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Abstract

We develop a formalism for reasoning with de-
faults that are expressed with different levels of
firmness. Necessary and sufficient conditions for
consistency are established, and a unique rank-
ing of the rules is found, called Z+, which ren-
ders models as normal as possible subject to the
consistency conditions. We provide the necessary
machinery for testing consistency, computing the
Z* ranking and drawing the set of plausible con-
clusions it entails.

1 Introduction: Not All Defaults
Were Created Equal

Regardless of how we choose to interpret default state-
ments, it is generally acknowledged that some defaults
are stated with greater firmness than others. For ex-
ample, the action-response default “if Fred is shot with
a loaded gun Fred is dead” is issued with a greater con-
viction than persistence defaults of the type “If Fred is
alive at time ¢, he is alive at ¢t + 1.” Moreover, the de-
gree of conviction in this last 'statement should clearly
depend on whether ¢ is measured in years or in sec-
onds. In diagnosis applications, likewise, the analyst
may feel strongly that failures are more likely to occur
in one type of devices (e.g., multipliers) than in an-
other (e.g., adders). A language must be devised for
expressing this valuable knowledge. Numerical proba-
bilities or degrees of certainty have been suggested for
this purpose, but if one is not concerned with the full
precision provided by numerical calculi, an intermedi-
ate qualitative language might be more suitable.
Priorities among defaults have been proposed in
many non-monotonic reasoning systems. For example,
given a set of conflicting defaults, prioritized circum-
scription {[Lifschitz, 1988]) permits the user to iden-
tify which statement should override the other. The
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statement “penguins do not fly” for instance. can be
given a higher priority over “birds fly”, in order to
enforce preferences toward the more specific classes.
In certain systems, specificity preferences can he ex-
tracted automatically from the databases itself (e.g.
(Gefner, 1989], (Kraus et al., 1990]). when such infor-
mation is available, say from the statement “all pen-
guins are birds”. However, certain priorities are not
specificity based. For example, to reflect our intuitions
that religious beliefs are stronger than political affil-
iations, we would like the default “typically Quakers
are pacifists” to override the default “typically Repub-
licans are not pacifists”, when the two are found to
conflicts with one another (say when Nixon is found to
be a Quaker and a member of the Republican party).
To resolve such conflict we need to encode these prior-
ities on a rule-by-rule basis,

This paper proposes and analyzes a formalism to
include priority information in the form of integers
assigned to default rules, each integer signifying the
degree of firmness with which the corresponding rule
is stated or, alternatively, the degree of surprise (or
abnormality) associated with finding the rule vio-
lated. These integers may encode linguistic quanti-
fiers such as “typical”, “highly typical®, “extremely
typical”, etc.. They can also be viewed as pow-
ers of infinitesimals in the probabilistic interpretation
of defaults, in the spirit of s-semantics (Pearl, 1988],
OCF [Spohn, 1987, and Kraus et al. [1990]. Our for-
malism takes after, and extends systern-Z [Pearl, 1990},
which proposes a conditional-preferential interpreta-
tion of defaults ¢ — ¢ as saying that ¥ holds in
all most preferred models of ¢ (see [Shoham, 1987),
(Kraus et al., 1990], [Geffner, 1989]), but permits only
one level of firmness for all defauits.

The paper is organized as follows: Section 2 in-
troduces the concept of ranking functions on models
and establishes the necessary and sufficient conditions
for the existence of admissible rankings. Section 3 is
concerned with the precise characterization of a priv-
ileged ranking x* on models and its relation with the
ranking Z* on rules. Its main properties, minimality,
uniqueness, and the procedures necessary to compute
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the ranking and its set of plausible conclusions are
presented. Section 4 provides some examples which
illustrate the use of the x*-ranking to express belief
strength, to enforce priorities among defaults and how
specificity relations are maintained by system-Z+. Fi-
nally, Section 5 discusses and evaluates the main re-
sults. All proofs are given in Appendix A.

2 Admissible Rankings

We consider a set of rules A = {w; & ¥} where ;
and ¥; are propositional formulas over a finite alpha-
bet of literals, “—" denotes a new connective (to be
given a default interpretation later on}, and §; is a non-
negative integer that measures the relatjve strength of
the rule’. A truth valuation of the literals in the lan.
guage will be called a model. A model M is said to
verify a rule ¢ — ¥ if M E e Ay, to falsify p — v if
M = @ A -1, and to satisfy o — ¥ ifMEepDy.

Definition 1 4 ranking function is an assignment of
non-negative integers to the models of the language. A
ranking funclion k is said to be admissible relative to
A, if it satisfies

min{x(M): M | o; A} + 6 <
min{x(M): M |& i A ;) (1)

for every rule p; & vi € A, A model Mt is said 10
be a characteristic model for rule w — ¢ relative to
ranking &, if &(M*) = min{x(M) : M | p A p}.

Equivalently, among the lowest ranked models satisfy-

ing the antecedent ¢, a rule ¢; & ¥; forces any model
satisfying —i; to rank at least §; units higher than
those satisfying ¥;. This echoes the usual interpreta-
tion of defaults ([Shoham, 1987]) according to which
¢; holds in all minimael models satisfying ;. In our
case minimality is reflected in having the lowest possi-
ble ranking. The new parameter &; can be interpreted
as the minimal cost or penalty charged to models vio-

lating rule ¢, & ¥i. Along the same vein we can define
consequence relations as follows:

Definition 2 Given a set A, ¢ b o is in the conse-
quence relation defined by an admissible ranking x iff
every k-minimal model for ¢ is also a model for o.

The next couple of definitions and Theorem 1, char-
acterize and provide a decision procedure for testing
the consistency of a set A, namely its ability to ac-
commodate at least one admissible ranking.

Definition 3 A rule @ — ¢ is tolerated by A iff there
exists ¢ model M such that M verifies ¢ — v and
satisfies all the sentences in A.

Definition 4 A set A is said to be consistent if there
ezists an admissible ranking x for A.

'Whenever § is not relevant we will simply write ¢ — ¢
to identify a rule.

Theorem 1 A set A 1s consistent iff there erists a
tolerated rule tn every nonemply subsel of A.

Fortunately it is not necessary to test tolerance in ev-
ery subset of A. A procedure for deciding consistency
will need only to continuously remove tolerated sen-
tences in A until A becomes empty. If at any point a
tolerated sentence cannot be found, A is inconsistent.
The proof of the correctness of this procedure along
with the proofs of Theorem 1 and Corollary 1 can be
found in Appendix A.

Corollary 1 Deciding the consistency of a sel A re-
quires at most |A|? propositional salisfiability tests.

3 Plausible Conclusions and Minimal
Rankings

So far we were concerned with the conditions for con-
sistency, and we have seen that these conditions make
no reference to the cost é associated with the rules. It
is reassuring to know that once a database is consis-
tent for one set of costs assignments, it will be consis-
tent with respect to any such assignment which means
that the rule author has the freedom to modify the
costs without fear of forming an inconsistent database.
Our main aim howevet, is to draw plausible conclusions
from the database and this calls for further examina-
tions of Def. 2,

According to Def. 2 each ranking would give raise
to its own consequence relation. The requirement on
these rankings to be admissible, is too loose, since
many vastly different rankings are capable of satisfy-
ing the constraints. A straightforward way of stan-
dardizing the conclusion set would be to require the
conditions of Def. 2 to hold in all admissible rankings.
This leads to an entailment relation called e-semantics
in [Pearl, 1989], 0-entailment in [Pearl, 1990], and r-
entailment in [Kraus e? ai., 1990] which is recognized
as being too conservative. A more reasonable approach
would be to select a distinguished admissible ranking
which best reflects the spirit of default teasoning. If a
model with lower « reflects a more normal world, it is
reasonable that we attempt to assign to each world the
lowest possible x permitted by the constraints. Such
an attempt can be interpreted as a tendency to be-
lieve that, unless forced otherwise, each world is as-
sumed as normal as possible. The question we need
to answer is whether making one world as normal as
possible would not force other worlds to become more
exceptional than otherwise. This would render the set
of minimal rankings non unique and the entailment
conditions rather complex, reminiscent of muitiple ex-
tensions in default logic ([Reiter, 1980]). Remarkably
we will show that there is a unique minimal ranking,
i.e., that lowering the ranking of one world does not
come at an expense of another. Moreover, we pro-
vide an effective procedure for computing this minimal
ranking?.

*Such uniqueness condition was previcusly shown to



Definition 5 Let x* be a ranking function on a con-
sistent set A, such that k(M) = 0 if M does not
falsify any rule in A, and otherwise,

M) = max{ZH(r): M = o APl +1 (2)
where
Z¥(r) =min{k ¥ (M): M | @; Ay} + 6 (3)

Note that the apparent circularity between x+ and Z+
is benign. Both functions can be computed recursively
in an interleaved fashion. Each time we assign a k¥ to
a model according to Eq. 2, it permits us to assign a
Z* to some rules in Eq. 3 and vice versa. This can be
illustrated by tracing the first few steps: Given that
A is consistent, there must exists at least one rule r’
tolerated by A, i.e., at least one model M’ must satisfy
A and verify r'. By Def. 5 we can set x+(M’) = 0, for
all those models and for all such rules set Z+(r') = §
in accordance with Eq. 3. The «* of models falsifying
these rules can now be computed using Eq. 2 and so on.
The details of this recursive assignment can be found
in Procedure Z_rank below. Another view of Egs. 2
and 3 can be obtained by substituting Eq. 3 into Eq. 2.
Define V[M] to be the set of rules verified by model M,
and F[M] be the set of rules falsified by model M, then

x*(M)= max [ min [ (MD]+6&]+1 (4)

rE€F[M] M r V(M)
Eq. 4 illustrates that the value of x+(AM) is set just
above the value of the characteristic model of the rules
that M violates, thus “pushing down” the ranking
of models to be as normal as possible. The reason
that the function Z* is introduced in Def. 5 is that
it provides an economical and convenient way of stor-
ing and manipulating the ranking x*. The amount
of space required by the Z*-ranking is linear on the
number of default rules in the database, and once Z+
1s known, the ranking x*(Af) for any M can be ob-
tained from Eq. 2 in at most-|A| steps. To show that
any function x* satisfying Eqs. 2 and 3 is admissible,
we re-write the conditions for admissibility (Eq. 1) as
Z*(ry) < min{x* (M)} : M = p; A ~4;} (using Eq. 3).
Since k(M) = max{Z*(r;)) : M = i A~yu} + L, it
follows that x* is indeed admissible. The following is
a step by step effective procedure for computing Z+:
Procedure Z_rank
Input: A consistent set A. Output: Z%-ranking on
rules,

1. Let Ag be the set of rules tolerated by A; and let RZ+
be an empty set.

2. For each rule r; @ & ¥i € Qg do: set Z(r;) = §&;;
and RZ* =RZ+ U {r;}.

hold for uniform databases, in which all rules are as-
signed 6§ = 0 ([Pearl, 1990]). The consequence relation
emerging from the unique preferred ranking of uniform
databases was called 1-entailment in [Pearl, 1990) and was
shown to be equivalent to Lehmann’s [1989] rational closure
{{Goldszmidt and Pearl, 1990]).

3. While RZ* # A do:

(a) Let Q2 'be the set of models M, such that M falsi-
fies rules only in RZ+, and verifies at least one rule
outside of RZ+,

{(b) For each M compute:
k(M) :hma.x{Z(ri):jI}::;:,-A-'w,-}-yl (5)
(¢) Let M" be the model in © with minimum «: For
each rule ry : ; LY Vi € RZT that M verifies do:

Z(T‘i)zﬂ(ﬂf{.)‘f&i (6)
RZ*Y =RZ+ U {r:}.
End Procedure

Theorem 2 The function Z computed by Procedure
Z.rank complies with Def. 5, 1.e. Z = Z*.

We turn our attention to the main results of this
section, namely the minimality and uniqueness of x*:

Definition 6 A ranking function x 1s said {0 be min-
imal if every other admissible ranking x' salisfies
k' (M) > &{M) for at least one model M.

Definition 7 An admissible ranking x is said to be
compact if, for every M’ any ranking k' satisfying

(M) = k(M) M#M
(M) < k(M) M=M

s not admissible.

Theorem 3 (Main.) Every consistent A has a
unique compact ranking given by kt (see Def. 5).

Corollary 2 (Main.) Every consistent A has o
unique minimal ranking given by x* (see Def. 5).

As mentioned before, once the Z+ ranking on rules
is found, the «* of any given model can be readily
computed using Eq. 2. Moreover, the Z* ranking also
provides effective means for deriving new conclusions
from A: To test whether o is a plausible conclusion
of ¢ ® we need to compare the minimal x*(M+) such
that M* |= 6 A o, against the minimal x* (M=) such
that M~ |= ¢ A—o (see Def. 2). Fortunately this min-
imization does not require an enumerative search on
models; it can be systemized using the ordering im-
posed by Z*. Let M be a witness for ¢ f o with
respect to a set A, if M &= ¢ A o and M satisfies
A’. We start by testing whether there is a witness M
for ¢ b o with respect to the set A. If one is found,
then «*(M) must be 0: M does not violate any rule
in A (see Def. 5). If no witness is found, we remove
from A all rules r’ such that Z*(r') is minimal, and
call the remaining set A’. We start a new iteration by
testing the existence of a witness M’ (for ¢ b o) this
time with respect to A’. If M’ is found, x*(M’) must
be Z*(r) + 1, since M’ must violate a rule removed

*i.e., whether ¢ ) & is in the consequence relation de-
fined by x*.



in the previous iteration. If no witness is found we
remove the rules r” with minimal Z*(r") and so on.
‘The question of whether ¢ P o, ¢ b = or neither is in
the consequence relation defined by x% is reduced to
whether we find a witness for ¢ ko, before we find a
witness for ¢ b —o, the completely symmetrical case,
or whether these witnesses are found in the same iter-
ation. The steps just described are formalized in Pro-
cedure Zt.consequences below, where cases 3.(a)-3.(c)
correspond to @ b o, ¢ I~ =& or neither. Case 3.{d) se-
lects the rules » with minimal Z*(r) and modifies the
current set A for the next iteration (in case no wit-
ness is found). Note that each iteration (i.e., the test
of whether a witness for ¢ o with respect to some
subset of A exists) involves a satisfiability test for A,
and there can be at most |A| iterations before a wit-
ness is found®. Therefore, the complexity of Procedure
Z*-consequences is bounded by |A] propositional sat-
isfiability tests in the worst case.

Procedure Z*-consequences

Input: A consistent set A, the function Z+ on A, and
a pair of consistent formulas ¢ and o. Output: answer
YES/NO/AMBIGUOUS depending on whether ¢ | o,
@ b~ =0 or neither.

1. TEST1 whether there is 2 model M such that M =
¢ Ao and M satisfiss A.

2. TEST2 whether there is a model M such that ME
& Ao and M satisfies A,

3. CASES indexed by the results from TEST1-TEST?2:

(a) IF YES-NO then return(¢ o)

(b) TF NO-YES then return{¢ —e)

(c) IF YES-YES then return(AMBIGUOUS)

(d) IF NO-NO then let MIN_Z be the set of rules in A
with minimum Z+, Set A’ = A — MIN_Z. Set
A = A" and goto Step 1. §

End Procedure :

It is natural to define the strength with which A en-
dorses the validity of ¢ | o as the difference between
the minimal £*(M*) such that M+ = ¢ A o, and the
minimal x* (M =) such that M~ = ¢ A—¢. The Proce
dure Z+.consequences can be easily modified to return
this value, by simply computing the difference between
the Z* levels at which each of the two witnesses are
found.

4 Examples

The following examples illustrate properties of the x+.
ranking and the use of § to impose priorities among
defaults. Example 1 shows how specificity-based pref-
erences are established and maintained by the «*-
ranking, freeing the rule-encoder from such considera-
tions. A general formalization of this behavior is given

*In each iteration the size of A decreases by at least one
since at least one rule is removed.,

SNote that since we are requiring that both ¢ and & be
consistent, A’ cannot be empty.

in the next section (Theorem 4}). In the second exam-
ple. the priorities § are used to establish preferences
when specificity relations are not available. Example 3
constitutes a combination of the previous two.

Example 1: Specificity. Consider Ap = {& iR

fip kel b.p L] ~f} which stands for r1:¥birds fiy",
r2:penguins are birds”, and ra:“penguins don't fiy”.
The Z*-ranking is computed as follows: Since ry is tol-
erated by Ap, Z*(r)) = §,. Any x*-minimal model
verifying r; and r3 must violate r1, therefore, fol-
lowing Procedure 7 _rank, Z¥(ry) = 8, + 8,41 and
ZH(ra) = 8, + 63 + 1. According to Def. 2, in order
to decide whether pAa b h ~f (“penguin-birds don't
fly”) we must test whether “=f" is satisfied in all x*-
minimal models of “p A b” or, equivalently, whether
k*(pAbA-S) < x*(pAbA f). This test is performed
mechanically by Procedure Z*-consequences, yielding
the expected conclusion: pAb —f. The reason is
as follows: Any model for “p A b” will violate either
ry (“birds fly”) or r3 (“penguins don’t fly”). Since
Zt(ra) = ZY(r) + b3 + 1, models violating r; (in-
cluding those satisfying “p A b A = F7) will have a lower
x*-ranking and will thus be preferred to those violat-
ing r3 (including those satisfying “pAbA f7); it follows
that k¥ (pAbA ~f) < x*(pAbA f) . Note that the
preference of r3 over r; is established independently of
the initial priorities § assigned to these rules.

Example 2: Belief strength. Consider a data-
base containing two conflicting default rules: Ay =

{g LEY pr 5 <p}, standing for ri:“typically Quakers
are pacifists”, and rp:“typically Republicans are not
pacifists” (a version of the “N ixon-diamond™). Since
each rule is tolerated by the other, the Z+ of each
rule is equal to its associated §: Z*(r) = 4, and
Z*(ry) = 8. Given an individual, say Nixon, who
is both a Republican and a Quaker, the decision of
whether Nixon is a pacifist will depend on whether §,
is bigger, less or equal than 83. This is so because
any model M,,, for Quakers, Republicans and paci-
fists must violate ry, and consequently k¥ (M.,,) = 6,,
while any model M.y, for Quakers, Republicans and
non-pacifists must violate ry, i.e., £t (M,pp) = 6.
Note that in this case the decision to prefer one model
over the other does not depend on specificity consider-
ations but, rather, on whether the rule encoder believes
that religious convictions bear more strength than po-
litical affiliations. This kind of preferences cannot be
expressed in system-Z or in Lehmann’s rational clo-
sure {1989)].

Example 3: Combining priorities with speci-
ficity. For the final example, consider Ag = {w 4,
bywaAp L2t —b} encoding the information that r,:%if
it is Wednesday night I play basketball”, and ra:%if it
is Wednesday night and I have a paper due, I don’t
play basketball® with the é’s reflecting the degree of
firmness of these rules. Suppose we wish to inquire



whether “I'll play basketball on a Wednesday night
when a paper is due” (w A pjb). On one hand, the
answer to such query is explicitly contained in ry. On
the other hand, ry conflicts with r{, and in many for-
malisms {e.g. circumscription [McCarthy, 1986], de-
fault logic [Reiter, 1980}) such a conflict would require
extra information in order to give an unambiguous an-
swer (the relation between the ab predicates associated
with the defaults for circumscription, and some prefer-
ence criteria among extensions or the use of seminor-
mal defaults for default logic). System-Zt yields the
expected result regardless of how strongly one believes
in ry. According to Procedure Z_rank the Z+-ranking
computes to Z¥(ry) = & and Z¥(rs) = 6, + 8 + 1.
Any model for w A p must violate either r, or ry, and
since Z+(ry) = Z%(r1) + 82+ 1, the model violating r,
will be preferred. Thus, k* (wApAb) < k¥ {wApA=-b)
and we conclude (with firmness § + 1) that “I won’t
be playing basketball that night”. Now suppose Ap
is part of a bigger database and that we wish to in-
clude information that takes precedence over all other
so far mentioned. For example, “If I am sick [ stay in
bed” (assuming of course that “staying in bed” rules
out “playing basketball” or other activities). In order
to enforce this precedence we need only give to this
new rule a sufficiently high § without considering its
relation to previous commitments.

5 Discussion

System-Z* provides the user with the power to ex-
plicitly set priorities among default rules, and simul-
taneously maintains a proper account for specificity
relations. However, it inherits some of the deficien-
cies of system-Z (and the rational closure described
in [Lehmann, 1989]) the main one being the inability
to sanction inheritance across exceptional subclasses.

For example if a fourth rule b 24 (“birds have legs”)
is added to Ap (Example 1), we would normally con-
clude that “penguins have legs”. However, system-
Z will consider “penguins” exceptional “birds™, (since
they do not fly) with respect to all properties, includ-
ing “having legs”. The x*-ranking allows the rule
author to partially bypass this obstacle by means of
the &’s associated with the rules. If 8, is set to be
bigger than 4; (to express perhaps the intuition that
anatomic properties are more typical than developmen-
tal facilities) then the system will conclude that “typ-
ically penguins have legs”®, This solution however, is
not entirely satisfactory. If we add to this new set of
rules a class of “birds” which are “legless”, system-
Z* will conclude that either “penguins have legs” or

®Note that the fact that “penguins” are only exceptional
with respect “flying” (and not necessarily with respect to
“having legs”) is automatically encoded in the Z* ranking
by forcing Z*(rs) to exceed Z*(r1) + 63 independently of
5 (and Z*(ry)).

“legless birds fly” but not both”. To overcome this
difficulty non-layered priorities among rules must be
imposed (see [Geffner, 1989], [Grosof, 1991}).

In a similar vein we remark that more refined selec-
tion functions (than the maximum rule violated) might
be needed for certain domains. For example in circuit
diagnosis the ranking of a given explanation should also
reflect the number of faults it predicts, not merely the
abnormality of the least likely fault or, better vet, the
sum of the faults weighted by their abnormality rank-
ing. A refinement such as the one proposed by maxi-
mum entropy approach ([Goldszmidt et al., 1990]) em-
bodies this cost function and may vield better results
in such domains.

In some sense system-Z*1 can be viewed as a version
of prioritized circumscription {Lifschitz, 1988], where
default priorities are induced by means of partial or-
der imposed on the abnormalities in the minimization
process. However, in prioritized circumseription the
relative ranking of abnormalities remains fixed at the
level furnished by the user, and does not reflect in-
teractions between adjacents rules. In system-Z¥ the
input priorities undergo adjustments so as to take into
account all related rules in the system. For example,
in the database Ap above, the ranking of ra (“typi-
cally penguins do not fly”) was adjusted from &3 to
81 + 83 + 1, so as to supercede é;, the priority of the
conflicting rule “typically birds fly”. As a result of such
adjustments, the consistency of the rankings is main-
tained throughout the system, and compliance with
specificity-type constrains is automatically preserved.
This is made precise in the following theorem:

Theorem 4 Let rl: o LI ¥ and r2 : ¢ % o be two

rules in a consistent set A such that:

1. o ¢ 18 in all consequence relations of admissible
k-rankings (i.e., ¢ i3 more specific than ¢).

2. There is no model satisfying p AY AP Ao (ie., r
conflicts with ry ).

then 2% (rl) > Z*(r2) independenily of the values of
61 dﬂd 62

In other words, the Z*-ranking guarantees that fea-
tures of more specific contexts override conflicting fea-
tures of less specific contexts.

Note that although the computation of the adjusted
ranking may be expensive (non-polynomialin the num-
ber of rules), once it is found, it constitutes an effi-
cient encoding of x* and facilitates an efficient pro-
cedure for answering queries about the plausibility of
proposed conclusions: deciding whether ¢ | o requires
only O(|A|) propositional satisfiability tests.
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A Appendix: Theorems and Proofs

Theorem 1 4 set A is consistent iff there erists g
tolerated rule in every nonempty subset of A.

Proof: We first show that if there exists a tolerated
rule in every nonempty subset of A we can always pro-
duce an admissible ranking x. Under the stated condi-
tion, we can construct the following ordered partition
(Ap, Ay, . <y An) of A: Rules in Agp are tolerated by
A, rules in A; are tolerated by A — Ay and so on. By
Def. 3, for each one of these Aj, there must exist a
nonempty subset 2; of 2 (the set of all possible mod-
els), such that for each rule ri € Aj there must exists a
model M; € Q;, where M; verifies r; and M; satisfies
Aifj=0and A — {AoU...UA;_,} otherwise. Thus,
using these models (the models actually required to
effectively build the partition of A), we define a par-
tition (Qq, 4, .. ., Qny Qny1) of Q, where each 2; con-
tains models with the characteristics mentioned above,
and 2,4, contains the models necessary to complete
the partition. Let 8! denote the highest § among rules
in set A;. We now build, in a recursjve fashion, an ad-
missible ranking x based on these two partitions in the
following manner: If M, ¢ 2, set k(My) = 0. Else if
M; € Q;, set k(M) = w(M;_1) + 6/_1 + 1. Note that
each model M; € ), is a characteristic model® of the
tule r; € A; it verifies, and the x-minimal model fal-
sifying any rule Ti € A; must belong to the set Q4.
Thus, in order to guarantee the admissibility of «, it
is enough to show that for an arbitrary pair of mod-
els M; € Q; and M;,, ¢ 241 the following relation
holds:

w(M;) +6; < x(M;yy) (7)
where é; can be any § among the rules in A;. But this
relation is guaranteed by the construction of & since
w(M;) + 6 + 1 = x(M;41), where 6; is the highest 6
among the rules in A;." Therefore « is admissible.

To show the converse we reason by contradiction:
Assume that there is no tolerated rule in A’ C A and
there is an admissible ranking &’ for A. Since there is
no tolerated rule in A’, we know that any characteristic
model M, for rule r; € A’ must falsify another rule
r2 € A’. By the admissibility of &’ the following must
hoid

&' (M) + 6, < &'(M)) (8)
where M is a characteristic model for ry. By the same

token, M, must falsify another rule in A’ , 88y r3, and
we can insert x’(M3) ? in the chain of Eq. 8;

PC"(M;;) + 83 < KI(MQ) + b2 < N'(Ml) (9)
We can continue to expand the chain in this fashion
and get,
K’(Mn) + b, < K’(Mn_l) + 6 -1 <...<
K'(M3)+6; < &'(My) (10)
*Recall that a model M* is said to be a characteristic
model for rule ¢ — y relative to ranking «, if K(M*) =
min{x(M): M = gAY}
)

M3 is a characteristic model for r;.

Note that if at any point in the construction of this
chain, a model falsifies a rule that has a characteristic
model in the chain, we arrive at a contradiction sipce
by the admissibility of «’, M)+ 8 < & (M"Y byt
since both M’ and Af" are characteristic models of the
same rile it must be that (M) = x' (M), Moreover,
given that A’ is finite we are bound to encounter such
contradiction, 03

Corollary 1 Decrding the conststency of a set A re-
quires at most |A|? propositional satisfiabality tests.

Proof: A procedure for deciding consistency would
only need to construct the partition {Ag, A, . ALY
since if it succeeds, we know from the previous theorem
that it is possible to build an admissible ranking. On
the other hand, if it fails, there is a nonempty subset
of A with no tolerated sentence. Identifying A, takes
at most |A| satisfiability tests, identifying A, takes at
most ([A] - |Ag]) satisfiability tests, and so on. Thus,
overall, it will take [fA[+|AI—-IA0|+|AI-L’_\0|-—J.31| o]
satisfiability steps which is bounded by |A|? . O

Proposition 1 The ranking funclion &% is admissi-
ble.

Proof: Given that Z+(r;) = min{s*(M): M & ¢; A
¥i}+8;, we can re-write the conditions for admissibility
(Eq. 1) as

Z+(r;)<min{rc+(M):Ml:cp.-/\ﬂw;} (11)
Since &* (M) = max{Z+(r;) : M EwiA-w)+1,it
follows that x* is admissible. O

Theorem 2 The function 2 computed by Procedure
Z_rank complies with Def. 5, ie. Z = Z+,

Proof: We first show that the relevant steps in Proce-
dure Z_rank are well defined. By the assumption that
A is consistent, Ag cannot be an empty set (steps 1
and 2): There must be at least one rule tolerated by
A. By similar reasons, Q cannot be empty in each it-
eration of the loop in step 3. By consistency we must
be able to find a tolerated sentence in each nonempty
subset of A. Finally, in the computation of Eq. 5, since
M only falsifies rules in R Z *+, all Z for these rules are
available.

We now show that Z = Z+ for rules rg € Ay. Since
each ry is tolerated by A, there must be a model M,
(for each one of these rules), such that M, verifies ro
and M, satisfies A, Thus, each one of these models
does not falsify any rules in A, and kT (Mp) = 0. Ac-
cording to Eq. 3 in Def. 5, Z*(ro) = &8 for those rules
and that is precisely what is computed in step 2.

The proof proceeds by induction on the iterations of
loop 3, where we show that for every rule r € RZ*,
Z(r) = Z*(r) holds. For the basis of the induction
consider the first iteration: Since RZ* = Ag, then for
every ro € Ag, Z(ro) = Z *(rg) holds as shown above.
Our objective is to show that this equality holds for
the rules inserted into R Z+ at step 3.(c). We need the
following preliminary result: for any model M’ ver-
ifying a rule outside RZ*, either xt(M') is set by



the x*(M*) of a model M* which is a characteris-
tic model of a rule in RZ*, or it depends on another
model which complies with these characteristics. Con-
sider an arbitrary model M’ verifying a rule outside
RZ*. By Eqgs. 2, 3 and 4, there must exist a model
M* such that k¥ (M’') = k*(M") + 6" + 1, and M" is
the characteristic model of some rule r’. If M’ does
not falsify any rule, we are done, since " € RZ+.
Otherwise there must exists a model M such that
RH(M"Y = k(M) + 6" + 1, and M" is the charac-
teristic model of rule r’. If M"" does not falsify any
rule, r”" € Ay and we’ve found that M" = M+ Note
that since A is consistent and finite, we are guarantee
that this process will stop with the desired M*. What
we have just shown is that for any model M’ & Q ver-
ifying a rule outside RZ*, there is 2 model M"” ¢ Q
such that x*(M'") < x*(M"). Since models in €2 falsify
rules only in RZ%, k(M) = x+(M) for these models
as computed by Eq. 5 in step 3.(b), and given that
£T(M*} is the model with minimal x* among those
verifying rules outside of RZt, M* is a characteristic
model for those rules r; with respect to x+. We can
then re-write Eq. 6 as

Z(ri) = min{et (M) : M = ¢; At} + 6 (12)

and for these rules inserted in R Z+ (step 3.(c)) Z(r;) =
Z*(r;) holds. For the induction step consider the n'h
iteration. By the induction hypothesis for all rules
r; € RZ*, Z(r;) = Z*(r;), and therefore by Eq. 5
in step 3.(b) k(M) = x* (M) for all M € 2. The claim
is that M* is a characteristic model for the rules r* that
it verifies (outside of RZ*). The arguments are essen-
tially the same as in the basis: the % of any model
verifying a rule outside R Z+ must depend on the x* of
some model in 2. Thus, for rules r; inserted in RZ+
during the n'h iteration, Eq. 6 can be re-written as
Eq. 12 and Z(r;}) = Z*(r;) holds. O

Lemma 1 The ranking &% is compact.

Proof: By contradiction. Assume it is possible to
lower x*(M') of some model M’, where x*(M’) > 0.
From the definition of x+ {Def. 5, there must be a rule
r: @ ¥ such that kY (M') = Z*(r) + 1 (see Eq. 2),
which implies that

V(M) =min{s*(M): MEeAY}+6+1 (13)

Lowering the value of x*(M’) will violate Eq. 13 which
will imply the violation of Eq. 1 for rule r. G

Theorem 3 (Main.) Every consistent A has a
unique compact ranking given by x* (see Def. 5).

Proof: By Lemma 1, x* is compact. We show it is
also unique. Suppose there exists some other compact
ranking x that differs from x* in at least one model.
We will show that if there exists an M’ such that
&(M’') < k*{M') then x cannot be admissible, where
if &(M') > k*(M’), then x cannot be compact. As-
sume x{M') < x*(M*), let I be the lowest « value for

which such inequality holds, and let KT(MY=J > I
By the definition of x* (Def. 5), we know that there

isaruler:g EA v such that Eq. 13 holds, and as a
consequence

min{k*(M): M EpAv}=J_—6—1 (14)

Since « is assumed to he admissible, the following must
hold for rule r

MM) 2 min{k(M): M EpAv}+6+1 (13)
Since J > x(M'),
Jermin{e(M): ME Ay} +6+1 (16)

If we subtract § + 1 from both sides of this inequality
and use Eq. 14 we get

min{x*(M): M = ¢ A ¥} >
min{(M): M & o Ay} (17

But this cannot be since I was assumed to be the min-
imal value of x for which this inequality can occur,
and if min{k(M) : M = ¢ A ¥} > I, then x is not
admissible (see Eq. 15).

Now assume that there is a non-empty set of models
for which x(M) > k¥ (M), and let I be the lowest x*
value in which k(M) > x+(M’) for some model M.
We will show that x cannot be compact, since it will
be possible to reduce x(M’) to x*(M’) while keeping
constant the « of all other models. From x*(M') = I
we know that M’ does not falsify any rule r with Z+
rank higher than I — 1. Hence, we only need to watch
whether the reduction of « can violate rules r for which
Z*{r) < I. For every such rule there exists a model
M, such that M verifies r and x*(M) < I. Since for all
these models « is assumed to be equal to k™ it follows
that none of these models can be violated by reducing
(M) to kT (M"). O

Theorem 4 Letirl: ¢ LN v and r2 ; ¢ 5 o ke two
rules in a consistent set A such that:

1. ¢~ ¢ is in all consequence relations of admissible
x-rankings (i.c., p is more specific than ¢ ).

2. There is no model satisfying o AYAp A (ie., 1,
conflicts with rp ).

then Z*(r1) > Z*(r2) independently of the values of

61 and 8, '

Proof: If ¢ ;v ¢ is in every consequence relation of ev-
ery « admissible with A then (by Def. 2) the following
constraint must hold in all these x-rankings (including
kt):

&(p Ad) < k(@ A —d) (18)

Thus, any characteristic model M,*; for r; must ren-
der ¢ (the antecedent for r;) true, and since there is
no model such that both rules are verified (condition 2
in the theorem above), all M;* must also falsify r,.

From Def. 5 (Eqs. 2 and 3): «*(M}) > Z¥(r2) + 1,



and Z¥(r)) = ¥ (M) + 62 It follows that Z¥(r) >
Z*¥(ra2). Note that the characteristic model for r» can-
not in turn falsify r, since this will preclude the exis-
tence of an admissible ranking x and A was assumed
to be consistent, O
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