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We analytically evaluate the performance of distributed simulation synchro-
nization algorithms, focusing mainly on the optimistic protocol, Time Warp.
We first provide an upper bound on the expected improvement of Time Warp
over time-stepped simulation and show, for a particular system model, that
Time Warp is only able to outperform time-stepped simulation by a factor of
(In P), where P is the number of processors used by each method. A model for
two processor Time Warp operation is then developed. Closed-form expressions
are derived for several interesting performance metrics including speedup, the
distribution of virtual time separation between the processes and the average
number of state buffers used. This model unifies previous work on two processor
Time Warp analysis and provides further insight into the operation of systems
synchronized by rollback. The model is generalized to include costs for message
queueing, rollback and state saving while continuing to provide closed-form
expressions for the performance measures. We then explore a simple model
for conservative simulation on two processors and quantify the improvement

in speedup by sending null messages and exploiting lookahead We evaluate the
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degradation due to costs for detecting and breaking deadlocks and also compare
the conservative model with the optimistic models developed earlier. Finally,
we address the issue of multiprocessor Time Warp by discussing techniques
to evaluate the performance of the algorithm as the system scales to a large

number of processors (P > 2).






CHAPTER 1

Introduction

1.1 Discrete Event Simulation

The systems that we are able to create become larger and more complex every
day. In many cases, we have moved beyond a point where one is able to predict
the performance of a large system, be it a high-speed computer network or a
super-sonic airplane, by purely analytical means. It is now often necessary to
simulate the operation of a proposed system in order to better understand its
behavior. Additionally, simulation is a useful tool to examine complex existing
systems such as global weather patterns or the world economy. As the size of
these systems increases, the simulations demand more computing power. Nat-
urally then, one would like to utilize the recent advances in parallel computing
technology to speed up the execution of simulations. Unfortunately, it is a non-
trivial task to efficiently implement a parallel simulation system, though several

techniques have been developed to do so.

This dissertation examines the performance of several different algorithms
used to synchronize distributed discrete event simulations. Our major focus is
on the optimistic methods, though we consider conservative approaches as well.
In the remainder of this chapter we introduce the various simulation algorithms

that have been proposed and/or implemented, so that the reader will be better



able to understand the analysis that follows.

1.2 Sequential Simulation

In order to understand parallel simulation, we must first discuss sequential dis-
crete event simulation techniques. Discrete event simulation (DES) allows the
simulation time to advance in arbitrary increments as the system simulates
events in increasing order (an example follows below). When the system com-
pletes the processing associated with an event, the clock is advanced to the
occurrence time of the next event. There is no need to let the clock advance
in smaller increments, since nothing will happen in the simulated system be-
tween the time of the previous event and the time of the next event. DES is
not the only technique for simulation, some systems (e.g. those characterized
by differential equations) are more naturally simulated by a continuous-time
simulator [KW78]. However, we only concern ourselves with discrete event sim-

ulation algorithms in this work.

The basic method of sequential simulation centers around the “event list”.
Events are scheduled by placing them in the event list. The simulator proceeds
by taking the event with the smallest time off the the event list, incrementing
the simulation clock to the time of this event, and executing it. This execution
may generate new events in the future, and these new events are placed (in
the proper time order) into the event list. A simple example is a single-server
queueing system. Customers arrive to the system, are serviced, and leave the
system. Typical events for this scenario are: the arrival of a customer and the
departure of a customer. If the queue is empty, the arrival of a customer will

generate two new events for the event list: the departure of that customer and



the arrival of the next customer. The simulated time of the departure event will
be the arrival time plus the service time which is drawn from the distribution
of interest. If the queue isn’t empty then the execution of the arrival event
merely schedules the next arrival event and adds this customer to the queue. A
departure event removes a customer from the server and places the customer

at the head of the queue into service by scheduling its departure event.

1.3 Parallel Discrete Event Simulation

The sequential nature of the event list precludes a direct parallel implemen-
tation. Parallel DES is generally accomplished by partitioning the simulation
into logical processes (I.LP) which simulate some physical process in the system.
Each process interacts with other processes by sending and receiving messages.
Using our queueing example above, we could partition the system into three
physical processes: the arrival generator, the queue/server and the departure
“sink”. The arrival process generates customer arrivals to the queue by send-
ing messages stamped with the arrival time at the queue and the number of
customers if we have bulk arrivals. The queue/server receives customer mes-
sages, queues the customers, and services them by sending a message to the
departure sink stamped with the time that the customer left the server (and
arrived at the sink). The departure “sink” is used to collect any necessary in-
formation as the job leaves the system. Each process operates autonomously
by receiving messages, performing internal computation and sending messages.
Each process terminates once its local clock, the time of receipt of the message
currently being processed, has reached T,,,., the total time of the simulation (a

user specified duration).
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A = Source B,C,D,E = Servers F = Sink

Figure 1.1: An example queueing network.

For clarification, we present a simple queueing network shown in Figure 1.1.
The logical processes in this system are the customer arrival process (A), the
queueing stations (B,C,D,E) and a final sink process (F) that collects departing
customers. Logical process A (LP4) connects to LPg which is in turn connected
to LP¢ and LPp etc. Every path which can be traversed by a customer in
the physical system must correspond to a logical communication path in the
simulation system. Messages passed between LPs in our queueing example are

the actual customers flowing through the system.

Ideally, each logical process can be placed on its own processor, and we can
gain speedup proportional to the number of processors used. Unfortunately, this
is often not the case. Though not obvious from the simplistic description above,
some controls are necessary to maintain causality between events. If an event
A directly (or indirectly) affects the outcome of event B, then event A must
be executed before event B. If these two events are located on different pro-
cessors, then some communication/synchronization must take place so that the
proper ordering is maintained. If blocking is used for synchronization, then care
must be taken to prevent the simulation from deadlocking. There are basically

three strategies used in the simulation community to combat this problem. The



first technique detects and breaks deadlocks. The other two prevent deadlocks
from occurring through various methods. One of these methods is based on the
knowledge of how deadlocks occur and prevents the deadlock from happening.
The second prevention technique avoids blocking by using a rollback mechanism
to repair causality violations. Algorithms which use the rollback mechanism are
generally called “optimistic” strategies, while the more traditional methods of
keeping logical process clocks in near synchronization are referred to as “con-
servative” strategies. Each of these techniques is described in more detail in the

following sections.

1.3.1 Time-Stepped Simulation

Though more often used as a technique for simulating continuous-time systems,
distributed time-stepped simulation [PWM79] can be used for discrete event
simulation by keeping all the local clocks in strict synchronization (strictly
speaking this is not DES since local clocks do not jump from event to event).
At any point in real time each LP’s local clock has the same value as any
other LP’s clock. As the simulation runs, the local clocks take on a sequence
of discrete values (¢, t1,%2,...) each differing by an amount A. The choice of
an appropriate A is a non-trivial task. It must be chosen small enough such
that causal events are executed in different time steps. All processors must
complete execution of events up to ¢; before any processor begins processing at
ti11. Since each processor may have a different amount of work to do at each
time step or some may operate at different speeds, many processors may have
to wait for the slowest one to complete execution of the i*? step, thus degrading

speedup. Also, if the LPs don’t have events to process at every {;, then this



algorithm might produce little speedup since many processors might be idle
during any given step. Time-stepped simulation is attractive due to its simplicity
of implementation. By keeping all the LPs processing at the same simulation
time, deadlocks cannot occur and no further effort needs to be expended to

guarantee the correctness of the simulation.

1.3.2 Conservative Methods

Conservative methods of DES are based on the work of Chandy, Misra, Bryant
and others [CM79} [CHM79| [Bry77]. The best survey of this area can be found
in [Mis86]. As mentioned earlier, the system is partitioned into logical processes
and a static communication network between the LPs is defined such that if
the physical processes being simulated by the LPs need to communicate, the
LPs have a communication link between them. A time stamp on each message
indicates the customer’s arrival at a particular process in the system. Each LP
has a local clock, and a clock associated with each of its incoming and outgoing
links. A process is only allowed to send messages on a link in strictly increasing
order of timestamps. Therefore, when an LP receives a message with timestamp
v on one of its incoming links, it knows that it can never receive a message on
that link with a smaller timestamp than v In the case where the LP only has
one incoming link, it can immediately advance its clock to this time v, process
the message (customer arrival) and possibly send messages on its outgoing links.
The time associated with each link is the time of the most recently sent /received
message. It indicates that no message can be sent/received on this link with a

time lower than the clock of the link.

Logical processes advance their local clocks as far as the times on their
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Figure 1.2: LP simulating a merge point.

input links allows them to. For example, consider an LP which is simulating
a merge point (Figure 1.2) in our queueing network. A merge point simply
forwards messages from its input links to its output link. Messages must go out
in strictly increasing timestamp order. Assume it has two input links (I, Ip)
and one output link (O). Initially it sets its local clock and all link clocks
to zero. Further, let’s assume that it receives a message M on I; which is a
single customer arrival at time 10. It would like to forward this message on Oy.
Unfortunately, it cannot do so immediately. The problem is that the timestamp
on Iy, the other outgoing link is still zero. It is possible that a message with
timestamp less than 10 might arrive on f,. Since messages on the outgoing link
must be sent in strictly increasing timestamp order, this LP must wait until it
knows it cannot receive a message with a timestamp smaller than 10 before it

can forward message M.

This example shows the essential problem with the conservative approach.
The problem can manifest itself in two ways. The first (as we saw) is that
parallelism is limited. Another more problematic result is the possibility of
deadlock. A simple example is shown in Figure 1.3. Suppose LP, is waiting
for some information from its top input link before it can proceed. This would

be due to the fact that LPp was unable to send it any messages because it
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Figure 1.3: A queueing network with potential deadlock.

was waiting for input from either LP4 or the source LP. If it is waiting for
LP4 we have a deadlock. A great deal of research has addressed this aspect
of conservative simulation [PWMT79] [CM81] [CHM79| [Mis86] and there are
essentially two directions to pursue. One is deadlock avoidance, the other is

detection and correction.

One method of avoiding deadlock is to introduce “null” messages. These
are messages which only exist in the distributed simulation to avoid deadlocks.
A null message is treated as a regular message with respect to the local LP
clocks and the link clocks. A null message has a timestamp which is used to
communicate the fact that no messages with an earlier timestamp will traverse
a given link. The null message is an artifact of the distributed simulation and
wouldn’t appear in a sequential simulation or in the real system. When sending
a “real” message on a given link, an LP also sends null messages with the same
timestamp on all other outgoing links. The formal proof that this algorithm
avoids deadlocks can be found in [CM79]. Unfortunately, this scheme generates
a great deal of additional overhead traffic due to the null messages [See79].
Deadlocks may be infrequent, so it may be extremely wasteful to send null
messages constantly. Therefore, some researchers propose to detect deadlocks

and correct them once detected [CM81]. Chandy and Misra describe a technique



based on Dijkstra and Scholten’s work on termination detection [CMB80]. Once
the deadlock has been detected, each LP; calculates the minimum timestamp
of outgoing messages that it wants to send, under the assumption that it will
not receive any further messages. Call this time v/". Each LP can calculate its
™" independently. A distributed algorithm is then used to find the minimum

over all the processors (i) of the v7** values. The node with the minimum v

i
is allowed to send this message since no other LP will send it a message with a
lower timestamp. By allowing this “min” LP to proceed, we break the deadlock.
The authors discuss a modification to this algorithm which takes into account

potential causality to allow more than just the “min” LP to resume after a

deadlock [CM81].

An additional problem with the conservative strategy is that the intercon-
nection between the LPs is static and fixed throughout the run. Ideally we’d

like to dynamically create LPs and links throughout a simulation.

1.3.3 Optimistic Strategies

One of the more recent developments in the area of DES are the so-called
optimistic strategies which are based on a protocol called Time Warp (TW)
developed by Jefferson [Jef85). The basic idea is that the restriction of strictly
increasing timestamps on messages sent over a link is restrictive and leads to
too many problems (deadlock and unnecessary waiting). The Time Warp mech-
anism allows LPs to process messages as they are received, though if more than
one message is in the message queue, the one with the minimum timestamp
is processed first. If a message arrives which has a lower timestamp than the

value of the LP’s clock, the LP is “rolled back” to the time of this message.



This is able to be accomplished because the system periodically saves the state
of the LP. Any effects of having advanced too far (i.e. erroneous messages) are

canceled through an elegant technique using “anti-messages”.

When a process is rolled back from virtual time v; to virtual time vy, zll
messages sent between vy and v; may be in error. They were produced without
knowledge contained in a message (the one that caused the rollback) that could
have had a causal effect on them. Therefore the effects of sending these (po-
tentially incorrect} messages must be nullified. This is accomplished by sending
an anti-message for each message sent between vy and v;. Anti-messages act in
the following manner. If an anti-message is placed in a message queue with its
positive partner, both messages are annihilated. If it arrives at the receiving
LP and doesn’t find its partner in the message queue, there are two possible
scenarios. One possibility is that it beat its positive partner to the receiving
LP. In this case the negative message will be in the message queue when the
positive message arrives, thus deleting it and any potential effects. The other
possibility is that the positive message has already been processed. In this case
the receiving LP’s clock will have a higher timestamp than the arriving anti-
message. Therefore, the LP will be rolled back and may send its own set of
anti-messages. It has been shown that this “cascading rollback” is bounded and

that the system will make progress [Jef85].

The optimistic approach essentially gambles on a time/space tradeoff. By
using extra space (memory storage) for saving state and messages, it hopes to
reduce the total time it takes to complete a simulation. The conservative ap-
proaches use blocking, while Time Warp uses space (state saving) then rollback

for synchronization.
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One of the problems of the Time Warp mechanism is the overhead associ-
ated with state saving. In addition to states, every message received and every
message sent must be saved by a process. Fortunately, we do not need to keep
all state information back to the beginning of the run. A concept called Global
Virtual Time (GVT) allows the system to periodically throw away obsolete in-
formation. GVT is defined as the minimum of all the local LP clocks and the
timestamps of all messages in transit. Nothing in the system has a virtual time
less than GVT, and the system can discard all state information with times-
tamps earlier than GVT. Obviously GVT is a very difficult quantity to obtain,
since we cannot take a “global” snapshot of this distributed system [Lam?78].
Algorithms have been developed to calculate a lower bound on GVT which can

be used as an estimate to free up memory space [Bel90).

One of the benefits that Time Warp has over the conservative methods is
its lack of insistence on a static interconnection network. Any LP can send a
message to or receive a message from any other LP at any time during the
simulation. This should prove to be very useful when attempting to perform

load balancing or in a simulation where processes are created and destroyed.

1.4 Classes of Simulation Models

1.4.1 Message-Initiating Models

The queueing systems discussed above came from the general class of “message-
initiating” models. A message-initiating model is one in which a logical pro-
cess performs no work unless it receives a message from another logical pro-

cess. The best examples are the aforementioned queueing networks where each

11



server/queue has nothing to do until the arrival of a message from another
server. The messages in the simulation correspond to the customers in the
queueing system. Messages carry the work in this class of systems. Generally
the system starts with some messages “pre-placed” in some queues. The system

progresses by processing these messages and generating new ones.

1.4.2 Self-Initiating Models

Another type of simulation is the “self-initiating” model [Nic91]. This system
is one where each logical process performs work regardless of whether it has
received any messages from other logical processes. Here, we find that messages
do not carry work, rather they merely provide some sort of state information.
The example used in [Nic91] is the Ising Spin model [Lub87]. In this system, each
logical process models a particle which randomly and independently decides to
modify its state (say at simulated time v). Its new state is a function of the
states of neighboring particles at time v. Messages passed between LPs convey

state information, they do not cause the processor to re-evaluate its state.

1.4.3 Hybrid Models

Some systems contain elements of both message-initiating and self-initiating
models. A good example of this is a trace-driven multiprocessor cache simu-
lation [Nic91] [LLB89]. Each logical process simulates operations (reads and
writes) of one physical processor’s cache and each proceeds independently of
the other LPs. A message is sent to other logical processes whenever a reference
is made to global memory. The arrival of a message at a logical processor does

not cause reads or writes, rather the state of the cache might have to be up-

12



dated (invalidation of entries). In this system, processors can proceed without
the receipt of any messages, though when messages arrive the LP must perform

some work.

This differentiation between models becomes important when discussing an-

alytical work.

1.5 Previous Related Work

Our work focuses on the performance evaluation of the various synchronization
algorithms described earlier, though our major focus is on the analysis of the op-
timistic protocol Time Warp. Most of the analysis of these simulation methods
has been empirical rather than analytical. Unfortunately, the performance of
either the conservative or optimistic strategies is highly data dependent. Some
of the systems that are simulated have a great deal of built-in parallelism, while
others do not. Therefore, one must be very careful when citing any performance
measure to recognize that the performance (i.e. speedup or lack thereof) may not
be due to the method of simulation, but rather to the system being simulated
[WL89]. Another problem which may affect performance is the partitioning of
the physical processes into logical processes and the assignment of these LPs to
the parallel processors. The allocation of these tasks can have a large impact on
the performance. A load imbalance between the processors can severely degrade
performance. Also, LPs that communicate often, should be placed on the same

processor, so that messages need not be sent over a communication network.
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1.5.1 Empirical Studies

There have been a large number of papers published giving performance results
for a specific application when using one particular synchronization algorithm,
either optimistic or conservative [UJ88] [UF89] [Nic90b] [MNF91]. These pa-
pers generally show modest speedups over sequential simulation regardless of
the underlying synchronization algorithm. Neither conservative nor optimistic

strategies seem to be dominant over all application domains.

In contrast to studies that evaluate performance under a real application, Fu-
jimoto has examined a variety synchronization strategies in [Fuj88al, [Fuj88b],
[Fuj89a], {Fuj89b] through the use of an artificial application. Instead of using a
real system to simulate, he controls various parameters of the LPs and examines
the impact on performance. For the conservative approaches the following gen-
eral principles were derived. Lookahead, the ability of a logical process to predict
future behavior, is extremely important in gaining speedup. When lookahead is
too small, parallelism is limited, and processes are forced to block more often.
Message population, the number of messages or events circulating through the
LP network, also regulates speedup. Not surprisingly, when lookahead is small,
the message population must be large in order to gain speedup. Conversely,
when lookahead is large, the message population may be small yet still provide
good speedup. Finally, the deadlock avoidance approach (null messages) seems
to be more robust in gaining speedup over a large class of problems, than the

deadlock detection and recovery technique.

For Time Warp, lookahead is useful, but not necessary. This is an important
point in favor of the optimistic approach. Conservative techniques generally

must exploit lookahead, while Time Warp performs reasonably well without it.
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Event computation granularity is important in its relation to the cost for state
saving and rollback. If events are “cheap”, but rollback and state saving are
expensive, then the overhead of Time Warp will keep speedup low. In order for
TW to succeed in gaining high speedups, state saving/restoration and rollback
costs must be kept to a minimum. Fujimoto suggests hardware support to reduce

these costs to a negligible level [FTG8S].

1.5.2 Analytical Work

Our major interest is in the area of performance analysis, not empirical studies.
Very little work has appeared in the literature which discusses the average case
behavior of TW. Lavenberg, Muntz and Samadi [LMS83] examined a model
for two processor TW where messages are only used for synchronization (self-
initiating). They developed an approximation for speedup which was valid if the
interaction between the processors was small. Mitra and Mitrani [MM84] also
examined a self-initiating two processor model and developed an exact formula
for the distribution of separation in virtual time between the two processors
and for the rate of progress in simulated time per unit real time of the two
processor system. We address the relationship of these two studies to our work
in more detail in Chapter 3. Madisetti [MWM90] [Mad89] provides bounds on
the performance of a two processor self-initiating system where the processors
must have different speeds of processing and move at constant (deterministic)
rates. Madisetti extends his model to multiple processors, something we do not

address until Chapter 7.

Jefferson and Witkowski [JW84] describe a Linear Poisson Process as a

model of the arrival process of messages to a TW queue. In this work the
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authors view a single LP in isolation by aggregating the effects of all the other
LPs into two random processes, a real time message arrival process and the
virtual timestamp of these messages. The authors use this technique to model
the performance of the Time Warp database concurrency mechanism [JM84]
(which is different from the simulation method) and to find a lower bound on
the time it will take to process a message. They essentially find the time after
which no message with a smaller timestamp will arrive to preempt a message

with virtual time ».

Lin and Lazowska [LL90a] have examined Time Warp and conservative
methods by using critical path analysis. They have also examined TW itself
[LL89] [LL9Y0b] [LL90c} to better understand the state saving overhead, roll-
back mechanisms and processor scheduling when running the TW algorithm.
Though their work provides important insights, it generates different types of
results than ours. Qur results are exact, detailed performance measures of two
processor systems while Lin and Lazowska have opted to concentrate on higher-

level views of more complicated systems.

Nicol [Nic91] has provided bounds on the performance of multiprocessor
self-initiating models and introduces a new conservative synchromnization al-
gorithm. Nicol also examined the cost of conservative synchronization [Nic90a)]
and showed that, as the problem size scales, performance closes to within a con-
stant factor of optimal for a particular conservative algorithm. Some excellent
work solving for the performance of Time Warp with multiple, homogeneous,
message-initiating processors has recently appeared [GAF91]. The authors use
a Markov chain approach where the state variable is the number of executed

events beyond GVT at a processor. An approximate solution is obtained which
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We solve for the unknown constants P(f,) and Q(B;) by solving Equa-

tions 3.6 and 3.7 simultaneously with z replaced by §; and B, respectively.

P(B;) = K,(m+Q(@))
QB) = Ka(p+P@))

Solving them simultaneously yields.

— png(l + K.)
1-K,K,

_ pOKn(1+Kp)
Q(Bl) - _1'_'_Kjr

P(B,)

where

_ 518,Dp
o T B (- Bm) 0
Blﬁ2Du

Gn (31 - 31) (1 - 3232)

Substituting these values into Equations 3.6 and 3.7 and simplifying we find

K, = (3.11)

_ zpG
P(z) = — Z (3.12)

_ zpoCa
Q@) = S, (3.13)

where
BiD, (1 + Ky)

C — 3.14
' (- KKy e (1-Bir) (3.14)
Cn —_ BQDn (1 + Kp) (315)

(1 - K.K;) aq (1 - ﬁgsz)
By conservation of probability we know that P(1)+Q(1)+po = 1. Therefore,
1

P ) )

rn-1

(3.16)
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Finally, we invert the z-transforms to get our final answer.

k
Pe = Cppo(rl) k>1 (3.17)
1

Tig

1 k
—_ > .
C’npo(sl) k>1 (3.18)

3.3.1 Root Locus

In this section we show that r and r; are real, m; > 1 and 0 < o < 1. To show
that the roots r; and 7 are real, we must show that the quantity under the

square root is greater than or equal to zero, or that
2
b, — 4apyc, 2 0

Substituting in the values for a;, by, ¢, and simplifying, we find that the roots

will be real if the following inequality is satisfied.

(Bra; — Bica)’ + Bolon’qa? (31 - 01)2

+ 28,0002 (P21 + B (m(2-fr—az) + Bion)) >0 (3.19)

Since all the factors on the left-hand side of Equation 3.19 are non-negative,

the inequality must hold. Therefore, both ; and ry are real roots.

We now show that r; > 1. Assuming it is true, we require

T = %, > 1
byt Vbt —daye, > 20
VbE—da,, > 2a,+b,
b,? —dac, > dap’ +4dab,+ by’
0 > a+btog
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Substituting in the values for ap, b, and ¢, we arrive at the condition

0 > —f6162000; (3.20)

Since all the terms on the right-hand side of Equation 3.20 are non-negative,

the inequality holds.
To show that 79 < 1 we need to prove the following

—bp — /bp" = 40,y

ry = %0, <1
—b, ~\/b," —dapc, < 2a,
—by—2a, < b,,2 —4a,c,
b2 + dayb, + 4a,° < bt — dage,
aptbteg < 0

which was shown above to be true.

Finally, we show that r, > 0. We require

o — —bp — pr2—4apcp > 0
2 24, 2
—b, ~ /b, —da,e, = 0
by + /b,? —4ay,c, < 0 (multiply by ~ 1)
V by' —daye, < —by
—daye, < 0 (3.21)

Since a, and c, are non-negative, the inequality in Equation 3.21 holds, thus

proving that r, > 0. Similar proofs follow for (s1, s2), the roots of Q(z).



3.4 Performance Measures

With the complete solution to the Markov chain in hand (Equations 3.16, 3.17
and 3.18), we calculate several interesting performance measures. The first is
K, which is defined as the average distance processor one is ahead of processor
two, given that processor one is ahead. This measure is useful in determining

the number of states that will need to be saved on average as we will see below.

7 a E?;l kpi

K, =
! 2k Pr
™

Tl-—].

We find a symmetric value for processor two.

K, = Pk kg
2 T e .
1 M

51

81—1

Since we know the expected size of a state jump at processor one is 1/8;, we
find that the expected number of buffers needed for state saving when processor

one is ahead is

K
E[Buffers needed when Proc. 1 is ahead] = Tl
B
151
= — 3.22
— (3.22)
and for processor two
: K,
E[Buffers needed when Proc. 2 is ahead] = —~
B2
515
= 3.23
5 1 (3.23)
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Another useful measure, ©;;, is the probability that processor one needs

more than b buffers for storing state.

©;, = P[Proc. 1 needs > b buffers]

oo

= Y P{Proc. 1 is using i buffers]
i=bt+1
= Y Y P{Proc. 1 is using ¢ buffers | Proc. 1 is k units ahead] px
§=b+1 k=i
oc o0
= Y 3 P[Sum of ¢ geometric random variables = k| px
i=bt+1 k=i
o ® fl_ 1 ki 1 k
- S 5(8I))amam ()
bt k=i \* ~ !
By ) ( B )”
= C, = 3.24
o (25) (25 (3.2)
If 8, = 1 (single step state jumps), then ©; , reduces to the following expression.
©,, = Nt 3.25
1,k k“—%lpk 'rlb('rl _ 1) ( )

A similar (symmetric) value, ©;;, can be found for processor two. The quantity

of most interest though is speedup, and we calculate its value in the next section.

3.4.1 Speedup

Using the formulae for py and n; we calculate the speedup S when using two
processors versus using only one. S is the rate of progress when using two
processors {R;) divided by the rate of progress when using only one processor
(R;). The rate of forward progress for one processor (obviously not running
Time Warp) is defined as the average rate of virtual time progress per real
time step of the two processes defined earlier by the real time and virtual time
geometric distributions (Section 3.2). Since process one completes events (on

average) every 1/a; seconds and process two does so every 1/ae seconds and
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they make jumps in virtual time of distance 1/, and 1/8: respectively, then

the average rate of virtual time progress would be

2 hTE _abtab
2 26102

The average rate of forward progress for two processors is the expected “unfet-
tered” rate of progress (without rollbacks) per time step minus the (rollback-
distance-weighted) expected rollback rate per time step for the two processors.
The first three terms (positive terms) in the following expression give the for-
ward rate while the negative terms give the rollback rate. The negative terms
are derived by noting that when a process advances f units and causes the other

to rollback r units, the net progress is given by the difference (f — ).

A A 11
Rz—ﬁ—l—ﬁz-l-Aa(ﬂl )

oo -1
—Asqpo E fi Zgj(i —5) = Asqipo ¥ 9i 3 i —7)
=2 j=1 =2  j=t

oo k-1 oo k-1

—Ax > Pk Ytk — A an > i fei

k=1 =1 k=1 i=1
o0 k+i-1 oo k+i—1

—A3q ZPkZﬂ Z JGkyioj — qulznng, > feriog

k=1 i=1 j=1

—Asqy Z Pr E fi Zj9k+i+_1 Asgy Z T Z i Z]fk+t+,1

=1 =l =1 =1 =1 =1
As with the P(2) calculation we list the solution for each term separately, but
since each pair of terms above is symmetric with respect to f and g we only

need to derive the closed-form solution for one of the two. The derivations can

o1



be found in Appendix A.

oo -1

Asgopo Y ;D> 9:(i—37) =
=2

j=l1
o

k-1
Ax@2 Y Pe Y igki =

k=1 i=1
oo k+i-1

Asqe D Dk D fi D JOk+ici

k=1 =1 j=1

[o ] oo oo
As > Pk 3 Fi Y FGkties

k=1 i=1 j=1

AsBiBagapo
Bi(1 — B15s)
Arq28:Cppor1
(r1 = Ba)(r1 — 1)?
A39252C,p0 ((7'1 - B)) n B1Byry )
(1 —B18)(r —1)? P (ry — Bz)
ASQlﬁlﬁgcppO
pa(1 - Blﬁz)(rl - Bz)

Finally, combining all the terms together we find the formula for speedup.

S — ( 2ﬁ1ﬁ2
a1 + axfh
AaB\Bogapo

A A 1 1
)[E+E+A3(E+E)

Aamﬁlqmﬂ

A/ -FB)  B(1- BBy

Asqa32Copory

A1g151Crposy

T =B =12 (51— By) (s — 1)2

__ A08:Copo ((Tl - B1) + 513211 )
(1= B182)(r1 - 1)? B (r1 — Ba)

__ Aa18iCam ((31 — Bs) n 623131 )
(1= B1By)(s1 — 1) Ba (51— B1)

_ ASQIﬂlﬁgcppﬁ _ A3‘~'12ﬁ2ﬁfcnp0 ] (3.26)
Ba(1 - ﬁ1Bz)(T1 = Bz) pi(1— -6132)(31 - 31) '

3.5 Limiting Behavior

Before examining the results of the previous section, we explore what sorts of

models arise when taking limits on the « and § parameters. The next three

subsections will present the results for (on,a2) — 0 and (5;,8:) — 0. By taking

these limits we transform the geometric distributions into exponential distribu-

tions, thus moving from discrete time and state to continuous time and state.
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3.5.1 Continuous Time, Discrete State

We transform our model into a continuous time, discrete state (CD) model by
taking the limit as a; and a; — 0 while keeping the ratio 3! constant and
defining Eﬁ?z = g. We can take the limit either on the py equations or on our

formula for speedup. The final result for speedup is given below.

S = _ b ( Cp_ﬁthﬁzrl C,,_a.qlﬁlsl ) 397
’ (1 i + % (r1— B} (r — 1)2 * (81— B1)(s1 — 1)2 (3.27)

where
1

S E) )

!’1—1

Po=

aBi(1 - B1B2)(1 + K,)

@ = T-KK)(L-Bir)( - Bud)
c afx(1 — 51332(1 + K)
" (1 — K Ko)(1 = B282) (1 — fra)
K _05132(1 - 31-52) _
g (1= Bire)(1 - Bra@)(r1 — Ba)
K, = afB8:(1 — 8.15,)

(1= Bosn)(1 = Baa)(s1 = By)

_ (1 + B2(1 - Bia) + B, Braq,) 4

(o) 2(1 - Bia)
V(L +8,(1 - Bia) + Bi8aad,)” — 4 — 5:3)(Bo + Boogy)
2(1 - Ara)
_ (14 81(1 = Bra) + Bybhragy)
(s1,82) = L 201 - fra) 2 U+
VU +B.(1 - Boa) + BoBrady)’ — 4(1 — Boa)(By + Bragy)
2(1 — Baa)
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3.5.2 Discrete Time, Continuous State

We create a discrete time, continuous state (DC) model by taking the limit as
B, and F2 — 0 while keeping *g—; = b. We find the value for speedup by taking
limits on the speedup formula calculated for the discrete time, discrete state
model. The resulting formula is given below. We first substitute 8; = 8;/b, then
take the limit as 5; — 0. When taking the limit, we were often confronted with
functions of the form 0/0 and were forced to use ’'Hospital’s rule repeatedly.

Any terms of the form F’ are a shorthand notation for 8F/83,. We find

2 (A1 + As+ Asb+ Ash)  2Aspo (H*q1 + o)

S = a; + azb _(1+b)(a1+agb)
2pC, (Az (1+b) g+ As ((1 +b) (14 7))+ b(B*q + @) r;z))
(1+b) (o1 + cub) r§” (1 + br)
2poC, (A1 (1+8)q+ As ((1 +8) qu(1 + b)) + (Bq1 + ) 3,12))
) (1+b) (a1 + agb) st (1 + ) (3.28)
where

8
pﬂ =
Cpri + Cp8y +ris)

_ (1 + Kn) D,
P (1= K,K,) (1 —15) (A1 + Az + A3)

_ (1+ K,) D,
" (1= K K,) (1— bsh) (A + Az + Ag)

Dy
Ky = RYE !
(1-13) (E +71) (A1 + Az + A3)

DI

n

~ (X —bsh) (1+ &) (A; + Ay + As)

K
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_ At Ad + Agg,

L b
D = A + Azl;‘l- Asbg,

(r3) = :
LI\ 26 (A) + Az + As)
+ [(A1+ As — b(Az + As)(1 — 2g) + Axgr)’

) { -4 - Ag+b(As + A5) — Ango

+ 4b0sTy (A + 4s) (Aa +b(Az + A }

! ! _ 1 —_ —
(sh, ) = (2b(A1+A2+A3)){A1+A3 b(Az + A3) — Arbgy

+ [(Ar1 + A3 — b(A2 + Ag))°

+ 2bq (A12 + 4A, Ay + 6A; Ay + 44245 + 4452

T 2A414sb + 241 45b + Ar%q,)]* }

3.5.3 Continuous Time, Continuous State

Finally, we solve a continuous time, continunous state (CC) model by taking
limits on both e; and 8;. This can be done either by going first to the CD (a;)
or DC (B;) model from DD, and then finishing by taking limits on the other

variable. The final equation for speedup is given below.

aq2poCy aqipoC,’
O - 3.2
=2 (1 (1 + b'rl’) (a + Eb) 'f'1'2 (1 + 31’) (a + ab) 31.0‘2) ( 9)

where
ri'sy’
P = 7 7
Co'ri' + Cypst’ + 1151/
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o = a(1+b) (1 +K,)
P b1 - KK, (1—1))

o -8+ (1+ Kp)
"7 b (1 - K,K,) (1 - bsy')

_ a(l+b)
B=rorma-m)
o ___ a(+h)

b (1 + 81') (1 - sz’)

~1+ @b+ agy /1 + 2ab + a2 — 2a7, — 4abq, + 2a%6q, + 3°G}

I LA
(?"1, T2) - %
(51, 5p) = QDH BT Vol + 20+ B~ dabq, + 2a%bq, — 2067, + PHE
1992/ —
2b

3.6 Previous Work on 2-Processor Models

There has been some similar work on two processor Time Warp models. Laven-
berg, Muntz and Samadi [LMS83] used a continuous time, continuous state
model to solve for the speedup (Sims) of two processors over one processor.
Their work resulted in an approximation for speedup that was valid only for
0 < ¢; < 0.05, where ¢; is the probability that processor ¢ will send a message
to the other processor. Our result for this CC case is exact, has no restrictions
on any of the parameters and therefore subsumes their work. In fact, we can
compare our results directly for a simplified case where a = 1/2 (same pro-

cessing rate for both processors), b = 1 (same average jump in virtual time
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for both) and q; = g2 = g (same probability of sending a message), which we
refer to as the symmetric, balanced case. Lavenberg et al. derive the following

approximation for speedup in this case.

Slma ~2- Y 2(]
Our equation for speedup in this restricted case is exactly

3_2(\/8+q—\/§)
- VBHa+.A

If we expand this formula using a power series about the point (g = 0) and list

only the first few terms, we see the essential difference between our result and
Lavenberg et al.
3
g V2¢ :
S~2—12¢+ < ——F+0(q?
Y24+ =Yg+ 0@)
This clearly shows that the Lavenberg et al. result matches ours in the first two
terms. Figure 3.3 shows the Lavenberg et al. result and our result compared to

simulation with 99% confidence intervals.

Mitra and Mitrani [MM84] also solve a two processor model but use a dis-
crete time, continuous state approach. They solve for the distribution of the
separation between the two processors and the rate of progress of the two. In
the definition of their model, a processor sends a message (with probability ¢;)
before advancing. Our model has a processor send a message after advancing.
This difference between the two models disappears in the calculation of the
average rate of progress. Their solution allows a general continuous distribution
for the state jumps (virtual time), but requires (deterministic) single steps for
the discrete time. In each time slot both processors always advance forward in
virtual time some arbitrary distance. In our model this is equivalent to setting

a; = ag = 1. Since our analysis only supports an exponential distribution for
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Figure 3.3: Comparison of speedup results for a simplified case.
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state changes, but their analysis doesn’t have a distribution on time, neither

model subsumes the other.

Finally, the DD and CD models have not appeared in the literature, although
an early version of this work has been published by Kleinrock [Kle89]. It is a
simplified version of the CD model where 8; = 5, = 1 (which is single step state
jumps). Figure 3.4 shows how all of this work fits together. The work discussed

in this paper covers the shaded region.
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3.7 Results for a Restricted Model

In order to better understand our results, we examine a restricted version of
the CD model (i.e. the model analyzed in [Kle89]). In this less general model
we eliminate two variables by forcing each processor to advance exactly one
virtual time unit each time it advances (8; = B = 1). Again, we define ¢; as
the interaction parameter; the probability that processor i sends a message to
the other processor. We also define a as the ratio T{‘}lﬁ where ); is the rate
for the continuous time distribution for processor ¢ (rate at which messages are

processed). The parameter a can be thought of as a measure of “load balancing”.

When a = 1/2 the load is balanced.

The solution for this simplified system is given below.

5= (l o ((rla-qzn" ¥ (slaihlf))

1
"o 1+ ("11—1) + (811-4)
ro= 14+ 2; aa_q2
, o LtyI—dag

The equations above indicate that speedup reaches a maximum value of two
when ¢; = ¢, = 0 (no interaction). Since neither processor hinders the other,
we can exploit the full potential of each processor. In general one might assume
that the speedup would simply be twice the speed of the slowest processor. In

fact, the system does a little bit worse. Even though one processor might be
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faster than the other, it is possible (stochastically) that the slower processor
gets ahead of the faster one. At this point it is possible that the faster processor
could cause the slower one to rollback. Overall therefore, the speedup is less

than twice the speed of the slower processor on average.

Figure 3.5 shows the speedup for the symmetric case where ¢; = ¢ = ¢,
though it does not show the discontinuity in the function S at ¢ = 0. For ¢ =0,
S = 2 for all a and so S is discontinuous for all a # 1/2. This is not shown in
the figure. For ¢ = 0 no messages are sent, therefore no rollbacks will occur,
and it is clear that S =2. For g >0asa—0ora — 1 (X — 0or X — 0),
then the speedup goes to zero as shown in the figure. This occurs because one
process moves extremely slowly (compared to the equivalent single process) and
it will eventually drag the faster process back to its lagging position. The TW
system moves at less than twice the speed of the slowest processor, while the
equivalent single processor moves at the average rate 51;—"1 It is clear that load
balancing is extremely important since good speedup only occurs near a = 1/2.

Notice that the interaction parameter is important when a is near 1/2.

Figure 3.6 shows the speedup for the balanced case where A; = Ay. Note that
the speedup is 2 for ¢; = ¢o = 0 and goes to 4/3 for ¢; = ¢ = 1 Specifically,
it never goes below one. We always get speedup with two processors as long as

a=1/2.

Figure 3.7 shows the speedup for the extremely simplified symmetric, bal-
anced case where q; = g2 = ¢q and A1 = A; = A. For this special case the formula

for speedup is
4
S =
24+ ﬁ

Note for ¢ = 0 that § = 2 and for ¢ = 1 we have S = 4/3. We can see this last
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Figure 3.5: Speedup for the symmetric case g1 = 2 = ¢
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Figure 3.6: Speedup for the balanced case Ay = Xy = A.
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Al = Az = A
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result intuitively. Since each process always sends a message to the other after
it advances, then the time for both processes to advance one unit is equal to
the maximum of two exponential delays at rate A which is 3/2 times 1/A. Thus,
the rate of progress for each process is simply % Since both are moving at this
rate, the sum equals % while R; = X which yields § = 4/3 for ¢ = 1. The curve
shown in Figure 3.7 is the “spine” of the surface plotted in Figure 3.5 and is

the “45 degree” line (q; = go) of the surface plotted in Figure 3.6.

3.7.1 Optimality Proofs

Using the simple model described above, we prove several results about opti-
mality with respect to the parameters of the system. We first show that the
speedup is monotonically decreasing in both ¢, and ¢, the interaction parame-

ters (i.e. ¢; and g, should be as small as possible). We do this by showing that

a5

3, 1S Degative. If we differentiate S with respect to g; we arrive at the following

formula

g—i = &(q, 2, a) (—(—1 +2a)® — 2aaq, + (1 — 2a)y/1 — 4aaq, )

where ®(qi1, g2, a) is a non-negative function of ¢,¢2,a and is given below
128a%a3¢,
2
(1428~ f@)*f@)(~1 + 443 - £(@) - VI - F@)VI@)

@(QL g2, a’) =

where

f(z) = V1 - 4daazx

In order to show that 3‘?—5- is negative, we must show that

— (-1 + 2a)* — 2aGg; + (1 — 2a)y/1 — 4aag, <0 (3.30)
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When a > % Equation 3.30 is trivially satisfied. Our concern is in the range

0 < a < 3, in which case our condition becomes

~(~1+2a)% = 2a3g; < —(1—2a)y/1 - 4aag, <0

2 2
———1+2a2—-2aﬁq1 > |(—=(1-2a)y/1 ~ 4aag
1
4a’q® - 8a®q? + 4a'q? > 0
4azﬁzq12 > 0

which is trivially true. A similar (symmetric) proof for gs is omitted here.

Optimization with respect to a is a little more difficult. When we differenti-
ate S with respect to a we get such a complicated formula that it is prohibitive
to solve for the optimum value of a. Fortunately, by plotting S versus a, ¢; and
¢ (Figures 3.5 and 3.6) we see that S is unimodal and that the optimum value
of a is 1/2 (A\; = Ay). When we plug this value (a = 1/2) into £ we see that

the result is 0.

85 _2-((-g)@)+a(l-g) _,
8a ja=} 1-7)(1-7)

To show that this is a maximum we must show that the second derivative is
negative at a = 1/2.
s -8(Vait V&) (ot VavE +20vE + e + 200 + 0e)
Zae VE(VE + VB + VEVE) V&

(3.31)
Equation 3.31 is clearly negative since the numerator is negative and the de-
nominator is positive. For the more general case, where the processors are not
restricted to single step advances, we find from analyzing plots of speedup that

the above result (a = 1/2 (A; = A2) for optimal performance) generalizes to

M ﬁorb=a

B - B2 l-a

(3.32)
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meaning that the average “unfettered” rate of progress in virtual time for each
processor should be the same. For a fixed value of a the best performance can
be found when Equation 3.32 is true, and overall best performance is found at

a = 1/2 with Equation 3.32 holding true.

We have not seen this result before in the literature since the two processor
models haven’t been general enough. It says that for optimum performance we
would like to place tasks on processors such that the average “independent”
rate of progress in virtual time is the same for both processors. Ideally we want
this to be true while also having each processor execute events at the same rate
(a = 1/2). This result is generally applicable to systems consisting of more than
two processors. The intuition is that if every processor tends to move forward
in virtual time at the same rate as the others, then the processors will remain

nearly synchronized without suffering a large penalty for rollbacks.

3.7.2 Adding a Cost for State Saving

One simple way of examining how state saving overhead affects the performance
of the system is to modify the value of Ry, the rate of progress on a single
processor. We introduce a parameter ¢ (¢ > 1) that indicates how much faster
events are executed without state saving. If ¢ = 2 an event completes twice
as fast on average without state saving. Since our model requires that each
processor save its state after every event, we can think of each event as taking
longer to complete in the TW system than in the single processor system where
no state saving is required. We note here that this is actually an upper bound
on the cost for state saving in this two processor system. Lin and Lazowska

[LL90c] have shown that to achieve minimal state saving costs, TW should save
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state less often than after every event. This result depends on certain system
parameters, most notably the cost for state saving. We make no attempt to
optimize the frequency of state saving, nonetheless this simple model provides

some interesting results as shown below.

By examining the CD model with the single step restriction (as above) we

arrive at the following value for R;

Rl _ C(/\1 -+ Az)

2
For this model we find that the new formula for speedup is simply 1/c times
the old value. Let us examine a very simple case in detail. If we look at the

symmetric, balanced case, the updated formula for speedup is

4
Szc(2+\/§)

It is easy to see that as ¢ — oo speedup will go to zero. For ¢ > 2 Time Warp
with two processors is always worse than running on one processor without
TW. Conversely, for ¢ < 4/3 TW always wins out. The interesting range is
4/3 < ¢ < 2.In this range, certain values of ¢ will yield speedup, while
others won’t. We are most concerned with the boundary where § = 1 which
is the transition from areas where TW on two processors helps to where it
hurts. Setting S = 1 and solving for ¢ we find the necessary condition for two
processors running TW to be faster than the single (non-TW) processor.

2
< 4(2 —¢)

Figure 3.8 shows the regions in the ¢ — ¢ plane where TW on two processors is
effective and where it is not. Thus, if we know the values of both ¢ and g for our
symmetric, balanced system we can immediately tell whether the application

will run faster under Time Warp on two processors.
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3.8 Conclusions

In this chapter we have created a model for two processor Time Warp execu-
tion and provided the results of its exact solution. The model is general enough
to subsume the work of Lavenberg, Muntz and Samadi [LMS83] and to par-
tially subsume the work of Mitra and Mitrani [MM84]. Further, we examined
a simplified version of our model and showed for optimal performance that the
processors should send as few messages as possible. Further, g (the interaction
parameter) has a large effect on speedup for when the load is balanced and
speedup changes rapidly when ¢ is near zero. Tasks should be placed on pro-
cessors such that the average “independent” rate of progress in virtual time
is the same for both processors to achieve good speedup. Ideally we want this
to be true while also having each processor process events at the same rate
(A = Ag). Finally, we addressed the cost of state saving by using a very simple
extension to the model, and examined its effect on performance. Small state
saving costs or infrequent message interactions indicate that TW is effective in

gaining speedup.
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CHAPTER 4

Two Processor Message Queueing Model

4.1 Introduction

The model introduced in the previous chapter ignored any messages that arrive
in the virtual time future of the receiver. There are many simulation models
where the messages actually carry the work. These messages must be queued
before processing and the memory costs of queueing these messages is an im-
portant performance measure. In this chapter we create and analyze a model
that accounts for the queueing and processing of all messages passed between

Processors.

4.2 The Message Queueing Model

Assume we have a job that is partitioned into two processes, each of which is
executed on a separate processor. A process (say process i) at virtual time v
operates by first executing any message in its input queue with timestamp v
and then executing its locally scheduled work. After completing its local work
at virtual time v, the process advances its clock one unit and will then send a
message to the other process with probability ¢;. Note that we only allow single
step state advances which is less general than the model presented in Chapter 3.

The process places its current virtual time on any message it sends. We will
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1 Setlocal clock (v) to 0.
2 Execute local events for v=0.
3 With probability g(i), send message stamped with 1.

REPEAT*

4  Advance local clock to v=v+1.

5 Process message in queue with timestamp = v (if it exists).
6 Execute local event for ime v.

7  With probability q(i), send message stamped with v+1.
UNTIL (v >= MAXTIME)

* If a message arrives at any time with a timestamp {tm <= v):
- set local clock to tm
- goto line 5 and continue from there

Figure 4.1: Code executed by each processor.

restrict the virtual times in our system to have integer values (ie., 0,1,2,...).
A process will schedule an event for itself at every point in virtual time. This
means that a process will have its own work to do at every point in virtual
time, and occasionally will have work sent to it from the other process. If a
message arrives with a timestamp v equal to or smaller than the local clock
time of the receiving processor, that processor is forced to rollback (discarding
any work performed at a virtual time greater than or equal to v), executes the
arriving message, then proceeds forward again from virtual time v. We show
the execution sequence for each LP in Figure 4.1. Note that there can be at

most one queued message for a process at any (integer) virtual time v.

More formally, we define two processes each executing on a separate proces-

sor. As these processes are executed, we consider that they visit the integers on
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the x-axis each beginning at = = 0 at time ¢ = 0. To process a queued message,
each processor takes an exponentially distributed amount of time with mean
1/u; (3 = 1,2). Executing locally generated work takes an exponentially dis-
tributed amount of time with mean 1/); ( = 1,2). We assume that u; = f
where 0 < f < oo. If f = oo then messages take zero time to process and are
only used for synchronization as in the previous model. As f — 0 messages
become extremely expensive to process relative to the local work that must be
performed. The parameter f essentially allows the modelling of a spectrum of
systems from self-initiating (f — oo) to message-initiating (f — 0).

After process 7 makes an advance along the axis, it will send a message to the
other process with probability ¢; (2 = 1,2). This message carries a timestamp
that is the time of the sender after making the advance. Upon receiving a

message from the sending process, this receiving process will do the following:

1: If its position along the x-axis is behind the sending process, it queues the

message.

2: If its position is equal to or ahead of the sending process, it will immediately
move back (i.e., “rollback”) along the x-axis to the current position of the
sending process and begin to process that message. All work completed
at a virtual time greater than or equal to its current position is discarded

and must be re-executed.

Let F(t)= the position of the First process (process one) at time ¢ and let

S(t)= the position of the Second process (process two) at time ¢. Further, let

D(t) = F(t) — S(t)
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D(t) = 0 whenever Case 2 occurs (i.e., a rollback). As before, we are interested
in studying the Markov process D () whose state diagram is shown in Figure 4.2.

We will solve for
P{Processors separated by k units of virtual time] = tlirgo P[D(t)=k] —-oo<k<o

namely, the equilibrium probability for the Markov chain D(¢). In order to find

the solution, we split the chain into six regions.

P, = tlirglo P[D(t) = k and Processor 2 is not processing a msg) k>1
Qr = tllrglo P[D(t) = —k and Processor 1 is not processing a msg] k>1
Sy = tllglo P[D(t) = k and Processor 2 is processing a msg] k>0
Ry = :152, P{D(t) = —k and Processor 1 is processing a msg] k>0

Ny = }irglo P[D(t) = 0 and neither is processing a msg]

By, = tlircx’lo P[D(t) = 0 and both are processing a msg|

Using our solution, we will go on to solve for some interesting performance

measures including the average rate of progress of the two processor system.

There are some implicit assumptions in our description. Qur model assumes
that states are stored after every event, otherwise a rollback would not neces-
sarily send the processor back to the time of the tardy message; rather it might
have to rollback to a much earlier time, namely, that of the last saved state.
When process i causes the other process to rollback, process ¢ immediately
discards any messages it has queued in its future. This is as if the rolled back
processor is able to transmit anti-messages instantaneously. This is not an unre-
alistic assumption in a shared-memory environment [Fuj89b). Another implicit
assumption is that each process always schedules events for itself. We also as-

sume that communication between processors incurs no delay from transmission
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to reception. Finally, the interaction between the processes is probabilistic.

4.3 Analysis of the Message Queueing Model

In this section we provide the exact solution for the continuous time, discrete

state model introduced in Section 4.2. First, some definitions are in order.

Ai

i

@

q;

Rate at which Processor 7 processes local events

fAi = Rate at which Processor i processes messages

a+af

P[ i* processor sends a message after advancin
|Y A

1-g

Referring to the state diagram for this system shown in Figure 4.2, we find

the following balance equations.

The balance equations for our system are:

By
Py
Qk
o)
No

FBo

aPe_ 1 +aq, G, Prv1+afSe k=2
alNo + 84,9, 2 +af S

aQ-1 + 6§50 Qk1 +afRe  k2>2
aNy + a7,5,Q2 +af iy

aq13,Q1 + g, 0, P + afRo +afSo

2 ] o0
@Y Pi+ong ) Qi
i1 =1
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from all Q(k)
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from all Q(k)
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Figure 4.2: State diagram for the message queueing model.
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ASy = aSi1+agq Py k>0 (47)

ASy = agyqP1+aqqy Z Qi +afBy (4.8)
i=1
BR;, = @Ri.1+ag102Qk1 k>0 (4.9)
BRy, = af1g:Q:+8qq, ) P +afB (4.10)
i=1
1 = Y P+Y Qi+> Si+) Ri+No+Bo (4.11)
i1 =1 =0 =0

This system will have a steady-state solution if A\; > 0, ¢; > 0 and f > 0. These
are fairly straightforward restrictions. The A; must be greater than zero or the
system makes no progress at all. The ¢; must be greater than zero so that there
is some probability that a processor will be rolled back once it gets ahead. This
maintains a finite expectation for D(t). Finally, f must be greater than zero so
that when a message is being processed the system will eventually complete the

operation.

We define the following z-transforms (note the different ranges on k).
P(2)=3Y P2 Q)= Q"
k=1 k=1
S(2) =Y Sk2*  R(z) =) Ri2*
£=0 k=0

Using the above equations we can solve for P(z), Q(z), S(z) and R(z) by
multiplying the appropriate equation by z* and summing over the applicable

range of k. To simplify the expressions we define the following constants.

Fs = ag@P(1)+ (1 -ag)Q(1)

Fr = aqQ(1) + (1 - ag) P(1)

Solving for P(z) in terms of S(z)} we get

z(—~ (AS(2)af) + Fsaafq + Pia (A — aq)) G, — ANoaz)

P(z) = A (@qid; — 2 + az?)

(4.12)
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and for §(z) in terms of P(z)

@ (P(2)ag, + Fsaz)
z(A-az)

S(z) = (4.13)

Solving them simultaneously we arrive at

_z(= (Fsa’afgqiz) + Pia(A — aq) G (A — az) — ANpaz (A — az))
A(-(@(A-00) D) + (A +080102) z — (1 + 4) az? + a?27)

P(z) =

and

B Pia2q (A — aq1) Gy — ANpaBq1Gp2 + Fsaqi (@ (A — aq1) Gy — Az + Aaz?)
A(—@(A—aq)T) + (A + aaf1G) z — (1 + A) az? + a?23)

S(z) =

The denominator polynomial, D(z)}, for P(z) may be factored as follows.
D(2) = Ad®(z—11) (z — r2) (z — 73)

where r,, r, and 73 are the roots of the cubic polynomial in D(z).

1+A- 2\/1 — A+ A? — 3aag, 7, cos(Zf)

no= 3a
o 1+ A—2/1- A+ A? - 3aag,g, cos(%)
2 3a
1+ A-2/1— A+ A? - 3a3,q, cos("3%)
rs =
3a

Similar roots (s1, Sz, s3) for the denominator of Q(2) can be written down

directly
1+ B - 2\[1 — B + B? - 3aag;g, cos(¥5™)
8 = 3a
14 B —2,/1- B+ B® - 3aag,J; cos(%)
8§ = 3a
L+ B —2,/T= B+ B = Baagg, cos(*3%)
83 = 3a
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6, — arcoos (— ((4—2) (1 + A) (24— 1) + 9087, (~3A + 3aqs + (1 + 4) m))
2(1 - A + A? — 3aaq,7)*

6, — arceos (— ((B=2)(1+B) (2B ~1)) +9a3g: (=35 + 332 + (1 + B)az))
2(1 - B + B? — 34aq1¢s)*

See Appendix B for a derivation of the roots. We find that r, 2 and 73 are
real and that | rp |[< 1 while | ry |,| r3 |> 1. Since P(2) is the z-transform of a
probability distribution, it must be analytic in the range | 2 |< 1, and we know
that the numerator of P(z), namely N(z), must go to zero at z = r3 since D(z)
goes to zero at z = r2. We can use this fact to solve for P, yielding

_an (Fsagfq + ANy (A — ar))

P
1 (A —aq)qy (A - ar)

Substituting this value back into N(z) we may write

_Aaz(z — 1) (Fsatfq + No (A — arz) (A — az))
N A—arg

N(z)

and thus
_ z(Fsaafq + No(A— ary) (A — az))

Pl(z) = 4.14
(2) a(A—ary)(r—2)(rs—2) (4.14)
A similar procedure can be carried out on S(z), resulting in

S() =2 (Noag, + Fs (1 — ars — az)) (4.15)

a(ry—z)(rs—2)
Moreover, @(z) and R(z) are symmetric in (A1, A2), (41, p82) and (g1, g2) to P(z)
and S(z) so we can write them down directly.

z {Fratfq; + No (B — as2) (B — @z))
E(B - ESQ) (81 - Z) (33 - Z)
¢ (Noaq; + Fp (1 —-ass — az))
@(s1—2)(s5—2)

(4.16)

Q(2)

R(2) (4.17)

Recalling that Fs and Fp, are functions of both P(1) and Q(1), we see that
P(z) and Q(2) are functions of P(1), Q(1) and Np. We solve for P(1) and Q(1)
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by solving Equations 4.14 and 4.16 simultaneously with 2 = 1.

P(1) = CpngNo+ CppP(1) + CpeQ(1)
Q(l) = anoNO + CQ?P(]') + quQ(l)
Therefore,
P(1)=CpNy Q1) = CyN;
where
Cp = Como + CpgCono = ComoCag
1 = Cpp — CpClp — Cgg + CppCoyq
Cr = Cano — Cppcqno + Com Cop
? 1= Cpp — CyCap — Coqg + CppCyq
and
af
Cong = a(r;—1)(r3 —1)
c = @ fqa
PP (r1 — 1) (A —ary) (r3 — 1)
c. - afq (1 —ag)
M (r1 —1)(A—ary) (r3 —1)
af
Cono = G(s1—1)(s3—1)
o af (1 -aqi) g
® (31 - 1) (B - '&-82) (33 - 1)
2
Ci a* fqiq

(s1 — 1)(B—1dsg) (83— 1)
Noting that P(1) + Q(1) + S(1) + R(1) + Np + By = 1 we solve for Np.

(Coa + Cpa) qi142
f
Cpsa.ﬁfql + Ef (A - 0,7'2)
a(ri— 1 (A—ary)(ra—1)
Crea@fq; + af (B —asy)
a(s; — 1) (B —asy) (33— 1)

wom [ 1+

1 (@g2 + Cr, (@ — ar))
a(ri—1)(r; — 1)
¢ (a§;, + Cr, (a — dsy))
as — 1) (83— 1)

-1
(4.18)
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Finally, by inverting the transforms we find the probability of being in any

state (other than Np).

where

K,

K,

Kg
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Ny (Cga + CpT) 12
f

No(Crsaafq + (A — ary) (A — ar))
a({A—ar)(rs—m)

Ny (Crsaafq + (A — arp) (A — ar3))
a(A—are) (r1—r3)

No(Crpoafge+ (B —as1) (B —asy))

a(B —asz) (83 — 1)

Ny (Crpaafqa + (B — asz) (B — @s3))

@ (B —asy) (1 — 93)

Noq (ag, + Cr, (1 — ary — ary))
ary (r3 —71)

Nogy (@gy + Crg (1 — arp — ars))
a(ry—r3)Ts
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Noge (6 + Cry (1 — @8y — @sz))

as; (s3 — 51)
% Nogz (a7, + Cr, (1 — @3 — Ws3))
8 —
a (s — 83) 83
CFs = CPﬁq2 + CQ(]. - _O';QQ)

CFR = C‘Qaq1 + Cp(l - aql)

This completes the calculation of the explicit expressions for the equilibrium

state probabilities of the Markov chain for the message queueing model.

4.4 Performance Measures

Using the solution to the Markov chain that was calculated above, we may solve
for almost any performance measure of interest. In the following sections a few

important ones are examined.

4.4.1 State Buffer Use

When a processor completes its local processing it advances its virtual time
clock by one time unit. Therefore, if a processor is ahead by k units of virtual
time (k units of distance on the axis), then it will need to have saved k states.
The expected number of buffers (B;) needed to save state at each processor can

be found from

B, = Y iR+ 5)
=1

(K1 + Ks)ry | (Ko + Kg)rs
(ry - 1)2 (r3—1)2

(4.24)
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By = f: i(Q; + Ri)
=1
. (K3 + K7)31 (K4 + K3)33
SN CE R R 29

More interestingly, the probability that a fixed size buffer of size b > 1 overflows

at processor 1 (O;3) is

O, = i (P + S)

i=b+1
o0 b
= Y (B+8)-2(R+S)
i=0 i=0
(K1 + Ks) (K2 + Kg)

= T E— + s — 1) (4.26)

Oy = i (Q: + Ry)
i=b+1
00 b
= ;(Qi + R;) - g(Qi + R;)
(K3 + K7)  (Kq+ Kj)

- 815(31 - 1) + Ssb(33 - 1) (4'27)

4.4.2 Message Queue Distribution

Messages that arrive in the virtual time future are queued until the processor
completes all work with a virtual time less than the arriving message. The
size of the message queue is defined as the number of messages queued in the
virtual time future of the processor, plus any message that is currently being
processed. The distribution of message queue length at each processor is found
by conditioning on the probability that a process is ahead by a certain distance

k summing over the appropriate ranges of the state probabilities.
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myx = P[k msgs queued at Processor 1]

= Y P[k msgs queued | Processor 2 is ahead by 7 steps] Q;
ik
0o i . oo i i

Mie = ZQi(k)thk?h' “+ > Ri(k_ 1)‘]’2" g, k1 k> 2
ik i=k—1
K. k K k—lS K k K, k-1

_ fowtn | Kl Kaly | Kata g

(81— T) (51-32)° (83— @) (53— Q2)

00 o0
min = 3 Qiigd’ " + > R+ Bo
i1 =0
K. K K K
= By STy SR 8B By (4.29)
(51=32)° $1—-F (s5-F) -0

mp = P()+SQ)+ N+ Qa/

i=1

K3g Kq
= P(1)+8(1) + No+ —222 4 2482 (4.30)
81— Q2 S3— (7
mer = P[k msgs queued at Processor 2]
o0 i . 00 i i
Mag = Zpi(k)mkﬁl‘ 3 S (k— 1)9‘1k g, 1 k>2
ik i=k—1
Kigp'*r, Ksq* 'y Koqi*rs Keqi* 13
= T T —& t KL Y (4.31)
(mn—1) (ri—7) (rs — 1) (r3 —Gy)
me1 = Y. Pigg' '+ 53" + B
=1 i—0
K K, K Kgr
_ 1‘1.15'12 + 5?”1 + 2(111'32 6 f_ + B, (4.32)
(n-q)° "mn—4 m-7) 7
mag = Q(1)+ R(1) + No+ ) Py
i=1
K Kog
= Q)+ R(1) + No+—1L 4 2 (4.33)

r"—q T3—q
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The mean number of message buffers needed at each processor is

o= ) imy
-0
_ = (Ksga + K7 (51 — Q) 4 3 (Kag2 + Ks (83 — 35)) + By (4.34)
(51— 1)° (33~ 1)’ |
My = Z'L Mg
=0
_ (Kiq1 + K5 (11 — §y)) 48 (Kaq1 + Ko (r3 — 1)) + By (4.35)
(r1—1)° (rs = 1)° |

4.4.3 Normalized Rate of Progress

From the complete solution of the Markov chain, the average rate of progress
of the two processor system may be calculated. We define 6, as the average rate
of progress in virtual time of the two processor system. This value is simply the
average “unfettered” rate of progress of the two processors minus the average

rollback rate.

b = (A4 M) (ZQI:""NO"'ZP&)
k=1 k=1
+)\1Z Sk + Ao ZR}; — quzsz(k - 1) - A1q12Qk(k -1)
k=0 k=0 k=1 k=1
K1 K2 KS K4 )
= A N,
(a 2)(r1~1+r3—1+ e
K K, K K
+)«1( 571, 67‘3)+A2( 81 333)
Tl-']. 1"3—1 81-'1 33—1

Ky K,
~ha ((31 - 1) i (83— 1)2)

K Ky
o ((Tl —11)2 * (r3 — 1)2)

(4.36)
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We calculate a “normalized” rate of progress (R) by dividing the above equation

by (A1 + A2). We arrive at

~ K1 Kz K3 K4 )
= N,
R (r1—1+r3—1+ 0+31—1+33-1
K K K
-i—a( 571 6T3)+E(K731 + 833)

r1—1+r3—1 s1—1 s3-—-1

_ K K. K K
—aqg ((7'1 _11)2 + s _21)2) —aq ((31 _31)2 + o __41)2) (4.37)

Normalized rate of progress is used instead of the usual measure of speedup

because it is now difficult to describe what the “equivalent” single processor rate
is. The message queucing model for Time Warp generates work for a processor
each time a message is sent. In single processor operation, no messages are sent
so this work will be unaccounted for. There is no simple way of adding the extra
work to a single processor model, since not every message that is generated will
actually be processed due to rollbacks. To avoid this problem, we use the R
measure. This measure is equally useful since it does show us how well the

Time Warp system performs.

In Figure 4.3 we show the value for R when a = 1/2 and q; = q; = q (the
symmetric, balanced case). The figure shows R versus ¢ for various values of
f. We see that for the best performance we want ¢ to be small and f — oo.
This is the case where there is little interaction between the processors and it
takes zero time to process a message from the other processor. By setting f =1
we can examine R versus q only. This plot is shown in Figure 4.4 compared to
the average rate of progress for the same system where messages are only used
for synchronization (f = 0c). We see that the system where messages carry
work performs more poorly than where they are only used for synchronization.

Yet, this system is not twice as bad as the synchronization-only system even
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1.0
Nermalized Rate of Progress
(a=1/2,ql=q2=q)

f=1
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Figure 4.3: Normalized rate of progress (R) versus f and ¢ for the symmetric,

balanced case.
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1.0 Normalized Rate of Progress

—~ fa=12,ql=q2=q,f=1)
0.8 1
213

0.6 7
R
047 411
024 |7 Msg. synch. only

1| Msg. carries work
0.0 T T T T T T T T T 1

0.0 0.2 04 q 0.6 0.8 10

Figure 4.4: R versus ¢ for the symmetric, balanced case.

at ¢ = 1. In fact, at ¢ = 1 we can verify the R result for f = 1 by realizing
that each processor will always have a message to process. Therefore, the rate
of progress at each step is governed by the maximum time it takes for the two
processors to each finish a message and local work. This is simply the expected
value of the maximum of two 2-stage Erlangs at rate A which is equal to %.
Taking the reciprocal and dividing by A to find the normalized rate, we get

R = 4/11 which is the value plotted in Figure 4.4.

4.5 A Specific Example

To better understand the above results we explicitly calculate values of the

performance measures for a specific instance of the parameters of the system.
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The values chosen are given below.

A =11

11

“= 2%
f

1

QI—E

Note that processor one will move slightly faster than processor two while the

cost of processing a message is the same as processing a locally generated event.

Finally, processor one will send a message with probability 1/2 while processor

two will send a message with probability 1/3 after advancing.

4.5.1 State Probabilities and State Buffer Use

The resulting equations for the probability of being in any state are

Ny, =~ 0.0781
B, ~ 0.0423
0.114  0.0359
Pk ~ k_ T
1.281F  2.086
O = 0.1385  0.0605
£ 17025 T 2.468*
5 ~ 0.0452+0.0175
k7 71.981F T 2.086*
0.0319  0.0203
Rk ~ % 3
1.702* " 2.468

k>0

These probabilities are plotted in Figure 4.5. As you would expect, P > Gk

and Sk > R; since processor one is moving at a faster rate than processor two.
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Figure 4.4: State probabilities.

The expected number of buffers needed to save state at each processor (B;) is

given by

WP, + S;) ~ 2.5489

il
I
gk

-
il
-

o]
I
s

3(Q: + R;) ~ 0.5429

-
Il
—

From the values for ©; and O,

o 0.5663  0.0169
16 1.981°  2.086"

If

0.2428  0.0273
1.702°  2.468"

Oy =

we find that with probability > 0.99 processor one will not need more than

seventeen buffers. A similar value can be found for processor two.

P[Processor 1 needs > 17 state buffers] = 0.00841 < 0.01
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P[Processor 2 needs > 6 state buffers] ~ 0.00988 < 0.01

4.5.2 Message Queue Distribution and Buffer Use

The distribution of messages at each processor is given below.

My ~ 0.7569
my,1 = 0.1805
k

0.3904(3)"  o00676(3)"
Mk N Tossk T T 1.801F =
mep =~ 0.4074
mey & 0.2441

0.3026()° 0.0258(})" N
Mak N —omeE T T 1586k =

The values of these functions are plotted in Figure 4.6. The mean number of

message buffers needed at each processor is

™1 0.3346

R

1.5562

&

my

As with the state buffers we can find the number of message buffers needed to

store messages such that the buffers will overflow with probability < 0.01.

P[Processor 1 needs > 3 message buffers] ~ 0.0063 < 0.01

P[Processor 2 needs > 9 message buffers] ~ 0.0097 < 0.01

Finally, the value for the normalized rate of progress is R ~ 0.5071.
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Figure 4.5: Distribution of the number of messages queued at each processor.

4.6 Conclusions

We introduced and solved exactly a new model for two processor Time Warp
operation. The importance of our new model is that it explicitly accounts for
the work that must be performed by each processor in response to the receipt
of a message. Messages that arrive in the past cause rollbacks, while messages
that arrive in the future are queued until the LP moves forward in simulation

time. In all cases the messages create work for the LP.

With the complete Markov chain solution we calculated the normalized rate
of progress of the two processors, and the distribution of the number of messages
queued at each processor. Further, we found the expected number of buffers
needed to save state and/or messages at each processor. Since we have the exact

solution to the complete Markov chain, we can calculate nearly any parameter
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that may be of interest.
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CHAPTER 5

Two Processor Model with Rollback and State

Saving Costs

5.1 Introduction

As in the previous chapter, we will examine an extension to the original model
presented in Chapter 3. Here, we will add a cost for rollback and continue to

include the cost for state saving that we introduced in Section 3.7.2.

5.2 The Rollback Cost Model

If the costs for rollback and/or state saving are high, TW may perform poorly.
The following sections examine the two processor system when we account for
rollback and state saving costs. We use a model similar to the one introduced in
Section 4.2, namely, a continuous time, discrete state model where each proces-
sor makes only single step state advances whenever it advances. Immediately
after a processor is forced to rollback, it pays a cost for restoring state by mak-
ing the expected rate of forward progress smaller than normal for one event.
When processing the “rollback event” each processor moves at a rate v = fA;
where 0 < f < 1. Once this event is completed, the processor moves again at

its normal rate of ). Note that when f = 1 there is no additional cost for

94



rollback and this model reduces to the one in [Kle89]. When f — 0 then a

rollback becomes very expensive. The range f > 1 means that an event after

a rollback actually costs less real time to process on average than a normal

event. This seems not to make sense, but upon further thought it might be a

technique to account for work that has already been completed that need not

be recomputed. A cost for state saving is added in Section 5.4.2.

To solve the system, we separate the Markov chain into five different regions.

By
Qx
Sk
Ry

B

tll.rg P[D(t) = k and Processor 2 is not in a rollback state] k2>1
}H& P[D(t) = —k and Processor 1 is not in a rollback state] k> 1
lim P[D(t) = k and Processor 2 is in a rollback state] k>0
tl_lglo P[D(t) = —k and Processor 1 is in a rollback state] k>0

tlug P[D(t) = 0 and neither is in a rollback state]

5.3 Analysis of the Cost Model

In this section we find the exact solution for the model that addresses rollback

and state saving costs. The parameters of this system are

Ag

Yi

Qi

= Rate at which processor i executes events

= fM = Rate at which processor i executes after a rollback

= =1—a

= a+taf

= P[i*" processor sends a message after advancing]
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G = l-q

The state diagram is shown in Figure 5.1. Note that the Sy and Ry states were

duplicated to keep the figure from being too cluttered with transition arcs. As

with the previous model, this system will have an equilibrium solution when

A>0,g;,>0and f>0.

The balance equations for this new system are

(A1 + 712) Sk
(AL +72)So0
(A2 + 71) R
(A2 +1)Ro
(A1 + X)) P
(M + )P
(A1 4+ A2) Po
(A2 + A1)k

(A2 + M)

= A15k-1 k=1
oc oo
= M@y Qi+ma) R
i=1 =1
= AoRr_ k>1
s 8] o0
= @) FB+me). S
i-1 i=1
= APt + MG FPri1 + 12GSkn k>2

= MP+ MG P2 + 120252 + 1o
= MGG T+ 2GP + 7GR + 12,5
= AQk—1 + M1 Qi1 + MGy i k>2

= AP+ MG Q2 + T B2 + 75

= R+Y PB+Y Qi+ S+ R
i=1 i=1 =1

i=1

(5.1)
(5.2)
(5.3)
(5.4)
(5.5)
(5.6)
(5.7)
(5.8)

(5.9)

(5.10)

We define the following z-transforms (note, S(z) and R(z) are defined from

k = 1 not &k = 0 as in the previous model).

P(z) = iszk Q(z) = ikak
k=1 k=1

S(z) =3 8z*  R(2) =3 Ri2*
k=1 k=1
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We proceed to find P(z), Q(z), S(z) and R(z) by multiplying the appropriate
equation above by z* and summing over the valid range of k. This leads to
~ (Aa(Py+ Rof) 2%) —agq, (AS(2) f — AP,z — Syafz)
A(agy, — z + az?)

~ (Ba (Po + Sof) 2*) — aqy (BR(2)f — Bqiz — Roafz)
B (ag, — 2z + az?)

P(z) =

Q(z) =

_ Spaz
§(z) = A—-az

_ Roaz
R(z) = B-az

Substituting the value for $(z) into the equation for P(z) we arrive at the

following equation that defines P(z).

_ z2(—(Sea’afq2) + AP1AG, (A — az) — Aa (P + Rof) 2(A - az))
N A(A - az)(agy — z + az?)

P(2)
(5.11)
The denominator of P(z) can be factored into A(A — az)(z — r)(z — r2) and

the denominator of Q(z) into B(B —@z)(z — s1)(z — s2) where

1+ \/I - Za@}
(7'1,7‘2) = 9
a
1+ /1T —-4ddaaq;

In Section 3.3.1 we showed that ry and r, are real and that r; > 1 while
0 < ry < 1. Since P(z) must be analytic in the region | z |[< 1 the numerator of

P(z) must go to zero when z = r,. Using this information we solve for P;.

_ o (Seatfq, + A(Py+ Rof) (A — ara))

B Aag; (A= ar)
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We substitute this value back into the equation for P(2) and arrive at

_ z(S0aafg, + (Po+ Rof) (A — arg) (A — az))

P() (A —ary)(r) — 2) (A - az) (5-12)
Similarly for @Q(z) we find
Q(Z) — 4 (R{)Gﬁf@l + (PG + SOf) (B - 632) (B - EZ)) (5.13)

(B —@sy) (s1 — 2) (B —@z)

Qur task now is to find the values for the unknown constants Py, Sp and Ry.

We can solve the equations for S; (5.2) and R, (5.4) simultaneously to find

¢ (@qP(1) + BaQ(1))

So = AB — aoq1q2
Ry — @ (AaP(1) + ®q,Q(1))
AB — a@qiqo ’

The above values are substituted into the equations for P(z) and Q(z) and we

find P(1) and Q(1) by solving Equations 5.12 and 5.13 simultaneously with

z=1.
P(1) = CppPo+ CppP(1) + CpQ(1)
Q1) = CupPo+ CypP(1) + CpoQ(1)
Therefore,
PQ)=CpPy Q1) =Cgh
where
Cp = Cppo + Cpchpo - Cppocqq
1- Cpp - Cpchp - cqq + chqq
Cy = ComCap + Cop = ConClam
1= Cpp — Cpglpp — Cgg + CopCl
and
1
Om = &oD)
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aq (AfA+ aaqq, — af Ars)

Cep (AB — agqq;) (r — 1) (A — arp)
c a’q (Afq + B — afqary)

m (AB - aagige) (r1 — 1) (A — arg)

1

Cm = (s1—1)
C a’qy (Bf g + A —afqi)

® (AB — aagige) (s1 — 1) (B — @sg)
Cp = aqi (BfB + aug,q; — @f Bsy)

(AB - aﬁqlqz) (81 - 1) (B - ESQ)

P, is derived from the fact that the probabilities must sum to 1. Note that we

are using the same constant names (e.g. Cp,) as we did in the previous chapter.

Finally, the equations for P(z), Q(z), S(2) and R(z) can be inverted to find

the complete solution to the Markov chain.

Py

Sk

Qr

(P0-|-Ruf)(1)’c

1

+(A - f:?)a({fz— ars) ((;11“)" - (%)k) k21

k
a
ad >
SU(A) k>0

(Po+30f)(1)k

81

B g?)a(gl_ 752) ((Eli)k - (%)k) k21

Ao

k
) ko

|

So = CsPh
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(5.14)

(5.15)

(5.16)

(5.17)



Q1 (CQGB + Cpﬁzqﬂ

5 AB — auq1¢2
c (CpaA + Cod’qi) g2
fa AB — aaqq:
Cs,a Cra@  1+4Csf 1+ Cgrf

af * af  (&©-1)  (n-1

Cs,0q; Cr8qy )_1
(r1=1)(A—ar) (s1—1)(B—as)

P = (1+CHO+CSD+

(5.18)

5.4 Performance Measures

5.4.1 State Buffer Use

Using the state probabilities we find the average state buffer occupancy at

processors one and two.
By = Y i(B+8)
=1
ASpa  (Po+ Rof)m

aif? (ry — 1)*
Soaa fqs T Aa
+(A —ar) (A —arg) ((m 7 Ezfz) (5.19)

B, = ) i(Qi+R)
=1
BR  (Po 4 Sof) &1

a2f2 (31 _ 1)2
Ryaafq, 51 Ba
+(B —as;) (B — @sq) ((31 - 1)2 a a2f2) (5.20)

As with the previous models, we also find ©,;, the probability that a fixed

sized buffer of size b > 1 overflows.

O = Y. (B+S)

i=b+1

101



Soa fa\® (Po+ Rof)
E (-A-) t (7‘1 - 1)1"16

Soaﬁfﬁ 1 a a b
+(A - ary)(A — arp) ((T‘l —1r T (74') ) (5.21)

Oy = i (Q:i + Ry)

i=bt1
_ R gant | (B +Sf)
" af (E) * (51— 1)s:b

Ryaafq 1 a sa\t
+(B —531)(B 1—21.'-32) ((31 - 1)S1b B E (E) ) (5'22)

5.4.2 Speedup

From the complete solution of the Markov chain we calculate the speedup S of
the two processor TW system over an equivalent single processor. The speedup
is simply the rate of the two processor system &; divided by the rate of progress
for a single processor system é;. The rate of forward progress for one processor

is defined (as earlier) simply as the average rate of progress of the two processes

=)\1+A2

& 5

At this point we add in the additional cost for state saving by allowing a single
processor to move at a rate that is ¢ times faster than the TW processors. Thus,
state saving increases the average execution time of an event from 1/X; to ¢/N

when running TW. The revised rate of progress for a single processor is

_ C(/\l + /\2)

6] 9 ’

while the rate of progress for the two processor TW system is found from the

following equation.
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G = (MF+ADFB+ (M +72)S + (A2 + 1) Ro
+(A1 4+ A2)P(1) + (A2 + A)Q(1) + (A1 +12)S(1) + (A2 + 1) R(1)

@S Plk—1) — M@ Y Qu(k—1)
k=1 k=1

~Yoq2 Y Sk(k — 1) —mi1 > Ri(k — 1)
k=1 k=1

Taking the ratio S = 6,/6; (i.e., the speedup) we arrive at

2 B Ry  A%Sy Ro@’qi  Soa’q
s — E(P0+P(1)+Q(1)+ e

o, [P+ Rof S0a@ 7, 1A
2\ -1 T A—ar)A-ar) \(r —1)? @

P+ Sof Rpaafq, 1 72
—agi ((31 - ]_)2 + (B —-'a_,sl)(B - 532) ((31 _ 1)2 - azfg))) (523)

Note that we have returned to a speedup measure {as opposed to f?) since,

for the rollback cost system, the rate of progress on a single processor is well

defined.

For the symmetric, balanced case where Ay = A\; = A and ¢q; = ¢; = q we get

the following equation for speedup.
. 4f (f + a)
c(2/2+ f@+ )i+ @-f)fa+2(1-fd)
A plot of this function is shown in Figure 5.2 for ¢ = 1. (Note that for f =1,

(5.24)

S =4/ (2 + \/6) as in Equation 3.7.)

Using this simple formula for speedup we find the values of f, g, and ¢ that
allow two processors running TW to progress faster than a single processor
without TW. This is the region where S > 1. We solve Equation 5.24 for c

when S > 1 resulting in the inequality

. 41 (f + /)
= (2f2+f(2+f)\/§+(2—f)fQ+2(1_f)q%)

(5.25)
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Figure 5.2: Speedup versus ¢ and f for the symmetric, balanced case when

c=1,
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Figure 5.3: Region of ¢ — f space where speedup is possible.

Therefore, we find that ¢ must lie below the surface plotted in Figure 5.2 for
S5 > 1. It is clear for ¢ > 2 that TW on two processors is always slower than
using a single processor without TW. Further, since ¢ must be greater than or
equal to one (cost of state saving is > 0), there is a region in the q — f space

where speedup is not possible. That is the shaded region shown in Figure 5.3.

Since rollbacks can be costly (¢ > 1), there may be an advantage to slowing

down or stopping the faster processor when it gets ahead so as to avoid rollbacks.

105



A2 A2

Figure 5.4: State diagram when each processor stops at one step ahead.

Mitra and Mitrani [MM84)] (see Section 3.6 ), using an optimization function
J = D — (cost)R, where D is the average forward rate of progress and R is the
average rollback rate, find regions of the parameter space where the maximum of
the function is found at the boundary where the processors have zero processing
capacity (i.e., don’t perform the task at all). Essentially, they found that Time
Warp could perform poorly if the cost for rollback was high. Unfortunately,
their method of adding a cost for rollback was to create a function external
to the model, rather than having the system actually pay a real-time cost for

rollback during operation. We find our model somewhat more satisfying.

Our effort is to improve TW by slowing down or stopping the processor
that gets too far ahead, and we find that it sometimes pays to stop the leading
processor when it gets ezactly one step ahead. The state diagram for such a
system is shown in Figure 5.4. Each processor will stop when it gets exactly
one step ahead of the other processor. There will be no rollbacks and therefore
no need for state saving. When X, = Ay = X we find that P, = Q, = Py = 1/3,
and that speedup over the equivalent single processor system is 4/3. Therefore,

we can always get a speedup of 4/3 regardless of the values of f, ¢ and ¢. For
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Figure 5.5: Region of ¢ — f space where stopping at one step is better.

general values of A; and X; the speedup is

S— 4(1-a)e

1-a+ a?
which has its maximum of 4/3 at a = 1/2. For the symmetric, balanced case
where \; = A2 = X and ¢; = ¢ = ¢q, we show in Figure 5.5 the area of the ¢ — f
plane where waiting at one step is better than rushing ahead when ¢ = 1. Note

that this region includes all the shaded g — f area where we were not able to get

speedup with two processors using Time Warp. Finally, in Figure 5.6 we show
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Figure 5.6: Achievable speedup for c= 1.
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the achievable speedup when ¢ = 1. The shaded region is where a processor
waits when it gets one step ahead of the other. In the unshaded region, if ¢
is less than the value plotted in the figure we are able to gain at least some

speedup over the equivalent single processor not running Time Warp.

Since it sometimes pays to stop a processor when it gets one step ahead,
one might surmise that there are ranges of the parameters where stopping a
processor when it gets k£ (k > 1) steps ahead improves performance. For our
model, this turns out not to be the case. By examining the Markov chain for
k = 2, we find that the speedup is never greater than the speedup gained by
the standard algorithm. Therefore, it is never practical to stop a processor once
it gets more than one step ahead. The Markov chain in Figure 5.4 is unique in
the respect that at no point in time will a processor incur a cost for state saving
or rollback. Once the processors are allowed to get more than one step out of
synchronization, state must be saved since rollbacks are possible. Intuitively,
the fact that we might only stop at one step ahead makes sense since a process
at virtual time v can only send a message to the other at time v+ 1. By getting
two or more steps ahead, a rollback is already possible and we will incur a cost
for rollback if a message is sent regardless of whether we wait further down
the line. Waiting now only causes the system to have a smaller speedup. In a
more general system where a processor may send a message arbitrarily far into
the future, we may find that there are regions of the parameter space where
it pays to stop a processor when it gets further than one step ahead. We are
currently extending the rollback cost model so that the processors are able to
make arbitrary sized jumps when advancing (i.e., not restricted to single-steps)

like in the original model in Chapter 3. This more general model will give us a
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better opportunity to examine the improvements we might gain by stopping or

slowing down the lead processor when it gets more than one step ahead.

5.5 Conclusions

We developed a model that incorporated costs for rollback and state saving.
In addition to calculating the complete solution to the Markov chain and the
speedup over a single processor, we were able to find regions of the parameter
space where it was better to stop either processor when it was only one step
ahead. Stopping the lead processor when it was two or more steps ahead led
to no performance gain. As with our previous models, since we have the exact
solution to the Markov chain, we are able to calculate nearly any performance

measure of interest.
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CHAPTER 6

A Model for Conservative Simulation

6.1 Introduction

In previous chapters the performance of an optimistic method of distributed
simulation (Time Warp) was examined. In this chapter we create models for
the two processor system using a conservative synchronization algorithm rather
than Time Warp. The emphasis is to create a model for a conservative algorithm

that we may directly compare to our previous model for Time Warp.

Conservative methods of Discrete Event Simulation are based on the work of
Chandy, Misra, Bryant and others [CMT79] [CHMT79)] [Bry77], and we discussed
the algorithms in Section 1.3.2. Where TW proceeds ahead as fast as it can,
only rolling back when a mistake is found, conservative methods allow an LP to
proceed forward only when it is sure that it is performing correct computation.
That is, conservative methods use blocking for synchronization, while optimistic

techniques use state saving and rollback.

6.2 The Model

We now describe our model for the conservative method of synchronization.

Our goal is to create a model that can easily be compared to the previous
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models created for TW. We again use a continuous time, discrete state model,
assuming that each process/processor advances along its own virtual time axis
visiting only the integers. Each process takes an exponential amount of time
to process an event and advances one step forward in virtual time (along its
axis) after finishing the event. After advancing, each processor will send a syn-
chronization message to the other processor with a given probability. Since the
synchronization is conservative, no process can perform work at virtual time v
until it is sure that the other processor will not send it a message time stamped
with a virtual time less than or equal to v. We again exploit the Markov pro-
cess defined as the difference in virtual time (position on the axes) of the two
processes, and find the probability that one processor is ahead of the other by

a distance k. Note that | k |< 1 for unimproved conservative systems.

Here are the parameters of the model (the same as the TW model).

A; = rate that processor i executes events
A1
a =
AL+ e
Az
a = =1-a
AL+ As
o; = P[i* processor sends a message after advancing)
G = 1-¢

If the processors start out at the same virtual time v, eventually, one (say
Py) advances to v+ 1. Since a conservative synchronization mechanism is being
employed, this processor must wait to see if the other processor will send it
a message with virtual time v 4+ 1. Its only choice is to wait until the lagging
processor (P;) advances, at which point that processor will “flip a coin” to

decide whether to send a message. If a message is sent, P receives it and is able
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to continue processing again. If a message isn’t sent, P thinks it is still ahead of
the other processor and will not continue processing. If P, were to advance again
and not send a message, it would think (correctly) it was now ahead of P, and
stop processing. At this point we have a deadlock that must be broken. Deadlock
detection and recovery algorithms were discussed in Section 1.3.2. Essentially,
we break the deadlock by letting each processor know where it is relative to
the other processor. In this example, P, would learn it was behind and begin
processing, thus breaking the deadlock. If, on the other hand, each processor is
able to notify the other that it has advanced its local clock, then the lagging
processor is able to advance whether or not a “data” message is sent. This latter
type of notification is referred to as the “null message” technique that is used
to speed up conservative models. When used, we assume that this information
(null messages) is propagated without cost. We now examine several models for

two processor conservative simulation.

6.3 A System Without Null Messages

We first solve a model where the processors do not send null messages. We
assume that when a deadlock occurs it is detected and corrected after an ex-
ponential delay with mean d/(M + X2). If d = 0 then deadlocks are broken
instantaneously, while d — oo means that deadlock detection/correction takes
an infinite amount of time. This system can be described by a Markov chain

with the following state description.
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(D, 1, t2)
D = Actual virtual time difference between P, and P
t; = P;’s belief about the virtual time difference

to = P,’s belief about the virtual time difference

Discrepancies arise between D, {1 and ¢ when the processors don’t inform
each other about state changes. This happens more often when the processors
are less likely to send messages (small ¢;). When a processor thinks it is ahead, it
does not try to advance further. When both processors believe they are leading,
we have a deadlock. The state diagram for this system is shown in Figure 6.1.
Each state is labeled with its state description (D,t;,%;) and an alphanumeric
label for calculation of the steady-state probabilities. The balance equations for

this system are

Aipa = Aalhbo

Aopp = AMG1po

M+ A
AMPec = Aagapo + deqepr + = - 2pe

A+ A
Aepp = Agqipo + AMiqipe + 1d 2 pu

AMPE = Aeqepp + MT1Pc

Aepr = Aq@ipa + AeGpp
AL+ Ao

7 Pc = A2Q2PF
A+ A2 _

g PH = MTPE
A1+ A

TP = AT Pa + XG0
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Deadlock T,

Deadlock Deadlock

Figure 6.1: State diagram for conservative synchronization with no null mes-

sages and a cost for breaking deadlocks.
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1 = p+pat+ps+pct+pp+pe+prt+pc+putpr

We first solve exphCitly for {'POaP/hpBapCaPD:PE:PF:'PG;PH;PI}, then find

the rate at which the two processors move forward in virtual time as

Ry = (A1 + A2)po + Ailpa + pc + pe) + Ae(ps + pp + PF)

We compare this rate to our equivalent single processor rate again (see Sec-

tion 3.4.1)
A+ A
R =2 : 2
to find speedup
Ry -
S:._RS_I.:2(p0+a(pA+pc+pE)+G(PB+pD+pF)) (6.1)

For the simple case where ¢; = gz = g the formula for speedup is

4aa (3 - 29)

6.2
3—a+ a2+ 3aad(l — q)° — 2q 6.2

and if the cost of breaking a deadlock is zero (d = 0) then the formula reduces

to
_ 4aa(3 - 2q)
8_3—a+a2—2q (6:3)
and if a = 1/2, then
3-2¢q
S= 6.4
1?1__2(1 (6.4)

We show Equation 6.2 plotted versus a and ¢ for various values of d in
Figure 6.2. We note here that the conservative system performs better as q, the
interaction parameter, increases. This is in contrast to the Time Warp system
where speedup decreased as ¢ increased. In the conservative system we are better
off sending a large number of messages because the messages keep each process

informed as to the virtual time progress of the other thus allowing potential
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Figure 6.2: Speedup versus a and g for various values of d.
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parallelism to be exploited. When more messages are sent, the processors are
less likely to be waiting due to lack of information and less likely to become

deadlocked.

It is also clear from the figures that the cost of deadlock has a large impact
on the performance if the probability of interaction is small. This is to be ex-
pected, since the probability of deadlock is higher when the processes exchange
information infrequently. We can take the derivative of speedup with respect to

d (the cost of breaking deadlock) to quantify the effect of d on performance.
8S = —124%a%(3-2¢)(1 - q)?
a7 )
dd (3 — a@ + 3a@d(1 — q)° - 2q)

We plot this function versus d and ¢ for a = 1/2 in Figure 6.3 and see that

changes in d have a large effect on § when ¢ is small.

Returning again to speedup, we note that Equation 6.2 is only valid if ¢, >
0 and ¢» > 0. If both of these values are equal to zero (i.e., we never send

messages), then speedup reduces to

4aa
5= a(l + ad) + a® (6:5)
and if d = 0 in this case we get
4aa
§= T & (6.6)

Coincidentally, this is also the formula we get if ¢ =g =l orif g1, <1
and we always send null messages. For the ¢ = g = d = 0 case, the system
travels between states (A,0,B). In the null message case, the system travels
between the states (C,0,D). Both systems produce the same probabilities and
speedup. These systems produce the optimum speedup that can be gained from
the conservative model. Equation 6.5 is plotted in Figure 6.4 and Equation 6.6

is plotted in Figure 6.5.
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Figure 6.3: Derivative of speedup with respect to d (the cost of breaking a
deadlock) versus ¢ and d for a = 1/2.
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Figure 6.4: Speedup versus a and d for ¢, = g2 = 0.
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Figure 6.5: Maximum conservative speedup (i.e. for the system with null mes-

sages).
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6.4 Lookahead

It has been noted by several researchers that exploiting lookahead is necessary
to make conservative simulation a viable alternative to the optimistic approach
[Fuj88a] [Nic88]. Lookahead is the ability of a logical process to predict its
future behavior and especially its future output. In conservative simulation,
when a process gives any downstream neighbor processes information about
the arrival (or lack thereof) of future messages, the downstream processes are
able to continue processing, thus enabling more parallelism in the system. The
typical example of lookahead occurs in a FIFO queueing process. If jobs have a
deterministic service time of S seconds (of simulated time), then if a server is
empty at real time ¢ and virtual time v, it can notify any downstream neighbor
that no customer will arrive to this downstream queue with a virtual time stamp
less than v + S. Therefore recipient processes are able to execute any events
they may have scheduled for virtual time less than v + § (assuming no other

input links).

6.4.1 Types of Lookahead

In order to formulate a model for a system using lookahead, we need to be very
precise about what sort of future prediction is available. One example of this
future prediction is that a process might always be able to inform the other
processes of the virtual time of the next message it is going to send, but not the
contents. With this sort of information, the receivers in a conservative system
would be able to process all messages that had virtual times less than the time
of the “scheduled” virtual time of the next message. In a two processor system

each processor would execute messages with timestamps less than the virtual
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time of the “future” message, then wait for the arrival of that message. This
system has the same performance as a TW system with no cost for state saving
and rollback. TW is really forced to “wait” for the arrival of the message, but it
is actually just performing useless work instead of waiting. Both systems return

to processing useful work at the instant that the “straggler” message arrives.

Another type of lookahead is information that bounds the virtual time of
future messages. The typical example (a FIFO queue) was given in the previous
section. If we know something about the process that is being simulated, we

may be able to provide information to downstream processes.

The type of lookahead that we use in our model was introduced by Nicol
[Nic91]. We can think of lookahead as the ability to transmit messages in our
future to other processors. The farther into the future we are allowed to “pre-
compute”, the more lookahead we have. Nicol points out that there are two
pieces of information contained in a lookahead message. The first is the virtual
time of the pending message, the other is the actual contents of the message. Our
previous example conveys only virtual time information while, in general, we
could transmit both virtual time and data information. Nicol calls the lookahead
with time and data information “full lookahead” while the time only message
is “time lookahead”. We use the idea of full lookahead in the next model due

to its analytical tractability.

6.5 The Lookahead Model

OQur definition of lookahead is based on a model which only allows processors
to advance a single step in virtual time when advancing. By assuming that the

processes have K-step full lookahead, each of the two processes is able to be
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Figure 6.6: State diagram for a system with K-step lookahead.

at most K + 1 units of virtual time (events) ahead of the other (as opposed
to K messages ahead). Essentially we believe that a process is able to give the
other process the content of any messages up to K virtual time units in the
future. By assuming that null messages are used, each processor always knows
its position relative to the other. Note that if K = 0, this model reverts to the
simple no-lookahead model where a processor must wait when it gets ahead at
all. The state diagram for this system is very simple and is shown in Figure 6.6.

The balance equations for this system are:

Alpk = A2101'c+1 k=-K-1,.,0,.,.K

K+1

po = 1= (m+p)

=1
The solution is

a k
Pr = (—) Do k=-K-1,..,0,.,.K+1

a

P = =
a312K _ g3tek

Speedup relative to the equivalent single processor implementation is

dqa ( a2t a2+2K) 1

aF -
G3+2K _ gatik 2

(6.7)
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4(1 + K) 1
$ = 37k %73 (6.8)

Equation 6.7 is plotted versus a and K in Figure 6.7. We can see from this figure
that lookahead is extremely useful when the processors are nearly balanced in
processing speed (@ = 1/2). In the imbalanced situation, the faster processor
quickly runs out to its limit of K steps, then waits for the other processor to
move forward before it can continue again. By taking the derivative of speedup
with respect to K, we see this result more clearly. In Figure 6.8 we show 85/0K.
When K is small and a is near 1/2, any change in K has a major effect on
speedup, though once we move away from a = 1/2 or K > 5, the impact is
significantly reduced. The moral of this story is to make sure the processes

progress at nearly the same rate in virtual time or lookahead will be useless.

6.6 Comparison to Time Warp

We now make a direct comparison between the speedup results obtained from
our Time Warp models and conservative models derived in the previous sec-
tions. To clearly display the tradeoffs, we compare simplified versions of each.
Figure 6.9 shows the ratio of speedup for the conservative model using null
messages but no lookahead to Time Warp with no cost for state saving and
rollback. It is clear that “free” Time Warp is always a winner since the ra-
tio never exceeds one. The optimistic approach with no costs for its aggressive

computation is always better.

Let us now compare free TW to the conservative model with lookahead when

both systems are operating at a = 1/2 and when the conservative system has
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Figure 6.7: Speedup for a K-step lookahead conservative system.
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Figure 6.8: Derivative of speedup with respect to K.
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Figure 6.9: Ratio of conservative speedup (no lookahead) to “free” Time Warp

speedup.
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K-step lookahead. Proponents of the optimistic approach point out that their
systems work well regardless of whether lookahead is exploited. Our comparison
is an attempt to see how well the conservative approach exploiting lookahead
fares with respect to a Time Warp system that uses no lookahead. This ratio
is plotted in Figure 6.10 and suggests that a little lookahead combined with
null messages goes a long way. For almost any value of K greater than one, we
see that the conservative model ocutperforms “free” Time Warp (ratio > 1). We
find the threshold where the conservative approach beats TW by solving the
following inequality for K.

Scons _ (1+ K)(2+./3) >1

6.9
Stw 3+ 2K - ( )
The condition for the conservative approach to beat Time Warp is
1—
K> 1-ve (6.10)

T Ve
For g (the interaction parameter) very small we need a large lookahead, but for
g > 0.1, K only needs to be 1 or 2. Figure 6.11 shows the areas of the ¢ — K
plane where the conservative approach beats “free” Time Warp. Note that if an
optimistic system with no rollback and state saving costs is afforded the same
lookahead as a conservative system with no cost for null message transmissions,
the optimistic approach will always perform better since it is able to aggressively

compute along the critical path for free.

6.7 Conclusions

This chapter examined some simple two processor models for the conservative
synchronization method. It showed that lookahead is very useful in gaining

performance, but only if the processors are well balanced in processing capacity.
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The models allowed quantitative evaluation of the improvement attributed to
null messages, as well as the degradation due to a cost for breaking deadlocks.
Finally, a conservative system with “free” null messages and a small amount of
lookahead was shown to outperform a Time Warp system with no cost for state
saving or rollback. However, if they both incorporate lookahead, then TW is
the winner. Unfortunately for the conservative approach, lookahead is not often
easy to come by [Nic88] [Fuj88a). The simple FIFO queueing system provides
great lookahead, but add in preemptive-priority queueing and all the lookahead
disappears. It may be unwise to utilize a synchronization mechanism which

needs lookahead to perform well.
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CHAPTER 7

Extensions of the Optimistic Model to

Multiprocessors (P > 2)

7.1 Introduction

With the exception of Chapters 2 and 6 the previous chapters have introduced
and evaluated models for two processor optimistic systems. This chapter ex-
plores methods for attacking the important problem of Time Warp running on
multiple processors. Most distributed simulation systems do not run on two pro-
cessors; numbers on the order of tens or hundreds of processors is more likely.
How then might we extend our analysis of the optimistic approach to more
than two processors? Our first attempt might be to utilize our basic technique
with P processors. Unfortunately, the Markov chain approach, with the differ-
ence in virtual times between (P — 1) pairs of processors as a state variable,
quickly becomes intractable. Even with only three processors, the state space
and transitions become fairly complex. Therefore, our technique is to look to
the two processor model for hints on calculating bounds or approximations for
the multiprocessor case. The next section introduces the model for Time Warp

running on many processors.
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7.2 Definition of the Multiple Processor System

The multiple (P) processor model for Time Warp is a straightforward extension
to the model developed in Chapter 3 and is similar to the model introduced
by Nicol [Nic91]. Each processor advances independently along its own virtual
time axis processing events. The assumption again is that processors only make
single steps forward in virtual time at each advance and that virtual times are
restricted to the integers. After a processor advances, it sends a message to
exactly K randomly chosen processors out of the other P — 1 processors. The
messages are only be used for synchronization and do not carry work (as was
the case in Chapter 4). Messages that arrive in the future are ignored. Messages
that arrive in the past cause a rollback. With more than two processors comes
the possibility for “cascading” rollbacks. Each processor must maintain a queue
of messages that it has sent to other processors. If processor P, is forced to
rollback to virtual time v, then it must “cancel” any messages it sent to other
processors with virtual time greater than v. These cancellation messages may
potentially cause a rollback at the receiving processor, forcing it to send its own
cancellation messages, etc. Receivers only rollback to the time of the erroneous

message; they do not necessarily rollback all the way back to virtual time v+ 1.

The performance measure of interest is speedup and is measured as the rate
of virtual time progress of the P processor system divided by the rate of an
equivalent single processor. We assume that all processors take an exponential
amount of time with mean 1/X to complete an event. The equivalent single

processor moves at rate A.
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7.3 A Simple Upper Bound on Speedup

A simple upper bound on the speedup achievable by this P processor system
was motivated by our two processor analysis. As noted in Section 3.7, if each
processor always sends a message to the other after advancing, then the whole
system takes time equal to the maximum of two exponential delays to move
forward one step in virtual time. We can use this idea to create a bound on

speedup for the P processor case.

Assume that each processor sends to K other processors after advancing.
Group the processors into clusters of size K+1 and instead of randomly selecting
K processors to send a message to, each processor always sends to all the other
K processors in its cluster after advancing. The clusters do not overlap (i.c.,
no communication between clusters), each, on average, takes time equal to the
average of the maximum of K +1 exponential delays to move forward one unit of
virtual time. Each cluster moves independently. This model provides an upper
bound on speedup since each cluster moves forward without synchronizing with
any of the other clusters. In the true system each processor is able to receive

messages from all the others and is forced to stay more closely synchronized.

Defining  as the effective rate that each processor moves in the P processor

system, speedup S is
_rP

=3

The variable r is found by the exponential delay argument described above.

t = E[Time for processors in a cluster to move 1 step]
1 K+1 1

=33

-1
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Figure 7.1: Normalized speedup versus K for 256 processors.

K+1
a 1 1
2 —=2X =
-2 p-v(E )
Therefore the upper bound on speedup is

P
S, = Z)_’ﬁi_l (7.1)

In Figure 7.1 we show Speedup/P versus K for 256 processors. As one might
expect, the upper bound is not very tight when K is small, but is exact for
K = P — 1 and quite tight for % > % Figure 7.2 shows the percentage error

between the upper bound and simulation.
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Figure 7.2: Percent difference between the upper bound and simulation.

7.4 Tracking Global Virtual Time Advancement

Another technique that might be employed to better understand the behavior
of Time Warp on multiple processors is to directly calculate or estimate the
rate of Global Virtual Time (GVT) advancement. This idea is motivated by
our two processor work where we had the notion of separation in virtual time
between the processors. With both processors at the same virtual time, we
know exactly how long before GVT advances one step (both processors have
to move). When the event processing time is exponentially distributed at rate
), the time to advance GVT is simply the time it takes for the maximum of
two exponentials to complete. This is 23_,\ by the arguments given in the previous
section. In the P processor case, if we were able to calculate the distribution of

the number of processors sitting at GVT after GVT advances, we could derive
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the average rate of progress of the P processor system and its speedup over a

single processor.

Certainly, the minimum number of processors at GVT, after GVT advances,
will be K + 1 since when the last processor moves forward to allow GVT to
advance, it will send messages to K processors and pull them back to the new
GVT. This is exactly the upper bound calculated in the previous section. In
general there will be more than K + 1 processors at GVT after GVT advances
so our speedup will be less. It is believed is that a simple probabilistic argument
should be able to give us either the expected value we seek or a more useful

bound on this number than K + 1.

7.5 A Simple Approximation Using Aggregation

Finally, “bootstrapping” our two processor model to create an approximation
for P processors might be possible. The most straightforward method would
be to use a series of hierarchical aggregation steps. Assume we have a system
with four processors numbered one to four. In Chapter 3 the exact solution
for two processors with arbitrary rates of processing and arbitrary interaction
probabilities was developed. We might use this model to isolate processors one
and two and calculate the effective rate of progress of these two processors in the
absence of the other two. The same could be done for processors three and four.
After these two operations, we are left with two “effective” single processors
moving at a rates determined by our original two processor model. Finally,
these two “effective” processors may be combined using the two processor model
solution again so as to obtain the approximate rate of progress of the four

processor system. This approach would work in general for P a power of two.
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One of the challenges of this approximation technique is to provide a value
for the interaction parameter “g;” in the two processor solution. Somehow, a
mapping from the message transmission probabilities in the P processor system
needs to be created so as to generate the interaction parameters (g). The first
attempts at a solution using this method gave us a very low approximation for
speedup. It is believed that the amount of rollback caused by each processor

was overestimated.

7.6 Conclusions

This chapter provided some ideas on possible approaches to tackling the mul-
tiple processor problem. QOur first approach provided a crude upper bound on
speedup. The GVT advancement technique provided the same upper bound but
holds promise for a better bound and/or approximation. Finally, the aggrega-
tion technique has the most direct link to our previous work, but the actual
details of assigning variables to the interaction parameters needs to be clearly

thought out.
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CHAPTER 8

Conclusions and Future Work

This dissertation addressed the performance analysis of distributed simulation
techniques. Chapter 2 created a simple bound on the potential improvement of
asynchronous versus synchronous processing. Our examples were Time Warp
and time-stepped simulation. The optimistic Time Warp approach was shown
to only gain an (In P) improvement where P is the number of processors used

by each algorithm.

In Chapters 3, 4 and 5 several models of two processors running the Time
Warp algorithm were created. Exact solutions were found for all the perfor-
mance parameters of interest including speedup, distribution of state buffers
needed, distribution of message buffers needed, etc. It was shown for optimum
performance that the processors should send as few messages as possible and
that processes should be placed on processors such that the average “indepen-
dent” rate of progress in virtual time is the same for both processors. Finally,
the impact of state saving and rollback costs on performance was shown to be
significant and that there are times when “throttling” a Time Warp process

when it gets too far ahead in virtual time is better than letting it run freely.

A simple two processor model for a conservative synchronization mechanism
was developed in Chapter 6 and lookahead was observed to be very useful in

gaining performance, but only if the processors are well balanced in processing

140



capacity. The models allowed us to quantitatively evaluate the improvement due
to sending null messages and to establish the degradation in speedup due to a
cost for breaking deadlocks. Finally it was shown that a conservative system
with “free” null messages and a small amount of lookahead is able to outperform

a Time Warp system with no cost for state saving or rollback.

8.1 Future Work

While distributed simulation on multiple processors (P > 2) seems the most
obvious area for future work, there are several other possible areas as well. They

include:

¢ multiple processes per processor
e communication costs

¢ an understanding of message-initiating versus self-initiating models

fault tolerance of Time Warp

optimistic computation.

The next few sections describe these possible research areas.

8.1.1 Multiple Processes Per Processor

Since most large simulations have more logical processes than physical compu-
tational processors, one area of interest is the need to address multiple processes
per processor. Qur two processor models for Time Warp were predicated on the

assumption that each processor only had a single process running on it. The
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results do not generalize to multiple processes per processor. Our model has the
entire processor rollback whenever a rollback occurs. This would only be accu-
rate if all the processes were rolled back when any were. Another complication
is that the processes would each have different virtual times, and therefore could
send messages with different timestamps. Multiple processes per processor be-
gins to look very much like the multiple processor case and therefore inherits

many of the same difficulties associated with finding a solution.

8.1.2 Communication Costs

Communication costs have not been adequately addressed in any work in this
area. In our conservative model, null messages are allowed to propagate without
cost, thus encouraging the processors to send as many messages as possible in
order to avoid deadlock. This is unrealistic. One can see that communication
cost/delay could also have a major impact in the Time Warp system. Consider
the following example. If one processor is ahead of the other in virtual time when
it sends a message, in our current models, the message arrives instantaneously
at the other processor. This means it arrives in the virtual time future of the
receiver. If there were communication delay, it might be possible for the trailing
processor (receiver) to move forward in virtual time sufficiently so that the
delayed message arrives in the receiver’s past. This would cause a rollback and

decrease performance.

8.1.3 Message-Initiating vs Self-Initiating

Another area that needs exploration is to understand the performance differ-

ences between the “self-initiating” and “message-initiating” models. This dis-
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tinction was discussed by Nicol [Nic91], though his analysis focused on self-
initiating models. Our simple two processor model used self-initiating proces-
sors, meaning that each processor always had work to do regardless of whether
it had received any messages from other processors. In a message-initiating
model [GAF91], the processors only perform work in response to the receipt of
a message. Our message queueing model in Chapter 4 is somewhat of a hybrid
of both. Each processor always performs local work, but also will process mes-
sages and send messages that create work for the recipients. At the moment
there are no clear results that state whether or not there are significant perfor-
mance differences between the pure self-initiating and pure message-initiating

models.

8.1.4 Optimistic Computation

Our performance analysis of optimistic simulation can actually be applied to
a broader class of algorithms than just simulation synchronization. It really
provides an analysis for a type of optimistic computation. We need to exam-
ine in more detail what differentiates optimistic computation from optimistic
simulation. Our results from modelling Time Warp should provide insights into

creating and analyzing optimistic computing systems.

8.1.5 Fault Tolerance of Time Warp

The optimistic approach requires the storage of input messages, output mes-
sages and a history of states. There seems to be a fair amount of redundancy
in the system simply to allow the algorithm to operate. One might believe that

some simple additions to the basic algorithm might render it fault tolerant in
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the face of processor failures. This would be especially useful as the running
times of simulations increases and also if the Time Warp system were to be

used for more general areas of computation than distributed simulation.

8.2 Final Remarks

The performance analysis of distributed simulation is still in its infancy. We
have provided a strong foundation for the understanding of both the optimistic
and conservative synchronization algorithms, but there remains much work to

be done.
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APPENDIX A

Derivations of Summations for the Two

Processor Model

A.1 P(z) Sums Closed Form Derivation

This section provides the derivation of the closed form expression for P(z) found

in Section 3.3.

i (A1 + Az + AsGym) pe2* = (Al + As + A3 — As@z—“%") P(z) (A1)
k=1 1- JBIJBE
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A.2 Speedup Sums Closed Form Derivation

In this section we derive the closed form expression for Speedup found in Sec-

tion 3.4.1.
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APPENDIX B

Cubic Equation Solution for the Message

Queueing Model

In this appendix the roots of a cubic equation to be used in Section 4.3 are
derived. This material is taken directly from the CRC Handbook of Mathematical
Sciences [Bey87].

A cubic equation, ¥ + p,y? + ¢,y + r, = 0 may be reduced to the form,
2+ ax+b,=0
by substituting for y the value z — p, /3. Here
1 2 1 3
a; = 2(3qy — py°) and b; = 5 (2" — Opyy + 27r)

The form 2° 4+ az + b = 0 with ab # 0 can always be solved by transforming

it to the trigonometric identity
4 cos®(f) — 3 cos(f) — cos(38) =0

as follows:

let x = mcos(f), then

Ht+ax+b = 0

m® cos*(#) + am cos(6) + b
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= 4cos*(f) — 3cos(d) — cos(39)

Hence
4 3 — cos(38)

m3 am b ’

from which it follows that

a 3b
—9./-2 0 =—"—.
m =2 3 cos(36)

Any solution #; which satisfies cos(34) = %, will also have the solutions

27 dr
&+ 3- and 6+ ?

The roots of the cubic 2% + az + b = 0 are therefore

T = mcos(01+2§)

zo = mecos(f)

4
T3 = mcos(91+§)

For the denominator of P(z) we have

_ a(A-aeq)
s
A+ aTq,q,
W = T
1+ A
pﬂ' = — 4 N

These values can then be substituted into the solutions given above to find 7y,

9, and 73. The values for s; are symmetric in (a,@) and (g, ¢) to the r; values.
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