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1. Introduction: Infinitesimal Probabilities

Epsilon-Semantics (€-semantics, for short) is a formal framework for belief revision in which be-
lief statements are interpreted as statements of high probability, infinitesimally close to one, and
where belief revision takes place by conditioning current beliefs on newly available evidence. The
conditionalization of extreme probabilities yields non-numeric belief revision, as if propositions
were assigned qualitative wruth values from the set (TRUE, BELIEVED, POSSIBLE, DISBE-
LIEVED, FALSE}. The basic idea of e-semantics can be traced back to the conditional logic (qv) of
Adams (1966, 1975) and the Ordinal Condition Functions (OCF) of Spohn (1988). Potential appli-
cations in nonmonotonic logic and default reasoning (qv) were noted in McCarthy (1986) and Pearl
(1988) and further developed by Lehmann (1989), Géffner (1989), Pearl (1990) and Goldszmidt et

al (1990).

A simple way of viewing €-semantics is to consider an ordinary probability function P defined
over a set W of possible worlds (or states of the world), and to image that the probability P (w) as-
signcd to each world w is a polynomial function of some small positive parameter €, for example,

o, Be, ye2, ..., etc. Accordingly, the probabilities assigned to any subset A of W, as well as all con-



ditional probabilities P (A B}, will be rational functions of e. Now define the ranking function )
k(A |B) as the power of the most significant term in the expansion of P (A1B) into a power series of

g,

K(A | B ) =lowest n such that limOP(A |B )€™ is non—-zero . (1)
£—
In other words, K(A1B)=n iff P(AIB) is of the same order of magnitude as €*, or equivalently,

k(A 1B) is of the same order-of-magnitude as [P (4 | B )]\

If we think of n for which P (w) = a €" as measuring the degree to which the world w is disbe-
lieved (or the degree of surprise were we to observe w), then x(A I1B) can be thought of as the de-
gree of disbelief (or surprise) in A, given that B is true. Parameterizing a probability measure by e,
and extracting the lowest exponent of € as the measure of (dis)belief is a way of capturing the pro-
cess by which people abstract qualitative beliefs from numerical probabilities and accept them as
tentative truths, until rejected by future evidence. For other formalizations of belief acceptance see

[Kyburg 1961, Pearl 1987b].

It is easy to verify (see Spohn 1987) that « satisfies the following properties:

a—

K(A)=min [{x(w)lw € A}

2. x(A)=0o0r x(—~A)=0, or both

3, K(A UB)=min{x(A), x(B)}

4. K(A NB)=x(AIB)+ x(B)

(1) Spohn (1987) called this function "non-probabilistic” Ordinal Conditional Function (OCF).



These reflect (on a logarithmic scale) the usual properties of probability functions, with min replac-

ing addition, and addition replacing multiplication:

)

2.

3.

4.

PA)= X P(w)
weA

PA)+P(-A)=1
PAUB)=PA)+PB)-P(ANB)

PA NB)Y=P(AIB)YP(B).

The result is a probabilistically sound calculus, employing integer addition, for manipulating order-

of-magnitudes of disbeliefs. For example, if we make the following correspondence between

linguistic quantifiers and €” :

P(A)=¢€" | A isbeticvable K(A)=0
P(A)=¢! | A isunlikely KA)=1
P(A)=g% | A is very unlikely KA)=2

PAY=¢ | A is extremely unlikely | k(A)=3

then the infenitesimal approximation yields a nonmonotonic logic to reason about likelihood. It

takes sentences in the form of quantified conditional sentences, e.g., "Birds are likely to fly", (writ-

ten K(—f |b) = 1), "Penguins are most likely birds", (written k(- b1p) = 2), "Penguins are extremely

unlikely to fly,” (written x (f |p) =3) and returns quantified conclusions in the form of "If x is a

penguin-bird then x is extremely unlikely to fly" (written K (f Ip Ab) = 3).



The basic k ranking system, as described in Spohn (1987) requires the specification of a com-
plete probability model before reasoning can commence. In other words, the knowledge base must
be sufficiently rich to define the x associated with every world w. In practice, such specification
might require knowledge that is not readily available in common discourse. For example, we might
be given the information that birds fly (written x (—f |») = 1) and no information at all about pro-
perties of non-birds, thus leaving K (f A— &) unspecified. Hence, inferential machinery is required
for drawing conclusions from partially specified models, like those associating a k with isolated de-
fault statements. Such machinery is provided by the conditional logic of Adams [1975], which

forms the basis of e-semantics,

Adams’ logic can be regarded as a bi-valued infinitesimal analysis, with input sentences specify-
ing x values of only 0 and I, corresponding to "likely” and "unlikely” associations. However, in-
stead of insisting on a complete specification of x(w), the logic admits fragmentary sets of condi-
tional sentences, treats them as constraints over the distribution of k(w ), and infers only such state-
ments that are compelled to acquire high likelihood in every distribution x(w ) satisfying these con-

straints,
2. € -Semantics
2.1 Two levels of knowledge

g-semantics, like epistemic probabilities and many conditional logics (qv), distinguishes between
two types of sentences, those that convey knowledge about necessary truths and the general tenden-
cy of things to happen, e.g. "Birds fly", "Birds are animals", and those that describe findings or ob-
servations specific to a given object or a situation, e.g., "Tim is a bird", "all blocks on this table are

green”. The first set of sentences, denoted K (for knowledge), corresponds to nomic (or law-like)



assertions, and may include both defeasible (defaults) and strict sentences (denoted A and S, respec-
tively). The second set of sentences, denoted E (for evidence), corresponds to incidental or transito-
ry findings. This useful distinction is reflected in natural language by the selective usage of the word
"If", especially in counterfactual forms. For example, it is legitimate to say "If I were a bird I would
fly" but not "If this block were on this table it would be green". Accordingly, the sentence "Birds
fly" will reside in X', while "all blocks on this table are green” will reside in E. Another distinguish-
ing characteristic is that sentences in E accept the preemption "happen to", such as "Tim happened

to be a bird". In contrast, those in K accept the preemption "always" or "almost always".

For simplicity of exposition, we shall first consider default theories in the form T = <E, A>,
void of strict conditionals. The evidence sentences (E) will assign properties to specific individuals;
for example, p (a) asserts that individual a has the property p. The default statements (A) are of the
type "p’s are typically ¢ ’s", written p (x) — g (x) or simply p — ¢, which is short for saying "any
individual x having property p typically has property ¢". The properties p,q,r - - - can be com-
pound boolean formulas of some atomic predicates py, ps,... p,, With x as their only free variable.
However, no ground defaults (e.g., p (a) — ¢ (a)) are allowed in E and no compound defaults (e.g.,
p — (q —»r)) are allowed in A. The default statement d”:p — —g will be called the denial of

d:p—ogq.

2.2 Basic Definitions

Let L be the language of propositional formulas, and let a rruth-valuation for L be a function ¢,
that maps the sentences in L to the set {1,0}, (1 for TRUE and 0 for FALSE,) such that ¢ respects the

usual Boolean connectives. To define a probability assignment over the sentences in L, we regard



each truth valuation 7 as a world w and define P (w) such that ¥, P (w) = 1. This assigns a proba-

bility measure to each sentence / of L via P (/) = Y PwWyw(l).

€-semantics interprets A as a set of restrictions on P, in the form of extreme conditional proba-
bilities, infinitesimally removed from either 0 or 1. For example, the sentence Bird (x) — Fly (x) is
interpreted as P (Fly (x)!Bird (x)) 2 1 — g, where € is understood to stand for an infinitesimal quanti-
ty that can be made arbitrarily small, short of actually being zero. Accordingly, e-semantics

qualifies a propositional formula r as a plausible conclusion of T = <E, A >, written E |5 r, when-

ever the restrictions of A force P to satisfy limOP (riE)y=1.
E—

It is convenient to characterize the set of conclusions sanctioned by this semantics in terms of
the set of facts-conclusion pairs that are entailed by a given A. We call this relation e-entailment @

formally defined as follows:

Definition: Let ?, . stand for the set of distributions licensed by A for any given ¢, i.e.,

Pre={P:P(vliu)zl-e and P(u)>0 whenever u - v e A} )
A conditional statement d:p — ¢ is said to be e-entailed by A, if every distribution P € Pa e
satisfies P(q lp)=1-0(g), (i.e., for every & >0 there exists a € >0 such that every P € P,

would satisfy P(g Ip) 21— 8).

2.3 Axiomatic Characterization

The conditional logic developed by Adams [1975] faithfully represents this semantics by qualitative

inference rules, thus facilitating the derivation of new sound sentences by direct symbolic manipula-

@ Adams (1975) named this p -entailment. However, £-entailment better serves to distinguish this from other forms of
probabilistic entailment, Section 4,



tions on A. The essence of Adams’ logic is summarized in the following inference rules, restated for
default theories in [Geffner 1988] (see also Lehmann and Magidor 1988, and Geffner and Pearl

1990).

Inference Rules: Let T =<E, A> be a default theory where E is a set of ground proposition for-
mulas and A is a set of default rules. r is a plausible conclusion of F in the context of A, written

F |5 r, iff r is derivable from F using the following rules of inference:
Rule 1 (Conditionals) (p > ¢)e A =>pl ¢

Rule 2 (Deduction) plgq => pk ¢

Rule 3 (Cumulativity) pr ¢,pkr => @ Aq@)k r

Rule 4 (Contraction) p lz ¢, (p Aq¢)sr =>pkr

Rule 5 (Disjunction) plz r,gbk r => (@ vq) r

Rule 1 permits us to conclude the consequent of a default when its antecedent is all that has been
learned, and this permission is granted regardless of other information that A may contain. Rule 2
states that theorems that logically follow from a set of formulas can be concluded in any theory con-
taining those formulas. Rule 3 (called rriangularity in [Pearl 1988] and cautious monotony in {Leh-
mann and Magidor 1988]) permits the attachment of any established conclusion (g) to the current
set of findings (p ), without affecting the status of any other derived conclusion (). Rule 4 says that
any conclusion (r) that follows from an evidence set (p) augmented by a derived conclusion (g)
also follows from the original evidence set alone. Finally, rule 5 says that a conclusion that follows

from two findings also follows from their disjunction,



Some Meta-Theorems
T-1 (Logical Closure) plz g, p Aqor =>pk r
T-2 (Equivalent Contexts) p=q,pkr => gk r
T-3 (Exceptions) p Aqlrr.plg—r => pk —~¢
T-4 (Right Conjunction) plrr,pkkq => plk g Ar
Some Non-Theorems:
(Irrelevance) plrr =>p Aq ks r
(Transitivity) plhq.qhr=>phkr
(Left Conjunction)p s r ,q g r =>p Aql r
(Contraposition) p |z r==>-r | —p
(Rational Monotony)

Pl r.,NOT@hk—q) =>paqhkr (6)

This last property (similar to CV of conditional logic (qv)) has one of its antecedents negated,
hence, its consequences cannot be derived from A using the five rules of e-semantics. It is, neverthe-
less, a desirable feature of a consequence relation, and can be restored within €-semantics using the

extensions described in Section 3.

e-semantics does not sanction transitivity, left conjunction, and contraposition as absolute infer-
ence rules, because there are possible worlds in which these rules fail. For instance, transitivity fails
in the penguin example — all penguins are birds, birds typically fly, yet penguins do not. Left con-

junction fails when p and ¢ create a new condition unshared by either p or ¢ . For example, if you



marry Ann (p) you will be happy (r), if you marry Nancy (g) you will be happy as well (r), but if
you marry both (p A gq), you will be miserable (—r). Contraposition fails in situations where —p is
incompatible with —. For example, let p — r stand for Birds — Fly. Now imagine a world in
which the only nonflying objects are a few sick birds. Clearly, Bird — Fly holds, yét if we observe

a nonflying object we can safely conclude that it is a bird, hence = — p, defying contraposition.

Semi-monotonicity: The consequence relation defined by e-semantics is monotonic relative to the

addition of default rules, i.e.,

if plzr and ACA’, then plp r N
This follows directly from the fact that P, . < P, . because each default statement imposes a new
constraint on 2, .. Thus, e-entailment is nonmonotonic relative to the addition of new findings (in
E’) and monotonic relative to the addition of new defaults (in A). Full nonmonotonicity will be exhi-

bited in Section 3, where stronger forms of entailment are considered.

The cautious, semi-monotonic character of €-semantics, and especially it’s failure to accommo-
date arguments based on "irrelevance”, (e.g., to conclude a red bird flies from "birds fly") clearly
show the e-semantics is not complete for default reasoning. Nevertheless, the set of conclusions that
are derived by this semantics constitutes a core of plausible conclusions that should clearly be ac-
commodated by every system of default reasoning (qv). Interestingly, it is this very core which

more conventional approaches to default reasoning find hardest to accommodate.

2.4 Consistency and Ambiguity

An important and unique feature of e-semantics is its ability to distinguish theories portraying incon-

sistencies  (e.g, <p —24q.p >—¢>), from those conveying ambiguity  (e.g.,



<pla)Aq(a),p —r,q — —r>, and those conveying exceptions (¢.g., <p(@) A q(a),p — —g>).

Definition: A is said to be e-consistent if P, . is non-empty for every € > 0, else, A is e-inconsistent.
A default statement d : p — g is said to be ambiguous, given A, if both {p 5g } U A and

{p = — >q } U A are e-consistent.

Consistency-Entailment Symmetry: e-entailment and e-consistency are connected by a symmetri-
cal relation, reminiscent of that in classical logic (Adams, 1975). If A is e-consistent, then a state-

ment d : p — q is €-entailed by A iff its denial d” : p — — g is e-inconsistent with A,

In addition to Rules 1-5, the logic also possesses a systematic procedure for testing €-consistency
(hence, g-entailment), involving a moderate number of propositional satisfiability tests. The test is

based on the notion of teleration:

Definition (Toleration): Given a truth-valuation ¢, a default statement p — ¢ is said to be verified
under ¢ if ¢ assigns the value 1 to both p and q. p — ¢ is said to be falsified under ¢ if p is as-
signed a 1 and ¢ is assigned a 0. A default statement d: p — g is said to be tolerated by a set A’ of

such statements if there is a ¢ that verifies 4 and does not falsify any statement in A",

It can be shown (Adams, 1975) that a finite set A of default statements is e-consistent iff in every
non-empty subset A’ of A there exists at least one statement that is tolerated by A’. This leads to a

simple procedure of testing the consistency of defeasible databases:

Consistency testing procedure

1. Find a default statement that is tolerated by A,

10



2. remove it from A,

3. repeat the process on the remaining set of statements, until there are no more default state-
ments left.
4, If this process leads to an empty set then A is e-consistent, else it is €-inconsistent.

|2

This procedure requires propositional satisfiability tests. Hence, if the material counter-

part of p O g of each statement p — ¢ in A is a Horn expression, then consistency (hence entail-
ment) can be tested in time quadratic with the number of literals in A (Goldszmidt and Pearl, 1989a).
When A can be represented as a default network, (i.e., a set of default statements p — g where both
p and g are atomic propositions (or negation thereof)), consistency can be established by a simple

graphical criterion (Pearl 1987a), generalizing that of Touretzky (1986):

Network Consistency: A is consistent iff every pair of conflicting arcs p; — ¢ and p, — —¢

1. P and p, are distinct, and

2, There is no cycle of positive arcs that embraces both p, and p,.

These tests are valid only when X consists of purely defeasible conditionals. For mixtures
K =<A,§ > of defeasible and non-defeasible statements, consistency and entailment require a
slighﬂy modified procedure (Goldszmidt and Pearl 1989a): After removing all tolerated sentences
from A, each sentence in S should be tolerated by S. This procedure attributes a special meaning to
strict conditional statement s:a — b, different than the material implication a> b. For example,

conforming to common usage of conditionals, it will proclaim S = {ga = b,a = — b} as incon-

11



sistent and will entail @ = b from - b = — a but not from - a.

2.5 Nlustrations

To iltustrate the syntactical and graphical derivations facilitate by £-semantics, consider the celebrat-

ed ‘‘Penguin triangle’’ of Figure 1.

XxxXxxxxxxx Figure I xxxxxxxxx

T comprises the sentences:
F = {Penguin (Tweety), Bird (Tweety)}, 8

A= {Penguin — —fly, Bird — Fly, Penguin — Bird }; ©)

Although A does not specify explicitly whether penguin-birds fly, the desired conclusion is derived

in three steps, using Rule 1 and 3.

1. Penguin (Tweety) |z —Fly (Tweety) (from Rule 1)
2. Penguin (Tweety) iz Bird (Tweety) (from Rule 1)

3. Penguin (Tweety), Bird (Tweety) lz —Fly (Tweety) (Applying Rule 3 to lines 1, 2)

Note that preference toward subclass specificity is maintained despite the defeasible nature of the

rule Penguin — Bird, which admits exceptional penguins in the form of non-birds.

The conclusion pA b — f can also be established by showing that its denial, p Ab > = f, is

g-inconsistent with

12



A={p - -f,b>f,p-b}. (10)
Indeed, no truth-valuation of {p, b, f } can verify any sentence in

AN={po—f,pob,pab-os—f) an

without falsifying at least one other sentence.

Applying theorem T-3 to the network of Figure 1 yields another plausible conclusion,
Bird — — Penguin, stating that when one talks about birds one does not have penguins in mind, i.e.,
penguins are exceptional kind of birds. Itis a valid conclusion of A because every P in P, . must
yield P (p tb) = O(e). Of course, if the statement Bird —» Penguin is artificially added to A, incon-
sistency results; as & diminishes below a certain level (1/3 in our case), ®, . becomes empty. This
can be predicted from purely topological considerations by testing whether the denial of the conclu-
sion renders the network inconsistent. Adding the arc Bird — Penguin would create a cycle of po-
sitive arcs embracing ‘‘Bird’’ and ‘‘Penguin’’, and these sprout two conflicting arcs toward “‘Fly”’,
which establishes inconsistency. Hence, the network of Figure 1 e-entails Bird — —Penguin. By
the same graphical method one can show that the network also €-entails the natural conclusion,
Fly — — Penguin. This contraposition of Penguin — — Fly is sanctioned only because the ex-

istence of flying non-penguins (i.e., normal birds) is guaranteed by the other rules in A.

3. Recent Extensions

Summarizing the preceding discussion, e-semantics yields a system of defeasible inference with the

following features:

1. The system provides a formal distinction between exceptions, ambiguities and inconsisten-

cies and effective procedures for testing and maintaining consistency.

13



2. Multiple extensions do not arise and preferences among arguments (e.g., toward higher

specificity) are respected by natural deduction.

3. There is no need to specify abnormality relations in advance (as in circumscription (qv); such
relations (e.g., that penguin are abnormal birds) are automatically inferred from the

knowledge base.

However, default reasoning requires two facilities: one which forces conclusions to be retract-
able in the light of new refuting evidence; the second which protects conclusions from retraction in
the light of new but irrelevant evidence. e-semantics excel on the first requirement but fails on the
second. For instance, in the example of Fig. 1, if we are told that Tweety is also a blue penguin, the
system would retract all previous conclusions (as ambiguous), even though there is no rule which in
any way connects color to flying. (The opposite is true in default logic [Reiter 1987] and cir-
cumscription [McCarthy 1986] - they excel on the second requirement but do not retract conclusions

refuted by more specific information, unless exceptions are enumerated in advance.)

The reason for this conservative behavior lies in the insistence that any issued conclusion attains
high probability in all probability models licensed by A and one such model reflects a world in
which blue penguins do fly. In order to respect the communication convention that, unless stated ex-
plicitly, properties are presumed to be irrelevant to each other, additional restrictions must be im-
posed on the family of probability models relative to which a given conclusion is checked for sound-
ness. The restricted probabilities should embody only dependencies that are implied by A, but no

others. Several such extensions to €-semantics will be described next.

14



3.1 System Z

One way of suppressing irrelevant properties is to restrict our attention to the "most normal” or
"least surprising” probability models that comply with the constraints in A. This can be most con-
veniently done within the infinitesimal analysis of Spohn (see Section 1), where the ranking function
K (w) represents the degree of surprise associated with world w. The "least surprising" probability
corresponds to assigning each world w the lowest possible ranking x(w) permitted by the con-
straints in A. To ratify a sentence p — ¢ within this paradigm, we must first find this minimal rank-

ing function x and, then, test whether x (g!p) < x (—¢q|p) holds in this ranking.

Translating the constraints of Eq. (4) to the language of infinitesimals, yields

KvAu)<x(—vau) ifu—sucecA (12.a)

where x of a formula f is given by
K(f ) =min {k(w):wkf ) (12.b)
w

Remarkably, if A is e-consistent, such constraints admit a unique minimal x distribution which
was named Z-ranking in (Pearl 1990). Moreover, finding this minimal distribution for a given world
w, requires no more computation than testing for e-consistency according to the procedure of Sec-
tion 2.4. We first identify all default statements in A that are tolerated by A, assign to them a Z-rank
of 0, and remove them from A. Next we assign a Z-rank of 1 to every default statement that is
tolerated by the remaining set, and so on. Continuing in this way, we form an ordered partition of
A=(Ag, Ay, Ay, - -+, Ag), where A; consists of all statements tolerated by A—Ag— A, - ... A;_,.
This partition uncovers a natural priority among the default rules in A, and represents the relative

“cost" associated with violating any of these defaults, with preference given to the more specific

15



classes.

Once we establish the Z-ranking on defaults, the minimal ranking on worlds is given by:

Zw)=min (n: wkE(vou), Zvou)zn) (13)

In other words, Z (w) is equal to 1 plus the rank of the highest-ranked default statement falsified in

w.

Given Z(w), we can now define a useful extension of e-entailment, which was called I-

entailment in (Pearl 1990).

Definition (l-entailment): A formula g is said to be I-entailed by f, in the context A, (written
f F 2), if g holds in all minimal-Z worlds satisfying f . In other words,

fhig if ZF ~Ag)<Z(f A—g) (14)
Note that e-entailment is clearly a subset of 1-entailment since, using the language of Z -ranking, it

corresponds to: f | g iff Z(f Ang) = oo

Lehmann (1989) has extended e-entailment by closing it under the rational monotony rule of Eq.
(6), thus obtaining a new consequence relation which he called rational closure. Goldszmidt and
Pearl [1989b] havc_ shown that 1-entailment and rational closure are identical whenever A is e-
consistent. Thus, the procedure for testing -consistency also provides a O (1A?!) procedure for

testing entailment in rational closure.

3.2 Dlustrations

16



Figure 2 represents a knowledge base formed by adding three rules to that of Figure 1:

L. "Penguins live in the arctic” p—a
2. "Birds have wings" b —w
3. “Animals that fly are mobile" f-om

The numerical labels on the arcs stand for the Z-ranking of the corresponding rules.

XXXXxXxXxXxxxx Figure2 xxxxxxxxx

The following are examples of plausible consequences that can be drawn from A by the various sys-

tems discussed in this section (ME will be discussed in Section 3.3):

g-entailed 1-entailed ME-entailed
bapba—f —b | —p P bugw
fla—vp —f 1 —b pA—abe—f
b b ~ Fum P A=
P Aa '_A b -m |‘1 -b
p-whb

l1-entailment sanctions many plausible inference patterns that are not €-entailed, among them
chaining, contraposition and discounting irrelevant features. For example, from the knowledge base
of Figure 2 we can now conclude that birds are mobile, b |-, m, and that immobile objects are non-

birds, — m |-, —b, and that green birds still fly. On the other hand, 1-entailment does not permit us

17



to conclude that penguins who do not live in the arctic still do not fly, pA—a — —f. In general,

fromA={a 5 b,c - d } wecannotconcludea A= b Ac —d.

This inability to sanction property inheritance from classes to exceptional sub-classes represents
the main weakness of l-entailment. For example, given the knowledge base of Figure 2, 1-
entailment will not sanction the conclusion that penguins have wings (p — w) by virtue of being
birds (albeit exceptional birds). The reason is that according to the Z-ranking procedure all state-
ments conditioned on p should obtain a rank of 1, and this amounts to proclaiming penguins an ex-
ceptional type of birds in all respects, barred from inheriting any bird-like properties (e.g., laying
eggs, having beaks, etc.). To sanction property inheritance across exceptional classes, a more
refined ordering is required which also takes into account the number of defaults falsified in a given
world, not merely their rank orders. One such refinement is provided by the maximum-entropy ap-
proach [Goldszmidt et al 1990] where each world is ranked by the sum of weights on the defaults
falsified by that world. Another refinement is provided by Geffner’s conditional entailment [Geffner
1989], where the priority of defaults induces a partial order on worlds. These two refinements will

be summarized next.

3.3 The Maximum Entropy Approach

The maximum-entropy (ME) approach attempts to capture the convention that, unless mentioned ex-
plicitly, properties are presumed to be independent of one another; such presumptions are normally
embedded in probability distributions that attain the maximum entropy subject to a set of constraints
[Jaynes 1979]. Given a set A of default rules and a family of probability distributions that are ad-

missible relative the constraints conveyed by A (ie., P(B, 2 @,)21—¢ ¥V reA), we single out a

18



distinguished distribution P; a having the greatest entropy —¥ P (w)log(w), and define entailment

w

relative to this distribution by
fh_8 iff P.,(e if) > 1. (15)

An infinitesimal analysis of the ME approach also yields a ranking function k on worlds, where
K(w) corresponds to the lowest exponent of € in the expansion of P ; A(w) into a power series in €.
It can be shown that this ranking function can be encoded parsimoniously by assigning an integer
weight k, to each default rule » € A and letting k(w ) be the sum of the weights associated with the
rules falsified by w. The weight x,., in turn, reflects the ‘‘cost’’ we must add to each world w that
falsifies rule r, so that the resulting ranking function would satisfy the constraints conveyed by A,

namely,

min { x(w):wEo, AB,} <min{x(w): w Eao, A=BY, rio, —sBe A (16)
These considerations lead to a set of |Al non-linear equations for the weights K, which, under cer-
tain conditions, can be solved by iterative methods. Once the rule weights are established, ME-

entailment is determined by the criterion of Eq. (15), translated to

fl—ug iff min{k(w):wEf Ag)<min{xw):wkf Aa-g}. an
where
kKw)= Y K,
riwka, A8,

We see that ME-entailment requires minimization over worlds, a task that is NP -hard even for

Horn expressions (Ben-Eliyahu, 1990). In practice, however, this minimization is accomplished
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quite effectively in network type databases, yielding a reasonable set of inference patterns. For ex-
ample, in the database of Figure 2, ME-entailment will sanction the desired consequences p - w,
p A—al—~f andp A—a} w and, moreover, it will avoid an undesirable feature of 1-entailment

which concludes ¢ A p }—1-1 f fromAu {c — f}, where c is an irrelevant property.

An interesting feature of the ME approach is its sensitivity to the format in which the rules are
expressed. This is illustrated in the following example. From A = [Swedes are blond, Swedes are
well-mannered}, ME will conclude that dark-haired Swedes are still well-mannered, while no such
conclusion will be drawn from A= {Swedes are blond and well-mannered}. This sensitivity might
sometimes be useful for distinguishing fine nuances in natural discourse, indicating, for example,
that behavior and hair color are two independent qualities. It stands at variance with most ap-
proaches to default reasoning, where a — b A ¢ is treated as a shorthand notation of @ — b and

a—c.

The ME approach fails to respond to causal information (see Pearl [1988, pp. 463, 519] and
Hunter [1989]). This prevents it from properly handling tasks such as the Yale shooting problem
[Hanks and McDermott 1986], where rules of causal character should be given priority over other
rules. This weakness may perhaps be overcome by introducing causal operators into the ME formu-
lation, similar to the way causal operators are incorporated within other formalisms of nonmonoton-

ic reasoning (e.g., Shoham [1986], Geffner [1989])).

3.4 Conditional Entailment

Conditional entailment [Geffner 1989] overcomes the weaknesses of 1-entailment by introducing

two refinements. First, rather than letting rule priorities dictate a ranking function on worlds, a par-
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tial order on worlds is induced instead. To determine the preference between two worlds, w and w’,
we examine the highest priority default rules that distinguish between the two, i.e., that are falsified
by one and not by the other. If all such rules remain unfalsified in one of the two worlds, then this
world is the preferred one. Formally, if A{w] and A[w’] stand for the set of rules falsified by w and
w’, respectively, then w is preferred to w’ (written w < w’) iff A[w’] # A[w’] and for every rule r in
A[w] - A[w’] there exists a rule 7 in A[w’] — A[w] such that ¥ has a higher priority than » (written
r 4 ). Using this criterion, a world w will always be preferred to w’ if it falsifies a proper subset of
the rules falsified by w’. Lacking this feature in the Z-ordering has prevented 1-entailment from

concluding p |- w in the example of Figure 2.

The second refinement introduced by Geffner is allowing the rule-priority relation, { , to become
a partial order as well. This partial order is determined by the following interpretation of the rule
a — B; if a is all that we know, then, regardless of other rules that A may contain, we are authorized
to assert B. This means that r: o — P should get a higher priority than any argument {a chain of
rules) leading from o to — 3 and, more generally, if a set of rules A’ — A does not tolerate r, then at
least one rule in A" ought to have a lower priority than r. In Figure 2, for example, the rule
r3:p = —f is not tolerated by the set {r;:p —b,ry: b— f ), hence, we must have r,{ r; or
r24 r3. Similarly, the rule r;: p — b is not tolerated by (r,, r3}, hence, we also have radry or
r3{ r1. From the asymmetry and transitivity of { , these two conditions yield 7 { ry and r,{ r,. It
is clear, then, that this priority on rules will induce the preference w <w’, whenever w validates
pAbAa—f andw’ validates p A b A f; the former falsifies r,, while the latter falsifies the higher
priority rule r3. In general, we say that a proposition g is conditionally entailed by f (in the context
of A) if g holds in all the preferred worlds of f induced by every priority ordering admissible with

A.
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Conditional entailment rectifies many of the shortcomings of 1-entailment as well as some
weaknesses of ME-entailment. However, having been based on model minimization as well as on

enumeration of subsets of rules, its computational complexity might be overbearing. A proof theory

for conditional entailment can be found in Geffner [1989].
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