the lan-
guage. The range of the index variable is bounded by !
- the length of the longest acyclic path in any compo-
nent (I < k). Since in each rule’s prerequisite we have
at most k literals that share a component with its con-
sequence, the resulting propositional transformation is
bounded by additional O(|W | + | D|ki?) sentences, giv-
ing an explicit connection between the complexity of
the transformation and its cyclicity level. Theorems
4.4 through 4.8 hold for procedure translate-3 as well.

3 Acyclicity and Orderness

While we distinguish between cyclic and acyclic PDSDs,
Etherington has distinguished between ordered and un-
ordered default theories. He has defined an order in-
duced on the set of literals by the defaults in D, and
showed that if a semi-normal theory is ordered, then it
has at least one extension.

To understand the relationship between these two
categories we define a generalized dependency graph of
a PDSD, to be a directed graph with blue and white
arrows. Each literal is associated with a node in the
graph, and for every § = a : 3/p in D, every q € &, and
every r € 3, there is a blue edge from ¢ to p and a white
edge from ~r to p. A PDSD is unordered iff its gen-
eralized dependency graph has a cycle having at least
one white edge. A PDSD is cyclic iff its generalized
dependency graph has a blue cycle (i.e., & cycle with
no white edges). Therefore, a set of default rules which
is ordered is not necessarily acyclic and vice versa. For
instance, the set {P : Q/Q, Q : P/P} is ordered but
cyclic while the set {P: Q/Q, S: ~Q A P/P} is acyclic
but not ordered .

Clearly, the expressive power of both ordered and
acyclic subsets of PDSD is restricted
(Kautz and Selman, 1989]. Cyclic theories are needed,
in particular, for characterizing two properties which
are highly correlated. For example, to express the belief
that usually people who smoke drink and vice versa,
we need the defaults Drink : Smoke /Smoke, Smoke :
Drink / Drink, yielding a cyclic default theory.

The characterization of default theories presented in
the following section may be viewed as a generalization
of both acyclicity and orderness.

68 Topology-Based Tractability for
Default Logic

What can be gained from the above transformation?

Since our translation is polynomial, if its resulting
output belongs to a tractable propositional subclass,
tasks of existence, set-membership and set-entailment
can be performed efficiently.

One such subclass is 2-SAT, a subelass containing
disjunctions of at most two literals. The correspond-
ing class of default theories which translates into 2-
SAT was called by [Kautz and Seiman, 1989] and by
[Stillman, 1990] “Prerequisite free normal unary” (a
PDSD with normal rules having no prerequisite). The
linear satisfiability of 2-SAT induces a linear time algo-
rithm for the corresponding class of default theories. In
contrast, Kautz and Selman presented a quadratic al-
gorithm (for deciding “membership in all extensions™)
applicable to a broader class of PDSDs (called “normal
unary”) where the prerequisite of each (normal) rule
consists of a single positive literal.

Next, we view propositional satisfiability as a con-
straint satisfaction problem and use techniques bor-
rowed from that field to solve satisfiability.

Constraint satisfaction techniques exploit the struc-
ture of the problem through the notion of a “con-
straint graph”. For propositional sentences, the con-
straint graph (also called a “primal constraint graph™)
associates a node with each propositional letter and
connects any two nodes whose associated letters ap-
pear in the same propositional sentence. Various
graph parameters were shown as crucially related to
solving the satisfiability problem. These include the
induced widlh, w*, the size of the cycle-cuisel, the
depth of a depth-first-search spanning tree of this
graph and the size of the non-separable components
([Freuder, 1985]),[Dechter and Pearl, 1988],

(Dechter, 1990]). It can be shown that the worse.
case complexity of deciding consistency is polynomialy
bounded by any one of these parameters.

Since, these parameters can be bounded easily by
simple processing of the given graph, they can be
used for assessing tractability ahead of time. For
instance, when the comstraint graph is a tree, sat-
isfiability can be answered in linear time. In the
sequel we will demonstrate the potential of this
approach using one specific technique, called 7ree-
Clustering [Dechter and Pearl, 1989}, customized for
solving propositional satisflability, and emphasize its ef-
fectiveness for maintaining a default data-base.

The Tree-Clustering scheme has a tree-building phase,
and a query processing phase. The complexity of the
former is exponentially dependent on the sparseness of
the constraint graph, while the complexity of the latter

is always linear in the size of the data-base generated by
the tree-building preprocessing phase. Consequently.
even when building the tree is computationally expen-
sive it may be justified when many queries on the same
PDSD are expected. The algorithm is summarized be-
low (for details see [Dechter and Pearl, 1989)).

Propositional- Tree-Clustering (tree-building)

input: a set of propositional sentences § and its con-
straint graph.

1. Use the triangulation algorithm to generate a chordal
constraint graph.

A graph is chordal if every cycle of length at least
four has a chord.

The triangulation algorithm transforms any graph
into a chordal graph by adding edges to it
(Tarjan and Yannakakis, 1984]. It consists of two
steps:

(a)} Select an ordering for the nodes, {various heuris-
tics for good orderings are available).

(b) Fill in edges recursively between any two nonad-
jacent nodes that are connected via nodes higher
up in the ordering.

2. Identify all the mazimal cligues in the graph. Let
Cl, .y Cy be all such cliques indexed by the rank of
their highest nodes.

3. Connect each C; to an ancestor C; (j < i) with whom
it shares the largest set of letters. The resulting graph
is called a join tree.

4. Compute M, the set of models over C; that satisfy
S;, where 5; be the set of all sentences composed only
of letters in C;.

5. For each C; and for each C; adjacent to C; in the
join tree, delete from M, every model M that has
no model in M; that agrees with it on the set of
their common letters, This amounts to performing
arc consistency on the join tree. O

Since the most costly operation within the iree-
building algorithm is generating all the submodels of
each clique (step 3), the time and space complexity of
this preliminary phase is O(n = 2I€1), where |C] is the
size of the largest clique and n is the number of letters
used in S . It can be shown that {C| = w* + 1, where
w* is the width 3 of the ordered chordal graph (also
called induced widih). As a result, for classes having a
bounded induced width, this method is tractable.

Once the tree is built it always allows an efficient
query processing. This procedure is described within
the following general scenario. (n stands for the number

3The width of & node in an ordered graph is the number
of edges connecting it tc nodes lower in the ordering. The
width of an ordering is the maximum width of nodes in that
ordering, and the width of & graph is the minimal width of
all its orderings

of letters in the original PDSD. m. bounds the nunmber
of submodels for each clique.) 3

l. Translate the PDSD to propositional logic (generates
O({W| + | DIn3) sentences).

2. Build a default data-base from the propositional sen-
tences using the Tree-building method (takes O(n? «
exp(u® + 1))

3. Answer queries on the default theory using the pro-
duced tree:

¢ To answer whether there is an extension, test if

there is an empty clique. If so, no extension exists
(bounded by O(n?) steps).

» To find an extension, solve the tree in a backtrack-
free manner:
In order to find a satisfying model we pick an ar-
bitrary node C, in the Join tree, select a model M,
from M,, select. from each of its neighbors C;, a
model 1/; that agrees with 3f, on common letters,
unite all these models and continue to the neigh-
bors’ neighbors, and so on. The set of all models
can be generated by exhausting all combinations
of submodels that agree on their common letters
(finding one model is bounded by O(n?+m) steps).

¢ To answer whether there is an extension that sat-
isfy a set of literals A, check if there is a model
satisfying {/;|p € A} (This takes O(n2s«m+ logm)
steps).

¢ To answer whether a literal p is included in all the
extensions, check whether there is a solution that
satisfies ~I;, (bounded by O(n?m) steps).

Following is an example demonstrating our approach.
Example 6.1 Consider the following PDSD ;

D= {Dumbo : Elephant A Fly Elephanta-Fly.- Dumbo
- Elephant ~Jumbo
Elephant : ~Fly Dumbo. Fly
- Fly y
Llephant: ~Circus Dumbo. Elephanta Circus
=Circus Circus

W = { Dumbo, Elephant}-

The propositional letter “Dumbo” represents here a
special kind of elephants that can fly. These defaults
state that normally, Dumbos, assuming they fly, are
elephants, if an elephant does not fly we do not believe
that it is a Dumbo. Elephants usually do not fly, while
Dumbos usually fly. Most elephants are not living in a
circus while Dumbos usually live in a circus.

This is an acyclic default theory, thus algorithm
translate-1 produces the following set of sentences (each
proposition is abbreviated by its initial letter):

*Note that the number of letters in the ptopositional sen-
tences is O(n?) if the PDSD is cyclic, and O(n) if it is acyclic,
and that m is bounded by the total number of extensions.

}

w7

Figure 1: Constraints graph for example 6.1

Sentences generated in step | of translate-1: Ip. [,
step 2:

Ie Al p A ~Ip=I.p, Ig A—~Ip—I.F,
Ip A=l p—Ip, IeEA=]e—1.m,

In A -I.gA -'f_.c—-fc.
step 3 :

Top—Ig Al.p A-lp, I.p—Ig A-Ip,
Ip—Ip A=I.p, Inc—1Ig A=,

Ie—Ip A=l.g A=l ¢, = -E

The primal graph of this set is shown in fig-
ure 1. It is already chordal and the ordering
Ig, I.p, Ip, I.p,Ic. I, Ip, I.g suggests that for this
particular problem, w* < 3. Thus, using the tree-
Clustering method we can answer queries about ex-
tension, set-membership and set-entailment in polyno-
mial time (bounded by exp(4)). Note that this PDSD
is unordered and not unary, therefore, the complex-
ity of answering queries for such PDSD is NP-hard
(Kautz and Selman, 1989},

We conclude this section with a characterization of
the tractability of PDSD theories as a function of the
topology of their interaction graph. The interaction
graph is an undirected graph, where each literal in W or
D is associated with a node and, for every § = a: §/p
in D, evety q € a and every ~r such that r € 3, there
are arca connecting all of them into one clique with p.

The first theorem considers the induced width of the
interaction graph:

Theorem 8.2 For a PDSD (D, W) whose interaction
greph has an induced width w*, ezistence, membership

and entailment can be decided in O(n » 2¥ +1) steps

when the theory is acyclic and O(n% +2) steps when
the theory is cyclic, O

The second theorem relates the complexity to the size
of the cycle cutset. A cycle cutset of a graph is a set of
nodes that, once removed, would render the constraint
graph cycle-free. For more details about this method,
see [Dechter, 1990].

Theorem 6.3 For a PDSD (D, W) whose interaction
graph has a cycle cutset of cardinality ¢, eristence.
membership and entailment can be decided in Ofn « 2¢)

steps when the theory 1s acyclic and O(n*+!) steps when
the theory 1s cyclic. O

7 Summary and Conclusions

This paper presents a transformation of a disjunction-
{ree semi-normal default theory into a propositional the-
ory such that the set of models of the latter coincides
with the set of extensions of the former. Questions of
existence. membership and entailment posed on the de-
fault theory are thus transformed into equivaient prob-
lems of satisfiability and consistency of constraint net-
works. These mappings bring problems in nonmono-
tonic reasoning into the familiar arenas of propositional
satisfiability and constraint satisfaction problems.
Using our transformation, we showed that default
theories whose interaction graph has a bounded w«
are tractable, and can be solved in time and space
bounded by O(n“**?) steps. This permits us to predict
worse-case performance prior to processing, since w*
can be bounded in time quadratic in the number of liter-
als. Moreover, the tree-clustering procedure, associated
with the w® analysis, provides an effective preprocess-
ing strategy for maintaining the knowledge: Once ap-
plied, all incoming queries can be answered swiftly and
changes to the knowledge can often be incorporated in
linear time. Similar results were established relative to
a second parameter - the cardinality of the cycle cutset.
In the full paper we elaborate on these and on ad-
ditional tractable classes identified by CSP techniques
like cycle-cutset, non-separable component and back-
jumring. [n [Ben-Eliyahu and Dechter, 1991b] we have
extended the results presented in this paper to “network
default theories”, defined by Etherington, in which W
contains clauses of size less or equal to two. We believe
that our transformation can be carried over to general
disjunctive semi-normal default theories as well.

Acknowledgment

We thank Judea Pearl for helpful comments on earlier
versions of this paper and Caroline Ehrlich for proof
reading it.

References

{Ben-Eliyahu and Dechter, 1991a] Rachel Ben-Eliyahu
and Rina Dechter. Expressing default theories in con-
starint language, 1991. in preparation.

[Ben-Eliyahu and Dechter, 1991b] Rachel Ben-Eliyahu
and Rina Dechter. Inference in inheritance networks
using propositional logic and constraints networks
techniques. Technical Report R-163, Cognitive sys-
tems lab, UCLA, 1991.

{(Dechter and Peari, 1988] Rina Dechter and Judea
Pearl. Network-based heuristics for constraint sat-
isfaction problems. Artificial Intelligence, 34:1-38,
1988,

[Dechter and Pearl. 1989] Rina Dechter and Judea
Pearl. Tree clustering for constraint networks, Arfi-
ficsal Intelligence, 38:353-366. 1989

[Dechter, 1990] Rina Dechter. Enhancement schemes
for constraint processing: Backjumping, learning,
and cutset decomposition. Artificial Intelligence.
41:273-312, 1990.

(Dis89,] Paul Motris suggested it in a discussion follow-
ing the constranits processing workshop in A AAI-R9.

[Etherington, 1987] David W, Etherington. Formaliz-
ing nonmonotonic reasoning systems. Artificral In-
telligence, 31:41-85, 1987,

{Freuder, 1982] E.C. Freuder. A sufficient condition for
backtrack-free search. J. ACM, 29(1):24-32. 1989,

(Freuder. 1985] E.C. Freuder. A sufficient condition for
backtrack-bounded search. J. ACM, 32(4):755-761,
1985,

[Kautz and Seiman, 1989] Henry A. Kautz and Bart
Selman. Hard problems for simple default logics.
In KR-89, pages 189-197, Toronto,Ontario,Canada,
1989.

(Konolige, 1988} Kurt Konolige. On the relation be-
tween default and autoepistemic logic. Artificial In-
telligence, 35:343-382, 1988.

[Mackworth and Freuder, 1984] A.K. Mackworth and
E.C. Freuder. The complexity of some polynomial
network consistency algorithms for constraint satis-
faction problems. Artificial Intelligence, 25(1):65-74,
1984,

(Reiter, 1980} Ray Reiter. A logic for default teasoning.
Artificial Intelligence, 13:81-132, 1980.

(Stillman, 1990] Jonathan Stillman. It's not my de-
fault : The complexity of membership problems in
restricted propoeitional default logics. In 4.44/-90,
pages 571-578, Boston,MA, 1990.

[Tarjan and Yannakakis, 1984] Robert E. Tarjan and
M Yannakakis. Simple linear-time algorithms to test
chordality of graphs, test acyclicity of hypergraphs
and selectively reduce acyclic hypergraphs. S/4Af
Journal of Compsting, 13(3):566-579, 1984,

[Tarjan, 1972} Robert Tarjan. Depth-first search and
linear graph algorithms. STAM jowrnal of Computing,
1(2), June 1972,

