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given set of observations, and the meaning of explanation is intimately related to the notion
of causation.

Most Al works have given the term “cause” a procedural semantics, attempting to match
the way people use it in reasoning tasks, but were not concerned with the experience that
prompts people to believe that “a causes b”, as opposed to, say, “b causes a” or “c causes
both @ and 5.” The question of choosing an appropriate causal ordering received most
attention in qualitative physics, where some connectives attain directionality despite the
syminetrical nature of the functional equations {Kuipers 84] [Forbus & Gentner 86]. In some
systems causal ordering is defined as the ordering at which subsets of variables can be solved
independently of others [Iwasaki & Simon 86] or the way a disturbance is propagated from
one variable to others [de Kleer & Brown 86]. Yet these choices are made as a matter of
convenience, to fit the structure of a given theory, and do not reflect features of the empirical
environment which compelled the formation of the theory.

An empirical semantics for causation is important for several reasons. First, by tracing
empirical origins we gain a better understanding of the meaning of utterances such as “a
explains ", “a suggests b”, “a tends to cause b”, and “a actually caused b” | etc. Sec-
ond, an intelligent system attempting to build a workable model of its environment cannot
rely exclusively on preprogrammed causal knowledge, but must be able to translate direct
observations to cause-and-effect relationships.

Temporal precedence is normally assumed essential for defining causation. Suppes
[Suppes 70], for example, introduced a probabilistic definition of causation with an explicit
requirement that a cause precedes its effect in time. [Shoham 88] makes an identical as-
sumption. In this paper we propose a non-temporal semantics, one that determines the
directionality of causal influences without resorting to temporal information, in the spirit of
[Simon 54] and [Glymour et al. 87]. Such semantics should be applicable, therefore, to the
organization of concurrent events or events whose chronological precedence cannot be deter-
mined with precision, (e.g. “old age explains disabilities”). Motivated by the observation
that most causal utterances describe probabilistic relations (e.g. “reckless driving causes
accidents”) rather than functional or deterministic dependencies, we base our formalization
on probability theory. However, given that statistical analysis is driven by covariation, not
causation, we must still identify the asymmetries that prompt people to perceive causal struc-
tures in statistical data, and we must find a computational model for such perception. Our

results will be discussed in Section 2, while the formal treatment is left for the Appendix.
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Abstract

This paper concerns the empirical basis of causation, and addresses the following
issues;

1. the asymmetries that might prompt people to perceive causal directionality in
uncontrolled observations,

2. the task of inferring causal models from these asymmetries, and

3. whether the models inferred tell us anything useful about the causal mechanisms
that underly the observations.

We propose a model-theoretic extension of the Reichenbach-Suppes definition of
causation, and show that, contrary to common folklore, genuine causal influences can
be distinguished from spurious covariations following standard norms of inductive rea-
soning. We also establish a complete characterization of the conditions under which
such a distinction is possible. Finally, we provide a proof-theoretical procedure for
inductive causation and show that, for a large class of data and structures, effective
algorithms exist that uncover the direction of causal influences as defined above.

1 Introduction

The study of causation is central to the understanding of human reasoning. Tasks involv-
ing changing environments require causal theories which make formal distinctions between
causation and logical implication [Shoham 88] [Lifschitz 87). In applications such as diagno-
sis [Patil & Schwartz 82] [Reiter 87], qualitative physics [Bobrow 85], and plan recognition
[Wilensky 83] [Kautz 87], a central task is that of finding a satisfactory ezplanation to a

"This work was supported, in part, by NSF grant IRI-88-2144 and NRL grant N000-89-J-2007.
Supported by an IBM graduate fellowship.



2 Summary of Major Results
2.1 The Model

We pretend that Nature possesses “true” cause-and-effect relationships and that these rela-
tionships are organized in the form of a a directed acyclic graph (dag); each node represents
a variable in the domain, and the parents of that node correspond to its direct causes, as
designated by Nature. This dag (called a “causal model”) serves as a blue print for forming
a “causal theory” - a precise specification of how each variable is influenced by its par-
ents in the dag. Here we assume that Nature is at liberty to impose arbitrary functional
relationships between each effect and its causes and then to weaken these relationships by
introducing arbitrary (yet mutually independent) disturbances. These disturbances reflect
“hidden” or unmeasurable conditions and exceptions which Nature chooses to govern by
some undisclosed probability function. The requirement of independence renders these dis-
turbances “local” to each family; disturbances that influence several families simultaneously
will be treated explicitly as “latent” variables.

Once a causal theory is formed, it defines a joint probability distribution over the vari-
ables in the system, and this distribution reflects some features of the causal model (e.g.,
each variable is independent of its grandparents, given the values of its parents). Nature
then permits the scientist to inspect a select subset O of “observed” variables, and to ask
questions about the probability distribution over the observables, but hides the underlying
causal theory as well as the structure of the causal model . We investigate the feasibility of

recovering the topology of the dag from features of the probability distribution. *

2.2 Model preferences (Occam'’s razor)

In principle, with no restriction whatsoever on the type of models considered, the scientist is
unable to make any categorical assertion about the structure of the underlaying model. For
example, he/she can never rule out the possibility that the underlying model is a complete

(acyclic) graph; a structure that, with the right choice of parameters can mimic the behavior

1This formulation employs several idealizations of the actual task of scientific discovery. It assumes, for
example, that the scientist obtains the distribution directly, rather than events sampled from the distribu-
tion. This assumption is justified when a large sample is available, sufficient to reveal all the dependencies
embedded in the distribution. Additionally, we assume that the observed variables actually appear in the
original causal theory and are not some aggregate thereof. Aggregation might result in feedback loops which
we do not discuss in this paper. Our theory also takes variables as the primitive entities in the language,
not events which permits us to include “enabling” and “preventing” relationships as part of the mechanism.



of every causal theory. However, following the standard method of scientific induction, it is
reasonable to rule out every mode} for which we find a simpler, less ezpressive model, equally
consistent with the data. Models that survive this selection are called “minimal models”
and with this notion, we construct our definition of inductive causation:

“ A variable X is said to have a direct causal influence on a variable ¥ if a uni-directed
edge exists in all minimal models consistent with the data”

We view this definition as normative, because it is based on one of the least disputed
norms of scientific investigation: Occam’s razor in its semantical casting. However, as with
any scientific inquiry, we make no claims that this definition actually identifies stable physical
mechanisms; it identifies the only mechanisms inducible from non-manipulative data.

As an example of a causal relation that is identified by the definition above, imagine that
observations taken over four variables {a,b,¢,d} reveal only two vanishing dependencies:
“a is independent of 4” and “d is independent of {a,b} given ¢” (plus those that logically
follow from the two). This dependence pattern would be typical for example, of the following
variables: a = having cold, b = having hay-fever, ¢ = having to sneeze, d = having to wipe
ones nose. It is not hard to show that any model which explains the dependence between
c and d by an arrow from d to ¢, or by a hidden common cause between the two, cannot
be minimal. We conclude therefore that the observed dependencies imply a direct causal
influence from ¢ to d. Some minimal (1 and 2) and non-minimal (3 and 4) models consistent
with the observations are shown below. However, (5) is inconsistent, because it cannot

account for the observed marginal dependence between b and d.
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2.3 Proof Theory

It turns out that while the minimality principle is sufficient for forming a normative and
operational theory of causation, it does not guarantee that the search through the vast space
of minimal models would be computationally practical. If Nature truly conspires to con-
ceal the structure of the underlying model she could annotate the underlying model with
a distribution that matches many minimal models, having totally distinct structures. To

facilitate an effective proof theory, we rule out such eventualities, and impose a restriction
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on the distribution called “stability”. It conveys the assumption that all vanishing depen-
dencies are structural, not formed by incidental equalities of numerical parameters.? With
the added assumption of stability, every distribution has a unique causal model (up to equiv-
alence), as long as there are no hidden variables. The search for the minimal model then
boils down to recovering the structure of the underlying dag from probabilistic dependencies
that perfectly reflect this structure. This search is exponential in general, but simplifies
significantly when the underlying structure is sparse (see [Spirtes, Glymour & Scheines 89]
and [Verma & Pearl 90b] for such algorithms).

2.4 Recovering Latent Structures

When Nature decides to “hide” some variables, the observed distribution P may have many
minimal models (called “latent structures”), each containing any number of hidden variables.
Fortunately, rather then having to search through the vast space of latent structures, it turns
out that every such structure can be encoded parsimoniously using a bi-directed graph with
only the observed variables as vertices. Each bi-directed link in such a graph represents a
common hidden cause of the variables corresponding to the link’s end points. If we now
identify the arrowheads that are shared by all these bi-directed graphs, we obtain the sum
total of all causal statements that can be “proven” from the observed distribution.

Remarkably, these arrowheads can be identified by a simple procedure, the IC-algorithm,
that is not more complex than searching for the unique minimal model in the case of fully
observable structures. The result of this procedure is a substructure called core(P) in which
every marked uni-directed arrow X — Y stands for the statement: “X is a direct cause of
Y (in all minimal latent structures consistent with the data)”. We call these relationships
“genuine” causes (e.g. ¢ — d in previous figure).

The intuition behind our IC recovery procedure is rooted in Reichenbach’s (1956) “com-
mon cause” principle stating that if two events are correlated, but one does not cause the
other, then there must be causal explanation to both of them, an explanation that renders
them conditionally independent. As it turns out the pattern that provides us with informa-

tion about causal directionality is not the “common cause” but rather the “common effect”.

The argument goes as follows: If we create conditions (fixing S,s) where two variables, a and

21t is possible to show that, if the parameters are chosen at random from any reasonable distribution,
then any unstable distribution has measure zero [Spirtes, Glymour & Scheines 89]. Stability precludes de-
terministic constraints.



b, are each correlated with a third variable ¢ but are independent of each other, then the
third variable cannot be a cause of a or &; it must be either their common effect, a — ¢ «— b,
or be associated with @ and b via common causes, forming the pattern a & ¢ «~ b, This
is indeed the eventuality that permits our algorithm to begin orienting edges in the graph
(step 2), and assign arrowheads pointing at ¢. Another explanation of this principle appeals
to the perception of “voluntary control” [Pearl 88, page 396]. The reason people insist that
the rain causes the grass to become wet, and not the other way around, is that they can
find other means of getting the grass wet, totally independent of the rain. Transferred to
our chain @ — ¢ — b, we can preclude ¢ from being a cause of a if we find another means (b)

of potentially controlling ¢ without affecting a.

3 Conclusions

The results presented in this paper dispel the claim that statistical analysis can never distin-
guish genuine causation from spurious covariation [Otte 81]. We show that certain patterns
of dependencies dictate a direct causal relationship between variables, one that cannot be
attributed to hidden causes lest we violate one of the basic maxims of scientific methodology:
the semantical version of Occam’s razor.

On the practical side, we have shown that the assumption of model minimality, together
with that of “stability” (no accidental independencies) lead to an effective algorithm of
recovering causal structures, transparent as well as latent. Simulation studies conducted at
our laboratory show that networks containing twenty variables require less than 5000 samples
to have their structure recovered by the algorithm. Another result of practical umportance
is the following: Given a proposed causal theory of some phenomenon, our algorithm can
identify in linear tigne those causal relationships that could potentially be substantiated by
observational studies, and those whose directionality can only be determined by controlled,
manipulative experiments.

From a methodological viewpoint, our results should settle some of the on going disputes
between the descriptive and structural approaches to theory formation [Freedman 87]. It
shows that the methodology governing path-analytic techniques is legitimate, faithfully ad-
hering to the traditional norms of scientific investigation. At the same time our results also
explicate the assumptions upon which these techniques are based, and the conditions that

must be fulfilled before claims made by these techniques can be accepted.
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A Formal Treatment, Definitions and Theorems

A.1 Model Theory

Definition 1 A causal model over a set of variables U is a directed acyclic graph (dag)
D, the nodes of which denote variables, and the links denote direct binary causal influences.

Definition 2 A latent structure is g pair L =<D,0> containing a causal model D over
U and a set O C U of observable variables.

Definition 3 A causal theory is o pair T =<D,Bp> containing a causal model D and
a set of parameters Op compatible with D. ©p assigns a function x; = fi[pa(z;),&] and o
probability measure g;, to each z; € U, where pa(z;) are the parents of z; in D and each
& 18 a random disturbance distributed according to g; independently of the other ¢’s and of

{z;}2]

Notation: For a causal theory T =<D, ©p> and latent structure [, =<D,0>,
P(T) denotes the probability distribution generated by T'.
I(D) denotes the set of triples (X, Z,Y) of subsets of variables s.t. X and Y are
d-separated in D given Z (see [Pearl & Verma 87] for details).
I{P(T)) denotes the set of triples (X, Z,Y) s.t. X and ¥ are independent in P given Z.
Ijo) denotes the subset of triples of I in which X , Y and Z are taken from O.
Po)(T) denotes the marginal of P(T) over O.

Theorem 1 {Verma & Pearl 90a] For any causal theory T =<D,Qp>, I(D) C I(P(T)).
Definition 4 L =<D, 0> is preferred to L' =<D’,0> written, L < L' ¢ff D' can mimic
D over O, ie. for every ©p there exists a Op s.t. Pof(<D',0p,>) = Po)(<D,@p>). Two
latent structures are equivalent, written L' = L, FLL and L = L'

Definition 5 A latent structure L is minimal with respect to a class £ of latent structures
iff for every L' € £, L = L' whenever L' < L.

Theorem 2 Given L =<D,0> and I’ =<D',0>, L < I ff lio)(D) 2 Iio)(D').



Theorem 3 When U = O, two latent structures are equivalent iff their dags have the same
links and same set of uncoupled head-to-head nodes®.

Definition 6 L =<D,0> is consistent with a sampled distribution P over O if D can
accommodate some theory that generates P, i.e. there ezists a Op s.t. Po)(<D,0p>) = p

Theorem 4 A latent structure L =<D, 0> is consistent with P iff fio)(D) C I(P).

Definition 7 (Induced Causation) Given P, a variable C has o direct causal influ-
ence on E iff a ink C — E ezists in every minimal latent structure consistent with P.

A.2 Proof Theory

Definition 8 A latent structure Lig <D[o],0> is @ projection of L iff (1) Lioj = L
and (2) every unobservable variable of Do) is a parentless common cause of exactly two
non-adjacent observable variables.

Theorem 5 Any latent structure has at least one projection (identifiable in linear time).

Definition 9 For any latent structure L, core(L) is defined as the hybrid graph? satisfying
(1) two nodes are adjacent iff they are adjacent or they have a common unobserved cause
in every projection of L, and (2) a link between a and b has an arrowhead pointing at b iff
a — b or a and b have a common unobserved cause in every projection of L.

IC Algorithm (Inductive Causation)
Input: P a sampled distribution.
Output: core(f’) a marked hybrid acyclic graph.

1. For each pair of variables a and b, search for a set S, such that I(a, Sab, b) holds.
If there is no such S,;, place an undirected link between the variables.

2. For each pair of non-adjacent variables a and b with a common neighbor ¢, check if ¢ € S5,
If it is, then continue.
if it is not, then add arrowheads pointing at ¢, (i.e. a — ¢ « b).

3. Form core( P by recursively adding arrowheads according to the following two rules:®
If ab and there is a strictly dlrected path from a to b then add an arrowhead at 5.

If @ and b are not adjacent but ac and ¢ — b, then direct the link ¢ — &.

4. Mark any uni-directed link @ — b if there is some link with an arrowhead directed at a.

Definition 10 A4 causal theory T =< D,Op > generates a stable distribution iff it con-
tains no eztrancous independences, i.e. I(P(<D,09p>)) C I{(P(<D,®%>)) for any set of
parameters O).

3i.e. converging arrows emanating from non-adjacent nodes.

iIn a hybrid graph links may be undirected, uni-directed or bi-directed.

Sab denotes adjacency, ab denotes either a — b or a « b.



Theorem 6 For any latent structure L =<D,0> and

associated theory T =<D,Op> if
P(T) is stable then core(L) = core(Poi(T))

Corollary 1 IfC — E is marked in core(P) then C is a direct cause of E according to P.
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