Computer Science Department Technical Report University of California Los Angeles, CA 90024-1596

NP-COMPLETE PROBLEMS IN OPTIMAL HORN CLAUSES SATISFIABILITY

Rachel Ben-Eliyahu

July 1991 CSD-910028

NP-Complete Problems in Optimal Horn Clauses Satisfiability

Rachel Ben-Eliyahu < rachel@cs.ucla.edu >

Cognitive Systems Laboratory
Computer Science Department
UCLA

February 22, 1991

1 Introduction

A Horn formula is a propositional formula in a conjunctive normal form $D_1 \wedge \ldots \wedge D_n$, where each D_i is a disjunctions of literals (propositional letters or negations of propositional letters), and each D_i contains at most one positive literal. A Horn clause is a disjunction of literals with at most one positive literal.

In this report we will show that the following problems are NP-Complete

Maximum Horn Set Satisfiability.

Instance: Set U of variables, a set S of Horn clauses over U, positive integer $K \leq |S|$.

Question: Is there a truth assignment for U that simultaneously satisfies at least K of the clauses in S?

Maximum 2-Horn Satisfiability.

Instance: Set U of variables, a collection C of Horn clauses over U such that each clause $c \in C$ has $|c| \leq 2$, positive integer $K \leq |C|$.

Question: Is there a truth assignment for U that simultaneously satisfies at least K of the clauses in C?

Horn Clauses Optimization.

Instance: Set U of variables, a set S of Horn clauses over U, such that each clause $c \in S$ has $|c| \leq 2$, a set of positive integers P, a function $f: S \to P$ and a positive integer K such that $K \leq \sum_{c \in S} f(c)$.

Question: Is there a truth assignment for U that simultaneously satisfies a set $S' \subseteq S$ of clauses such that $\sum_{c \in S'} f(c) \ge K$?

Constrained Horn Clauses Optimization.

Instance: Set U of variables, a set S of Horn clauses over U, such that each clause $c \in S$ has $|c| \leq 2$, two clauses c'_1 and c'_2 such that $|c'_j| \leq 2$ for $j \in \{1,2\}$, a set of positive integers P, a function $f: S \to P$ and a positive integer K such that $K \leq \sum_{c \in S} f(c)$.

Question: Is there a truth assignment for U that simultaneously satisfies c_1' and c_2' and a set $S' \subseteq S$ of clauses such that $\sum_{c \in S'} f(c) \ge K$?

The proofs of the NP-Completeness of Maximum Horn Set Satisfiability and Maximum 2-Horn Satisfiability are done by reducing 3-Satisfiability to them (see [GJ79] for definition of 3-satisfiability) and are variations of the proof given by Garey et al. for the NP-Completeness of Maximum 2-Satisfiability (see [GJS76]). We reduce Maximum 2-Horn Satisfiability to Horn Clauses Optimization to show that the latter is NP-Complete, and NP-Completeness of Constrained Horn Clauses Optimization is proved by reducing Horn Clauses Optimization to it.

We would like to point out that there are *linear* algorithms to test the satisfiability of a set of Horn Clauses, i.e., to test whether there is a truth assignment to the set of variables that appear in the clauses that simultaneously satisfies *all* the clauses in the set (see [DG84]). In light of this result, it is easy to realize that all the above problems are in NP.

2 Proofs

Theorem 1 Maximum Horn Set Satisfiability is NP-Complete.

Proof: We have seen that *Maximum Horn Set Satisfiability* is in NP. We will show that there is a polynomial transformation from 3-Satisfiability to this problem, and hence, that it is NP-Complete.

Suppose we are given a formula α in 3-CNF, i.e., α is a conjunction of disjunctive clauses, each having at most 3 literals. We label the collection of all those clauses C. Without loss of generality, We assume that each c_i in C is in one of the following forms (where P, Q and R are propositional letters):

form $0: P \vee Q \vee R$

form 1 : $\neg P \lor Q \lor R$

form 2 : $\neg P \lor \neg Q \lor R$

form 3: $\neg P \lor \neg Q \lor \neg R$

We will define R_{c_i} - the set of Horn clauses that 'represents' a clause $c_i \in C$ as follows:

• If c_i is of form 0 or form 1, then

$$R_{c_{i}} = (\bigcup_{j=1}^{10} \{G_{i,j}\}) \bigcup \{ (p \vee \neg G_{i,1}), (Q \vee \neg G_{i,2}), (R \vee \neg G_{i,3}), (D_{i} \vee \neg G_{i,4}), (\overline{p} \vee \neg Q \vee \neg G_{i,5}), (\overline{p} \vee \neg R \vee \neg G_{i,6}), (\neg R \vee \neg Q \vee \neg G_{i,7}), (p \vee \neg D_{i} \vee \neg G_{i,8}), (Q \vee \neg D_{i} \vee \neg G_{i,9}), (R \vee \neg D_{i} \vee \neg G_{i,10}) \}$$

where if c_i is of form 0 then p = P and $\overline{p} = \neg P$ and if c_i is of form 1 then $p = \neg P$ and $\overline{p} = P$. All the variables in $\{D_i\} \cup (\bigcup_{j=1}^{10} \{G_{i,j}\})$ are assumed to be new and disjoint.

The reader can verify that if a truth assignment M satisfies c_i then there is a truth assignment M' that satisfies exactly 17 clauses in R_{c_i} such that M(a) = M'(a) for all $a \in \{P, Q, R\}$. Moreover, there is no truth assignment that satisfies more than 17 clauses in R_{c_i} , and if a truth assignment does not satisfy c_i , then it satisfies at most 16 clauses in R_{c_i} .

• If c_i is of form 2 or 3, then

$$R_{c_i} = \{G_i\} \bigcup \{\neg P \lor \neg Q \lor r \lor \neg G_i\}$$

Where r = R if c_i is of form 2 and $r = \neg R$ if c_i is of form 3, and G_i is a new variable.

The reader can verify that if a truth assignment M satisfies c_i then there is a truth assignment M' that satisfies exactly 2 clauses in R_{c_i} such that M(a) = M'(a) for all $a \in \{P, Q, R\}$. Moreover, there is no truth assignment that satisfies more than 2 clauses in R_{c_i} , and if a truth assignment does not satisfy c_i , then it satisfies at most 1 clauses in R_{c_i} .

Note that for each $i \neq j$, $R_{c_i} \cap R_{c_j} = \emptyset$.

Let l be the number of clauses in C of form 0 or 1, and let m be the number of clauses in C of form 2 or 3. We claim that α is satisfiable iff there is a truth assignment that satisfies at least k=17l+2m clauses in the set $S=\bigcup_{c_i\in C}R_{c_i}$. For if α is satisfiable, then there is a truth assignment that satisfies all the clauses in C, and so there must exist a truth assignment that satisfies at least k clauses from S and if there is a truth assignment that satisfies at least k clauses from S, then this truth assignment must satisfy every clause in C. \square

Theorem 2 Maximum 2-Horn Satisfiability is NP-Complete.

Proof: We have shown that *Maximum 2-Horn Satisfiability* is in NP. We will show that there is a polynomial transformation from 3-Satisfiability to this problem and hence it is NP-Complete. We will use the notations and definitions of the previous proof without repeating them.

Suppose we are given a formula α in 3-CNF - i.e. - α is a conjunction of disjunctive clauses, each having at most 3 literals. We label the collection of all those clauses C. Without loss of generality, We assume that each c_i is of form 0,1,2 or 3.

We will define R_{c_i} - the collection of Horn clauses that 'represents' a clause $c_i \in C$ as follows:

• If c_i is of form 0 or 1, then

$$R_{c_{i}} = \{(p), (Q), (R), (D_{i}), (\overline{p} \vee \neg Q), (\overline{p} \vee \neg R), (\neg Q \vee \neg R), (p \vee \neg D_{i}), (Q \vee \neg D_{i}), (R \vee \neg D_{i})\}$$

where if c_i is of form 0 then p = P and $\overline{p} = \neg P$ and if c_i is of form 1 then $p = \neg P$ and $\overline{p} = P$. The same collection of clauses appears in Garry et al. proof for the NP-Completeness of *Maximum 2-Satisfiability* (see [GJS76]).

• If c_i is of form 2, then

$$R_{c_i} = \{(R), (G_i), (D_i), \\ (\neg R \lor P), (\neg R \lor Q), (\neg P \lor \neg Q), \\ (R \lor \neg D_i), (\neg P \lor \neg D_i), (\neg Q \lor \neg D_i)\}$$

• If c_i is of form 3, then

$$R_{c_i} = \{(P), (Q), (R), (D_i), (\neg R \vee \neg P), (\neg R \vee \neg Q), (\neg P \vee \neg Q), (\neg P \vee \neg D_i), (\neg R \vee \neg D_i), (\neg P \vee \neg D_i), (\neg Q \vee \neg D_i)\}$$

The reader can verify that no matter what is the form of c_i , if a truth assignment M satisfies c_i then there is a truth assignment M' that satisfies exactly 7 clauses in R_{c_i} such that M(a) = M'(a) for all $a \in \{P, Q, R\}$. Moreover, there is no truth assignment that satisfies more than 7 clauses in R_{c_i} , and if a truth assignment does not satisfy c_i , then it satisfies at most 6 clauses in R_{c_i} .

 α is satisfiable iff there is a truth assignment that satisfies at least k = 7|C| clauses in the collection $H = \bigcup_{c_i \in C} R_{c_i}$. Note that for each $c_i \in H$, $|c_i| \leq 2$.

Theorem 3 Horn Clauses Optimization is NP-Complete.

Proof: We have seen that the problem is in NP. We will show that there is a polynomial transformation from $Maximum\ 2$ -Horn Satisfiability to this problem. Suppose we are given a collection C of horn clauses of size ≤ 2 , and an integer K, and we want to know if there is a truth assignment that satisfies at least K clauses from this collection. For each $c_i \in C$, let $\#c_i$ denote the number of times c_i appears in C, and let S be the set of clauses that appear in C. Let Max be $\max_{c_i \in C} \{\#c_i\}$, and Let $P = \{1, \ldots, Max\}$. We will define $f(c_i) = \#c_i$.

There is a truth assignment that satisfies at least K clauses from C iff there is a truth assignment that simultaneously satisfies a set $S' \subseteq S$ such that $\sum_{c_i \in C} f(c_i) \geq K$. \square

Theorem 4 Constrained Horn Clauses Optimization is NP-Complete.

Proof: As mentioned before, this problem is in NP. We will show that if there is a polynomial algorithm A to solve this problem, then there must be a polynomial algorithm A' to solve Horn Clause Optimization.

Suppose we are given a Horn Clauses Optimization problem. To find if there is a truth assignment that simultaneously satisfies a set $S'\subseteq S$ s.t. $\sum_{c\in S}, f(c) \geq K$, We will first check if there is one clause c in S with $f(c) \geq K$. If we find one , we are done. If there is not such a clause, We will continue by running A |S| * (|S| - 1) times, each time selecting a different set of 2 clauses from S as c'_1 and c'_2 , and testing whether there is an assignment that satisfies c'_1 and c'_2 and a set $S'' \subseteq S - \{c'_1, c'_2\}$ such that $\sum_{c \in S''} f(c) \geq K - (f(c'_1) + f(c'_2))$. \square

References

- [DG84] William F. Dowling and Jean H. Gallier. Linear time algorithms for testing the satisfiability of propositional horn formulae. journal of Logic Programming, 3:267-284, 1984.
- [GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability, A guide to the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[GJS76] M. R. Garey, D. S. Johnson, and L. Stockmeyer. some simplified np-complete graph problems. *Theoretical Computer Science*, 1:237– 267, 1976.