Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

PERFORMANCE ANALYSIS OF DISTRIBUTED PROCESSING
SYNCHRONIZATION ALGORITHMS

Robert Edman Felderman June 1991
CSD-910019

UNIVERSITY OF CALIFORNIA
Los Angeles

Performance Analysis of
Distributed Processing

Synchronization Algorithms

A dissertation submitted in partial satisfaction
of the requirements for the degree

Doctor of Philosophy in Computer Science
by

Robert Edman Felderman

1991

© Copyright by
Robert Edman Felderman

1991

The dissertation of Robert Edman Felderman is approved.

g
T

}

U S. Jacobsen

T. Chan

e ANt

4 // D. Jefferson
Sy A

|4 R. Muntz

P A

Leonard Kleinrock, Committee Chair

University of California, Los Angeles
1991

iii

To my family,
for providing me with the love, support and freedom

to spend the past twenty-five years in school.

iv

TABLE OF CONTENTS

1 Introduction 1
1.1 Discrete Event Simulation 1
1.2 Sequential Simulation,, 2
1.3 Parallel Discrete Event Simulation 3

1.3.1 Time-Stepped Simulation 5
1.3.2 Conservative Methods 6
1.3.3 Optimistic Strategies 9
1.4 Classes of Simulation Models 11
1.4.1 Message-InitiatingModels 11
1.4.2 Self-Initiating Models 12
143 HybridModels 12
1.5 PreviousRelated Work 13
1.5.1 Empirical Studies. 0. 14
1.5.2 Analytical Work 15
1.6 Summaryof QurResults. 17

2 An Upper Bound on the Improvement of Asynchronous over

Synchronous Distributed Processing 19
2.1 Introduction. e 19
22 TheModels e 19

2.2.1 Space of Synchronization Methods 22
2.3 Exponentially Distributed Task Times 22
2.3.1 Time-Stepped (Synchronous) Model 23
2.3.2 Time Warp (Asynchronous) Model 24
2.3.3 Relative Performance 28
2.4 Uniformly Distributed Task Times 32
25 Conclusionso i i 34

3 Two Processor Time Warp Analysis: A Unifying Approach 35

3.1
3.2
3.3
3.4

3.5

Introduction« . . . L e 35
A Model for Time Warp on Two Processors 36
Discrete Time, Discrete State Analysis 39
33.1 RootLocus ey 47
Performance Measures oo 49
341 Speedup 50
Limiting Behavior 0. 52
3.5.1 Continuous Time, Discrete State 53

3.5.2 Discrete Time, Continuous State 54

3.5.3 Continuous Time, Continuous State 55
3.6 Previous Work on 2-Processor Models 56
3.7 Results for a Restricted Model 60
3.71 Optimality Proofs 65
3.7.2 Adding a Cost for State Saving 67
38 Conclusions i it i e e 70
Two Processor Message Queueing Model 71
4.1 Introduction. i 71
4.2 The Message Queueing Model 71
4.3 Analysis of the Message Queueing Model 75
4.4 Performance Measuresot i 82
44.1 StateBufferUse 82
4.4.2 Message Queue Distribution 83
4.4.3 Normalized Rate of Progress 85
45 ASpecificExample., 88
4.5.1 State Probabilities and State Buffer Use 89
4.5.2 Maessage Queue Distribution and Buffer Use 91
46 Conclusions o v o e 92
Two Processor Model with Rollback and State Saving Costs 94
51 Introduction.« . i 94
5.2 The Rollback Cost Model 94
5.3 Analysis of the Cost Model 95
5.4 Performance Measures 101
54.1 StateBufferUse 101
542 Speedup e 102
5,5 Coneclusions i e e e 110
A Model for Conservative Simulation 111
6.1 Introduction. i it 111
6.2 TheModel 111
6.3 A System Without Null Messages 113
64 Lookshead e 122
6.4.1 Typesof Lookahead 122
6.5 The Lookahead Model 123
6.6 Comparisonto Time Warp 125
6.7 Conclusions ¢ o v i i e e e e e e 129

vi

7 Extensions of the Optimistic Model to Multiprocessors (P > 2)133

7.1 Introductiom. 133
7.2 Definition of the Multiple Processor System 134
7.3 A Simple Upper Boundon Speedup 135
7.4 Tracking Global Virtual Time Advancement 137
7.5 A Simple Approximation Using Aggregation 138
7.6 Conclusions e 139

8 Conclusions and Future Work 140
81 Future Work i 141
8.1.1 Multiple Processes Per Processor 141

8.1.2 Communication Costs 142

8.1.3 Message-Initiating vs Self-Initiating 142

8.1.4 Optimistic Computation 143

8.1.5 Fault Tolerance of Time Warp 143

82 FimalRemarks 144

A Derivations of Summations for the Two Processor Model . . 145
A.1 P(2) Sums Closed Form Derivation 145
A.2 Speedup Sums Closed Form Derivation 147

B Cubic Equation Solution for the Message Queueing Model . 149

References i i i e e e e e e e e e e e e e e e e e e e 151

vii

1.1
1.2
1.3

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7

3.8

4.1
4.2

4.3

4.4
4.5
4.6

5.1
5.2

5.3
5.4
5.5

LIST OF FIGURES

An example queueing network. oL, 4
LP simulating a merge point. 7
A queueing network with potential deadlock. 8
A synchronous task graph. o L. 21
An asynchronous task graph. 21
T.versus P (logscale). 26
Regression slope and intercept values. 27
Comparison of approximation and simulation for K, P <10.. .. 29
Comparison of approximation and simulation for K, P > 100. . . 30
The states of two processors at times ¢ty and ¢5. 37
State transition probability diagram for 5y =8, =1. 41
Comparison of speedup results for a simplified case. 58
Previouswork. e 59
Speedup for the symmetriccase g1 =g =¢q 62
Speedup for the balanced case Ay =X =A. 63
Speedup for the symmetric, balanced case ¢ = ¢ = g and A; =

Ao = A e e e e e e e e e e e 64
The cost of state saving and its effect on performance. 69
Code executed by each processor. 72
State diagram for the message queueing model. 76
Normalized rate of progress (R) versus f and g for the symmetrie,

balanced case. e e 87
R versus q for the symmetric, balanced case. 88
State probabilities. L oo 90

Distribution of the number of messages queued at each processor. 92

State diagram for the rollback cost model. 97
Speedup versus ¢ and f for the symmetric, balanced case when

=1 e e e e e e e e e e e e e e e 104
Region of ¢ — f space where speedup is possible. 105
State diagram when each processor stops at one step ahead. . . . 106
Region of ¢ — f space where stopping at one step is better. . . . 107

viii

5.6

6.1

6.2
6.3

6.4
6.5

6.6
6.7
6.8
6.9

6.10

6.11

7.1
7.2

Achievable speedup fore=1. 108

State dist%'ra.m for conservative synchronization with no null mes-
sages and a cost for breaking deadlocks. 115
Speedup versus a and ¢ for various valuesofd. 117
Derivative of speedup with respect to d (the cost of breaking a
deadlock) versusganddfora=1/2.. 119
Speedup versuse and dforgs =g =0. 120
Maximum conservative speedup (i.e. for the system with null
TOESSAZES). « « « v v e e e e e e e e e e e e e e 121
State diagram for a system with K-step lookahead. 124
Speedup for a K-step lookahead conservative system. 126
Derivative of speedup with respectto K. 127
Ratio of conservative speedup (no lookahead) to “free” Time
Warpspeedup. e 128
Ratio of conservative speedup with K-step lookahead to “frec”
Time Warp with no lookahead. 130
Area of the ¢ — K plane where the conservative approach with
lookahead winsout. 131
Normalized speedup versus K for 256 processors. 136
Percent difference between the upper bound and simulation. . . . 137

ACKNOWLEDGMENTS

So many people have played a part in the completion of this dissertation.

First and foremost is Professor Leonard Kleinrock who saw something in
me that I didn’t even see in myself. His support on an intellectual and personal

level has been truly outstanding.

Many thanks to David Jefferson who developed Time Warp, sparked my
curiosity and took an interest in my research. Dick Muntz provided inspiration
through his early work on Time Warp analysis and always could be counted
on for a pointed question concerning aspects of my approach. To Tony Chan
and Steve Jacobsen, I owe my thanks for serving on my committee and am
only sorry I did not take advantage or their talents more fully. Gerald Estrin’s

comments and CS202 class greatly improved the clarity of my presentations.

The ATS/PSL research group has been a wonderful environment in which to
work. Willard Korfhage, Jau Huang, Farid Mehovic, Eve Schooler, Rusti Baker
and Joy Lin have gone on to “greener” pastures. They provided role models
for me to follow. Special thanks goes to Willard for motivating the Benevolent
Bandit Laboratory work. Current students Chris Ferguson, Shioupyn Shen,
Simon Horng and Jon Lu have made the past several years very productive
for me. They were always available when I needed some help with a tough
problem. To Chris especially, I owe a great deal. Whether introducing me to
a new video game, pulling out the playing cards to keep me sane during dry
research spells, providing the solution to a problem (but never the proof!) or
Just putting up with the me as an office mate for six years, he was always

available and supportive.

Without Lily Chien, this research group would degenerate into chaos. She

does everything for us (and then some). I will miss her.

This research has been supported by the Advanced Research Projects Agency
of the Department of Defense under contract MDA 903-82-C0064, Advanced
Teleprocessing Systems, and contract MDA 903-87-C0663, Parallel Systems
Laboratory. I thank the project managers for believing in what we've been
doing,.

Ultimaddicts (the various Ultimate Frisbee teams with which I have played)
have helped keep me sane these past 11 years, while the intramural football,
soccer, softball and (infamous) inner-tube water polo teams at UCLA provided

welcome diversions from my studies.

Finally, I want to especially thank Eve Schooler for slaving away tirelessly
with me on the Benevolent Bandit Laboratory Project and teaching me the
wiles of C coding. On our joint papers and this dissertation, her comments and
criticism have been invaluable. Lastly, she has made the past two years of my

life very happy ones. May the rest of them be as wonderful.

xi

1962

1984

1984-1986

1986

1986-1991

1991

Vitra

Born, Evanston, Illinois

B.S.E. Magna Cum Laude, EECS Princeton University.
Elected to Tau Beta Pi and Sigma Xi

Member of Technical Staff, Hughes Aircraft Company, Buena
Park, California,

M.S., Computer Science, University of California, Los Angeles

Graduate Student Researcher for the Advanced Teleprocess-
ing Laboratory and Parallel Systems Laboratory contracts.
Computer Science Department, University of California, Los
Angeles

Named one of three Outstanding Ph.D. students for 1990-1991
by the School of Engineering and Applied Science, University
of California, Los Angeles

PUBLICATIONS AND PRESENTATIONS

Robert E. Felderman. “Development of a Microcomputer based Controller for
a Robotic System.” Senior Thesis, Princeton University, June 1984.

Robert E. Felderman. “Flocks of Birds as a Paradigm for Distributed Systems.”.
Master’s thesis, University of California, Los Angeles, Computer Science De-
partment UCLA Los Angeles, CA 90024-1596, June 1986.

R. E. Felderman. “Extension to the Rude-CSMA Analysis.” IEEE Transactions
on Communications, COM-35(8):848-849, August 1987. Correspondence.

Robert E. Felderman and D. Karen Beard. “Silicon Sigmund: An Expert System
for Psychological Diagnosis.” In Proceedings of the 13th Western Educational

xii

Computing Conference, pp. 51-565. California Educational Computing Consor-
tium, November 1989.

Robert E. Felderman and Leonard Kleinrock. “An Upper Bound on the Im-
provement of Asynchronous Versus Synchronous Distributed Processing.” In
Proceedings of the SCS Multiconference on Distributed Simulation, volume
22,1, pp. 131-136. Society for Computer Simulation, January 1990.

Robert E. Felderman and Leonard Kleinrock. “T'wo Processor Time Warp Anal-
ysis: Some Results on a Unifying Approach.” In Proceedings of the SCS Mul-
ticonference on Advances in Parallel and Distributed Simulation, volume 23,1,
pp. 3-10. Society for Computer Simulation, January 1991.

Robert E. Felderman, Eve M. Schooler, and Leonard Kleinrock. “The Benevo-
lent Bandit Laboratory: A Testbed for Distributed Algorithms.” IEEE Journal
on Selected Areas in Communications, 7(2):303-311, February 1989.

Leonard Kleinrock and Robert E. Felderman. “T'wo Processor Time Warp Anal-
ysis: A Unifying Approach.” International Journal of Computer Simulation, To
appear late 1991.

Eve M. Schooler and Robert E. Felderman. “The Benevolent Bandit Labora-
tory User’s Manual.” Technical Report 830017, UCLA Computer Science De-
partment, March 1988.

Eve M. Schooler, Robert E. Felderman, and Leonard Kleinrock. “The Benev-
olent Bandit Laboratory: A Testbed for Distributed Algorithms Using PCs on
an Ethernet.” Technical Report 880016, UCLA Computer Science Department,
March 1988.

xiii

ABSTRACT OF THE DISSERTATION

Performance Analysis of
Distributed Processing
Synchronization Algorithms

by

Robert Edman Felderman
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1991

Professor Leonard Kleinrock, Chair

We analytically evaluate the performance of distributed simulation synchro-
nization algorithms, focusing mainly on the optimistic protocol, Time Warp.
We first provide an upper bound on the expected improvement of Time Warp
over time-stepped simulation and show, for a particular system model, that
Time Warp is only able to outperform time-stepped simulation by a factor of
(In P), where P is the number of processors used by each method. A model for
two processor Time Warp operation is then developed. Closed-form expressions
are derived for several interesting performance metrics including speedup, the
distribution of virtual time separation between the processes and the average
number of state buffers used. This model unifies previous work on two processor
Time Warp analysis and provides further insight into the operation of systems
synchronized by rollback. The model is generalized to include costs for message
queueing, rollback and state saving while continuing to provide closed-form
expressions for the performance measures. We then explore a simple model
for conservative simulation on two processors and quantify the improvement

in speedup by sending null messages and exploiting lookahead We evaluate the

xiv

degradation due to costs for detecting and breaking deadlocks and also compare
the conservative model with the optimistic models developed earlier. Finally,
we address the issue of multiprocessor Time Warp by discussing techniques
to evaluate the performance of the algorithm as the system scales to a large

number of processors (P > 2).

CHAPTER 1

Introduction

1.1 Discrete Event Simulation

The systems that we are able to create become larger and more complex every
day. In many cases, we have moved beyond a point where one is able to predict
the performance of a large system, be it a high-speed computer network or a
super-sonic airplane, by purely analytical means. It is now often necessary to
simulate the operation of a proposed system in order to better understand its
behavior. Additionally, simulation is a useful tool to examine complex existing
systems such as global weather patterns or the world economy. As the size of
these systems increases, the simulations demand more computing power. Nat-
urally then, one would like to utilize the recent advances in parallel computing
technology to speed up the execution of simulations. Unfortunately, it is a non-
trivial task to efficiently implement a parallel simulation system, though several

techniques have been developed to do so.

This dissertation examines the performance of several different algorithms
used to synchronize distributed discrete event simulations. Our major focus is
on the optimistic methods, though we consider conservative approaches as well.
In the remainder of this chapter we introduce the various simulation algorithms

that have been proposed and/or implemented, so that the reader will be better

able to understand the analysis that follows.

1.2 Sequential Simulation

In order to understand parallel simulation, we must first discuss sequential dis-
crete event simulation techniques. Discrete event simulation (DES) allows the
simulation time to advance in arbitrary increments as the system simulates
events in increasing order (an example follows below). When the system com-
pletes the processing associated with an event, the clock is advanced to the
occurrence time of the next event. There is no need to let the clock advance
in smaller increments, since nothing will happen in the simulated system be-
tween the time of the previous event and the time of the next event. DES is
not the only technique for simulation, some systems (e.g. those characterized
by differential equations) are more naturally simulated by a continuous-time
simulator [KW78]. However, we only concern ourselves with discrete event sim-

ulation algorithms in this work.

The basic method of sequential simulation centers around the “event list”.
Events are scheduled by placing them in the event list. The simulator proceeds
by taking the event with the smallest time off the the event list, incrementing
the simulation clock to the time of this event, and executing it. This execution
may generate new events in the future, and these new events are placed (in
the proper time order) into the event list. A simple example is a single-server
queueing system. Customers arrive to the system, are serviced, and leave the
system. Typical events for this scenario are: the arrival of a customer and the
departure of a customer. If the queue is empty, the arrival of a customer will

generate two new events for the event list: the departure of that customer and

the arrival of the next customer. The simulated time of the departure event will
be the arrival time plus the service time which is drawn from the distribution
of interest. If the queue isn’t empty then the execution of the arrival event
merely schedules the next arrival event and adds this customer to the queue. A
departure event removes a customer from the server and places the customer

at the head of the queue into service by scheduling its departure event.

1.3 Parallel Discrete Event Simulation

The sequential nature of the event list precludes a direct parallel implemen-
tation. Parallel DES is generally accomplished by partitioning the simulation
into logical processes (I.LP) which simulate some physical process in the system.
Each process interacts with other processes by sending and receiving messages.
Using our queueing example above, we could partition the system into three
physical processes: the arrival generator, the queue/server and the departure
“sink”. The arrival process generates customer arrivals to the queue by send-
ing messages stamped with the arrival time at the queue and the number of
customers if we have bulk arrivals. The queue/server receives customer mes-
sages, queues the customers, and services them by sending a message to the
departure sink stamped with the time that the customer left the server (and
arrived at the sink). The departure “sink” is used to collect any necessary in-
formation as the job leaves the system. Each process operates autonomously
by receiving messages, performing internal computation and sending messages.
Each process terminates once its local clock, the time of receipt of the message
currently being processed, has reached T,,,., the total time of the simulation (a

user specified duration).

- O

A = Source B,C,D,E = Servers F = Sink

Figure 1.1: An example queueing network.

For clarification, we present a simple queueing network shown in Figure 1.1.
The logical processes in this system are the customer arrival process (A), the
queueing stations (B,C,D,E) and a final sink process (F) that collects departing
customers. Logical process A (LP4) connects to LPg which is in turn connected
to LP¢ and LPp etc. Every path which can be traversed by a customer in
the physical system must correspond to a logical communication path in the
simulation system. Messages passed between LPs in our queueing example are

the actual customers flowing through the system.

Ideally, each logical process can be placed on its own processor, and we can
gain speedup proportional to the number of processors used. Unfortunately, this
is often not the case. Though not obvious from the simplistic description above,
some controls are necessary to maintain causality between events. If an event
A directly (or indirectly) affects the outcome of event B, then event A must
be executed before event B. If these two events are located on different pro-
cessors, then some communication/synchronization must take place so that the
proper ordering is maintained. If blocking is used for synchronization, then care
must be taken to prevent the simulation from deadlocking. There are basically

three strategies used in the simulation community to combat this problem. The

first technique detects and breaks deadlocks. The other two prevent deadlocks
from occurring through various methods. One of these methods is based on the
knowledge of how deadlocks occur and prevents the deadlock from happening.
The second prevention technique avoids blocking by using a rollback mechanism
to repair causality violations. Algorithms which use the rollback mechanism are
generally called “optimistic” strategies, while the more traditional methods of
keeping logical process clocks in near synchronization are referred to as “con-
servative” strategies. Each of these techniques is described in more detail in the

following sections.

1.3.1 Time-Stepped Simulation

Though more often used as a technique for simulating continuous-time systems,
distributed time-stepped simulation [PWM79] can be used for discrete event
simulation by keeping all the local clocks in strict synchronization (strictly
speaking this is not DES since local clocks do not jump from event to event).
At any point in real time each LP’s local clock has the same value as any
other LP’s clock. As the simulation runs, the local clocks take on a sequence
of discrete values (¢, t1,%2,...) each differing by an amount A. The choice of
an appropriate A is a non-trivial task. It must be chosen small enough such
that causal events are executed in different time steps. All processors must
complete execution of events up to ¢; before any processor begins processing at
ti11. Since each processor may have a different amount of work to do at each
time step or some may operate at different speeds, many processors may have
to wait for the slowest one to complete execution of the i*? step, thus degrading

speedup. Also, if the LPs don’t have events to process at every {;, then this

algorithm might produce little speedup since many processors might be idle
during any given step. Time-stepped simulation is attractive due to its simplicity
of implementation. By keeping all the LPs processing at the same simulation
time, deadlocks cannot occur and no further effort needs to be expended to

guarantee the correctness of the simulation.

1.3.2 Conservative Methods

Conservative methods of DES are based on the work of Chandy, Misra, Bryant
and others [CM79} [CHM79| [Bry77]. The best survey of this area can be found
in [Mis86]. As mentioned earlier, the system is partitioned into logical processes
and a static communication network between the LPs is defined such that if
the physical processes being simulated by the LPs need to communicate, the
LPs have a communication link between them. A time stamp on each message
indicates the customer’s arrival at a particular process in the system. Each LP
has a local clock, and a clock associated with each of its incoming and outgoing
links. A process is only allowed to send messages on a link in strictly increasing
order of timestamps. Therefore, when an LP receives a message with timestamp
v on one of its incoming links, it knows that it can never receive a message on
that link with a smaller timestamp than v In the case where the LP only has
one incoming link, it can immediately advance its clock to this time v, process
the message (customer arrival) and possibly send messages on its outgoing links.
The time associated with each link is the time of the most recently sent /received
message. It indicates that no message can be sent/received on this link with a

time lower than the clock of the link.

Logical processes advance their local clocks as far as the times on their

0,

I
\M e
erge
<t

Figure 1.2: LP simulating a merge point.

input links allows them to. For example, consider an LP which is simulating
a merge point (Figure 1.2) in our queueing network. A merge point simply
forwards messages from its input links to its output link. Messages must go out
in strictly increasing timestamp order. Assume it has two input links (I, Ip)
and one output link (O). Initially it sets its local clock and all link clocks
to zero. Further, let’s assume that it receives a message M on I; which is a
single customer arrival at time 10. It would like to forward this message on Oy.
Unfortunately, it cannot do so immediately. The problem is that the timestamp
on Iy, the other outgoing link is still zero. It is possible that a message with
timestamp less than 10 might arrive on f,. Since messages on the outgoing link
must be sent in strictly increasing timestamp order, this LP must wait until it
knows it cannot receive a message with a timestamp smaller than 10 before it

can forward message M.

This example shows the essential problem with the conservative approach.
The problem can manifest itself in two ways. The first (as we saw) is that
parallelism is limited. Another more problematic result is the possibility of
deadlock. A simple example is shown in Figure 1.3. Suppose LP, is waiting
for some information from its top input link before it can proceed. This would

be due to the fact that LPp was unable to send it any messages because it

-]
Source —1 A —® B |—] Sink

N—"

Figure 1.3: A queueing network with potential deadlock.

was waiting for input from either LP4 or the source LP. If it is waiting for
LP4 we have a deadlock. A great deal of research has addressed this aspect
of conservative simulation [PWMT79] [CM81] [CHM79| [Mis86] and there are
essentially two directions to pursue. One is deadlock avoidance, the other is

detection and correction.

One method of avoiding deadlock is to introduce “null” messages. These
are messages which only exist in the distributed simulation to avoid deadlocks.
A null message is treated as a regular message with respect to the local LP
clocks and the link clocks. A null message has a timestamp which is used to
communicate the fact that no messages with an earlier timestamp will traverse
a given link. The null message is an artifact of the distributed simulation and
wouldn’t appear in a sequential simulation or in the real system. When sending
a “real” message on a given link, an LP also sends null messages with the same
timestamp on all other outgoing links. The formal proof that this algorithm
avoids deadlocks can be found in [CM79]. Unfortunately, this scheme generates
a great deal of additional overhead traffic due to the null messages [See79].
Deadlocks may be infrequent, so it may be extremely wasteful to send null
messages constantly. Therefore, some researchers propose to detect deadlocks

and correct them once detected [CM81]. Chandy and Misra describe a technique

based on Dijkstra and Scholten’s work on termination detection [CMB80]. Once
the deadlock has been detected, each LP; calculates the minimum timestamp
of outgoing messages that it wants to send, under the assumption that it will
not receive any further messages. Call this time v/". Each LP can calculate its
™" independently. A distributed algorithm is then used to find the minimum

over all the processors (i) of the v7** values. The node with the minimum v

i
is allowed to send this message since no other LP will send it a message with a
lower timestamp. By allowing this “min” LP to proceed, we break the deadlock.
The authors discuss a modification to this algorithm which takes into account

potential causality to allow more than just the “min” LP to resume after a

deadlock [CM81].

An additional problem with the conservative strategy is that the intercon-
nection between the LPs is static and fixed throughout the run. Ideally we’d

like to dynamically create LPs and links throughout a simulation.

1.3.3 Optimistic Strategies

One of the more recent developments in the area of DES are the so-called
optimistic strategies which are based on a protocol called Time Warp (TW)
developed by Jefferson [Jef85). The basic idea is that the restriction of strictly
increasing timestamps on messages sent over a link is restrictive and leads to
too many problems (deadlock and unnecessary waiting). The Time Warp mech-
anism allows LPs to process messages as they are received, though if more than
one message is in the message queue, the one with the minimum timestamp
is processed first. If a message arrives which has a lower timestamp than the

value of the LP’s clock, the LP is “rolled back” to the time of this message.

This is able to be accomplished because the system periodically saves the state
of the LP. Any effects of having advanced too far (i.e. erroneous messages) are

canceled through an elegant technique using “anti-messages”.

When a process is rolled back from virtual time v; to virtual time vy, zll
messages sent between vy and v; may be in error. They were produced without
knowledge contained in a message (the one that caused the rollback) that could
have had a causal effect on them. Therefore the effects of sending these (po-
tentially incorrect} messages must be nullified. This is accomplished by sending
an anti-message for each message sent between vy and v;. Anti-messages act in
the following manner. If an anti-message is placed in a message queue with its
positive partner, both messages are annihilated. If it arrives at the receiving
LP and doesn’t find its partner in the message queue, there are two possible
scenarios. One possibility is that it beat its positive partner to the receiving
LP. In this case the negative message will be in the message queue when the
positive message arrives, thus deleting it and any potential effects. The other
possibility is that the positive message has already been processed. In this case
the receiving LP’s clock will have a higher timestamp than the arriving anti-
message. Therefore, the LP will be rolled back and may send its own set of
anti-messages. It has been shown that this “cascading rollback” is bounded and

that the system will make progress [Jef85].

The optimistic approach essentially gambles on a time/space tradeoff. By
using extra space (memory storage) for saving state and messages, it hopes to
reduce the total time it takes to complete a simulation. The conservative ap-
proaches use blocking, while Time Warp uses space (state saving) then rollback

for synchronization.

10

One of the problems of the Time Warp mechanism is the overhead associ-
ated with state saving. In addition to states, every message received and every
message sent must be saved by a process. Fortunately, we do not need to keep
all state information back to the beginning of the run. A concept called Global
Virtual Time (GVT) allows the system to periodically throw away obsolete in-
formation. GVT is defined as the minimum of all the local LP clocks and the
timestamps of all messages in transit. Nothing in the system has a virtual time
less than GVT, and the system can discard all state information with times-
tamps earlier than GVT. Obviously GVT is a very difficult quantity to obtain,
since we cannot take a “global” snapshot of this distributed system [Lam?78].
Algorithms have been developed to calculate a lower bound on GVT which can

be used as an estimate to free up memory space [Bel90).

One of the benefits that Time Warp has over the conservative methods is
its lack of insistence on a static interconnection network. Any LP can send a
message to or receive a message from any other LP at any time during the
simulation. This should prove to be very useful when attempting to perform

load balancing or in a simulation where processes are created and destroyed.

1.4 Classes of Simulation Models

1.4.1 Message-Initiating Models

The queueing systems discussed above came from the general class of “message-
initiating” models. A message-initiating model is one in which a logical pro-
cess performs no work unless it receives a message from another logical pro-

cess. The best examples are the aforementioned queueing networks where each

11

server/queue has nothing to do until the arrival of a message from another
server. The messages in the simulation correspond to the customers in the
queueing system. Messages carry the work in this class of systems. Generally
the system starts with some messages “pre-placed” in some queues. The system

progresses by processing these messages and generating new ones.

1.4.2 Self-Initiating Models

Another type of simulation is the “self-initiating” model [Nic91]. This system
is one where each logical process performs work regardless of whether it has
received any messages from other logical processes. Here, we find that messages
do not carry work, rather they merely provide some sort of state information.
The example used in [Nic91] is the Ising Spin model [Lub87]. In this system, each
logical process models a particle which randomly and independently decides to
modify its state (say at simulated time v). Its new state is a function of the
states of neighboring particles at time v. Messages passed between LPs convey

state information, they do not cause the processor to re-evaluate its state.

1.4.3 Hybrid Models

Some systems contain elements of both message-initiating and self-initiating
models. A good example of this is a trace-driven multiprocessor cache simu-
lation [Nic91] [LLB89]. Each logical process simulates operations (reads and
writes) of one physical processor’s cache and each proceeds independently of
the other LPs. A message is sent to other logical processes whenever a reference
is made to global memory. The arrival of a message at a logical processor does

not cause reads or writes, rather the state of the cache might have to be up-

12

dated (invalidation of entries). In this system, processors can proceed without
the receipt of any messages, though when messages arrive the LP must perform

some work.

This differentiation between models becomes important when discussing an-

alytical work.

1.5 Previous Related Work

Our work focuses on the performance evaluation of the various synchronization
algorithms described earlier, though our major focus is on the analysis of the op-
timistic protocol Time Warp. Most of the analysis of these simulation methods
has been empirical rather than analytical. Unfortunately, the performance of
either the conservative or optimistic strategies is highly data dependent. Some
of the systems that are simulated have a great deal of built-in parallelism, while
others do not. Therefore, one must be very careful when citing any performance
measure to recognize that the performance (i.e. speedup or lack thereof) may not
be due to the method of simulation, but rather to the system being simulated
[WL89]. Another problem which may affect performance is the partitioning of
the physical processes into logical processes and the assignment of these LPs to
the parallel processors. The allocation of these tasks can have a large impact on
the performance. A load imbalance between the processors can severely degrade
performance. Also, LPs that communicate often, should be placed on the same

processor, so that messages need not be sent over a communication network.

13

1.5.1 Empirical Studies

There have been a large number of papers published giving performance results
for a specific application when using one particular synchronization algorithm,
either optimistic or conservative [UJ88] [UF89] [Nic90b] [MNF91]. These pa-
pers generally show modest speedups over sequential simulation regardless of
the underlying synchronization algorithm. Neither conservative nor optimistic

strategies seem to be dominant over all application domains.

In contrast to studies that evaluate performance under a real application, Fu-
jimoto has examined a variety synchronization strategies in [Fuj88al, [Fuj88b],
[Fuj89a], {Fuj89b] through the use of an artificial application. Instead of using a
real system to simulate, he controls various parameters of the LPs and examines
the impact on performance. For the conservative approaches the following gen-
eral principles were derived. Lookahead, the ability of a logical process to predict
future behavior, is extremely important in gaining speedup. When lookahead is
too small, parallelism is limited, and processes are forced to block more often.
Message population, the number of messages or events circulating through the
LP network, also regulates speedup. Not surprisingly, when lookahead is small,
the message population must be large in order to gain speedup. Conversely,
when lookahead is large, the message population may be small yet still provide
good speedup. Finally, the deadlock avoidance approach (null messages) seems
to be more robust in gaining speedup over a large class of problems, than the

deadlock detection and recovery technique.

For Time Warp, lookahead is useful, but not necessary. This is an important
point in favor of the optimistic approach. Conservative techniques generally

must exploit lookahead, while Time Warp performs reasonably well without it.

14

Event computation granularity is important in its relation to the cost for state
saving and rollback. If events are “cheap”, but rollback and state saving are
expensive, then the overhead of Time Warp will keep speedup low. In order for
TW to succeed in gaining high speedups, state saving/restoration and rollback
costs must be kept to a minimum. Fujimoto suggests hardware support to reduce

these costs to a negligible level [FTG8S].

1.5.2 Analytical Work

Our major interest is in the area of performance analysis, not empirical studies.
Very little work has appeared in the literature which discusses the average case
behavior of TW. Lavenberg, Muntz and Samadi [LMS83] examined a model
for two processor TW where messages are only used for synchronization (self-
initiating). They developed an approximation for speedup which was valid if the
interaction between the processors was small. Mitra and Mitrani [MM84] also
examined a self-initiating two processor model and developed an exact formula
for the distribution of separation in virtual time between the two processors
and for the rate of progress in simulated time per unit real time of the two
processor system. We address the relationship of these two studies to our work
in more detail in Chapter 3. Madisetti [MWM90] [Mad89] provides bounds on
the performance of a two processor self-initiating system where the processors
must have different speeds of processing and move at constant (deterministic)
rates. Madisetti extends his model to multiple processors, something we do not

address until Chapter 7.

Jefferson and Witkowski [JW84] describe a Linear Poisson Process as a

model of the arrival process of messages to a TW queue. In this work the

16

authors view a single LP in isolation by aggregating the effects of all the other
LPs into two random processes, a real time message arrival process and the
virtual timestamp of these messages. The authors use this technique to model
the performance of the Time Warp database concurrency mechanism [JM84]
(which is different from the simulation method) and to find a lower bound on
the time it will take to process a message. They essentially find the time after
which no message with a smaller timestamp will arrive to preempt a message

with virtual time ».

Lin and Lazowska [LL90a] have examined Time Warp and conservative
methods by using critical path analysis. They have also examined TW itself
[LL89] [LL9Y0b] [LL90c} to better understand the state saving overhead, roll-
back mechanisms and processor scheduling when running the TW algorithm.
Though their work provides important insights, it generates different types of
results than ours. Qur results are exact, detailed performance measures of two
processor systems while Lin and Lazowska have opted to concentrate on higher-

level views of more complicated systems.

Nicol [Nic91] has provided bounds on the performance of multiprocessor
self-initiating models and introduces a new conservative synchromnization al-
gorithm. Nicol also examined the cost of conservative synchronization [Nic90a)]
and showed that, as the problem size scales, performance closes to within a con-
stant factor of optimal for a particular conservative algorithm. Some excellent
work solving for the performance of Time Warp with multiple, homogeneous,
message-initiating processors has recently appeared [GAF91]. The authors use
a Markov chain approach where the state variable is the number of executed

events beyond GVT at a processor. An approximate solution is obtained which

16

L1

‘Aj1qeqoxd uorjoeIsjul o) U0 pu® sI10sse001d oM} Y} USeMISq
peo[8y} jo soueleq oy} Aq pejospe Ajduons st dnpeadg ‘dnpeads Jurpnpout
S9INSEoW 90URULIOJISd SNOIIBA IO SR[NULIO} J0RXD SIB[NO[RD 03 POSN USY) oIe
sotyniqeqold osat]], ‘paInquuIstp Ajeor13ouroed st (ourry [RNIA Ul) y 20UBISIP ®
Aq pereredes are s10ss0001d 843 Aj[iqeqoad oY) 1BY] puy 9pA 'SI0ssso01d oml o)
jo auuy [enjna ur uoryeredos oy} 10] ButAjos saajoaut anbruyaey mo ‘[ggardl ur
sy ‘urasAs drepy ourl], ® ur poA[oAlul Spoepel} sourmilojlad Sy} Inoqe S[IBILp
axou1 sopraoxd pue BaIe SIY) Ul YI0m snotasld seyrun [9pout oy J, ‘[ooojoad dresy

sur], 943 Juruuna s10ss0001d om) 1oy Ppour mou ® juasaxd am ¢ 11dey)) uf

's30880001d Jo 1aquInU Sy} JO Juspuadapur St
punoq roddn o} ‘paIngriisip AJULICJTUN 9I8 SOWIT) 98I} USYAN "PRINQLIISTP L[[R1}
-udu0dxd aIe SAUIl) UOIINISXS HSB] USUM pPaurelqo S JNSal 9ACQR 31], 'pPoYIau
o3 10} pasn s10880001d Jo TOqUINT YY) St J 919YM ‘(] U) JO 10308] © Aq goroid
-de paddsjs-owry a3 wiojradino o} ‘sowr e ‘opqe s1 yoeoidde onsmundo ayy
Jey} puy 9p\ -suorjdurnsse ureirsd Ispun anbruyoe) paddais-aull] B ISAC 9ARY
poo goeoxdde orstuarydo ur jey) juswascidul s0URUIIO)Rd WNUWIXRUI 97} UO
punoq 1ddn ue puy am g roydey) U] “IOI[IRY PAQLINSOp SUIILIOS[R UOIye[n

IS PIINQLIISIP 9Y) JO duIos Jo JulpurISIOpuUN UR SoptAcid UOIJRLISSSIp ST J,

SS9}y InQ jo Arewrumg 9°[

‘[e06314]
[16231] {16314] [40631d] ut punoy aq Leur UOTYRIIISSIP SIY} WO PIALLP s1odey

‘[689131) Tt punoj oq weds sjI0m 10885001d OM} INO JO TOISIGA paYUIL] © ‘Af[RuUl]

‘s19jourered Jo S3URI SpIM B I9A0 9JBINIOE 93Inb aq 01 smodde

81

‘UOlYR[NUUILS PIINQLISIP Ul YIOM 2INJNJ U0 sSP[Inoy)
IO SUIOS Y4 SUOISU[Ou0o pue Arewrwrns e sopiaoid § widey)) -si0sseooxd
om} ey} a1our uo Furyerddo uoym drepy sur], jo sourwriojiad oy} 0} SISA[RUR
Ino Surpud)xd Ut JIO0M SININJ 10] SUOIJIIIP SWOS SUIUIRXD am J I19ydey)) ujy
"pPEIYE00] OU JNg ‘Prqod
10 Buraes 97els 10§ 1800 ou YIm w)sAs drepy sumy, ® waiopradino o3 a[qe st
Pe9IYENO0O0] JO JUNCWIE [[BWS B PUR SOFESSOW [[NU 901f, THM UIIISAS OAT)BAIISUOD
® 1B} MOYS am ‘A[[eur 'S}O0[pesp Junjealq I0} 3500 B 03 NP UoIepeIdap o)
pue sodessoul [[nu 03 d[qrINqrIje jusurasoidurl sy3 9)en[eAs Aloarje)ijuenb o3 sn
mofTe s[epow oy, "A310eded Furssoooid ur paoureq [P oIe s10880001d o3 1 LU0
Inq ‘eourwiojrod Jutaoxdur ut [njasn AIsA ST pRIYRNOO[YR} MOYS 03 S[q® oI% OAA
‘s199deyd snotaaad o) ur padofesep sjepour drepy suat], a3 03 31 aredurod os[e
pue uorje[ost u [020301d 2A1IBAILSUOY 973 JO nOTRISIO O} SUIUIRXD AN "W)SAS

9ATJBAISSTIOO J0sS3201d om] ® IO} [9powt s[qeredwod ® saonporjur g widey)

"1sa197ut Jo siejeurered
sourwaojred 19730 pur s1ossooord oY) usoM)aq SuIly [BNMIA Ul uorjeredss ayj
10§ suo1ssa1dxo W0} PISO[D JIBXD PUY 9M SOsBD [j0q U] }oB([[01 0] $1S02 apN[d
-ut 0} ¢ 1eydey) ur pue Surenandb pue Buissooord sBwssowr 10§ $1800 OpnoUT 0}

p 10)deq) ur §1 puolxd om ‘powu sy} jo Ajrduns oY) YIM poysIyesuf)

61

MO[A119A0 e 314 ST 8p1aold [£307814S SNOUOIYOUASE Y7 10} [oPOW Y], "UOT)}
-g[NUIIs B SUIINO9X0 YSTUY 0 SUIT} ST JO 9)BUIIISI S)RINIOE We Y3 s1 apraoxd [[1a
A8ayenys paddays-swry a3 jo Ppowt m() Adorenss (paddoss-ourry) snouorgouis
o) Jaa0 (drepp swr]) snouoIyoudse sy} jo jusuraaoiduir [erjuajod a7} ssosse

03 1op10 ur sopeoldde om) oy Jo spowr ojdurs A12A asn o3 paydo aary app
SIPPON UL ¢&'¢C

‘waysAs drepp swn], & 9esado pue juswsdunr 03 pspuadxo j0po 9y} jo [
10} Moeqhed rerjuajod o) 2)RUIIISS OF SHI[ISI P[NOM dM ‘DI0JOISY T, “IOJR[NUIIS ©
yons prnq o3 payearjdurod st 31 pue wd3sAs dIepy awi], B Ul pesyIsao [euojeiado
JO junowre Irej ® st 218y], “(uorernuus paddejs-oum) “d-9) ‘onbiugoa} snouolyd
-ufs e 10a0 ‘(drepp our], ‘-3-0) yoeoxrdde snouoiyoudse ue Jutsn £q juewesoxduur
reriuatod a1y sojerjsuowrap 193deyd sy} pue ‘(SH(1J) UOR[NUIG JUSAT 9I2I0

-SI(] [o[[eIeJ IOJ Posn SWII0Z[e [eISASS oI¢ 2197} ‘A[snorasad pouonuaur sy

uolponpoajul 1°g

Suissedoag
PoINqLIIsI(] SNOUOIYIUAG JOA0 SNOUOIYOUASY

jo jquawoaoaduuy ayj uo punog 1addn uy

¢ HHLLAVHD

0¢

"7 23t ur umoys st ydead yse) snouorgrudse aqy, "I9pIo
dure)souIr) Ul SALIIR SOFRSSoUl [[e R} pue ‘s10sso001d 19730 wox sofessow Aue
10} JTem O} SBY JoAdU 10559001d [ORD JT §% ST N {SHIBQ[[O1 OU JUIUINSSE OIB am
o[duxis epowr a3 doay oF, "syse} 37 ST 939[dwod 03 saxe) 10559001d 3SoMO[S 3Y)
yeyy ourt} oy} Ajduts St ystuy o} suur) (8103 oY J, ‘YSiuy 03 s108s9001d I8Y30 5y}
10 Surjrem (NOYNM ‘URD 1 Se IS} SB JOPIO Ul SHSB) SJ1 9)N09XD 03 10853001d
YOBS MO[[B 9\ "INOD0 1M SHOBQI[OI OU ‘SaouriswnIID Jqrssod 3soq ag) zopun
‘IoA0IOUI PUR ‘uoriorrsal Surde)s, yons ou sey A59)8I11S SNOUOIYOUASE oY T,

L=d
pue p =) 10} 17 9mI1g UT UMOYS ST UWOTyRZIUOIYIUAS Jo adAy} sty 105 ydesd
3sey Vv "108sa001d jsomors o1} s BuO[se so{r} 0FBIS [ORVD JIOYM SOBVIS I {IUM
uopnoexa poagde)s, v A[[RIFUSSSd SI SIYT, S8} (T + %) S Jo uorynvaxs Juruurdaq
0} 1oud se} ;¢ 83 paje[durod sey 10ss900ad fiuzad [1IUN JTEM JSTU 108S00Id
[oes ‘st jey], ‘Surnurjuod s10j2q dais € 9791duiod 03 S JT 1930 [[® IO} JIem jsnul

JdT ue ey} ®opl 9y} uo paseq SI yoreoidde snouoIgouis ag) jo Ppou Ing

*10852001d AU® UO UOIINI9Xa 219[duI0d 0} swl) JO JUNOUIR

UWIOPURI % 9¥B) [[I4 Y$B) Y UOIjR[MUIS 9} JO OZIS, 91} SOUIUMLIIOP I 'Iopio

[eryusubes uy X4y ... ¥y ... 197 gygey unrojrod jsnux d 10ss0001d yoesy A[erjuonb

-98 (SIUSAS) S¥Se} 9Y) JO Y SIN06XS ova s10ssanoxd J jey) Yons pajnosxs ore
sHs8) g3 Jepow Buimoro] a3 asodoid om ‘sonbiuryoo) omy oY) szdeur Of,

‘poyjour

padda)s-owr) oY} 1040 A998 snonoagouise ay) jo jusurosoxdurn Teruajod o)

uo punoq Iaddn e ysiqeise am ‘sny], -aur} uorje[duod pajoadxe ST JO 9JBUITISS

1¢

ydeid xjsv) snouoigoudse uy :z'g aIndig

wsav=0)

AJUO UOHJBZIUOIYDUAS ‘BUII} UONMIIXI ON = D

-} vz)l -
Y £\
‘ -y o/
N 7\
./ ./
" y
Ay ./
_ s P 'Y Y
L=d \ \ \ L\
N Y
./ A\
Y Ny
A ./
‘ Pt Y
- p-—

‘qdeid }se] SNOUOIYOuLs y :1°g 2Indrg

wsery= O
ATUO UOTIBZIUOIYDIUAS ‘duIy} UONINIIXI ON = I:l

(44

"0SBD SNOUOIYOUASe 3Y} 0} SNOUCIYIUAS Y3 I0] sowr} uorja[duod pajoadxs oys
jo (soury ysvy panquuisip Ajrerjusuodxd 10}) °y otjel oY} 9je[no[ed 0} paddoid
MOU 9N "SO[QEBLIBA WOPUEI [R1JUONOdXd 37 JO WINS J13 ST 9[qBLIRA WOPURI SUBY
a8egs-37 v “[g2o131] sSueay oBwls-y J JO WINWIXRW S13 ST A39}e1)s SNOUCIYIULSE
91} 0] awry poroadxd o) ‘oroplraq], ‘s{se} Y [[e 3uneidwod jo pud oy je
rem s10889001d sey Ajuo £391BI)S SNOUOIOUASE 913 ‘ISRIJUOD U] "S[RIJuduOdXd
J JO wnwIxew 9y} sows y S A897RI}S SNOUOIYDUAS S} IOf Surl} uorpadurcy
pojoadxo o) ‘a10jo101], "9je[dwod 0} s10ssed01d I8N0 9y} [[® I0] JieM O} Seq
10ssooo1d oea asnedaq S SIY T, S[ejusuodxe J jO wnuwixew ay) 03 [enba swn
oye) [[Im o8e)s yowe ‘A891e1)S SNOUOCIYOUAS 91} I0] U} ‘[BIIIUSPI S8 $10889001d

91} 1e91) PUB UONQIISIP [BIIUau0edXs UR [)IM SOUIT) TOIINISXS SBY [9POUL M JT

sowIL, }SeT, parnquisiq Aeryueuodxy g'g

‘A301B1)8 snouoayoudse o) Fuisn £q poutred aq pInod 3BY3 yuwLRA0Id
-urr @ouewIojdd WINWIXew 9Y) JO UORdIpul Pood ' 9AId pur ssrpiqssod Jo
o8uel oy} ueds S[OPOUWT OM) ISIY) IR} SANSQ M ‘OI0J2IT], "POYISW 1930 Aue
ey durl) SS9 Ul UOIINISXS 93a[dutod pInoys pue ‘Ouou A[[BOISRq ‘UOI}RZIUOIYD
-u£S [RUINUI JO JUNOWR)Sed] 973 SMoYs (Z°g 9INJ1]) [PPOUl SNOUOIYIUASE INQ)
-98eys yowe ur wsrpered [N} SPQIYXS YOIgM W3ISAS Au® JO WOIINISXS 93[durod
0} awir} 4so8uo[9} 9B} [[IM SI0JAIST) pue ‘0O01IBZIUOIYOUAS JSOW 93 saInbaz
(1°Z 21813) epowt paddsgs-ourty an() -uotjeuriojut jueiiodwt £I9A Yiim ST 9pla

-01d Aoy) oadleq om ‘opdums A[puai)xe are Jursn ore om SPpoW Y3 YINOYT,

SpoyJeJA uoljezruoayouig jo asedg 1°7°T

£

(#'2) -:— §§ = [fIla

st sda3s Jo JoquInu oY} ST Y
pu® 510853001d JO JoqUINU 2} ST J 219ym [°7]77 107 noryenbs euy aq3 of “[rla 3y

= [87]7 ‘Ajres)) -ae[dwioo 03 seBvis 3 [[@ I0f JwWil} 9} SB §7 OUYIP MOU I

(e'2) = Z — = [Ila
1R} PUY oM

[68d31D) 2outg

1=t

xp(z;ﬁ—a)my I+!(I") (:{) Z =
o

0=3

zp l,(m_a—),_dt (:[) <- I] J =

d

2l o1
(@ -1 [= la

"[2°131] & JO anyea pojoadxe o3 aye[no[ed ued am J(JJ U} Suls()
(z2) w2 _ (- ?—1)d = (&)Y
uorOuN} AJISUIP M
(12) L2 = 1) = (2)&f

st I 30 (AQd) uonynquisip

SATJR[MWND 3Y T, ? UBSW M [ord ‘serjudoucdxo J JO WNUIIXRW 93 = ,J, 19T

[9POIA (snouoaypudg) paddayg-awmry, 1°¢°Z

Ve

o=

zp ((;—%,,,) K m2— I) - Imof =[rla

=M
‘suyq,

(@) -1_[=lrla

21 30 uoIjeoodxa 9Yy) aye[noed usd am (x) Ly Sursp

&2) BT a1 = (@] = (@)%
q (_,(:sz) I-X)

s1 sSuey 98vIs-y J JO WNWIXERW SY) JO TOTINGLIISIP SAIYR[OLUND ST,

it 0

(12) oy =21 =@ [=@

a10Jo10Y T, 71 9381 e 553001d WOSSIO ® Wwox [— ()] [RAIOIUL
9} Ul S[BALLIR)7 URYY) SSO] aIv a191] 38y} ANiqrqold o) snut auo Ajdus st
YOIM ‘7 uey) 1998318 owrry sexel I 1B} AN[Iqeqoid 9y} Snuiul 9Uo St 7 03 [BNbD
10 uey) sso] awat} sexe} Suepy odess-y e jeyy Lypqeqoid ayj yeys Jurzijesr Lq
10 ‘uorjouny AJISUSP 9Y) JO TOIJRIFSIUT J021Ip AQ JBYIP punoj aq ued J(1d YL

90 e = @
st Suepry a8eys-y s[3uts ® jo nonpouny Aysuap Annqeqoid syy, /1

uBIUI SBY 99¥1S Yora o1oyM sBurlIf o8e)s-y J JO WNUWIXRW 9Y3 S8 I SUYSP A\

[PPOIA (snouoayoudsy) drep awl], Z'¢'7

‘72218°0 &= JURISUOY) S O[N] = i BIdYM

(¢'2) (M_)ﬁ{_ _d¢

+aua) 3l
Z1/1 1 rdTrd 5 A LA

M

[t910r] 1 S13 107 uoTyeWIIXOIdd® JUA([E0XD UY

62

sonrea oy} sejeIousd [orym) y snsiea sonjea 3dediojur sy) uo powrrojiad sem
UO0ISS21801 PIIY} ® I[IYM ‘(7 PUR) SIURISUOD S} 10] SSN[RA 57 $978I0UIT Yotym)
y,U[SusIoA sonfea ado[s sY3 uo powiojied sem UOISSOIZ01 PUOISS B ‘DI0JRIdY,
'P'g 9131 Ul US9S 5q Ued SIYJ, 'Y O3 PIje[el AIesur] pawass sydeolatur oyj
oyM ‘y,u] 0} pajelar Ajreour] sram uoryeurxordde y yoes 10y sedofs ay3 yeyy
peteadde 31 ‘uay T, ¥ JO anyeA owa I10j Jes suo ‘sydedsjur pur sodos y Suryeiousd
sny3 “¥q + (g uy)¥we = ¥(°r) 1ey3 yons 2y Jo] uorssorfox reour v pouriojrod om
M S 3y Jo anjea yoes 10 'g'g 2mItg ut uses A[Ied[d S S, "J U] 03 pajed1
A[30911p 9q 0} powIads °f ‘y Poxy ® JI0J JBYJ Padljou ISIY Sem] "SoW]} 3313}

sonbruyos} uorssaidar saxenbs isee) Buisn Aq pedoeasp sem uorjeurrxordde siyJ,

"990 = 196990 =0 CC0=BLez0=0

STUI=TLSPTT =4 200=¥ec00=V
I M

=T

- | 3

(67) (g + 517 + daw(a + >1,m0))

SIT < d Pue [< Y uaym *y 10y uorjeurrxordde jus[[eoxs uy

Q‘L_l_lr’
M

31 + Suepry o8vys-y jo uwsly = [°I|7

'smofjof se [%r]; oyeurrxoxdde uwo om ‘sSueriy o8eis-y
d JO Xeuw 973 JO an[eA Pa3adxo oY) PUR URSUI 87} UIDM]I(] IDUIIIYIP Y3 5L
pue Juerry 98els-y € jo urow oy} ‘symauodwos omy ojur [°r}g Sursodurodsp

Ag -reidojur o3 J0f morssardxo urioj paso[o ou seq uotjenbe sy ‘Aejruniiorun

" it %) ()

92

(are2s doy)

(S10SS9204 4 JO JaquInN) d

‘(areos B0[) 4 snsiva 2 :g'Z 21031q

d SUSIaA L

0=
SI=M
01=4
§=)
A
=X

Le

‘sonyea jdao1ojur pue adofs uoissaIdNY g I3

(sdajg jo JoquunyN) ¥
0¢] | 01 g 0
: . . . o-
[0°0
[T0
[0

] SnSJaA sanjeA 3dadaaju] uoissaagay

ZvODu1

v (DU] snsaaa sanjeA 2dojS uorssaaday

82

7+ + 1)+ radas

Urd _ 42| Jui+g
(g+3x(+1D)+dul@+0Dmo) 7
(Gt - +dm+a)y
rla
[zla 4
nod
(&’+XV+JHI(G+}I3UIO))?+‘}}'z[il]ﬂ
(T+d)d de)ﬂ'
Mrdid 2y qutg)—=f
(zm T Tdutd)& [rla

"spoyjoul

UOTJRZIUOIYITUAS om) 917 Jo suorjewrxordde aysg jo “°y ‘oryes syl 3= 3O0O[sn o]

20URULIOJIDJ SAIIR[OY €°'€°T

‘unoryeuwrrxordde umo INo 38N 03 INUIIUOD
oM ‘STOI)09S JUIMOJ[O] 913 Ul {§31NSa1 awres 9y seonpoid uoryewrxoidde 1oqiry
JHUIZ/\T% + % ~ [zla

souury

jse)} pagnqLustp Aq(erjuouodxo I0] MO[3q UAAIS ST PUB 4 U] << J USUM pI[eA

Aquo st woryewnxoidde moyy, wornqusip (rerjusuodxe jsnl jou) [erouad e I0f
[°z)a 107 worysunxoidde ue padopAsp os[e 9ARY [GEAN Y] SSISAA PUR [EXSTUIY]

‘001 < 4 pue 3 10} uostreduiod ayj

SMOUS §'7 2In81] PUR UJ) PUR SUO UBMIS]Q J PUR Y JO SIN[BA IOJ UOIIR[NUIS

01 paredwos uoryeurrxoxdde ay) smoys gz a3 '(g pur y SuLRISUOD 97} 10f

63

‘01 S J ‘) 10} norgenuuis pue uotjewrrxordde jo uosireduro)) g g 931 g

(s10ss3d04d Jo JaquInN)

01 8 9 d L4 (4 0
1 1 1 L 1 1 1 1 1 L 0
- 0C
RELAALH
- 0Y
0I=3 uoneunxoiddy . . . J
uonemug — | - 09

(/1 = 1) (3dUspyuUO) % 86) UOHB[NUIIS
i uonewrxoaddy e]Hq jo uosiaeduro))

0g

‘001 < J ‘Y 103 uoryeinuns pue woryeunxoidde jo uostreduro)) :9°'g aImIrg

(5108532014 Jo JaquinN)

00S 00b ooce d o0z 001 0
[1 1 1 | 1 1 1 1 3 0
00T =M | 00s
002=M
00€ = o oLl
— - 00ST
ooy =Y I
- 0002
00S =M
N i L
uoneunxorddy — -~ oosz
uonenuUIly ——

(/1 = 1) (%86 2U3PYUO))) UOHENUIIG
s uonewrxoaddy [e]]4 jo uosiredwo))

1e

‘S3UII} UOTJTIDXS 3{SB) IOJ UOIINLIISIP [¥X-0] WLIOJIUN @ SOST UOIJISE JXoU
STJ, "SOUII} $®} I0j UOMNQLISTP [erusucdxa ur jo uordumsse oYy uo puadap
$9INSSI 283 T, "’cl—u[jo dupeads wnwrxeul ® 03 pajur| st poyjew paddeys-sury Aue
uoy} ‘Iossao01d (Terjuenbes) o[FuUIS ® UO UOIINIOXD I8AC S108s3V0Id I0] 4 UBY}

1938213 dupsads B d0ASIYOER PINOD POYIBWL OU 3B} SAdI[aq oM J1 ‘A[[eUOCINDPPY

aarjisod ?f Suryew sny) oA1yeSou-uou
[[® @18 (] PUe H'g‘y 90uIS J[NSII SIY) SULIyuOd (6'Z uoryenby) uoryeunxoidde
IM() "Xew Y3} UL} SS9 SI wedw oY) souts sfue[ry o8rIS-yf J JO ULdW Y3 Susn
£dunis Aq punoj st (*y uo punoq toddn ue snyj}) 57 UO PUNOY ISMO[[BIALI ®
18]} Pojou aq PInoys 11 *(J U[) ST Sew} OM)} oY} JO O1FeI 94} ‘DI0]21YJ, o8ess
7 oje1dwoos, 03 ’T’ 0} [enba ourr} soye) o5eISAR U0 UOIINIIKD SNOUOIYIUASE O,
-o8eI0a® o1} UO C[II[% 0} euorjrodoad swiry oxel (M 98wls YOS 3B} ST (19
(1°g°z uoryoag) sepdmutad otseq ‘U013NIAX PIZIUOIYIULS IO "932[dUI0D 03 SPUODIS
71 /1 ‘o8eIoa®e UO ‘SaxRY S} YOBD DISYM SOUIT) ST} [E1IUOUOAXD SARY A\ "TOIINIUL
o1 Surreadde £q JNS2I SIU] SALISP UBD 9p) OBriear uo poyjowr paddajs-oum
o3 se jsey se sourl) (4 up) 2jodwos ‘gsowr ye ‘pnod yoroidde snouoigouise

9y} ‘AYuyul 0} SOSEOIOUT UOIFB[NWUIS O3 JO 9ZIS 8§} S€ W 24} ul ‘snyf,

L ST V+1) _ ,ng;ﬁex
d U d ul

(01°2) d Ul
d 8re] 10} ‘Ajremyg

Vv +1) o 00
=y wi
dld _ 48t Jui+4

108 oM J Uf << 3 ¥e73

Suruunsse pue (00 « 37) SISBIIOUT UOTIR[NULS 93 JO 9218 9y} Se JwIl 97} Jurye]

(A3

g +@/1+v)+ Juliafx,uwi

I+d
d
(g+x@/1+v) +dul@+00m0) X
Yy N
g _
g ¥

‘sourry worjeduwtos pajoodxs oY) Jo oryel Y} Je Yoo[am ‘Afeury

CT0~g0TS2T' 0= S0°0~ LY1ES00=0

€0~ 1690e€0=¢g T00~¥BECTIO0=V

SIS M

e
+
R

(z1°2) (g + 31V + d w (a@ + X,u10))

(A
2 +_ = ke
Lt 357 (%rla

210J919Y], "9S8O ULIOJTUN
oy ur [7r]a 10§ monjewrxoidde oyendsoe ur do[@ASp 0} 7'g'g UOIRG W UCHNg

“13STp Teruauodxd oYY YIM pasn anbiuyoa) uolssoIdar Jwes oY) SN Ued I

+
(11°2) 'I—c-[ixx =[‘rla

187} PUY AOTerpatItul S 'Vde X ST S9[qeLIBA TIOPURI PIjnqrI}
-SIp A[UIIOjUN J JO WITUITXBUI 943 JO UBSWL 93} Ye(} moys 0} Asea ST j] "Sowr)
worje1duros Jo o1yel 97} 0] SN[BA SUIIUWI] JUSISYIP © 9JR[NO[8I OM ‘' DUR () UDM)

-9q PoNQIIISIP A[ULIONUN ST SOWIT} Y{SB} oY} Jey3 uorpduunsse oy3 Syewr aM JI

sewIL], YSEL, PINqLIYSI A[UIofUn $°g

£e

‘(0 = » woyM ‘g/J ‘A[reoytoads)
PoINQLISIP A[ULIOJIUN 918 SIUIT} JS) 9Y3 uaym J 03 feuoitodoid dnpaeds aasy
Ajqussod ppnod A8a3e1)s STOUOIYDUAS 9} USY} ‘WOIINVOXD [erjudnbos ® 10A0 4

uey) 1032213 dnpaeds 9AOIYDR URD POYISW OU ey} SWNSSE M JT ‘DI0J3q SY

‘1 sopeoidde o131 93 ‘q — D USYM ‘}SIOM
IV g ST 0198197} ‘) = © USYM % aq pinoys oryer dnpeads 913 ‘8I0J2IOT T, ,HL,,
03 [enbo owry oxey (14 ‘98rIoar 0 ‘uragsds snouolgoukse oYy, s8els ® 939[dwod
0} o8e1sar wo (xew oy)) ofels 10d spu0odas q 5e} (1M UOIINOOXD PIZIUCIYIUAS
o) ‘g 98re[105 ‘uoyy ‘(0 < ®) [¢‘D] 9Buel 2y} ul paInqLIISIp A[ULIONUTL 518
saurry yse} JT -oryex dupsods oy puy o} uornjur o} [eadde ued om ‘urely
‘] Joddn oy} yoeoldde A[qRIIBAUL [[14 SO[GRIIEA WOPURI YINS AUBUI JO
wnuneew 93 souts poddns ajruy yam uornquystp Aue oy Ajdde prnoys j[nsax
s1q 1, “(yuswoaoxdur adueuriojad (g uy) s3t ured 0} s[qe sea A3oren)s snouoIyd
-ufse o) pue s[re} [eIjudUOdXe PRy SUIl} UOIINOOXA 3[SB)} 3Y3 SISYM ISBD SNOlA
-o1d mo o7} poredwioo se) posn si0ssaooxd Jo IdquInu A1} JO sSI[pIeidar ‘duwry sy
Jrey A[gSnol ur ojerdurod 0y J[qe AJuo st AF9jells snouciyousse sy ‘wormnqLI}
-SIp WLIOJTUN 8 SuISn udym ‘suyJ, "0 = D USYM ON[BA WINUIXEUW S SBY POIYM

g+4+0 00— J'00 Y
= T
9¢

1o} puy om (0 < ¢ ‘©) g PUB D USAMIS] UOIINGIIISIP ULIOJIUN [€IDUSE JIOW B IO

(F1°2)

160 /1T + 00— ‘00—
<1 z(/lv)ﬁg g

(e12) Z
d @3re 105 ‘A[reuty

(1 -I-d)(j/[V) oy i

103 am 4 up <<) Yeq}

Surunsse pue (00 «— 3f) SISBIIOUT UOIIR[NUIS 913 JO 9218 9Y3 S8 W] oY) Sun{e],

Ve

‘[oooj01d drepy swiry, oy} Suruuna s10ss3001d om) JO [opow ®
saq11089p J93dBYD 1Xou 9y} ‘A[Surpiodoy ‘pajurires ST wyjiodre drep surg, oq3
JO worye8iisoaun 127Ny B ‘pazoawy st yoroidde poddays-outt) oY} A1oUM UOIIRNYS

® U1 usAd anbruyo) paddegs-surry a3 ur10§10dIno 03 S[qe ST dIepy SWILT, UG

‘wsipprered poureid-oSre] 01 payns 19330q ST Y JBY)} pue wsraffered
yS1q qIM wOIyR[NUIIS (JUI} SNONUIIU0D) PaUreId-[fewss B ul yonw A1oa ured 03
ajqe oq jou (s drepy aswrr], 18y} sAes A[[BI13ULSSd J[NSAI IN() "SUOTJR[NUUS NI
A1qssod 20 SUOIYR[MUIIS SITUIBUAD PINY IO IIB Ul punoj aq ATuo jydrur wsta[ered
j0 od4} sty [, "yonur 00} fany 3,useop subtuyosy paddojs-ourr) Y3 Aq paIsm uory
-RZIUOIYOUAS DI9A9S SY) OS S[@pow 57} ul wsia[[ered [[Nj pamo[e oM IBY] 108}
a3 wo juapuadop ATY3Iy ST 3(NSAI SIYT, “J jO Judpuadapul junoure JURISUC) @
0} peonpoa st (uwrojtun -§-9) jroddns o3tuy YIIm WOINQUISIP & JUIST UDYM JUSWKL
-anoxdwt oqssod wnwixew oY], 's[rel Juof, Yim suoinquiisip oy s[qeordde
oq 2I0jo15Y} AvWI puUR UOTINQLISIP [eljusuodxd 973 UO {Ie) SYUYUI 3Y3 0} NP ST
J[NSII ST} 18y} 2In302[110d 9py ‘S[RIIusuodXs IR SOuIl} }SB) SIOUM ISBD IY) Ul
‘poyjewr paddags-suir} e 1040 JuswaAcidul 2ouewiofed (4 Uf) U jSOU J€ dAR(

ued 3278138 UOCTIR[NUUIS PIINQIIJSTP SNOUCIYOUASE U® ey} UMOUS U3Sq Seq I]

suoIsnouo)) G'Z

Ge

"S5 IeUIdl
Suipnpuoco apraoxd am g'¢ uorpag Ul ‘A[[RUL ‘[IRISP Ul [OpOUI 9Y)} JO UOISISA
PRIOLIISAI B SUIWIEXD OM)¢ UOLD9G U] "9°¢ U010 Ul [FRNN] WRINA pue 21y
- pue [£8SIN'T] T® 99 S1oquaaer] JO jey3 03 3I0m SIq3 JO dIYSTUOIIR[OI 9} SSNOSTP
om pue ‘siojouwrered SNOLIeA UO SYWII] e} oM g mor30ag Uy dupsads Juipnpd
-ul S9INSESW 2OUBWIONSd SUIOS SuUTWIEXD oM F'g UOIJ0Rg U "WOIIN[OS J0eXd SI1
sopraoad ¢'¢ uo1309g ‘dIepp SUWILT, I0J [SPOW INO SIIMPOIIUT UOTIDIS JXoU YT,
-197deyo s} ut notjerado
drepp owiy, 10§ (opouwr Iossaoold om3 & dO[PASD oM ‘UOIFBZIUOIYIUAS PRQ[OL
JO 81800 97} Jo SuIpuRISIOPUN I19339q R UIE3 03 IepIo Uy ‘aropiay], ‘yoeoidde
paddajs-owrry a3 1oae} suorpduinsse oy} usym usAd yoeordde paddags-oury oy}

surzojrodino dresp swaty, yeq} poayedrput 103deyd snotasad ay3 Jo SHNSII AYT,

uorpnporjul ['g

yoeoaddy Surdjiun

V :sisATeuy daepp SuwLT, 10SS8001J OM T,

€ HHLdVHD

9¢

Ns—-@ag=0a

1] “yHTg

3 ouIy Je (om3 sseooxd) ssoooxd puodsog oy Jo uopysod oYy = (3)§

pue

72 auny qe (auo ssaooxd) sseoord 981, oY) Jo (sTxe-x 919 uo) uotjisod a9y} = (3
T

‘ssa002d Surpuas 8y} jo uorysod Jus1IMd aY) 0} sTxe-x o3 Juore (Joeqiol,

“31) yorq da0uI A[eyerpsurwil 4 1 ‘ssedoxd Jurpuos 8y3 Jo peIUR S N JT 1T

-98essour oy} sa10UI

1t ‘ssaooad Burpuss oy} puiyeq Io o3 renbo st spre-x oy3 Buore uorysod syt Iy G

:uImo[o§ 943 Jo Suo op [[im sseoold (Burae0a1) sty ‘ssevoxd (Surpuos)
19130 oY) wox sFessowr B Jutaeoer uodp) “(z ‘1 = 1) b Lyqiqeqord gy ssoooid
15130 973 03 afessoul ® Puss [[IM J1 ‘STXE oY} FUO[® SOUBAPE UE SIBWI ¢ $50001d
BYRVY (21 = ¢) Y pjewered YiM $IO[S SWIY JO JPQUINU PIINGLIISIP A[[ROTIjoW
-008 ® s1 sdumnl usemjaq ouury a1 Jo junoure oaqJ, “(z ‘T = 1) '¢//1 ueswr Yym
pomquustp Aqreorrouroad st dumnl ogy jo szis (10893u1) oY) SI10YM SIXB 9Y3 U0
premioj sdun[soxew Apjuspuadapur sseooxd yory Q = 2 W} 18 0 = Z Je Juld
-u1goq Yoo ‘sd9ls 2J0I0SIP UT SIXB-X 913 U0 $1989ju1 oy) Suore soueapr L) Je1)
IOPISUCD 9M ‘PIIMIDXd 9I8 $9s89001d 9597} SY "10859001d 29eredas ® U0 POINISND

ST YOTYM JO [oBd ‘sassado1d omj ojur pauoiyijred st yeq) qol ® sABRY om Jwnssy

SI0SS9001J OMJ, U0 diepp awl], I0] [PPOIN V Z°'€

LE

a13 595080 STy [, "ssedoad (peaye) 10730 oy} JO ,jsed, 9Y) Ul SFessoul B SHWUSURI}
ssooo1d (puryaq) suo se aury yons [rjun Apjuspuadopur pasdod gioq Loy, -dn 1
poads 03 310p° U ur qof uoryR[NUIS B U0 JUR{IOM [J0(OIe SI0SS3001d OM] SI0TM
wyjI08[@ UOIYRIOUIS PAINQIISIP dIeA| SWILT, 97} jO [opour o[duns ® ST ST
-10880001d 9]3UIS ® JO 95N 913 0} dA1}E[LI 810858001d
om) Buisn uoym sposoord uorjenduwrod oy3 YOIYm yym dnpsads oyl puy [[ia

om ‘19A0RI0IN "(2)(F UIRYD AONIely 913 10§ A)[iqeqoid wmaqurnbs sy ‘Ajowen
...cgtzt-[=y [5‘,__ — (l)a]do&.ﬁ; = Iy
Cmp E € kit
“eto=y =@aldu =

10 aA0S s 9p (1°¢ 2InB1g sos ‘caryedou 08 ued A[UIRISD 31

“31) anfea wJojur Aue wo e} wed (7)q ‘Ares[D 0 = (0)@ oaey am ‘0 = (0)S
= (0)4 eq? suonidwrnsse In0 wiol] “SUIApPN)s ul PIISIISIUI Ie M IOTARI(]

osoum §59001d AONIRIAL ® ST (2)(7 "SINDI0 ‘YOrRQ[OI ® ‘g 95B)) JeAsuaym () = (1)

‘27 pue 1z souur) ye s10sse001d omg JO $9)eIS BYJ, (1°¢ 2IndTg

(0> (™a) (o<(a)
@S- @MA=(a wWs-Ma=ma
I«q-—p- 4—-—]
(s 4 M4a (s
l ces € T T O
l]]
‘!—l.l{.IIIIHIH:zw

L L1 1 1 ll*lllll.'l'ffllq
""II]II‘I[IIIIIIIIIII'”"J

8¢

‘¢ 19)dey)) 205 soFessoul Jo Juwnonb oy} JuUNOIIE O
sa3e} 184} [9POW © 107 "TOT}EdIUNIUIOD JO JSO 9} Ul JOU ‘J[2831 UOIJRZIHOIYIULS
oy} 03 anp ssoifoid premio] jo $SO[SY3J Ul PIISIINUI A[UTRUI BI? IA\\ "TUOIFRZIN
-o1tpufs 10§ pasn A[uo ore (s Aus 38) s08RSSOp 'SINYNY OYF UL HIOM d1mbsl
Koy op Iou ‘pomanb jou ore AoyJ, ‘poiousd] a1e sseo01d ® JO SININJ SWI}-[BNUIA
o) ur aAliIe Jey) sofessowr ‘Af[ur{ wor3dosolr 03 uoSSIUISURI} WOL AR[9p OU
sanour s108s8501d USOMID(UOTTRIIUNUIIOD R} SUINSSE I "9)BIS PIAES JSe[oY)
JO Jey} A[PWeu ‘OuIl) III[IEd UR 0} JIRQ[[OI 0} dARY YBIW)1 Ioyyelr oFessoul
ApIe} oy} Jo awry 93 03 yPeq 10ss3001d oY} puss A[1IeSSI09U J0U P[NOM JPBq[O1

B 9SIMIDY}O ‘JUDAD AJOAD I9JJR PAIOIS IR $9IBIS JRY) SSUINSSE [opowl I

‘Topowr SuIRIIIUI-J[3S © S O} PIIIJAI $T
ST T, "YI0oM BIJXD j0u ‘A[u0 uorjeuULIOMI dYe)s Furd1red se JO JYSnoy) oq Aewx pue
$10559001d 91} 9ZIUOIYOULS 0F PISTL oIe SaFBSSAUI ST, ‘PIALLIE 94y soFessowr Aue
I0}2YAM JO ssa[pIedai sjzom urropad 0} ajqe sfempe St (J1T) §S9001] (821307 [oed
Je1) SWINSS® 9\ "jIom Aue £1r1ed jou op A3Y3 ‘UOI}EWIONuT uolyeZIUOIqouAs A[uo
Koan00 seFessowr ay T, 'ssoooxd Sutpuss o) Jo sumy [ENIA 93 0} [R0bS sduress
oumy [enjaa aary (b Lypqeqord yiwm) s1ossanolrd usomioq possed soFessOIN
"JX9U 9Y) 0} JUIAd 5U0 w0t dWreIseuIl) [BRHMIA SY3 U 9SBIIDOUT Y S)BIIPUL SIXE
a1} Suore sdwn(paynquysip Ajreoujewosd oyy, “sdunl uwsemiaq sjo[s swiry Jo
TOIINqLIISIp OLIoW0aF 2Y) Aq PO[OPOW ST JusAd re[uoljred ' 9)ni0Xa 0} duIry
[201 30 jJunowre o1, 'ssa001d 3By} JO (SULl} [BNHIA I0) IO[D [BIO] Y3 JO anea 37}

st stxe a3 wo ssaoo1d e jo uorjisod Y3 183 ST [ppou 9y} Jo uotjejeidisul oy T,

“yoeqq[oa 1xau a1} [1un urede A[juepusdapul aoueapr 973 YOIIYM

1933e ‘po3edof st ssevold 1omors a3 azeym jutod ay) 03 Norq[OI 03 $59001d 19)5E]

6¢

‘SHOTRugap
ouros opraoxd am ‘4sI,] "premiojyySrerss 93nb s sisd[eue oy} ‘O[qEPINLIO} OO
Aew suorjenbo oy} ‘paccoid am se ‘YINoYyy 'L UOIPDG Ul PIDNPOIUT [SpOUI

978]S 2J2IOSIP ‘DUNIY DIDIOSTP I3 10] UOTIN[OS 30BXD 91} aptaoid am Uor30as s1y} uJ

SISA[euy 9je]§ 99210S1(] ‘owl], 9312I0s1(J £°¢

‘U0 0S pue yorq [[ol
0} I9YJ0OUR SOSNED Yorq payol 5398 1ey) Iossaooxd ® a1ouMm [6RMST] SR[IOL
Surpessed,, WOJj JOPNS J0U [[IM 1 90UIS 9ATJBIJYE ST WdYSAS 108s9001d oM} 37)
181} 9107 Pajou 3q pnoys 9] 'ssardoxd oyeul [[4 WwISAs o3} pur ssarford axew
[LAD ‘sooueape 31 uaym dajs SUO ISBI[)8 SOUBADE 1M IJ 00U “jUsUIOW
juasaad 913 J' SOOUBAPR J1 YOIYM JB 9381 87} PUB [AL JO IN[BA 3U)} SSUIULINGP
Apestooad ‘puey Ioy3o oY) uo ‘ig "TAD 10 g joeq [[01 jou uwed dur} jussard
9y} e SUOIPE 8,37 ‘D10jo18Y], ‘T + T 0} Tenbo 10 UwY} 10)BOIS SI JBY} SWI) ®
ye 17 0} ofessow © pues A[uo uBd iJ ‘al0joray], -odessowr v spuas A[qssod pue
dogs auo 1sea] je Aq SoA0UI 1 JuaAd U $070[durod 10858001d ® USYM ‘fPpoul Ino
Jo uonytuyep o} Ag ‘% puiyaq st 'g 1By} 08 2z > IT oIoum 2z je ST (%F) om}
10sso001d pue (ow) renaIA) stxe ogj uo fx jurod je st (1) suo zossavoxd jeys
surdew ‘o[dUIRXD 10 00UBADE SARM[B 14 WAISAS 543 JO (L AD) SwWl], [eNHIIA
Teqoro o3 ‘(1 = % =) 10yjo oy} 0} sfesseur ® spuas sAem[e 10ss0001d Yoo

J1 waAy] ‘ssoxfoxd oeur SABM[® [[IM WIISAS ST} JBY) 908 03 A$8d 9q PROYS 3]

oy

(1 +y 03 y woxy) dos
orgurs ® jo sdumn(oxew ATuo s10859001d 9Y3 SI9TM 98BI OYY ST ST, ‘Z'E ST
ur T = % = g emym wajsks mo jo uoisrea pagrduns e 10§ AJuo weiserp
97'1S 943 MOUS 0} 2S00TD am (97eIS 1[O€d JO O pUR OJUI SUOIJISURI} JO IAQUITL

oyuyul uR oIt 819Y3) ¥o[durod opnb o1e watsAs INO UI SUCIISTRIY SY3 JOUIG

H — I = -‘Q
(z‘1=1) [Supueape 1aye oFessow B spuds 10ss9001d ,2]g = b
ZQIQ -1 _
iy
[ooweape 1yj0q | “9STp SWIes oY} a0UBAPE 7 PU® ['S201J]ld = &
-1=%) (0<¥) _ 0% =
[seoweape 91 | syun £ saourApe g 1088001 J]ld = ‘b

(-1="¢) (0<h) g% =

[seoweape 91 | syrun £ sooueape T Josseoo1dld =
(7018 owIr) ® UT $a0UWRAPE 10889001d BYIRN) LW =
(y0[s suiry ® ut aouRAp® s1ossa001d yiog) Wwto = ty
(7o1s awy ® Ul sevuRApR 7 10ssadoid A[uQ) oo = Ty
(30[s surm} & ut sedweape T Jossaooid £[uQ) oo = ly
w—1 = 0

(z‘'1 =1) [101s oumy ® ur seourape 10889001d 2]y = o

3%

= 1=
(1¢) 1<y ;5'”’”;!2’“3@917’4‘

1=f 0=

-ty md T bty +
© I-¥
1= Tyt

’!—?+F5{,{Z?d Z Shey +

Tyt
5 d Z ¢hty 4
1=t 0=t
(rpuZerpa)y = sl s =Dty 4)

"Mo7aq uaA1d are (}g uo sSuOIIOLISAI

ou) weshs [ereusd A@js[dwiod mo 10§ suoijenbs souereq 2ye)s-Apea)s Ay,

‘1 = & = g 10j ureaSerp A3rqeqold UOIIISURI} 9)elS 1Z'E SINI1]

ad au)s Lrdsdmodg 1g 2y s £12 A2 WOXY
ThEy+iy) 15 (Sy+ly)

h (fy+Ty) b (Ey+1y)

b (£ +7y) 1b (Sy+Ty)

théy +ry iy + Ty vty bty + *y lhey+ry

(A4

v xipuaddy ut smoryeatsp oy} apraoid pue Ajo3eredos urIs} yoed I0J TWOTINIOS I3
1ST] @4 ‘suorjeurwins AUeul 0s SBY UOIBNDa STy} 9oUI§ "00 03 T = ¥ WO} Juruwims
pue .z Aq wrey yoeo Suikidmmuwt £q (2)J 10§ 2A[0s om [°g uwolpenby Surs()

T _ 1=y
('zg_lgr_)_ =2 K =@d

1=y 1=y
3lz’luz = (2)P ,’:ﬂdz = (2)d
‘SULIOJSURI}-Z SUIMO[[O] 943 SUYSP IM

(a
wo] & Jurdeoy snyy ‘prayr s198 31 uoym {oeq poqox Surdq jo Ayiqeqord
aaryisod swos sey J0ssa00xd oD JBY) 08 0192 UBY} J93eald oq jsnut s*b oy} jo
YoRY *JUSAS UE $§50001d 03 ST} JO JUNOUIR dJULYUL UB 9} [[I4 J0889001d ¥ IO 010Z
ueyy 19ye518 oq snwr serd[e Sy, "SUOIIRPUWI] J[qRUOSLIL dI€ 8897, (0 < 0 ‘1o
pue (g < % ‘1b J1 A[uo uoIINos 31e)S-Apeals © SARY [[I4 Suoljenbs saoqe o],

1= 1=t

‘uz_‘dz-—'[zod

o 0

1={ 1=
(zg) 1<y .L’f.t+q+§53;dzlb_gv+

1={

0=
,ff.t—:t+.f5 Z g Z 1pey +
1-¥

o0
1= 1+¥=t
’l*!ﬂj.fﬁz?u Z by +
1+y=1
¥4y z by 4+

oc

1=t 0=?
(9+=:5st + 6 Z) ty = Yf(xh4x—1)% + % + V]
o0 ¥

£v

enld —
((9)® + % + (2)d) (Z() fzgl g3£1v+
RN G L
Gz~) ™ tgrgpney
g 3 — z
(s -) et

()1 + %+ (2)d) =)'V

= (2)d (£%bfy -

¥+ W+ V)

(2)d

ssuysp Je1} uorjenbe SUIMO[[O] 93 Y& ALLIR om ‘swiio} Juruiquiod Aq ‘Afeurgy

aﬂlg -1
(' O(2)a% bty
gy —1

(%d + ()) vz 7 =

(z)qa%y'tgehty
(z)d) (*g - 2)(*g'g — 1)

SgegigfThty
‘g
(O

gehty

(HoGd'y =

(% + (2)d) () AW =

el —

- (z)d) g-F

Z_QE:V — SV + ZV 4+ IV) =

= 1=t 1=y
= -‘+’f+-‘f-fﬁz?uz ZZZQSV

£ = =¥
fﬁ'i :(+£! IZ sd’oz Z zbgV
o0 o0
1=f T1+¥=% 1=¥
I-+ipeS Z d Z z Z il

1+y=t 1=

1-16%d Z z Z ehey
%+31f‘uz zz IV
o
;—#f.ﬂdz 42 Z 3%
-y o

=¥

21 (WY — Y+ + ')

(2)d 103 A[31011d%0 2A[0S 03 Pasu A[uo om 0

‘(zb ‘tb) pue (% ‘1g)* (o ‘o) 09 1oadsor Yim oupwIuIAS ore (2)¢) pue (2)J ‘Os[Y

44

“0g

oy — MM F Y-

— (ZQ‘IQ)

103 0} (z){ J0 IoYyeUTIOUSD

a3 Jo (3st1s) ‘sjoox oy puy o3 paedoid am ‘(z)g 03 JLISWIWAS ST (2){ S0UIg
gy + Y+ +Y) = ©

((gey — 'gey)y + Wiy + G + DEV + v + W) — = %

Cv+w)g+ly = %

dvz
Dy — o) F -

‘mO[3q UIAIS s' (%4 ‘Li) $3001 91} IOJ SA[OS om uotyenbs oryerpenb ay3 Juisn

= (ZJ, ‘IJ,)

"(z)(7 ur uorssaxdxa or3eapenb oy3 jo 3001 Oy} ore i pue li 2I9UM
(g°€) (ta~2) (e —2)% (%g'g — 1) % = (D)a
0} (2)@ Aydurs opy
(v'e) [tbgey + (5 + v +)%+

2 (15w — 'gow) g + (*g'g + 1) Ov + o + 'v) + g0y) —
2 (gev+) +w)] (g - 1) = ()a

IV) g —

(g¢) (((Ig)@ + od) (zg - z) (zgzglggv + (thg _ I)
W+ gy) i)z = ()N

(Zg)d (ZIQ - I) zp ((ZQIQ _ [)

‘A[prondxo ‘speriuoudjod

omy jo oryer e (2)@/(2)N = (2)d 10§ utajos £q woryenba stqy Aqndus apm

17

(6'€) 18y gy 4 (zglg _ I) W o= %q
(8°€) theglgey + (Zglg _ I) v = ‘g
2I9qM
) (g =1)'
. — = (z
(L€ ((zﬂ)d n Od) —— ()&
A1puwrwds Aq pue
| =0 (g 1)
(9°¢) (90 + %) #a'g (=)d
‘I0J2I9Y T,
ZJ,IQ -1

((Ig_)@ + Od) (z — 21) 297 (ZQIQ _ I) 2gig = ()N

-uotyenba Suimorro ay) ur Surymsaz ¢'¢ wotyenby
oym Woerq (Sg)d 9ImIsqns uAy} 9p\ “MO[q waArd spuB)SUOD 9IB %7 pue ¢q
(2a'g — 1) ((g'g — Do + gt) b

(C)o + o) By - w)°atg'y

= (g)d

“(%g)d 303 9A[OS BM OIOZ
o3 renbo 31 Suryjes pue (g'¢ uoryenby) (z) N ojur Zu SuB3n[J “I0jRBUNIOUSD 9T}
ur wie} (G4 — z) oY) [90ued 03 s' 08 (] > %4 0UIS) 4t = 2 USYM O3z [enbo jsnuw
(2)d 3O I0yeIOWINU SY} ‘DI0PRIBYT, 1 S| # | 1oa0uaym or3ATeuR 9q Isnw (2)J Y83

mouy am ‘moryngruIsip Ayiqeqord ® jo uriojsuery oYy st 2 1Y < (2)g =ours

1S %W S gpue < 4 ‘Tearare ti pur Li ey} MOYS oM [°¢ ¢ UOIJOSG U]

By + (Y +W+Y)g = 0
((tgey — gy)b + 'ty + Cglg+ DV + + 7)) — = ™

(v +w)g+w = "

oI M

We solve for the unknown constants P(f,) and Q(B;) by solving Equa-

tions 3.6 and 3.7 simultaneously with z replaced by §; and B, respectively.

P(B;) = K,(m+Q(@))
QB) = Ka(p+P@))

Solving them simultaneously yields.

— png(l + K.)
1-K,K,

_ pOKn(1+Kp)
Q(Bl) - _1'_'_Kjr

P(B,)

where

_ 518,Dp
o T B (- Bm) 0
Blﬁ2Du

Gn (31 - 31) (1 - 3232)

Substituting these values into Equations 3.6 and 3.7 and simplifying we find

K, = (3.11)

_ zpG
P(z) = — Z (3.12)

_ zpoCa
Q@) = S, (3.13)

where
BiD, (1 + Ky)

C — 3.14
' (- KKy e (1-Bir) (3.14)
Cn —_ BQDn (1 + Kp) (315)

(1 - K.K;) aq (1 - ﬁgsz)
By conservation of probability we know that P(1)+Q(1)+po = 1. Therefore,
1

P))

rn-1

(3.16)

46

Finally, we invert the z-transforms to get our final answer.

k
Pe = Cppo(rl) k>1 (3.17)
1

Tig

1 k
—_ > .
C’npo(sl) k>1 (3.18)

3.3.1 Root Locus

In this section we show that r and r; are real, m; > 1 and 0 < o < 1. To show
that the roots r; and 7 are real, we must show that the quantity under the

square root is greater than or equal to zero, or that
2
b, — 4apyc, 2 0

Substituting in the values for a;, by, ¢, and simplifying, we find that the roots

will be real if the following inequality is satisfied.

(Bra; — Bica)’ + Bolon’qa? (31 - 01)2

+ 28,0002 (P21 + B (m(2-fr—az) + Bion)) >0 (3.19)

Since all the factors on the left-hand side of Equation 3.19 are non-negative,

the inequality must hold. Therefore, both ; and ry are real roots.

We now show that r; > 1. Assuming it is true, we require

T = %, > 1
byt Vbt —daye, > 20
VbE—da,, > 2a,+b,
b,? —dac, > dap’ +4dab,+ by’
0 > a+btog

47

Substituting in the values for ap, b, and ¢, we arrive at the condition

0 > —f6162000; (3.20)

Since all the terms on the right-hand side of Equation 3.20 are non-negative,

the inequality holds.
To show that 79 < 1 we need to prove the following

—bp — /bp" = 40,y

ry = %0, <1
—b, ~\/b," —dapc, < 2a,
—by—2a, < b,,2 —4a,c,
b2 + dayb, + 4a,° < bt — dage,
aptbteg < 0

which was shown above to be true.

Finally, we show that r, > 0. We require

o — —bp — pr2—4apcp > 0
2 24, 2
—b, ~ /b, —da,e, = 0
by + /b,? —4ay,c, < 0 (multiply by ~ 1)
V by' —daye, < —by
—daye, < 0 (3.21)

Since a, and c, are non-negative, the inequality in Equation 3.21 holds, thus

proving that r, > 0. Similar proofs follow for (s1, s2), the roots of Q(z).

3.4 Performance Measures

With the complete solution to the Markov chain in hand (Equations 3.16, 3.17
and 3.18), we calculate several interesting performance measures. The first is
K, which is defined as the average distance processor one is ahead of processor
two, given that processor one is ahead. This measure is useful in determining

the number of states that will need to be saved on average as we will see below.

7 a E?;l kpi

K, =
! 2k Pr
™

Tl-—].

We find a symmetric value for processor two.

K, = Pk kg
2 T e .
1 M

51

81—1

Since we know the expected size of a state jump at processor one is 1/8;, we
find that the expected number of buffers needed for state saving when processor

one is ahead is

K
E[Buffers needed when Proc. 1 is ahead] = Tl
B
151
= — 3.22
— (3.22)
and for processor two
: K,
E[Buffers needed when Proc. 2 is ahead] = —~
B2
515
= 3.23
5 1 (3.23)

49

Another useful measure, ©;;, is the probability that processor one needs

more than b buffers for storing state.

©;, = P[Proc. 1 needs > b buffers]

oo

= Y P{Proc. 1 is using i buffers]
i=bt+1
= Y Y P{Proc. 1 is using ¢ buffers | Proc. 1 is k units ahead] px
§=b+1 k=i
oc o0
= Y 3 P[Sum of ¢ geometric random variables = k| px
i=bt+1 k=i
o ® fl_ 1 ki 1 k
- S 5(8I))amam ()
bt k=i * ~ !
By) (B)”
= C, = 3.24
o (25) (25 (3.2)
If 8, = 1 (single step state jumps), then ©; , reduces to the following expression.
©,, = Nt 3.25
1,k k“—%lpk 'rlb('rl _ 1) ()

A similar (symmetric) value, ©;;, can be found for processor two. The quantity

of most interest though is speedup, and we calculate its value in the next section.

3.4.1 Speedup

Using the formulae for py and n; we calculate the speedup S when using two
processors versus using only one. S is the rate of progress when using two
processors {R;) divided by the rate of progress when using only one processor
(R;). The rate of forward progress for one processor (obviously not running
Time Warp) is defined as the average rate of virtual time progress per real
time step of the two processes defined earlier by the real time and virtual time
geometric distributions (Section 3.2). Since process one completes events (on

average) every 1/a; seconds and process two does so every 1/ae seconds and

50

they make jumps in virtual time of distance 1/, and 1/8: respectively, then

the average rate of virtual time progress would be

2 hTE _abtab
2 26102

The average rate of forward progress for two processors is the expected “unfet-
tered” rate of progress (without rollbacks) per time step minus the (rollback-
distance-weighted) expected rollback rate per time step for the two processors.
The first three terms (positive terms) in the following expression give the for-
ward rate while the negative terms give the rollback rate. The negative terms
are derived by noting that when a process advances f units and causes the other

to rollback r units, the net progress is given by the difference (f —).

A A 11
Rz—ﬁ—l—ﬁz-l-Aa(ﬂl)

oo -1
—Asqpo E fi Zgj(i —5) = Asqipo ¥ 9i 3 i —7)
=2 j=1 =2 j=t

oo k-1 oo k-1

—Ax > Pk Ytk — A an > i fei

k=1 =1 k=1 i=1
o0 k+i-1 oo k+i—1

—A3q ZPkZﬂ Z JGkyioj — qulznng, > feriog

k=1 i=1 j=1

—Asqy Z Pr E fi Zj9k+i+_1 Asgy Z T Z i Z]fk+t+,1

=1 =l =1 =1 =1 =1
As with the P(2) calculation we list the solution for each term separately, but
since each pair of terms above is symmetric with respect to f and g we only

need to derive the closed-form solution for one of the two. The derivations can

o1

be found in Appendix A.

oo -1

Asgopo Y ;D> 9:(i—37) =
=2

j=l1
o

k-1
Ax@2 Y Pe Y igki =

k=1 i=1
oo k+i-1

Asqe D Dk D fi D JOk+ici

k=1 =1 j=1

[o] oo oo
As > Pk 3 Fi Y FGkties

k=1 i=1 j=1

AsBiBagapo
Bi(1 — B15s)
Arq28:Cppor1
(r1 = Ba)(r1 — 1)?
A39252C,p0 ((7'1 - B)) n B1Byry)
(1 —B18)(r —1)? P (ry — Bz)
ASQlﬁlﬁgcppO
pa(1 - Blﬁz)(rl - Bz)

Finally, combining all the terms together we find the formula for speedup.

S — (2ﬁ1ﬁ2
a1 + axfh
AaB\Bogapo

A A 1 1
)[E+E+A3(E+E)

Aamﬁlqmﬂ

A/ -FB) B(1- BBy

Asqa32Copory

A1g151Crposy

T =B =12 (51— By) (s — 1)2

__ A08:Copo ((Tl - B1) + 513211)
(1= B182)(r1 - 1)? B (r1 — Ba)

__ Aa18iCam ((31 — Bs) n 623131)
(1= B1By)(s1 — 1) Ba (51— B1)

_ ASQIﬂlﬁgcppﬁ _ A3‘~'12ﬁ2ﬁfcnp0] (3.26)
Ba(1 - ﬁ1Bz)(T1 = Bz) pi(1— -6132)(31 - 31) '

3.5 Limiting Behavior

Before examining the results of the previous section, we explore what sorts of

models arise when taking limits on the « and § parameters. The next three

subsections will present the results for (on,a2) — 0 and (5;,8:) — 0. By taking

these limits we transform the geometric distributions into exponential distribu-

tions, thus moving from discrete time and state to continuous time and state.

52

3.5.1 Continuous Time, Discrete State

We transform our model into a continuous time, discrete state (CD) model by
taking the limit as a; and a; — 0 while keeping the ratio 3! constant and
defining Eﬁ?z = g. We can take the limit either on the py equations or on our

formula for speedup. The final result for speedup is given below.

S = _ b (Cp_ﬁthﬁzrl C,,_a.qlﬁlsl) 397
’ (1 i + % (r1— B} (r — 1)2 * (81— B1)(s1 — 1)2 (3.27)

where
1

S E))

!’1—1

Po=

aBi(1 - B1B2)(1 + K,)

@ = T-KK)(L-Bir)(- Bud)
c afx(1 — 51332(1 + K)
" (1 — K Ko)(1 = B282) (1 — fra)
K _05132(1 - 31-52) _
g (1= Bire)(1 - Bra@)(r1 — Ba)
K, = afB8:(1 — 8.15,)

(1= Bosn)(1 = Baa)(s1 = By)

_ (1 + B2(1 - Bia) + B, Braq,) 4

(o) 2(1 - Bia)
V(L +8,(1 - Bia) + Bi8aad,)” — 4 — 5:3)(Bo + Boogy)
2(1 - Ara)
_ (14 81(1 = Bra) + Bybhragy)
(s1,82) = L 201 - fra) 2 U+
VU +B.(1 - Boa) + BoBrady)’ — 4(1 — Boa)(By + Bragy)
2(1 — Baa)

03

3.5.2 Discrete Time, Continuous State

We create a discrete time, continuous state (DC) model by taking the limit as
B, and F2 — 0 while keeping *g—; = b. We find the value for speedup by taking
limits on the speedup formula calculated for the discrete time, discrete state
model. The resulting formula is given below. We first substitute 8; = 8;/b, then
take the limit as 5; — 0. When taking the limit, we were often confronted with
functions of the form 0/0 and were forced to use ’'Hospital’s rule repeatedly.

Any terms of the form F’ are a shorthand notation for 8F/83,. We find

2 (A1 + As+ Asb+ Ash) 2Aspo (H*q1 + o)

S = a; + azb _(1+b)(a1+agb)
2pC, (Az (1+b) g+ As ((1 +b) (14 7))+ b(B*q + @) r;z))
(1+b) (o1 + cub) r§” (1 + br)
2poC, (A1 (1+8)q+ As ((1 +8) qu(1 + b)) + (Bq1 +) 3,12))
) (1+b) (a1 + agb) st (1 +) (3.28)
where

8
pﬂ =
Cpri + Cp8y +ris)

_ (1 + Kn) D,
P (1= K,K,) (1 —15) (A1 + Az + A3)

_ (1+ K,) D,
" (1= K K,) (1— bsh) (A + Az + Ag)

Dy
Ky = RYE !
(1-13) (E +71) (A1 + Az + A3)

DI

n

~ (X —bsh) (1+ &) (A; + Ay + As)

K

54

_ At Ad + Agg,

L b
D = A + Azl;‘l- Asbg,

(r3) = :
LI\ 26 (A) + Az + As)
+ [(A1+ As — b(Az + As)(1 — 2g) + Axgr)’

) { -4 - Ag+b(As + A5) — Ango

+ 4b0sTy (A + 4s) (Aa +b(Az + A }

! ! _ 1 —_ —
(sh,) = (2b(A1+A2+A3)){A1+A3 b(Az + A3) — Arbgy

+ [(Ar1 + A3 — b(A2 + Ag))°

+ 2bq (A12 + 4A, Ay + 6A; Ay + 44245 + 4452

T 2A414sb + 241 45b + Ar%q,)]* }

3.5.3 Continuous Time, Continuous State

Finally, we solve a continuous time, continunous state (CC) model by taking
limits on both e; and 8;. This can be done either by going first to the CD (a;)
or DC (B;) model from DD, and then finishing by taking limits on the other

variable. The final equation for speedup is given below.

aq2poCy aqipoC,’
O - 3.2
=2 (1 (1 + b'rl’) (a + Eb) 'f'1'2 (1 + 31’) (a + ab) 31.0‘2) (9)

where
ri'sy’
P = 7 7
Co'ri' + Cypst’ + 1151/

89

o = a(1+b) (1 +K,)
P b1 - KK, (1—1))

o -8+ (1+ Kp)
"7 b (1 - K,K,) (1 - bsy')

_ a(l+b)
B=rorma-m)
o ___ a(+h)

b (1 + 81') (1 - sz’)

~1+ @b+ agy /1 + 2ab + a2 — 2a7, — 4abq, + 2a%6q, + 3°G}

I LA
(?"1, T2) - %
(51, 5p) = QDH BT Vol + 20+ B~ dabq, + 2a%bq, — 2067, + PHE
1992/ —
2b

3.6 Previous Work on 2-Processor Models

There has been some similar work on two processor Time Warp models. Laven-
berg, Muntz and Samadi [LMS83] used a continuous time, continuous state
model to solve for the speedup (Sims) of two processors over one processor.
Their work resulted in an approximation for speedup that was valid only for
0 < ¢; < 0.05, where ¢; is the probability that processor ¢ will send a message
to the other processor. Our result for this CC case is exact, has no restrictions
on any of the parameters and therefore subsumes their work. In fact, we can
compare our results directly for a simplified case where a = 1/2 (same pro-

cessing rate for both processors), b = 1 (same average jump in virtual time

56

for both) and q; = g2 = g (same probability of sending a message), which we
refer to as the symmetric, balanced case. Lavenberg et al. derive the following

approximation for speedup in this case.

Slma ~2- Y 2(]
Our equation for speedup in this restricted case is exactly

3_2(\/8+q—\/§)
- VBHa+.A

If we expand this formula using a power series about the point (g = 0) and list

only the first few terms, we see the essential difference between our result and
Lavenberg et al.
3
g V2¢ :
S~2—12¢+ < ——F+0(q?
Y24+ =Yg+ 0@)
This clearly shows that the Lavenberg et al. result matches ours in the first two
terms. Figure 3.3 shows the Lavenberg et al. result and our result compared to

simulation with 99% confidence intervals.

Mitra and Mitrani [MM84] also solve a two processor model but use a dis-
crete time, continuous state approach. They solve for the distribution of the
separation between the two processors and the rate of progress of the two. In
the definition of their model, a processor sends a message (with probability ¢;)
before advancing. Our model has a processor send a message after advancing.
This difference between the two models disappears in the calculation of the
average rate of progress. Their solution allows a general continuous distribution
for the state jumps (virtual time), but requires (deterministic) single steps for
the discrete time. In each time slot both processors always advance forward in
virtual time some arbitrary distance. In our model this is equivalent to setting

a; = ag = 1. Since our analysis only supports an exponential distribution for

57

~4A~ Lavenberg et al.

Interaction Probability

(@

‘5&1\ — Our Calculation ||
Simulation i
~OE] * (99% conf
A e conf.)
s\:\\\r\
\ﬁ_‘\
]
0.25 0.5 0.75 1

Figure 3.3: Comparison of speedup results for a simplified case.

58

[Virtual Time |
Discrete Continuous
State State

Discrete R Pt S i

Time i Exponential Sta
3 General /
e Dist.
a on /
i [/ State

V4
T
i
E 1T
m| Continuous Exponential Tim xponential Time
[€] Time
Klemrock[

Figure 3.4: Previous work.

state changes, but their analysis doesn’t have a distribution on time, neither

model subsumes the other.

Finally, the DD and CD models have not appeared in the literature, although
an early version of this work has been published by Kleinrock [Kle89]. It is a
simplified version of the CD model where 8; = 5, = 1 (which is single step state
jumps). Figure 3.4 shows how all of this work fits together. The work discussed

in this paper covers the shaded region.

59

3.7 Results for a Restricted Model

In order to better understand our results, we examine a restricted version of
the CD model (i.e. the model analyzed in [Kle89]). In this less general model
we eliminate two variables by forcing each processor to advance exactly one
virtual time unit each time it advances (8; = B = 1). Again, we define ¢; as
the interaction parameter; the probability that processor i sends a message to
the other processor. We also define a as the ratio T{‘}lﬁ where); is the rate
for the continuous time distribution for processor ¢ (rate at which messages are

processed). The parameter a can be thought of as a measure of “load balancing”.

When a = 1/2 the load is balanced.

The solution for this simplified system is given below.

5= (l o ((rla-qzn" ¥ (slaihlf))

1
"o 1+ ("11—1) + (811-4)
ro= 14+ 2; aa_q2
, o LtyI—dag

The equations above indicate that speedup reaches a maximum value of two
when ¢; = ¢, = 0 (no interaction). Since neither processor hinders the other,
we can exploit the full potential of each processor. In general one might assume
that the speedup would simply be twice the speed of the slowest processor. In

fact, the system does a little bit worse. Even though one processor might be

60

faster than the other, it is possible (stochastically) that the slower processor
gets ahead of the faster one. At this point it is possible that the faster processor
could cause the slower one to rollback. Overall therefore, the speedup is less

than twice the speed of the slower processor on average.

Figure 3.5 shows the speedup for the symmetric case where ¢; = ¢ = ¢,
though it does not show the discontinuity in the function S at ¢ = 0. For ¢ =0,
S = 2 for all a and so S is discontinuous for all a # 1/2. This is not shown in
the figure. For ¢ = 0 no messages are sent, therefore no rollbacks will occur,
and it is clear that S =2. For g >0asa—0ora — 1 (X — 0or X — 0),
then the speedup goes to zero as shown in the figure. This occurs because one
process moves extremely slowly (compared to the equivalent single process) and
it will eventually drag the faster process back to its lagging position. The TW
system moves at less than twice the speed of the slowest processor, while the
equivalent single processor moves at the average rate 51;—"1 It is clear that load
balancing is extremely important since good speedup only occurs near a = 1/2.

Notice that the interaction parameter is important when a is near 1/2.

Figure 3.6 shows the speedup for the balanced case where A; = Ay. Note that
the speedup is 2 for ¢; = ¢o = 0 and goes to 4/3 for ¢; = ¢ = 1 Specifically,
it never goes below one. We always get speedup with two processors as long as

a=1/2.

Figure 3.7 shows the speedup for the extremely simplified symmetric, bal-
anced case where q; = g2 = ¢q and A1 = A; = A. For this special case the formula

for speedup is
4
S =
24+ ﬁ

Note for ¢ = 0 that § = 2 and for ¢ = 1 we have S = 4/3. We can see this last

61

Figure 3.5: Speedup for the symmetric case g1 = 2 = ¢

62

Figure 3.6: Speedup for the balanced case Ay = Xy = A.

63

- 4/3

1-0 v T ¥ I v T T 1] T
0.0 0.2 0.4 0.6 0.8 1.0
Interaction Probability

(q)

Figure 3.7: Speedup for the symmetric, balanced case 1 = ¢ = ¢ and
Al = Az = A

64

result intuitively. Since each process always sends a message to the other after
it advances, then the time for both processes to advance one unit is equal to
the maximum of two exponential delays at rate A which is 3/2 times 1/A. Thus,
the rate of progress for each process is simply % Since both are moving at this
rate, the sum equals % while R; = X which yields § = 4/3 for ¢ = 1. The curve
shown in Figure 3.7 is the “spine” of the surface plotted in Figure 3.5 and is

the “45 degree” line (q; = go) of the surface plotted in Figure 3.6.

3.7.1 Optimality Proofs

Using the simple model described above, we prove several results about opti-
mality with respect to the parameters of the system. We first show that the
speedup is monotonically decreasing in both ¢, and ¢, the interaction parame-

ters (i.e. ¢; and g, should be as small as possible). We do this by showing that

a5

3, 1S Degative. If we differentiate S with respect to g; we arrive at the following

formula

g—i = &(q, 2, a) (—(—1 +2a)® — 2aaq, + (1 — 2a)y/1 — 4aaq,)

where ®(qi1, g2, a) is a non-negative function of ¢,¢2,a and is given below
128a%a3¢,
2
(1428~ f@)*f@)(~1 + 443 - £(@) - VI - F@)VI@)

@(QL g2, a’) =

where

f(z) = V1 - 4daazx

In order to show that 3‘?—5- is negative, we must show that

— (-1 + 2a)* — 2aGg; + (1 — 2a)y/1 — 4aag, <0 (3.30)

65

When a > % Equation 3.30 is trivially satisfied. Our concern is in the range

0 < a < 3, in which case our condition becomes

~(~1+2a)% = 2a3g; < —(1—2a)y/1 - 4aag, <0

2 2
———1+2a2—-2aﬁq1 > |(—=(1-2a)y/1 ~ 4aag
1
4a’q® - 8a®q? + 4a'q? > 0
4azﬁzq12 > 0

which is trivially true. A similar (symmetric) proof for gs is omitted here.

Optimization with respect to a is a little more difficult. When we differenti-
ate S with respect to a we get such a complicated formula that it is prohibitive
to solve for the optimum value of a. Fortunately, by plotting S versus a, ¢; and
¢ (Figures 3.5 and 3.6) we see that S is unimodal and that the optimum value
of a is 1/2 (A\; = Ay). When we plug this value (a = 1/2) into £ we see that

the result is 0.

85 _2-((-g)@)+a(l-g) _,
8a ja=} 1-7)(1-7)

To show that this is a maximum we must show that the second derivative is
negative at a = 1/2.
s -8(Vait V&) (ot VavE +20vE + e + 200 + 0e)
Zae VE(VE + VB + VEVE) V&

(3.31)
Equation 3.31 is clearly negative since the numerator is negative and the de-
nominator is positive. For the more general case, where the processors are not
restricted to single step advances, we find from analyzing plots of speedup that

the above result (a = 1/2 (A; = A2) for optimal performance) generalizes to

M ﬁorb=a

B - B2 l-a

(3.32)

66

meaning that the average “unfettered” rate of progress in virtual time for each
processor should be the same. For a fixed value of a the best performance can
be found when Equation 3.32 is true, and overall best performance is found at

a = 1/2 with Equation 3.32 holding true.

We have not seen this result before in the literature since the two processor
models haven’t been general enough. It says that for optimum performance we
would like to place tasks on processors such that the average “independent”
rate of progress in virtual time is the same for both processors. Ideally we want
this to be true while also having each processor execute events at the same rate
(a = 1/2). This result is generally applicable to systems consisting of more than
two processors. The intuition is that if every processor tends to move forward
in virtual time at the same rate as the others, then the processors will remain

nearly synchronized without suffering a large penalty for rollbacks.

3.7.2 Adding a Cost for State Saving

One simple way of examining how state saving overhead affects the performance
of the system is to modify the value of Ry, the rate of progress on a single
processor. We introduce a parameter ¢ (¢ > 1) that indicates how much faster
events are executed without state saving. If ¢ = 2 an event completes twice
as fast on average without state saving. Since our model requires that each
processor save its state after every event, we can think of each event as taking
longer to complete in the TW system than in the single processor system where
no state saving is required. We note here that this is actually an upper bound
on the cost for state saving in this two processor system. Lin and Lazowska

[LL90c] have shown that to achieve minimal state saving costs, TW should save

67

state less often than after every event. This result depends on certain system
parameters, most notably the cost for state saving. We make no attempt to
optimize the frequency of state saving, nonetheless this simple model provides

some interesting results as shown below.

By examining the CD model with the single step restriction (as above) we

arrive at the following value for R;

Rl _ C(/\1 -+ Az)

2
For this model we find that the new formula for speedup is simply 1/c times
the old value. Let us examine a very simple case in detail. If we look at the

symmetric, balanced case, the updated formula for speedup is

4
Szc(2+\/§)

It is easy to see that as ¢ — oo speedup will go to zero. For ¢ > 2 Time Warp
with two processors is always worse than running on one processor without
TW. Conversely, for ¢ < 4/3 TW always wins out. The interesting range is
4/3 < ¢ < 2.In this range, certain values of ¢ will yield speedup, while
others won’t. We are most concerned with the boundary where § = 1 which
is the transition from areas where TW on two processors helps to where it
hurts. Setting S = 1 and solving for ¢ we find the necessary condition for two
processors running TW to be faster than the single (non-TW) processor.

2
< 4(2 —¢)

Figure 3.8 shows the regions in the ¢ — ¢ plane where TW on two processors is
effective and where it is not. Thus, if we know the values of both ¢ and g for our
symmetric, balanced system we can immediately tell whether the application

will run faster under Time Warp on two processors.

68

-
.w
S
R
=
b

—~
el
A
=N
=
=
@
U
=3
wn
-

2 Proc

JIJPUIBIR] UOT)IEII)U]

2.00

JI5

1

50

.

1
Cost of State Sav

125 4/3

1.00

ing

©

ing and its effect on performance.

Figure 3.8: The cost of state sav

69

3.8 Conclusions

In this chapter we have created a model for two processor Time Warp execu-
tion and provided the results of its exact solution. The model is general enough
to subsume the work of Lavenberg, Muntz and Samadi [LMS83] and to par-
tially subsume the work of Mitra and Mitrani [MM84]. Further, we examined
a simplified version of our model and showed for optimal performance that the
processors should send as few messages as possible. Further, g (the interaction
parameter) has a large effect on speedup for when the load is balanced and
speedup changes rapidly when ¢ is near zero. Tasks should be placed on pro-
cessors such that the average “independent” rate of progress in virtual time
is the same for both processors to achieve good speedup. Ideally we want this
to be true while also having each processor process events at the same rate
(A = Ag). Finally, we addressed the cost of state saving by using a very simple
extension to the model, and examined its effect on performance. Small state
saving costs or infrequent message interactions indicate that TW is effective in

gaining speedup.

70

CHAPTER 4

Two Processor Message Queueing Model

4.1 Introduction

The model introduced in the previous chapter ignored any messages that arrive
in the virtual time future of the receiver. There are many simulation models
where the messages actually carry the work. These messages must be queued
before processing and the memory costs of queueing these messages is an im-
portant performance measure. In this chapter we create and analyze a model
that accounts for the queueing and processing of all messages passed between

Processors.

4.2 The Message Queueing Model

Assume we have a job that is partitioned into two processes, each of which is
executed on a separate processor. A process (say process i) at virtual time v
operates by first executing any message in its input queue with timestamp v
and then executing its locally scheduled work. After completing its local work
at virtual time v, the process advances its clock one unit and will then send a
message to the other process with probability ¢;. Note that we only allow single
step state advances which is less general than the model presented in Chapter 3.

The process places its current virtual time on any message it sends. We will

71

1 Setlocal clock (v) to 0.
2 Execute local events for v=0.
3 With probability g(i), send message stamped with 1.

REPEAT*

4 Advance local clock to v=v+1.

5 Process message in queue with timestamp = v (if it exists).
6 Execute local event for ime v.

7 With probability q(i), send message stamped with v+1.
UNTIL (v >= MAXTIME)

* If a message arrives at any time with a timestamp {tm <= v):
- set local clock to tm
- goto line 5 and continue from there

Figure 4.1: Code executed by each processor.

restrict the virtual times in our system to have integer values (ie., 0,1,2,...).
A process will schedule an event for itself at every point in virtual time. This
means that a process will have its own work to do at every point in virtual
time, and occasionally will have work sent to it from the other process. If a
message arrives with a timestamp v equal to or smaller than the local clock
time of the receiving processor, that processor is forced to rollback (discarding
any work performed at a virtual time greater than or equal to v), executes the
arriving message, then proceeds forward again from virtual time v. We show
the execution sequence for each LP in Figure 4.1. Note that there can be at

most one queued message for a process at any (integer) virtual time v.

More formally, we define two processes each executing on a separate proces-

sor. As these processes are executed, we consider that they visit the integers on

72

the x-axis each beginning at = = 0 at time ¢ = 0. To process a queued message,
each processor takes an exponentially distributed amount of time with mean
1/u; (3 = 1,2). Executing locally generated work takes an exponentially dis-
tributed amount of time with mean 1/); (= 1,2). We assume that u; = f
where 0 < f < oo. If f = oo then messages take zero time to process and are
only used for synchronization as in the previous model. As f — 0 messages
become extremely expensive to process relative to the local work that must be
performed. The parameter f essentially allows the modelling of a spectrum of
systems from self-initiating (f — oo) to message-initiating (f — 0).

After process 7 makes an advance along the axis, it will send a message to the
other process with probability ¢; (2 = 1,2). This message carries a timestamp
that is the time of the sender after making the advance. Upon receiving a

message from the sending process, this receiving process will do the following:

1: If its position along the x-axis is behind the sending process, it queues the

message.

2: If its position is equal to or ahead of the sending process, it will immediately
move back (i.e., “rollback”) along the x-axis to the current position of the
sending process and begin to process that message. All work completed
at a virtual time greater than or equal to its current position is discarded

and must be re-executed.

Let F(t)= the position of the First process (process one) at time ¢ and let

S(t)= the position of the Second process (process two) at time ¢. Further, let

D(t) = F(t) — S(t)

73

D(t) = 0 whenever Case 2 occurs (i.e., a rollback). As before, we are interested
in studying the Markov process D () whose state diagram is shown in Figure 4.2.

We will solve for
P{Processors separated by k units of virtual time] = tlirgo P[D(t)=k] —-oo<k<o

namely, the equilibrium probability for the Markov chain D(¢). In order to find

the solution, we split the chain into six regions.

P, = tlirglo P[D(t) = k and Processor 2 is not processing a msg) k>1
Qr = tllrglo P[D(t) = —k and Processor 1 is not processing a msg] k>1
Sy = tllglo P[D(t) = k and Processor 2 is processing a msg] k>0
Ry = :152, P{D(t) = —k and Processor 1 is processing a msg] k>0

Ny = }irglo P[D(t) = 0 and neither is processing a msg]

By, = tlircx’lo P[D(t) = 0 and both are processing a msg|

Using our solution, we will go on to solve for some interesting performance

measures including the average rate of progress of the two processor system.

There are some implicit assumptions in our description. Qur model assumes
that states are stored after every event, otherwise a rollback would not neces-
sarily send the processor back to the time of the tardy message; rather it might
have to rollback to a much earlier time, namely, that of the last saved state.
When process i causes the other process to rollback, process ¢ immediately
discards any messages it has queued in its future. This is as if the rolled back
processor is able to transmit anti-messages instantaneously. This is not an unre-
alistic assumption in a shared-memory environment [Fuj89b). Another implicit
assumption is that each process always schedules events for itself. We also as-

sume that communication between processors incurs no delay from transmission

74

to reception. Finally, the interaction between the processes is probabilistic.

4.3 Analysis of the Message Queueing Model

In this section we provide the exact solution for the continuous time, discrete

state model introduced in Section 4.2. First, some definitions are in order.

Ai

i

@

q;

Rate at which Processor 7 processes local events

fAi = Rate at which Processor i processes messages

a+af

P[i* processor sends a message after advancin
|Y A

1-g

Referring to the state diagram for this system shown in Figure 4.2, we find

the following balance equations.

The balance equations for our system are:

By
Py
Qk
o)
No

FBo

aPe_ 1 +aq, G, Prv1+afSe k=2
alNo + 84,9, 2 +af S

aQ-1 + 6§50 Qk1 +afRe k2>2
aNy + a7,5,Q2 +af iy

aq13,Q1 + g, 0, P + afRo +afSo

2] o0
@Y Pi+ong) Qi
i1 =1

75

(4.1)
(4.2)
(4.3)
(4.4)
(4.5)

(4.6)

O—O——~ S®

subchain
Kn2 W2
4 AN 2 AN Q2
A2q142
@ from all P(k)

Qk) “hmmfzy ._O 1 m a3 (N,) odE P(k)
A

AMiq1 G2
from all Q(k)

A q1q2
from all Q(k)

subchain — subchain
Mg
Ay 2 "2
— A1
)\ 919 1 \q2
18]
H1 at Mgz
from all P(k)
R(k)
subchain - A /unul A 0
2 2 2

Figure 4.2: State diagram for the message queueing model.

76

ASy = aSi1+agq Py k>0 (47)

ASy = agyqP1+aqqy Z Qi +afBy (4.8)
i=1
BR;, = @Ri.1+ag102Qk1 k>0 (4.9)
BRy, = af1g:Q:+8qq,) P +afB (4.10)
i=1
1 = Y P+Y Qi+> Si+) Ri+No+Bo (4.11)
i1 =1 =0 =0

This system will have a steady-state solution if A\; > 0, ¢; > 0 and f > 0. These
are fairly straightforward restrictions. The A; must be greater than zero or the
system makes no progress at all. The ¢; must be greater than zero so that there
is some probability that a processor will be rolled back once it gets ahead. This
maintains a finite expectation for D(t). Finally, f must be greater than zero so
that when a message is being processed the system will eventually complete the

operation.

We define the following z-transforms (note the different ranges on k).
P(2)=3Y P2 Q)= Q"
k=1 k=1
S(2) =Y Sk2* R(z) =) Ri2*
£=0 k=0

Using the above equations we can solve for P(z), Q(z), S(z) and R(z) by
multiplying the appropriate equation by z* and summing over the applicable

range of k. To simplify the expressions we define the following constants.

Fs = ag@P(1)+ (1 -ag)Q(1)

Fr = aqQ(1) + (1 - ag) P(1)

Solving for P(z) in terms of S(z)} we get

z(—~ (AS(2)af) + Fsaafq + Pia (A — aq)) G, — ANoaz)

P(z) = A (@qid; — 2 + az?)

(4.12)

7

and for §(z) in terms of P(z)

@ (P(2)ag, + Fsaz)
z(A-az)

S(z) = (4.13)

Solving them simultaneously we arrive at

_z(= (Fsa’afgqiz) + Pia(A — aq) G (A — az) — ANpaz (A — az))
A(-(@(A-00) D) + (A +080102) z — (1 + 4) az? + a?27)

P(z) =

and

B Pia2q (A — aq1) Gy — ANpaBq1Gp2 + Fsaqi (@ (A — aq1) Gy — Az + Aaz?)
A(—@(A—aq)T) + (A + aaf1G) z — (1 + A) az? + a?23)

S(z) =

The denominator polynomial, D(z)}, for P(z) may be factored as follows.
D(2) = Ad®(z—11) (z — r2) (z — 73)

where r,, r, and 73 are the roots of the cubic polynomial in D(z).

1+A- 2\/1 — A+ A? — 3aag, 7, cos(Zf)

no= 3a
o 1+ A—2/1- A+ A? - 3aag,g, cos(%)
2 3a
1+ A-2/1— A+ A? - 3a3,q, cos("3%)
rs =
3a

Similar roots (s1, Sz, s3) for the denominator of Q(2) can be written down

directly
1+ B - 2\[1 — B + B? - 3aag;g, cos(¥5™)
8 = 3a
14 B —2,/1- B+ B® - 3aag,J; cos(%)
8§ = 3a
L+ B —2,/T= B+ B = Baagg, cos(*3%)
83 = 3a

78

6, — arcoos (— ((4—2) (1 + A) (24— 1) + 9087, (~3A + 3aqs + (1 + 4) m))
2(1 - A + A? — 3aaq,7)*

6, — arceos (— ((B=2)(1+B) (2B ~1)) +9a3g: (=35 + 332 + (1 + B)az))
2(1 - B + B? — 34aq1¢s)*

See Appendix B for a derivation of the roots. We find that r, 2 and 73 are
real and that | rp |[< 1 while | ry |,| r3 |> 1. Since P(2) is the z-transform of a
probability distribution, it must be analytic in the range | 2 |< 1, and we know
that the numerator of P(z), namely N(z), must go to zero at z = r3 since D(z)
goes to zero at z = r2. We can use this fact to solve for P, yielding

_an (Fsagfq + ANy (A — ar))

P
1 (A —aq)qy (A - ar)

Substituting this value back into N(z) we may write

_Aaz(z — 1) (Fsatfq + No (A — arz) (A — az))
N A—arg

N(z)

and thus
_ z(Fsaafq + No(A— ary) (A — az))

Pl(z) = 4.14
(2) a(A—ary)(r—2)(rs—2) (4.14)
A similar procedure can be carried out on S(z), resulting in

S() =2 (Noag, + Fs (1 — ars — az)) (4.15)

a(ry—z)(rs—2)
Moreover, @(z) and R(z) are symmetric in (A1, A2), (41, p82) and (g1, g2) to P(z)
and S(z) so we can write them down directly.

z {Fratfq; + No (B — as2) (B — @z))
E(B - ESQ) (81 - Z) (33 - Z)
¢ (Noaq; + Fp (1 —-ass — az))
@(s1—2)(s5—2)

(4.16)

Q(2)

R(2) (4.17)

Recalling that Fs and Fp, are functions of both P(1) and Q(1), we see that
P(z) and Q(2) are functions of P(1), Q(1) and Np. We solve for P(1) and Q(1)

79

by solving Equations 4.14 and 4.16 simultaneously with 2 = 1.

P(1) = CpngNo+ CppP(1) + CpeQ(1)
Q(l) = anoNO + CQ?P(]') + quQ(l)
Therefore,
P(1)=CpNy Q1) = CyN;
where
Cp = Como + CpgCono = ComoCag
1 = Cpp — CpClp — Cgg + CppCoyq
Cr = Cano — Cppcqno + Com Cop
? 1= Cpp — CyCap — Coqg + CppCyq
and
af
Cong = a(r;—1)(r3 —1)
c = @ fqa
PP (r1 — 1) (A —ary) (r3 — 1)
c. - afq (1 —ag)
M (r1 —1)(A—ary) (r3 —1)
af
Cono = G(s1—1)(s3—1)
o af (1 -aqi) g
® (31 - 1) (B - '&-82) (33 - 1)
2
Ci a* fqiq

(s1 — 1)(B—1dsg) (83— 1)
Noting that P(1) + Q(1) + S(1) + R(1) + Np + By = 1 we solve for Np.

(Coa + Cpa) qi142
f
Cpsa.ﬁfql + Ef (A - 0,7'2)
a(ri— 1 (A—ary)(ra—1)
Crea@fq; + af (B —asy)
a(s; — 1) (B —asy) (33— 1)

wom [1+

1 (@g2 + Cr, (@ — ar))
a(ri—1)(r; — 1)
¢ (a§;, + Cr, (a — dsy))
as — 1) (83— 1)

-1
(4.18)

80

Finally, by inverting the transforms we find the probability of being in any

state (other than Np).

where

K,

K,

Kg

Py

Qe

Ry

By

"
ko

!
x
+
b3

I
N

Il

&
TN TN TN TN
I

I e T
Ed
+
=

L E
-+
S

TN TN TN TN

gl Sl glmdlm
a

M N N N
a
e
v
ek

I
=
+
=

Ny (Cga + CpT) 12
f

No(Crsaafq + (A — ary) (A — ar))
a({A—ar)(rs—m)

Ny (Crsaafq + (A — arp) (A — ar3))
a(A—are) (r1—r3)

No(Crpoafge+ (B —as1) (B —asy))

a(B —asz) (83 — 1)

Ny (Crpaafqa + (B — asz) (B — @s3))

@ (B —asy) (1 — 93)

Noq (ag, + Cr, (1 — ary — ary))
ary (r3 —71)

Nogy (@gy + Crg (1 — arp — ars))
a(ry—r3)Ts

81

(4.19)
(4.20)
(4.21)

(4.22)

(4.23)

Noge (6 + Cry (1 — @8y — @sz))

as; (s3 — 51)
% Nogz (a7, + Cr, (1 — @3 — Ws3))
8 —
a (s — 83) 83
CFs = CPﬁq2 + CQ(]. - _O';QQ)

CFR = C‘Qaq1 + Cp(l - aql)

This completes the calculation of the explicit expressions for the equilibrium

state probabilities of the Markov chain for the message queueing model.

4.4 Performance Measures

Using the solution to the Markov chain that was calculated above, we may solve
for almost any performance measure of interest. In the following sections a few

important ones are examined.

4.4.1 State Buffer Use

When a processor completes its local processing it advances its virtual time
clock by one time unit. Therefore, if a processor is ahead by k units of virtual
time (k units of distance on the axis), then it will need to have saved k states.
The expected number of buffers (B;) needed to save state at each processor can

be found from

B, = Y iR+ 5)
=1

(K1 + Ks)ry | (Ko + Kg)rs
(ry - 1)2 (r3—1)2

(4.24)

82

By = f: i(Q; + Ri)
=1
. (K3 + K7)31 (K4 + K3)33
SN CE R R 29

More interestingly, the probability that a fixed size buffer of size b > 1 overflows

at processor 1 (O;3) is

O, = i (P + S)

i=b+1
o0 b
= Y (B+8)-2(R+S)
i=0 i=0
(K1 + Ks) (K2 + Kg)

= T E— + s — 1) (4.26)

Oy = i (Q: + Ry)
i=b+1
00 b
= ;(Qi + R;) - g(Qi + R;)
(K3 + K7) (Kq+ Kj)

- 815(31 - 1) + Ssb(33 - 1) (4'27)

4.4.2 Message Queue Distribution

Messages that arrive in the virtual time future are queued until the processor
completes all work with a virtual time less than the arriving message. The
size of the message queue is defined as the number of messages queued in the
virtual time future of the processor, plus any message that is currently being
processed. The distribution of message queue length at each processor is found
by conditioning on the probability that a process is ahead by a certain distance

k summing over the appropriate ranges of the state probabilities.

83

myx = P[k msgs queued at Processor 1]

= Y P[k msgs queued | Processor 2 is ahead by 7 steps] Q;
ik
0o i . oo i i

Mie = ZQi(k)thk?h' “+ > Ri(k_ 1)‘]’2" g, k1 k> 2
ik i=k—1
K. k K k—lS K k K, k-1

_ fowtn | Kl Kaly | Kata g

(81— T) (51-32)° (83— @) (53— Q2)

00 o0
min = 3 Qiigd’ " + > R+ Bo
i1 =0
K. K K K
= By STy SR 8B By (4.29)
(51=32)° $1—-F (s5-F) -0

mp = P()+SQ)+ N+ Qa/

i=1

K3g Kq
= P(1)+8(1) + No+ —222 4 2482 (4.30)
81— Q2 S3— (7
mer = P[k msgs queued at Processor 2]
o0 i . 00 i i
Mag = Zpi(k)mkﬁl‘ 3 S (k— 1)9‘1k g, 1 k>2
ik i=k—1
Kigp'*r, Ksq* 'y Koqi*rs Keqi* 13
= T T —& t KL Y (4.31)
(mn—1) (ri—7) (rs — 1) (r3 —Gy)
me1 = Y. Pigg' '+ 53" + B
=1 i—0
K K, K Kgr
_ 1‘1.15'12 + 5?”1 + 2(111'32 6 f_ + B, (4.32)
(n-q)° "mn—4 m-7) 7
mag = Q(1)+ R(1) + No+) Py
i=1
K Kog
= Q)+ R(1) + No+—1L 4 2 (4.33)

r"—q T3—q

84

The mean number of message buffers needed at each processor is

o=) imy
-0
_ = (Ksga + K7 (51 — Q) 4 3 (Kag2 + Ks (83 — 35)) + By (4.34)
(51— 1)° (33~ 1)’ |
My = Z'L Mg
=0
_ (Kiq1 + K5 (11 — §y)) 48 (Kaq1 + Ko (r3 — 1)) + By (4.35)
(r1—1)° (rs = 1)° |

4.4.3 Normalized Rate of Progress

From the complete solution of the Markov chain, the average rate of progress
of the two processor system may be calculated. We define 6, as the average rate
of progress in virtual time of the two processor system. This value is simply the
average “unfettered” rate of progress of the two processors minus the average

rollback rate.

b = (A4 M) (ZQI:""NO"'ZP&)
k=1 k=1
+)\1Z Sk + Ao ZR}; — quzsz(k - 1) - A1q12Qk(k -1)
k=0 k=0 k=1 k=1
K1 K2 KS K4)
= A N,
(a 2)(r1~1+r3—1+ e
K K, K K
+)«1(571, 67‘3)+A2(81 333)
Tl-']. 1"3—1 81-'1 33—1

Ky K,
~ha ((31 - 1) i (83— 1)2)

K Ky
o ((Tl —11)2 * (r3 — 1)2)

(4.36)

85

We calculate a “normalized” rate of progress (R) by dividing the above equation

by (A1 + A2). We arrive at

~ K1 Kz K3 K4)
= N,
R (r1—1+r3—1+ 0+31—1+33-1
K K K
-i—a(571 6T3)+E(K731 + 833)

r1—1+r3—1 s1—1 s3-—-1

_ K K. K K
—aqg ((7'1 _11)2 + s _21)2) —aq ((31 _31)2 + o __41)2) (4.37)

Normalized rate of progress is used instead of the usual measure of speedup

because it is now difficult to describe what the “equivalent” single processor rate
is. The message queucing model for Time Warp generates work for a processor
each time a message is sent. In single processor operation, no messages are sent
so this work will be unaccounted for. There is no simple way of adding the extra
work to a single processor model, since not every message that is generated will
actually be processed due to rollbacks. To avoid this problem, we use the R
measure. This measure is equally useful since it does show us how well the

Time Warp system performs.

In Figure 4.3 we show the value for R when a = 1/2 and q; = q; = q (the
symmetric, balanced case). The figure shows R versus ¢ for various values of
f. We see that for the best performance we want ¢ to be small and f — oo.
This is the case where there is little interaction between the processors and it
takes zero time to process a message from the other processor. By setting f =1
we can examine R versus q only. This plot is shown in Figure 4.4 compared to
the average rate of progress for the same system where messages are only used
for synchronization (f = 0c). We see that the system where messages carry
work performs more poorly than where they are only used for synchronization.

Yet, this system is not twice as bad as the synchronization-only system even

86

1.0
Nermalized Rate of Progress
(a=1/2,ql=q2=q)

f=1
. f=3/4

f=12
0.2 1

— =1/

f=0.1
~ =005
0.0 T - - - —e—en 0.0l

0.0 02 0.4 q 0.6 08 1.0

Figure 4.3: Normalized rate of progress (R) versus f and ¢ for the symmetric,

balanced case.

87

1.0 Normalized Rate of Progress

—~ fa=12,ql=q2=q,f=1)
0.8 1
213

0.6 7
R
047 411
024 |7 Msg. synch. only

1| Msg. carries work
0.0 T T T T T T T T T 1

0.0 0.2 04 q 0.6 0.8 10

Figure 4.4: R versus ¢ for the symmetric, balanced case.

at ¢ = 1. In fact, at ¢ = 1 we can verify the R result for f = 1 by realizing
that each processor will always have a message to process. Therefore, the rate
of progress at each step is governed by the maximum time it takes for the two
processors to each finish a message and local work. This is simply the expected
value of the maximum of two 2-stage Erlangs at rate A which is equal to %.
Taking the reciprocal and dividing by A to find the normalized rate, we get

R = 4/11 which is the value plotted in Figure 4.4.

4.5 A Specific Example

To better understand the above results we explicitly calculate values of the

performance measures for a specific instance of the parameters of the system.

88

The values chosen are given below.

A =11

11

“= 2%
f

1

QI—E

Note that processor one will move slightly faster than processor two while the

cost of processing a message is the same as processing a locally generated event.

Finally, processor one will send a message with probability 1/2 while processor

two will send a message with probability 1/3 after advancing.

4.5.1 State Probabilities and State Buffer Use

The resulting equations for the probability of being in any state are

Ny, =~ 0.0781
B, ~ 0.0423
0.114 0.0359
Pk ~ k_ T
1.281F 2.086
O = 0.1385 0.0605
£ 17025 T 2.468*
5 ~ 0.0452+0.0175
k7 71.981F T 2.086*
0.0319 0.0203
Rk ~ % 3
1.702* " 2.468

k>0

These probabilities are plotted in Figure 4.5. As you would expect, P > Gk

and Sk > R; since processor one is moving at a faster rate than processor two.

89

0.08 -

0.06 '.
|
0.02 _
0'00- i

IHII I R

=

® S(0)
A rx 0 ro
B n~o
B(0)

Figure 4.4: State probabilities.

The expected number of buffers needed to save state at each processor (B;) is

given by

WP, + S;) ~ 2.5489

il
I
gk

-
il
-

o]
I
s

3(Q: + R;) ~ 0.5429

-
Il
—

From the values for ©; and O,

o 0.5663 0.0169
16 1.981° 2.086"

If

0.2428 0.0273
1.702° 2.468"

Oy =

we find that with probability > 0.99 processor one will not need more than

seventeen buffers. A similar value can be found for processor two.

P[Processor 1 needs > 17 state buffers] = 0.00841 < 0.01

90

P[Processor 2 needs > 6 state buffers] ~ 0.00988 < 0.01

4.5.2 Message Queue Distribution and Buffer Use

The distribution of messages at each processor is given below.

My ~ 0.7569
my,1 = 0.1805
k

0.3904(3)" o00676(3)"
Mk N Tossk T T 1.801F =
mep =~ 0.4074
mey & 0.2441

0.3026()° 0.0258(})" N
Mak N —omeE T T 1586k =

The values of these functions are plotted in Figure 4.6. The mean number of

message buffers needed at each processor is

™1 0.3346

R

1.5562

&

my

As with the state buffers we can find the number of message buffers needed to

store messages such that the buffers will overflow with probability < 0.01.

P[Processor 1 needs > 3 message buffers] ~ 0.0063 < 0.01

P[Processor 2 needs > 9 message buffers] ~ 0.0097 < 0.01

Finally, the value for the normalized rate of progress is R ~ 0.5071.

91

08

ol
o

&
i

B mlk)
1 m2(k)

P[k msgs quened at a processor]

Figure 4.5: Distribution of the number of messages queued at each processor.

4.6 Conclusions

We introduced and solved exactly a new model for two processor Time Warp
operation. The importance of our new model is that it explicitly accounts for
the work that must be performed by each processor in response to the receipt
of a message. Messages that arrive in the past cause rollbacks, while messages
that arrive in the future are queued until the LP moves forward in simulation

time. In all cases the messages create work for the LP.

With the complete Markov chain solution we calculated the normalized rate
of progress of the two processors, and the distribution of the number of messages
queued at each processor. Further, we found the expected number of buffers
needed to save state and/or messages at each processor. Since we have the exact

solution to the complete Markov chain, we can calculate nearly any parameter

92

that may be of interest.

93

CHAPTER 5

Two Processor Model with Rollback and State

Saving Costs

5.1 Introduction

As in the previous chapter, we will examine an extension to the original model
presented in Chapter 3. Here, we will add a cost for rollback and continue to

include the cost for state saving that we introduced in Section 3.7.2.

5.2 The Rollback Cost Model

If the costs for rollback and/or state saving are high, TW may perform poorly.
The following sections examine the two processor system when we account for
rollback and state saving costs. We use a model similar to the one introduced in
Section 4.2, namely, a continuous time, discrete state model where each proces-
sor makes only single step state advances whenever it advances. Immediately
after a processor is forced to rollback, it pays a cost for restoring state by mak-
ing the expected rate of forward progress smaller than normal for one event.
When processing the “rollback event” each processor moves at a rate v = fA;
where 0 < f < 1. Once this event is completed, the processor moves again at

its normal rate of). Note that when f = 1 there is no additional cost for

94

rollback and this model reduces to the one in [Kle89]. When f — 0 then a

rollback becomes very expensive. The range f > 1 means that an event after

a rollback actually costs less real time to process on average than a normal

event. This seems not to make sense, but upon further thought it might be a

technique to account for work that has already been completed that need not

be recomputed. A cost for state saving is added in Section 5.4.2.

To solve the system, we separate the Markov chain into five different regions.

By
Qx
Sk
Ry

B

tll.rg P[D(t) = k and Processor 2 is not in a rollback state] k2>1
}H& P[D(t) = —k and Processor 1 is not in a rollback state] k> 1
lim P[D(t) = k and Processor 2 is in a rollback state] k>0
tl_lglo P[D(t) = —k and Processor 1 is in a rollback state] k>0

tlug P[D(t) = 0 and neither is in a rollback state]

5.3 Analysis of the Cost Model

In this section we find the exact solution for the model that addresses rollback

and state saving costs. The parameters of this system are

Ag

Yi

Qi

= Rate at which processor i executes events

= fM = Rate at which processor i executes after a rollback

= =1—a

= a+taf

= P[i*" processor sends a message after advancing]

935

G = l-q

The state diagram is shown in Figure 5.1. Note that the Sy and Ry states were

duplicated to keep the figure from being too cluttered with transition arcs. As

with the previous model, this system will have an equilibrium solution when

A>0,g;,>0and f>0.

The balance equations for this new system are

(A1 + 712) Sk
(AL +72)So0
(A2 + 71) R
(A2 +1)Ro
(A1 + X)) P
(M +)P
(A1 4+ A2) Po
(A2 + A1)k

(A2 + M)

= A15k-1 k=1
oc oo
= M@y Qi+ma) R
i=1 =1
= AoRr_ k>1
s 8] o0
= @) FB+me). S
i-1 i=1
= APt + MG FPri1 + 12GSkn k>2

= MP+ MG P2 + 120252 + 1o
= MGG T+ 2GP + 7GR + 12,5
= AQk—1 + M1 Qi1 + MGy i k>2

= AP+ MG Q2 + T B2 + 75

= R+Y PB+Y Qi+ S+ R
i=1 i=1 =1

i=1

(5.1)
(5.2)
(5.3)
(5.4)
(5.5)
(5.6)
(5.7)
(5.8)

(5.9)

(5.10)

We define the following z-transforms (note, S(z) and R(z) are defined from

k = 1 not &k = 0 as in the previous model).

P(z) = iszk Q(z) = ikak
k=1 k=1

S(z) =3 8z* R(2) =3 Ri2*
k=1 k=1

96

‘Ppow 9500 orqoI 8Y) 10} wreideip 2%e3§ ['¢ oImdig

DA Ie wolj
1blg

ureydqns
DY

(Dd e woy

UeyIqns

DO

ureyqus

CDd

(DO e woy
b T«
ureyoqns

NS ==

(DS [e woy
[4: X 41

97

We proceed to find P(z), Q(z), S(z) and R(z) by multiplying the appropriate
equation above by z* and summing over the valid range of k. This leads to
~ (Aa(Py+ Rof) 2%) —agq, (AS(2) f — AP,z — Syafz)
A(agy, — z + az?)

~ (Ba (Po + Sof) 2*) — aqy (BR(2)f — Bqiz — Roafz)
B (ag, — 2z + az?)

P(z) =

Q(z) =

_ Spaz
§(z) = A—-az

_ Roaz
R(z) = B-az

Substituting the value for $(z) into the equation for P(z) we arrive at the

following equation that defines P(z).

_ z2(—(Sea’afq2) + AP1AG, (A — az) — Aa (P + Rof) 2(A - az))
N A(A - az)(agy — z + az?)

P(2)
(5.11)
The denominator of P(z) can be factored into A(A — az)(z — r)(z — r2) and

the denominator of Q(z) into B(B —@z)(z — s1)(z — s2) where

1+ \/I - Za@}
(7'1,7‘2) = 9
a
1+ /1T —-4ddaaq;

In Section 3.3.1 we showed that ry and r, are real and that r; > 1 while
0 < ry < 1. Since P(z) must be analytic in the region | z |[< 1 the numerator of

P(z) must go to zero when z = r,. Using this information we solve for P;.

_ o (Seatfq, + A(Py+ Rof) (A — ara))

B Aag; (A= ar)

98

We substitute this value back into the equation for P(2) and arrive at

_ z(S0aafg, + (Po+ Rof) (A — arg) (A — az))

P() (A —ary)(r) — 2) (A - az) (5-12)
Similarly for @Q(z) we find
Q(Z) — 4 (R{)Gﬁf@l + (PG + SOf) (B - 632) (B - EZ)) (5.13)

(B —@sy) (s1 — 2) (B —@z)

Qur task now is to find the values for the unknown constants Py, Sp and Ry.

We can solve the equations for S; (5.2) and R, (5.4) simultaneously to find

¢ (@qP(1) + BaQ(1))

So = AB — aoq1q2
Ry — @ (AaP(1) + ®q,Q(1))
AB — a@qiqo ’

The above values are substituted into the equations for P(z) and Q(z) and we

find P(1) and Q(1) by solving Equations 5.12 and 5.13 simultaneously with

z=1.
P(1) = CppPo+ CppP(1) + CpQ(1)
Q1) = CupPo+ CypP(1) + CpoQ(1)
Therefore,
PQ)=CpPy Q1) =Cgh
where
Cp = Cppo + Cpchpo - Cppocqq
1- Cpp - Cpchp - cqq + chqq
Cy = ComCap + Cop = ConClam
1= Cpp — Cpglpp — Cgg + CopCl
and
1
Om = &oD)

99

aq (AfA+ aaqq, — af Ars)

Cep (AB — agqq;) (r — 1) (A — arp)
c a’q (Afq + B — afqary)

m (AB - aagige) (r1 — 1) (A — arg)

1

Cm = (s1—1)
C a’qy (Bf g + A —afqi)

® (AB — aagige) (s1 — 1) (B — @sg)
Cp = aqi (BfB + aug,q; — @f Bsy)

(AB - aﬁqlqz) (81 - 1) (B - ESQ)

P, is derived from the fact that the probabilities must sum to 1. Note that we

are using the same constant names (e.g. Cp,) as we did in the previous chapter.

Finally, the equations for P(z), Q(z), S(2) and R(z) can be inverted to find

the complete solution to the Markov chain.

Py

Sk

Qr

(P0-|-Ruf)(1)’c

1

+(A - f:?)a({fz— ars) ((;11“)" - (%)k) k21

k
a
ad >
SU(A) k>0

(Po+30f)(1)k

81

B g?)a(gl_ 752) ((Eli)k - (%)k) k21

Ao

k
) ko

|

So = CsPh

100

(5.14)

(5.15)

(5.16)

(5.17)

Q1 (CQGB + Cpﬁzqﬂ

5 AB — auq1¢2
c (CpaA + Cod’qi) g2
fa AB — aaqq:
Cs,a Cra@ 1+4Csf 1+ Cgrf

af * af (&©-1) (n-1

Cs,0q; Cr8qy)_1
(r1=1)(A—ar) (s1—1)(B—as)

P = (1+CHO+CSD+

(5.18)

5.4 Performance Measures

5.4.1 State Buffer Use

Using the state probabilities we find the average state buffer occupancy at

processors one and two.
By = Y i(B+8)
=1
ASpa (Po+ Rof)m

aif? (ry — 1)*
Soaa fqs T Aa
+(A —ar) (A —arg) ((m 7 Ezfz) (5.19)

B, =) i(Qi+R)
=1
BR (Po 4 Sof) &1

a2f2 (31 _ 1)2
Ryaafq, 51 Ba
+(B —as;) (B — @sq) ((31 - 1)2 a a2f2) (5.20)

As with the previous models, we also find ©,;, the probability that a fixed

sized buffer of size b > 1 overflows.

O = Y. (B+S)

i=b+1

101

Soa fa\® (Po+ Rof)
E (-A-) t (7‘1 - 1)1"16

Soaﬁfﬁ 1 a a b
+(A - ary)(A — arp) ((T‘l —1r T (74')) (5.21)

Oy = i (Q:i + Ry)

i=bt1
_ R gant | (B +Sf)
" af (E) * (51— 1)s:b

Ryaafq 1 a sa\t
+(B —531)(B 1—21.'-32) ((31 - 1)S1b B E (E)) (5'22)

5.4.2 Speedup

From the complete solution of the Markov chain we calculate the speedup S of
the two processor TW system over an equivalent single processor. The speedup
is simply the rate of the two processor system &; divided by the rate of progress
for a single processor system é;. The rate of forward progress for one processor

is defined (as earlier) simply as the average rate of progress of the two processes

=)\1+A2

& 5

At this point we add in the additional cost for state saving by allowing a single
processor to move at a rate that is ¢ times faster than the TW processors. Thus,
state saving increases the average execution time of an event from 1/X; to ¢/N

when running TW. The revised rate of progress for a single processor is

_ C(/\l + /\2)

6] 9 ’

while the rate of progress for the two processor TW system is found from the

following equation.

102

G = (MF+ADFB+ (M +72)S + (A2 + 1) Ro
+(A1 4+ A2)P(1) + (A2 + A)Q(1) + (A1 +12)S(1) + (A2 + 1) R(1)

@S Plk—1) — M@ Y Qu(k—1)
k=1 k=1

~Yoq2 Y Sk(k — 1) —mi1 > Ri(k — 1)
k=1 k=1

Taking the ratio S = 6,/6; (i.e., the speedup) we arrive at

2 B Ry A%Sy Ro@’qi Soa’q
s — E(P0+P(1)+Q(1)+ e

o, [P+ Rof S0a@ 7, 1A
2\ -1 T A—ar)A-ar) \(r —1)? @

P+ Sof Rpaafq, 1 72
—agi ((31 -]_)2 + (B —-'a_,sl)(B - 532) ((31 _ 1)2 - azfg))) (523)

Note that we have returned to a speedup measure {as opposed to f?) since,

for the rollback cost system, the rate of progress on a single processor is well

defined.

For the symmetric, balanced case where Ay = A\; = A and ¢q; = ¢; = q we get

the following equation for speedup.
. 4f (f + a)
c(2/2+ f@+)i+ @-f)fa+2(1-fd)
A plot of this function is shown in Figure 5.2 for ¢ = 1. (Note that for f =1,

(5.24)

S =4/ (2 + \/6) as in Equation 3.7.)

Using this simple formula for speedup we find the values of f, g, and ¢ that
allow two processors running TW to progress faster than a single processor
without TW. This is the region where S > 1. We solve Equation 5.24 for c

when S > 1 resulting in the inequality

. 41 (f + /)
= (2f2+f(2+f)\/§+(2—f)fQ+2(1_f)q%)

(5.25)

103

R
R
Vo
X
N
&
5
X
5
&
5
‘\
5
"
5
&
e
%
5
Yo%

3/4

Figure 5.2: Speedup versus ¢ and f for the symmetric, balanced case when

c=1,

104

0.8

Speedup Possible I

Rollback Cost

0.2 0.4 0.6 0.8 1

Interaction Parameter

(@

Figure 5.3: Region of ¢ — f space where speedup is possible.

Therefore, we find that ¢ must lie below the surface plotted in Figure 5.2 for
S5 > 1. It is clear for ¢ > 2 that TW on two processors is always slower than
using a single processor without TW. Further, since ¢ must be greater than or
equal to one (cost of state saving is > 0), there is a region in the q — f space

where speedup is not possible. That is the shaded region shown in Figure 5.3.

Since rollbacks can be costly (¢ > 1), there may be an advantage to slowing

down or stopping the faster processor when it gets ahead so as to avoid rollbacks.

105

A2 A2

Figure 5.4: State diagram when each processor stops at one step ahead.

Mitra and Mitrani [MM84)] (see Section 3.6), using an optimization function
J = D — (cost)R, where D is the average forward rate of progress and R is the
average rollback rate, find regions of the parameter space where the maximum of
the function is found at the boundary where the processors have zero processing
capacity (i.e., don’t perform the task at all). Essentially, they found that Time
Warp could perform poorly if the cost for rollback was high. Unfortunately,
their method of adding a cost for rollback was to create a function external
to the model, rather than having the system actually pay a real-time cost for

rollback during operation. We find our model somewhat more satisfying.

Our effort is to improve TW by slowing down or stopping the processor
that gets too far ahead, and we find that it sometimes pays to stop the leading
processor when it gets ezactly one step ahead. The state diagram for such a
system is shown in Figure 5.4. Each processor will stop when it gets exactly
one step ahead of the other processor. There will be no rollbacks and therefore
no need for state saving. When X, = Ay = X we find that P, = Q, = Py = 1/3,
and that speedup over the equivalent single processor system is 4/3. Therefore,

we can always get a speedup of 4/3 regardless of the values of f, ¢ and ¢. For

106

o
-
-1
0.8¢ 11.25
/‘ Better to wait when 1 step ahead
/ forc=1
E 0.6+ 1.67
-
a
2E (/1)
=
]
& 0.41 2.5
0.2 Ll
' Speedup not possible normally
(S<iforc=1)

0.2 0.4 0.6 0.8 1
Interaction Parameter

()

Figure 5.5: Region of ¢ — f space where stopping at one step is better.

general values of A; and X; the speedup is

S— 4(1-a)e

1-a+ a?
which has its maximum of 4/3 at a = 1/2. For the symmetric, balanced case
where \; = A2 = X and ¢; = ¢ = ¢q, we show in Figure 5.5 the area of the ¢ — f
plane where waiting at one step is better than rushing ahead when ¢ = 1. Note

that this region includes all the shaded g — f area where we were not able to get

speedup with two processors using Time Warp. Finally, in Figure 5.6 we show

107

Figure 5.6: Achievable speedup for c= 1.

108

the achievable speedup when ¢ = 1. The shaded region is where a processor
waits when it gets one step ahead of the other. In the unshaded region, if ¢
is less than the value plotted in the figure we are able to gain at least some

speedup over the equivalent single processor not running Time Warp.

Since it sometimes pays to stop a processor when it gets one step ahead,
one might surmise that there are ranges of the parameters where stopping a
processor when it gets k£ (k > 1) steps ahead improves performance. For our
model, this turns out not to be the case. By examining the Markov chain for
k = 2, we find that the speedup is never greater than the speedup gained by
the standard algorithm. Therefore, it is never practical to stop a processor once
it gets more than one step ahead. The Markov chain in Figure 5.4 is unique in
the respect that at no point in time will a processor incur a cost for state saving
or rollback. Once the processors are allowed to get more than one step out of
synchronization, state must be saved since rollbacks are possible. Intuitively,
the fact that we might only stop at one step ahead makes sense since a process
at virtual time v can only send a message to the other at time v+ 1. By getting
two or more steps ahead, a rollback is already possible and we will incur a cost
for rollback if a message is sent regardless of whether we wait further down
the line. Waiting now only causes the system to have a smaller speedup. In a
more general system where a processor may send a message arbitrarily far into
the future, we may find that there are regions of the parameter space where
it pays to stop a processor when it gets further than one step ahead. We are
currently extending the rollback cost model so that the processors are able to
make arbitrary sized jumps when advancing (i.e., not restricted to single-steps)

like in the original model in Chapter 3. This more general model will give us a

109

better opportunity to examine the improvements we might gain by stopping or

slowing down the lead processor when it gets more than one step ahead.

5.5 Conclusions

We developed a model that incorporated costs for rollback and state saving.
In addition to calculating the complete solution to the Markov chain and the
speedup over a single processor, we were able to find regions of the parameter
space where it was better to stop either processor when it was only one step
ahead. Stopping the lead processor when it was two or more steps ahead led
to no performance gain. As with our previous models, since we have the exact
solution to the Markov chain, we are able to calculate nearly any performance

measure of interest.

110

CHAPTER 6

A Model for Conservative Simulation

6.1 Introduction

In previous chapters the performance of an optimistic method of distributed
simulation (Time Warp) was examined. In this chapter we create models for
the two processor system using a conservative synchronization algorithm rather
than Time Warp. The emphasis is to create a model for a conservative algorithm

that we may directly compare to our previous model for Time Warp.

Conservative methods of Discrete Event Simulation are based on the work of
Chandy, Misra, Bryant and others [CMT79] [CHMT79)] [Bry77], and we discussed
the algorithms in Section 1.3.2. Where TW proceeds ahead as fast as it can,
only rolling back when a mistake is found, conservative methods allow an LP to
proceed forward only when it is sure that it is performing correct computation.
That is, conservative methods use blocking for synchronization, while optimistic

techniques use state saving and rollback.

6.2 The Model

We now describe our model for the conservative method of synchronization.

Our goal is to create a model that can easily be compared to the previous

111

models created for TW. We again use a continuous time, discrete state model,
assuming that each process/processor advances along its own virtual time axis
visiting only the integers. Each process takes an exponential amount of time
to process an event and advances one step forward in virtual time (along its
axis) after finishing the event. After advancing, each processor will send a syn-
chronization message to the other processor with a given probability. Since the
synchronization is conservative, no process can perform work at virtual time v
until it is sure that the other processor will not send it a message time stamped
with a virtual time less than or equal to v. We again exploit the Markov pro-
cess defined as the difference in virtual time (position on the axes) of the two
processes, and find the probability that one processor is ahead of the other by

a distance k. Note that | k |< 1 for unimproved conservative systems.

Here are the parameters of the model (the same as the TW model).

A; = rate that processor i executes events
A1
a =
AL+ e
Az
a = =1-a
AL+ As
o; = P[i* processor sends a message after advancing)
G = 1-¢

If the processors start out at the same virtual time v, eventually, one (say
Py) advances to v+ 1. Since a conservative synchronization mechanism is being
employed, this processor must wait to see if the other processor will send it
a message with virtual time v 4+ 1. Its only choice is to wait until the lagging
processor (P;) advances, at which point that processor will “flip a coin” to

decide whether to send a message. If a message is sent, P receives it and is able

112

to continue processing again. If a message isn’t sent, P thinks it is still ahead of
the other processor and will not continue processing. If P, were to advance again
and not send a message, it would think (correctly) it was now ahead of P, and
stop processing. At this point we have a deadlock that must be broken. Deadlock
detection and recovery algorithms were discussed in Section 1.3.2. Essentially,
we break the deadlock by letting each processor know where it is relative to
the other processor. In this example, P, would learn it was behind and begin
processing, thus breaking the deadlock. If, on the other hand, each processor is
able to notify the other that it has advanced its local clock, then the lagging
processor is able to advance whether or not a “data” message is sent. This latter
type of notification is referred to as the “null message” technique that is used
to speed up conservative models. When used, we assume that this information
(null messages) is propagated without cost. We now examine several models for

two processor conservative simulation.

6.3 A System Without Null Messages

We first solve a model where the processors do not send null messages. We
assume that when a deadlock occurs it is detected and corrected after an ex-
ponential delay with mean d/(M + X2). If d = 0 then deadlocks are broken
instantaneously, while d — oo means that deadlock detection/correction takes
an infinite amount of time. This system can be described by a Markov chain

with the following state description.

113

(D, 1, t2)
D = Actual virtual time difference between P, and P
t; = P;’s belief about the virtual time difference

to = P,’s belief about the virtual time difference

Discrepancies arise between D, {1 and ¢ when the processors don’t inform
each other about state changes. This happens more often when the processors
are less likely to send messages (small ¢;). When a processor thinks it is ahead, it
does not try to advance further. When both processors believe they are leading,
we have a deadlock. The state diagram for this system is shown in Figure 6.1.
Each state is labeled with its state description (D,t;,%;) and an alphanumeric
label for calculation of the steady-state probabilities. The balance equations for

this system are

Aipa = Aalhbo

Aopp = AMG1po

M+ A
AMPec = Aagapo + deqepr + = - 2pe

A+ A
Aepp = Agqipo + AMiqipe + 1d 2 pu

AMPE = Aeqepp + MT1Pc

Aepr = Aq@ipa + AeGpp
AL+ Ao

7 Pc = A2Q2PF
A+ A2 _

g PH = MTPE
A1+ A

TP = AT Pa + XG0

114

Deadlock T,

Deadlock Deadlock

Figure 6.1: State diagram for conservative synchronization with no null mes-

sages and a cost for breaking deadlocks.

115

1 = p+pat+ps+pct+pp+pe+prt+pc+putpr

We first solve exphCitly for {'POaP/hpBapCaPD:PE:PF:'PG;PH;PI}, then find

the rate at which the two processors move forward in virtual time as

Ry = (A1 + A2)po + Ailpa + pc + pe) + Ae(ps + pp + PF)

We compare this rate to our equivalent single processor rate again (see Sec-

tion 3.4.1)
A+ A
R =2 : 2
to find speedup
Ry -
S:._RS_I.:2(p0+a(pA+pc+pE)+G(PB+pD+pF)) (6.1)

For the simple case where ¢; = gz = g the formula for speedup is

4aa (3 - 29)

6.2
3—a+ a2+ 3aad(l — q)° — 2q 6.2

and if the cost of breaking a deadlock is zero (d = 0) then the formula reduces

to
_ 4aa(3 - 2q)
8_3—a+a2—2q (6:3)
and if a = 1/2, then
3-2¢q
S= 6.4
1?1__2(1 (6.4)

We show Equation 6.2 plotted versus a and ¢ for various values of d in
Figure 6.2. We note here that the conservative system performs better as q, the
interaction parameter, increases. This is in contrast to the Time Warp system
where speedup decreased as ¢ increased. In the conservative system we are better
off sending a large number of messages because the messages keep each process

informed as to the virtual time progress of the other thus allowing potential

116

Figure 6.2: Speedup versus a and g for various values of d.

117

parallelism to be exploited. When more messages are sent, the processors are
less likely to be waiting due to lack of information and less likely to become

deadlocked.

It is also clear from the figures that the cost of deadlock has a large impact
on the performance if the probability of interaction is small. This is to be ex-
pected, since the probability of deadlock is higher when the processes exchange
information infrequently. We can take the derivative of speedup with respect to

d (the cost of breaking deadlock) to quantify the effect of d on performance.
8S = —124%a%(3-2¢)(1 - q)?
a7)
dd (3 — a@ + 3a@d(1 — q)° - 2q)

We plot this function versus d and ¢ for a = 1/2 in Figure 6.3 and see that

changes in d have a large effect on § when ¢ is small.

Returning again to speedup, we note that Equation 6.2 is only valid if ¢, >
0 and ¢» > 0. If both of these values are equal to zero (i.e., we never send

messages), then speedup reduces to

4aa
5= a(l + ad) + a® (6:5)
and if d = 0 in this case we get
4aa
§= T & (6.6)

Coincidentally, this is also the formula we get if ¢ =g =l orif g1, <1
and we always send null messages. For the ¢ = g = d = 0 case, the system
travels between states (A,0,B). In the null message case, the system travels
between the states (C,0,D). Both systems produce the same probabilities and
speedup. These systems produce the optimum speedup that can be gained from
the conservative model. Equation 6.5 is plotted in Figure 6.4 and Equation 6.6

is plotted in Figure 6.5.

118

Figure 6.3: Derivative of speedup with respect to d (the cost of breaking a
deadlock) versus ¢ and d for a = 1/2.

119

Figure 6.4: Speedup versus a and d for ¢, = g2 = 0.

120

L5 .

4/3

1'0 -

Speedup

0.5 .

0.0 - . :
0.0 0.2 04 06 0.8 1.0

Figure 6.5: Maximum conservative speedup (i.e. for the system with null mes-

sages).

121

6.4 Lookahead

It has been noted by several researchers that exploiting lookahead is necessary
to make conservative simulation a viable alternative to the optimistic approach
[Fuj88a] [Nic88]. Lookahead is the ability of a logical process to predict its
future behavior and especially its future output. In conservative simulation,
when a process gives any downstream neighbor processes information about
the arrival (or lack thereof) of future messages, the downstream processes are
able to continue processing, thus enabling more parallelism in the system. The
typical example of lookahead occurs in a FIFO queueing process. If jobs have a
deterministic service time of S seconds (of simulated time), then if a server is
empty at real time ¢ and virtual time v, it can notify any downstream neighbor
that no customer will arrive to this downstream queue with a virtual time stamp
less than v + S. Therefore recipient processes are able to execute any events
they may have scheduled for virtual time less than v + § (assuming no other

input links).

6.4.1 Types of Lookahead

In order to formulate a model for a system using lookahead, we need to be very
precise about what sort of future prediction is available. One example of this
future prediction is that a process might always be able to inform the other
processes of the virtual time of the next message it is going to send, but not the
contents. With this sort of information, the receivers in a conservative system
would be able to process all messages that had virtual times less than the time
of the “scheduled” virtual time of the next message. In a two processor system

each processor would execute messages with timestamps less than the virtual

122

time of the “future” message, then wait for the arrival of that message. This
system has the same performance as a TW system with no cost for state saving
and rollback. TW is really forced to “wait” for the arrival of the message, but it
is actually just performing useless work instead of waiting. Both systems return

to processing useful work at the instant that the “straggler” message arrives.

Another type of lookahead is information that bounds the virtual time of
future messages. The typical example (a FIFO queue) was given in the previous
section. If we know something about the process that is being simulated, we

may be able to provide information to downstream processes.

The type of lookahead that we use in our model was introduced by Nicol
[Nic91]. We can think of lookahead as the ability to transmit messages in our
future to other processors. The farther into the future we are allowed to “pre-
compute”, the more lookahead we have. Nicol points out that there are two
pieces of information contained in a lookahead message. The first is the virtual
time of the pending message, the other is the actual contents of the message. Our
previous example conveys only virtual time information while, in general, we
could transmit both virtual time and data information. Nicol calls the lookahead
with time and data information “full lookahead” while the time only message
is “time lookahead”. We use the idea of full lookahead in the next model due

to its analytical tractability.

6.5 The Lookahead Model

OQur definition of lookahead is based on a model which only allows processors
to advance a single step in virtual time when advancing. By assuming that the

processes have K-step full lookahead, each of the two processes is able to be

123

Ay 11 Ay M 11 Lo
ol i, e i,
L L A, e L Ay
Figure 6.6: State diagram for a system with K-step lookahead.

at most K + 1 units of virtual time (events) ahead of the other (as opposed
to K messages ahead). Essentially we believe that a process is able to give the
other process the content of any messages up to K virtual time units in the
future. By assuming that null messages are used, each processor always knows
its position relative to the other. Note that if K = 0, this model reverts to the
simple no-lookahead model where a processor must wait when it gets ahead at
all. The state diagram for this system is very simple and is shown in Figure 6.6.

The balance equations for this system are:

Alpk = A2101'c+1 k=-K-1,.,0,.,.K

K+1

po = 1= (m+p)

=1
The solution is

a k
Pr = (—) Do k=-K-1,..,0,.,.K+1

a

P = =
a312K _ g3tek

Speedup relative to the equivalent single processor implementation is

dqa (a2t a2+2K) 1

aF -
G3+2K _ gatik 2

(6.7)

124

4(1 + K) 1
$ = 37k %73 (6.8)

Equation 6.7 is plotted versus a and K in Figure 6.7. We can see from this figure
that lookahead is extremely useful when the processors are nearly balanced in
processing speed (@ = 1/2). In the imbalanced situation, the faster processor
quickly runs out to its limit of K steps, then waits for the other processor to
move forward before it can continue again. By taking the derivative of speedup
with respect to K, we see this result more clearly. In Figure 6.8 we show 85/0K.
When K is small and a is near 1/2, any change in K has a major effect on
speedup, though once we move away from a = 1/2 or K > 5, the impact is
significantly reduced. The moral of this story is to make sure the processes

progress at nearly the same rate in virtual time or lookahead will be useless.

6.6 Comparison to Time Warp

We now make a direct comparison between the speedup results obtained from
our Time Warp models and conservative models derived in the previous sec-
tions. To clearly display the tradeoffs, we compare simplified versions of each.
Figure 6.9 shows the ratio of speedup for the conservative model using null
messages but no lookahead to Time Warp with no cost for state saving and
rollback. It is clear that “free” Time Warp is always a winner since the ra-
tio never exceeds one. The optimistic approach with no costs for its aggressive

computation is always better.

Let us now compare free TW to the conservative model with lookahead when

both systems are operating at a = 1/2 and when the conservative system has

125

Figure 6.7: Speedup for a K-step lookahead conservative system.

126

Figure 6.8: Derivative of speedup with respect to K.

127

Sc/StwrO .

Figure 6.9: Ratio of conservative speedup (no lookahead) to “free” Time Warp

speedup.

128

K-step lookahead. Proponents of the optimistic approach point out that their
systems work well regardless of whether lookahead is exploited. Our comparison
is an attempt to see how well the conservative approach exploiting lookahead
fares with respect to a Time Warp system that uses no lookahead. This ratio
is plotted in Figure 6.10 and suggests that a little lookahead combined with
null messages goes a long way. For almost any value of K greater than one, we
see that the conservative model ocutperforms “free” Time Warp (ratio > 1). We
find the threshold where the conservative approach beats TW by solving the
following inequality for K.

Scons _ (1+ K)(2+./3) >1

6.9
Stw 3+ 2K - ()
The condition for the conservative approach to beat Time Warp is
1—
K> 1-ve (6.10)

T Ve
For g (the interaction parameter) very small we need a large lookahead, but for
g > 0.1, K only needs to be 1 or 2. Figure 6.11 shows the areas of the ¢ — K
plane where the conservative approach beats “free” Time Warp. Note that if an
optimistic system with no rollback and state saving costs is afforded the same
lookahead as a conservative system with no cost for null message transmissions,
the optimistic approach will always perform better since it is able to aggressively

compute along the critical path for free.

6.7 Conclusions

This chapter examined some simple two processor models for the conservative
synchronization method. It showed that lookahead is very useful in gaining

performance, but only if the processors are well balanced in processing capacity.

129

r el FJ
ot

1.4

SC/Stwl'

Figure 6.10: Ratio of conservative speedup with K-step lookahead to “frec”
Time Warp with no lookahead.

130

4 4 .
Conservative Better

3.
K -t

2

1.4

T™W
1 | Better
0] v 1 v 1
0.0 0.2 0.4 0.6 0.8 1.0

q

Figure 6.11: Area of the ¢ — K plane where the conservative approach with

lookahead wins out.

131

The models allowed quantitative evaluation of the improvement attributed to
null messages, as well as the degradation due to a cost for breaking deadlocks.
Finally, a conservative system with “free” null messages and a small amount of
lookahead was shown to outperform a Time Warp system with no cost for state
saving or rollback. However, if they both incorporate lookahead, then TW is
the winner. Unfortunately for the conservative approach, lookahead is not often
easy to come by [Nic88] [Fuj88a). The simple FIFO queueing system provides
great lookahead, but add in preemptive-priority queueing and all the lookahead
disappears. It may be unwise to utilize a synchronization mechanism which

needs lookahead to perform well.

132

CHAPTER 7

Extensions of the Optimistic Model to

Multiprocessors (P > 2)

7.1 Introduction

With the exception of Chapters 2 and 6 the previous chapters have introduced
and evaluated models for two processor optimistic systems. This chapter ex-
plores methods for attacking the important problem of Time Warp running on
multiple processors. Most distributed simulation systems do not run on two pro-
cessors; numbers on the order of tens or hundreds of processors is more likely.
How then might we extend our analysis of the optimistic approach to more
than two processors? Our first attempt might be to utilize our basic technique
with P processors. Unfortunately, the Markov chain approach, with the differ-
ence in virtual times between (P — 1) pairs of processors as a state variable,
quickly becomes intractable. Even with only three processors, the state space
and transitions become fairly complex. Therefore, our technique is to look to
the two processor model for hints on calculating bounds or approximations for
the multiprocessor case. The next section introduces the model for Time Warp

running on many processors.

133

7.2 Definition of the Multiple Processor System

The multiple (P) processor model for Time Warp is a straightforward extension
to the model developed in Chapter 3 and is similar to the model introduced
by Nicol [Nic91]. Each processor advances independently along its own virtual
time axis processing events. The assumption again is that processors only make
single steps forward in virtual time at each advance and that virtual times are
restricted to the integers. After a processor advances, it sends a message to
exactly K randomly chosen processors out of the other P — 1 processors. The
messages are only be used for synchronization and do not carry work (as was
the case in Chapter 4). Messages that arrive in the future are ignored. Messages
that arrive in the past cause a rollback. With more than two processors comes
the possibility for “cascading” rollbacks. Each processor must maintain a queue
of messages that it has sent to other processors. If processor P, is forced to
rollback to virtual time v, then it must “cancel” any messages it sent to other
processors with virtual time greater than v. These cancellation messages may
potentially cause a rollback at the receiving processor, forcing it to send its own
cancellation messages, etc. Receivers only rollback to the time of the erroneous

message; they do not necessarily rollback all the way back to virtual time v+ 1.

The performance measure of interest is speedup and is measured as the rate
of virtual time progress of the P processor system divided by the rate of an
equivalent single processor. We assume that all processors take an exponential
amount of time with mean 1/X to complete an event. The equivalent single

processor moves at rate A.

134

7.3 A Simple Upper Bound on Speedup

A simple upper bound on the speedup achievable by this P processor system
was motivated by our two processor analysis. As noted in Section 3.7, if each
processor always sends a message to the other after advancing, then the whole
system takes time equal to the maximum of two exponential delays to move
forward one step in virtual time. We can use this idea to create a bound on

speedup for the P processor case.

Assume that each processor sends to K other processors after advancing.
Group the processors into clusters of size K+1 and instead of randomly selecting
K processors to send a message to, each processor always sends to all the other
K processors in its cluster after advancing. The clusters do not overlap (i.c.,
no communication between clusters), each, on average, takes time equal to the
average of the maximum of K +1 exponential delays to move forward one unit of
virtual time. Each cluster moves independently. This model provides an upper
bound on speedup since each cluster moves forward without synchronizing with
any of the other clusters. In the true system each processor is able to receive

messages from all the others and is forced to stay more closely synchronized.

Defining as the effective rate that each processor moves in the P processor

system, speedup S is
_rP

=3

The variable r is found by the exponential delay argument described above.

t = E[Time for processors in a cluster to move 1 step]
1 K+1 1

=33

-1

135

0.65

0.55
=4
wods 4, 77T Upper Bound
s — Simulation
=
&
£ 0.35
)
0.25 -
0.15 v T T T v T T T v -
0 50 100 K 150 200 250

Figure 7.1: Normalized speedup versus K for 256 processors.

K+1
a 1 1
2 —=2X =
-2 p-v(E)
Therefore the upper bound on speedup is

P
S, = Z)_’ﬁi_l (7.1)

In Figure 7.1 we show Speedup/P versus K for 256 processors. As one might
expect, the upper bound is not very tight when K is small, but is exact for
K = P — 1 and quite tight for % > % Figure 7.2 shows the percentage error

between the upper bound and simulation.

136

% Difference

0 v T v f Y)

0 50 100 K 150 200 250

Figure 7.2: Percent difference between the upper bound and simulation.

7.4 Tracking Global Virtual Time Advancement

Another technique that might be employed to better understand the behavior
of Time Warp on multiple processors is to directly calculate or estimate the
rate of Global Virtual Time (GVT) advancement. This idea is motivated by
our two processor work where we had the notion of separation in virtual time
between the processors. With both processors at the same virtual time, we
know exactly how long before GVT advances one step (both processors have
to move). When the event processing time is exponentially distributed at rate
), the time to advance GVT is simply the time it takes for the maximum of
two exponentials to complete. This is 23_,\ by the arguments given in the previous
section. In the P processor case, if we were able to calculate the distribution of

the number of processors sitting at GVT after GVT advances, we could derive

137

the average rate of progress of the P processor system and its speedup over a

single processor.

Certainly, the minimum number of processors at GVT, after GVT advances,
will be K + 1 since when the last processor moves forward to allow GVT to
advance, it will send messages to K processors and pull them back to the new
GVT. This is exactly the upper bound calculated in the previous section. In
general there will be more than K + 1 processors at GVT after GVT advances
so our speedup will be less. It is believed is that a simple probabilistic argument
should be able to give us either the expected value we seek or a more useful

bound on this number than K + 1.

7.5 A Simple Approximation Using Aggregation

Finally, “bootstrapping” our two processor model to create an approximation
for P processors might be possible. The most straightforward method would
be to use a series of hierarchical aggregation steps. Assume we have a system
with four processors numbered one to four. In Chapter 3 the exact solution
for two processors with arbitrary rates of processing and arbitrary interaction
probabilities was developed. We might use this model to isolate processors one
and two and calculate the effective rate of progress of these two processors in the
absence of the other two. The same could be done for processors three and four.
After these two operations, we are left with two “effective” single processors
moving at a rates determined by our original two processor model. Finally,
these two “effective” processors may be combined using the two processor model
solution again so as to obtain the approximate rate of progress of the four

processor system. This approach would work in general for P a power of two.

138

One of the challenges of this approximation technique is to provide a value
for the interaction parameter “g;” in the two processor solution. Somehow, a
mapping from the message transmission probabilities in the P processor system
needs to be created so as to generate the interaction parameters (g). The first
attempts at a solution using this method gave us a very low approximation for
speedup. It is believed that the amount of rollback caused by each processor

was overestimated.

7.6 Conclusions

This chapter provided some ideas on possible approaches to tackling the mul-
tiple processor problem. QOur first approach provided a crude upper bound on
speedup. The GVT advancement technique provided the same upper bound but
holds promise for a better bound and/or approximation. Finally, the aggrega-
tion technique has the most direct link to our previous work, but the actual
details of assigning variables to the interaction parameters needs to be clearly

thought out.

139

CHAPTER 8

Conclusions and Future Work

This dissertation addressed the performance analysis of distributed simulation
techniques. Chapter 2 created a simple bound on the potential improvement of
asynchronous versus synchronous processing. Our examples were Time Warp
and time-stepped simulation. The optimistic Time Warp approach was shown
to only gain an (In P) improvement where P is the number of processors used

by each algorithm.

In Chapters 3, 4 and 5 several models of two processors running the Time
Warp algorithm were created. Exact solutions were found for all the perfor-
mance parameters of interest including speedup, distribution of state buffers
needed, distribution of message buffers needed, etc. It was shown for optimum
performance that the processors should send as few messages as possible and
that processes should be placed on processors such that the average “indepen-
dent” rate of progress in virtual time is the same for both processors. Finally,
the impact of state saving and rollback costs on performance was shown to be
significant and that there are times when “throttling” a Time Warp process

when it gets too far ahead in virtual time is better than letting it run freely.

A simple two processor model for a conservative synchronization mechanism
was developed in Chapter 6 and lookahead was observed to be very useful in

gaining performance, but only if the processors are well balanced in processing

140

capacity. The models allowed us to quantitatively evaluate the improvement due
to sending null messages and to establish the degradation in speedup due to a
cost for breaking deadlocks. Finally it was shown that a conservative system
with “free” null messages and a small amount of lookahead is able to outperform

a Time Warp system with no cost for state saving or rollback.

8.1 Future Work

While distributed simulation on multiple processors (P > 2) seems the most
obvious area for future work, there are several other possible areas as well. They

include:

¢ multiple processes per processor
e communication costs

¢ an understanding of message-initiating versus self-initiating models

fault tolerance of Time Warp

optimistic computation.

The next few sections describe these possible research areas.

8.1.1 Multiple Processes Per Processor

Since most large simulations have more logical processes than physical compu-
tational processors, one area of interest is the need to address multiple processes
per processor. Qur two processor models for Time Warp were predicated on the

assumption that each processor only had a single process running on it. The

141

results do not generalize to multiple processes per processor. Our model has the
entire processor rollback whenever a rollback occurs. This would only be accu-
rate if all the processes were rolled back when any were. Another complication
is that the processes would each have different virtual times, and therefore could
send messages with different timestamps. Multiple processes per processor be-
gins to look very much like the multiple processor case and therefore inherits

many of the same difficulties associated with finding a solution.

8.1.2 Communication Costs

Communication costs have not been adequately addressed in any work in this
area. In our conservative model, null messages are allowed to propagate without
cost, thus encouraging the processors to send as many messages as possible in
order to avoid deadlock. This is unrealistic. One can see that communication
cost/delay could also have a major impact in the Time Warp system. Consider
the following example. If one processor is ahead of the other in virtual time when
it sends a message, in our current models, the message arrives instantaneously
at the other processor. This means it arrives in the virtual time future of the
receiver. If there were communication delay, it might be possible for the trailing
processor (receiver) to move forward in virtual time sufficiently so that the
delayed message arrives in the receiver’s past. This would cause a rollback and

decrease performance.

8.1.3 Message-Initiating vs Self-Initiating

Another area that needs exploration is to understand the performance differ-

ences between the “self-initiating” and “message-initiating” models. This dis-

142

tinction was discussed by Nicol [Nic91], though his analysis focused on self-
initiating models. Our simple two processor model used self-initiating proces-
sors, meaning that each processor always had work to do regardless of whether
it had received any messages from other processors. In a message-initiating
model [GAF91], the processors only perform work in response to the receipt of
a message. Our message queueing model in Chapter 4 is somewhat of a hybrid
of both. Each processor always performs local work, but also will process mes-
sages and send messages that create work for the recipients. At the moment
there are no clear results that state whether or not there are significant perfor-
mance differences between the pure self-initiating and pure message-initiating

models.

8.1.4 Optimistic Computation

Our performance analysis of optimistic simulation can actually be applied to
a broader class of algorithms than just simulation synchronization. It really
provides an analysis for a type of optimistic computation. We need to exam-
ine in more detail what differentiates optimistic computation from optimistic
simulation. Our results from modelling Time Warp should provide insights into

creating and analyzing optimistic computing systems.

8.1.5 Fault Tolerance of Time Warp

The optimistic approach requires the storage of input messages, output mes-
sages and a history of states. There seems to be a fair amount of redundancy
in the system simply to allow the algorithm to operate. One might believe that

some simple additions to the basic algorithm might render it fault tolerant in

143

the face of processor failures. This would be especially useful as the running
times of simulations increases and also if the Time Warp system were to be

used for more general areas of computation than distributed simulation.

8.2 Final Remarks

The performance analysis of distributed simulation is still in its infancy. We
have provided a strong foundation for the understanding of both the optimistic
and conservative synchronization algorithms, but there remains much work to

be done.

144

APPENDIX A

Derivations of Summations for the Two

Processor Model

A.1 P(z) Sums Closed Form Derivation

This section provides the derivation of the closed form expression for P(z) found

in Section 3.3.

i (A1 + Az + AsGym) pe2* = (Al + As + A3 — As@z—“%") P(z) (A1)
k=1 1- JBIJBE
o k-1 oo k-1 _
Ay Z z Z pifei = A—lﬁl 2 Z P:'-B’;_‘
k=1 i=0 ¢ ar
_ Abis i (F,)
RPNy
A1 B,z
= - P —
2)+ (125
= AF(2) (P(z) + po) (A.2)

145

A szznifkﬂ = 3”61 Ezkﬁfzn; 1
k=1 =1 1 ;

_ A5y Bz -
- Bl 1 _l—lz) Q(ﬂl)
= AIF(z)Q(ﬁl) (A.3)

L AGAR S A2 ¥
Az?zzz Zp‘lgl = = ZP{ 22 ‘”5_2

k=1 i=k+1 6 2 =2 k=1

Azqy i 2 i Ps i [i9ivie = ______A.'?Ezglﬁ2 i 2 E pfﬁ'{k > (B1Bz)j
k=1 i=k+1 5=l BBy = i j=1
_ A S i (_2_)k
= 155,55 \5
_ AgG,01 20, zP (ﬁz)) A
(1- ﬁlﬁﬂ(z - Bz) (P(Z) B, 2

oo oo A k—i —=\J
A3Q’2zz zptz.fj-i—k—igj = 3Q2ﬁ1ﬁ22 Z ;61 Z(ﬁlﬂz)J

= i0 =1 BiB: =1 i =
Ao & 5L s
= ———— Z plﬁ
1- 5,8, kgl ;‘:Zo !

146

_ AsfhﬁlﬁZZ 'z Z (zﬁl)

1- 1ﬁ2 i=0 k=i+1

_ AGpfif Bz
- LTma (P(Z)+Po)(Blz)

_ AsGB,6:F (2)
- SRS (PE) +) (A6)

A3_222k§niigjfj+k+i = Aag:g:ﬂzz kﬁ i ny 1E(ﬁ1ﬁ2)

k=1 i=1 j=1 k=1 i=1 j=1
_ A3q,5:5: (;313) = (31_2)
BB 1~ Bz) 1- BB,
_ A3G,0,6:F (2)Q(B;) A
1- 8,5, (A7)

A.2 Speedup Sums Closed Form Derivation

In this section we derive the closed form expression for Speedup found in Sec-

tion 3.4.1.

o i—1 -1
Asppo Y fid_gii—3) = APz ¢ 35 Zﬂ;(z - 7)

=2 j=1 ﬁlﬁz = =1
Asqapo3 ﬁz P& i,
= 3; ﬁ21 = () i 1 J(z"‘.?)
_ Asqpebif B15;) 3_)
818, 1-8,8 2
AsqpoB, B
= ———== A8
Bi1(1 - B,5,) (A.8)
sy AsqaBCopo >, (1Y (Bz)k_i
A oo AwbGipe s (1 B,
2q2 gpkgzgk 7, gz (7‘1) k;ﬂ .

147

- 25) (3
B, (r— 1)2 1 — 3

A2q252Cppori A
(i = Bo)(rs — 17 (4.9)

0o k+i—1

Azqo Zpkz.ﬁ Z JGk+i-j

k=1 i=1 j=1
Azq25182Cp0 & (1)k ® _FEl i
5182 ,; ™ 2 ' ?; ’

k | k-1 . oo . oo . 00)k+iﬁj:|

(' ’)é (;_1: J'BE_J : (B1Bz)‘ + ZjE_k . Z (3132

AsqaBi 8200 [1* |2 by | X ik
1- 3.5, :L:,l Tl) |: iB; +Eal_ﬂ]

AsasBiBCms [i‘;g (2) 5 (B) 7+ SR (5)]

1- 3,8 k=j+1 \T1

() {((ﬁr_ll) (Ezﬁg)-l_(ﬁll—l) (Zﬂﬁ J}:*J(T_ll))]

Asq25152Cpo l(™) (B2 _) N (_ 1) (_3_1 . n)]
1 - 5,8, (ry—1)2 T — 3, giri—1 gt (r—1)?

A3q25:Cppo ((7'1 - By) N P18y) (A.10)
(1= B1B,)(r; — 1)? B (r1— Ba)

i
L
-

o0 oo 0o A C. oo 3 0o i —i
Asgt YD i D GGk = _:i_qlél_ﬁj__p_m;l(&) 2(51 2) > iB;

k=1 i=1 j=1 518, L]

- A3Q1ﬁ1ﬂchpo(Bs)(Bl;ﬁ?_ (E)
818, - B2/ \1 - P15, 3

— Asqﬁlﬁg ppO _
B(l - E1B2)("'1 -)

148

APPENDIX B

Cubic Equation Solution for the Message

Queueing Model

In this appendix the roots of a cubic equation to be used in Section 4.3 are
derived. This material is taken directly from the CRC Handbook of Mathematical
Sciences [Bey87].

A cubic equation, ¥ + p,y? + ¢,y + r, = 0 may be reduced to the form,
2+ ax+b,=0
by substituting for y the value z — p, /3. Here
1 2 1 3
a; = 2(3qy — py°) and b; = 5 (2" — Opyy + 27r)

The form 2° 4+ az + b = 0 with ab # 0 can always be solved by transforming

it to the trigonometric identity
4 cos®(f) — 3 cos(f) — cos(38) =0

as follows:

let x = mcos(f), then

Ht+ax+b = 0

m® cos*(#) + am cos(6) + b

149

= 4cos*(f) — 3cos(d) — cos(39)

Hence
4 3 — cos(38)

m3 am b ’

from which it follows that

a 3b
—9./-2 0 =—"—.
m =2 3 cos(36)

Any solution #; which satisfies cos(34) = %, will also have the solutions

27 dr
&+ 3- and 6+ ?

The roots of the cubic 2% + az + b = 0 are therefore

T = mcos(01+2§)

zo = mecos(f)

4
T3 = mcos(91+§)

For the denominator of P(z) we have

_ a(A-aeq)
s
A+ aTq,q,
W = T
1+ A
pﬂ' = — 4 N

These values can then be substituted into the solutions given above to find 7y,

9, and 73. The values for s; are symmetric in (a,@) and (g, ¢) to the r; values.

150

[Bel90]

[Bey87]

[Bry77]

[CHMT79]

(CM79]

[CMS0]

[CM81]

[FK90a]

[FK90b]

[FK91]

REFERENCES

Steven Bellenot. “Global Virtual Time Algorithms.” In Proceedings
of the SCS Multiconference on Distributed Simulation, volume 22,1,
pp- 122-127. Society for Computer Simulation, January 1990.

William H. Beyer, editor. CRC handbook of mathematical sciences.
CRC Press, 6th edition, 1987.

R.E. Bryant. “Simulation of packet communication architecture
computer systems.” Technical Report MIT,LCS,TR-188, Mas-
sachusetts Institute of Technology, Cambridge, Mass., 1977.

K.M. Chandy, Victor Holmes, and J. Misra. “Distributed Simulation
of Networks.” Computer Networks, 3(2), 1979.

K. Mani Chandy and Jayadev Misra. “Distributed Simulation: A
Case Study in Design and Verification of Distributed Programs.”
IEEE Transactions on Software Engineering, SE-5(5), 1979.

K.M. Chandy and J. Misra. “Termination detection of diffusing
computations in communicating sequential processes.” Technical
Report TR-144, Computer Science Dept. University of Texas at
Austin, Austin, TX, 1980.

K.M. Chandy and J. Misra. “Asynchronous Distributed Simulation
via a Sequence of Parallel Computations.” Communications of the
ACM, 24(11), 1981.

Robert E. Felderman and Leonard Kleinrock. “T'wo Processor Time
Warp Analysis: Capturing the Effects of Message Queueing and
Rollback/State Saving Costs.” Submitted to ACM Transactions on
Modelling and Computer Simulation, November 1990.

Robert E. Felderman and Leonard Kleinrock. “An Upper Bound on
the Improvement of Asynchronous Versus Synchronous Distributed
Processing.” In Proceedings of the SCS Multiconference on Dis-
tributed Simulation, volume 22,1, pp. 131-136. Society for Computer
Simulation, January 1990.

Robert E. Felderman and Leonard Kleinrock. “Two Processor Time
Warp Analysis: Some Results on a Unifying Approach.” In Proceed-

151

[FTG8S]

[Fuj88a]

[Fuj8sb]

[Fuj89al

[Fuj89b)

[GAF91]

[GKP89)]

[Jef85]

[TM84]

[Jol61]

ings of the SCS Multiconference on Advances in Parallel and Dis-
tributed Simulation, volume 23,1, pp. 3-10. Society for Computer
Simulation, January 1991.

Richard M. Fujimoto, Jya-Jang Tsai, and Ganesh Gopalakrishnan.
“Design and Performance of Special Purpose Hardware for Time
Warp.” In Proceedings of the 15th International Symposium on
Computer Architecture, June 1988.

Richard M. Fujimoto. “Lookahead in Parallel Discrete Event Simu-
lation.” In International Conference on Parallel Processing, 1988.

Richard M. Fujimoto. “Performance Measurements of Distributed
Simulation Strategies.” In Proceedings of the SCS Multiconference
on Distributed Simulation. The Society for Computer Simulation,
July 1988.

Richard M. Fujimoto. “Performance Measurements of Distributed
Simulation Strategies.” TRANSACTIONS of The Society for Com-
puter Simulation, 6(2), 1989.

Richard M. Fujimoto. “Time Warp on a Shared Memory Multipro-
cessor.” Technical Report UUCS-88-021a, Computer Science De-
partment, University of Utah, Salt Lake City, UT 84112, January
1989.

A. Gupta, L. F. Akyildiz, and R. M. Fujimoto. “Performance Analy-
sis of “Time Warp” With Homogeneous Processors and Exponential
Task Times.” In Proceedings of the 1991 SIGMETRICS Conference,
pp. 101-110. Association for Computing Machinery, May 1991.

Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Con-
crete Mathematics. Addison-Wesley Publishing Co., 1989.

David R. Jefferson. “Virtual Time.” ACM Transactions on Pro-
gramming Languages and Systems, 7(3):404-425, July 1985.

D. Jefferson and A. Motro. “The Time Warp Concurrency Control
Mechanism For Distributed Databases.” Technical Report TR-84-
302, Computer Science Department, University of Southern Califor-
nia, January 1984.

L.B.W. Jolley. Summation of Series. Dover Publications, Inc., sec-
ond revised edition, 1961.

152

[TW84]

[KF91]

[Kle75]

[Kle89]

[KW78]

[KWS85]

[Lam78]

[LL89)

(LL90a)

[LL90b]

David Jefferson and Andrew Witkowski. “An Approach to Per-
formance Analysis of Timestamp-driven Synchronization Mecha-
nisms.” In Proceedings of the 3rd annual ACM Symposium on Prin-
ciples of Distributed Computing, Vancouver, B.C. Canada, August
27-29 1984.

Leonard Kleinrock and Robert E. Felderman. “Two Processor Time
Warp Analysis: A Unifying Approach.” International Journal of
Computer Simulation, late 1991.

Leonard Kleinrock. Queueing Systems: Volume 1: Theory. John
Wiley and Sons, Inc., 1975.

Leonard Kleinrock. “On Distributed Systems Performance.” In
Proceedings of the 7th ITC Specialist Seminar, Adelaide, Australia.
ITC, September 1989. (Also published in “Computer Networks and
ISDN Systems” vol. 20, no.1-5, pp. 206-215, December 1990.).

Granino A. Korn and John V. Wait. Digital Continuous-System
Simulation. Prentice-Hall, Englewood Cliffs, N.J., 1978.

Clyde P. Kruskal and Alan Weiss. “Allocating Independent Sub-
tasks on Parallel Processors.” IEEE Transactions on Software En-
gineering, SE-11(10), October 1985.

L. Lamport. “Time, Clocks, and the Ordering of Events in a Dis-
tributed System.” Communications of the ACM, 21(7):558-564,
July 1978.

Yi-Bing Lin and Edward D. Lazowska. “A Study of Time Warp Roll-
back Mechanisms.” Technical Report 89-09-07, Department of Com-
puter Science and Engineering, University of Washington, November
1989.

Yi-Bing Lin and Edward D. Lazowska. “Optimality Considerations
for “Time Warp” Parallel Simulation.” In Proceedings of the SCS
Multiconference on Distributed Simulation, volume 22,1, pp. 20-34.
Society for Computer Simulation, January 1990.

Yi-Bing Lin and Edward D. Lazowska. “Processor Scheduling for
Time Warp Parallel Simulation.” Technical Report 90-03-03, De-
partment of Computer Science and Engineering, University of Wash-
ington, February 1990.

153

(LL9OC]

[LLB8Y]

[LMS83]

[LSW39)

[Lub87]

[Mad89]

[Mis86]

[MM84]

[MNF91]

IMWMS0]

Yi-Bing Lin and Edward D. Lazowska. “Reducing the State Saving
Overhead For Time Warp Parallel Simulation.” Technical Report
90-02-03, Department of Computer Science and Engineering, Uni-
versity of Washington, February 1990.

Yi-Bing Lin, Edward D. Lazowska, and Jean-Loup Baer. “Parallel
trace-Driven Simulation of Multiprocessor Cache Performance: Al-
gorithms and Analysis.” Technical Report 89-07-06, Department of
Computer Science and Engineering, University of Washington, July
1989.

Steven Lavenberg, Richard Muntz, and Behrokh Samadi. “Perfor-
mance Analysis of a Rollback Method for Distributed Simulation.”
In Performance 83, pp. 117-132. North-Holland, 1983.

B. Lubachevsky, A. Shwartz, and A. Weiss. “Rollback Sometimes
Works... If Filtered.” In Proceedings of the 1989 Winter Simulation
Conference, pp. 630639, December 1989.

B.D. Lubachevsky. “Efficient Parallel Simulations of Asynchronous
Cellular Arrays.” Complex Systems, 1:1099-1123, 1987.

Vijay Krishna Madisetti. “Self Synchronizing Concurrent Comput-
ing Systems.” Technical Report UCB/ERL M89/122, Electronics
Research Laboratory, College of Engineering University of Califor-
nia Berkeley, CA 94720, October 1989.

Jayadev Misra. “Distributed Discrete-Event Simulation.” Comput-
ing Surveys, 18(1):39-65, March 1986.

Debasis Mitra and I. Mitrani. “Analysis and Optimum Performance
of Two Message-Passing Parallel Processors Synchronized by Roll-
back.” In Performance '84, pp. 35-50. North-Holland, 1984.

Vijay Madisetti, David Nicol, and Richard Fujimoto, editors. Pro-
ceedings of the SCS Multiconference on Advances in Parallel and
Distributed Simulation, volume 23,1. Society for Computer Simula-
tion, January 1991.

Vijay Madisetti, Jean Walrand, and David Messerschmitt. “Syn-
chronization in Message-Passing Computers: Models, Algorithms
and Analysis.” In Proceedings of the SCS Multiconference on Dis-
tributed Simulation, volume 22,1, pp. 35-48. Society for Computer
Simulation, January 1990.

154

[Nic88]

[Nic90a]

[Nic90b)

[Nic91}

[PWM79)

[See79}

[UF89]

[UJ88]

(WL89]

D. M. Nicol. “Parallel Discrete-Event Simulation of FCFS Stochas-
tic Queueing Networks.” SIGPLAN Not., 23(9):124-137, September
1988.

D. M. Nicol. “The Cost of Conservative Synchronization in Parallel
Discrete Event Simulations.” Technical Report 90-20, Institute for
Computer Applications in Science and Engineering(ICASE), May
1990.

David Nicol, editor. Proceedings of the SCS Multiconference on Dis-
tributed Simulation, volume 22,1. Society for Computer Simulation,
January 1990.

David M. Nicol. “Parallel Self-initiating Discrete-Event Simu-
lations.” Transactions on Modelling and Computer Simulation,
1(1):24-50, January 1991.

J. Kent Peacock, J.W. Wong, and Eric G. Manning. “Distributed
Simulation Using a Network of Processors.” Computer Networks,
3(1):44-56, 1979.

M. Secthalakshmi. “A study and analysis of performance of dis-
tributed simulation.”. Master’s thesis, Computer Science Dept. Uni-
versity of Texas at Austin, Austin, TX, 1979.

Brian Unger and Richard Fujimoto, editors. Proceedings of the SCS
Multiconference on Distributed Simulation, volume 21,2. Society for
Computer Simulation, March 1989.

Brian Unger and David Jefferson. Proceedings of the SCS Mul-
ticonference on Distributed Simulation, volume 19,3. Society for
Computer Simulation, July 1988.

D.B. Wagner and E.D. Lazowska. “Parallel Simulation of Queueing
Networks: Limitations and Potentials.” In Proceedings of 1989 ACM
SIGMETRICS and PERFORMANCE 89, volume 17,1, pp. 146-
155, May 1989.

155

