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Abstract

Humans use knowledge of causation to derive dependencies among
events of interest. The converse task, that of inferring causal rela-
tionships from patterns of dependencies, is far less understood. This
paper establishes conditions under which the directionality of some
dependencies is uniquely dictated by probabilistic information — an
essential prerequisite for attributing a causal interpretation to these
dependencies. An efficient algorithm is developed that, given data
generated by an undisclosed simple causal schema, recovers the struc-
ture of that schema, as well as the directionality of all links that are
uniquely orientable. A simple schema is represented by a directed
acyclic graph (dag) where every pair of nodes with a common direct
child have no common ancestor nor is one an ancestor of the other.
Trees, singly-connected dags and directed bi-partite graphs are ex-
amples of simple dags. Conditions ensuring the correctness of this
recovery algorithm are provided.

1 Introduction

The study of causation, because of its pervasive usage in human commu-
nication and problem solving, is central to the understanding of human
reasoning. Any reasoning task that deals with changing environments re-
lies on the distinction between cause and effect. For example, a central task
in applications such as diagnosis, qualitative physics, plan recognition and
language understanding, is that of abduction, i.e., finding a satisfactory ex-
planation for a given set of observations, where explanation builds on the
notion of causation.

Most AI works have given the term “cause” a procedural semantics,
attempting to match the way people use it in inference tasks, but were not
concerned with what makes people believe that “a causes b”, as opposed to,
say, “b causes @” or “c causes both @ and 5.
[1,14]. An empirical semantics for causation is important for several rea-
sons. First, by formulating the empirical components of causation we gain a
better understanding of the meaning conveyed by causal utterances, such as
“a explains b”, “a suggests 8”7, “a tends to cause b”, and “a actually caused
b”. These utterances are the basic building blocks from which knowledge



bases are assembled. Second, any autonomous learning system attempt-
ing to build a causal model of its environment cannot rely exclusively on
procedural semantics but must be able to translate direct observations to
cause-effect relationships.

Formal definitions of causation rely heavily on temporal information.
Suppes [18], for example, introduces a probabilistic definition of causation
assuming that temporal ordering of all events is known. Shoham makes
an identical assumption [14]. In this paper we propose a non-temporal
semantics, one that determines the directionality of causal influence with-
out resorting to temporal information, in the spirit of [15] and [6]. Such
semantics should be applicable, therefore, to the organization of concur-
rent events or events whose chronological precedence cannot be determined
empirically. Such situations are common in economics, medicine, and in
the behavioral sciences where we say, for example, that old age explains
a certain disability, not the other way around, even though the two occur
together (in many cases it is the disability that precedes old age).

Another feature of our formulation is the appeal to probabilistic de-
pendence, as opposed to functional or deterministic dependence. This is
motivated by the observation that most causal connections found in natural
discourse, for example “reckless driving causes accidents,” are probabilistic
in nature {17]. Given that statistical analysis cannot distinguish causa-
tion from covariation, we must still identify the asymmetries that prompt
people to perceive causal structures in empirical data, and we must find a
computational model for such perception.

Our attack on the problem is as follows; first, we pretend that Nature
possesses “true” cause-effect relationships and that these relationships form
a causal schema, namely, a directed acyclic graph (dag) where each node
represents a variable in the domain and the parents of that node correspond
to its direct causes, as designated by Nature. Next we assume that Nature
annotates the causal schema by assigning probabilistic parameters to its
links, such that, direct causes of each variable render that variable condi-
tionally independent of all other variables except its consequences. Nature
permits scientists to observe the resulting distribution and to ask questions
about its properties, but hides the underlying causal schema.

Definition A causal schema is a directed acyclic graph where each link



a — b corresponds to a direct causal influence of a on b. A joint probability
distribution is said to be generated by D if P can be factored as follows:

P(uy, ..yupn) = H P(u; | 7(uy))

u, U

where 7(u;) are the variables corresponding to the parents of node ;. And
P cannot be factored this way if any link of D is deleted.?

We investigate the feasibility of recovering the schema’s topology uniquely
and efficiently from features of the joint distribution.

This formulation contains several simplifications of the actual task of
scientific discovery. It assumes, for example, that scientists obtain the
distribution, rather than events sampled from that distribution. This as-
sumption is justified when a large sample is available, sufficient to reveal
all the dependencies embedded in the distribution. It also assumes that the
scientist can observe all relevant variables. The possibility of having rele-
vant variables which can not be measured, prevents us from distinguishing
between spurious correlations [15] and genuine causes, a distinction that
is impossible within the confines of a closed world assumption®. However,
solving this simplified problem is an essential component in any attempt
to deduce causal relationships from measurements, and this is the main
concern of this paper.

Clearly, if Nature wishes to confuse the scientist it could choose a dis-
tribution that hides some of the causal links. For example, if Nature makes
two causal paths have precisely equal strengths and of opposite signs the
scientist would have no way of distinguishing this incidental cancellation
from a permanent absence of a causal connection in the underlying schema.
In general, to allow for such cancellations, the scientist would never be able
to rule out the possibility that the underlying schema is a complete graph;
a structure that with a clever choice of parameters can mimic the behavior
of any other schema. We therefore need to impose some restrictions on the
complexity of the structures under consideration. In this paper we limit
the complexity by assuming that no accidental cancellations take place and

1This factorization is equivalent to the requirement that given its parents each variable
be independent of all other variables except its consequences. And that no proper subset
of its parents has this property.

2See |20] for a way of relaxing this assumption



that the underlying structure is a simple dag. A simple dag is one in which
every pair of nodes with a common direct child have no common ancestor
nor is one an ancestor of the other. Such dags are known to permit fast
updating procedures, and are therefore worthy of pursuit [7].

The theory developed below addresses the following problem: We ob-
serve a probability distribution P and ask whether P could have been
generated from a simple causal schema D, what properties of P allow
the efficient recovery of one such schema, and under what conditions I
is unique. The recovery algorithm developed here considerably general-
izes the method of [3] and the method of Rebane and Pearl, as it does
not assume the distribution to be dag-isomorph [12, Chapter 8] nor that
the network be singly-connected. The generalization implies, for example,
that the assumption of a multivariate normal distribution is sufficient for a
complete recovery of simple causal schemas. The algorithm works in many
other cases as well.

For example, consider the simple causal schema showing the relation-
ships between diseases and findings (figure 1). Each node d; represents
a disease and is associated with the marginal distribution P(d;), and each
node f; represents a finding and is associated with the conditional probabil-
ity p(f;|d;,, ...,d;,) where d;,,...,d,, are diseases variables that correspond

to the direct parents of node f;. The product of all these conditional dis-
tributions,

n k '
P(d1-.-dn,f1---fm) = HP(d,) Hp(f:i|diu'"’dik)=
1 1

forms a probability distribution that is generated by the causal schema of
figure 1. Note that the directionality of some links can never be recovered
from this distribution because some directionalities do not constrain it. For
example, identical probability distributions are generated by an alternative
causal schema in which the link between d, and f; is reversed. Even the
remaining links might not always be orientable by merely observing P.
However, under the following assumptions all the remaining links can be

oriented uniquely and efficiently without searching through the enormous
space of alternatives. We assume:

1. Every combination of diseases and symptoms has some positive prob-
ability of occurring (i.e., exceptions are always present).



2. Bach link represents a genuine causal influence of a disease on a symp-
tom, i.e., P(s|d) # P(s) where d is a parent of s.

3. Two symptoms caused by a common disease d are dependent un-
less it is known whether the disease has or hasn’t occurred (i.e., no
accidental cancellations).

4. All diseases are mutually independent.

Figure 1: A causal schema representing symptoms and diseases

These conditions guarantee that the directionality of all links whose
orientation constrains the distribution can be determined uniquely from a
probability distribution. This transition from symmetric probabilistic as-
sociation to unique directionality is an essential prerequisite for attributing
a causal interpretation to these links.

Below we formalize requirements (1) through (4) and provide an algo-
rithm for the recovery of the dag of figure 1 as well as any other simple
causal schema. We first introduce the concept of a Bayesian network, then
we examine the relationship between causal schemas and Bayesian networks
and then we provide an algorithm that finds a simple Bayesian network that
well-represents a given distribution if such a representation exists. Finally,

we show that the algorithm is applicable to the recovery of simple dags
when the distribution is Gaussian.



2 Probabilistic Dependence: Background and
Definitions

Our model of an empirical environment consists of a finite set of variables U
and a distribution P over these variables. Variables in a medical domain, for
example, represent entities such as “cold”, “hay fever”, and “sneeze”. An
empirical environment can be represented graphically by an acyclic directed
graph, called a Bayesian network of P, as follows: We select a linear order
on all variables in /. Each variable is represented by a node. The parents
of a node v correspond to a minimal set of variables that make v condi-
tionally independent of all lesser variables in the selected order. Different
orderings may produce different graphs. For example, one representation
of the three variables above is the chain cold — sneeze — hay fever which
is produced by the order cold, hay fever, then sneeze {assuming cold and
hay fever are independent causes of sneezing). Another ordering of these
variables: sneeze, hay fever, then cold would yield the complete dag of fig-

ure 2.b, because no single variable renders cold independent of the other
lesser variable.

@ @ 2.b: m @

Figure 2: Two Bayesian networks representing cold, hay fever, and sneeze.

Note that the directionality of some links differs between the two alter-



native Bayesian network representations. In the first graph directionality
matches our perception of cause-effect relationships while in the second it
does not, being merely a spurious by-product of the ordering chosen for
the construction. We shall see that, despite the arbitrariness in choosing
the construction ordering of a Bayesian network, our algorithm will declare
the network of figure 2.a as the preferred one. The basis for differenti-
ating among alternative representations are the dependence relationships
encoded in the different dags, which point to the existence of the unique
simple dag representation of figure 2.a. But first, we must establish some
notational conventions.
Throughout this paper we consider a finite set of variables U = {uy,...,u,}

each having a finite domain of values d(u;), and a probability distribution

P over a set of variables U having the Cartesian product X d(u,) as its
u; €U
sample space. We say that P is strictly-positive if every combination of

values assigned to the variables has a non-zero probability. We use lower-

case letters possibly subscripted (e.g a, b, z or ;) to denote variables, and

uppercase letters {e.g. X, Y, or Z) to denote sets of variables. A bold low-

ercase or uppercase letter refers to a value of a variable or a set of variables,

respectively {e.g., a is a value of a). A value X of a set of variables X is

a member in the Cartesian product )E(X d(z) is the set of values of z. The
z

notation X = X stands for z; = z,,...,z, = T, where X = {z,,...,z,} and
T; is a value of z;. The notation P(X | Y) stands for P(X = X|Y =Y) for

all values X of X and ¥ of Y. When Y is the empty set, P(X | Y) is just
P{X).

Definition Let U = {uy,...,u,} be a finite set of variables with d(u;) and
P as above. If X, Y, and Z are three disjoint subsets of U, then X is
conditionally independent of Y given Z, denoted I{X, Z,Y), if for every
three sets of values X, ¥, and Z of X,Y, and Z, respectively, the following
equation holds:

P(X=X|Z=2,Y=Y) =P(X=X|Z=12)

whenever P(Z = Z,Y = Y) > 0. A statement I(X, Z,Y) is called an
independency and its negation is called a dependency.

Definition A directed acyclic graph D is said to be a Bayesian network
representing a probability distribution P over a finite set of variables U/ if



D is constructed from P by the following steps: assign an arbitrary total
order d : u;,us,,..., U, to the elements of U and designate a distinct node
in D for each variable in U. For each element u, in U, identify a minimal
set of predecessors m(u;) such that I(u,7(u), {ur,...,ui-1} \ 7{u)) holds
in P. Assign a direct link from every node corresponding to an element in
7(u;) to the node corresponding to u;.

Equivalently, due to the definition of conditional independence, a di-
rected acyclic graph D is a Bayesian network representing a probability
distribution P if and only if P can be factorized into,

Pluy,eyun) = [I Plui | 7(w)),
u, €U
and no link of D can be deleted without distroying this factorization.

The definition of Bayesian networks is based on the notion of condi-
tional independence and is often claimed to be unrelated to the notion of
causation (e.g., see the discussion by Herman Rubin in [9]). We show be-
low that if a Bayesian network is regarded as a representation of causal
relationships, then the patterns of dependencies these relationships impose
must coincide with the consequences of the definition of Bayesian networks.
Conversely, we show that under the assumptions defined in this paper, the
causal schema can be inferred from the conditional independencies embed-
ded in the Bayesian network.

The following definition of graphical dependence and graphical independence®
captures our intuition about the type of dependencies that are accompa-
nied by cause-effect relationships. And the theorem that follows shows that
precisely these dependencies are captured by the definition of Bayesian net-
works. Some preliminary definitions are needed.

Definition A skeleton of a dag D is the undirected graph formed from D
by ignoring directionality of the links. A trailin D is a sequence of directed
links that corresponds to an undirected path in the skeleton of D. A head-
to-head connection in a dag is a trail ¢t consisting of two links of the form
a — b « ¢, and node b is called a head-to-head node with respect to t. A
trail ¢ is active by Z if (1) every head-to-head node wrt ¢ either is or has a
descendent in Z and (2} every other node along ¢ is outside Z. Otherwise,
the trail is said to be blocked by Z.

3Called d-separation in [12].



Definition (12| Let D be a Bayesian network and X, Y, and Z be three
disjoint sets of nodes. Then, X and ¥ are said to be graphically independent
given Z if there exists no active trail by Z between a node in X and a node
in Y. Otherwise, X and Y are graphically dependent given Z.

For example, the propositions “It is raining” (r), “the pavement is wet”
(w) and “John slipped on the pavement” (s) can be represented by a three
node chain, from 7 through w to s; it indicates that rain and wet pavement
could cause slipping, yet wet pavement is designated as the direct cause; rain
could cause someone to slip if it wets the pavement, but not if the pavement
is covered. Knowing the condition of the pavement renders “slipping” and
“raining” independent, and this is captures by our definition rendering node
r and s graphically independent by node w. Furthermore, if we assume that
“broken pipe” (b) is another direct cause for wet pavement, as in figure
3, then an induced dependency exists between the two events that may
cause the pavement to get wet: “rain” and “broken pipe”. Although they
appear connected in figure 3, these variables are originally independent and
become dependent once we learn that the pavement is wet or that someone
broke his leg. An increase in our belief in either cause would decrease our
belief in the other as it would “explain away” the observation. Indeed, by
our definition, “rain” and “broken pipe” are graphically independent given
nothing is known, but they are graphically dependent once we know the
pavement is wet.

Theorem 1 [19] Let D be ¢ Bayesian network representing a probability
distribution P over a finite set of variables U. If X and Y are graphically

independent given Z in D, then X and Y are probabilistically independent
given Z in P,

The abave theorem provides a graphical criterion for identifying in-
dependence in a probability distribution that is represented by a Bayesian
network. Furthermore, Geiger and Pearl have shown that this criterion can-
not be strengthen in the sense that no additional independence assertions
can be identified in P unless numeric parameters quantifying the network
are examined [4,3].

Clearly, one may construct many Bayesian networks from a given prob-
ability distribution and the task is to find among them the network that

10



broken pipe

Qslippings

(lbrokenleg)

Figure 3: A Bayesian network representing reasons for slipping

corresponds to the causal schemata used by Nature to generate the observed
distribution. For this aim we assume that no accidental cancellations occur.
For exampie, in a network of the form a « ¢ — b one expects that changes
in a reflect changes in ¢ which project changes for b, hence making a and b
dependent. The next definition formalizes this requirement.

Definition A trek* is a trail containing no head-to head connections (i.e.,
it has the form a «— ... «— ¢ — ... = b). A Bayesian network representing
a probability distribution P is said to represent P well if whenever two
nodes a and b are connected with a trek then a and b are marginally de-
pendent, i.e., I(a,,b) does not hold in P. Equivalently, we will say that
P is well-represented by D.

We will concentrate on simple dags:

Definition* A dag is simple if every pair of nodes with a common direct
child have no common ancestor nor is one an ancestor of the other.

We show below that under the four assumptions of absence of unmea-
surable variables, no accidental cancellations of causal influences, a strictly-
positive distribution P, and the existence of a simple Bayesian network that

4Terminology of [6]
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represents P well, the recovery of a Bayesian network from P is unique {up
to isomorphism). Therefore, we can conclude that the orientations recov-
ered coincide with the causal schemata that generated P.

3 The Main Result

The algorithm below determines whether a given probability distribution
P can be well-represented by a simple Bayesian network and it finds such a
network if it exists. The algorithm assumes that P is strictly-positive. This
assumption is justified whenever categorical relationships can be excluded
from analysis (as often happens, for example, in medical domains).

The Recovery Algorithm

Input: A strictly-positive probability distribution P over a finite set of
variables U.

Output: A simple Bayesian network that represents P well if such exists,
or acknowledgment that no such network exists.

1. Start with a complete undirected graph.
2. Remove every edge a — b for which I(a,U \ {a,b},5) holds in P.
3. Remove every edge a — b for which I{a,,5) holds in P.

4. Orient every pair of edges a —b and b— ¢ towards b whenever a —b—¢
is in the graph and I{a,®,¢) holds in P.

5. Orient the remaining links without introducing new head-to-head con-
nections and such that the resulting dag is simple. If the resulting

orientafion is not feasible then “FAIL”. Performing the following steps
does this:

{(a) Label every head-to-head node with 1 and all other nodes with
0.

(b) While there are undirected edges with end-labels (0, 1) and there
are no undirected edges with end-labels (1,1), direct the {0,1)
edges from 1 to O and relabel the corresponding 0 node to 1.

12



(¢) Ifan undirected edge with end-labels (1, 1) appears, then “FAIL”.

(d) Remove (temporarily) from the graph all directed edges. If the
remaining graph is not a forest (i.e., a set of trees), then “FAIL”.

(e) Orient every tree in the resulting forest without introducing
head-to-head connections {e.g., for each tree in the forest select
an arbitrary node and make the tree be a directed tree rooted

at that node). Restore the temporarily-removed directed edges
of step d.

(f) If the resulting graph is not a simple dag, then “FAIL”.

6. If the resulting simple dag does not represent P well then “FAIL”.
Otherwise, output the resulting network.

The following sequence of claims establishes the correctness of the algo-

rithm and the uniqueness of the recovered network. Proof details are given
in the appendix.

Theorem 2 Let P be a strictly-positive distribution and let D be a simple
Bayesian network that represents P. Then, for every link a — b in D,
I{a,U\ {a,b},b) does not hold in P (and therefore is not removed in step

2).

Theorem (2) guarantees that step 2 of the algorithm does not remove
links that are needed for the construction of a simple Bayesian network
representation of P.

Theorem 3 Let P be a strictly-positive distribution. If P can be well-
represented by a simple Bayesian network D, then the skeletonof D s equal
to the graph constructed in step 3.

Theorem 3 shows that step 3 of the algorithm identifies the skeleton of
a simple Bayesian network that represents P well, if such exists. Thus, if P
can be well-represented by a simple Bayesian network then it must be one
of the orientations of the undirected graph produced by step 3. Hence by
checking all possible orientations of this graph, one can decide whether a
strictly-positive distribution can be well-represented by a simple Bayesian

13



network. Notably, as a corollary, we obtain that all such representations
have the same skeleton.

The next two theorems justify an efficient way of establishing the ori-
entations of the skeleton found in step 3. The first theorem states that
Step 4 is well defined, namely no link is oriented both ways. The second

theorem states that every link that is oriented must be oriented the way
the algorithm defines.

Theorem 4 Let P be a strictly-positive distribution. If P is well-represented
by a stmple Bayesian network, then no link would be oriented both ways by
step 4.

Theorem 5 Let P be a strictly-positive distribution. If D is a stmple
Bayestan network that represents P well, and a — b — ¢ s a chain in the

skeleton of D, then the trail a — b « ¢ is part of D if and only if I{a,8,¢)
holds in P.

Step 5 leaves freedom to choose the orientation of some links in the
skeleton. For example, the dags: a = b —¢,a —b—c,and a « b — ¢
are three possible orientations of a — b — c. However, these three dags are
indistinguishable (isomorphic) in the sense that they portray the same set
of independence assertions. Hence no algorithm that relies on measuring
independence can distinguish between them. On the other hand, the dag
a — b — ¢ is distinguishable from the previous three because it portrays
a new independence assertion, I(a,®,¢), which is not represented in either
of the former dags. And our algorithm uses this distinction to orient these
edges.

Isomorphism defines the theoretical limitation on the ability to identify
directionality of links, using information about independence.

Definition Two Bayesian networks D, and D, are isomorphic if every

probability distribution representable by D; is also representable by D,
and vice versa.

Theorem 6 [9] Two Bayesian networks are isomorphic iff they share the

same skeleton and the same head-to-head connections emanating from non-
adjacent nodes.

14



Corollary 7 Two simple Bayesian networks are isomorphic iff they share
the same skeleton and the same head-to-head conneetions.

Proof: Follows from Theorem 6 and from the fact that in simple dags
every head-to-head connection must emanate from non-adjacent nodes. O

Corollary 7, shows that all orientations of step 5 that do not introduce
a head-to-head connection yield isomorphic dags because these simple dags
share the same skeleton and the same head-té-head connections. Thus,
in order to decide whether or not P can be well-represented by a simple
Bayesian network it is sufficient to examine one simple dag produced by
step 5, as performed by step 6, because all other dags are isomorphic.

It remains to show that steps (a) through {f) do the orientation of step
5 correctly, namely, that these steps find an orientation that yields a simple
dag without introducing new head-to-head connections if such a dag exists
and fail if no such orientation is possible.

In steps a and b, any link whose end-labels are (0,1) must be oriented
from 1 to O or else a new head-to-head connection is introduced. In step ¢,
if an undirected link with end-labels (1,1) is created then there exists no
way to orient that link without creating a new head-to-head connection. In
step d, if the remaining undirected graph is not a forest, then it contains
a cycle and there exists no way to orient a cycle without introducing new
head-to-head connections. At step e, any orientation induced cannot create
new head-to-head connections because any edge that is part of a head-to-
head connection would have been already oriented in step b. Hence, if the
graph resulting from step e is not a simple dag, then step e must have
created a cycle. Thus, any alternative orientation of step e that would not
add a head-to-head connection must yield a graph that is not a simple dag.

Therefore step f correctly fails if one orientation of step e does not create
a simple dag, and succeeds otherwise.

4 (Gaussian Bayesian networks

Often continuous variables are needed to model an empirical environment

(e.g., body heat, blood pressure, bone density, etc.) and these can also be
represented using directed acyclic graphs.

15



Definition A Gaussian Bayesian network is a dag where each node repre-
sents a variable that is the linear combination of the variables correspond-
ing to its parents, plus a term representing noise. The noise sources are
assumed to be independent, normally distributed, and have zero means and
non-zero variances. More explicitly, a variable corresponding to node z is
governed by

T =a121 + asz, + e QpZp + 2

where zy, 23, ..., 2; are the variables corresponding to the parents of z, and
z is a noise term.’

Notice that each Gaussian Bayesian network D is associated with a
joint Gaussian distribution P because all noise terms are Gaussian and
linear combinations of Gaussian variables are Gaussian. The network D is
said to represent P well if every two nodes connected with a trek always
correspond to variables whose correlation coefficient is non-zero.

Interestingly, since for Gaussian distributions every type of dependence
must be linear, the algorithm of the preceding section can answer the follow-
ing question: Given a correlation matrix of a Gaussian distribution P, find
whether P can be well-represented by a simple Gaussian causal network,
and if so find this network.

For example, suppose we are measuring a correlation matrix

1 0 ri3 T14

0 1 Taa Ta4 -
Ti3 T3 1 T13T14 + T23T24
Ti4 T4 T13T14 + T23T4 1

of a multivariate Gaussian distribution P (where r;; # 0) and suppose the
means of all variables is zero. Using the recovery algorithm the underlying
network can pe recovered. We start with a complete graph of four vertices.
Then we remove any link for which I{z;,U \ {2, 2,},2;) holds in P. Such
a statement holds if and only if the determinant of the correlation matrix
resulting from removing line ¢ and column j is zero. Computing a deter-
minant can be performed in O(n®) steps by Gauss elimination where n is
the size of the matrix. In our example, link z; — z, is removed in this step

5Traditionally, noise terms are not depicted in Gaussian networks.
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because
1 0 T3

0 1 Tag = O
Tisa T24 T13T14 + T2aTay

Next we remove link z; — z; because the correlation between z; and z,
is zero, a necessary and sufficient condition for I{2;,8,2,) to hold in P.
Lastly we orient the links and obtain the network below. The coefficient
associated with each link z; — 2; is simply the correlation between its end
points, namely, the entry (2, 7) of the correlation matrix.

D (22

Figure 4: The recovered network

The task of recovering non-simple Gaussian networks is treated in [6]
where the subject of Gaussian networks is covered more fully. The main
advantage of our recovery algorithm is its polynomial complezity which is
due to not using any search procedures in the recovery process.

5 Summary and Discussion

In the absence of temporal information, determining directionality of inter-
actions is essential for inferring causal relationships. This paper provides
conditions under which the directionality of some links in a causal schema
is uniquely determined by the dependencies that surround the link. It is
shown that if a distribution is generated from a simple causal schema, then
the topology of the schema can be recovered uniquely, provided that the dis-
tribution satisfies some reasonable restrictions. Although the assumption

17



of simple dags is somewhat restrictive, the recovery of such dags demon-
strates the feasibility of determining causal asymmetries from information
about dependencies, which is inherently symmetric. It also highlights the
nature of these asymmetries thus, facilitating extensions to general graphs
(see last paragraph).

Another useful feature of our algorithm is that its input can be ob-
tained either from empirical data or from expert judgments or a combi-
nation thereof. Traditional methods of data analysis rely exclusively on
statistical records which might not be available. Independence assertions,
on the other hand, are readily provided by domain experts.

We are far from claiming that the method presented in this paper dis-
covers genuine physical influences between causes and effects. First, a sen-
sitivity analysis is needed to determine how vulnerable the algorithm is to
errors associated with inferring conditional independencies from sampled
data. Second, such a discovery requires breaking away from the confines
of the closed world assumption, while we have assumed that the set of
variables U adequately summarizes the domain. This assumption does not
enable us to distinguish between genuine causes and spurious correlations
[15]; a link @ - b that has been determined by our procedure may as well
be represented by a chain a < ¢ — b where ¢ is an unmeasured variable,
not accounted for when the network is first constructed. Thus, the depen-
dency between @ and b which is marked as causal when ¢ € U is in fact
spurious, and this can only be revealed when ¢ becomes observable (or at
least describable). Such transformations are commonplace in the develop-
ment of scientific thought: What is currently perceived as a cause may turn
into a spurious effect when more refined knowledge becomes available. The
initial perception, nevertheless, serves an important cognitive function in
providing a tentative and expedient encoding of dependence patterns at
that level of.abstraction.

Future research should explore structuring techniques that incorporate
variables outside U. The addition of these so called “hidden” variables
often renders graphical representations more compact and more accurate.
For example, a network representing a collection of interrelated medical
symptoms would be highly connected and of little use, but when disease
variables are added, the interactions can often be represented by a sim-
ple network. Facilitating such decomposition is the main role of “hidden
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variables” in neural networks [8] and is also incorporated in the program
TETRAD [6]. Pearl and Tarsi provide an algorithm that generates tree
representations with hidden variables, whenever such a representation ex-
ists [13]. An extension of this algorithm to simple networks would further
enhance our understanding of causal structuring.

Another valuable extension would be an algorithm that recovers general
dags. Such algorithms have been suggested for distributions that are graph-
isomorph [16,20]. The basic idea is to identify with each pair of variables
z and y a minimal subset Szy of other variables that shields z from ¥, to
link by an edge any two variables for which no such subset exists, and to
direct an edge from z to y if there is a variable z linked to ¥ but not to
z, such that I(z, Sz; U {y}, z) does not hold (see Pear! 1988, page 397, for
motivation). The algorithm of Spirtes et al. (1989) requires an exhaustive
search over all subsets of variables, while that of [20] prunes the search
starting from the Markov network. When applied to a distribution that is
not graph isomorph the algorithm of Verma and Pearl yields a bidirected
graph, where some of the edges obtain arrows pointing both ways, indicat-
ing spurious correlations due to hidden common causes. Remarkably, when
the underlying distribution is dag isomorph save for the existence of hidden
variables then the bidirected edges summarize precisely the totality of all
hidden causes in the model, and those with single arrows are guaranteed to
match the corresponding arrows in the model [20]. It is not clear whether
the assumption of dag isomorphism (or even embedded dag isomorphism) is
realistic in processing real data such as medical records or natural language
texts. Notably, when applied to simple dags, both algorithms may use ex-
ponential number of independence verifications, since the parent set of a
node in a simple dag may still be as large as the number of nodes in that
dag (excluding one). The recovery algorithm developed here is polynomial.
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Appendix: Proofs

Lemma 8 below follows directly from the definition of simple dags and from
Theorem 1.

21



Lemma 8 : Let D be a simple Bayesian network representing a distribu-
tion P over a set of variables U and let a and b be two nodes not connected
with link in D. If a and b have a common direct child, then I{a,0,b) holds

in P. And if they do not have a common direct child, then I{a, U\ {a, b}, )
holds in P.

Proof: If a and b have a common direct child then, since D is simple,
every trail ¢ between a and b contains a head-to-head node with respect
to t. Consequently, by Theorem 1, I{a,®,b) holds in P. If a and b do not
have a common direct child then, since D is simple, every trail ¢ between
a and b contains a node that is not a head-to-head node with respect to t.
Consequently, by Theorem 1, I(a,U \ {a,b},b) holds in P. O

Definition A dag is said to be non-triangular if every two nodes a and b
that are connected with a direct link do not have a common direct child ¢
{a, b and c are distinct nodes).

Theorem 2 Let D be a non-triangular Bayesian network that represents
a strictly-positive distribution P. Then, for every linka — b in D, I{a,U \
{a,b},b) does not hold in P.7

Proof: We shall use the notation Ip(X, Z,Y) to stand for X and Y
are graphically independent given Z and the notation Ip{X, Z,Y) to stand
for X and Y are conditionally independent given Z.

Let a;...a, be an ordering of the vertices of D. Let a; — a; be alink in D.
If j = n then Ip{a;, U\ {a;,a.},a,) does not hold, for otherwise, the parent
set of node a,, is not minimal. Assume that ¢ < 7 < n and, by contradiction,
that Ip(a;, U\ {a:, a;},a;) holds. We will show that D cannot represent P.
Nodes a; and a; cannot be both parents of a, since this would imply the
configuration a; — a, « a; with a; connected to ¢, in D contrary to its non-
triangularity. Thus either Ip(a;,U \ {¢i,an},an) or Ip(a;,U \ {;,an},an)
hold. Consequently, by Theorem 1, either Ip(a;, U\ {as,2n},an) or Ip(a;, U\
{a;,a,}, a,) must hold which together with Ip(a;, U\{g;,q;},q;) imply that
Ip(a;, U\{a:,0;, 04}, a;) holds as well because strictly positive distributions

"Notice, that we prove this theorem for the class of non-triangular dags which includes
simple dags as a special case.
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satisfy the following property:®
[IP(a'iv U\ {ai’an}v a,) Vv Ip (aJ'a U\ {a;,8.}, an)|A

Ip(ai, U\ {ai, a5}, 05) — Ip(ai, U\ {ai, 05, 0.}, ay)

Similarly, a, 1 can not be a son of both a; and a;. Thus either Ip(ai, U\
{ai, anyan1}, @01) or Ip(a;, U\ {a;,8n,8,_1},an_y) hold which together
with Ip(a;, U\ {a;,a;,a,},a;) (which is derived in the previous step) imply
that Ip(a;,U \ {@i,a;,@n_1,an},a;)} must hold. Continuing this way, by
descending induction we get that the Ip(a;, R;;, a;) holds where R;; are all
vertices in D with indices less than 7 not including a,. The link a; — a; is
therefore redundant {See Ex. 3.11 in {12]). Thus the parent set of node q;
is not minimal, contradiction. O

Theorem 3 Let P be a strictly-positive distribution. If P can be well-
represented by a simple Bayesian network D, then the skeletonof D s equal
to the graph constructed in step 3.

Proof: Denote with G the undirected graph constructed in step 2 {by
removing every link for which I(a,U \ {e,b},b) holds in P). Denote with
('3 the undirected graph constructed in step 3 (which is obtained from G,
by removing every link for which I(e,®,b) holds in P). Let a — b be a link
in the skeleton of D. We show that ¢ — b must be a link in G3. Since D is
simple, by Theorem 2, the link @ — b is part of G;. Since D represents P
well, I{a,®,b) does not hold in P, hence the link a — b is not removed from
(G2 and is therefore a link in Gs.

That the converse holds, namely, a link in G3 must be a link in the
skeleton of D), is shown as follows. Let a and b be two nodes not connected
with a link in D. We show that a—b is not a link in G5. By Lemma 8 either
I{a,0,b) or I{a,U \ {a,b},b) hold in P. Consequently, the link between a
and b is removed at Step 2 or at Step 3 and therefore it is not a link in Gj.
O

Theorem 4 Let P be a strictly-positive distribution. If P 1s well-

represented by a simple Bayestan network D, then no link would be oriented
both ways by step 4.

®This property follows directly from the graphoid axioms [10] and can also be proven
from the definition of conditional independence. It does not hold without assuming strict-
positiveness.
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Proof: By Theorem 3, the skeleton of D equals Gs. Assume, by
contradiction, that there exists a link a — b in G5 that can be oriented both
ways. Then, there exist a neighbor ¢ of 4 for which I {(a,9,q) holds in P
that induces an orientation from « into b and there exists another node
p, neighbor of a, for which I(b,0,p) holds in P that induces the reverse
orientation. Thus, G3 must contain the chain p—a — 6 —gq. Clearly, either
a or b are not head-to-head nodes wrt this trail. Consequently either a and
q are connected with a trek or p and b are connected with a trek. In both
cases DD does not represent P well because I(a,,q) and I{b,0,p) hold in
P. Contradiction. OJ.

Theorem 5 Let P be a strictly-positive distribution. If D is a stmple
Bayestan network that represents P well, and a — ¢ — b is a chain in the
skeleton of D, then the trail a — ¢ « b 1s part of D if and only if I(a,0,b)
holds in P.

Proof of Theorem 5: If ¢« — ¢ — b is part of D, then by Lemma 8
I{a,@,b) holds in P. And if it is not part of D but is part of the skeleton
of D, then a and & are connected via a trek e — ¢ — b and therefore, since
D represents P well, I{a,®,b) does not hold in P. O
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