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1 Introduction

The main task of a formal characterization of default inference is to account
for the set of conclusions that a given set of facts and defaults legitimizes.
This requires a language for expressing facts and defaults, and a specification
of how expressions in such a language are to be interpreted. Classical logic
is not well suited for the task because of its failure to accommodate the non-
monotonic behavior of default inference, where conclusions may be retracted
in light of new information. This limitation of classical logic has led to the
development of several non-monotonic logics [McCarthy, 1980, McDermott
and Doyle, 1980, Reiter, 1980, Moore, 1985] in which defaults are treated
as rules for ertending a set of beliefs in the absence of conflicting evidence.
When defaults are in conflict, however, multiple extensions often arise which
do not always reflect equally plausible scenarios [Reiter and Criscuolo, 1983,
Hanks and McDermott, 1987]. In such cases, the ‘undesired’ scenarios need
to be pruned by such devices as cancellation axioms or priorities [McCarthy,
1986], or by a proper reformulation of the problem (e.g. [Lifschitz, 1987]).
More recently, it has been noted that some of the spurious interactions
among conflicting defaults can be eliminated by treating defaults as con-
ditional assertions [Delgrande, 1987, Kraus et al., 1989, Geffner and Pearl,
1990]. Whereas extensional interpretations regard the default “if p then
normally ¢” as a soft reason to believe ¢ given the truth of p, conditional in-
terpretations regard it as a hard but context dependent constraint by which
q is true (or highly probable) in the context determined by p and possibly
some background knowledge. As a result, conditional interpretations prop-
erly ‘dissolve’ certain spurious conflicts among defaults, such as those arising
from “if a then ¢” and “if a and b then ~¢”. In a context where a and
b are known to be true, the second default is permitted to constraint the
truth of —¢, while the first one is rendered inapplicable, leaving the truth of

¢ unconstrained.



In spite of these virtues, however, conditional interpretations fail to ac-
count for a number of desirable inferences which are captured by extensional
formalisms. These limitations have to do with the way irrelevant informa-
tion is handled. For instance, given a default “f p then ¢” both extensional
and conditional interpretations conclude ¢ given the evidence p; conditional
interpretations, however, are unable to maintain that conclusion when an
additional but irrelevant piece of evidence e is taken into account. The rea-
son is that conditional interpretations treat all evidence as relevant unless
otherwise proven, and hence refrain from maintaining ¢ in the presence of .
Indeeed, while extensional interpretations generate conflicts out of braveness,
conditional interpretations eliminate conflict out of sheer hesitancy.

The question arises whether a unifying framework can be developed which
combines the virtues of both the extensional and conditional interpreta-
tions. An earlier attempt in this direction was a proposal to enhance a
conditional interpretation based on probabilities with a syntactic criterion
for distinguishing relevant from irrelevant evidence [Geffner, 1988, Geffner
and Pearl, 1990] (see also [Delgrande, 1987]). However, while the results, for
the most part, were satisfactory, the theoretical underpinnings were not. A
more promising approach, based on model-theoretic considerations has re-
cently been advanced by Lehmann [1989] and Pearl [1990]. These proposals,
however, while better motivated than earlier ones, turned out less success-
ful: some useful inferences fail to be captured, while anomalous ones are
introduced.?

In this paper we develop an alternative model-theoretic interpretation of
defaults, called conditional entailment, which finally closes the gap between
extensional and conditional interpretations and which exhibits the best fea-
tures of both. Conditional entailment is closely related to prioritized cir-
cumscription except that priorities among defaults are not provided by the
user but are automatically extracted from the knowledge base. Conditional

1See section 4.



entailment thus shows that the difference between the conditional (proba-
bilistic or model-theoretic) and extensional interpretations can be reduced

to a particular ordering on defaults; an idea previously suggested in [Pearl,
1990].

The paper is organized as follows. First (Section 2) we briefly review
two conditional interpretations of defaults, one probabilistic and one model-
theoretic. Then we define the semantics and proof-theory of conditional
entailment {Section 3), and discuss related proposals {Section 4). Finally
(Section 5) we address the computation of conditional entailment and the
limitations of conditional entailment as an account of default reasoning.

2 Conditional Interpretations of Defaults

This section provides a brief survey of recent work on conditional interpreta-
tions of defaults.? Conditional interpretations assume that default theories
can be structured into two components: a background context K contain-
ing generic information about the domain of interest, and an evidence set
E containing information specific to the particular situation at hand. Intu-
itively, K contains the relevant rules, while E contains observational facts
(see [Geffner and Pearl, 1990]).

The background context K is assumed to comprise a sentential component
L and a default component D. Defaults are denoted by expressions of the
form p — ¢, where p and ¢ denote sentences referred as the default antecedent
and consequent respectively. The expression dog(fido) — can_bark(fido),
for instance, represents a default stating that “normally, if Fido is a dog,
Fido can bark.” We use default schemas of the form p(z) — ¢(z), where p
and ¢ are wifs with free variables among those of z, to denote the collection
of defaults p(a) — g(a) that results from substituting = by all tuples a of
ground terms in the language.

2See [Geffner, 1989] for details and proofs.



In the probabilistic interpretation of defaults [Adams, 1975, Pearl, 1988,
Geffner, 1989, the background K is viewed as imposing a constraint over
probability distributions which are later conditioned on the evidence E to
provide the degree of belief on arbitrary sentences. We call these distributions
admissible and define them as follows:

Definition 1 A probability distribution Px is e-admissible relative to a back-
ground K = (L, D) when Py assigns unit probability to every (strict) sen-
tence s in L, i.e. Px(s) = 1, and probabilities Px(q|p) > 1—e¢ and Px(p) > 0
to each default p — q in D.

In other words, a probability distribution is e-admissible when it renders
the sentences in L certain, while leaving a range ¢ of uncertainty for the
defaults in D. If the conditional probability of a proposition p given a body
of evidence E approaches one as ¢ approaches zero, then we say that p is
e-entailed by E:

Definition 2 A proposition p is e-entailed by a default theory T = (K, E)
when for any € > 0, there exists an € > 0, such that Px(p| E) > 1 —¢€ for
any e-admissible probability distribution Pyk.

The entailment relation so defined is non-monotonic relative to £ and cap-
tures several of the essential aspects of defaults [Pearl, 1988, Geffner, 1989].
Effective procedures for testing e-entailment are reported in [Goldszmidt and
Pearl, 1989].

An alternative conditional interpretation of defaults appeals to models
instead of probabilities. The role of probability distributions is filled by
preferential model structures [Lewis, 1973, Shoham, 1988, Kraus et al., 1989,
Makinson, 1989]:

Definition 3 A preferential model structure is a pair (T, <), where T de-
notes a non-empty collection of interpretations, and ‘<’ denotes an irreflezive
and transitive order relation over I.



For a particular structure (Z, <) and two interpretations M and M’ in 7,
the notation M < M’ is read as saying that M is preferred to M’. Moreover,
when M is a model of T' (i.e. a model of L and E) and 7 contains no model
of T' preferred to M, then M is also said to be a preferred model of T in that
structure.

In the same way in which the probabilistic interpretation only considers
admissible probability distributions, so does the model-theoretic interpreta-
tion only considers admissible preferential model structures, viewing defaults
as constraints over the preference relation ‘<’:

Definition 4 A well-founded® preferential model structure (I, <) is admissi-
ble relative to a background K = (L, D) iff every interpretation in T satisfies
L, and for every default p — q in D, (a) T contains a model of p, and (b) g
is true in all preferred models of p.

Preferential entailment is defined analogously to e-entailment:

Definition 5 A default theory T = (K, E) preferentially entails (p-entails) a
proposition p iff p is true in all the preferred models of E of every preferential
model structure admissible with K.

Thus, while in e-entailment the background K defines the admissible
probability distributions which are then conditioned upon the evidence E,
in p-entailment, the background K defines the admissible preferential model
structures from which the preferred models of E are selected. Interestingly,
as suggested early by Adams [1975, 1978], and noted recently by Lehmann
and Magidor [1988], ¢-entailment and p-entailment coincide for finite propo-
sitional Janguages, and they both accept an elegant and simple proof-theory:

Theorem 1 For finite propositional languages, if T = (K, E) is a default
theory, the following conditions are equivalent: 1) T e-entails q, 2) T p-entails
g, 3) the expression E k q is derivable from the rules:

3A structure (Z, <) is well-founded if for every non-preferred interpretation M inZ, 7
contains a preferred interpretation M’ such that M' < M.
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Rule 1 (Conditionals) pkqifp—q¢ €D

Rule 2 (Deduction) If E,Lt p then Etp

Rule 3 (Augmentation) If E k. p and E . q then E,pk ¢
Rule 4 (Reduction) If E by p and E,pl.q then E b q

Rule 5 (Disjunction) If E,p k. r and E,q k1 then E,pV q ke r

Pearl [1989] has referred to rules 1-5 as a default reasoning core, suggest-
ing that they constitute a basic set of principles that any reasonable account
of defaults is bound to obey. As discussed in the introduction, while the core
captures certain patterns of inference that escape traditional non-monotonic
logics, it also misses patterns which the latter do capture. The extension of
the core that we will pursue in this paper provides the benefits of the two
approaches and originates from the following simple observation.

Let us say that we encode defaults p — ¢ as ‘abnormality’ sentences of
the form p A ~ab; = ¢ with unique abnormality predicates ab;. Namely, we
take a default theory T = (K, E) with a background K = (L, D) and map
it into a new theory I" = (K, E} with a background K’ = (L', D'}, where
D' is empty and L’ comprises the formulas in L as well as the abnormality
sentences corresponding to the defaults in D. Furthermore, let us say that we
define the consequences of T in terms of the models of 7" which are minimal
in the set of abnormalities they sanction, as advocated in [McCarthy, 1986).

Notice first, that by restricting attention to models which are minimal
we will be automatically capturing the ‘independencies’ that characterize
extensional non-monotonic formalisms. Namely, given a default “birds fly”
we would not only be able to conclude that a bird flies, but also that a
red bird flies. On the other hand, as with other extensional formalisms,
the minimal model semantics will be missing patterns such as specificity
preferences, that are captured by both e-entailment and p-entailment. Given
that for finite propositional languages e-entailment and p-entailment can be



completely characterized by rules 1-5, it is natural to ask then which rules
among 1-5 the minimal model semantics fails to capture.

It turns out that under reasonable assumptions, rule 1, the conditional
rule (called defaults rule elsewhere), is the only rule that the minimal model
semantics fails to capture. In other words, the minimization of ‘abnormal-
ity’ renders a semantics that complies with all the rules sanctioned by e-
entailment and p-entailment, with the exception of rule 1. This observation
suggests that a promising way of enhancing a conditional interpretation of
defaults with ‘extensional’ features would be to twist the minimal model se-
mantics in such a way that rule 1 becomes valid. That is indeed what we
are about to do in Section 3. The mechanism for validating rule 1 will be to
impose certain priorities among abnormalities as a function of the defaults
in K. By considering only minimal models which sanction abnormalities of
lower priority, we will get an entailment relation that is stronger than both
p-entailment and minimal models, a relation we call conditional entailment.

3 Conditional Entailment

3.1 Preliminary Definitions

Conditional entailment deals with default theories T = (K, E) in which each
default in K is associated a unique assumption of ‘normality.’ Arbitrary
default theories TV = (K',E} can be expressed in this assumption-based
format by replacing each default schema p(z) — ¢(z) in K’ by a sentence
p(z) A b6i(z) = gq(z) and a default schema p(z) — &(zx), where §; denotes
a new and unique assumption predicate, which summarizes the normality
conditions required for concluding ¢(z) in the context of p{z). This en-
coding ‘trick’ is similar to McCarthy’s [1986] ‘abnormality’ formulation and
Poole’s [1988] default naming conventions. Qur choice for assumptions as
primitive objects is just a matter of convenience. We call the theories in the
resulting format assumption-based default theories.

9



We will represent assumptions by literals of the form 6;(a), where a is
a tuple of ground terms, and will use the symbols 8, &, ..., as variables
ranging over the assumptions in the underlying language £. Similarly, we
use the notation A, to refer to the collection of all such assumptions.

Given a default theory T = (K, E) with background K = (L, D}, we fur-
ther identify the models of T as the interpretations that satisfy the sentences
in both L and E. We will also refer to the set of assumptions violated by an
interpretation I as the gap of I, and denote it as A[]]. Similarly, we use the
notation E k; p to express that a proposition p is a deductive consequence of
T,ie. E,LF p. Finally, we will refer to a set of assumptions A logically
consistent with T’ as an argument, and say that A is an argument for a

proposition p if E, Ak p, and an argument against p if E, A k. —p.

3.2 Model Theory

Conditional entailment is a specialization of the notion of preferential en-
tailment discussed in section 2 for the case in which the preference order on
interpretations is determined by a given priority ordering on assumptions.
We call the resulting structures prioritized preferential structures and define
them as follows:

Definition 8 A prioritized preferential structure is a quadruple (I¢, <, A, <),
where I stands for the set of interpretations over the underlying language L,
A stands for the set of assumptions in L, ‘<’ stands for an irreflezive and
transitive priority relation over Ag, and ‘<’ is a binary relation over I, such
that for two interpretations M and M', M < M' holds iff A[M] # A[M']
and for every assumption § in A[M] — A[M'] there exists an assumption §'
in A{M'] — A[M] such that § < §&'.

Figure 1 illustrates the preference on two interpretations M and M’ de-
termined by an arbitrary priority ordering on assumptions depicted by means

10



A[M] A[M’]

5 > 5
53""J rﬁs

54 4’87

Figure 1: Preference on interpretations in prioritized structures: M < M’

of arrows. An arrow connecting an assumption é; to an assumption 0; ex-
presses that é; has lower priority than §;, i.e. & < ;. To check then whether
M is preferred to M’, it is sufficient to check that each assumption § in
A[M] ~ A[M'] is linked by an arrow to an assumption &’ in A[M’] — A[M]
(and that A[M] # A[M’]). Note that the assumptions violated by both M
and M’ (e.g., &) play no role in determining the preferences between M and
M.

We assume that priority orderings do not contain infinite ascending chains
&1 < 83 < 83 < --- . Prioritized structures are called preferential because the
priority ordering ‘<’ on assumptions determines a strict partial order ‘<’ on
interpretations.

Lemma 1 If the quadruple (Ip,<,Ar, <) is a prioritized preferential struc-
ture, then the pair (I¢, <) is a preferential model structure.

Such partial order on interpref.a.tions regards the relation § < &' as a
preference to sustain the assumption §’ over the assumption é in cases of
conflict. A similar mapping from predicate priorities to preferences occurs
in Przymusinski’s characterization of the perfect model semantics of general
logic programs [Przymusinski, 1987] and in McCarthy’s prioritized circum-
scription [McCarthy, 1986, Lifschitz, 1985]. Moreover, like in these frame-
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works, the induced order on interpretations establishes a preference which
favors models violating a minimal set of assumptions:

Lemma 2 In any prioritized preferential structure, if M is a preferred model
of a theory T, then M is minimal in A[M], i.e. there is no model M’ of T
such that A[M'] C A[M].

While the minimality of preferred models will endow conditional entail-
ment with the features common to traditional non-monotonic logics, the focus
on a particular class of priority orderings which reflect the structure of K
will account for the desirable features of conditional interpretations.

Let us say that a set of assumptions A is in conflict with a default p—é
in K, when A constitutes an argument against § in the context (K, {r}),
i.e. when p,Alz ~6 and pf -A. Our basic premise is that the user who
provided the default p — § truly means to assert § when p represents all
the evidence. Hence, it is natural to assume that s/he implicitly regards the
violation of one of the assumptions in A as less important than the violation
of 6. Admissible priority orderings capture this intuition. More precisely, we
shall say that an assumption § dominates a set of assumptions A whenever
A or a subset of it is in conflict with a default p — § in K, and accordingly,
we define admissible priority orderings as follows:

Definition 7 A priority order ‘<’ over A, is admissible with a background
context K iff every set A of assumptions dominated by an assumption §
contains an assumption &' such that §' < 6.

Admissible prioritized preferential structures are the structures induced
from admissible priority orderings:

Definition 8 A prioritized preferential structure (T¢, <, Ar, <) is admissi-
ble with a background K = (L, D) iff the priority ordering ‘<’ is admissible
with K,

12



Finally, conditional entailment is defined in terms of the preferred models
of the admissible prioritized structures:

Definition 9 A proposition q is conditionally entailed by a default theory
T = (K, E), iff ¢ holds in all the preferred models of T of every prioritized
preferential structure admissible with K.

Conditional entailment combines the two target notions: minimality and
conditionality. Indeed, for finite propositional languages the following result
can be proven:

Theorem 2 If an assumption-based default theory T preferentially entails
(¢-entails) a proposition p, then T also conditionally entails p.

Furthermore, if we say that a theory T = (K|, E) is p-consistent when
there is a preferential structure admissible with its background K, condi-
tionally consistent when there is a prioritized structure admissible with K,
and e-consistent when for any positive ¢ there is a probability distribution
¢-admissible with K, we can also show that conditional entailment remains
well-behaved as long as p-entailment and c-entailment are well-behaved:*

Theorem 3 If an assumption-based default theoryT = (K, E) is p-consistent
(e-consistent), then T is also conditionally consistent.

Next, we will illustrate the behavior of conditional entailment by means
of a simple example. We will find it convenient to write A < § as an abbre-
viation of “there exists a §’ in A such that §' < 6.” Thus, the admissibility
of the priority order ‘<’ with respect to K amounts to testing whether the
relation A < & holds for all pairs A, é such that § dominates A. Clearly this
test needs be applied only to minimal A’s.

4For the proof of this theorem, see [Geffner, 1989).
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Example 1 Consider a background context K = (L, D) with sentences:®

b(z) A b1(z) = £(2)
p(z) A da(2) = ~2(2)
p(z) = b(2)

r(z) = b(z)

and defaults b(z) — 61(z} and p(z) — 65(z). We can read the symbols b, £,
p, and r, as standing for the predicates ‘bird,’ ‘fly,’ ‘penguin,’ and ‘red-bird,’
respectively.

P

Figure 2: Strict Specificity

A priority ordering ‘<’ will be admissible with K if the relation A < 5i(a)
holds for any minimal assumption set A dominated by an assumption di(a),
for ¢ = 1,2 and any term a in the language. First note that there is no
assumption set A in conflict with instances of the default schema b(z) —
61(z), since for any ground term a there are interpretations which satisfy K
and b(a) and which violate no assumption. As a result, assumptions of the
form é1(a) do not dominate any assumption set and thus impose no constraint
on the admissible priority orderings. Assumptions of the form 65(a), on the
other hand, dominate a single minimal set of assumptions A = {6;(a)},
since for any ground term a, p(a), A k —82(a) holds, while p(a) i, =A does
not. As a result, a priority order ‘<’ will be admissible with K iff the relation

8Formulas are implicitly universally quantified, so we usually write p(x) = b(z) instead
of ¥z. p(z) = b(z).
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61(a) < 82(a) is satisfied for every ground term a in the language. We also
write in these cases §1(z) < 82(z).

Provided with this characterization of the prioritized structures admis-
sible with K, we can now turn to analyze the propositions which are con-
ditionally entailed in the different contexts of interest. For example, for an
individual Tim (t}, the preferred models of b(t) in K are the models which
violate no assumption. As a result, both assumptions 61(t) and é2(t) are
conditionally entailed by b(t), as are the propositions £(t) and —p(t) (i.e.,
Tim is presumed to be a normal flying bird, and therefore, not a penguin).

A different scenario arises when we consider the evidence p(t) instead
of b(t). In this case, every interpretation satisfying the evidence and the
background context is forced to render one of assumptions 6;(t) or 5(t)
false. Thus, two classes of minimal models arise: a class C¢;} comprised of
the models M, which violate the assumption é1(t), and a class C{zy comprised
of the models M; which violate the assumption é2(t). However, since §;(t) <
62(t), models in the former class are preferred to models in the latter class,
because (see definition 6) A[M,] — A[M;] = {62(t)}, A[M;] — A[M,] =
{61(t)}, and so M; < M,. It follows then, that Cyy) represents the class of
preferred models of p(t) in K, and therefore, that the propositions §2(t) and
—f(t) are conditionally entailed. Similar conclusions are indeed legitimized
by preferential entailment and e-entailment.

Finally, consider the scenario in which the target context is enhanced
with the information that Tim is also a red bird, i.e. T = (K, E’), with
E' = {p(t),z(t}}. In this case, neither e-entailment nor p-entailment con-
strain the preferred models of T’. Conditional entailment, on the other
hand, guarantees that the preferred models of T are minimal, and there-
fore, that they belong to one of the two classes Cyyy and Cyy; of minimal
models, where C; stands for the collection of models M of T’ with a gap
A[M] = {6i(t)|i € I}. However, as we showed above, models in Cyy} are
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preferred to models in C(5}.% As a result, the assumption 82(t) and the propo-
sition —£(t) are conditionally entailed by 7". Note that, on the other hand,
neither proposition is legitimized by either e-entailment or p-entailment, nor
by minimality considerations alone.

The example above illustrates different contexts built on top of a back-
ground which forces every admissible priority ordering ‘<’ to satisfy the re-
lation é1(a) < é2(a), for all ground terms a in the language. This means
that every admissible priority relation ‘<’ must include all tuples of the
form (81(a), é2(a)). Such relations may include additional tuples as well, e.g.
{61(a), 62(b)), but those tuples are not necessary for the relations to be ad-
missible. We will say that an admissible priority relation is minimal when no
set of tuples can be deleted without violating the admissibility constraints.
For instance, in the example above, there is a single minimal admissible or-
dering which includes all and only the tuples of the form (§;(a), 62(a)) for
ground atoms a. It is natural to ask then whether conditional entailment
can be computed by restricting attention to minimal admissible priority or-
derings only. The answer is yes. Indeed, if we can obtain an admissible
priority ordering ‘<’ by deleting certain tuples from an admissible priority
ordering ‘<’,” the preferred models in the structure (Z, <, Az, <') will be
a subset of the preferred models of the structure (Z;, <,Ag,<). Thus, if
we say that an admissible prioritized preferential structure (I, <, Ar, <) is
minimal if the relation ‘<’ is a minimal admissible priority ordering, the
following alternative characterization of conditional entailment results:

Lemma 3 A proposition g is conditionally entailed by a default theory T =
(K, E) iff ¢ holds in all preferred models of T of every minimal prioritized
preferential structure admissible with K.

®Note that these classes do not contain the same interpretations as in the context
above. Still, since they possess the same gaps, and the preference relation on classes
depends exclusively on such gaps, they are ranked in the same way.
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In the example above, we can thus compute conditional entailment by
considering a single structure (I, <, A, <), where the priority ordering is
such that 6 < ¢ holds iff § = §;(a) and &' = 6;(a) for some ground term a
in the language. Often, however, multiple minimal structures will need to be
considered (see [Geffner, 1989]).7

Example 2 We now consider a slightly different background context X com-
prising the sentences:

aANd=>w
uAdy = w
uAébs3 = a
fAbg=a

and defaults of the form p; — §; for each sentence p; A §; — ¢;. The back-
ground K can be understood as expressing defaults such as “adults work,”
“university students do not work,” “university students are adults,” and
“Frank Sinatra fans are adults.” It has the same structure as example 1
(fig. 2), except that all rules are now defeasible.

Figure 3: Default Specificity

TA background K’ requiring multiple minimal structures can be obtained from the
above K by replacing the ‘strict’ link p(z) = b(z) by the strict link p(z) = p'(z) and
the default p'(z) — b(z) (encoded as the sentence p{zr) A &3(z) = p'(z) and default
p(z) — &3(z)). A priority ordering ‘<’ will then be admissible relative to K’, if for any
ground term a either 62(a) < &;(a) or 63(a) < 63(a) holds.

17



There are two relevant dominance relations in this background context.
First, the assumption 6, dominates the set A = {41,683} as A constitutes an
argument against the default u — 8;, i.e. u,A Iy =67 and u [, ~A. Likewise,
the assumption 63 dominates the set {61,62}. Thus, any priority ordering
‘<’ admissible with K must be such that both relations {61,863} < 8, and
{61,682} < &3 must hold. Moreover, due to the asymmetric and transitive
character of priority orderings, such constraints imply é; < &, and §; < &;.
To show that this is the case, let us first assume 6, < &,. Then, by the
asymmetry of the priority order we must have 83 £ 6,, and therefore, from
the constraints above, §; < ;. Now assume &, £ 83. If &3 < &5 does not
hold, the constraints above imply §; < 63 and 83 < &, in contradiction with
the transitivity of ‘<’. Thus, in either case the relation §; < 62 must hold.
By symmetry, we conclude that 8; < 63 must hold as well .8

With these space of admissible priority orderings, let us first consider a
context T' = (K, E), with E = {f}. Since there is an interpretation that
satisfies T and every assumption in the language, the single preferred class
in every admissible prioritized structure is the class of models which violate
no assumption. In particular, the assumptions §; and &, are conditionally en-
tailed by T', as are the propositions a and v. Note that these inferences involve
default chaining, a pattern which is not sanctioned by either e-entailment or
by p-entailment.

A different situation arises when the proposition u is observed. The con-
text ' = (K, E’), with E’ = {£,u}, gives rise to three classes of minimal
models: (13, Cyz) and Cy3 4}, where Cy, as usual, stands for the class of models
M of T' such that A[M] = {§; : i € I}. However, since §; < &, and §; < &3,
any model M in Cy,} is preferred to any model M’ in C{2} and any model
M" in C(3,4). Hence Cy1y represents the class of preferred models of 7", and
therefore, all assumptions other than §; are conditionally entailed by 7", as

8Note that on ‘specificity’ grounds the priority of 83 over §; does not appear justified.
However, without it we would not be able to conclude a from u.
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are the propositions a and -w.

3.3 Proof Theory

Conditional entailment provides a characterization of the propositions which
are entailed by a given default theory. It does not provide, however, ef-
fective methods for computing such propositions. In this section we will
focus on such methods. We develop a number of syntactic criteria for test-
ing conditional entailment some of which are amenable to implementation in
ATMS-type of systems (section 5.1).

Like the proof-theory of classical deduction is structured around the no-
tion of proofs, the proof-theory of conditional entailment is structured around
the notion of arguments [Loui, 1987, Pollock, 1987]. Recalling from section 2,
an argument A in a theory T = (K, E) refers to a set of assumptions logi-
cally consistent with T'. Moreover, A is an argument for a proposition p if
E,Ak p, and an argument against p if E,A k. -p. In the former case we
also say that A supports p. If A is not logically consistent with 7', then A
is called a conflict set. Two arguments are in conflict when their union is
a conflict set. Likewise, an assumption is free in T when it does not belong
to any minimal conflict set in T and is bound otherwise. Default theories T
are bound when they give rise to a finite number of bound assumptions. All
theories considered so far are bound as are the theories to which the syntactic
account below applies.

The first condition for assertability is a simple consequence of the mini-
mality of preferred models within the class of prioritized preferential struc-
tures. Hereafter, we will assume a context T' = (K, F).

Lemma 4 An assumption is conditionally entailed if there are no arguments
against it.

A similar condition is both sound and complete for circumscriptive theo-
ries, provided that assumptions are identified with negative literals and that
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T includes the unique names and domain closure axioms [Gelfond and Przy-
musinska, 1986]. In the context of conditional entailment, however, such a
condition is too weak, since an assumption may face counterarguments and
still be conditionally entailed. The “birds fly-penguins don’t” example above
provides one such case. If Tim is a penguin, the assumption §;(t): “Tim does
not fly, because it is a normal penguin’ faces the counterargument §;(t): ‘Tim
flies, because it is a normal bird.” Nonetheless, 65(t) is conditionally entailed
while d;(t) is not.

In order to capture these conclusions by syntactic means, we need to con-
sider the priority orderings induced by K. Indeed, the reason 65(t) survives
its conflict with 61(t) is because its priority is higher; that is, 6;(t) < 62(t)
holds in every admissible priority ordering. The assertability conditions be-
low take these constraints into account. Recall that we write A < § as an
abbreviation of the expression “3§’ € A such that § < 6.”

Lemma 5 An assumption § is conditionally entailed if for every argument

A against § and every admissible priority ordering ‘<’, the relation A < §
holds.

Note that it is sufficient to consider only the minimal arguments A against
6; if A < 6 holds, so will A’ < § for any superset A’ of A.

The condition introduced by lemma 5 leads to the correct handling of
the example above. Given the evidence F = {p(t)} (‘Tim is a penguin’),
A = {61(t)} is the only (minimal) argument against 2(t) and since 65(t)
has a priority higher than é;(t), lemma 5 permits us to derive §5(t), from
which ‘Tim does not fly’ follows.

However, while lemma 5 refines lemma 4, it is not yet complete. This
can be illustrated by converting the strict ‘links’ in Example ! into default
‘links’, resulting in a structure analogous to that of Example 2. By semantic
arguments, we showed then that the assumption &4 is conditionally entailed
by T = (K, E), with E = {u,f}. Yet, the condition in lemma 5 does not

20



authorize this conclusion: A = {4, 8,} is an argument against &4 for which
the relation A < §4 fails to hold.

Intuitively, the reason é4 is conditionally entailed by T in spite of the
counterargument A, is that A contains an assumption §; which is defeated.
In other words, é; is in conflict with two ‘better’ assumptions 6, and 63 which
knock the argument A out, leaving the assumption 64 unchallenged.

This suggests that lemma 5 should be extended by considering multiple
conflicts at the same time. For that, some definitions will be handy. We
write below A’ < A as an abbreviation of the expression “for every § in A,

A< 6"

Definition 10 Given a priority ordering ‘<’, an argument A defeats an
argument A’ if the two arguments are in conflict and the relation A’ < A
holds. In this case we say that A is a defeater of A’

Definition 11 An argument A is protected from a conflicting argument A’
iff for every priority ordering admissible with K, A contains a defeater of

Al

Intuitively, when an argument A is protected from a conflicting argument
A’ it means that A is stronger than A’, and that from the point of view of
A, the conflicting argument A’ can be ignored. When all such conflicting
arguments can be so ignored, we say that A is stable:

Definition 12 An argument is stable iff it is protected from every conflicting

argument,

As suggested above, a stable argument is better than any of its com-
petitors, and propositions supported by stable arguments are conditionally
entailed:

Lemma 6 A proposition is conditionally entailed if it is supported by a stable
argument.
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The notion of stable arguments is a very powerful one indeed, and it
accounts for most of the natural inferences authorized by conditional en-
tailment. Nonetheless, lemma 6 does not yet provide a complete syntactic
account of conditional entailment. For example in a theory T' comprised of
the sentences §; = —8a, 6; = —8; and =8,V —8,, where 63 has a lower priority
than 8, and é;, the disjunction 6, V 6, is conditionally entailed even though
1t is not supported by any stable argument (neither A; = {61} or A, = {6}
are stable as they conflict with each other). To account for such conclusions
we will need to consider disjunctive arguments as well. We will accommodate
such arguments by considering the assertability conditions of disjunctive col-
lection of arguments which we call covers. For instance, C = {A1, A,}, with
Ay = {61} and A; = {&2} will turn out to be a stable cover, thus legitimizing
the disjunction é; V 8, and any proposition supported by it.

We make the notion of stable covers precise by refining first the conditions
under which an argument is protected:

Definition 13 An argument A is strongly protected from a conflicting ar-
gument A if for every subargument Al of A’ in conflict with A there erists
a subargument A; of A in conflict with A’ such that A} < A;.

Note that if an argument A is protected from a conflicting argument AV
but is not protected from a conflicting argument A}, A will not be strongly
protected from the union A} + A} even though A may be protected from it.
The distinction between the two notions is irrelevant for stable arguments
which are doth protected and strongly protected from every conflicting argu-
ment but is needed for dealing with disjunctive arguments.

Let us refer to a collection of arguments as a cover — where a cover is to
be understood as the disjunction of the arguments it contains — and let us
generalize the notions of conflicts and protection as follows:

Definition 14 An argument A is in conflict with a cover if A is in conflict
with every argument in the cover.
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Definition 15 A cover is protected from a conflicting argument A if the
cover contains an argument A’ which is strongly protected from A.

The conditions under which a cover is stable can be then obtained as
a generalization of the conditions under which an argument is stable. The
only difference is that, for the purpose of completeness, we only consider
arguments A in conflict with C that have as many assumptions from C as
possible. We call such conflicting arguments definite as they either include
or rebut each of the assumptions which occur in C.

Definition 16 A cover is stable iff it is protected from every definite con-
flicting argument A2

As expected, the conditions of lemma 6 can be strengthen by replacing
stable arguments by stable covers. Furthermore, if we say that a proposition
p is supported by a cover when it is supported by every argument in the cover,
the following complete characterization of conditional entailment results:

Theorem 4 (Main) A proposition p is conditionally entailed if and only if
p is supported by a stable cover.

We have thus arrived to a complete syntactic characterization of con-
ditional entailment in terms of admissible priority orderings. We can now
compute conditional entailment by looking either at models or arguments.
Still, an undesirable feature of both approaches is that they presume that we
have identified the set of admissible priority orderings, and therefore, that
we can check whether relations of the form A’ < A are necessarily satis-
fied. This, however, is often a non-trivial task. Fortunately, it is possible to
replace such a test by a corresponding syntactic test on K.

%A consequence of this definition is that the stability of a cover C cannot be computed
by considering only the minimal arguments in conflict with C. Rather such arguments
have to be extended with as many assumptions from C as possible, what can lead to a
proliferation of arguments to evaluate if C is large.
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Let us say that a set A of assumptions dominates a set A’ if every as-
sumption 6 in A dominates the union A + A’. Then, due to the asymmetry
and transitivity of priority orderings, the following result can be obtained:

Theorem 5 (Dominance) For two sets of assumptions A and A’ , the rela-
tion A" < A holds in every priority ordering ‘<’ admissible with a consistent
background K = (L, D) if and only if A is part of « set A” that dominates
A’ in K19

Theorems 4 and 5 together thus permit us to determine whether a given
proposition is conditionally entailed by purely syntactic means. For that, we
only need to look for stable covers and corresponding dominance relations.

4 Related Work

Conditional entailment is a refinement of an extension of preferential entail-
ment developed independently by Pearl [1990] and Lehmann [1989], targeted
at finite propositional default theories. Like in conditional entailment, Pearl
and Lehmann rank defaults according to a dominance-like criterion, and use
those rankings to infer a preference relation on models. Nonetheless three
important differences can be pointed out between Pearl’s and Lehmann’s
proposals on the one hand, and conditional entailment one the other. First,
both Pear]l and Lehmann deal with integer rankings as opposed to strict par-
tial orders; second, they define the rank of a model as a sole function of the
highest ranked default violated by the model; and third, they only consider
one, in a sense minimal, prioritized preferential structure, as opposed to mul-
tiple ones. The consequences of these choices are 1) preferred models are not
always minimal; i.e. they do not always violate a minimal set of defaults,

1A background K is consistent when there exists a priority ordering admissible with K.
For example, a background K with two defaults p — § and p — &' such that p i —(8 A §')
is not consistent. See [Geffner, 1989] for details.
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and 2} conflicts among defaults that should remain unsolved, sometimes get
solved. Two examples illustrate these problems.

Given two defaults p — q and p — —r both accounts fail to authorize the
conclusion q given both p and r. The reason is that, in the resulting world
ranking, the violation of one default “costs” as much as the violation of many
defaults of equal rank. In particular, this implies that exceptional subclasses
(e.g., penguins) are unable to inherit properties from their parent superclasses
(e.g., birds), which is a major drawback for most practical applications. The
second class of problems arises from their commitment to a unique integer
ranking on worlds. Consider for example two defaults pAs — q and r — —q,
which render the status of q ambiguous in the presence of p, s and r. In
Pearl’s and Lehmann’s approaches, this ambiguity is anomalously resolved
in favor of ¢ when a new default p — —q is added. The reason is that the
introduction of p — —q automatically raises the ranking of the more specific
default p A 8 — q which thus becomes preferred to r — —q. The extension
of e-semantics based on the principle of maximum-entropy [Goldzmidt et al.,
1990], remains committed to a unique integer ranking on worlds and thus
inherits similar problems.

Outside the conditional camp, conditional entailment is closest to priori-
tized circumscription. Prioritized circumscription is a refinement of parallel
circumscription, originally proposed by McCarthy [1986], and later developed
by Lifschitz {1985, 1988]. Roughly, the effect of prioritized circumscription is
to induce a preference for models that assign smaller extensions to predicates
of higher pricrity. The only difference between conditional entailment and
prioritized circumscription in the propositional case, is the source of these
priorities: while prioritized circumscription relies on the user, conditional
entailment extracts the priorities from the knowledge base.

Two other technical differences arise, however, in the first-order case.
First, the priorities in prioritized circumscription are on predicates as op-
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posed to literals.'! Such a difference often translates into a different behay-
ior. For instance, in the “birds fly, penguins don’t” example, the conclusion
—flies(tim) is conditionally entailed by penguin(tim) by virtue of the pri-
ority of the assumption é,(tim) (‘if Tim is a penguin, Tim does not fly")
over the assumption &1(tim) (“if Tim is a bird, Tim flies’). This behavior
can be accommodated in prioritized circumscription by letting the predicate
aby = —d2 have a higher priority than the predicate ab; = —é. However,
such an encoding produces an unintended side effect which does not arise
in conditional entailment: given that either Tim is a flying penguin or that
"Tweety is a non-flying bird, for instance, prioritized circumscription is forced
to conclude the latter.

The second technical difference between conditional entailment and prior-
itized circumscription lies in the notion of minimality. In conditional entail-
ment a model M of T' is minimal iff it is has a minimal gap A[M]; namely, if
there is no model M’ of T with violates a set of assumptions A[M'] properly
included in A{M]. In particular, since assumptions are ground literals, M
will be a minimal model of a theory T = {3z.-6;(z)} iff M satisfies every
assumption in the language. Every such model will thus presume the exis-
tence of one or many unnamed individuals which belong to the extension of
the predicate 41. So while the formula §;(a) will hold in all minimal models
of T, the formula 3z.Vy.-6,(y) = y = z will not. The opposite is true
in circumscription, where the minimality of a model is understood semanti-
cally, rather than syntactically (see for example, [Lifschitz, 1985]). In such a
case no attention is paid to literals, but to individuals in the domains of the
interpretations.

Which notion of minimality is to be preferred? The consensus is over-
whelming in favor of the semantic notion, as model-theory enjoys a special
status as a tool for specifying the meaning of formal notations. However, if
we just ask which minimality criterion is the most convenient for formalizing

11Except for the ‘pointwise’ formulation in [Lifschitz, 1988).
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default inference, the syntactic criterion prevails. Such a criterion permits us
to reason about equality, enabling us for example to infer that an assurnption
61(b) is likely to hold in spite of the violation of an assumption 81(a). For
such a pattern to be captured by circumscription, the inequality between a
and b need be stated explicitly, precluding the possibility of a and b denoting
the same thing. Similarly, given a default “birds fly,” conditional entailment,
unlike circumscription, is not bound to conclude that all birds fly. Indeed,
the treatment of equality and universals in conditional entailment is closer
to Reiter’s [1980] default logic than to circumscription.

There are, however, important limitations that arise from the focus on
ground literals as opposed to individuals. Sometimes, we do want to as-
sume that a property holds about all individuals. For instance, when rea-
soning about time we may want to assume that a clear block will remain
clear unless a relevant change occurs. However, a default schema such as
on(z,y,t) — on(z,y, t+1) will not do; in particular it will net authorize us
to infer 3z,y on(z, y,t+ 1) from 3z, yon(z, y,t).!? In that case, it is clear we
do want to minimize the eztension of predicate ab; = —é; associated with
the persistence of on. Does this mean that we are to adopt the semantic no-
tion of minimality? Not necessarily. It is possible to retain the benefits of the
syntactic criterion and still accommodate forms of closed world reasoning.

Let us say that we want a predicate §; to be closed when we want the
extension of §; to be marimal (i.e. the complement of §; to be minimal).
Furthermore, let §;[M] stand for the set of tuples of ground terms ¢ in the
language such that §;(t) € A[M]. Then, in order to close a predicate &, it is
sufficient to prune all those models M of the theory T of interest which fail
to satisfy the condition Vz.-6,(z) & z € &§{M]. If we say that a model of T
is a model of the closure of T when these closure conditions are satisfied, no
empty gap model of a theory T = {3z. —6;(z)}, for instance, would remain
a model of the closure of T. Similarly, if the preferred models of T are

12The example is from [McCarthy, 1980].
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selected among the models of the closure of T, a theory T = {—6:(a)} will
certainly conditionally entail the sentence Vz.z # a = 8;(z) very much
like the circumscription of the complement of §; will. So, it is possible to
retain the appealing treatment of equality and universals of Reiter’s default
logic, and yet accommodate on demand, the form of closed world reasoning
characteristic of circumscription.

In light of the relation between the model theory of prioritized circum-
scription and conditional entailment, it is not surprising to find that their
respective proof-theories are related as well. An elegant proof-theory for
prioritized circumscription has been recently developed by Baker and Gins-
berg [1989]. Baker and Ginsberg address the case in which predicates are lin-
early ordered; namely, circumscribed predicates are drawn from sets P, P,
+++, P such that the priority of a predicate in a set P, is higher than the pri-
ority of a predicate in a set P;, if j < i. While differing in technical detail, the
proof-theory they present has the same dialectical flavor as the proof-theory
developed in section 4.3, which as they note, is closely related to approaches
to defeasible inference based on the evaluation of arguments (e.g. [Loui, 1987,
Pollock, 1987]). The differences with Baker and Ginsberg are mainly in the
treatment of disjunctions, which in our case, are pushed completely into what
we called covers. Likewise, due to the nature of the constraints on admissible
priority orderings, we are forced to consider collections of non necessarily lin-
ear priorily orderings. In this regard, the results in section 4.3 are relevant to
prioritized circumscription, as they relax some of the assumptions on which
the proof-theory of Baker and Ginsberg is based.

5 Discussion

In the remaining of the paper we briefly address two issues: first, how to
compute conditional entailment and, more generally, certain forms of priori-
tized circumscription, and second, some limitations of conditional entailment
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as an account of default reasoning.

5.1 Computing Conditional Entailment

One way to compute conditional entailment is by developing a theorem prover
along the lines of the proof-theory developed in section 3.3. Needless to
say, this promises to be a formidable task. More reasonable, would be to
construct a sound but incomplete account which, by capturing most patterns
of interest, will be both useful and understandable.

An obvious candidate for approximating conditional entailment is given
by the propositions which are supported by stable arguments. From theo-
rem 4 we are guaranteed that such propositions are conditionally entailed,
and that incompleteness results only from the exclusion of disjunctive argu-
ments (covers). If we further commit ourselves a single minimal admissible
priority ordering, we find that testing whether a given set of assumptions
A constitutes a stable argument, can be easily accomplished in terms of the
minimal conflict sets (nogoods) computed by ATMS-like systems [de Kleer,
1986]. Indeed, if T is a theory and C}, ..., C, its minimal conflict sets, a set
of assumptions A will be stable iff for every conflict C;, C; N A # @, there is
a conflict C; such that 1) (C; — A) < (CjNA),and 2) C; — A C C; — A.
Each of these tests is relatively simple to perform.

Still, a significant gap remains between testing whether a particular set
is stable and testing whether a proposition p is supported by a stable set.
We can get closer to the latter goal by constructing stable arguments incre-
mentally. Namely, in attempting to prove p we adopt a set of assumptions
Ay and try to prove it stable. If it is not stable, we incrementally extend A,
with a set of assumptions A, that defeats the counterarguments of Ag. If
we succeed, we still need to show that Ay + A, is stable; namely, that A,
does not introduce new undefeated counterarguments of its own. For that
we need to repeat the process. This non-deterministic process will either
end in success (i.e., finding a stable argument which comprises Ag and thus
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which supports p) or by finding counterarguments which cannot be defeated.
This incremental approach is closer in form to the proof-theory developed by
Baker and Ginsberg [1989] and to dialectical systems such as Loui’s [1987].

5.2 Default Reasoning and Conditional Entailment

Conditional entailment combines in a single framework the benefits of ex-
tensional and conditional interpretations of defaults. It is natural to ask
then, whether conditional entailment provides a complete account of default
reasoning. The answer, not surprisingly, is no; default reasoning appears to
involve aspects like causality, which are not captured by either conditionals
or minimality considerations, and thus, which escape conditional entailment.

Consider for example a simple version of the Yale shooting problem [Hanks
and McDermott, 1987]. The problem states that a gun loaded at time #, is
shot at a later time ¢, at a person alive at ;. The question is to predict the
fate of the person after the shooting. The relevant relations can be encoded
in a background context K with sentences:

loadedg A 61 => loaded;
alivey A 62 = alive,
shooty A loaded; = —alives

shoot A loaded; = =§,

and defaults loadedy — 6; and alive; — §,. It is simple to check that
the context T = (K, E) with E = {loadedo,alive;,shoot} gives rise to
two classes of minimal models: a class C; comprising models in which the
person dies and thus the assumption & is violated; and a class C, comprising
models in which the gun is unloaded and thus the assumption 8 is violated.
Since the assumption & is not constrained to have a priority higher than the
assumption 82, nor vice versa, both classes of models are equally preferred,
and the ‘expected’ conclusion —~alive; is not sanctioned.
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This and related problems require the explicit handling of causal ezplana-
tions. Indeed, we prefer to adopt §; and reject 6, because the commitment to
61 explains the violation of §; but not vice versa. Several proposals have been
reported in the literature for accommodating causal explanations in a default

framework. We have recently explored some of these issues in [Geffner, 1989]
and [Geffner, 1990).
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A Proofs

Lemma 1 If the quadruple (Ic, <,A;, <)} is a prioritized preferential struc-
ture, then the pair (Ip, <) is a preferential structure.

Proof From Definition 6, the relation M < M’ holds iff A[M] # A[M),
and for every § in A[M] — A[M’] there exists a & in A[M'] — A[M], such
that § < &', where ‘<’ is an irreflexive and transitive relation which does
not contain infinite ascending chains. First, note that the relation ‘<’ must
too be irreflexive. We next show that ‘<’ is also transitive. Let M, M,,
and Mj; be three interpretations such that M; < M, and M, < Mj, and
let Ay = A[M;], A, = A[M,], and A3 = A[M;). We will use the notation
A to denote the complement of a set A , ie. & = Ap — A, and will write

A iy, in to denote the intersection of the sets A;,...,A; . Furthermore,

when one of the indices ¢ is preceded by a minus sign, A; is to be replaced
by its complement A;. Thus, for example, Aq,_23 stands for the intersection
of the sets Ay, Az and the complement A; of A,. Similarly, A_y 5 stands for
the intersection of A; and A,.

To prove transitivity we thus need to show that for every assumption §
in Aj,_3, there is an assumption § in A_; 3 such that § < §.13 First note
that since ‘<’ does not contain infinite ascending chains, it is sufficient to
prove this for every mazrimal element § in A, _3. Let then §; be an arbitrary

maximal element in A, _3. We need to consider two cases:

1. if &; belongs to A; _5 3, then & must also belong to A; _;. Thus, since
M, < My, there must be an assumption §; in A_; 2 such that §, < §,.
Furthermore, let §; be the maximal such element. If §; € A_; 5 3 we are
done. Otherwise, 6 € A_, 3 3, and then since M, < M3, there must
be an assumption é3 € A_; 3 such that §; < 8. Now, if §3 € A; 33,
then from M; < M;, there must be a 8} in A_; 3 such that 63 < 6, and

13A similar proof can be found in [Przymusinski, 1987].
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therefore, 8, < &}, in contradiction with the maximality of §,. Thus,
é3 € A_y3, and 6 < 83, by the transitivity of ‘<’.

2. if 6, belongs to Ay,3 3, then, since M; < Ma, there must be a d3inA_s4
such that &, < 63. Moreover, if §3 € A_; _3 3 we are done. Otherwise,
83 € Ay,_2,3, and therefore, as a result of M; < M,, there must be a &4
in A_; ; such that §; < 8;. Let 6; be a maximal such element. Then if
82 belongs to A; we are done. Otherwise, §, € A_1,2,-3, and therefore,
there must be a 8} in A_, 3 such that §, < 63. Furthermore, 8} cannot
belong to A,; otherwise, there should be another element 6y in A_y g,
such that &5 < 63, contradicting the maximality of 6,. So, 8, € Az
and é6; < & by transitivity of ‘~<.”

Lemma 2 In a given prioritized preferential structure, if M is a preferred
model of a theory T, then M is model of T minimal in A[M)], i.e. there is
no model M’ of T such that A|JM'] C AM].

Proof If A[M'] C A[M], then A[M'] — A[M] = 8, and M’ < M would
trivially hold in every prioritized preferential structure preventing M from
being preferred. u '

Theorem 2 If an assumption based default theory T = (K, E) preferentially
entails a proposition p, then T also conditionally entails p.

Proof If T is logically inconsistent, the result is trivial. So let us assume
that T is logically consistent. We will show that if £ = (I, <,Ag, <) is
a prioritized structure admissible with K = (L, D}, then 7 = (7, <), where
T C I stands for the collection of models of L, will be a preferential structure
admissible with K. Thus if T does not conditionally entail p, T will not
preferentially entail either. Note that since we are assuming £ to be a finite
propositional language, the preferential structure = must be well-founded.
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We need to show that for every default p — & in D, § holds in all the
preferred models of the theory T = (K, {p}} in 7. Again the result is trivial
if T" is logically inconsistent, so we will assume otherwise. Let then M’ be a
model of T* in which é does not hold, i.e. 6 € A[M’]. We will now construct
a model M preferred to M’ in which § holds. Since the preference order
‘<’ is well-founded, this is sufficient to prove that § holds in all preferred
models of 77. Let C stand for the collection of all minimal conflict sets in
T’ (i.e., minimal sets of assumptions logically inconsistent with T), and let
C’ stand for the collection of all minimal conflict sets A in T’ such that
AN A[M'] = {6}. Since the priority ordering ‘<’ is admissible, any such
set A must contain an assumption § such that § < &. Let A’ stand for the
collection of all such assumptions &', and let us select M as an interpretation
which satisfies T, with a gap A[M] = A[M'] + A’ — {6}. There must be
one such interpretation as A[M] is a hitting set for C (i.e., A{M] contains at,
least one assumption for every conflict set in C; see [Reiter, 1987]). Indeed,
any conflict set in C not ‘hit’ by assumptions from A[M'] — {6} will be
certainly ‘hit’ by assumptions from A’. Furthermore, M < M’ must hold,
as A[M] - A[M'] = &', A[M’] = A[M] = {6}, and for every §' in A, § < §
holds. »

Lemma 3 A proposition q is conditionally entailed by a defauit theory T =
(K,E) iff q holds in all preferred models of T of every minimal prioritized
preferential structure admissible with K.

Proof It is sufficient to show that if <’ is an admissible priority ordering that
properly contains all the tuples in 2 minimal admissible priority ordering
‘<’, then the preferred models in the structure ¢’ = (I, <’, Az, <’} will be a
subset of the preferred models of the structure ¢ = (Z¢, <, A, <). Assume
otherwise, that M is a preferred model in £’ but not in £. Then there must
be a model M’ such that M’ < M. This means that for every assumption
¢ in A[M'] — A[M] there is an assumption & in A[M] — A[M’] such that
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6 < &'. However, since § < &' implies § <’ §, then M’ would be preferred to
M in ¢’ as well, in contradiction with the minimality M in &. 4

Lemmas 4 and 5 are special cases of lemma 6, and the latter is a special
case of the ‘if part’ of Theorem 4 (A is a stable argument iff ¢ = {A}
is a stable cover). Let us recall that we say that an assumption is free in a
default theory T if it does not belong to any minimal conflict set, and is bound
otherwise. Furthermore, we also said that a default theory T is bound when it
gives rise to a finite number of bound assumptions. The proof of Theorem 4
appeals to the well-foundedness of bound default theories captured in the
following lemma:

Lemma 7 IfT = (K, E) is a bound default theory and £ = (T;,<,Ar, <)
is a prioritized structure, then for every non-preferred model M of T there is
a preferred model M' of T such that M' < M.

Proof If T is logically inconsistent, the lemma follows trivially. So let us
assume that T is logically consistent and let C stand for the collection of all
minimal conflict sets that T gives rise to. It is easy to show that for every
hitting set A for C (see above) there is a model M of T such that A[M] = A,
and vice versa, that if M is a model of T, then A[M] must include a hitting
set A for C. Furthermore, since T is bound, there must be a finite number
of minimal hitting sets A;, ¢ = 1,...,n. Thus let M;, stand for n models
of T such that A[M;] = A; and let M stand for the collection of all such
models. Furthermore, let M, denote the minimal collection of models in M
such that if M € M — M, then M, contains a model M; such that M; < M.
It is simple to show that such collection of models M, is unique. We show
furthermore that they are all preferred models of T. Assume otherwise that
there is a model M’ of T preferred to some M; in M,. This implies that
the gap A{M’] of M’ contains some hitting set A;, and thus, that if M’ is
preferred to M;, so will be M;, in contradiction with the selection of M;. We
are thus left to show that for every non-preferred model M of T there is a
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model in M, preferred to M. Two cases need to considered. If AlM] = A,
1 <7 < n, then a model will be preferred to M if and only if it is preferred
to M; above. Since M is not a preferred model of T, then M; must belong
to M — M,, and thus, there must be a model M; in M, preferred to M;,
and therefore, to M. If for no ¢, 1 <i <n, A[M] = Ay, then there must be
one such ¢ for which A[M] D A;. In that case, M; < M, and since M, must
contain a model M; preferred to M;, by transitivity, M i< M.

Theorem 4 A proposition p is conditionally entailed if and only if p is sup-
ported by a stable cover.

Proof (if part) Since we are assuming that the theory 7 = (K, E) under
consideration is bound, by lemma 7 above, it is sufficient to show that for any
model M which violates assumptions from every set A;; 2 = 1,...,n in the
cover, and any structure (T, <,A,, <) admissible with K, there is model
M', M’ < M, such that one of the assumption sets A; is satisfied. Without
loss of generality we can select M to be a minimal model, so that the set
A’ of assumptions validated by M is maximal. If there is no such a minimal
model M, we are done, because as stated in the previous lemma, there would
be a minimal model M’ that satisfies some A;, such that A[M’] C A[M],
and thus, M’ < M. We assume thus that A’ is maximal and in conflict with
every set A; in the cover. Since the cover is stable though, it must then
contain a set A; strongly protected from A’. That is, for every subset A’ of
A’ in conflict with A;, there is a subset AJ of A; in conflict with A’ such that
A;- < A‘,f . That means that every set A; in A’ in conflict with A; contains
an assumption &} such that §; < &, for some assumption 6! in A[M]. Let A”
stand for the collection of all those assumptions 6; in A’. Then, it is possible
to build a model M’ of T that satisfies A; such that A[M'] — A[M] C A”.
Thus for every assumption &} in A[M'] — A[M] there is an assumption & in
A[M] — A[M"] such that &; < §, and therefore, M’ < M. &

Proof (only if part) If T = (K, E) is a bound theory, then T is well-
founded and for any structure (T, <, A, <) T gives rise to a finite number
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of preferred classes of models. Let A;, A,, .. ., Ay, be the mazimal sets of
assumptions validated by the preferred classes of T'. Since p is conditionally
entailed this means that every such set supports p. We will show now that
the collection C of sets Ay, ..., A, constitutes a stable cover, i.e. that for any
definite conflicting argument A’, the cover contains an argument A; strongly
protected from A’. For that purpose, let M be a model of T satisfying A’ and
let M; be a preferred model of T satisfying A;, 1 < i < n, such that M, < M.
From the previous lemma we know that there must be one such model. We
show now that A; is strongly protected from A’. Assume otherwise, i.e. there
1s a subset A% of A’ in conflict with A; such that for every set Af C A;in
conflict with A’, A 4 A;f . This implies that the set A, of assumptions §
in A such that A} < & is consistent with A’. Furthermore, since A’ is a
definite conflicting argument this means that A4 C A’, and therefore, that
for every assumption &' in A[M]— A[M]], A} A §'. However, this contradicts
M; < M; indeed, since A’ is inconsistent with A;, one of the assumptions &
in A; must belong to A[M;] — A[M], and for M; < M to be true, another
assumption &;, such that & < 6; must belong to A[M] — A[M;].

Theorem 8§ For two sets of assumptions A and A/, the relation A’ < A
holds in every priority ordering ‘<’ admissible with a consistent background
K = (L, D) if and only if A is part of a set A” that dominates A’ in K.

Proof (if part) Let us recall, that we use the notation A’ < A to state that
for every assumption § in A there exists an assumption & in A’ such that § <
6. Moreover, the relation ‘<’ among sets of assumptions remains irreflexive
and transitive, and therefore, asymmetric. That is, for every priority ordering
A A A, and if Ay < Az and A; < Aj hold, so does A; < Aa.

Let A stand for a collection of assumptions &;, i = 1,...,n. We will use
the notation A;;, for ¢ < 7, to stand for the set {&;,6i41,...,8;}. Ifj > n,
the notation A, ; is to be understood as A; ,, and if ¢ > n, A; ; as the empty
set. We show first that if A dominates a set A’ then the relation A’ < A
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must hold for any priority ordering ‘<’ admissible with K. We show this by
induction; the base case A, , + A’ < Ay, first. Clearly, if A dominates AN
the assumption 6, must dominate A;, + A', and thus, A,, + A’ < § must
hold. Thus, if n = 1, we are done. So let us assume that n is greater than one.
Furthermore, let us assume as inductive hypothesis that Ay, + A’ < Ay
holds for every ¢, 1 < i < n. We need to show the same relation for 7 = n, for
which Apny1,n =0 and Ay, = A. By hypothesis, we have {6,} + A’ < Ay, 1,
since A, . = {6,}. Let A4 stand for the maximal set of assumptions in A,
for which the relation {§,} < A4 holds, and let Ag stand for Ap -1 — Ag.
Then, since the assumption §, dominates A + A’, there must an assumption
¢’ in A + A/, such that § < §,. Furthermore, §' cannot belong to Ay,
because {6,} < Ay, and the relation < is asymmetric. So there are two
cases to consider. If &' belongs to the set A’, then by transitivity we would
have A" < Ay, and therefore, A’ < A,,. On the other hand, if § € Ap,
the relation A’ < é, must hold by transitivity on Ap, since the way Ap was
selected guarantees A’ < Ap. Furthermore, by transitivity on §,, A’ < A4
must hold as well, and therefore, A’ < A; ,,, and thus A’ < A.

Proof (only if part) This part of the proof is slightly more involved. We
need to show that if the relation A’ < A holds for every admissible ordering
with a (conditionally) consistent background context K, then A is part of a
set that dominates A’. Let us first divide the assumptions in Az between
those which participate in a set that dominates A’, which we group into a
set A4, from those which do not participate in a set that dominates A’
Furthermore, let Ag = A’ — A4, and Ag = Az — Aq — Ap. Note that Ag
cannot be empty, otherwise A4 would dominate itself, precluding K from
being consistent. Note also, that if two sets dominate A’, so will their union.
It follows then that A4 dominates A’. Our goal will be to show that A is
included in A4. For that we will show that there is a priority ordering ‘<’
admissible with K, such that the relation A’ < § holds only if § € A 4.

Let us say that a priority ordering ‘<’ in a background context K is ad-
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missible within a range A and a restriction A’ iff every set A” dominated by
an assumption § in A contains an assumption ¢’ in A’, such that §’ < § holds.
The notions of range and restriction provide a finer measure of the admis-
sibility of a priority ordering. In particular, an admissible priority ordering,
must be admissible within a range A¢ and a restriction Ag. Furthermore,
if a priority relation ‘<’ is admissible within a range A; and a restriction
Ay, for two sets A, and A, such that A; + A; = Ag, then there must be a
priority relation ‘<’ admissible within a range A, and restriction A ¢z, such
that é; < 6; holds only if 8, € A, and 6, € A,. Indeed, if ‘<" is a prior-
ity relation admissible within a range A; and a restriction A,, the relation
that results by deleting all pairs (8, & Ay, 82 & Az) for which & <’ &, holds,
remains irreflexive, transitive, and admissible.

Now, let us assume that there is no priority ordering admissible within
a range Ac and a restriction Ag, for Ag as above. It is possible to show
then, that there must be a non-empty subset Al of Ac such that each
assumption ¢’ € A, dominates the set AL + Ac, where Ag stands for the
set of assumptions not in Ag; in this case, A4+ Ap. This, however, amounts
to say that Ay dominates the set A4+ Apg, which by virtue of the dominance
of Ay over A’ and the inclusion of Ap in A/, implies that Ap dominates A’
as well, in contradiction with the maximality of A4. Thus, there must be
a priority ordering ‘<¢’ admissible within a range A¢ and a restriction Ac,
such that § <¢ & holds only if § and 6 both belong to A¢. Furthermore,
since K is consistent, there must be a priority ordering ‘<4’ admissible within
range A4 and restriction Az, such that § <4 ¢’ holds only if &’ belongs to A 4.
We can thus define a relation ‘<’ such that § < & iff [6 <4 &'] or [§ <¢ §]
or [6 € A¢ and &' € Ay + Ap]. It is simple to show that such a relation
is a priority relation, and that it is admissible within a range A4 + Ac.
Let us assume, on the other hand, that ‘<’ is not admissible within a range
Ap. That is, there is an assumption § in Ag which dominates a set A
for which the relation Ap < § fails to hold. Note that A% cannot contain
elements from Ac; for, otherwise, the relation Al will certainly hold. Thus,
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A € A4q+ Ap, so that § dominates Ay + Ap. That means, however, that
the set A4+ {6} dominates the set A’, in contradiction with the assumption
that A, is the maximal such set. So, the ordering ‘<’ must be admissible
within the range Ap as well, and so ‘<" must be a priority relation admissible
with K. Since A’ < A holds by hypothesis, and A’ < § holds only if § € Ay,
it follows that A belongs to a set, A4, which dominates A’.
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