Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

COMPUTATIONAL MORALITY: A PROCESS MODEL OF

BELIEF CONFLICT AND RESOLUTION FOR STORY
UNDERSTANDING

John F. Reeves June 1991

CSD-910017

Computational Morality:
A Process Model of
Belief Conflict and Resolution
for Story Understanding

John F. Reeves
May 1991

Technical Report UCLA-AI-91-05

UNIVERSITY OF CALIFORNIA
Los Angeles

Computational Morality: A Process Model of Belief
Conflict and Resolution for Story Understanding

A dissertation submitted in partial satisfaction
of the requirements for the degree
Doctor of Philosophy in Computer Science

by

John Fairbanks Reeves

1991

© Copyright by
John Fairbanks Reeves
1991

To Jeannie

TABLE OF CONTENTS

1 Morality, Computation, and Story Understanding 1
1.1 THUNDER: A Model of Evaluative Understanding 3
1.2 Ethical Reasoning and Thematic Understanding 6
1.3 THUNDER'’s Moral Philosophy T

1.4 Natural Language Processing and Story Understanding]
1.4.1 Parsing, Inference, and Seripts 3

14.2 Explanation-Based and Thematic Understanding 11

1.4.3 The Role of Memory and Integrated Processing 13

1.5 Scopeand Aims L 14
1.6 Dissertation Organization and Overview 17
I Ethical Evaluation and Belief Conflict 19
2 The Process of Plan Evaluation 21
2.1 Reasoning about Evaluative Belief. 22
2.2 Belief and Belief Relationships 24
2.3 Pragmatic and Ethical Reasoning _ 27
24 Episodic Plan Representation 30
2.5 Modeling Reader Ideology 34
2.6 Intentional Long-term Memory 37
2.7 Inferring Character Beliefs and Ideology 39
2.8 Summary 11
Belief Conflict Patterns. 43
3.1 Belief Conflict Patterns in THUNDER 44
3.2 Types of Belief Conflicts _ 13
3.3 Terminology and the Basis of Evaluation 47
3.4 Belief Conflict about Plan Execution 48
3.5 TypesofSelfishness., 52
3.5.1 Evaluator'sReasons 52

3.5.2 Plan Characteristics 53
3.53 Planner’'sBeliefs 54

3.6 Evaluator’s Knowledge and Plan Execution BCPs 56
3.7 The Purpose of Belief Conflict Patterns 38
3.8 Summary 61
Belief Conflict About Evaluation 63
4.1 Punishmentand Reward 64
4.1.1 The PunishmentSchema 64

1.2

4.3
4.4

4.5
1.6

5 Belief Conflict About Expectation

5.1

5.2
5.3

5.4
5.5
3.6

J1y outheritytoPunish ...
414 Types of Reward . . .
Belief Conflict About Punishment

4.2.1 Evaluation of the Crime
4+.2.2 Authority of the Judge ..o
4+.2.3 Evaluation of the Effectiveness of the Punishment
Belief Conflict abouyt Reward T
Planning and Protection Advice from Evaluation BCPs
Reasoning About Justice and Laws
Summary

..............

........................

Value Judgments about People T

5.1.1 Direct Character Assessment
>1.2 " Intentional Expectations . .., 17T

5.1.3 Plan Expectations and Character Evaluation
5.1.4 Character Traijt Expectations and Evaluation

Assessment Belief Conflict Patterns
Evaluative Expectations

Trust and Responsibility
Evaluative Expectation Belief Counflict Patterns
Summary

.............
.......................
.............................
........
................

.....................................

I Modeling Story Understanding

6 Thematic Story Understanding

..........................

6.1 THUNDER System Description
6.1.1 Episodic Story Representation

6.1.2 Demon-based Processing

6.1.3 Implementation Terminology,

6.2 Integrating Ethical Evaluation and Story Understanding, . .
6.2.1 Belief Conflict Recognition

6.2.2 Identifying Belief Conflict Resolutions. =

623 Theme Construction "

6.3 Recognizing Situational Irony
64 Summary ...
7 Knowledge Representation for Story Comprehension
7.1 Knowledge Representation Principles
7.2 Representing Actions and Motivation
7.3 Schematic Knowledge Representation
731 PlanSchemata "
7.3.2 Goal Failure Schemataand TAUs ="

v

83
85
835
86
87
88

92
95

97
98
99

7.4 Implementing Story Comprehension

....................... 139

74.1 Episodic Plan Representation 139

742 Episodic Plan Construction _ .. . 141

4.3 Plan Failure Recognition 146

TS oSummary ... 148
8 Natural Language Parsing and Generation in THUNDER 150
8.1 Demon-based vs. Phrasal Parsing _ .. 151
8.2 PPARSE and PGEN Overview __ 152
8.3 Issues in Phrasal Parsing and Lexicon Construction 153
8.3.1 The Domainof theParser 155

8.3.2 Phrase Representation and Lexical Construction 136

8.3.3 Structural Ambiguity 157

8.4 Packages for Common Linguistic Problems _ 159
8.4.1 Pronoun Reference _ 139
8.4.2 Lexical Disambiguation. 162

8.5 Integrating Phrases and Demon-based Processing 162
8.6 Memory Retrieval and Question Answering 166
8.6.1 Evaluative Judgment Questions 167
8.6.2 Goal Orientation Questions 168
8.6.3 Event Explanation Questions 169

8.6.4 Thematic Identification Questions 170
8.7 Summary

9 Integrating Moral Reasoning and Story Understanding: An Annotated

Trace of THUNDER in Operation 173
91 Hunting Trip 175
9.1.1 First Sentence 175

9.1.2 Second Sentence 185

9.1.3 Third sentence 207

9.14 FourthSemtence. 210

9.1.5 Thematic Recognition 211

IIT Evaluation and Conclusions 221
10 Methodology and Evaluation 222
10.1 Theoretical Claims 223
10.2 Theoretical Foundations 226
10.2.1 Levels of Analysis and Implementation 227

10.2.2 Explanatory Vocabulary 229

10.2.3 Theory and Implementation, ..., ... 230

10.3 Performance Limitations 231

10.3.2 Limitations of Modeling Multiple Reasoning Domaips
10.4 Evaluation Studies

10.4.2 Extensibility to New Cases

........................ 237

43 Unexpected Behavior, T 239

10.5 THUNDER Robustness and Fragility 242
10.5.1 Handling New Input 244

loo2 Misread Stories T 252

10.5.3 Discussion: Robustness and Knowledge 7 256

00 Summary 258
'l Comparison to Related Work 260
|1y poundational Work 261
11.2 Related Work in Artificial Intelligence. 000 262
11.2.1 POLITICS and the Representation of Ideology 262
11.2.2 Explanation Patterns and Ram’s AQUA 265
11.2.3 Alvarado’s OpEd and the Representation of Argument Knowledge . . 267

t1.3 Alternate Approaches T TR 269
t1.3.1 Deontic Logic 0 269
132 Utility Theory 271
11.3.3 Connectionist Modeling 272

11.4 Related Work in Psychology 274
11.4.1 Piaget's Moral Development of the Child 274
11.4.2 Kohlberg’s Six Stages of Moral Development 275
11.4.3 Recent Research on Moral Development: Turiel, Shweder, and Haan . 278

11.5 Related Work in Moral Philosophy 280
11.5.1 Philosophical Theories of Normative Obligation 281
11.52 Metaethics. 284

M8 Summary ..o 286
1z Future Work and Conclusions 288
12.1 Robust Story Understanding 7" 289
12.2 Future Directions 7 292
12.2.1 Moral Dilemmas and Moral Development 292
12.2.2 Modeling the Software Professional 293
12.2.3 Argumentation and Legal Reasoning 294
12.24 EthicalRobots 296

12.3 Contributions and Significance, 77" 297
124 Conclusions 298
12.4.1 Plan Evaluation and Moral Reasoning 299
12.4.2 Story Understanding _ 299
12.4.3 Belief Conflict Patterns. 300
Bibliography 302

Vi

A THUNDERI/O 314
A.l1 Example 2.1

................................... 314
A2 Example2.2 315
A3 Exampled.l 317
A4 Example 4.2o 319
A5 Hunting Trip 000 321
A6 Four OClock 326

B The Rhapsody Knowledge Representation System 334
B.l Hash Tables 335
B.2 The Representation Package 337

B.2.1 Class Functions 338
B.2.2 Instance Functions _ 339
B.23 Link Functions 342
B.3 The Pattern Matching Package _ 343
B.3.1 Variables and Patterns 344
B.3.2 Imstantiation 345
B.3.3 Matching Functions 346
B.4 The Discrimination Net Package 351
B.5 The Demon Package 354
B.5.1 Demon Functions, 355
B.5.2 Agenda Functions 356
B.5.3 Memory Descriptor Functions 357
B.5.4 MD Node Functions 358

C Technical Description of PPARSE/PGEN 360
C.1 Phrase Definitions. 360
C.2 Simple Variables, Phrasal Variables and Binding Lists 362
C.3 Global Variables. 363
C.4 PPARSE Nodes i i 363
C.5 PPARSE’s Parsing Algorithm 364
C6 PGENNodes 364
C.7 PGEN Generation Algorithm 365
C.8 Testing and Procedure Functions 366
C.9 Tracing and Debugging Features 367
C.10 The LEXREF Package 368

D THUNDER Implementation Details and Source Code Samples 370
D.1 ImplementationDetails 370

D.2 THUNDER Processing 371
D.21 Top-levelControl 374
D.2.2 Event Memoryand Demons 373
D.2.3 Intentional Memory and Demons 378

D.2.4 Belief Memoryand Demons 387

..................... 391

D.2.7 Thematic Processing 102

D.3 Frame-based Knowledge Structures 109
I 417

viii

LIST oF FIGURES

- _}:w
1.1 Schemata for TAU-Hypoerisy 12
2.1 Type Hierarchy for Belief. 25
2.2 Pragmatic and Ethical Reasons for THUNDER's Evaluatjve Belief about
Bank Robbery T 28
2.3 Plan Schema Representation of “To save money, John decided never to change
theoillinhiscar.™ T T 32
3.1 Schematic Structure of BCP:Selfish 49
3.2 BCP:Selfish Instantiated for Toxic Waste Dumping 30
3.3 BCP:Selfish-choice Instantiated for Toxic Waste Dumping 51
3.4 Schematic Structure of BCP:Misguided 55
3.3 Memory Organization for Plan BCPs 60
4.1 The Punishment Schema 65
5.1 Schematic Representation of Responsibility 97
6.1 THUNDER System Architecture 105
6.2 Episodic Story Representation 107
6.3 Working Memory Structure 108
6.4 ThematicBeliefs 120
7.1 Action and Event Structure 131
7.2 PS:Bank-Robbery 134
7.3 GF:Damages F 137
7.4 TAU:Dangerous-Object e e e e e 138
7.5 Intentional Structure of Hunting Trip 141
8.1 Example Parse Tree Constructed by Rewriting Patterns 154
8.2 Example Parse Tree before Matching the Syntax Pattern 163
8.3 [Example Parse Tree after Matching the Syntax Pattern 164
9.1 Episodic Story Representation After Sentencel 185
9.2 Episodic Story Representation After Sentence2 207
9.3 Intentional and Objective Levels of the Episodic Story Representation After
Sentenced e e e e e 211
9.4 Intentional and Objective Levels of the Episodic Story Representation After
GF:Damages is Recognized, 214
9.5 Thematic Level of the Episodic Story Representation at the End of Processing 220
10.1 Expected Performance vs. Implementation Effort 240
11.1 Soviet Goal Tree in US-conservative Ideology 263

11.2 Categories of Moral Obligation Theories 282

LI1ST OF TABLES

21 Types of Beliefin THUNDER 27
22 Dyer’s Plan Metrics 7 38
2.3 Judgment Warrants for Obligation Belief about PlanP 12
3.1 Describing Belief Conflict Situations by Participants 18
3.2 Classifying Plan BCPs by Reason Types 62
+1 Evaluation BCPs 82
5.1 Value-oriented Expectations and Assessments 89
3.2 Planning Situations and Pragmatically Positively and Negatively Assessed

Character Traits 0. 7) T oY aesessed 90
3.3 Interactional Situations and Ethical Positively and Negatively Assessed Char-

acter Traits T T L 91
5.4 Assessment Warrants 0o 100
3.3 Assessment and Evaluative Expectatioon BCPs 100
6.1 Differences and Generalization for the Theme of Hunting Trip 121
7.1 Conceptual Dependency Primitive Acts 130
7.2 Schank and Abelson’s Goal Taxonomy | 131
7.3 Conceptual Entitiesin THUNDER 132
7.4 Imtentiomal Links _ 133
7.5 PSchematain THUNDER """ 136
7.6 GFschemata used in THUNDER _ . ~~'"° 138
7.7 TAUsin THUNDER 138
7.8 Objects Searched in the PSchema Identification Process 143
7.9 PSchema Loading Rules 143
8.1 Demons Fired from Phrasal Patterns 165
91 THUNDERModules 174
10.1 Characterization of Student’s Answers to Questions about Reasons and Theme

in Hunting Trsp e e e 237
10.2 Characterization of Student’s Reasons that Oliver Was Wrong to Shrink His

Enemies in Four O'Clock > " "% 237
10.3 Correspondence Between Student's Reasons and Theme for Four O’Clock . . 238
10.4 Extension Additional Capability 238
10.5 Extension Code Additions and Development Time 238
10.6 Extension Phrase Additions | 239
10.7 Extension Knowledge Structure Additions 239
10.8 New Input Test Set and Results (Part 1) 244
10.9 New Input Test Set and Results (Part 2) 245

11.1 Kohlberg’s Six Stage of Moral Development 276
11.2 The Social and Justice Perspective of the Stages, 277
B.1 Special D-net Pattern Fillers 353
D.1 THUNDER I/O Throughput 371
D2 THUNDER Component Sizes _ . _ 371
D3 THUNDER Module Sizes 372
D4 THUNDER Lexicon Size " """"" 373

D.5 THUNDER Timing " "7 oo 373

ACKNOWLEDGMENTS

The research presented in this dissertation is a product of the environment of the UCL A
Artificial Intelligence Lab. First and foremost, I would like to thank my advisor, Professor
Michael Dyer, for its creation, as well as for being a source of advice and encouragement.
Professor Dyer taught me how to (1) go about doing research, (2) ask the right questions
at the right time, (3) take vague intuitions about language, thought, and memory and
refine them through computational implementation, (4) critically evaluate the goals and
contribution of my research, and (5) structure my writing by using enumerated lists.

The members of my dissertation committee—Professors Richard Korf, David Jefferson.
Kenneth Colby, and Morton Friedman—provided insightful comments and suggestions to
improve the quality of this document. In particular, Professor Colby helped to clarify the
philosophical underpinnings of the research, both in approach and evaluation. Professor
Korf’s critical reading forced me to question my assumptions, methodology, and results.

In addition, I owe an intellectual debt to Professors Margot Flowers and Emmanuel
Schegeloff. Professor Flowers was the first to see a crude outline of belief conflict pattern
theory, and helped to refine and direct my research in the early stages. Professor Schegeloff
broadened my perspective by showing me the intricacies of language as it is really used, what
1t does, and how it can be analyzed.

I also owe a debt to Sergio Alvarado, Michael Gasser, Eric Mueller, Michael Pazzani.
and Scott Turner for their work in the trenches as graduate students in the UCLA Al lah.
These guys were pioneers in an uncertain environment, and set the standard for excellence
in research.

The other inhabitants of the Al lab, past.and present, deserve to be thanked for spir-
ited discussions, intellectual stimulation, and general friendship. Among these people are
Stephanie August, Charlie Dolan, Ric Feifer, Maria Fuenmayor, Seth Goldman, Edward
Hoenkamp, Jack Hodges, Trent Lange, Geunbae Lee, Stuart Levine, Risto Miikkulainen.
Johanna Moore, Valeriy Nenov, Jody Paul, Walt Reed, Ron Sumida, Hideo Shimazu, Alan
Wang, and Greg Werner.

And, of course, heartfelt thanks go to my wife, Jeannie, for her support and understanding
during the long hours that I worked on this dissertation.

This research was supported in part by a grant from the Hughes Artificial Intelligence
Center, with equipment support provided by a grant from the W.M. Keck Foundation.

X1

ABSTRACT OF THE DISSERTATION

Computational Morality: A Process Model of Belief
Conflict and Resolution for Story Understanding

by

John Fairbanks Reeves
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1991

Professor Michael G. Dyer, Chair

A computational model of human story-reading requires an evaluative component: the ability
to make judgments about the actions and motivations of story characters. This dissertation
presents a theory of of evaluative judgment and ethical reasoning based on representing pat-
terns of evaluative belief as schema called Belief Conflict Patterns (BCPs). BCPs represent
abstract patterns of evaluative belief that organize the reasons for each sides of the conflict.
and allow understanding of how two people can hold opposite beliefs about action, evalua-
tion, and expectation. The theory is implemented in a computer program called THUNDER
(THematic UNDerstanding from Ethical Reasoning) which reads natural language text, con-
structs evaluations of character actions, infers the beliefs and ideology of story characters.
understands story structure in terms of conflict and resolution, and recognizes ironies and
themes in the stories.

THUNDER constructs an episodic representation of the input stories that include the
reader’s evaluative beliefs and the inferred beliefs of story characters. THUNDER creates
evaluative beliefs about characters’ plans based on a set of universal pragmatic and ethical
judgment warrants. The warrants are used to construct the beliefs of the reader, represent
the structure of evaluative judgment, and to infer the beliefs of the story characters. To
account for subjective differences in evaluative belief, THUNDER has a specific ideology
to represent the idiosyncratic aspects of evaluation. In addition to representing conflicts in
evaluation, BCPs are used to (1) organize memory by evaluative content for planning and
protection advice in interpersonal situations, and (2) identify the general advice that a story
contains for the reader.

THUNDER is computational model of the cognitive processes of evaluative understand-
ing, ethical reasoning, and thematic story understanding. THUNDER (1) provides a process
model of how judgments are made about good and evil, and right and wrong, (2) identi-
fies the types of knowledge are used to make evaluations. (3) identifies what is universal
about evaluative processes, and what is idiosyacratic to the individual, and (4) shows how
evaluative judgments are used, and are useful, in story understanding.

CHAPTER 1

Morality, Computation, and Story Understanding

To model the story understanding process in a computer program, the program has to create
and manipulate evaluative Judgments about the story characters. When the reader makes
judgment that a story character is ‘good’ or ‘evil,” the judgment provides an evaluative basis
for interpreting the rest of the story, and to recognize the point of the story. For example.
consider the beginning of the following story:

Hunting Trip

Two men on a hunting trip captured a live rabbit. They decided to have some
fun by tying a stick of dynamite to the rabbit. . .

After reading the above section, many readers believe that the hunters should not blow up
the rabbit because blowing up the rabbit for eatertainment is immoral. Now consider the
story continuation:

Hunting Trip (cont’d)
... They lit the fuse and let it go. The rabbit ran for cover under their truck.

When the reader infers that the dynamite blew up, and that the hunters’ truck blew up
along with it, the reader can make the judgment that the hunters deserved to have their
truck blow up. The judgment can be made because the reader believed that the hunters
were being cruel to the rabbit.

THUNDER (THematic UNDerstanding from Ethical Reasoning) is a computer program
that reads natural language stories, makes judgments about the story character’s actions.
and identifies the irony and theme in the stories [Reeves, 1988; Reeves, 1989a). To accomplish
these tasks, THUNDER implements a theory of ethical reasoning, and models a reader who
makes evaluative judgments and reasons about the beliefs and ethics of story characters.
After reading Hunting Trip, THUNDER answers the following questions:

> Why did the men tie a stick of dynamite to the rabbit?
TO BLOW UP THE RABBIT.

> Why did the hunters let the rabbit go?

TO TAKE THE DYNAMITE AWAY FROM THEM.

> Why did the rabbit run under the truck?

TO ESCAPE FROM THEM.

> Why did the hunters want to blow up the rabbit?
TO ENJOY WATCHING THE RABBIT BLOW UP.

> Why did the truck blow up?

BECAUSE THE DYNAMITE BLEW UP.

> Why were the men wrong to blow up the rabbit?

BECAUSE THEY WILL BE ENTERTAINED BUT THE RABBIT BLEW UP AND THE RABBIT s
HEALTH IS MORE IMPORTANT THAN THEIR ENTERTAINMENT.

> Why did the hunters believe that blowing up the rabbit was good?

BECAUSE THEY WILL BE ENTERTAINED WHILE THE RABBIT BLEW UP AND THEIR
ENTERTAINMENT IS MORE IMPORTANT THAN THE RABBIT'S HEALTH

> Why did the hunters believe that blowing up the rabbit was a mistake?
BECAUSE THEIR TRUCK BLEW UP.

> What is the irony in the story?

THE IRONY IS THAT THEY EXPECTED TO BE ENTERTAINED BY WATCHING THE RABBIT
BLOW UP BUT THEY WATCHED THEIR TRUCK BLOW UP WHEN THE RABBIT RAN UNDER

THEIR TRUCK,

> What is the theme of the story?

THE THEME IS THAT YOU SHOULD NOT EXECUTE PLANS THAT CAUSE BAD THINGS
TO HAPPEN TO OTHERS BECAUSE YOU WOULD NOT LIKE BAD THINGS TO HAPPEN TO

YOU.

By answering these questions, THUNDER shows how the story was understood, the
inferences that were made during story understanding, the evaluative judgments that were
made, and the thematic structures that were recognized.

1.1 THUNDER: A Model of Evaluative Understanding

THUNDER is a computer program that takes natural language stories as input, parses the
story into a conceptual representation. and answers questions about ethical Judgments, irony.
and theme. Answering questions shows how beliefs and judgments are used in understanding
stories, and how the beliefs change during understanding. THUNDER embodies a theory
of ethics and thematic understanding in which stories are understood in terms of symbolic
structures called belief conflict patterns. Belief conflict patterns (BCPs) represent situations
where the reader and story character have opposite evaluative beliefs about the character '
actions.

The current version of THUNDER reads two stories: Hunting Trip and a synopsis of
Four O’Clock, a story from the television show The Tunlight Zone. Hunting Trip appeared
in [Bendel (ed.), 1985] credited to the Adelaide Advertiser. A preliminary report discussing
THUNDER'’s processing of Hunting Trip appeared in [Reeves, 1988].

THUNDER's processing of Hunting Trip illustrates the role of evaluative belief in the-
matic understanding. The huaters in Hunting Trip are executing a morally reprehensible
plan—they are going to enjoy watching the rabbit blow up. THUNDER makes the evalua-
tion that the plan is ethically wrong from its understanding of the hunters’ plan and iis belief
that life is more important than entertainment. THUNDER also make inferences about the
beliefs of the hunters. THUNDER infers that the hunters believe their plan is ‘right’ because
they are executing it, and therefore must believe that their entertainment is more important
than the life of the rabbit. The belief conflict in Hunting Trip is between THUNDER's and
the hunters’ beliefs about the hunters’ plan — THUNDER believes that the men should not
blow up the rabbit because it is inhumane, while the hunters believe that they should blow
up the rabbit because they will be entertained.

At the end of Hunting Trip, THUNDER infers that the dynamite has blown up and
that the rabbit and the hunters truck has blown up along with it. The destruction of
the truck is a resolution to the belief conflict because it makes the hunters believe that
they should not have tried to blow up the rabbit. The resolution to the belief conflict is
thematic because it provides confirmation that THUNDER's original judgment was correct.
The reason underlying THUNDER's belief that blowing up the rabbit was wrong is that
THUNDER would not want to be blown up. At the end of the story, the hunters believe
that they should not have blown up the rabbit because they did not want their truck blown
up. By matching the beliefs in the belief conflict to the beliefs that result from the resolution.
THUNDER can construct the theme of the story: you should not do bad things to people
because you will not like it when bad things happen to you. The theme is a version of the
Golden Rule (do unto others as you would have them do unto you).

Modeling the evaluative beliefs of the reader and understanding the beliefs of the charac-
ters enable THUNDER to recognize the irony in Hunting Trip. The destruction of the truck
is ironic because the two men had been expecting to be entertained by watching the rabbir
explode, but instead they had their truck destroyed. The contrast between expectation and

outcome is more ironic because THUNDER believed that the hunters’ plan was immoral.
Since the resolution occurred as the result of the hunters’ plan backfiring, THUNDER can
understand the destruction of the truck as punishment, or a Just desert, for blowing up the
rabbit,

The second story that THUNDER reads is a synopsis of the Twilight Zone story Four
O 'Clock {Day, 1985; Zicree, 1982

Four O’Clock

Political fanatic Oliver Crangle is convinced that people who do not agree with
his political views are evil. He keeps detailed files on people, makes threatening
phone calls, and sends letters discrediting his ‘evil’ political enemies. One day,
he finds a book of black magic and casts a spell to shrink every evil person in
the world to a height of two feet tall at exactly four o’clock. But when the time
rolls around, it is he who becomes two feet tall!

The thematic structure of Four O’Clock is similar to Hunting Trip — both stories involve
evil people who are punished when their plans backfire. However, in Four O'Clock the
reasons for THUNDER's judgment are different:

> Why did Oliver want to shrink his political opponents?

TO PREVENT HIS POLITICAL OPPONENTS FROM DAMAGING SOCIETY.
> Why was Oliver wrong to shrink his political enemies?
BECAUSE HE PUNISHED THEM FOR THEIR I;OLITICAL BELIEFS.

> Why did Oliver shrink?

BECAUSE OLIVER WAS EVIL.

> Why was Oliver evil?

BECAUSE OLIVER PUNISHED HIS POLITICAL OPPONENTS FOR THEIR POLITICAL BE-
LIEFS.

> what is the irony in the story?

THE IRONY IS THAT OLIVER EXPECTED TO PREVENT HIS POLITICAL OPPONENTS
FROM DAMAGING SOCIETY BY CASTING THE SPELL BUT HE BECAME TWO FEET TALL

WHEN HE CAST THE SPELL.

> What is the theme of the story?

THE THEME IS THAT YOU SHOULD JUDGE YOURSELF BEFORE JUDGING OTHERS BE-
CAUSE YOU WOULD NOT LIKE TO BE PUNISHED.

To understand Four O’Clock, THUNDER has to be able to reason about Qliver’s actions
in terms of the ethical concepts of judgment and punishment. When THUNDER reads that
Oliver believes that “people who do not agree with his political views are evil,” THUNDER
infers that Oliver believes (1) people are evil because of the political positions that they hold.
and (2) those political positions are damaging to society. When Oliver Crangle attempts to
shrink “every evil person in the world,” THUNDER has to use Oliver’s beliefs about what
is evil to understand that Oliver intends to shrink his political opponents to prevent them
from damaging society. THUNDER recognizes Oliver’s plan as an instance of preventative
punishment: a goal failure designed to prevent the criminal from doing his crime in the
future. THUNDER infers that Oliver believes that shrinking his political opponents will
prevent them from spreading the political views that are dangerous to society.

While Oliver believes that society needs to be protected from certain political opinions.
THUNDER believes that Oliver’s plan to shrink his political opponents is wrong. THUN-
DER believes that Oliver is wrong to punish his political opponents because (1) holding
differing political views is not a punishable offense, and (2) Oliver has no right to judge
other’s political views as evil. The belief conflict in Four O’Clock is between the THUN-
DER’s and Oliver’s evaluation of Oliver’s plan: Oliver believes that his plan is ethically
right because punishing all evil people will protect society, while THUNDER believes that
the plan is ethically wrong because he is punishing people for something that they should not
be punished for. In order to make the ethical judgment about Oliver’s plan, THUNDER has
to reason about the following aspects of punishment: (1) what is the evaluative reasoning
that results in the decision to punish, (2) what does the punisher hope to accomplish, and
(3) what authority does the punisher have to carry out the punishment.

At the end of Four O’Clock, Oliver neglected to specify the method of determining who
is evil in his magic spell. By recognizing that Oliver’s punishment of his enemies is wrong,
THUNDER can understand Oliver’s shrinkage as punishment for punishing others unfairly.
THUNDER reasons that Oliver wanted to punish his enemies because he determined that
they were evil, but he was shrunk because his attempted action was evil,. THUNDER
recognizes that the story is ironic because Oliver had intended for evil people to be punished.
but since Oliver was evil, he was punished.

To identify the theme of the story THUNDER identifies the source of Oliver’s shrinkage,
why it occurred, and how he could have prevented it. THUNDER reasons that Oliver did not
believe that he would be effected by his plan because he did not hold the evil political views.
What he failed to realize was that the plan itself was evil; he was judging and punishing
others where he had no right to do so. The theme is identified by recognizing how Oliver
could have avoided being shrunk; if he had evaluated his plan as evil (as THUNDER did), he
would not have executed it and would not have been shrunk. Thus he should have evaluated
his own actions before attempting to judge and punish people for their political beliefs.

1.2 Ethical Reasoning and Thematic Understanding

In order to model ethical evaluation during story understanding, THUNDER has to imple-
ment a theory of ethics and ethical reasoning. A person’s ethics are the moral values and
principles that he uses to reason about the effects of his actions on others, and determine
the rightness or wrongness of actions. Values and principles are used to evaluate conflicts
between the desires, rights, and privileges of the individual and other members of society.
Ethical decisions about action are based on reasoning about the consequences of action
for the actor and effects of actions on other people. Ethics influence decision making and
understanding of other’s actions by providing a basis for evaluating those actions.

Thematic understanding is reading to recognize the moral or point of the story, and not
just to comprehend the events. A theme is an abstract piece of advice that the author
trying to convey. One class of themes are ethical themes—advice about the reasons th .-
actions are ethically right or wrong. In order to find an ethical theme, THUNDER has to
make ethical judgments about story characters and their actions. Ethical judgment making
involves reasoning about concepts like fairness, equality, justice, reward, and punishment.

In order to understand ethical reasoning and thematic understanding, the following ques-
tions have to be addressed: How are ethical judgments made? What are ethical judgments
made about? What knowledge is used in making ethical decisions? How does ethical rea-
soning differ from other types of reasoning? What parts of the ethical evaluation process
are common to all people, and what parts are specific to a particular individual? How is
evaluation related to attitudes, and about what kinds of things do people form attitudes?
How and when are ethical judgments made during story understanding? How are ethical
judgments useful in story understanding? How are ethical judgments used to identify the
theme of the story?

To provide answers to these questions, this dissertation presents a computational account
of ethical evaluation. THUNDER simulates human cognitive processes of understanding and
ethical evaluation to provide a explanatory account of ethical evaluation, and serve as an
experimental vehicle for studies of ethical understanding,.

The fundamental assumption of this research is that the judgmental processes of the
story reader are central to story understanding, and the judgments are the difference between
simply comprehending the events of the story and understanding why the story was written.
A reader interprets the actions of story characters by making ethical judgments in terms
of his prior attitudes, beliefs, and ideology. Judgments that actions are ‘wrong’ or ‘bad’
indicate conflicts in belief between the reader and story characters, and motivate story
understanding to resolve the conflict. A cognitive model of ethical evaluation during story
understanding must represent, create, and manipulate the judgments and attitudes of the
reader and story characters. The methods of attitude formation are used to develop a
computational understanding of ethical evaluation and thematic understanding.

1.3 THUNDER’s Moral Philosophy

Moral reasoning is the task of determining the rightness or wrongress of actions in terms of
how the action affects self, others, and society in general. To make moral judgments about
situations requires reasoning about the following concepts:

* Good and Evil. What standards are used to determine moral goodness and evilness’
What characteristics of situations make the them good or bad? What is the distinction
between wrong, bad, and evil?

o Self and Others. What are the effects of actions for the actor and others’ For
example, selfishness is advantageous for an individual because it reserves a resource.
but sharing helps others at the individuals expense.

® Values. Reasoning about the achievement, preservation and relative importance of
values such as health, happiness, liberty has to be done to determine how “good” the
consequences of action are.

* Principles. Moral principles such as the golden rule, not to lie, and to be responsible
are guides to moral judgment but cannot be used in all situations equally.

THUNDER implements a memory-based model of moral evaluation. Instead of reasoning
from first principles about the morality of action, THUNDER constructs an episodic rep-
resentation of the input stories that include the readers evaluative beliefs and the inferred
beliefs of story characters. Memory is used to support moral reasoning by providing (1}
the causal and intentional beliefs of the story characters about their actions, (2) the rela-
tive importance of goals and plans, and (3) alternative plans that were not used by storv
characters.

Philosophical theories of ethics attempt to specify how the ‘good’ and ‘right’ are deter-
mined, and thus are prescriptive theories. Using the ‘correct’ philosophical theory, a person
would always behave morally. The problem with implementing philosophical theories is that
they tend to ignore (1) processing limitations, such as the amount of time and memory the
evaluation procedure would need, and (2) task considerations, such as how the evaluation
procedure is integrated with comprehension, how judgments can be used to make inferences
about the beliefs of others, and the role of judgment on learning and improving performance.
For example, implementing Kant'’s categorical imperative (“Act only according to that maxim
whereby you can at the same time will that it should become a universal law” [Kant, 1785.
p. 30]) would requires implementing procedures that generating the “maxim” of an action.
constructing a universal law, and then testing to see if the law is self-consistent. The first
problem with this evaluation procedure is that generating and testing is too time-consuming
to be used for evaluating each action independently, so patterns of reasoning would have to
be stored and saved. The storing and saving requires a theory of memory organization and
access. Secondly, the procedure does not specify how other’s actions are to be interpreted

once they are judged unethical. Theories of belief inference have to be added to make the
procedure useful for prediction and instruction tasks.

The philosophical theory implemented in THUNDER is mized act-deontological based on
Toulmin’s good reasons approach [1950] . Mixed deontological theories of ethics judge actions
on both the nature and consequences of the action, in contrast to teleological theories, which
judge action solely on the consequences, and pure deontological theories, which judge actions
solely on the nature of the action. THUNDER makes moral judgments about the actions in
stories, so the system is act-deontological, in contrast to rule deontologies, which judge the
rules that underlie the actions.

To make moral judgments, THUNDER constructs evaluative beliefs about actions in
stories. Evaluative beliefs are beliefs about the normative value of actions and object; an
evaluative belief about action is an obligation belief that an action (or plan) should or should
not be used. The data that THUNDER uses to make moral judgments is evaluative beliefs
stored in memory. The memory organization for evaluative belief is THUNDER’s 1deology
and has two components: (1) a value system, which provides the measurement of normative
value of objects, and (2) planning strategies, which provide beliefs about the goodness of
abstract plans. The reasons for obligation beliefs about actions in stories are represented
by judgment warrants, which are used to construct semantic network representation linking
factual beliefs about the story to judgments. The judgment warrants implement both utili-
taran reasons, such as the value consequences of action and the relative importance of the
value consequences, and reasons based on the nature of the action, such as plan availability
and intentionality.

1.4 Natural Language Processing and Story Understanding

Research in semantics-based natural language processing has focused on knowledge repre-
sentation, organization, and access to allow programs to ‘understand’ text. Traditionally.
the programs have processed sentences or story fragments and answered questions about
the mmplicit information in the text. The utility of the knowledge representation schemes
and the processing paradigms are argued for from the program’s ability to make inferences.
acquire new information, construct summaries, or answer questions.

This section presents a brief survey of knowledge-based natural language systems and the
problems they were designed to address. The problems and approaches provide the historical
framework for the THUNDER project.

1.4.1 Parsing, Inference, and Scripts

To take natural language input and produce conceptual representations, the application of
knowledge during story understanding needs to be controlled. Process control in conceptual
processing systems consists of locating appropriate information and deciding when and how

to apply the knowledge during understanding, During parsing, there are three problems
that have to be addressed: (1) how linguistic knowledge about the structure of language is
represented and used, (2) how the words. phrases, and sentences are sequentially accessed
to construct the conceptual representation of the story, and (3} how the lexical entries are
defined. or how knowledge is associated with words.

An early approach to natura] language processing (the SHRDLU program [Winograd,
1972]) was to have the entries for lexical items (words and idioms) encoded as procedures
which were activated by the natural language input. When the lexical procedures were rum,
they built a representation that was itself a procedure, which was then executed. For exam-
ple, the command “Put the green pyramid on the red block” was parsed into a procedure that

domain, where each input was a command or query which required an immediate response
from the system.

As work progressed to multi-sentential texts, the problem became how to control the
possible interpretations given to a sentence, For example, consider the sentence:

1.1: Mary's face was red,

In isolation, example 1.1 informs us about an attribute of Mary’s facial color. Now consider
possible sentences that could have preceded the sentence:

1.2: Mary sunbathed at the beach.
1.3: John slapped Mary.
1.4: Mary dropped her tray in the cafeteria.

Each sentence provides a ‘cause’ for Mary’s red face. In sentence 1.2 she was sunburned, in
1.3 she was injured, and in 1.4 she was embarrassed. The different ways that the sentence
can be interpreted depends on the expectations associated with the action that preceded it.

To use the context created by the text to make inferences, the ELI parser [Riesbeck.
1975; Riesbeck and Schank, 1976; Gershman, 1979] associated ezpectations with knowledge
structures to predict the words and concepts that will follow. In ELI, the expectations took
the form of missing slots in a couceptual representation. For example, the lexical entry for
the word “ate” would contain a frame for the primitive action, with expectations that the
eater would be the subject of the sentence and the object being eaten would be a noun
phrase that follows “ate” in the sentence,

Extending the notion of expectation to a series of actions, the SAM and FRUMP pro-
grams [Cullingford, 1978: Delong, 1979] used knowledge structures called scripts [Schank
and Abelson, 1977]—stereotypical sequences of events—in narrative understanding. Once a

script was activated subsequent sentences were parsed in terms of the events following in the
script. For example, in a story about a kidnapping, FRUMP makes the following predictions:

¢ The kidnappers will communicate a ransom demand.
* A law enforcement agency will be called in.

The ransom may or may not be met.

If the ransom is met, the kidnapped person will probably be released, but might con-
tinue to be held, or might be killed.

If the ransom is not met, the kidnapped person will probably continue to be held. of
might be killed, but might be released.

The kidnapper may or may not be apprehended.

o If the kidnapper is caught, he will be tried in a court for kidnapping.

The predictions can be inferred if the text only substantiates a subset of the elements of the
schema. For example, in the story:

1.5: John kidnapped Mary. She was released, and he was later apprehended.

Using the instantiated kidnapping script, the program can infer the events that occurred
between the events provided by the story, for example that a law enforcement agency was
called in and that the ransom was met.

The problem with expectation-driven parsing is that there may be many knowledge
structures active at any one time, and the stereotypic knowledge represented in scripts is
unable to represent novel situations. For example:

1.6: John loved Mary, but her parents disapproved of him. He decided to
kidnap Mary, and take her to Las Vegas.

A script-based understander could understand example 1.6 story in terms of the ‘love’.
‘disapproving-parents’, ‘kidnap’, and ‘trip-to-Vegas’ scripts, and still miss that John is at-
tempting to elope with Mary. Also, as the number of knowledge structures used in the
representation of the story increases there is a combinatoric explosion of active expectations.
It is clear that the expectations should be available for later input, but not that they should

be explicitly activated.

1.4.2 Explanation-Based and Thematjc Understanding

To avoid the problem of a combinatoric explosion of expectations, subsequent systems {PAM
[Wilensky, 1983a) and BORIS [Lehnert et al., 1983: Dyer, 1983]) waited until an under

and augmented when failures in understanding have occurred, and an explanation for the
failure is required. The model works by organizing knowledge into hierarchical levels and by
attempting to apply a structure from each level to the input events. When a failure occurs.
the model attempts to apply knowledge at the next higher level to explain the fajlure.

PAM and BORIS required high level, thematic knowledge structures to globally organize
narratives. Thematic knowledge structures provide the point or moral of the story, and are
used to explain why the reader is being told about the particular events of the story. The
impetus for studying thematic knowledge structures was given in [Schank, 1982] to explain
cross-contextual remindings, such as being reminded of a soap opera plot while watching
professional wrestling. Thematic organization packets (TOPs) [Schank, 1982] represent ab-
stract thematic goal situations. For example, both Romeo and Juliet and West Side Story
share as a common theme the TOP Mutual Goal; Outside Opposition (MG;00). When both
stories are indexed in memory by MG;00, a system can be ‘reminded’ of one by the other.

Wilensky [1982;1983b] represented the point of a story in terms of (1) goal relationships
(e.g. goal competition, competition removal) and (2) problem and solution components. For
example, the following story (from [Wilensky, 1982]):

1.7: John told Mary he wanted to watch the football game. Mary said she
wanted to watch the Bolshoi ballet.

is understood as a goal competition. The goal competition is over a limited resource {the
television) that only one person can watch at a time. The story point provokes interest
because it predicts that at least one person is going to have a goal failure. By recognizing
that a goal competition situation, the system can predict that each planner will try to do
something about the conflict by replanning for their respective goals. Wilensky [1983b)] also
distinguished between (1) ezternal story points, which provide a reason for telling the story
and (2) internal story points, a point that generates reader interest by presenting a problem
solving situation for characters in the story. Wilensky’s work showed that goal relationships
are an integral part of the thematic structure of stories, and that goal analysisis an important
part of a thematic understanding system.

The BORIS {Dyer, 1983; Lehnert et al., 1983] system is a model of ‘in-depth’ narrative
comprehension. BORIS implemented a theory of what makes a story memorable by under-

11

TAU-Hypocrisy

X is counter-planning against y

X 18 trying to get a higher authority z to either block v's
use of a plan P-1 (or to punish y for having used P-1)
by claiming that P-1 is an unethical plan

y claims that x has used an unethical plan P-2 similar to P-1
therefore, x’s strategy fails

(adage: “The pot calling the kettle black”)

Figure 1.1: Schemata for TAU-Hypocrisy

standing the story in terms of thematic patterns. The thematic component of BORIS used
thematic abstraction units (TAUs) to represent information about errors in planning. TAUs:

contain an abstracted planning structure, which represents situation outcome
patterns in terms of: (1) the plan used, (2) its intended effect (3) why the plan
failed, and (4) how to avoid (or recover) from that type of failure in the future
[Dyer, 1983, p. 29).

TAUs can often be characterized by the planning advice contained in adages or sayings. As
an example, consider the following story (from [Dyer, 1983)):

Minister’s Complaint

In a lengthy interview, Reverend R severely criticized President Carter for having
“denigrated the office of president” and “legitimized pornography” by agreeing to
be interviewed in Playboy magazine. The interview with Reverend R appeared
in Penthouse magazine.

The theme of Minister’s Complaint can be characterized by the adage “The pot calling
the kettle black”. The abstract thematic content of the planning failure committed by the
Reverend is contained in TAU-Hypocrisy shown in figure 1.1.

Recognizing TAU-Hypocrisy in minister’s complaint shows how the theme of a story can
be represented in terms of knowledge about planning and plan failures. However, many TAU-
based themes may be present in a story, and each individual TAU is only a sub-section of the
theme of the story. For example, in Romeo and Juliet there is a theme at the planning failure
level when Juliet’s false report of death, which is intended to deceive her opponents, fools

the story.

1.4.3 The Role of Memory and Integrated Processing

TAUs make another important contribution to representing thematic knowledge by organiz-
ing thematic information around planning failures. When the predictions provided by knowi-
edge structures fail, the reasons for the fajlure should be noted so that the same mistake
will not be repeated. Noticing failures and adding information to the knowledge schema to
recognize the failures the second-time around 1s called failure-driven memory [Schank, 19821,
TAUs represent a generalized kind of planning failure that can be applied across domains
so that a planning error like TAU-Hypocrisy can be learned from Minister s Complaint and
applied in other ‘appeals to authority’ situations. When thematic narratives are read, often
a narrative with different events will come to mind [Schank, 1982]. Being reminded of other
stories indicates that (1) narratives do not exist in isolation in memory and (2) distinct
narratives with similar thematic elements are being processed and indexed in a similar man-
ner [Dyer, 1983; Seifert et al., 1986]. Thematic memory structures can be used to organize
memory in terms of abstract content by representing episodes in instantiations of the same
structure, and indexing the episode by the thematic components.

Modeling long-term memory by instances of frames indexed by their differences is called
the “schema plus correction” model [Bartlett, 1932] or “context plus index” model [Reiser.
1983; Reiser et al., 1985). The content plus index model integrates semantic information (the
generalized schema) with episodic information [Tulving, 1972] at the leaves of the schema
hierarchy. Recalling events from a context plus index memory necessarily involves recon-
struction of the episodes from the unique elements of the episode and the schemata that the
event is indexed under [Glass and Holyoak, 1986, pp. 244-245]. Memory for stories has also
been found to be hierarchical [Thorndyke, 1977; Buschke and Schaier, 1979}, and reconstruc-
tive, since schema relevant material will appear in recall even when the information was not
present in the text [Bower et al., 1979].

The programs CYRUS [Kolodner, 1984] and IPP [Lebowitz, 1980] modeled the interaction
of semantic and episodic memory for memory organization. CYRUS was a model of the
memory of former secretary of state Cyrus Vance for the events during his time in office, and
was concerned with implementing the retrieval and self-organization of events in memory.
CYRUS organized memory in terms of schemata such as ‘museum visits’, ‘trips’, ‘diplomatic
trips’, and ‘diplomatic meetings’. CYRUS' schemas were used in two ways: (1) as data
structures for instantiated versions of the schemata to encode episodes that CYRUS had
read about, and (2) as indexing structures to other schema in terms of their differences

13

from the schema. Indexing episodes by differences from the schema serves to subdivide
the episodes into manageable size while grouping similar episodes together. For retrieval of
specific episodes, Kolodner [1984] identified two characteristics of good indices: (1) unique
features, because they differentiate episodes and provide for easy retrieval, and (2} predictive
power, because the feature will imply the other features of the schema.

Integrated Partial Parser (IPP) {Lebowitz, 1980} read news stories dealing with interna-
tional terrorism, and formed generalizations from the stories to aid in understanding new
narratives. IPP dealt with the generalization process: how generalizations get made and con-
firmed, and how they organize events in memory. IPP understood stories in terms of schema
representing terrorist acts such as extortion, kidnapping, and hijacking. As IPP read stories
about international terrorism, it stored a conceptual representation of each story in long-
term memory. When new stories were read IPP recalled the old stories, and attempted to
make generalizations about what happens in a terrorist incident. Finding an appropriate
generalization in memory is useful for predicting other elements of the event, and inferring
missing information. Representing generalizations as schema provides the intermediate levels
of the memory hierarchy.

Programs like BORIS, CYRUS, and IPP showed that understanding, memory access
and retrieval, and learning are integrated processes. In an integrated understanding system.
these three processes are executed while stories are being read; understanding uses memory
and provides new data, memory indexing organizes the stories and provides similarities
and differences for learning, and learning creates new concepts that provide new indices for
memory and new principles for understanding,.

1.5 Scope and Aims

THUNDER is in the tradition of integrated, explanation-based natural language systems.
THUNDER extends previous approaches to thematic story understanding by modeling the
dynamic creation of the story reader’s beliefs and evaluations, and recognizing conflicts in
belief between the reader and story characters. Recognition of a belief conflict provides
the reader with a ethical understanding problem which requires explanation. The search
for an explanation leads the system to resolve the belief conflict and find a theme for the
story. By integrating ethical evaluation into the explanation-based model, THUNDER uses
belief-generated explanations to guide processing.

Evaluating the theories of story understanding and ethical reasoning that are imple-
mented in THUNDER, and judging the success of THUNDER as a general cognitive model.
depends on understanding the approach used for computational modeling and natural lan-
guage processing. There are four main components of the approach: (1) explicit, symbolic
models of belief processes, (2} explanatory accounts of cognitive processes, (3) memory-based
processing, and (4) modeling the competing constraints of multiple tasks involving language
understanding and reasoning.

Explicit Models of Reader Belief. By explicitly modeling the knowledge structures
that represent the beliefs of the reader, THUNDER provides a symbolic account of the
methods by which evaluative beliefs get created, confirmed, contradicted, and manipulated.
Implementing the evaluative belief processes that are used in story understanding provides
a way of making claims about belief processing in general understanding and reasoning.
Although the belief processes are used to model narrative comprehension, the types of belief
problems the model can be applied to are ubiquitous.

People argue about the competitive values of evaluative beliefs, the value of a set of
beliefs, and the problems that beliefs can cause. These additional features of evaluative
belief and evaluative belief reasoning can be studied by looking at two interesting aspects
of evaluative belief: (1) when the understanding of a situation implies that two beliefs are
contradictory, and (2) when it is necessary for beliefs to be updated. The approach taken
to modeling belief here is to identify the types of belief and reasons for beliefs that occur
in belief conflicts, and use the types to recognize themes. The research issues are: (1) what
types of reasons are there for holding evaluative beliefs, (2) how can they contradict one
another, (3) how the conflicts are represented and recognized, (4) how belief patterns are
used in stories, and (5) how the patterns are used to organize expectations, explanations.
and themes.

Explanatory accounts of cognitive processes. Story understanding requires the use
of many interacting knowledge sources from disparate domains. For example, Hunting Trip
requires a theory of spatial and temporal reasoning to understand that after the rabbit runs
under the hunters’ truck, the hunters are no longer near the dynamite, and that the truck will
blow up when the dynamite blows up. Four O’Clock requires a theory of political reasoning
and reasoning about the effects of magic spells; THUNDER has to know that Oliver believes
that the evil political beliefs are damaging to the country, and that the people who hold
the evil political views are trying to convince the public that those beliefs are ‘good’ for the
country. THUNDER has to know that magic spells can achieve results that are physically
impossible, such as shrinking people to two feet tall, and that ‘casting’ a magic spell means
that the specified effect of the spell took place.

THUNDER is designed to implement and test theories of evaluative belief, ethical rea-
soning, and thematic story understanding. These theories require support from spatial.
temporal, and many other type of knowledge. To provide a complete theory of reasoning for
each domain is beyond the scope of the THUNDER project. However, a complete theory
for each domain is assumed and the reasoning and knowledge from each domain are im-
plemented in terms of ad hoc rules and procedures. The approach of assuming a complete
domain theory allows THUNDER to identify what is required from the domain and inter-
relations between reasoning domains, without implementing a complete, general model for
the domain. THUNDER can specify the general cognitive architecture that is required for
story understanding, without completely implementing each individual piece.

Memory-based processing. The knowledge that THUNDER uses to construct an
episodic representation is represented by patterns that are organized in memory. THUNDER

15

is based on three types of knowledge structures: (1) phrasal patterns to specify knowledge
about natural language for parsing and generation, (2) plan schemata, which represent in.
tentional knowledge about goals and plans, and (3) belief conflict patterns, which represent
knowledge about ethics and conflicting evaluative beliefs. The problems for THUNDER
are (1) how the patterns are constructed; what the elements and relationships are that are
used in pattern construction. (2) how the patterns are organized and accessed during story
understanding, and (3) what knowledge is associated with each schema’s use and application.

Modeling the competing constraints of multiple tasks involving language un-
derstanding and reasoning. The implementation of THUNDER is a vertical, ‘in-depth’
model of story understanding. It understands a few stories at a great level of detail, using
many different sources of knowledge during processing, instead of processing many stories
and focusing on one sub-section of the story understanding process. THUNDER models
story understanding from natural language input to generation of question answer output.
THUNDER does not model the entire reading process; for example, it does not model the
perceptual processes of identifying words from patterns of ink on a printed page. Instead.
THUNDER takes a list of symbols representing words that are organized in sentences and
processes those symbols from left to right. However, each process that THUNDER does im-
plement places additional constraints on the knowledge representation and processing. For
example, when THUNDER reads:

1.8: They decided to have some fun by tying a stick of dynamite to the rabbit.

THUNDER cannot immediately make a judgment about the hunters’ immoral plan. THUN-
DER has to parse the sentence into its constituent conceptual structure, which provides some
indication of the relationship between the conceptual elements. The lexicon provides the ba-
sic relationship between sentence elements, using the pattern:

pattern: <human®» decided < goal» by <action®
concept: <action of human$ enables «goal of humany

However, the pattern could be used for other sentences, such as
1.9: They decided to have some fun by roasting marshmellows.
1.10: They decided where to go to lunch by flipping a coin.

Since the sentence does not provide the exact ‘enabling’ relationship between the action
and the goal, intentional reasoning has to be used to build up the actual structure of the
actor's plan. Linguistic knowledge provides a relation between the goal and the action, but
THUNDER has to reason about the specific goal and plan elements to link the hunters’ goal
(“to have some fun”) to the act of tying a stick of dynamite to the rabbit. Implementing
multiple tasks with the same underlying knowledge representation provides support for the
efficacy of that representation.

1.6 Dissertation Organization and Overview

This dissertation is divided into three major parts. Part 1 is a presentation of the the.
ory of evaluative judgment that is implemented in THUNDER, and the representation of
belief conflict patterns. Part 2 discusses how how THUNDER reads, understands, and an-
swers questions about ethical stories. Part 3 is an evaluation of THUNDER as a cognitive
model and as an implementation of a theory of ethics, and discusses the implications and
shortcomings of the model.

Each chapter is organized with the major points and an example at the beginning, so
that the reader can skim the introduction of the chapter to get an overview, and return
later for a detailed treatment. Readers interested in an overview of THUNDER should read
the first chapter of each section, and the conclusions chapter. Those who are interested
in knowledge representation should read chapters 2, 3, 4, and 5 of part 1, while readers
interested in parsing and story understanding should read chapters 6, 7, and 8 of part 2.
Theoretical discussions and related work are contained in part 3.

Chapter 2 discusses the structures and processes used in evaluating plans, including the
representation of types of evaluative belief, the supporting reasons for belief, and the types
of background knowledge needed to make evaluations.

Chapter 3 presents the structure of belief conflict about plan execution. Plan execution
BCPs are patterns that represent the abstract structure of conflicting opinions about action.
The types of plan execution belief conflict are presented, and the role of BCPs in structuring
memory for access to knowledge about planning and protection is discussed.

Chapters 4 and 5 discuss two additional types of belief conflict: (1) belief conflict about
evaluation, and (2) belief conflict about expectation. Belief conflict about evaluation occurs
in punishment and reward situations, where people disagree about how an action should
be evaluated and the actions that the evaluation should motivate. Belief conflict about
expectation occurs when people violate expectations about how they should act. These
chapters present patterns to represent the types of belief conflict, and the patterns that are
used to organize knowledge about ethical concepts like justice, laws, trust, and responsibility.

Chapter 6 presents the model of story understanding implemented in THUNDER. and
the representation and process of recognizirig story themes.

Chapter 7 discusses the knowledge representation system used in THUNDER; the prim-
itives that are used, how they are combined to form schemas, and how the schemas are used
during understanding to construct the representation of the story.

Chapter 8 presents the natural language component of THUNDER, the phrasal parser
PPARSE and generator PGEN. How phrasal parsing and generation are implemented in
THUNDER, issues in phrase representation, and how common linguistic problems such as
disambiguation and pronoun resolution are addressed in THUNDER are discussed.

Chapter 9 contains an annotated trace of THUNDER reading Hunting Trip.

17

Chapter 10 discusses the claims, theoretical foundations, limitations, and evaluation of

the THUNDER system.

Chapter 11 presents work related to the THUNDER project in artificial intelligence.
philosophy, and psychology.

Chapter 12 presents directions for future research, some potential applications of ethical
reasoning and thematic understanding, and conclusions.

For those readers who want to examine the internal workings of THUNDER, annotated
traces are contained in chapter 9 of part 2. Appendix A contains all of the stories, sentences.
questions that THUNDER reads, and the answers that THUNDER generates. Appendix
B contains a description of the knowledge representation system RHAPSODY [Turner and
Reeves, 1987], with a description of each of the functions used in THUNDER. Appendix C
contains a technical description of PPARSE and PGEN, the phrasal parser and generator
used by THUNDER for natural language analysis. Appendix D contains code samples from
THUNDER that illustrate THUNDER's representation of phrases, plan schema, and beliet
conflicts, and implementation details about THUNDERs timing and sizing.

Part I

Ethical Evaluation and Beljef
Conflict

There are two purposes for building a computer model of ethical evaluation in story
understanding: (1) to identify structures that globally organize the story to control attention
and inferencing, and (2) to find structures that focus attention on the thematically salient
elements of the story so that the moral or point can be identified. In THUNDER, the
structures are belief conflict patterns (BCPs) which represent situations where there is a
conflict between evaluative beliefs.

Belief conflict recognition is based on making evaluative judgments about character’s
actions. Two types of reasoning are involved in making evaluative judgments: {1) pragmatic
reasoning, or reasoning about the consequences of action for the planner, and (2) ethical
reasoning, or reasoning about the consequences of the action for others. In order to make
evaluative judgments about story character’s actions, THUNDER has to (1) have knowledge
about what is wvalued both by THUNDER and others, and (2) be able to reason about
the relationship of action to valued objects, states, and achievements. Knowledge about
value is represented by evaluative beliefs about different types of human goals and ways for
achieving those goals. Goal successes and failures are used to determine normative value; goal
successes are ‘good,’ and goal failures are ‘bad.” However, evaluative judgment is dependent
on the actor’s and understander’s ideology: an organization of evaluative beliefs based on
the relative importance of values. THUNDER has to be able to infer characters’ evaluative
beliefs from their actions, and use those beliefs to construct the character’s ideology. To
construct evaluations of situations, THUNDER uses a set of value-independent judgment
warrants which are applied to situations to create THUNDER’s evaluative beliefs about
story characters and what they have done, and to construct the character’s evaluative beliefs.
Chapter 2 discusses how evaluative beliefs are represented, organized, and used during plan
evaluation.

BCPs are abstract patterns of evaluative belief, warrants, and reasons that are used
to (1) organize knowledge about the ways that beliefs can conflict, (2) organize memory
of episodes by their evaluative content, and (3) provide planning and protection advice in
situations where conflicts in beliefs between people exist. There are three types of BCPs: (1)
where the evaluator makes a judgment that another’s action is ethically wrong, (2) where
the evaluator makes a judgment that another’s reward or punishment is undeserved, and

19

(3) where there is a conflict between an evaluator’s moral assessment of another and the
actions that the other performs. Chapters 3, 4, and 5 of this section present these three
tvpes of BCPs. Each chapter discusses the types of conflicts that the BCPs represent, the
required knowledge that needs to be represented and reasoned about to recognize the BCP.
and specific instances of BCPs and how they are used to support evaluative understanding.

CHAPTER 2

The Process of Plan Evaluation

Plan evaluation is the process of deciding whether or not a plan should be used. Two types
of criteria are used in plan evaluation: (1) pragmatic criteria, concerning the consequences
of the plan for the planner, and (2) ethical criteria, about the consequences of the plan for
people other than the planner. As examples of the two types of criteria, consider why the
following two plans are ‘bad’:

2.1: To save money, John decided never to change the oil in his new car.
2.2: To get the money to buy a new car, John decided to rob a bank.

In example 2.1, John's plan to save money is ‘bad’ because it will end up costing him more to
replace the car engine when the bearings seize up than to perform regular maintenance. In
example 2.2, John’s plan to get money is ‘bad’ because of the loss of property he is causing
to the bank depositors. These two senses of the word “bad” correspond to the two different
criteria for plan evaluation based on the questions (1) will the plan work for the planner’.
and (2) is the plan ethically right?

Plan judgment is the primary task of THUNDER during story understanding. By judging
story character’s plans, THUNDER can answer the following questions (from 2.1 and 2.2.
respectively):

> Why is John wrong not to put oil in his car?

IT IS WRONG BECAUSE HE WILL DAMAGE HIS NEW CAR.

... BECAUSE HE WILL LOSE THE COST OF AN AUTOMOBILE.

> Why is John wrong to rob the bank?

IT IS WRONG BECAUSE HE WILL TAKE THE BANK DEPOSITORS’ MONEY
...BECAUSE HE WILL THREATEN THE HEALTH OF THE BANK TELLER.

...BECAUSE HE WILL GET THE NEW CAR BUT HE WILL TAKE THEIR MONEY AND
THEIR SAVING THE MONEY IS MORE IMPORTANT THAN HIS GETTING A NEW CAR.

21

... BECAUSE HE WILL GET THE NEW CAR BUT HE WILL THREATEN THE HEALTH OF
THE BANK TELLER AND THE BANK TELLER'S HEALTH IS MORE IMPORTANT THAN HIs
GETTING A NEW CAR.

... BECAUSE HE MIGHT GET ARRESTED BY ROBBING A BANK.

The question answering component of THUNDER generates multiple answers to questions.
Each answer is generated from an individual reason that THUNDER has for its evaluation
that the action was wrong. In example 2.1, THUNDER has two reasons that the plan is
wrong, both of which are pragmatic reasons. For example 2.2, the first four answers are from
ethical reasons and the fifth (he might get arrested) is pragmatic.

In order to make evaluative judgments about story characters’ actions, THUNDER has
to (1) have knowledge about what is ‘good’ and ‘bad’, and (2) be able to reason about how
actions are evaluated. THUNDER's evaluative beliefs (about different types of human goals
and ways for achieving those goals) represent knowledge about normative value. Evaluative
beliefs are organized in THUNDER's ideology. Expected goal successes and failures are used
to determine normative goodness; goal successes are evaluated positively, and goal failures
are evaluated negatively. To make evaluations of situations, THUNDER has a set of Judgment
warrants which are applied to situations to create evaluative beliefs about story characters
and what they are doing.

This chapter presents the structures and processes that are used in THUNDER’s eval-
uative reasoning model. When references are made to the program'’s beliefs or values, the
terms refer to the data structures that are used in the computer program to implement psy-
chological functions. The usefulness of the structures is shown by (1) using the structures to
make value judgments, and (2) identifying the components of the value judgment process.

2.1 Reasoning about Evaluative Belief

Representing and reasoning about beliefs is a fundamental problem for Artificial Intelligence
(Al) systems. Previous approaches have addressed belief in terms of uncertainty and truth
maintenance (e.g. [Doyle, 1979; Martins and Shapiro, 1986; Cohen, 1985; Pear], 1988}).
These systems have not made the distinction between factual and evaluative belief. A factual
belief is a belief in the truth of a proposition, and the strength of the belief is the the degree
of certainty with which the proposition is held. An evaluative belief is evaluated in terms
of ‘goodness’, and cannot be proven or deduced in the same manner as a factual belief. For
example, compare:

2.3: The sky is hazy brown.

2.4: That's a nice tie.

The speaker of 2.3 is expressing a factual belief— a beljef in the truth of a fact about
sky color. This belief can be tested empirically by other observers, The speaker of 2.4 i«
expressing an evaluative belief— ‘niceness' is not something that can be true or false but ix
a subjective assessment of the ‘goodness” of the tie. This assessment i
qualities the speaker believes constitute "a nice tie."

The criteria for factual and evaluative belief are qualitatively different. As an example
of the differences, consider Oliver's beliefs about the political opinions of his opponents
i Four O'Clock. Oliver’s belief that his opponents hold opposing political opinions is a
factual belief—he believes that it is true that his opponents hold opposing positions. His
belief is supported by the the evidence that he gathers (the “detajled files”) and the deductive
inference that if his opponents state political opinions, then they hold those opinions. Oliver s
belief that the political opinions are evil because they disagree with his own is an evaluative
belief. The reason for Oliver’s belief i that Oliver believes that the opinions will damage
society. THUNDER has an evaluative belief about Oliver’s plan for punishing his political
enemies—THUNDER believes that Oliver's spell to shrink the political opponents is wrong
because Oliver does not have any authority to judge and punish.

Ethical judgments are a subtype of evaluative belief depending on (1) the object being
evaluated, and (2) the method of evaluation. There are two objects of ethical judgments:
(1) judgments of moral value, generally concerning people or principles, and (2) judgments
of moral obligation which are judgments of the rightness or wrongness of action [Frankena.
1973]. Methods of evaluating moral judgments involve reasoning in terms of how the ob ject
or action affects self, others, and society in general.

The distinction between evaluative and factual beliefs is a metaethical philosophic po-
sition called noncognitivism [Boyce and Jensen, 1978, Pp- 76-81). The basic precepts of
noncognitivism are: :

¢ Ethical statements are not evaluated in terms of truth.

® There is no method of ultimate Justification of ethical statements (as in scientific or
mathematical proof).

¢ The function of ethical statements is to express emotions {Ayer, 1935], to influence
other’s attitudes [Stevenson, 1944], or to rationally guide human conduct [Hare, 1952].

The problem for noncognitivist philosophers is defining how ethical statements are justi-
fied, and what constitutes a good reason for holding a evaluative beljef [Toulmin, 1950]. In
THUNDER, the approach taken is to define moral value in terms of the values of an ind;-
vidual, and then evaluate character actions in terms of the values. This means that using
different value systems will produce different ethical evaluations. For example, the actions of
a high school student who killed himself after failing a test would be judged ethical wrong
by a Catholic, but not by a Samurai, who would understand the importance of erasure of
disgrace.

23

Once an ethical judgment is made, THUNDER is not concerned with establishing the
truth of the statement, but rather with the reasons for the judgment, and how the judgment
can be used in story understanding.

2.2 Belief and Belief Relationships

Story understanding and evaluation in THUNDER is based on modeling belief creation and
manipulation, both of the reader and story characters. Beliefs are a type of propositional
attitude: a relationship between an agent and a proposition. The agent holding the belief is
called the believer and the proposition is called the content of the belief. In addition. beliefs
can be held with a varying degree of ‘certainty’ [Abelson, 1979]. Since most treatments of
belief have been based on the tradition of classical logic or probability, the degree with which
a belief is held is its truth-velue: a number that represents the certainty with which a believer
holds the proposition. Since THUNDER makes distinctions between different types of belief
based on the scale that is used to evaluate the belief, a third component called the valence
is used to hold the value with which the belief is held.!

Beliefs are categorized by two criteria: (1) the scale that is used to evaluate the belief,
and (2) what can constitute a value for the content of the belief. The two scales used to
measure belief provide the basic categories of belief used in THUNDER:

1. Bualuative belief, which is evaluated in terms of goodness. The valence of an evaluative
belief is positive or negative.

2. Factual belief, which is evaluated in terms of truth. The valence of a factual belief is
true or false.

The approach to belief taken in THUNDER is to identify subtypes of factual and evaluative
belief based on content and how the beliefs are useful in plan evaluation. Distinguishing
beliefs based on their content is done for two reasons: (1) to identify the relationship between
a person’s understanding of the world (his factual beliefs), and his evaluations of the things
that happen in the world (his evaluative beliefs), and (2) to identify the inferences that a
reader can make about person’s factual and evaluative belief from his actions. The belief
types used in THUNDER are shown in figure 2.1, organized in a type (is-a) hierarchy. The
following paragraphs discuss the subtypes of factual and evaluative belief.

THUNDER uses two kinds of factual belief in plan evaluation:

1. Causal belief — Belief that a plan results in a goal success or failure [Alvarado, 1990:
Alvarado et al., 1990}

' The term valence is used to denote the generalized interpretation of a belief, and to include more than
just truth values. Since THUNDER does not deal with degrees of evaluative or factual belief, the valence
will always be one of a polarized pair (either positive/negative or true/false).

Belief

Measurement Criteria: Goodness Truth

Evaluative Factual
Content Criteria:
Value mﬂan /Goal
Value Obligation Causal Intentional

Pair of values Plan strategy

Preference Strategy

Figure 2.1: Type Hierarchy for Belief
2. Intentional belief — Belief that an actor intended to cause a goal success or failure.

Causal and intentional beliefs are beliefs about a planner’s relationships to the goals that
he is pursuing, or causing to fail. Since goal success/failure is used to measure normative
goodness, beliefs about whether planners are intentionally causing goal consequences is an
important part of plan evaluation. Causal and intentional beliefs are subtypes of factual
belief because they are beliefs that it is true that (1) the actor did/will cause a goal success
or failure, or (2) the actor caused the goal success or failure on purpose. Other types of
factual belief are treated as knowledge about the world that is a prior true.

THUNDER uses two kinds of evaluative beliefs: beliefs in the ‘goodness’ of goals, and
belief in the ‘goodness’ of plans. Beliefs that certain types of goals are good are represented
by value beliefs. Value beliefs are ordered by relative importance in THUNDER's value
system. When THUNDER makes judgments about goal failures and successes it uses the
goals that are in the values in the value system. The goal content of a value is called a value
goal. Successes and failures of the goals in the value system are called value successes and

value failures, respectively. The value system is one part of a memory organization for plans
called an ideology.

Preference beliefs are used to reason about relative goal importance in the absence of an
ideology. The content of a preference belief is a pair of values, one of which is more important
than the other. Preference beliefs are generally inferred beliefs about character’s values. For
example, from:

2.5: On Sunday, John went to the football game instead of going to church

25

THUNDER can infer that John prefers entertainment to religious pursuits. This is repre-
sented as the preference belief of John's that has E-Entertainment preferred to A-Salvation *

Obligation beliefs are evaluative beliefs about specific plans. The creation of an obligation
beliefs by THUNDER is a judgment that the plan should or should not have been used.
Evaluations of general planning principles are represented by strategy beliefs. The content
of a strategy belief is a planning strategy — an abstract planning type. For example, in
example 2.1 John believes that a good way to save money 1s to not put oil in his car. John's
plan is an instance the general strategy of being thrifty: John believes that a good way of
possessing money is to avoid spending it. From example 2.1, the reader knows that John
values saving money, and also how he goes about saving money. An alternate strategy would
be to avoid risking the money, as in:

2.6: To save money, John invested in treasury bonds.

Beliefs are supported by other beliefs. Support relationships between beliefs are repre-
sented by warrants. A warrant is a general inference rule that is used to support an evaluative
belief {Toulmin, 1958; Flowers et al., 1982; Alvarado, 1990]. Warrants can be used as deduc-
tive inference rules to provide an evaluative belief from factual beliefs, or as abductive rules
to provide evaluative and factual belief from evaluative beliefs. An example ethical warrant
for an obligation belief is:

If plan P causes goal failures for another, then P is negatively evaluated.

This warrant is used in example 2.2 to support the belief that John’s bank robbery is ethicall
wrong from the factual beliefs that bank robbery causes goal failures for the bank depositors
(the loss of money) and for bank employees (the threatened loss of health). An example of
abductive inference from this warrant comes from the first sentence of Four O'Clock:

2.7: Political fanatic Oliver Crangle is convinced that people who do not agree
with his political views are evil.

Since Oliver believes that political views that do not agree with his are ethically wrong.
THUNDER infers that he believes that the political views cause goal failures for others.

The types of belief used in THUNDER are summarized in table 2.1.

*The notation for goals is based on Schank and Abelson’s goal primitives [1977]. In the notation, the
goal type is signified by the letter preceding the goal name. Achievement goals (A) are motivations to attain
valued acquisitions or social positions. Other goal types are preservation (P), enjoyment (E), and delta (D)
for change of control (D-Cont), change in proximity (D-Prox), or change in knowledge state (D-Know).

Belief Type Content Description 1
Causal Factual Goal/Plan The plan causes the goal state
Intentional | Factual Goal/Plan The planner intentionally caused
the goal state
Value Evaluative | Goal A goal outcome is desirable
Preference | Evaluative | Pair of Goals | One goal outcome is preferable
to another
Strategy Evaluative | Plan strategy | Efficacy of a planning strategy
Obligation | Evaluative | Plan A plan should be executed

Table 2.1: Types of Belief in THUNDER
2.3 Pragmatic and Ethical Reasoning

Evaluation of a person’s actions consists of creating obligation beliefs about his plans. In
order to create an obligation belief, THUNDER must (1) understand what the character
is doing (his plan) and why he is doing it (his goal), (2) evaluate the character’s plan by
generating reasons for an evaluative belief about the plan, and (3) generate the reasons for
the character’s positive evaluative belief about the plan.

Plan Evaluation Principle 1
Plan evaluation is accomplished by creating obligation
beliefs: evaluative beliefs about plans

A negative obligation belief about a plan means that THUNDER believes that the plan
is ‘bad’ or that the plan should not be used. However, there are two senses of ‘bad’ that need
to be distinguished: (1) pragmatically bad, or bad for the planner, and (3) ethically bad. or
evil on the part of the planner. The first sense of the term ‘bad’ can be used to describe
actions that do not do what the actor intended, or have negative side-effects that the planner
does not foresee. In this case, the action is ‘bad’ because of the actor’s stupidity. In the
second sense the plan is ‘bad’ because the actor is intentionally causing pain and suffering
for other parties. '

Plan Evaluation Principle 2
Plan evaluation is based on two types of criteria:
Pragmatic and Ethical.

In example 2.2, there are three pragmatic reasons that John's plan for getting money
by robbing a bank is positively evaluated: (1) the bank robbery helps achieve his goal of
buying a car by getting a lot of money, (2) the plan has low resource consumption— bank
robbery takes less time than working for the money, and is less expensive than investing.

27

and (3} the plan is highly effective—better than mugging or robbing a 7-11. There is one
pragmatic reason that robbing a bank is negatively evaluated: the liability of capture and
imprisonment. Ethically, robbing a bank is wrong because of (1) the loss suffered by the
people who have their money in the bank, and (2) the threatened loss of life to the people
who were working in the bank.

Each reason for the evaluation of a plan can be broken down into two components: (1)
factual beliefs about the plan, and (2) a pragmatic or ethical judgment warrant that is used
to support an evaluative belief from a factual belief.

Plan Evaluation Principle 3
Reasons for obligation belief have two components:
(1) a judgment warrant, and (2) factual beliefs about plans.

Judgment warrants are the basic principles of evaluative reasoning. Judgment warrants
are general inference rules that support evaluative beliefs about plans based on factual beliefs
about what the plan does for the planner and others. Using judgment warrants on the factual
beliefs about bank robbing, THUNDER constructs a belief graph for example 2.2 as shown
in figure 2.2.

Evaluative Belief
John's Bank Robbery
positive | negative
Plan availability
Pragmatic consequence
F | Beliaf Factual Belief _
John gets a new car | E;?‘k":uc bmy: °ry has
Factual Belief Factual Beliet
Bank Robbery Bank Robbery causes
is low cost P-Possession goal
Factual Belief failure for depostiors
Bank Robbery is Plan
highly effcient o, Factual Beliet
availabiliy Bank Robbery threatens
: employees

Figure 2.2: Pragmatic and Ethical Reasons for THUNDER’s Evaluative Belief about Bank
Robbery

Plan Evaluation Principle 4

Plan evaluation is done by constructing a belief graph of
supports for positive and negative evaluations.

The beliefs in figure 2.2 are THUNDER's. The factual beliefs are THUNDER'’s knowledge
about bank robbery, and how bank robbery can be compared to other plans for getting
money. The links between factual and evaluative beliefs are labeled by judgment warrants.’
For example, one reason that THUNDER has for believing that John's bank robbery is
positively evaluated is that (1) THUNDER believes that the bank robbery will help achieve
the A-Possessions goal by providing John with the money to buy a car (the factual belief .
and (2) there is a pragmatic warrant that plans that achieve values are positively evaluated.
Notice that THUNDER has reasons for both a positive and negative evajuation of John -
bank robbery. However, THUNDER is not holding contradicting beliefs, but has reasons for
believing both sides of the evaluation.

Once a belief graph has been constructed, THUNDER makes a determination of its actual
evaluative belief about the plan (see source code in section D.2.6). In the determination.
ethical reasons take precedence over pragmatic reasons. Because there is an ethical reason
that John's bank robbery is evaluated negatively, THUNDER holds the evaluative belief
that the bank robbery is wrong, even though there are pragmatic reasons that bank robberv
1s positively evaluated.

Plan Evaluation Principle 5
In plan evaluation, ethical reasons take precedence
over pragmatic reasons.

To identify reasons for plan evaluation, the following factors have to be considered:

» Intention and causality — If the plan causes goal failures, does the character realize
that he is causing a goal failure? If a character is executing an action that will cause
a goal failure for himself, such as locking the car door with the keys inside, then the
action should be evaluated as stupid, but not as evil.

¢ Goal importance — How important is the planner’s goal? If the plan causes goal
failures for others, how important are the goals that fail?

e Plan availability — What other plans are available to the planner? What are the
relative merits of the other available plans?

Plan Evaluation Principle 6
Plan evaluation is based on reasoning about intention and causality,
plan availability, and goal importance.

3The specific types of judgment warrants are described in the following sections.

29

To reason about each of the factors, THUNDER must construct an intentional represen-
tation of the character’s plan, including the goals and plans of the actor, goal consequences
for the actor and any others affected by the plan, and any beliefs about the success or
failure of the plan. Intention and causality, goal importance, and plan availability have to
be reasoned about from stored knowledge about plans and the ways that they work. This
knowledge is stored in THUNDER's memory, and has to be recalled and compared to the
evaluated situations.

Three types of memory organization are used in THUNDER s model of plan evaluation.
THUNDER reasons about intention and causality by constructing an episodic representation
of the situation. Reasoning about relative goal importance is done with respect to THUN-
DER’s ideology — a memory organization based on what THUNDER believes to be "good’
(see source code in section D.2.6). Plan availability reasoning is accomplished by retrieving
other plans for the planner’s goal from long-term intentional memory. The next three sec-
tions discuss these memory organizations, and the pragmatic and ethical warrants that use
the knowledge that the memories contain.

2.4 Episodic Plan Representation

To reason about causal and intentional beliefs, THUNDER builds an episodic representation
of the character’s plan. From the actions described in the input sentences, THUNDER
constructs a plan chain from the action to the goal that the actor is planning for. The plan
chain is made up of one or more individual plan schemas {PSchema).* A PSchema is a
network of goals, actions, and events that packages the intentional knowledge about a plan.
Each PSchema contains the goal failures that the plan causes: for example the ‘threaten’
plan schema (PS:Threaten) contains the motivated P-Health goal for the person threatened.
PS:Threaten is a constituent of the bank robbery schema (PS:Bank-robbery), so when John
robs a bank, THUNDER knows that the bank employees are suffering a P-Health value

failure.

THUNDER counstructs PSchema for an input sentence until (1) all of the input actions
have been recognized as a part of a PSchema, and (2) THUNDER has recognized the value
that the actor is planning for. Recognizing a PSchema ezplains the action by providing
an intentional context for the action. Values are 2 set of high-level, important goals that
THUNDER knows that actors plan for. When THUNDER recognizes a PSchema for a goal
that is not a value, THUNDER infers that the plan is an instrumental or enabling plan and
continues to infer plans until it finds a plan for a value. For example, when THUNDER

reads:

2.8: John robbed a bank.

‘PSchema are based on memory organization packets (MOPs) [Schank, 1982] which were used to repre-
sent common sense intentional knowledge about events as a declarative configuration of expectations. The
implementation of PSchema is based on the implementation of MOPs in the BORIS system [Dyer, 1983].

1n

THUNDER builds PS:Bank-robbery. Since the goal of getting money from the bank (D-
Cont$§) is not a value, THUNDER continues to find plans that are instrumentally enabled
by getting money, such as A-Possessions plans, or plans that bank robbers use their mozey to
pursue, such as plans for entertainment goals (by spending the money on parties or drugs.]
The goal at the top of the complete Plan is called the value of the plan, or the value that
the plan achieves. When complete plans are inferred, the plans can be evaluated both for
planning failures [Dyer, 1983] and the ethical and pragmatic consequences. Even though the
plan may not have been completely executed, an evaluation can be made from the values
that THUNDER expects to succeed and fail.

Plan schemas contain THUNDERs factual beliefs about what story characters are doing.
When a PSchema is activated from story input, THUNDER has causal and intentional beliefs
about each goal in the schema. For example, when THUNDER reads:

2.1: To save money, John decided never to change the oil in his new car.

THUNDER builds the PSchema PS:Change-oil modified by the quantifier “never.” From
this PSchema, THUNDER has the following causal and intentional beliefs:

¢ John is intentionally causing damage to his car. (Two beliefs, the causal belief is that
he is causing the damage, the intentional belief is that he is doing it on purpose).

John is intentionally causing himself to save the cost of oil.

John is intentionally not causing himself to get oil.

John is intentionally not causing himself to spend money on oil.

The oil seller is intentionally not selling John the oil.

John is intentionally causing himself to have to fix the car.

John is intentionally causing himself to have to pay for fixing the car.

THUNDER’s beliefs would be different if John failed to change his oil unintentionally. For
example:

2.9: John was so busy at his new job that he forgot to change the oil in his
new car.

In this case THUNDER believes that John will cause damage to his car, but not that he did

so intentionally.

THUNDER'’s intentional representation of example 2.1 is shown in figure 2.3. In the
figure there are five PSchema: PS:Change-oil, PS:Buy, PS:Save-money, PS:Fix-object, and

31

PS-Save-Money PS-Change-Oil PS-Fix-Object
Head goai; Haad goal.
Head [Type: P-Possessions i
C.;‘l._oai —= : geal |Actor: John motivates Type: A-Possessions
Ar:tpc:r.' J-o::sessmns Object: New car Actor: John
Object: Cost of Oil Mode: Negative oject Now Cwr
ﬂmﬂlﬁ; Elﬂﬂ.mm
Plan elements;
] -
‘ Type: D-Cont Object: New car Object: New Car
Type: D-Cont$ Actor: John Prop: Contains Prop: Status
Actor: John Ojbact: Oil To: Oil From: <norm
Mode: Negative Mode: Negative To: norm
ction ‘ causes
Type: Ptrans Goal failures:
Actor: John
?:"S“?"'w Type: P-Possessions
enables - Actor: John
Object: Cost of fix
enables Mode: Failed
PS-Buy ,
motivales
PS-Recover-Object
Head [Type: D-Cont :
geal |Actor: John Head goal;
Object: Oil Goal
Mode: Negative Type: A-Possassions
Actor: John
Object: Cost of fix
| Type: D-Cont Blan elements;
Actor: Saller
Object: Qil Type: D-Cont
To: John Actor: John
Mode: Negative Object: Cost of fix

Figure 2.3: Plan Schema Representation of “To save money, John decided never to change

the oil in his car.”

PS:Recover-object. Each PSchema has three constituents: (1) a head goal, which is the goal
that the plan is used to achijeve. (2) an ordered list of plan elements that are the steps of
the plan, and (3) the goal failures that the plan causes, if any. The changing oil schema
PS:Change-oil has been modified by the quantifier “never” by marking the mode of all goals
in the schema and its enabling PSchema PS:Buy as “negative”. This represents that John
does not have the goal of maintaining his car, and is not going to spend money on oil. The
relations between PSchema are represented by intentional links [Dyer, 1983]. For example.
the damage to the car motivates fixing the car, and not buying oil enables saving money. °

Differences in causal and intentional beljefs can lead to different evaluations. For example.
in example 2.1 John believes that not changing the oil in his car will cause him to save
money. THUNDER also believes that not changing the oil will save money, and also that
not changing the oil will cause damage to the car.

Pragmatic judgment warrants are used to specify the relationship between factual beliefs
about the plan, and the consequence for the planner. The first two pragmatic warrants
evaluate plans based on the intended consequences:

P-1: If plan P1 achieves its value, then P1 is positively evaluated.
P-2: If plan P1 does not achieve its value, then P1 is negatively evaluated.

Warrants P-1 and P-2 state that if a plan works, the plan should be used, and if the plan
does not work, it is a bad plan. The causal beljef that plan P1 achieves its value in warrants
P-1 and P-2 is THUNDERs. When warrant P-2 is used, the planner has a causal belief that
the plan will work, otherwise he would not be executing it, and THUNDER is making a
judgment that the planner is stupid for executing a plan that will not work. By recognizing
that the cost of fixing the car is more than the cost of the oil in example 2.1, THUNDER
believes that John’s plan to save money will fail. From this failure, THUNDER builds a
negative pragmatic reason from warrant P-2 that John’s plan is negatively evaluated.

Unintentionally caused value success or failures are used for plan evaluation in the fol-
lowing warrants:

P-3: If plan P1 unintentionally causes value success V for the planner, then P1
is positively evaluated.

P-4: If plan P1 unintentionally causes value failure VF (for the planner or other),
P1 is negatively evaluated.

Warraats P-3 and P-4 can not be used for plan selection, since the planner does not intend for
the consequences to occur. The values success/failures in P-3 and P-4 are goal consequences
that THUNDER recognizes but the planner does not. (See the source code in section D.2.6
for the implementation of pragmatic warrants.)

5The complete set of intentional links and PSchema used in THUNDER are discussed in chapter 7.

33

Ethical judgment warrants are used to specify reasons for plan usage that consider the

effects of the plan on people other than the planner. The first pair make this judgment
directly:

E-1: If plan P1 achieves value V for another party, then P1 is positively evaluated.

E-2: If plan P1 intentionally causes value failure VF for another party, then P1
is negatively evaluated.

Warrants E-1 and E-2 implement the rules that it is good to do good things for others, and
bad to do bad things to others. Ethical warrant E ? is used in example 2.2 to represent the
reasons that John's bank robbery is wrong from tk- loss of property to the bank depositors.
and the threatened loss of health to the bank teller.

2.5 Modeling Reader Ideology

An ideology is an organization for goals and plans in memory based on evaluative beliefs
about states that should be desired, and how to go about achieving those states. The
representation for ideology in THUNDER has two components: (1) the value system: a
set of evaluative beliefs about abstract, high-level goals (called values) ordered by relative
importance [Rokeach, 1973; Carbonell, 1979], and (2) a set of strategy beliefs for each value.
representing the ways that a person believes the value should be achieved. The values are
based on Rokeach’s terminal human values [Rokeach, 1973), and represented in terms of
Schank and Abelson’s goal primitives [1977).

Values are positive evaluative beliefs about goals, and thus represent a person's belief
that having a goal is ‘good’. The basis of THUNDER’s values are six objects of value:

1. Life. Physical health and longevity, of both humans and animals.

2. Freedom. Liberty to choose without outside interference, and not to be prevented
from courses of action.

3. Happiness. Things that give people pleasure in life, such as excitement and enjoyment
goals, and interpersonal goals such as love and friendship.

4. Self Esteem. Self-respect provided by intellectual or religious fulfillment.

5. Social Esteem. Respect and a high opinion in the minds of others members of the
community.

6. Possessions. Material wealth such as money and property.

The objects of value provide two sources of motivation: (1) achievement, or attaining
the object of value, and (2) preservation, or wanting to keep the object once you have it.
The two sources of motivation are represented as preservation goals and achievement goals,
respectively. A positive evaluative belief about a preservation goal for a value is called a
preservaiion value, and a value belief about an achievement goal is called a achievement
value. Preservation values are things that people should not have threatened, or worse, have
fail, while achievement values are the things that people believe are valuable to try to get.

THUNDER's value system contains preservation and achievement values ordered by rel-
ative importance. The values are ordered on three dimensions:

1. The order of the objects of value. In THUNDER'’s value system, the objects are ordered
as above: life, freedom, happiness, self esteem, social esteem, and possessions.

2. The order of preservation and achievement values. THUNDER believes that preserva-
tion values are more important than achievement values.

3. The order of the people that the objects of value are for. THUNDER uses the list:
self, family, friends, social group, nation, and everybody else.

Each of the factors can be varied to produce different ideologies and personality traits
[Carbonell, 1980]:

e An individualist might have freedom higher than life (“Give me liberty or give me
death.”)

¢ A hedonist would put achievement of happiness above preservation of health.

o Terrorists believe that achieving freedom for their national group is more important
that the lives of their victims.

There are three points to notice in the construction of the value system:

1. The set of values that THUNDER has is fairly short {Rokeach, 1973]. Because there
are a small set of goal primitives that are used in the value system, THUNDER can
monitor the goals types for activation, threats, and failures.

2. Not all goals that THUNDER knows about are included in the value system. A planner
may have many subgoals that have to be achieved for a plan to be successful, and
evaluative beliefs about the instrumental or enabling goals are not included in its value
system. The goals in the value system are usually the highest level motivation of the

plan.

3. The value system does not represent instrumental relations between the values. The
system represents what is valuable, and not how to maintain or achieve those valuable
states.

35

Planners plan for achjevement values, or to prevent Preservation valyes from failing.
Recognizing an active preservation value allows THUNDER to evaluate actions that threatep
the value. For example, since THUNDER valyes life, threats and damage to health are

* Recoverability of the failed goal — How easy or hard is it for the person to recover
from a goal failure? It js worse for a poor person to lose $20 than for a rich person
to lose $20 because the poor person will have a harder time, and be more greatly

impacted, recovering from the loss. Some goal failures are non-recoverable, such as
loss of life.

¢ Duration of the goal failure — How long does the person suffer because of the goal
failure? It is worse to be born into slavery than to be imprisoned overnight, just as a
lingering illpess is worse than wounds which heal. The duration is the temporal aspect

of goal failure, while recoverability is the expenditure of resources that the goal failure
entails.

* Scope of the goal failure — How many goal failures does the plan cause? If John
punches Jerry, he has caused a goal failure for just one person, but if John dumps toxic
waste i the old swimmin’ hole, he has causes goal failures for anyone who wants to
use the swimmin’ hole in the future.

The second element of ideology involves beliefs about the ways that the values should
be achieved. Strategy beliefs are associated with values in the ideology to choose between
competing ways of achieving the valuyes. Strategy beliefs are used to make the distinction
between value and instrumentality. Republicans and Democrats both have the same general
set of values - life, liberty and the pursuit of happiness. Where the political parties differ is in
how they believe the best way to allow citizens to achieve those values; the Democrats believe
that the government should provide services and programs, while the Republicans believe
that the government should not interfere. In THUN DER, this difference is represented by
different strategy beliefs for the political parties,

Strategy beliefs are also used to represent internalized ethical principles. For example.
the prescription not to lie is a negative strategy belief about plans that involve deception.
The warrants for strategy belief are the same as for obligation belief, but may change over
time. For example, if a parent tells a child:

2.10: “Don’t tell lies or you'll get a spanking.”
The child has a pragmatic reason for not lying. As the child learns that deception can cause

value failures for others, and that he should be responsible for failures that he caused. he
develops ethical reasons that lying is wrong,

By associating strategy beliefs with values, THUN[JER can quickly find what are believed
to be good plans for a given value. The abstract plan content of strategy beliefs can be used
to organize plans for values by providing intermediate nodes in a plan hierarchy where plans
are indexed by the ways in which the planner believes that the plans are valuable. If, for
example, a person believes that prevention is a positive pragmatic strategy for preservation
of health, then specific plans for preservation of health can be indexed under the planning
strategy, such as going to the doctor regularly, exercising and eating right, and avoiding
situations were their health would be threatened. By organizing plans by the values that are
achieved, and by relative value, THUNDER can reason about instrumental relations between
the plans and planning trade-offs. For example, a person who believes in the prevention-
for-health strategy will not believe that health threatening activities (such as skydiving
or hangliding) are effective plans for entertainment, and that a good doctor is worth an
additional cost.

Goal importance is used in the following pair of ethical warrants are used to reason about
plans that cause both goal successes and failures:

E-3: If plan P1 achieves value V while intentionally causing value failure VF and
V is more important than VF, then P1 is positively evaluated.

E-4: If plan P1 achieves value V while intentionally causing goal failure VF and
V is less important than VF, then P1 is negatively evaluated.

The reasons that rules E-3 and E-4 are ethical, rather than pragmatic, is that even if both of
the goals in V and VF are the planner’s goals, the importance measure is the understander’s.
For example:

2.11: John took steroids to improve his physique.

If John is understood to be improving his physique to feel better about himself, and both
John and the reader knows about the harmful side effects of steroid usage, then V is John’s P-
Self-esteem goal, and VF is John’s P-Health goal. Rules P-1 and P-2 evaluate the pragmatic
consequences of the plan, while E-4 evaluates the plan as unethical because THUNDER
believes that John should value his health more than his self esteem. (See the source code
in section D.2.6 for the implementation of pragmatic and ethical warrants.)

2.6 Intentional Long-term Memory

The third type of memory organization needed for evaluation of plans is based on finding
alternative plans. In THUNDER's long-term intentional memory, plans are organized and
indexed by the goals that the plans are used to achieve. This organization supports planning
operations — given a goal, memory can be searched for a plan to achieve that goal. Or-
ganization of plans by their goals also allows THUNDER to find alternative plans that the

37

l Metric Description
Affect Emotional responses to plan success or failure.
Agency Planning dependencies on others.

Availability | The number of planning options during execution.
Coordination | Allocation of plan between multiple planners.

Cost Resources used during plan execution.
Deception False beliefs of others necessary for plan execution.
Efficacy Capability of a plan to achieve its goal.

Enablement Necessary preconditions before a plan is executed.
Legitimacy The judgment of a plan by authorities,

Liability Obligations undertaken by plan execution.

Risk Potential negative side-effects.

Secrecy Amount of knowledge that has to be kept from others.
Skill The ability of a planner to execute a plan.

Vulnerability | Potential for counter-planning opportunities.

Table 2.2: Dyer’s Plan Metrics

planner did not choose. Once an alternative plan has been found, THUNDER can reason
about how the other plan might be ‘better’ and ask why the alternate plan was not selected.

In addition to indexing plans by the goals that are achieved, intentional memory has to
organize plans in terms of potential failures that can occur during plan execution, Knowledge
about how plans can fail have been represented in thematic abstraction units (TAUs) [Dyer.
1983], thematic structures concerning errors in planning. TAUs are indexed by planning
metrics [Dyer, 1983] which measure planning characteristics. For example, the bank robbery
plan has low legitimacy, due to the possibility of capture and imprisonment. The plan
metric legitimacy is used to index TAU:Busted from the bank robbery plan. TAU:Busted
represents the planning failure associated with breaking the law. Dyer’s plan metrics are
listed in table 2.2.

Plan metrics provide two types of data used in plan evaluation: (1) a method of selecting
alternative plans that could have been used by the planner, and (2) as indices to potential
plan failures. The following pragmatic judgment warrants are based on plan availability, and
the relative value in terms of plan metrics:

P-5: If plan P1 is better on plan metric I than competing plan P2, then P1 is
positively evaluated.

P-6: If plan P1 is worse on plan metric I than competing plan P2, then P1 is
negatively evaluated.

Warrants P-5 and P-6 state that if P1 js the ‘best’ plan on a plan metric scale, then the plan
should be used, but if there are better plans, then the other plan should have beeg selected.

38

The plan availability warrants are used to evaluate example 2.2: bank robbery is low in cost
and more efficient compared to working or investing, so the plan is positively evaluated by
warrant P-5. Bank robbery is a high liability plan, so the plan is negatively evaluated by
warrant P-6.

2.7 Inferring Character Beliefs and Ideology

Once THUNDER has constructed a belief graph containing the reasons for positive and
negative evaluations of an actor’s plan, the reasons are used to make inferences about the
actor’s beliefs and ideology. Inferences about the actor’s value beliefs are based on an
understanding of reciprocity: that others feel the same way about good and bad things
as yourself. For example, from:

2.12: Little Billy fell off the swing.

THUNDER can infer that Billy believes that it is bad that Billy fell off the swing because he
hurt himself, and Billy’s belief about being hurt is the same as THUNDER's. Similarly, when
the hunters’ truck blows up in Hunting Trip, THUNDER infers that they have a negative
value belief about their P-Possessions goal failure, just as THUNDER would if THUNDER 's
truck had been damaged. Reciprocity is implemented by the following value inference rules:

V-1: If actor A achieves value V, then A has a positive value belief with content
V.

V-2: If actor A suffers value failure VF, then A has a negative value belief with
content VF.

Story character’s obligation beliefs are inferred from their actions in the story. Character s
obligation beliefs are inferred using the following rules:

O-1: If actor A is executing plan P, then A has a positive obligation belief with
content P.

O-2: If actor A does not execute plan P, then A has a negative obligation belief
with content P.

Rule O-1 state that if a character is doing something, he must believe that the plan is
justified. O-1 does not make any claims about the actor’s ethical or pragmatic reasons, just
that the actor must have reasons for a positive evaluation of the plan. Rule O-2 is used in
situations where there is an expectation that the character is going execute a plan, and then
does not:

39

2.13: John wanted to kill his math teacher, so he got out his father’s shotgun.
He decided against it later when ...

2.14: ...he couldn’t fit the shotgun in his backpack.
2.15: ... he thought about the teacher’s wife and family.

Continuation 2.14 is used with inference rule O-2 to provide a pragmatic reason for John's
negative evaluation of his plan, while 2.15 provides an ethical reason. The expectation can
also come from THUNDER’s beliefs about what an actor should do:

2.16: John drove by the car wreck on the deserted highway.

In this example THUNDER has a belief that John should stop and help, but since John does
not THUNDER can infer that John had a negative obligation belief about stopping. Rule
O-2 is only used to evaluate plans that THUNDER expects will be used. Plan expectations
can come from THUNDER’s obligation beliefs about what a planner should do (as in 2.16)
or from story statements about a planner’s intentions (example 2.13). Rule O-2 is restricted
to expected plans to avoid generating inferences about every plan that John is not executing
— because John is not flying to the moon does not imply that John believes that he should
not fly to the moon.

The reasons that THUNDER uses to make judgments (about plans that actors are execut-
ing) are also used for inferences. For a plan that THUNDER believes is pragmatically wrong,
THUNDER can make inferences about the character’s beliefs. For a plan that THUNDER
believes is ethically wrong, inferences about the character’s ideology can be made. When
a character executes a plan that is evaluated negatively for pragmatic reasons, THUNDER
uses the following pragmatic inference rules (PI rules):

PI-1: The character does not have the factual belief about the plan that THUN-
DER used to make its evaluative assessment.

or

PI-2: The character believes that the goal that he is achieving is more important
than the goal that he is causing to fail.

Inference rules PI-1 and PI-2 are mutually exclusive, and depend on the character’s intention.
For example, in example 2.1 either John does not know that not changing the oil in his car
will damage the engine (rule PI-1), or he knows it and believes that the short term goal
success of saving money by not changing the oil is more important than the long-term goal
failure of having to buy a new car (rule PI-2).

When a character executes an ethically wrong plan, the following ethical inference rules

(EI rules) are used:

40

El-1: The character believes that his value is more important than the value
failure that he has caused.

and

EL-2: The character believes that the ethically wrong plan is the only way to
achieve his value.

or

EI-2": The character believes that the ethically wrong plan is a less expensive (in
time or resources) way of achieving his value than other available plans.

Inference rules EI-1, EI-2 and EI-2’ are based on observations that an actor does not go out
of his way to execute ethically wrong actions; he must have a motivation (rule El'l) and a
rationale (rules E1-2 and EI-2’). From these inferences about what the character believes to
be valuable, THUNDER can begin to construct the character’s ideology. From example 2.2.
THUNDER can infer that John believes that his goal of getting a car is more important than
the bank depositor’s goal of preserving their money, and that John has pragmatic beliefs
about bank robbery that make bank robbery better than other available plans.

2.8 Summary

The process of plan evaluation has been implemented in THUNDER by modeling the creation
of evaluative beliefs. Story characters’ plans are evaluated using a general set of pragmatic
and ethical judgment warrants. The warrants are independent of any particular individual.
The parts of the model that are idiosyncratic to the individual are the data that the rules
operate on: the factual and evaluative beliefs that the system has.

To evaluate character’s plans, THUNDER reasons about the plans in three areas: (1)
intentionality and causality, (2) goal importance, and {3) plan availability. Reasoning about
intentionality and causality is done by constructing an episodic representation of the char-
acter’s plan out of plan schema. The episodic representation contains what the character
intends to do, how he is going about it, and what consequences there are for others. Goal im-
portance is represented in THUNDER's ideology, which organizes memory by what THUN-
DER considers to be ‘good’ goals and plans. Plan availability reasoning is accomplished by
retrieving alternative plans from THUNDER'’s long-term intentional memory. Plan evalua-
tion uses the knowledge in the memories to construct pragmatic and ethical reasons that the
plan is positively or negatively evaluated using a set of judgment warrants. The warrants
for obligation belief are summarized in table 2.3. THUNDER uses its evaluation to infer
character beliefs and ideology.

41

Label | Reasoning Warrant | Evaluation | Warrant
Type Type

P-1 | Causality Pragmatic | Positive P achieves its value

P-2 | Causality Pragmatic | Negative | P does not achieve its value

P-3 | Intentionality Pragmatic | Positive P unintentionally causes value
success

P-4 | Intentionality Pragmatic | Negative P unintentionally causes value
failure

E-1 | Causality Ethical Positive P achieves value success of other

E-2 | Intentionality Ethical Negative | P intentionally causes value
failure of other

E-3 | Goal Importance | Ethical Positive P intentionally causes value
success VS and value failure VF
and VS is more important than VF

E-4 | Goal Importance | Ethical Negative | P intentionally causes value
success VS and value failure VF
and VS is less important than VF

P-5 | Plan Availability { Pragmatic | Positive P is better on plan metric I
than plan P’

P-6 | Plan Availability | Pragmatic { Negative | P is worse on plan metric I

than plan P’

Table 2.3: Judgment Warrants for Obligation Belief about Plan P

ATy

CHAPTER 3

Belief Conflict Patterns

A belief conflict is two evaluative beliefs with the same content, but with opposite valences.
For example, if John believes that trade protectionism is wrong and Jerry believes that it is
right, there is a belief conflict between John and Jerry’s beliefs about trade protectionism.
A belief conflict between two actors can be the basis for an argument or debate: one person
believes that a plan strategy should be used, the other believes that the plan should not be
used, and each actor has reasons that their belief is correct. Belief conflicts can also exist
within one actor. Consider:

3.1: Should I eat ice cream, or stay on my diet?

In example 3.1, the speaker has two conflicting beliefs about eating ice cream: a positive
obligation belief that he should eat the jce cream, and a negative obligation belief that he
should not. Each belief is supported by pragmatic reasons: the positive reason comes from
the happiness achieved by eating the ice cream, the negative reasons are from the self and
social esteem achieved by staying on the diet.

Ethical reasons can also play a role in belief conflicts. For example:
3.2: Should I help my best friend cheat on the math test?

Or, more dramatically:

3.3: Should I throw myself on that hand grenade and save everybody in the
room, or run out the door and save myself?

In example 3.2, the conflict is between the ethical obligations of a ‘best friend’ and the
obligations of a ‘student’ — the speaker should help his friend, but cheating is wrong because
it is unfair to the teacher and other students. In 3.3 the conflict is between ethical and
pragmatic reasons. The ethical reason that the actor should throw himself on the grenade is
to save everybody else in the room. The pragmatic reason for not throwing himself on the
hand grenade is that running away will save the life of the actor.

In THUNDER, knowledge about differences in evaluative belief is stored in belief conflict
schemas called belief conflict patterns (BCPs). BCPs are abstract knowledge structures that
organize the reasons supporting each side of a conflict in evaluative belief. For example,
BCP:Selfish represents the situation where a person executes a plan to achieve one of his

43

own goals, while the plan causes what the evaluator believes to be more important value
failures for others. BCP:Selfish would be instantiated from the following example:

2.2: To get the money to buy a new car, John robbed a bank.!

BCP:Selfish is in the class of BCPs called plan ezecution BCPs. Plan execution BCPs
represent abstract situations where an evaluator judges that an actor’s plan is wrong. Plan
execution BCPs organize the reasons that the evaluator believes that an actor’s plan is
wrong, and the reasons why the actor believes that the Plan is right. In BCP:Selfish, the
actor selects a plan for a personal goal that causes goal failure for another party. When
BCP:Selfish is instantiated from example 2.2, the reader can recognize that John is being
selfish by believing that his goal of getting a new car is more important than the bank
depositor’s keeping their money.

This chapter is organized as follows. First, how belief conflict patterns are used in THUN-
DER, the purposes BCPs serve to model evaluative processes during story understanding,
and an overview of the types of BCPs are presented. Next, belief conflicts about plan execu-
tion are discussed by specifying patterns that define different types of ‘selfishness’, and how
differing factual beliefs between actors and evaluators can lead to belief conflicts. Finally,
the purpose of BCPs as knowledge structures is discussed by presented an organizational
structure for BCPs in memory to support evaluative reasoning and planning.

3.1 Belief Conflict Patterns in THUNDER

In story understanding, belief conflicts can exist between the evaluative beliefs of the reader
and the inferred beliefs of a story character. By making evaluative judgments during story
understanding, THUNDER recognizes belief conflicts, and uses the belief conflict structure
to identify the thematic elements of the story. BCP:Inhumane is used to represent the
belief conflict in Hunting Tvip. BCP:Inhumane is the situation where an evaluator judges
an actor’s plan to be ethically wrong because the person is executing a plan to achieve a
personal goal where (1) the plan causes non-recoverable health goal failures for another?,
(2) the goal failure is an integral part of the actor’s plan, and (3) the goal failure is more
important than the actor’s goal success.

BCP:No-Crime is used in Four 0’Clock. BCP:No-Crime represents the situation where a
person is motivated to punish by an evaluation that the evaluator disagrees with. In Four
O’Clock, Oliver made an evaluation that political views that do not agree with his own are
evil. THUNDER infers that Oliver believes the ‘evil political views' will cause damage to
society, and society needs to be protected. However, THUNDER believes having differing

!When examples are reused, the example number of the first appearance of the example is used.
2This clause is used to distinguish inhumane plans from cruel plans. Plans that cause recoverable preser-

vation goal failures are represented by BCP:Cruel.

political views is not evil, and should not be punished. The abstract structure of BCP:No-
Crime is that a person makes a negative evaluation that motivates them to punish, and the
evaluator has no evaluation of the same act: the evaluator feels that the action is not a crime.

Belief conflict patterns formalize the notion of belief conflict into a knowledge structure
that can be used in story understanding. BCPs have the following purposes:

e BCPs represent situations in terms of the beliefs of the reader and story characters, or
in terms of ‘self” and ‘other.’

® BCPs organize the reasons for the beliefs in the belief conflict, and thus serve as stored
‘chunks’ of evaluative reasoning.

® In story understanding, BCPs represent story content at the belief level, and are used

to resolve coherency problems, direct attention to the thematically relevant aspects of
the story, and provide a framework for recoguizing the theme of the story.

¢ BCPs organize memory by evaluative content, and thus supply indices to episodes by
positive and negative consequences for the actor /understander.

BCPs are built on top of the intentional representation of the story by evaluating the goals,
plans, actions, and beliefs of the story characters. BCPS represent reasoning strategies for
the reader’s belief that the events of the story are wrong, unjust, or should not happen.

3.2 Types of Belief Conflicts

The content of the evaluative beliefs in conflict in BCP:No-Crime are different than in
BCP:Inhumane. In Hunting Trip, the belief conflict is over the plan that is being used:
the hunters believe that they should blow up the rabbit, while THUNDER believes that
they should not. In Four O’Clock the conflict is over evaluations: Oliver has a negative
evaluation of his political opponents which motivates him to punish them, while THUNDER
believes that his evaluation is in error.?

The two different types of belief conflict indicate that THUNDER has to reason about
the process of constructing evaluative beliefs and conflicts in evaluation, as well as reason-
ing about the rightness and wrongness of character's actions. Distinguishing the types of
evaluations that can conflict provides a base level organization for BCPs.

There are three ways of categorizing belief conflicts: (1) by the content of the belief in
conflict, (2) by the type of reasons for each side, and (3) by the believers. The content of the
beliefs come from the evaluator’s judgment. The evaluator’s judgment is called the ground
belief of the belief conflict. There are three types of ground beliefs:

9n addition to the belief conflict over evaluation, TEUNDER also recognizes the plan execution belief
conflict BCP:Misguided when Oliver’s plan is evaluated, BCP:Misguided is described in section 3.5.3, and
represents situations where the evaluator believes that the plan will cause value failures for others, and will
not achieve the goal of the planner.

45

1. Plan ezecution BCPs, when the evaluator makes a judgment that another's plan should
not be used. In plan execution BCPs, the ground belief is the evalyator's negative
obligation belief about the other's plan. Since the other is executing the plan. he has
a positive obligation belief about the plan by inference rule O-1 (section 2.7). The

evaluator’s negative belief and the other’s positive belief conflict over the evaluation of
the same content: the other’s plan.

2. Evaluation BCPs, when the evaluator makes a judgment that another’s reward or
punishment is undeserved. Rewards and punishments are motivated by the evaluative
beliefs of the rewarder or punisher. The ground belief of an evaluation BCP is the
belief that conflicts with the belief motivating a reward or punishment.

3. Ezpectation BCPs, where another violates the evaluator’s evaluative expectations.
Evaluative expectations are the evaluator’s expectations about what another should
do, based on the other’s description, past performance, or the evaluator’s ideology.
The ground belief in expectation BCPs is the evaluator’s belief about what the other
should do before he finds out what the other is going to do. In expectation BCPs, the
ground belief about the character is established before the other’s plan is recognized,
whereas in plan execution and evaluation BCPs the conflicting beliefs are recognized
after the other’s plan is recognized. The conflict in expectation BCPs is between the
evaluator’s expectation and the realization of the other’s action.

Plan execution BCPs are the most common type of belief conflict, and serve as a basis
for evaluation and expectation BCPs. Plan execution BCPs always involve an evaluator’s
ethical reason for a negative evaluation of a plan because ethical reasons take precedence
over pragmatic reasons. If a plan is evaluated negatively and a pragmatic reason is the
most important reason for the evaluation, the evaluator has recognized a planning error.
The pragmatic reason can be used to find a plan failure schema (e.g. a TAU [Dyer, 1983)).
Since there are a limited number of pragmatic and ethical reasons for plan evaluation, a set of
plan evaluation BCPs based on evaluator vs. actor reasons can be constructed. For example,
BCP:Selfish is the BCP that arises from the evaluator evaluating a plan using warrant E-4
(section 2.5) to evaluate the plan negatively while the planner uses warrant E-3 (section
2.5) to evaluate the plan positively. The complete set of plan execution BCPs organized by
reason type are presented later in this chapter.

The easiest way to talk about belief conflicts is when the conflict is between a planner
and an evaluator of the plan. However, there are four actors in belief conflict situations: (1)
the person who recognizes the belief conflict, (2) the planner, who is executing the plan that
the conflict is over, (3) the positive believer, who has a positive obligation belief about the
plan, and (4) the negative believer, who has a negative obligation belief about the plan. For
example, in a debate over trade protectionism a member of the audience will recognize the
belief conflict, the planner will be the government that is implementing protectionism, the
debaters supporting the pro side are the positive believers, and the debaters supporting the
con side are the negative believers.

46

To identify the number of cases for categorizing belief conflicts by the participants there
are two simplifications that can be made. First, the planner and the positive believer can be
treated as the same actor. The planner has a positive obligation belief about their actions
plan by inference rule O-1 (section 2.7). A planner and positive believer will not alwavs
be the same because they can have different reasons for the same obligation belief. For
example. A drug user and a libertarian are going to have the same positive obligation belief
about drug legalization. However, the drug user has a pragmatic reason for his belief: drug
legalization means that he will not be arrested for drug use. The libertarian has an ethical
reason for drug legalization: less government intrusion in the affairs of citizens. Second. the
person recognizing the belief conflict can always be identified as ‘self,” since a belief conflict
is a cognitive object that exists in the head of one person.

The cases of participants in belief conflict situations are summarized in table 3.1, Case 1

is the basic belief conflict situation: an evaluator (self} has a negative evaluation of another’s
plan. Cases 2 and 3 can be illustrated by the following examples:

3.4: Should Jerry eat ice cream, or stay on his diet?
3.1: Should I eat ice cream, or stay on my diet?

In example 3.4, the conflict is between another’s positive and negative obligation beliefs. If
the recognizer has reasons for both sides of the conflict, then he has ‘mixed feelings’ about
what the planner should do. When the recognizer and planner are the same person, as in
3.1, there is a ‘dilemma’ situation; the planner has reasons for two contradictory courses
of action. In case four, the planner and recognizer are the same person, while the negative
believer is offering advise:

3.5: Jerry told me not to eat the ice cream, because it would wreck my diet.

Jerry’s belief in 3.5 is a ‘warning’ by meaans of a reason for a negative belief about the plan.
Case 5 is the situation where two others (Other; and Other;) have conflicting beliefs, and
the recognizer understands what the conflict is over. Belief conflicts where the recognizer is
an observer can be attempts to convince the believer of one of the two sides, as in editorials
(see [Alvarado, 1990}]). '

3.3 Terminology and the Basis of Evaluation

Discussions of belief and belief processes are notorious for their lack of clarity. This is due
to the qualifications that have to be made to make it clear who is believing what, and whose
facts, warrants, and inferences are being used to support the beliefs. This is especially true
when schemas are being discussed that contain the beliefs of the schema holder and beliefs
of others that he does not agree with.

47

Case | Recognizer Planner/ | Negative Description
Positive | believer
believer
1. Self Other Self Basic case
2. Self Other Other Mixed Feelings
3. Self Self Self Dilemma
4, Self Self Other Warning
5. Self Other, Other, Observer in an argument

Table 3.1: Describing Belief Conflict Situations by Participants

In order to trim the verbiage in the presentation of BCPs, ue following conventions
are used. When examples are presented, the evaluator is the person who is reading or
observing the situation. The actor is the person whose actions the evaluator is evaluating.
The evaluation (unqualified) is the evaluator’s subjective obligation belief about the plan
that the actor’s action is a part of: this convention precludes the use of phases like “the
evaluator’s evaluation.” When references are made to the actor’s beliefs, the beliefs being
referred to are inferences of the evaluator about the actor’s beliefs. An outside observer has
no direct access to the internal mental states of another, thus all construction of the mental
states of an actor is done using the inference rules presented in chapter 2.

The ideology used by the evaluator is the ‘garden variety’ ideology presented in section
2.5. It is very easy to comstruct situations where different factual beliefs and ideology of
the evaluator will lead to different evaluations of the same example. However, the assump-
tion is made that unless specifically stated, nominal factual beliefs about the world (‘what
everybody knows’) and THUNDER’s ideology are being used to make the evaluation.

3.4 Belief Conflict about Plan Execution

The most straightforward type of belief conflict is belief conflict about plan execution. In
stories, this type of belief conflict is recognized when the reader makes a judgment that an
actor’s action or (more generally) the actor’s plan is wrong. Since the actor is executing the
negatively evaluated plan, he must have pragmatic or ethical reasons for believing that the
plan should be executed, based on his ideology. Belief conflicts of this type are called plan
ezecution belief conflicts. As examples of this type of belief conflict, consider the following:

2.2: To get the money to buy a new car, John robbed a bank.

3.6: Jerry dumped the toxic waste from his dry cleaning shop in the old
swimmin’ hole.

In evaluating examples 2.2 and 3.6 situations, the reader/evaluator makes a judgment
that the character/actor’s plan is wrong because of the value failures that are cause; and
also understands the reasons that the actor caused value failures. At an abstract level of
evaluative belief reasoning, the two situations are similar: both actors believe that their value
1s more important than the value failure that they are causing, and both have pragmatic
reasons for causing the value failure. In example 2.2, John believes his goal of getting a new
car is more important that the loss to the bank depositors, and in example 3.6 Jerry believes
that saving money is more important that the health of the swimmers. This similarity
between the situations is captured by representing both stories in terms of BCP:Selfish. Th;:
schematic structure of BCP:Selfish is shown in figure 3.1, instantiated for example 2.2.

Evaluative Belief Evaluative Beliet

Believer: Evaluator Believer: John

Content: John's bank robbery (. “=Content: John's bank robbery
Valence: Negative Valence: Positive
i Ethical Judgmaent Warran E-4 { Ethicail Judgment Warrant €-3
Femmm—- mm——— Btttk Al L R L e ik |
! 1
1 .
t| Factual Belief Factual Belief !
1| [Believer: Evaluator, John Believer: Evaluator, John i
11 |Content: John caused Content: John's A-Possessions| |
: P-Possessions value success from | |
. value failures the bank robbery |
! for depositors Valence: True :
! Valence: True '
¥ P pmprapepemmpepmpspmpn ——— -4, plonsvalvesystem = |
Evaluators valye system | ! ;—;ossess!ons(dohn) > :
P-Possessions(depositors) > | | | L"0ssessions(depositors) |
A-Possessions(John) [| ==-m===mecccmcmmmee o -

Figure 3.1: Schematic Structure of BCP:Selfish

In figure 3.1, the evaluative beliefs in conflict are at the top of the drawing - the evaluator
has a negative evaluation of John’s bank robbery, while John has a positive evaluation. The
reasons for each side of the conflict have two parts: (1) a factual belief about the plan,
and (2) a judgment warrant that links the factual belief to the evaluative belief. For the
evaluator’s evaluation, the reasons are the beliefs that (1) John will achieve his A-Possessions
value success by robbing the bank, (2) John’s bank robbery plan will cause a P-Possessions
value failure for the bank depositors (the loss of their savings), and (3) the preference belief
that the P-Possessions value of the depositors is more important than John’s A-Possessions
value. The warrant for the evaluator’s belief is ethical judgment warrant E-4 — a plan is
negatively evaluated if the plan causes a value failure and a value success, and the value

49

failure is more important than the vajye Success (section 2.5). Johnp's positive evaluative
belief is supported by ethical warrant E-3: a plan is Positively evaluated if the value it
achieves is more important than the value failures that ig causes (section 2.5). This warrant
Is instantiated with J ohn’s beliefs that (1) he will cause a value failure for the bank depositors
as a part of the bank robbery, (2) he will get a new car by robbing the bank, and (3) and in
his value system hig A-Possessions value is more important than the P
the bank depositors.

Evaluative Belief Evaluative Belief
Believer: Jerry
Content: Jerry's toxic waste

dumping Conflict dumping
Valence: Negative Valence: Positive
_f Ethical Judgment Warrant E4 ! Ethical Judgment Warrant E-3
[T s m ey e Mudgment Warrant E3 1
| 'l
| | Factual Belief Factual Belief !
I

| || Believer: Evauator, Jerry Believer: Evaluator, Jerry :
1 [[Content: Jerry caused P-Health Content: Jerry's P-Possessions value| |
' value failures for success from waste '
! swimmers dumping H
: Valence: True Valence: True !
""""""""" 1 :
1
1
]
1
1

muauatars value system . [71 Jerry's vaiue sverem ‘
P-Health(swimmers) > H P-Possessions(Jerry) >
P-Possessions(derry) ! P-Haalth(swimmers)

|

Figure 3.2: BCP:Selfish Instantiated for Toxic Waste Dumping

Figure 3.2 shows BCP:Selfish instantiated for example 3.6. The schematic structure of
beliefs and support is the same as 2.2, but the specific values are different: instead of causing
a P-Possessions valye failure, Jerry is causing a P-Health valye failure, and he s achieving
a P-Possessions goal in place of an A-Possessions goal. By representing both examples in
terms of the same structure, the evaluator can recognize that John and Jerry are both being

‘selfish’ — they are acting in their own seif interest at the expense of others — evep though
the specifics of the episodes are vastly different,

BCP:Selfish is a very general pattern, and other related BCPs can be generated by speci-
fying the elements of schema. For example, BCP:Inhumane is a specialization of BCP:Selfish
where the value failure is a integral part of the plan, instead of being a part of an instru-
mental plan. Closely related to BCP:Selfish is BCP:Selfish-choice. BCP:Selfish-choice is the
situation where an actor selects a plan that causes value fajlures for others over another
available plan. The characteristics of BCP:Selfish-choice are: (1) the plan's value is less

30

important than the value failures caused by the plan, and (2) there is an available plan that
does not cause value failures. Examples 2.2 and 3.6 can be modified slightly to show how
BCP:Selfish-choice would be instantiated, instead of BCP:Selfish:

3.7: John had enough money in the bank to buy a used Pinto, but he really
wanted the new Camero, so he robbed a bank.

3.8: Jerry dumped the toxic waste from his dry cleaning shop in the old
swimmin’ hole, because the waste disposal company wanted 5% of Jerry’s profits
to properly dispose of the waste.

The text of examples 3.7 and 3.8 provides the evaluator with an explicit plan that the actor
did not choose: in 3.7, John could have bought a less expensive car, and in 3.8 Jerry could
have paid the waste disposal company to haul the toxic waste away. The alternative plan is
one that the evaluator has a positive obligation belief about — the evaluator believes that
John should buy the Pinto, and that Jerry should pay the waste disposal company. The
structure of BCP:Selfish-choice is shown in Figure 3.3.

Evaiuative Belief Evaluative Beliet
Believer: Evaluator Believer: Jerry
Content: Jerry's toxic waste Content: Jerry's toxic waste

dumping Conflict dumping
Valence: Negative Valence: Positive
‘Ethical Judgment Warrant E-4 Tpl‘ﬂgm!ﬁc Judgment Warrant P-5
S oo 1 _Factual Belief
Factual Beliet i [Believer: Jerry, Evaluator
Believer: Evaluator, Jerry | |Content: Dumping is better than
Content: Jerry caqsed P-Health : paying for waste disposal
value failures for , on metric "cost"
swimmers i |Valence: True
Valencs: True]

Evaluator's valu m Factual Belief
F_M' Believer: Jerry, Evaluator
P-Health(swimmers) > Content: Dumping achieves
P-Possesslons(Jerry) P-Possessions value

Valence: True

——— - ———]

Figure 3.3: BCP:Selfish-choice Instantiated for Toxic Waste Dumping

Belief conflict patterns. are constructed out of ethical judgment warrants by filling in
the obligation belief and its support with instances of goals and plans. BCP:Sel‘ﬁsh and
BCP:Selfish-choice are very general patterns because very little of the structure aside from

51

the warrant has been filled in. BCP:Selfish is the pattern that arises from instantiating
ethical warrant E-4 — if an actor is executing a plan that causes value failures for others,
then the evaluator can fill in the value that the actor is planning for, and the pragmatic
reason that the actor has for a positive evaluation of the plan (section 2.5). BCP:Selfish-
choice is also based on ethical warrant E-4, but instead of making the decision based of the
relative importance of values, the actor is choosing a plan that causes value failures for others
over a plan that did not, and the choice was based on pragmatic warrant P-5 (section 2.6).

3.5 Types of Selfishness

BCP:Selfish and BCP:Selfish-choice represent the concept of ‘selfishness’, and why selfishness
is ethically wrong. However, the selfish aspects of blowing up a rabbit for entertainment,
robbing a bank, or not letting friends play with your toys are qualitatively different. The
different types of selfishness and the reasonms that the situations are ethically wrong, are
represented by (1) structural variations in the patterns of belief that lead to the conflicting
evaluations, and (2) instantiations of the general plan execution BCPs with specific type of
plans.

There are three areas where different forms of ‘selfishness’ can be distinguished:

1. Evaluator’s reasons — The different reasons that the evaluator has for judging a
plan negatively.

2. Plan characteristics — Features of plans can be used to directly identify moral
judgments.

3. Planner’s beliefs — The beliefs of the actor and how they relate to the beliefs of the
evaluator.

The specific BCPs based on reasoning in each area are discussed in the following sections.

3.5.1 Evaluator’s Reasons

Plan execution BCPs are constructed around an evaluator’s negative evaluation of a plan by
one of the two ethical warrants: (1) ethical warrant E-4 (section 2.5), when a plan causes
a value failure and a value success, and the failed value is more important that the value
success, and (2) ethical warrant E-2 (section 2.4), when a plan intentionally causes value
failures for others. BCP:Selfish and BCP:Selfish-choice are built around ethical warrant
E-4. If the evaluator believes that there are value success and failure consequences, the
plan provides both the value failure and the value success. If the evaluator does not believe
that the plan will be successful, the plan is negatively judged only by warrant E-2. In this
case, the evaluator believes that the plan is senseless; not only will the plan cause value
failures for others, the plan will not achieve the value of the planner. The plan execution

-4]

BCPs variants of BCP:Selfish and BCP:Selfish-choice with warrant E-2 substituted for E.4

are BCP:Senseless and BCP:Senseless-choice. These BCPs are illustrated by the following
exarnples:

3.9: To get the money to buy a space shuttle, John robbed a bank. (Beliefs:
The evaluator believes that bank robbery will not net enough money to buy a
space shuttle.)

3.10: Jerry wanted to dump the toxic waste from his dry cleaning because the
waste disposal company wanted 5% of Jerry’s profits. To transport the waste,
he bought a new van, and drives 200 miles to a secret dumping site so he would
not get caught. (Beliefs: The evaluator believes that buying a van and driving
to the dumping site will cost more than paying the waste disposal company.)

Not only are the plans used in 3.9 and 3.10 stupid, the plans are morally wrong because they
cause value failures for others.

3.5.2 Plan Characteristics

Most plans that cause value failures for others are instrumental to the plan for the actor’s
value. In plans that cause value failures such as assault, robbery, and stealing, the value
failure is part of a plan to get money. Possessing money, in turn, enables the actors acquisition
goal. In a mugging, for example, the fact that the victim is threatened allows the mugger to
take the victim’s money. The event of getting the victim’s money is instrumental to whatever
the mugger is planning to spend the money on. However, in some plans a value failure is an
integral part of the plan. In Hunting Trip, the hunters’ entertainment goal comes about by
watching the rabbit suffer.* The difference between the hunters’ plan and mugging that is
the value failure itself is a part of the plan, instead of being part of an instrumental plan.
BCP:Inhumane is used to represent the belief conflict that is recognized when people use
plans that cause value failures as a part of the plan.

Belief conflicts about plan execution can also exist in cases of plan non-execution.
BCP:Failure-to-act is the BCP that is recognized when an actor, faced with a decision to
help another party, does not do anything because of a pragmatic reason. BCP:Failure-to-act
would be instantiated from the following story:

3.11: Charles drove by the car wreck on the deserted highway because he did
not want to get involved.

BCP:Failure-to-act is a specialization of BCP:Selfish-choice where the plan selected is to do
nothing, instead of helping a person with a threatened preservation goal.

*Value failures are also integral parts of punishment plans, and are discussed in the next chaptez.

53

constructing ethical and pragmatic reasons about the plan.

3.5.3 Planner’s Beliefs

The reasons that an actor has for believing that a plan should be used are different if the
actor is executing the plan for himself than if the actor is planning for the value of another.
When the actor is planning for a personal value, the conflict is between the actor’s pragmatic
reasons for believing that a plan should be executed, and the evaluator’s ethical reasons that
the plan should not be executed. When actors are executing plans for other people, the
actor will have ethical reasons for executing plans. For example, BCP:Chauvinist represents
the belief conflict that is recognized when an actor believes that the goal of a social group
is more important than the preservation goal of another party. BCP:Chauvinist is used to
represent the belief conflict associated with terrorist acts, for example:

3.12: Terrorists hijacked a jet and threatened to kill the passengers unless
their compatriots were released from jail.

In example 3.12, the terrorists believe that achieving the freedom of their compatriots is
more important than the lives of the passengers. BCP:Chauvinist differs from BCP:Selfish
in that instead of a personal goal, the actor is trying to achieve the goal of another party.
Thus, the actor has an ethical reason for his pPlan by warrant E-3 (section 2.5): the actor
is trying to achieve an important value of another party by causing a less important value
failure. However, the evaluator may not share the value system of the actor, and therefore
will not have the same ethical evaluation of the situation. BCP:Chauvinist is similar to
BCP:Selfish in that the actor has a pragmatic reason for selecting the plan that causes goal
failures over other available alternatives. In 3.12, the terrorists may believe that acts of
terrorism are the only way to motivate the release of their compatriots, or that terrorism is
more effective than peaceful forms of political pressure.

Another planner belief BCP is BCP:Misguided. BCP:Misguided is recognized by THUN-
DER in the second sentence of Four O’Clock

3.13: He keeps detailed files, makes threatening phone calls, and sends
letters discrediting his evil political enemies.

When Oliver makes threatening phone calls, he is using an extortion plan to prevent his
political opponents from expressing their political beliefs. The goal of Oliver’s plan is to
protect society from the influence of his opponents evil beliefs. Since THUNDER believes
that the political opponents are not damaging society by expressing different political be-
liefs, THUNDER does not believe that Oliver's plan will succeed. Oliver’s extortion plan

24

may succeed in silencing his opponents. but since THUNDER does not believe that their
beliefs damage society, THUNDER does not believe that Oliver's plan will achieve the goal
of protecting society. In the evaluation of the plan, Oliver’s ethical reason for believing that
he should make threatening phone calls is that the the threats will help to protect society.
THUNDER's ethical reason that he should not make threatening phone calls is the moti-
vated P-Health value for the threatened political opponents. The BCP for this situation 1s
BCP:Misguided, as shown in figure 3.4.

Evaluative Beliet Evaluative Belief

Believer: THUNDER Believer: Qliver

Content: Threatening phone |« m\]Content: Threatening phone
calls to prevent opponents Conflict | calls to prevent opponents
from expressing beliefs from expressing baliefs

Valence: Negative Valence: Positive
Ethical Judgment Warrant E-2 l Ethical Judgment Warrant E-3

i it bbb L T LT P S {
| Factual Belief Factual Belief ¢
| Q=41 T ——
! [Believer: THUNDER, Oliver Believer: QOliver i
! Content: Oliver motivates Content: P-Health{society) value I
I P-Health values for success by preventing opponents| |
' political opponents from expressing beliefs '
I [Valence: True Valence: True :
: liver's value system l
| contradicts P-Health(society) > :
L _____ P-Health(political opponents) :

F ligf

Believer: THUNDER

Content: P-Health(society) value
success by preventing opponents
from expressing beliefs

Valence: False

Figure 3.4: Schematic Structure of BCP:Misguided

THUNDER understands “threatening phone calls” as a part of Oliver’s plan to use
extortion to prevent his political enemies from expressing their beliefs. Oliver’s belief that he
should change their belief is supported by ethical warrant E-3 (section 2.5): he believes that
preserving the health of society is more important than the threat to the health of his political
opponents. He also has the factual belief that his plan will be successful — that he will
protect society by preventing his opponents from expressing their beliefs. THUNDER has the
opposite factual belief. THUNDER believes that Oliver’s political enemies are not damaging
society, and thus that threatening them to prevent them from expressing their beliefs will

55

not protect society. The difference in factual beliefs is represented by the contradicts link
between THUNDER's factual belief and Oliver's belief.

3.6 Evaluator’s Knowledge and Plan Execution BCPs

In addition to selfishness, plan execution BCPs can be used to represent situations where
plans should not be used because the evaluator has more knowledge about the plan than the
actor does. For example, consider the following example of a swindle:

Famine Relief

Shady Sam had a racket that never failed. He called senior citizens and asked
them to contribute to the “World Famine Relief Fund,” and then kept the money.
When he called Gladys Mayfield and asked for $1000, she was only too happy to
oblige.

In this story, the evaluator believes that Gladys should not give her money to Sam. While
Gladys believes that she is helping to stop world hunger, the evaluator knows that Gladys’
plan will not be successful because ke knows where the money i3 actually going. Note that
the belief conflict about what Gladys should do exists in addition to the belief conflict about
Shady Sam’s unethical plan. While the evaluator believes that Shady Sam should not be
executing an unethical plan, he also believes that Gladys should not allow herself to be
swindled.

There are four areas where plan execution BCPs can be distinguished based on evaluator’s
knowledge about the plan and its consequences:

1. Who is the actor planning for? An actor planning for himself is planning for a
personal value, and will have pragmatic reasons for executing the plan. If the actor is
planning for others, then he is going to have ethical reasons for executing the plan.

2. Does the evaluator believe that the plan will work? If the evaluator beljeves
that the plan will be successful, the plan will be judged negatively by warrant E-4
(section 2.5). K the evaluator does not believe that the plan will be successful, the
plan is evaluated negatively by warrant E-2 (section 2.4).

3. Is the actor aware of value failure_s that the plan causes? If the actor is not
aware of the value failures, but the evaluator is, then the evaluator can generate ethical
reasons for a negative evaluation of a plan that the actor will not.

4. Who does the actor cause value failures for? Even if the actor does not believe
that his plan will cause value failures, the evaluator can believe that the plan will cause
value failures. The failures can be for three different classes of people: (1) the actor,
(2) the person that the actor is trying to help, or (3) third parties.

| €3

The following paragraphs describe and give examples of plan BCPs that arise when the
evaluator has more knowledge about the plan than the actor. In the examples, the beliefs

of the actor and evaluator are explicated to show exactly what pattern of belief is being
represented.

BCP:Tunnel-vision: The actor is trying to achieve a personal value that causes a more
important value failure that the actor is not aware of. There are two subcases: (1) the
value failure is for the actor (BCP:’I\mnel-vision-aﬂ'ects-self), and (2) the value failure is

for another (BCP:Tunnel-vision-a.ffects—other). The cases are illustrated by the following
examples, respectively:

3.14: John took steroids to improve his physique (Beliefs: John is not aware
of the health dangers associated with steroids.)

3.15: To irrigate his field, Farmer Brown put a ditch through an ancient
Indian scared burial ground. (Beliefs: Farmer Brown was not aware of the burial
ground, and the evaluator believes that preserving the sanctity of the burial
ground is more important than Farmer Brown'’s crops.)

BCP:Bad-Samaritan: The actor is trying to achieve a value for another party that
causes a more important value failure that the actor is not aware of. There are three subcases
here: (1) the value failure is for the actor (BCP:Bad-Samaritan-affects-self), (2) the value
failure is for another (BCP:Bad-Samaritan-affects-other), and (3) the value failure is for the
person that the actor is trying to help (BCP:Bad-Sama.ritan-aﬂ'ects-recipient). The three
cases are illustrated by the following examples:

3.16: To help his friend buy a car, John sold an old piece of jewelry. He did
not realize it was a priceless family heirloom. (Beliefs: John believes that selling
the jewelry will help his friend, and will not hurt himself, The evaluator believes
that John will hurt himself by selling the jewelry for less that it is worth.)

3.17: Congressman Jones wanted to protect the sugar farmers in his district,
so he enacted legislation to raise the sugar tariff on imported sugar. He did not
realize that the tariffs would ruin the economy of Isle Pavo (a small island in the
Caribbean, whose only cash crop is sugar). The peasants revolted, and now Isle
Pavo is a Marxist dictatorship. (Beliefs: Congressman Jones believes that sugar
tariffs will protect his farmers, but does not know about the consequences for Isle
Pavo. The evaluator believes that having Isle Pavo in the United States sphere
of influence is more important than the prosperity of the farmers.)

3.18: His kids wanted a dog, so John bought a pit bull. The dog proceeded to
bite the ear off one of the kids. (Beliefs: John did not believe that pit bulls are

57

3.19: John wanted to get famous, so he bought a Medfly circus. (Beliefs:
John believes that the Medfly circys will make him famous, and does not know
that Medflys wil] wipe out agriculture, The evaluator does not believe that Johp
will get famous, and knows that the Medfly is a dangeroys pest.)

that the plan will not succeed, and that the plan will cause valye failures that the actor is
not aware of. There are three cases here: (1) the valye failure is for the actor (BCP:Selfless.
to-self), (2) the valye failure is for another (BCP:Selﬂess-to-other), and (3) the value failure
is for the person that the actor is trying to help (BCP:Selﬂess-to—recipient). The three BCPs
are illustrated by the following examples:

3.22: John wanted to help stamp out world hunger, so he sent a carton of
salted peanuts to Africa, He did not know that they were in the middle of a
drought. (Beliefs: John believes that sending the peanuts will help stop world

58

¢ Ethical planning — Recognizing belief conflicts associated with plans allows the

actor to avoid morally wrong plans, and to predict reasons that others would have for
being upset by a plan's execution.

¢ Prediction and protection — Understanding the ways in which people cause value
failures for others allows an actor to recognize situations where others will cause value
failures for the actor, so that the actor can plan to protect himself.

¢ Domain independence of evaluation — Recognizing morally right and wrong sit-
uations in terms of evaluative content can be used to transfer evaluative knowledge
across domains (cross-contextual reminding [Schank, 1982]).

To achieve these purposes, BCPs organize memory by providing structures that distinguish
between ethically right and wroang situations. As more ethical situations are encountered,
the situations can be indexed by the features that are used to differentiate between right
and wrong courses of action. For example, if a child believes that hurting other people is
wrong, and then is taught that it is all right to fight back against a bully, he has to be able
to make the distinction between situations where you are hurting people to protect yourself,

To use the information provided by BCPs, the patterns have to be indexed in mermory
0 that the patterns can be retrieved and applied to relevant situations. Figure 3.5 shows
a sample memory organization for plan BCPs based on the four indices used to distinguish
structurally different patterns. '

There are two types of advice associated with BCPs: (1) planning advice that informs
the actor about how to modify his plan to avoid a belief conflict evoking situation, and
(2) protection advice that informs the actor about how to avoid being affected by another’s
unethical plan. The two types of advice correspond to the admonitions to (1) be careful, and
(2) be vigilant. Both types of advice center on knowledge about the consequences of plans,
but differ in the perspective from which the knowledge is applied. Planning advice is used
in plan selection, while protection advice evaluates the consequences of another’s action.

BCPs are indexed in memory from value failures. Once value failures are found, eval-
uative beliefs about the plan are constructed which provide the additional indices to the
specific BCPs. Each index in the memory organization provides different types of planning
and protection considerations. The planning and protection advice for each index can be
summarized in a plan independent manner as (1) what the actor should check for and (2)
what people should be aware of:

1. Evaluator’s reasons for negative evaluation of the plan. Evaluators will have
negative beliefs about plans that cause value failures for others.

o Planning advice: Check for myopic planning errors by evaluating your plan from
a neutral perspective, where you are the evaluator and another is the actor.

e Protection advice: Even though you would evaluate a plan negatively, actors will
be motivated by their own, more important goals to cause value failures for you.

39

Evaluators reason for
negative evaluation: Warrant E.4 Warrant .2

Is planner aware of value

failures? Yes No Yes Na

Planner's reason for

positive evaluation:

Warrant E.3 Warrant P-5 Warrant E-3 Warrant P-5
Who is the planner
; 5 .
planning for? Self Sef Selt Self Self
her, Other Other Other her Other
BCP:Seltish BCP:Seffish- BCP:Senseless CP:Senseless

choice BCP:Misguided

LBCP:Chauvanist | —
BCP:Ch_auwﬂlSt- BCP:Senseless-
Who is the pianner choice choice

causing value failures
ors 9 Self BCP:Misguided:] g,y
BCP:Tunnei-vision- Other Self --—M——
affects-self BCP:Seltiess her
atfects-self i
BCP:Tunnei-vision- Recpient
afftects-other Recpient lBCP:Selﬂess- BCP:Seffiess.
, , affects-other affects-
BCP:Bad-samaritan- recipient

attects-other B8CP:Bad-samaritan- BCP:Bad-samaritan-

_ affects-self flects-recipient

Figure 3.5: Memory Organization for Plan BCPs

2. Is the actor aware of the value failures that his plan causes? Actors will cause

value failures for others intentionally or unintentionally.

¢ Planning advice: Check your plans for value failure consequences for others.

* Protection advice: Be aware of other actors, and the consequences that their plans

will have for you.

3. Actor’s reason for positive evaluation. Actors can be motivated to execute plans
that cause value failures for others by (1) what they believe to be more important
values, or (2) because they think that the plan is Pragmatically better than other

alternatives.

60

¢ Planning advice: If vour plan causes value failures for others. (1) check the relative

importance of your value to the value failure. and (2) check for other alternative
plans that do not cause value failures for others.

» Protection advice: Be aware that people will cause value failure for you based on

(1} their perception of the relative importance of values. and (2) their perception
of the available alternatives.

1. Who is the actor planning for? Actors will cause value failures for others both
when they are planning for themselves and when they are planning for others.

¢ Planning advice: Check the relative importance of your value to the value failures
that your plan causes, even when you are planning for another.

¢ Protection advice: Be aware than actors are just as likely to hurt you when they
are planning for others, as when they are planning for themselves.

5. Who is the actor causing value failures for? Actors will cause value failure for
themselves, others, or the people they are trying to help.

¢ Planning advice: Check your plans for value failure consequences for yourself,
others, and the recipient of the plan.

¢ Protection advice: Be aware of the potential of your plans to hurt yourself, other
actors to hurt you, and people who trying to help you to hurt you.

The BCPs at the leaves of the memory organization (in figure 3.5) aggregate the planning
and protection advice of the indices. For example, BCP:Selfish contains planning advice
that you should not execute plans that cause value failures for others, because (1) evaluators
may believe that the value failures are more important than your value success, even though
you believe that your value is more important, and (2) if you know that you are causing a
value failure for others, you have no excuse.

3.8 Summary

Belief conflict patterns represent abstract patterns of evaluative belief where two believers
have reasons for positive and negative evaluative beliefs about the same belief content. BCPs
are used in THUNDER to represent conflicts between the evaluator’s beliefs and inferred
actor beliefs, and to motivate continued reading to find a resolution to the conflict.

There are three types of belief conflicts: (1) belief conflict about plan execution, where an
evaluator believes that a plan should not be executed, and an actor believes that it should,
(2) belief conflict about evaluations, where the conflict is over an evaluation that motivates
a plan in punishment and reward situations, and (3) belief conflict about expectation, where
there is a conflict between the evaluative expectation and realization. In addition to being

61

organized by type, belief conflicts can be organized by the participant. and by the warrants
for each side of the conflict.

BCPs to represent belief conflict about plan execution center around the concept of
‘selfishness™: the actor is trying to achieve a value for himself while causing value failures
that he believes to be less important, while the evaluator believes that the value failure
is more important. Different patterns of selfishness can be constructed by considering the
evaluator’s reasons that the plan should not be used, characteristics of selfish plans. and
actor’s reasons for executing selfish plans. Plan BCPs also exist where there are differences
in factual belief about the value and value failure consequences of plans. The plan BCPs
presented in this chapter are listed in table 3.2, organized by the reasons for the evaluator's
and actor’s evaluation.

Evaluator’s | Actor’s BCP

Reason for | Reason for

Negative Positive

E-4 E-3 BCP:Selfish
BCP:Chauvinist

E-4 E-1 BCP:Bad-Samaritan

E-4 P-1 BCP:Tunnel-vision

E-4 P-5 BCP:Selfish-choice
BCP:Chauvinist-choice

E-2 E-1 BCP:Selfless

E-2 E-3 BCP:Senseless, BCP:Misguided

E-2 P-1 BCP:Senseless-and-stupid

E-2 P-5 BCP:Senseless-choice
BCP:Misguided-choice

Table 3.2: Classifying Plan BCPs by Reason Types

Plan BCPs can be used to organize memory in terms of the evaluative content of episodes.
In addition to representing patterns of evaluative belief conflict, BCPs are associated with
planning and protection advice. Recognition of potential BCPs during planning allows an
actor to evaluate the ethical consequences of plans, and recognition of BCPs in other’s plans
allows a person to detect unethical plans and protect himself from the negative consequences.

62

CHAPTER 4

Belief Conflict About Evaluation

Plan execution BCPs represent conflicting beliefs about whether plans should or should not
be used. Beliefs can also conflict over evaluations that motivate plans. As an example of an
evaluation belief conflict, consider the contrast between:

4.1: Little Billy’s mom gave him a spanking for pulling the cat’s tail.
4.2: Little Billy’s mom gave him a dollar for pulling the cat’s tail.

In example 4.1 Billy’s mother has made an negative evaluation of Billy’s action that moti-
vated her to punish him. In 4.2 Billy’s mother has made a positive evaluation as evidenced
by her reward to her son. Since most evaluators have a negative evaluation of pulling cat’s
tails, in 4.2 there is a conflict between the mother’s positive evaluation and the evaluator’s
negative evaluation.

Belief conflicts over evaluation are found in reward and punishment situations. In pun-
ishment situations, an actor has made a negative evaluation of another’s action, and the
evaluation motivates a plan to cause a goal failure for the other. There are three types of
belief in punishment situations that can conflict: (1) about the action being punished, (2)
about the authority of the person to punish, and (3) about effectiveness of the punishment
to achieve its goal. In example 4.2, the conflict was over evaluations of the action motivating
the punishment. In the following examples, the conflict is over the punisher’s authority to
punish and the effectiveness of the punishment, respectively:

4.3: Radical environmentalists broke the windows out of the homes of execu-
tives of the Large Logging company after Large Logging clear cut 1000 acres of
old growth.

4.4: After being convicted of bilking little old ladies out of their life savings,
Shady Sam was given a suspended sentence.

In example 4.3, the evaluator may agree with the environmentalist’s negative evaluation of
the actions of the logging company, but will not believe that they have the right to break the
windows because they have no authority to carry out a punishment. In 4.4, the evaluator
will believe that the judge has the right to punish Sam, but believes that the light sentence
will not deter Sam from bilking old ladies in the future.

63

Similar areas of evaluation exist in reward situations: {1) the rewarder has a positive
evaluation of the action being rewarded, (2) the rewarder has a positive evaluation belief
about rewarding the action, and (3) the rewarder has a positive evaluation of the plan to
reward the actor. Each evaluative belief can be the source of a belief conflict.

Abstract patterns of the ways the evaluator’s and actor’s beliefs about punishment and
reward conflict are represented by evaluation BCPs. In evaluation belief conflicts the conflict
15 between the evaluator’s and the Judge’s beliefs about the action and their beliefs about why
and how the action should be punished or rewarded. Evaluation BCPs represent the structure
of reasons for conflicting beliefs about reward and punishment, and why an evaluator would
believe that a punishment or reward is right or wrong.

This chapter begins by discussing how reward and punishment situations are represented
in THUNDER, and the kinds of distinctions that have to be made to represent the varieties
of reward and punishment. Next, BCPs are presented for the three areas of punishment
where the punisher’s and evaluator's beliefs can conflict. The types of reward situation and
reward BCPs are then presented. Finally, the advice associated with evaluation BCPs for
planning and protection in reward and punishment situations is given, and how evaluation
BCPs are used to reason about justice and laws is discussed.

4.1 Punishment and Reward

Punishment and reward situations are recognized when a person is motivated by an action
of another to hurt or help the other, respectively. Punishment and reward are central ethical
concepts because they are the situations where an actor believes that there is a justification
for causing value failures or successes for others. In punishment and reward, evaluative belief
plays a dual role: (1) there is an obligation belief about the action that is being rewarded or
punished, and (2) there is an obligation belief about the way in which the action is rewarded
or punished. In a punishment situation, for example, the punisher has a negative obligation
belief about another’s action — the punisher believes that the other should not have executed
the action. The punisher’s evaluative belief motivates a plan that contains a goal failure for
the other — the punisher believes that he should execute the punishment plan.

In THUNDER, instances of punishment and reward are understood by instantiating plan
schemas that represent the structure of punishment and reward situations. The schemas are
further specified by considering (1) the different methods of evaluating other’s actions, such
as personal consequences or legal systems, and (2) the different types of goals that evaluations
motivate, and punishments/rewards achieve,

4.1.1 The Punishment Schema

In order to reason about punishment, THUNDER has to have a high-level representation of
the intentional structure of punishment. Figure 4.1 shows the PSchema for punishment. In

64

the figure, the following variables are used to conveniently talk about the roles and events
of the schema: the judge is the person who negatively evaluates the actions of another. the
crimanal is the person who executed the action that the judge is evaluating, the erime is the
criminal’s action, and the punishment-type is the type of goal failure that the punishment
causes for the criminal. The figure shows the judge making a negative evaluation of the
action of the criminal from a set of factual beliefs. The judge’s action is called the judgment
and is represented by the conceptual dependency action MBUILD (building a mental object)?
of the belief that the criminal should not have executed the crime. The crime is an action
contained in a plan called the erime plan. The judgment action causes the judge to hold
the obligation belief, and motivates the judge’s punishment goal. The punishment goal is to
cause a state change in the criminal. The punishment goal intends a punishment plan which
causes a goal failure for the criminal and achieves the punishment goal of the judge.

Action

Type: Mbuild _ Obligation Belief Plan Schema
Actor: 7judge J_ .- -~~~ >TBeliever: Zjudge -~ |Planner: 2criminal
|Object: =<7 »* |Content: ?crime <] Action

(Judgment) '..__‘ Valenca: Negative S~ er; ?criminaTI
Event /" (Crime plan)
Object: Zjudge,] ’/, T \Judgmenr warrants

Prop: holds ,* -t F1lIF2) ..[Fn

To:--=::¢”

Factual beliefs of ?judge

motivates l
Plan Schema

oal
Ect?:r: Zudge ’"""d’. F’Iannef: ?judge
ype: Ppunishment-type ug— Goalfailures: gr?(;:a- ?punishment-type
Of: ?criminal achieves Adtor Ferminal y

{Punishment goal) Co

Mode: failed

(Punishment plan)

Figure 4.1: The Punishment Schema

The punishment schema represents punishment from the point of view of the punisher.
The punishment schema is used to understand any situation where a person is motivated
by an evaluative belief to cause a value failure for another, and to infer beliefs in situations
where a person causes a value failure for another in the absence of a plan. When a person
causes a value failure for another, it can be inferred that the person/judge has a negative
evaluative belief about the other’s action that motivated the judge to cause the value fajlure.

!Conceptual dependency (Schank, 1973; Schank, 1975) and THUNDER's representation of action and
motivation, as well as the primitive used to construct semantic nets, are discussed in chapter 7.

65

4.1.2 Types of Punishment

The judge’s motivation to punish based on (1) a negative evaluation of the crime and (2) the
judge’s punishment goal. There are four different types of punishment goals, corresponding
to the motivation for causing a value failure:

1. Retribution, where the punisher is motivated for revenge. In retributive punishment.
the punishment goal is to cause a goal failure for the criminal.

2. Distribution, to restore an imbalance caused by the crime. The punishment goal is to
undo a value failure caused by the crime.

3. Instruction, to teach someone a lesson, and provide reasons that the crime should be
evaluated negatively. The punishment goal is to give the criminal a reason that the
crime should be negatively evaluated in the future.

4. Prevention, to prevent the actor from executing his crime in the future. The punish-
ment goal results in a state that blocks the criminal from being able to execute the
crime plan in the future.

A punishment situation may have more than one punishment goal. For example, when a
person is sent to prison for committing a crime where he has to work to pay back his victim,
there is a measure of retribution, distribution, instruction (rehabilitation), and prevention.

To infer the type of punishment goal, each type of punishment goal has punishment
inference rules (PUlIs) for its recognition:

PUI-1: If the crime caused a value failure for the judge, infer that the punishment
1s retributive.

PUI-2: If the punishment plan includes a recovery plan for a value failure caused
by the crime, infer that the punishment is distributive.

PUIL-3: If the punishment is motivated by a negative obligation belief, and the
punishment can take place again (the judge has the ability to execute the pun-
ishment plan multiple times), infer that the punishment is instructive.

PUI-4: H the value failure caused by the punishment plan is non-recoverable,
infer that the punishment is preventative.

(See the source code in section D.2.6 for the iniplementation of punishment inference rules.)
By inferring the type of punishment goal the the judge is trying to achieve and instantiating

the punishment schema, inferences can be made about the specific beliefs of the judge. For
example:

4.5: John punched Jerry for making a pass at his girlfriend.

AR

In example +.5. John is the judge. and Jerry is the criminal, By instantiating the punishment
schema., inferences can be made that (1) John had a negative evaluation of Jerry's action.
(2) the evaluation motivated John to punch Jerry, and {3) John is motivated by revenge and
mstruction.

4.1.3 Authority to Punish

In some punishment situations, the judge is sanctioned by a social group and regulated by
a set of laws to make judgments and carry out punishments. However, the punishment
schema is recognized in any situation where a person is motivated by an evaluative belief to
cause a value failure for another. The first type of punishment is called judicial punishment.
In judical punishment the judge is sanctioned by some institution, and the judgment and
punishment are made according to the rules /laws of the institution. The following examples
are instances of judicial punishment:

4.6: Shady Sam was convicted and sentenced to 10 years in prison for bilking
little old ladies.

4.7: John was thrown out of the plumber’s union for using a left-handed
monkey wrench.

In examples 4.6 and 4.7, the judgment and punishment were made according to the laws
of the state and plumber’s union, respectively. In cases of non-judicial punishment, the
judge/punisher believes that he has a right to punish in the absence of the sanction of an
institution, as in the following examples:

4.1: Little Billy’s mom gave him a spanking for pulling the cat’s tail.
4.5: John punched Jerry for making a pass at his girlfriend.
4.8: Jim shot a prowler who had broken into his house.

In non-judicial punishment, the judge’s belief that he has a right to punish another can be
based on (1) a social relationship between the judge and the criminal, as in 4.1 and 4.5, or
(2) values and potential value failures suffered by the judge, as in example 4.8.

Beliefs about the authority of the judge to carry out a punishment are based on the
evaluator’s evaluation of the right of the judge to punish the criminal. The judge’s authority
can come from (1) a social role where society sanctions the judge to to act on their behalf, such
as a state or federal judge (as in examples 4.6 and 4.7), (2) by an interpersonal relationship
between the judge and criminal as in a parent punishing a child (example 4.1 and 4.5), or (3)
a situation where the punisher is preventing further value failures caused by the criminal, as
in cases of “clear and present danger” (example 4.8).

67

However. the judge does not have to have any special status other than the ability to
cause a goal failure. Punishments can be handed out by the strongest person in a group. or
by surprise:

1.9: The gnarly Hell’s Angel broke John’s jaw. “He looked at me funny,”
snarled the Angel.

4.10: After getting an F on his math test, John snuck out and flattened the
tires on his teacher’s car.

In contrast to 4.1 and 4.5, examples 4.9 and 4.10 illustrate that there are three different
kinds of belief about authority to punish:

1. Social authority, where the punisher believes that his punishment will not be evaluated
negatively by third parties (examples 4.1, 4.5 and 4.8).

2. Non-culpable authority, where the punisher believes that his punishment will be eval-
uated negatively, and thus must be done secretly (example 4.10).

3. Authority of force, where the punisher believes that it does not matter how his punish-
ment is evaluated, because no one has the authority or ability to punish him (example
4.9).

4.1.4 Types of Reward

The reward schema is structurally similar to the punishment schema, but instead of having
a negative evaluation that motivates a punishment plan, the judge/rewarder has a positive
evaluation that motivates a plan that causes a value success. The recipient of the reward is
the rewarded, in contrast to the criminal role in the punishment schema. The action that is
being rewarded is called the good deed. The parallel to judicial and non-judicial punishment
is contract and non-contract reward. In contract reward, an offer of a value success is made
by the judge for a plan that he wants executed (doing a job, finding a lost dog). In non-
contract reward, the judge is motivated to reward by an evaluation of a good deed after the
fact (such as a medal of valor, a pay bonus, a Nobel prize). The motivations for reward
parallel the types of punishments:

¢ Appreciation, where the rewarder is motivated by affect. The goal of an appreciation
reward is to inform the rewarded that the rewarder has a positive evaluative belief about
the good deed. Appreciation rewards are recognized when the rewarder is motivated
by a good deed that caused a value success for the rewarder. For example:

4.11: The little old lady gave the Boy Scout $20 after he helped her across
the street.

o0

4.12: John sent a thank you note to Chris and DJ after they cleaned up
the lab.

e Compensation. to restore or compensate for a goal failure suffered by the rewarded. I
contract reward situations. the goal success is payment for work or business transac-
tions. For example:

4.13: John worked twelve hour days to make sure the space station pro-
posal was completed on time. When the proposal was accepted. he was
promoted to senior vice-president.

+.14: After they helped her home from the traffc accident, the rich old
lady paid the hospital bills of the family she had rear-ended.

o Instruction, as a means of positive reinforcement. The goal success in an instruction
reward is support for the belief that what the rewarded did was positively evaluated,
even though the rewarded may not have had that belief before. For example:

4.15: When the rat ran the maze correctly, the scientists gave it a sugar
cube,

4.16: The crime boss paid off the beat cop after he looked the other way
during an extortion. “You scratch my back and I'll scratch yours,” said the
boss.

As with punishment, the type of reward is inferred from the action being rewarded and the
reward plan. For example, compensation rewards are motivated by a plan that caused goal
failures for the rewarded, and the reward plan compensates for those failures.

4.2 Belief Conflict About Punishment

There are three aspects of punishment where the evaluator’s and judge’s beliefs can conflict:
(1} in their evaluation of the crime, (2) in their evaluation of the status and authority of
the judge, and (3) in their evaluation of the effectiveness of the punishment. For each
area of punishment evaluation, evaluation BCPs represent the ways that beliefs can conflict
between the judge and the evaluator. Specific evaluation BCPs for each area where beliefs
about punishment can conflict are discussed in the following sections. (See the source code
in section D.2.6 for the implementation of punishment BCP recognition.)

4.2.1 FEvaluation of the Crime

There are two ways in which the evaluator and judge can come to opposite evaluations of
another’s crime: (1) differing factual beliefs about the crime, and (2) using different values

69

systems to evaluate the crime. Differing factual beliefs about the crime are the basis for
three evaluation BCPs:

1. BCP:Not-guilty — The judge believes that the criminal did execute the crime, while
the evaluator believes that he did not. If the criminal did not actually perform the crime.
then he should not be punished for it. The criminal could be a victim of circumstance, the
victim of a frame, or be taking the blame for a crime that someone else committed.

2. BCP:No-crime — The judge believes that the criminal’s plan causes value failures
while the evaluator believes that the plan causes no value fajlures. BCP:No-crime is used by
THUNDER to understand Four O'Clock. In the story, Oliver Crangle believes that people
who do not agree with his political views are evil, and THUNDER ;nfers that he believes
that people who hold political views that do not agree with his will damage society. Because
he believes that their political views will damage society, he is motivated to punish them by
shrinking them to a height of two feet tall. THUNDER believes that the people who hold
different political beliefs will not damage society, and thus that they should not be punished.
The conflict in evaluations comes from the difference in factual beliefs; Oliver believes that
his political opponents will damage society, while THUNDER believes that they will not.

3. BCP:Hidden-value — The judge believes that the criminal was planning for one
value, while the evaluator knows that he was planning for another, more important value.
Beliefs about the value that the criminal was planning for can lead to different values from
judgment warrants E-3 and E-4 (section 2.5). For example, if the judge believes that John
robbed a bank to get the money to buy a new car, but the evaluator knows that he robbed
the bank to get the money for his mother’s cancer medication, the judge and John are going
to have conflicting evaluations of John’s bank robbery.

If the judge’s value system is different than the evaluator’s, then they may differ in
their evaluation of a criminal’s action. BCP:Different-values-for-punishment is the
evaluation BCP for conflicting evaluations based on differences in value systems between the
judge and the evaluator. BCP:Different-values-for-punishment is similar to BCP:Hidden-
value, but instead of not knowing what the criminal is planning for, the judge knows what
value is being planned for and believes that it is less important than the value failure that
the criminal caused. For example, in the beginning of Robin Hood, a man is caught and
convicted for poaching in the King’s game preserve. If the man were hunting to feed his
starving children, an evaluator who values human life over property would not have the
same evaluation as the King’s magistrate, who values the social stability of the King's laws
over the life of a peasant. The evaluator would not believe that the man should be punished
for breaking the law, while the magistrate believes that he should.

4.2.2 Authority of the Judge

Belief conflicts based on conflicting evaluations of the authority of the judge arise when the
evaluator believes that the judge does not have the authority to punish that he claims, or

70

where he has no authority. There are three belief conflicts based on difference in belief about
authority to punish:

1. BCP:No-social-sanction — When the punisher invokes social authority to punish,
and the evaluator believes that no social authority exists. For example:

4.17: The Guardian Angels captured, tried, and executed three suspected
gang members. (Beliefs: The Guardian Angels believe that they have community
sanction to punish gang members, and the evaluator believes that they do not.)

2. BCP:No-relationship — When the punisher punishes based on a relationship with
the criminal, and the evaluator does not believe that the relationship holds. For example:

4.18: When the product status report was late, the boss whacked his secretary
across the face. (Beliefs: the boss believes that employer/employee relationship
sanctions physical abuse, while the evaluator does not.}

3. BCP:No-threat -— Where the punisher bases his punishment on a perceived threat
that the evaluator believes does not exist. For example:

4.19: John shot the bum who was going through his trash. (Beliefs: John
believes that the bum is a threat to his possessions and family, while the evaluator
does not.)

In situations of non-culpable authority or authority of force, the punisher has no authority
other than the fact that he can cause a value failure for the criminal. In these situations, the
evaluation depends on evaluating (1) the crime, and (2) the effectiveness of the punishment.
If the evaluator agrees with the judge, there will be no belief conflict between the evaluator
and the punisher. For example:

4.20: The United States bombed Iraq’s military bases after Iraqi aggression
against Kuwait,.

4.21: The United States secretly hired an Israeli commando team to blow up
Libya’s chemical weapons plant.

Example 4.20 is an example of authority of force. It is not belief conflict evoking if the
evaluator agrees that (1) Iraqi aggression should be punished, and (2) bombing the military
bases prevents the Iraqis from further aggression. Example 4.21 is an example of non-culpable
authority. It is not belief conflict evoking if the evaluator believes that (1) producing chemical
weapons is punishable, and (2) blowing up the chemical weapons plant will prevent Libva
from producing chemical weapons.

71

The follow BCPs are based on evaluating the authority of the judge:

1. BCP:Non-culpable-punishment — The punisher believes that he can cause value
failures as long as he is not caught. The evaluator believes that the punisher should not
punish because the punishment would be evaluated negatively by other authorities. For
example, in:

4.10: After getting an F on his Math test, John snuck out and flattened the
tires on his teacher’s car.

John’s authority to punish comes from his belief that he can flatten the tires without getting
caught by the math teacher or the police. If he were caught, he would be punished by people
with social authority for his attempted punishment of the math teacher.

2. BCP:Punishment-by-force — The punisher believes that he can cause value failures
because no one has the ability to prevent him from punishing. The evaluator believes that
the punisher should not punish because if an authority did have the ability to prevent the
punisher from punishing, the authority would do so. For example, in:

4.9: The gnarly Hell's Angel broke John's jaw. “He looked at me funny,”
snarled the Angel.

If the police were around, they would have prevented John’s jaw from getting broken, or
hauled in the Angel for assault and battery after the fact.

4.2.3 Evaluation of the Effectiveness of the Punishment

Evaluating a punishment is a judgment of how well the punishment plan achieves the goal
of the punishment. For example, in situations of judicial punishment where the punishment
i retributive, it is wrong for a murderer to get a slap on the wrist, just as it is wrong to
get the gas chamber for jaywalking. For each type of punishment, there are two BCPs:
(1) where the punishment goal will not be achieved because the punishment is not harsh
enough, and (2) where the consequences of the punishment are more important than the
crime’s value consequences. Evaluation of the effectiveness of the punishment BCPs are la-
beled BCP:punishment-type-too-lax and BCP:; punishment-type-too-severe, respectively. The
following paragraphs discuss evaluation of the punishment BCPs for each punishment type:

1. BCP:Retributive-punishment-too-severe/lax — For a retributive punishment
to be successful, the punisher must cause a value failure for the criminal that is of the same
order as the value failure cause to him. The following examples illustrate the contrast in
crime value failure to punishment value failure for retributive punishment:

4.22: John punched Jerry for some imagined slight.

72

4.23: John punched Jerry for making a pass at his girlfriend.

4.24: John punched Jerry for shooting his grandmother,

In 4.22, John is Punishing Jerry too harshly for ap unimportant. easily recoverable valye
failure — the P-Health value failure John causes is more important and thus the punishment.
IS too severe. Ip 4.24. the reverse is the case — the recoverable P-Health value failure John
cause Jerry is nowhere near the magnitude of the important, nonrecoverable value fajlyre.

2. BCP:Distributive-punishment-too-severe/lax — The purpose of distributjve

4.25: After John killed three people by running a red light, he had to pay for
the damage to the car.

4.26: After John scratched the fender on Jerry’s Cadillac, he was forced to
buy Jerry an new car.

3. BCP:Instructional-punishment-too-severe/lax — The goal of an instructional
Punishment is to make the criminal believe that his crime was wrong, so that he will not
commit the crime again in the future. However, when the punishment causes great valye
failures, the instructional value js lost because the criminal is evaluating the punishment and
not the crime. For example:

4.27: To teach litt]e Billy not to play with matches, his mother stuck his hand
in a gas burner on the ove .

4.28: As a part of his sentence for bilking little old ladjes out of their life
savings, Shady Sam had to spend weekends working at the senior citizen's center.
He learned what a great racket rest homes are.

4.29: After John was arrested for bank robbery, the judge revoked his driver's
license.

4.30: After John was arrested for jaywalking, the judge ordered him to have
his feet surgically removed.

The punishment in example 4.29 is too lax because not being able to drive does not prevent
John from getting to the bank, it only makes it harder for him to do so. The punishment

in example 4.30 is too severe because is a non-recoverable value failure that prevents John
from all types of walking, of which jaywalking is only a small set.

4.3 Belief Conflict about Reward

In reward situations, the rewarder has a positive evaluation of a ‘good deed’ of the rewardee
which motivates the rewarder to do something ‘good’ for the rewardee. Belief conflicts occur
in three areas associated with reward: when an evaluator believes that (1) a rewardee should
not be rewarded because the evaluator has a negative evaluation of the good deed, (2) a good

deed should be rewarded, but the rewarder does not, and (3) the reward does not achieve
the goal of the reward.?

Reward BCPs for evaluating the good deed parallel punishment BCPs for evaluation of
the crime:

1. BCP:No-good-deed — The evaluator does not have a positive evaluation of the good
deed, and therefore does not believe that it should be rewarded.

2. BCP:Wrong-actor-rewarded — The evaluator believes that the rewarded did not
execute the action that he is being rewarded for.

3. BCP:Ulterior-motive The evaluator knows more about the good deed than the
rewarder, which causes the evaluator to have a negative evaluation of the good deed.

4. BCP:Different-values-for-reward — The rewarder’s positive evaluation is based

on a different value system than the evaluators, which leads to conflicting evaluations
of the good deed.

The authority to reward is based the ability to reward, and not on the right to reward, as
was the case in punishment situations. In reward situations, the parallel to authority to
punish BCPs are where when a person should be rewarded, but is not. In these situations,
the rewardee has done something rewardable, but the rewarder was not motivated to reward.

A belief that an action is rewardable is more than just a posttive evaluation belief about
an actor’s plan. For example:

?Situations where the rewardee’s beliefs conflict with the evaluator or rewarder are expectation belief
conflicts, and are discussed in the next chapter.

ey

4.31: John thought it was great that Congressman Jones voted against the

tax hike, ...
4.32: ...so he’s going to send $100 to his re-election campaign.
+.33: ... but he’s still going to vote for his opponent in November.

In continuation 4.32 John is motivated to reward the Congressman, and in 4.33 he is not.
However, there is no belief conflict in 4.33 about rewarding the Congressman

because a
positive obligation belief does not automatically motivate a reward plan.

There are two situations where a good deed is rewardable: (1) in situations of contract
reward, where the rewarder has promised a person a reward, and (2) in non-contract reward
situations, when the failure to reward results in a greater value failure for the rewardee or
for the rewarder in the future. To represent contract reward failure, there is one BCP:

1. BCP:Renege — When a reward has been promised, and the rewarder believes that
he should not reward because he avoids causing a value failure for himself in the cost
of the reward plan. The evaluator believes that the rewarder should reward because of
the value failures that are caused for the rewardee. For example:

4.34: John promised a reward for the return of his lost dog. When little
Billy brought it back, John slammed the door in his face.

In non-contract reward situations, cases where value failures are caused by failure to
reward are distinguished by the reward goal:

1. BCP:No-appreciation — Failure to appreciate the actions of another resulting in a
more important value failure for the other. For example:

4.35: John bought Mary a box of chocolates, but Mary did not take them
because she was on a diet. John was crushed.

In example 4.35, John suffers a self esteem value failure because of Mary’s failure to
appreciate his gift.

2. BCP:No-compensation — Failure to compensate a rewardee who has suffered a
value failure to execute the good deed. For example:

4.36: The boss had forgotten his anniversary, so his secretary tried to
surprise him by going out and getting a a gift for his wife, When she gave it
to the boss, he just picked it up and went home.

In example 4.36, the secretary has lost the cost of the gift by buying a present for the
bosses’ wife.

75

3. BCP:No-instruction — Failure to reward for a good deed that the rewardee should
be taught is positively evaluated. The value failure comes in subsequent applications
of the belief. For example:

4.37: After John stopped on the way home from school to help at a traffic
accident, his mother scolded him for being late for dinner.

From his experience in 4.37, John should learn that helping others is more important
than being on time for dinner. Since he was scolded for stopping to help, he will be
reluctant to help in the future.

Similar to situations where the rewarder is not motivated to reward are situations where
the evaluator believes that a reward does not achieve the goals of the reward. For example:

4.38: Instead of leaving a tip, John and Mary left the waitress a religious
pamphlet.

In example 4.38 John and Mary left the religious pamphlet in lieu of a monetary tip as a
reward for good service. There are two ways in which ‘tipping’ can be understood: (1) as
2 non-contract reward, where the tip is a extra bonus for good service, or (2) as a contract
reward, where a 15% tip is expected (as is the custom in the U.S.). If John and Mary believe
that religious salvation is more important than possessions, then they believe that they are
helping the waitress achieve a more important value than if they had given her a tip. If the
evaluator believes that tipping is a non-contract reward, and that either (1) possessions are
more important than religious salvation, or (2) that the pamphlet will not help the waitress
achieve religious salvation, then the evaluator will believe that the pamphlet is not a reward.
If the evaluator believes that tipping is a contract reward, then the evaluator will recognize
BCP:Renege where the waitress has been cheated out of her rightful tip, as well as the BCP
related to the appropriateness of the religious pamphlet as a reward.

There are three BCPs for conflicts in belief about adequate rewards, one for each reward
type:

1. BCP:Reward-doesn’t-appreciate — For appreciation rewards to be successful,
the evaluator has to believe that the reward plan achieves a value of the rewardee.
BCP:Reward-doesn’t-appreciate is recognized when the evaluator believes that the re-
ward plan was intended to achieve a value of the rewardee, but also believes that the
plan will fail. For example:

4.39: The little old lady gave the Boy Scout a french kiss after he helped
her across the street. (Beliefs: The evaluator believes that the kiss does not
achieve any values for the Boy Scout.)

ird -

2. BCP:Reward-doesn’t-compensate — For compensation to be successful. the re.
ward plan must achieve a value of the rewardee that failed as a result of the good deed.
BCP:Reward-doesn't-compensate is recognized when the evaluator believes that the
reward plan does not help the rewardee recover. For example:

4.40: After they helped her get home from the traffic accident, the rich
old lady paid sent a get well card to the family she had rear-ended. (Beliefs:
The evaluator believes that getting a card does not compensate the family
for helping the lady after the wreck.)

3. BCP:Reward-doesn’t-instruct — For instruction rewards to be successful, the re-
ward plan must result in achievement of a change of knowledge (D-Know) goal of the
rewardee. BCP:Reward-doesn’t-instruct is recognized if the evaluator believes that
the reward plan does not result in the achievement of the D-Know that the rewarder
intends. For example:

4.41: The crime boss gave the beat cop $20 after he looked the other way
during an extortion. “You scratch my back and I'll scratch yours,” said the
boss. (Beliefs: The evaluator believes that $20 is not enough of a payoff to
motivate the cop to ignore criminal action the next time around.)

In punishment situations, there are belief conflicts associated with too much and too little
punishment. Conflicts over the effectiveness of the reward are the converse of conflicts over
too little punishment. Belief conflicts over too much reward occur when (1) the evaluator
believes that the reward hurts the rewarder and (2) where the evaluator believes that the
reward sets up an expectation that like good deeds will be rewarded in the same way. The
two situations are represented by the following BCPs:

1. BCP:Reward-hurts-rewarder — The evaluator has a negative obligation belief
about the reward plan because it causes a greater value failure for the rewarder than
the value the reward plan achieves. For example:

4.42: After finding Jesus, Gladys Mayfield sent her life savings to tele-
vangelist Oral Baker. Her house was repossessed, and now she’s living in the
streets.

In example 4.42 Gladys is rewarding the televangelist for helping her find spiritual
salvation. However, her reward plan to send her life savings causes a P-Possessions
value failure.

2. BCP:Reward-motivates-bad-expectation — The evaluator believes that the re-
ward plan motivates the rewardee to execute negatively evaluated plans. For example:

77

4.43: John’s dad gave him $5 for each A he got on his report card. so
John cheated on the math test.

4.44: After John's Dad gave him $5 for each recyclable can he brought
home, John shoplifted a case of soda from the 7-11.

In examples 4.43 and 4.44 the purpose of the reward is to encourage a type of action
(studying and recycling, respectively). However, the rewarded action can be achjeved

through more effectatious and less ethical means, which the reward unintentionally
motivates.

The three areas where beljefs can conflict in punishment situations provide planning ad-
vice on how to (1) evaluate a crime, (2) evaluate your authority in the situation, and (3) make
sure that the punishment js successful. For example, the Planning advice with BCP:Not.

Punishing in non-judicial judgment situations. BCP:Instructiona.l-punjshment-too—severe has
the advice that for an instructional punishment to be successful, the value failure should not
cause non-recoverable value failures.

To protect oneself from being punished unfairly, evaluation BCPs provide information
about the ways in which (1) someone would evaluate your actions wrongly, (2) why someone
would believe that he has the authority to cause a goal failure for you, and (3) what he could
be trying to accomplish by causing a goal failure for you. For example, BCP:Hidden-valye
predicts that people will punish you wrongly if they do not know the value that your plan
will achieve. To protect yourself from punishment in this situation, you should make sure
that your potential judges know what you are up to. BCP:Punishment-by-force cautjons
against being in situations where people can punish by the use of force, such as dark alleys

The planning advice associated with reward evaluation BCPs allows a planner to make

78

sure that the reward is deserved and will be successful. For example. the BCPs associ-
ated with the evaluation of the good deed advise the planmer to (1) make sure that his
evaluation is correct (BCP:No-good-deed), (2) make sure that you are rewarding the right
actor (BCP:Wrong—actor-rewarded). and (3} check the actor's motivation for the good deed
(BCP:Ulterior-motive). The BCPs that represent when reward is appropriate but not forth-
coming allow the planner to recognize situations where he is not rewarding what should be
rewarded. and remedy that situation by executing a reward plan. The BCPs assoclated with
evaluating the effectiveness of the reward allow the planner to avoid lmappropriate rewards
by advising against the wrong kinds of reward plans.

4.5 Reasoning About Justice and Laws

Kohlberg[Kohlberg, 1976; Kohlberg, 1981] has argued that Justice is the essential structure
of morality, and that “the core of justice is the distribution of rights and duties regulated by
concepts of equality and reciprocity” [Kohlberg, 1976, p- 40]. Evaluation BCPs can be used
to recognize when reward and punishment are inappropriate, and thus provide an implicit
theory of justice. Because evaluation BCPs represent situations where an evaluator believes
that an actor’s punishment plan should not be executed, then if a BCP is not recognized it
means that the evaluator believes that the punishment is deserved or “ust.’

Using evaluation BCPs to reason about justice means that punishments are appropriate
when (1) the evaluator agrees with the evaluation of the crime, (2) the evaluator believes
that the judge has authority to punish, and (3) the evaluator believes that the punishment
achieves it's goal, and (4) the punishment plan is not evaluated negatively (1.e. the goal
failure caused is not more important than goal success). Using evaluation BCPs to reason
about the appropriateness of punishment can be illustrated by showing how the BCPs are
used to reason about capital punishment in the following story:

4.45: John was convicted of killing a security guard during a robbery. There
is no doubt as to his guilt. Should he be sentenced to death?

For an evaluator to believe that John should be sentenced to death, the evaluator has to
(1) have a negative evaluation of John's crime, (2) believe that John’s death will achieve a
punishment goal, and (3) believe that the government has to authority to kill John. If there
is “no doubt as to his guilt”, the factual beliefs about the case have been established, and the
evaluator has a negative evaluation of John’s crime. To reason about the achievement of a
punishment goal, the evaluator infers by rule PUI-4 (section 4.1.2) that the punishment goal
in example 4.45 is preventative: killing John will prevent him from committing crimes in
the future, and will protect society. Since killing John does not cause a greater value failure
than John committed in his crime, there is no belief conflict in evaluating the punishment.
The crucial issue in determining the appropriateness of John’s punishment is whether or not
the evaluator believes that the state has the social authority to kill John. If the evaluator

79

helieves that the state has to authority to kill John, then his punishment is just. If the
evaluator does not believe that the state has the authority to kill, then the evaluator wil]

To reason about the morality of laws, evaluation BCPs can be used to reason about the
situation that the law defines as wrong. Laws are made by institutions (such as governments)
to regulate the conduct of the members of the institution, and to protect the interests/values
of the institution. The institution has to have some type of authority over its members to
be able to carry out punishments when laws are broken. The process of making a law is
evaluative: the institution evaluates an action negatively and wants to prevent its members
from executing the action. Once a law is made by the institution, the laws usage is not
evaluative, but definitional. Laws define (1) the situation that is evaluated negatively, and
{2) the punishment that is given for an actor executing the crime. (For computational models
of legal application, see [Branting, 1989; Goldman et al., 1987]).

To evaluate a law, the evaluator can evaluate the situation to see if (1) it agrees with
the the negative evaluation, (2) it believes that the institution who is making the law has
the authority to punish, and (3) it believes that the punishment achieves it's punishment
goal. A law serves dual purposes: (1) to define what is wrong and who is punished, and (2)
to deter actors by proscribing the potential consequences of courses of action. Thus a law
provides a pragmatic reason for people not to execute the situation that the law describes;
if they do, they will suffer vaiue failures.

4.6 Summary

Evaluation BCPs represent conflicts in reward and punishment situations — situations where
an actor is motivated to cause value failures or successes for others. Reward and punishment
are central ethical concepts because they are situations where it is justifiable for a person to
help or harm another. Evaluations motivate reward and punishment, and beliefs can conflict
between evaluators and actors about the appropriateness of the reward or punishment.

To reason about reward and punishment, THUNDER instantiates plan schema that
represent the intentional structure of reward and punishment. The schemas represent the
relationship between the judge’s evaluation and plan to reward or punish, Types of pun-
ishment are represented by specifying the goal of the punishment: retributive, distributive,
instructive, or preventative. Beliefs about the judge’s authority to punish depend on the
type of authority. The authority of a judge is a justification for the judge’s right to punish,
and can come from a social sanction, such as being representative of an institution, from
force, or from non-culpability. The motivation to reward is a positive evaluation of an ac-
tion, and the evaluation motivates one of the types of reward: appreciation, compensation,
or instruction. The authority to reward depends on the rewards ability to help the rewardee.

N

There are three areas where beliefs can conflict in punishment situations: (1} over the
evaluation of the punishable act, {2) over the authority to punish. and (3) over the effective-
ness of the punishment. The areas where beliefs can conflict in reward situations are: (1)
over the evaluation of the act being rewarded, {2) over the motivation to reward. and (3)

over the suitability of the reward. The evaluation BCPs presented in the chapter are listed
i table 4.1,

Evaluation BCPs provide an implicit theory of justice: THUNDER believes that pun-
ishments and rewards are just if no BCPs are recognized. The relationship of evaluative
reasoning to legal reasoning is that evaluative reasoning is used to determine the appro-
priateness of the definitions of right and wrong actions. Legal reasoning is concerned with

factual beliefs about a situation, and whether the facts of the situation match the definition
of the situation in the law.

81

| Evaluation area

BCP

Evaluation of
the crime

BCP:Not-guilty

BCP:No-crime

BCP:Hidden-value
BCP:Different-values-for-punishment

Evaluation of
the authority
to punish

BCP:No-social-sanction
BCP:No-relationship
BCP:No-threat
BCP:Non-culpable-punishment
BCP:Punishment-by-force

Evaluation of
the punishment

BCP:Retributive-punishment-too-severe/lax
BCP:Distributive-punishment-too-severe/lax
BCP:Instructional-punishment-too-severe /lax
BCP:Preventative-punishment-too-severe/lax

Evaluation of
the good deed

BCP:No-good-deed
BCP:Wrong-actor-rewarded
BCP:Ulterior-motive
BCP:Different-values-for-reward

Evaluation of
the motivation
to reward

BCP:Renege
BCP:No-appreciation
BCP:No-compensation
BCP:No-instruction
BCP:No-encouragement

Evaluation of
the reward

BCP:Reward-doesn’t-appreciate
BCP:Reward-doesn’t-compensate
BCP:Reward-doesn’t-instruct
BCP:Reward-doesn’t-encourage
BCP:Reward-hurts-rewarder
BCP:Reward-motives-bad-expectation

Table 4.1: Evaluation BCPs

82

CHAPTER 5

Belief Conflict About Expectation

Belief conflicts about expectations are a type of expectation failure [Schank, 1981: Schank.
1082], where the evaluator expects an actor to hold an evaluative belief, and then the actor
shows that he holds a conflicting belief. For example:

5.1: John borrowed $20 from Bill that he had no intention of paying back.

From knowledge about ‘borrowing’, the evaluator has an expectation that the borrower
(John) should pay Bill back. When John does not intend to repay Bill, there is a conflict
between the evaluator’s expectation about what John should do, and what John is actually
going to do. In example 5.1, the conflict is between the evaluator’s belief that John should
pay the money back, and John's belief not to pay the money back.

Evaluative expectations can also be based on what the evaluator knows about the ideology
of actors. For example:

5.2: The Hell's Angels sponsored an Olympic torch runner to raise money for
the retinitis pigmentosa foundation.

From the evaluator’s knowledge about the Hell’'s Angels and their ideology, there is an
expectation that they would not be involved in charitable enterprises. When example 5.2 is
read, there is a conflict between the expectation that the Hell’s Angels would not be involved
in charity and the realization that they are.

In belief conflicts about expectation, the conflict is between ezpectation and realization.
In example 5.1 the expectation is that John should pay Bill back, and the realization is that
John is not going to pay Bill back. In example 5.2 the expectation is that Hell’s Angeles
should not be involved in charity, and the realization is that they are.

These examples illustrate that there are two types of expectations that can conflict with
realization: (1) intentional expectations, or expectations about what an actor will do, and
(2) evaluative expectations, or expectations about what an actor should do. Intentional
expectations are based on the characterization of the actor, while evaluative expectations
are based on the ideology of the evaluator. To illustrate the distinction between the two
types of expectations, consider the following story:

5.3: John was an ambitious, young executive who would stop at nothing to
get ahead. On his way to an important business meeting, John came upon a car
wreck on a deserted stretch of highway.

83

5.4: What will John do?

Based on John's characterization in 5.3 there is an ideological expectation that John will
keep driving, because “ambitious” people “who would stop at nothing to get ahead” believe
that their personal achievement values are more important that others’ preservation values.
Question 3.4 can be translated as (1) “based on your understanding of John's ideology, what
do you expect John to do?” or (2) “based on your understanding of John’s ideoiogy, what
does John believe he should do?” Alternatively:

5.3: What should John do?

Question 3.5 can be translated as “based on your ideology, if you were in John'’s situation,
what would you do?” The judgment that John should stop and help is an evaluative expec-
tation because the judgment is based on the ideology of the evaluator, and the evaluator’s
positive obligation belief about stopping and helping.

There are three types of expectation belief conflicts: (1) ‘good’ people doing ‘bad’ things,
(2) ‘bad’ people doing good things, and (3) people not doing things that they ‘should.’ In
the first two types of expectation belief conflicts, judgments that the people are ‘good’ or
‘bad’ are based on intentional expectations. The ‘good’ and ‘bad’ things that they do are
evaluative judgments about the plans that they execute. The third type of expectation belief
conflict is based on evaluative expectations. The conflict between an evaluator expectation
of what a planner should do, and how the planner violates that expectation.

This chapter is organized as follows. First, the process of how evaluative judgments
about people are made is discussed by presenting the sources and warrants for character
assessments. Character assessments are evaluative beliefs about why people are ‘good’ or
‘bad.” Character assessments are made from (1) the plans that people perform, and (2)
intentional expectations about the values, plans, and strategies of the person. Intentional
expectations can be evaluated to provide reasons that the person is expected to be ethically or
pragmatically good or bad. Next, assessment belief conflicts are discussed. Assessment belief
conflicts occur when a person executes an action that violates an intentional expectation.
Assessment BCPs are represented by contrasting the types of intentional expectations to
conflicting realizations.

In contrast to intentional expectations, evaluation expectations are beliefs about what
people should do, based on the evaluator’s ideology. The sources and types of evaluative
expectation are discussed, and then used to represent evaluative expectation BCPs. Fi-
nally, the relationship of intentional and evaluative expectations to the concepts of trust and
responsibility is discussed.

84

5.1 Value Judgments about People

People can be judged by the actions that they perform. If an evaluator has a negative
obligation belief about a plan. there is also a negative evaluative belief about the planner.
Evaluative beliefs about people are represented by character assessments. There are two
types of character assessments, corresponding to the ends of the evaluative scale: (1) pos-
thive character assessments, which represent a positive evaluative beliefs about people, and
(2) negative character assessments, which represent a negative evaluative belief about the
characters. The warrants for character assessments are based on factual beliefs about how
the character causes value consequences. The warrants for character assessments are based
on the warrants for plan evaluation, so there are two types of character assessment war-
rants: (1) pragmatic character assessment warrants, which provide evaluative beliefs based
on how the character causes value consequences for himself, and (2) ethical character assess-
ment warrants, which provide evaluative beliefs about characters based on how the character
causes value consequences for others. Character assessments represent characterizations of
actors from the plans that they are expected to execute. For example, if an actor is expected
to execute a ethically negative evaluated plan, the actor can be characterized as ‘evil.’ If
an actor is expected to execute a pragmatically negative evaluated plan, the actor can be
characterized as ‘stupid.’

There are two sources of reasons for character assessment in story understanding: (1)
direct character assessment warrants, which are are used to generate character assessments
from the value successes and failures that people cause, and (2) background character assess-
ment warrants, which are used to generate character assessments from expectations about
the person’s values and plans. Background character assessments are based on the plans and
planning that a character is ezpected to perform.

Expectations about plans and planning are called intentional expectations. Different
types of intentional expectations provide (1) the actions that a person will execute once
he initiates a plan, (2) the plans that a character will execute, (3) expectations about the
relative value of a planner’s values, and (4) expectations about the planning strategies that
a planner will employ. These expectations provide plans that can be evaluated to provide
supporting reasons for character assessments.

5.1.1 Direct Character Assessment

Direct character assessment warrants provide reasons for evaluative beliefs about characters
from value successes and failures in the story, and background character assessment warrants
provide reasons based on a character’s capability to cause values to succeed or fail. For
example, compare:

5.6: John beat up Jerry and took his lunch money.

5.7: John was a mean, spiteful sixth grader.

85

In example 5.6, John is negatively evaluated becayse of what he did: a negative character
assessment 1s built because he violated Jerrv's P-Health goal. In 5.7, John is negatively
evaluated because the evaluator expects him to do things like beat people up; based on his
description as mean and spiteful, a background negative character assessment is built for
Jolin that represents the expectation that John will cause P-Health value failures for others,

There are four direct character assessment warrants to distinguish between the cases

where (1) a planner causes goals to succeed or fail, and (2) the planner is causing goals
successes for himself or others:

DCA-1: If a person causes a valye success for himself, then the person is evaluated
positively.

DCA-2: If a person causes a valye failure for himself, then the person is evaluated
negatively.

DCA-3: If a person causes a value success for another, then the person is evaly-
ated positively.

DCA-4: If a person causes a value failure for another, then the person is evaluated
negatively.

Warrants DCA-1 and DCA-2 are pragmatic warrants, and DCA-3 and DCA-4 are ethical
warrants,

The four direct character assessment warrants are used to generate evaluative beliefs
about people from the consequences of their actions. For example, the direct assessment
warrants are used to build an evaluative belief about John from:

9.8: John robbed a bank and bought a new car with the money.

In example 5.8, John is positively assessed by warrant DCA-1 for getting a new car, but
is negatively assessed by DCA-4 for causing the value failures as a part of the bank rob-
bery. As with plan evaluation, in character assessment ethical warrants take precedence over
pragmatic warraats, so in 5.8, Johuo is assessed negatively.

5.1.2 Intentional Expectations

Expectations are predictions of future actions -based on the activation of knowledge struc-
tures. For example, in THUNDER's representation of the bank robbery plan (PS:Bank-
robbery) there is an act/event sequence of (1) get to the bank, (2) threaten the bank teller,
(3) get the money, and (4) leave the bank. When PS:Bank-robbery is activated, THUNDER
expects the planner to go through those four steps in order. The expectations can be used
to infer missing information, and to provide explanations for person's actions. For example:

85

5.9: John decided to rob a bank. He went to the Downtown Savings and Loan
and handed the teller a note.

Inexample 5.9, THUNDER can infer that the note contains a threat because John is expected
to threaten the teller, and note passing is instrumental to having the teller know the threat,

The type of expectations that are encoded in plan schema are one type of intentional ez-

pectation; expectations based on the recognition of plans. There are four types of intentional
expectations:

l. Plan schema — Expectations about the goals people will have and the actions that
will be executed as the result of plan recognition. Once a person initiates a plan, there
are intentional expectations about the remaining plan elements.

2. Role — Expectations about plans that people will perform. Role expectations are
associated with role-themes [Schank and Abelson, 1977]. For example, there is a role
expectation that hunters will execute the hunting plan, and that bank robbers will rob
banks.

3. Value — Expectations about the value system of the person. Value expectations are
associated with value-oriented personality traits, such as “patriotic,” “altruistic,” and
“miserly.”

4. Means-Oriented — Expectations about the planning abilities of a person. Means-
oriented expectations are associated with personality traits that describe planning
abilities , such as “Imaginative,” “fearless,” “impatient,” and “timid.”

Each type of expectation has judgment warrants for creating character assessments. Plan
schema and role expectations are evaluated by evaluating the predicted plans that a per-
son will pursue. Value and means-oriented expectations are evaluated by reference to the
predicted values, plans, and Planning problems. These two classes of expectations and how
they are used for character evaluation are discussed in the next two sections.

5.1.3 Plan Expectations and Character Evaluation

Once a plan is recognized, the plan can be evaluated by THUN DER, and by extension the
planner can be evaluated. The following warrants are used to generate character assessments
from plan schema expectations:

AW-1: If a person is executing a plan that is evaluated positively, then the person
1s assessed positively.

AW-2: If a person is executing a plan that is negatively evaluated, then the
person is assessed negatively

87

Since warrants AW-1 and AW-2 are based on plan evaluation, the type of warrant is propa-
gated from the type of warrant used to evaluate the plan. For example. if a plan is negatively
evaluated for a pragmatic reason, AW-2 provides a pragmatic reason for character assess-
ment. Warrants AW-1 and AW-2 provide assessments in cases where a person has started
or 1s intending to execute a plan, but has not actually caused any value consequences.

flole expectations are associated with role-themes [Schank and Abelson, 1977] such as
‘hunter’. *political fanatic,” and ‘bank robber.” A role-theme is an indexing structure that
provides the plans that a person is expected to perform. The plans can then be evaluated to
provide an evaluative judgment about the person. The following warrants are used to create
character assessments from role expectations:

AW.3: If a person has a role expectation for a plan that is evaluated positively,
then the person is assessed positively.

AW-4: If a person has a role expectation for a plan that is evaluated negatively,
then the person is assessed negatively.

Again, the type of warrant is based on the evaluation of the expected plan. Since bank
robbery is evaluated negatively for ethical reasons, a bank robber is assessed negatively
for ethical reasons by warrant AW-4. In contrast, a investment banker is pragmatically
positively assessed by AW-3 from the role expectation that he will execute the investment
banking plan, and the investment banking plan achieves a lot of money.

5.1.4 Character Trait Expectations and Evaluation

In addition to character roles, character descriptions involve personality traits: adjectives that
- describe the ideology and planning capabilities of people. There are two types of expectations
associated with personality traits: value-oriented expectations, which describe the character’s
value system. and means-oriented expectations, which describe the character’s planning
strategies and capabilities.

THUNDER's representation of intentional expectations associated with personality traits
is based on Carbonell’s model of personality traits [Carbonell, 1980]. Carbonell used a pro-
totypical value system (called a goal tree) to represent the normative orientation of people’s
goals. Value-oriented personality traits were then represented as modifications to the pro-
totypical goal hierarchy. For example, the modifications to the goal tree for an “ambitious”
person are to have his achievement values moved higher in the tree, and preservation values
for others moved lower. The modifications represents that an ambitious person will sacrifice
family and friends to get ahead.

Value-oriented expectations are used for character assessment by the following ethical
assessment warrants:

AW-5: If a person has a value-oriented expectation that moves other’s values up
in the value system, then the person is assessed positively.

BR8]

Trait l Value Ezxpectation Assessment !
altruistic P-values{others) higher Positive by AW-3
| patriotic P-values(country) higher | Positive by AW-3
| happy-go-lucky | P-values(self) lower none
curious A-Knowledge(self) higher | none
self-centered A-value(seif) higher Negative by AW-6
A-values{others) lower
callous P-values(others) lower Negative by AW-6

Table 5.1: Value-oriented Expectations and Assessments

AW-6: If a person has a value-oriented expectation that moves other’s values
down in the value system, then the person is assessed negatively.

The assessments based on value-oriented expectations consider only expectations that move
other’s values around in the value system, and thus are only used for ethical assessment.
Some sample traits, value expectations, and assessments are given in table 5.1. Value-
oriented expectations do not have any pragmatic warrants because the expectation represents
preferences between the planner’s values, and not ways the the values will succeed or fail.
For example, a “thrill seeker” will have value expectations that move entertainment values
up in the value system, and preservation values down. The ways that “thrill seekers” can
suffer value failures are based on means-oriented expectations.

Carbonell [1980] notes that goal trees do not completely represent personality traits;
some traits have means-oriented components, meaning that the personality trait describes
the planning choices that a character is expected to make. Carbonell represented the means-
oriented information in personality traits by associating planning strategies that a person
with the trait is expected to perform, and planning strategies that the person is not expected
to perform. For example, an “ambitious” person is expected to use deceptive plans, and will
be hesitant to compromise, while a “capable” person will make correct decisions in plan
selection and carry out plans without making errors.

In THUNDER, the means-oriented components of personality traits are represented by
means-oriented erpectations about the method by which a character causes value conse-
quences. Means-oriented expectations have three components: (1) the type of value that the
person is expected to achieve, or cause to fail, (2) the planning situation in which the assess-
ment applies, and (3) the action that the person does in that situation to cause the value
consequences. For example, in the means-oriented expectation associated with “cowardly,”
the goal that the person will have fail is P-Self-esteem, the plan-situation where the failure
occurs is during plan-execution in reaction to adversity, and the method of failure is that
person abandons his plan when faced with an adverse situation. In contrast, an “imaginative’
person has an expectation for achieving values that apply in plan construction situations,
and an “affectionate” person has an expectation for achieving other people’s friendship and

89

| Planning situation Positive Negative

f Plan construction imaginative, creative | dull, banaj

i Plan execution able, careful clumsy, incompetent

| Plan timing patient, cautious rash, reckless

1 Reaction to adversity brave, bold fearful, timid

| Reaction to failure persistent, determined | impatient, self-pitying

Table 5.2: Planning Situations and Pragmatically Positively and Negatively Assessed Char-
acter Traits

love value by executing plans for those values.

Character assessment from means-oriented expectations use the following warrants:

AW.-7: If a person has a means oriented expectation for his own value successes,
then the person is pragmatically positively evaluated.

AW-8: If a person has a means oriented expectation for his own value failures,
then the person is pragmatically negatively evaluated.

Means-oriented expectations that predict planner’s value consequences for himself can be
organized by the area of the planning process where the person will be a successful or poor
planner. The planning areas, and pragmatically positive and negatively assessed character
traits are listed in table 5.2.

Ethical assessment from means-oriented expectations is accomplished by representing
how a planner will cause value consequences for for others. The following warrants are used
for ethical character assessment from means-oriented expectations:

AW-9: If a person has a means oriented expectation for others’s value successes,
then the person is ethically positively evaluated.

AW-10: If a person has a means oriented expectation for causing other’s value
failures, then the person is ethically negatively evaluated.

Ethically assessed character traits describe how a person will behave in social and inter-
actional situations to achieve the values of others or cause value failures. For example,
“charming” or “outgoing” people will achieve self esteem, social esteem, and entertainment
values for the people that they interact with. In contrast, “rude,” “inhospitable,” or “boast-
ful” people will cause value failures for the people who interact with them. Table 5.3 lists
ethically positive and negative character traits organized by planning situation.

Note that character traits can have means-oriented expectations that provide both prag-
matic and ethical reason for evaluations. For example, an “affectionate” person is going to
be good at achieving his own A-Love and P-Self-esteem values, as well as being good at

a0

Table 5.3: Interactional Situations and Ethical Positively and Negatively Assessed Character

Traits

Interactional situation

Positive

Negative

Social graces

polite, courteous

rude, tactless

Social actions

friendly, out-going

grumpy, vulgar

Social intercourse

engaging, charming

boastful, obnoxious

Attitude toward self

humble, modest

conceited, arrogant

Conflicts of interest

accommodating, agreeable

selfish, avaricious

Attitude toward others

considerate, kind

abusive. cruel

Reaction to failures
caused by others

forgiving

vindictive, vengeful

Reaction to other's
failures

soothing, compassionate

callous

Reaction to other’s enthusiastic covetous, envious
success jealous
Reaction to success grateful ungrateful

achieved by others

Assistance to others

giving, helpful

hostile, mean

Assistance to groups

benevolent, charitable

miserly

Judgment

fair, humane

immoral, intolerant

Evaluative

trustworthy, responsible,
honest

corrupt, irresponsible,
dishonest

91

achieving other’s A-Love and P-Self-esteem values. Pragmatic means-oriented expectations
can become reasons for ethical evaluation if the plan that the planner is expected to execute
involves others. For example, a “cowardly soldier” is will be expected to cause value fail-
ures for the members of his squad because of his expected failures in reactions to adversity
situations.

5.2 Assessment Belief Conflict Patterns

There are four classes of assessment belief conflicts: (1) ethically good people doing ethically
bad things, (2) pragmatically good people doing pragmatically bad things, (3) ethically bad
people doing ethically good things, and (4) pragmatically good people doing pragmatically
bad things. The first two classes are related to plan execution belief conflicts: the evaluator
recognizes that the planner is executing an immoral or stupid plan, and there is a positive
character assessment that the person will not execute the plan. To illustrate how prior
assessment knowledge interacts with ethical evaluation, consider the contrast in the following
examples:

5.10: John Doe robbed a bank.
5.11: John Dillinger robbed a bank.
5.12: Mother Teresa robbed a bank.

Example 5.10 is an instance of BCP:Selfish, where John Doe is putting his personal goal
before the bank’s depositors. Example 5.11 is also an instance of BCP:Selfish. Since the
evaluator has prior knowledge about John Dillinger (a notorious bank robber), it can be
predicted that Dillinger will be executing ethically wrong plans. In contrast, in 5.12 the
evaluator expects Mother Teresa to be selfless in helping the needy and sick, and not to be
robbing banks. When she puts her personal goal ahead of others, there is an assessment
belief conflict in addition to BCP:Selfish. The evaluator has an expectation about her value
system that was contradicted in the sentence.

Assessment BCPs contrast ethical expectations to realizations with ethical consequences,
and pragmatic expectations to pragmatic consequences. The reason that cross reason-type
belief conflicts do not exist is that ethical expectations do no preclude planner stupidity, and
pragmatic expectations do not imply ethical behavior. For example:

5.13: Gladys Mayfield was a charitable old lady. When Shady Sam asked for
money to feed the homeless, she gave him all she could.

5.14: Johnny Poindexter was an imaginative rocket scientist. He built a
doomsday machine to enslave the planet.

99

In example 5.13 Gladys’ “charitable” ethical expectation does not predict that she will not
be swindled by Shady Sam. In example 5.14. the positive pragmatic expectations associated
with Johnny Poindexter do not predict that he will not be executing an ethicaily wrong plan.

There are four assessment BCPs in the class of good people doing bad things. one for
each of the four sources of ethical and pragmatic character assessment. Each BCP can be

used to contrast ethical expectations to ethical realizations, and pragmatic expectations to
pragmatic realizations:

1. BCP:Positive-PSchema-expect-violated — A planner initiates a plan that is eval-
uated positively, and then violates an expectation causing value failures. For example:

2.1: (pragmatic) To save money, John decided never to change the oil in
his new car.

5.15: (ethical) The boy scout offered to help the old lady across the busy

highway. He ran off and left her in the middle of the street, and laughed
while she dodged traffic.

2. BCP:Positive-role-expect-violated — A planner violates a positive assessment
based on a role evaluation to cause goal failures. For example:

5.16: (pragmatic) A bank president bounced a check.

5.17: (ethical) Johnny Armandhammer was an philanthropist. He built
a doomsday machine to enslave the planet.

3. BCP:Positive-value-expect-violated — The character assessment predicts that a
person will hold a specific value as very important, and then he executes an action
which violates that value. For example:

5.18: (ethical) A patriot takes up arms against his country.

4. BCP:Positive-means-expect-violated — A positive character assessment predicts
that a person will not execute an action which the person executes. For example:

5.19: (pragmatic) Gladys Mayfield was a shrewd and incisive old lady.
When Shady Sam asked for money to feed the homeless, she gave him all
she could.

5.20: (ethical) Mary was sensitive and compassionate. Everyone was
surprised when she humiliated the guy who asked her out.

83

In the assessment belief conflict class of ‘bad’ people doing ‘good’ things, the evaluator
expects the planner to do something ‘bad’, and then the planner does something ‘good’.
Assessment BCPs in this class contrast a negative character assessment to the reasons that
the person’s plan is positively evaluated:

1. BCP:Negative-PSchema-expect-violated — A planner initiates a poor plan,
which turns out to have positive value consequences. For example:

5.21: (pragmatic) To save money, John decided never to change the oil
in his new car. John’s car broke down right before the intersection when a
drunk driver came careening through the red light.

5.22: (ethical) To get money, John decided to rob a bank. When he
was arrested at the scene of the crime, investigators found that the bank
management had been engaged in defrauding the bank depositors.

2. BCP:Negative-role-expect-violated — A planner violates a negative role expec-
tation to achieve values successes. For example:

5.2: (ethical) The Hell’s Angels sponsored an Olympic torch runner to
raise money for the retinitis pigmentosa foundation.

3. BCP:Negative-value-expect-violated — A planner executes a plan that shows that
he has other’s values higher in his value system than the value expectation predicted.

For example:

5.23: John was self centered, but he surprised everyone by signing up to
be a Salvation Army Santa for the holidays.

5.24: Everyone was surprised when miserly old Cratchit was filled with
Christmas spirit (Dickens’ 4 Christmas Carol).

4. BCP:Negative-means-expect-violated — A negative character assessment pre-
dicts that a person will not execute an action which the person executes. For example:

5.25: (pragmatic) John was clumsy and impatient, but he surprised his
mother by putting together a ship in a bottle.

5.26: (ethical) A coward rescued two children from a burning building.

94

5.3 Evaluative Expectations

Evaluative expectations are expectations about the plans that people should execute, based
on the evaluator’s ideology. The content of evaluative expectations are plans that achieve
goals for others, commonly referred to as a person’s obligations. Evaluative expectation are

represented by positive obligation beliefs about a person’s goals for others. For example. if
THUNDER reads the sentence:

5.27: John borrowed $5 from Bill. ..

From knowledge about ‘borrowing’, THUNDER knows that John has an obligation to pay
Bill back. The obligation is represented as a plan where John is the actor that achieves Bill's
goal of getting his $5 back. The evaluative expectation is that John should have a positive
obligation belief about the repayment plan. John may not share the belief; if the sentence
continued:

5.28: ..., which John never intended to pay back.

THUNDER would make the judgment that John’s intention not to repay the loan is ethically
wrong, because THUNDER has the evaluative expectation that John should repay the loan,
but John believes that he should not.

The evaluative expectation associated with borrowing is that the evaluator believes that
the borrower should execute the plan to repay the lender. The belief entails the borrower
having the loaner’s goal getting his money back. The three levels of indirection are as follows,
from the inside out:

1. The other’s goal is the goal that the person who has the obligation should want to
achieve. In borrowing, the other’s goal is the loaner’s goal of getting his money back.

2. The actor’s goal has the other’s goal as its content, so the actor has the goal of achieving
the other’s goal. In borrowing, the borrower has the goal of paying back the loaner.

3. The evaluator’s positive obligation belief about a plan for the actor’s goal. The eval-
uator believes that the actor should want to achieve the actor's goal. Since the goal
has not yet been achieved, the belief is that it is ‘good’ that the actor will execute the
plan. In borrowing, the evaluator believes that that the borrower should paying back
the loaner.

Evaluative expectations involve two actors: (1) the person who should execute the plan,
and (2) the person who the plan achieves a goal for. Since there are two actors, the eval-
uative expectations can be represented by a relationship between the two actors. The re-
lationship can be associated with a plan that one of the actors is executing, for example

95

‘borrower/lender’ from the borrowing plan, or represented by an tnterpersonal theme (IPT)
[Schank and Abelson, 1977; Dyer, 1983].

Evaluative expectations are associated with plans where the planner believes that another
should do something for the planner. For example:

5.29: John told Jerry he would meet him for lunch at noon. When Jerry got
to the restaurant, John was nowhere to be found.

5.30: Mary asked John to watch little Billy while she went to the store. While
John was talking on the phone, little Billy fell into the pool.

5.31: John made Mary promise never to tell anyone about his jaywalking
ticket. Mary told her best friend, who told her parents, who told ...

In example 5.29, the ‘meeting’ plan contains a ‘host/guest’ relationship where host has an
evaluative expectation to be at the meeting site when the guest arrives. In example 5.30 the
babysitting plan has a ‘sitter/parent’ relationship where the sitter has an obligation to watch
the child in the parent’s absence. In example 5.31, a ‘promise’ creates an ‘promisor/promisee’
relationship where the promisor has an obligation to the promisee. In 5.31 Mary’s promise
is an obligation not to tell people about John’s jaywalking ticket, which would cause a
P-Self-esteem value failure for John.

When an evaluative expectation is violated, there is a belief conflict between the evalua-
tor’s expectation about what the actor should do, and what happened. In 5.29 John should
have been at the restaurant but was not, in 5.30 John should have been watching little Billy,
but was not, and in 5.31 Mary should not have told people about the ticket, but did.

Evaluative expectations associated with IPTs are used to represent the obligations that
people are understood to have from the relationships that they become involved in, and from
their description. An IPT is a source of goals that one party will have for the other. For
example, there is an evaluative expectation associated with the ‘lovers’ IPT that each party
will plan for the other’s values as their own. There is an evaluative expectation for the student
in a ‘student/teacher’ relationship that the student should learn the course material, while
the teacher has an evaluative expectation to teach the students. The evaluative expectations
associated with IPTs allow an understander to predict what an ‘ideal’ participant in a
relationship should do. For example:

5.32: Laura and Johnny were lovers. On their way home from the movies, a
man threatened Laura with a knife. What did Johnny do?

5.33: John's 21st birthday was the day before his chemistry final. Should
John go out and celebrate, or stay home and study?

96

The evaluative expectations predict that that an ideal lover would protect Laura in example
5.32. and that and ideal student will study in 3.33. If in example 5.33, John went out
drinking, he would not stop being a student, but he would be a ‘bad’ student because he
failed to live up to his obligations.

5.4 Trust and Responsibility

The concepts of ‘trust’ and ‘responsibility’ describe a actor’s and other’s relationships to the
actor’s evaluative expectations. If an actor has an evaluative expectation that the other wil]
honor the expectation, then the actor ‘trusts’ the other. ‘Responsibility’ describes the inverse
relationship; the other is responsible if he does not violate his evaluative expectations. In a
‘promise’ situation, the promisor is trusted by the promisee to execute the promised action,
and the promisor is responsible for executing the promised action.

The organization of evaluative expectations to truster and trustee (actor and other, re-
spectively) provide a meta-level representation for interpersonal relationships. The relation-
ship of evaluative expectation to obligation is shown in figure 5.1. In the figure, the content
of the truster and trustee’s obligation beliefs is a plan executed by the trustee for the truster,
called the responsibility schema. The truster’s belief is the evaluative expectation; he believe
that the trustee should execute the plan. The trustee’s belief 1s his obligation; he should
want to execute his respousibility plan.

Obligation belief

Believer: ?truster
Valence: Postive | __.-- Plan §chema
Content:<z=~"" I ot actodr. ?trt:stge I
— ; ; ead goal: Goa
(evaluative expdetgt\ac:n)/z ActorTrostos
AN Type: Pvalue-type
Obligation belief,»” S For: 2truster

Believer: ?trusfee - responsibilty pian
Valence: Ppetive - rese v pen
Content: =~

(obligation)

Figure 5.1: Schematic Representation of Responsibility

When the responsibility schema is instantiated from a borrowing episode, the borrower
is bound to 7trustee. the loaner is bound to ?truster, and the responsibility plan is bound to
the borrowers repayment plan. The schema contains the knowledge that the loaner ‘trusts’
that the borrower wants to repay the money, and that the borrower is ‘responsible” if he
wants to repay the loan.

97

Once the responsibility schema is instantiated from an evaluative expectation, the schema
provides the beliefs that the participants should have. When a participant shows that he
does not hold the beliefs that he was predicted to hold, a belief conflict exists between the
expected and realized beliefs.

5.5 Evaluative Expectation Belief Conflict Patterns

Belief conflict patterns about evaluative expectations contrast the beliefs that an actor should
have about plans for others to the beliefs that he shows he does have. For example, consider
the contrast between:

5.34: Laura and Johnny were lovers. On their way home from the movies, a
man threatened Laura with a knife. ...

5.35: ...Johnny ran for help.

5.36: ...Johnny offered the man her purse.
5.37: ...Johnny hid behind a parked car.

5.38: ...Johnny grabbed her purse and took off.

The evaluative expectation associated with the ‘lovers’ IPT says that Johnny should value
Laura’s health and possessions more than his own, so in 5.34 Johnny should sacrifice his own
health and safety to protect Laura. The continuations illustrate three evaluative expectation

BCPs:

1. BCP:Eval-expect-less-important — The evaluative expectation predicts the im-
portance of a value, and the realization shows that it is less important. In examples
5.35 and 5.36, Johnny is executing avoidance plans that cause value failures for Laura.
By running for help or offering the assailant Laura's purse, John is showing that he
believes that his health is more important (by inference rule EI-1, section 2.7) than
Mary’s values, where the evaluative expectation predicted that it would be less. While
running or negotiating are efficacious ways of protecting both John and Mary’s health,
the actions are not the most gallant things that John could do.

2. BCP:Eval-expect-doesn’t-hold — The evaluative expectation predicts that the ac-
tor should hold a value, and the realization shows that he does not. In example 5.37
Johnny does not plan for Laura’s motivated values at all, and thus shows that he does
not hold the values that the lovers IPT predicted.

.

3. BCP:Eval-expect-caused-to-fail — The evaluative expectation predicts that the
actor.shoukd hold a value for another. and in realization he causes that value to fail. In
example 5.38, the lovers IPT contains the evaluative expectation that that Johnny will
hold Laura’s preservation values. The realization is that Johnny causes a P-Possessions
value failure for Laura by taking her purse.

5.6 Summary

In expectation belief conflicts, the conflict contrasts the evaluator’s ethical evaluation of
people to the actions that they perform. In these situations, the evaluation is not why
an action/plan is wrong, but why a person is not expected to do the action that he is
doing. The reasons that a person is expected to do good or bad actions are represented
by character assessments. Character assessments are evaluative beliefs about people which
are supported by expectations of planning characteristics. The relationship between factual
and evaluative beliefs are represented by character assessment warrants, listed in table 5.4.
Character assessments provide reasons for evaluative beliefs about characters, and provide
the evaluator with a moral context in which to judge their actions.

There are two types of expectations that give rise to expectation belief conflicts: (1)
intentional expectations, which are expectations about the values, plans, and plan strate-
gies of actors, and (2) evaluative expectations, which are the evaluator’s expectations about
what an actor should do. Assessment belief conflicts are based on intentional expectations.
Intentional expectations predict the plans that a person will use; belief conflicts occur when
the expectations are violated. Evaluative expectations are about a person’s obligations; ex-
pectations of a planner’s beliefs b about what he should do for others. Obligations arise
from plans where one party should do something for another, and from interpersonal rela-
tionships where the parties should do things for each other. Evaluative expectation belief
conflicts occur when an actor executes actions that show that he does not hold the belief
that the expectation predicts that he should. The relationship of evaluative expectations to
obligation is represented in the responsibility schema, and is used to reason about responsi-
bility and trust. The belief conflict patterns for assessment and evaluative expectation are
listed in 3.5.

99

Label Source Valence | Description Type
DCA-1 | Direct Positive | Value success for self Pragmatic
DCA-2 | Direct Negative | Value failure for self Pragmatic
1 DCA-3 | Direct Positive | Value success for other Ethical
DCA-4 | Direct Negative | Value failure for other Ethical
AW-1 ! Plan schema Positive | Positive plan initiated From plan
AW-2 | Plan schema Negative | Negative plan initiated From plan
AW-3 | Role expectation | Positive | Positive plan from role From plan
evaluation
AW-1 | Role expectation | Negative | Negative plan from role From plan
evaluation
AW-5 | Value expectation | Positive | Other’s value moved up Ethical
AW.-6 | Value expectation | Negative | Other’s value moved down | Ethical
AW.7 | Means-oriented Positive | Expect self value Pragmatic
expectation success
AW-8 | Means-oriented Negative | Expect self value Pragmatic
expectation failure
AW-9 | Means-oriented Positive | Expect other value Ethical
expectation success
AW-10 | Means-oriented Negative | Expect other value Ethical
expectation failure
Table 5.4: Assessment Warrants
Type Name
Positive BCP:Positive-PSchema-expect-violated
assessment | BCP:Positive-role-expect-violated
violations | BCP:Positive-value-expect-violated
l BCP:Positive-means-expect-violated
Negative BCP:Negative-PSchema-expect-violated
assessment | BCP:Negative-value-expect-violated
| violations | BCP:Negative-role-expect-violated
BCP:Negative-means-expect-violated
Evaluative | BCP:Eval-expect-less-important
expectation | BCP:Eval-expect-doesn’t-hold
violations | BCP:Eval-expect-caused-to-fail

Table 5.5: Assessment and Evaluative Expectation BCPs

160

Part II

Modeling Story Understanding

THUNDER’s model of moral reasoning consists of evaluation methods and Imemory struc-
tures. The theory was developed to address issues in thematic story understanding: reading
stories to recognize why the story was written. The thematic story understanding task pro-
vides an application where THUNDER's moral reasoning mode] can be integrated and used
as a part of comprehension. The multiple sources of knowledge and their interactions that
are required for story understanding also place constraints on the representation and pro-
cessing of moral knowledge. For THUNDER to read, evaluate, and recognize the theme and
irony in stories, the knowledge structures and processes that are used in story comprehension
have to be implemented and integrated with the moral reasoning model.

This part of the dissertation discusses THUNDER’s model and implementation of story
understanding from the top down. Chapter 6 deals with thematic story understanding: how
evaluative understanding is used to recognize the themes of stories. THUNDER. accomplishes
thematic story understanding by recognizing conflicts and resolutions. The conflicts are
represented by belief conflict patterns, and the resolutions provide additional reasons for
the evaluation of one of the beliefs in conflict. By including the reader’s evaluations and the
inferred evaluations of story characters in the story representation, THUNDER can recognize
where beliefs are violated and contradicted, and can identify the thematic advice the stoty
contains about ethics and planning.

To implement story comprehension, THUNDER uses a phrasal parser to produce pre-
liminary representations from natural language input, and then uses a demon-based system
to construct the episodic representation of the story. The story comprehension model works
by organizing knowledge into hierarchical levels and then ezplaining knowledge structures by
their relation to structures in the higher levels. The theme of the story is the highest-level
explanation; it provides a reason for why the story was written.

Chapter 7 discusses knowledge representation and processing for story understanding. To
implement story understanding, knowledge about action, motivation, and planning has to be
represented and manipulated. The knowledge representation technique used in THUNDER
is to construct schemata from conceptual objects and structured relationships. The processes
of schema access and integration into the story representation are then presented. Chapter
8 discusses THUNDER'’s natural language component: how phrasal parsing and generation
work, and how they are used to parse stories and generate question answers. Chapter 9
concludes this part with an annotated trace of THUNDER reading a story. The trace brings

101

» and processes and shows how they interact
during story understa.nding.

102

CHAPTER 6

Thematic Story Understanding

Thematic story understanding is reading a story to find the moral or ‘point’ of the story.
Recognition of a story theme is identification of the advice that the story has for the reader.
Themes can be advice about pragmatic planning, how to get along with others, or inter-
personal relationships. Thematic understanding is modeled in THUNDER by recognizing a
conflict and a resolution in the story. For THUNDER, the conflicts are between evaluative
judgments represented by belief conflict patterns. The resolution of a belief conflict is an
event in the story that provides additional reasons for the evaluation of the content of the
beliefs in conflict. By providing additional reasons for an evaluation, the story ‘shows’ the
‘correctness’ of one of the beliefs in conflict.

To construct themes from conflicts and resolutions, THUNDER contrasts and generalizes
reasons for the evaluation that led to the conflict to reasons for the evaluation of the resolu-
tion. Because there are two types of reasons, THUNDER recognizes two types of themes: (1)
pragmatic themes, which are advice about pragmatic planning, and (2) ethical themes, which
are advice about the ethical consequences of plans. THUNDER also distinguishes thernes
by the type of advice that the theme provides. For THUNDER, there are two types of
thematic advice: (1) reason advice about why evaluative beliefs are correct or incorrect, and
(2) avoidance advice about how value failures can be avoided. Reason advice is constructed
by contrasting the reasons that led to BCP recognition to the reasons for the evaluation of
the resolution. Avoidance advice is based on reasoning about how the resolution shows that
the negatively evaluated situation in the BCP could have been avoided.

When stories confirm THUNDER's beliefs, reason advice is generated from each reason
that was used in the original evaluation. For example, THUNDER identifies the following
reason advice in Hunting Trip:

THE THEME IS THAT YOU SHOULD NOT PLAY WITH DYNAMITE BECAUSE YOU WOULD
NOT LIKE BAD THINGS TO HAPPEN TO YOU.

THE THEME IS THAT YOU SHOULD NOT EXECUTE PLANS THAT CAUSE BAD THINGS TO
HAPPEN TGO OTHERS FOR YOUR ENTERTAINMENT BECAUSE YOUR ENTERTAINMENT IS
LESS IMPORTANT THAN BAD THINGS HAPPENING TO YOU.

THE THEME IS THAT YOU SHOULD NOT EXECUTE PLANS THAT CAUSE BAD THINGS
TO HAPPEN TO OTHERS BECAUSE YOU WOULD NOT LIKE BAD THINGS TO HAPPEN TO
YOU.

103

The first theme is based on a Pragmatic expectation and resolution. THUNDER believed
that the hunters’ Plan was Pragmatically wrong because they could get hurt playing with
dvnamite. When the hunters’ truck blows up becayse they were playing with dynamite, the
advice associated with the expectation is generalized from “hurting yourself” and “damaging
your possessions” to “bad things happening.” The second theme is based op preference
beliefs, and THUNDER’s reason the plan was wrong because the rabbit’s health s more
Important thag the hunters’ entertainment, The third theme ig based on valye beliefs, and
THUNDER’s reasoning that the plan was wrong because the huntey’ were going to hurt the
rabbit. When the hunters suffer a value failure at the end of the story, they do not like it

The theme is generated from the evaluatiop BCP BCP:No-crime, and the resolution of Oliver
suffering as the resylt of his punishment plan. Avoidance advice is constructed by reasoning
about how the planner could have avoided the valye failure. In Four O’Clock, Oliver suffered
because he was guilty of the crime he was Punishing others for. The reason he wag guilty was
because he was punishing others unjustly. If Oliver had evaluated his own plan, he would
kave avoided the value failure.

THUNDER uses a hybrid architectyre to understand stories and answer questions. The
Phrasal parser PPARSE [Reeves, 1989b] is used to construct a preliminary representation
from English sentences, Demon-based processing (as in BORIS [Dyer, 1983)) is used to
integrate the representation into the episodic representation of the story, and to perform
evaluation, in.ferencing, and thematic tasks,

104

Ethical Memory

l |
I
Belief Conflict Patterns: ! - ' Story Memory
- Plan execution Belief Demons |
Belief Memory

- Evaluation I
- Expectation I

intentional Memory
Plan Schema
Goal Failure Schema| |

|
TAUs ! .
Act/Event Demons : ' Objective Memo

|
I Episodic Srory
Phrasal Memory | | PPARSE/PGEN | Representation
(Pattern/Concept Pairs)[—) (Phrasal parser/ | €—— English Stories/Sentences
generator) Questions/Answers
Long -Term Memories l Processes I Created Structures

Figure 6.1: THUNDER System Architecture

Figure 6.1 is high-level description of THUNDER's system architecture showing the flow
of control. On the left of the figure are THUNDER's three long-term memories:

1. Phrasal memory, which contains THUNDER's language specific knowledge encoded as
phrases (or pattern/concept pairs) [Wilensky and Arens, 1980; Arens, 1986]. Examples
of the representation of phrases are given in chapter 8.

2. Intentional memory, which contains THUNDER'’s library of planning knowledge en-
codes as PSchema, goal failure schema (GFschema) and TAUs. Examples of intentional
knowledge structures are given in chapter 7.

3. Ethical memory, which contains THUNDER's ideclogy, and knowledge about evalua-
tive belief patterns encoded in BCPs, as discussed in chapters 2, 3, 4, and 5.

The middle of the figure shows the different processing elements of the system, and the data
that the components use. The form of the English input is a list of symbols, such as:

’(to save money *comma* john decided never to change the oil in
his new car)

PPARSE processes the symbols from left to right. Phrases associate sequences of symbols
and concepts with higher-level concepts. The the input symbols are matched against the

105

sequences in the phrases. When a sequence matches the input symbols, the matched symbols
are rewritten to the concept in the phrase. The process of adding symbols from the input
list, and then rewriting sequences of symbols and concepts when phrases match results in the
bottom-up construction of a parse tree. When all of the input symbols have been processed.
the root node of the parse tree is the parsed representation of the sentence. PPARSE and
PGEN (the phrasal language generator) are discussed in chapter 8.

During story understanding, PPARSE produces an act/event level representation of an
mput sentence. The act/event representation is used as a starting point to integrate the
content of the sentence into the existing representation of the story. Processing knowledge
in THUNDER is implemented using demons to recognize, construct, search, and connect
knowledge structures. Demons are self-contained routines similar to production rules (see.
for example, [Newell and Simon, 1972; Davis and King, 1976; Waterman and Hayes-Roth,
1978]). Demons are organized in THUNDER according to the knowledge that is operated
on:

1. Act/Event demons are used to infer additional actions and events from the act/event
representation of the text, and to find PSchema that contain the actions.

2. Goal/Plan demons fill in the plan sequences, and check for motivated goals, plans, and
planning errors.

3. Belief demons perform plan evaluation, and recognize belief conflicts, ironies and
themes.

To build the conceptual representation of the story, THUNDER uses the ezplanation-
based model [Dyer, 1983; Wilensky, 1983a), where the conceptual representation for a story
1s constructed by explaining each new event of the story in terms of the conceptual rep-
resentation so far. The model works by organizing knowledge into four hierarchical levels:
objective (act/event), intentional (goal/plan), belief, and thematic, in order of increasing
abstraction. The explanation process works bottom-up; when a new concept cannot be
explained by the currently active knowledge structures in the story representation, THUN-
DER attempts to apply knowledge from the next higher level to explain the failure. The new
knowledge structures provide top-down explanations for subsequent inputs. Explanation is
implemented by constructing links between concepts at the different levels of representation.
For each type of concept in each level of representation, there is a set of links that define
what constitutes an explanation. The types of explanation for concepts at each level, and
the explanation finding strategies are discussed in chapter 7. The form of the conceptual
representation of the story is discussed in the next section.

8.1.1 Episodic Story Representation

As THUNDER reads the text of a story a conceptual representation of the story is built.
To store and access the representation, a framework called a episodic story representation

106

is built to organize the conceptual content of the story. The episodic story representation
organizes the story in four hierarchical levels:

1. Objective level — Holds the representation of the act and event structure of the story.

2. Intentional level (a list of goal/plan memories) — Holds the goal/plan representation
of each actor’s intentions. The intentional level is a list of the goal/plan memories
for each actor. A new goal/plan memory is added to intentional memory when a new
actor 1s read about, so there is an element in the list for each actor in the story.

3. Belief level — A list of the individual belief memories for each actor. The belief level
holds THUNDER's evaluative beliefs, and THUNDER s mnferences about each actor's
ideology, planning strategies, and evaluative beliefs.

4. Thematic level — Contains knowledge structures that organize the thematic elements
of the story, such as BCPs, TAUs, themes, and ironies.

The episodic story representation is shown in figure 6.2. To represent the constituent struc-
ture of the relationship between the levels, the concepts in each level are connected by
bi-directional links to concepts in the level below. For example, BCPs in the story memory
are linked by thematic links to the beliefs in conflict at the belief level. The links between
the belief and intentional levels are labeled by judgment warrants and belief inference rules,
as described in chapter 2. The links between the intentional and objective levels are called
plan inference links.

Story Memory

@Ps, Themes, IronD

/ ¢ \ \ Thematic Links
Belief Memory
Evaluative Beliefs of THUNDER and story ch@

/ * \ Judgment Warrants/
Intentional Memory Belief inference Links

@s and Plans of Story Char@

Objective Memory / + \ Ptan inference Links

@s and Events in the StoD

Figure 6.2: Episodic Story Representation

107

Fach memory in the episodic story representation is implemented using a structure of
working memories, shown graphically in figure 6.3, Working memory structures contain
agendas to hold demons that are active for the memory, and a doubly-linked list data struc-
tures to hold the concepts in the memory. Each node in the memory holds a concept and
pointers to the next and previous nodes. The memory header has pointers to the head and
tail nodes, and an agenda of currently active demons. The concepts in the memory nodes
may contain links to other concepts in the memory, or to concepts in other memories. For
example, an action in the event memory may have a contains plan inference link to the
PSchema that contains the action in one of the goal/plan memories.

Memory

Agenda
Demon/Priority
Demon/Priority

Demon/Priority

Node je——— Node fo—onu . ~+——1] Node

f \
Concept Concept Concept,

Figure 6.3: Working Memory Structure

The episodic story representation allows multiple perspectives on the act and events of
the story. The horizontal levels of the representation provide accounts for events and different
‘depths’ of understanding, while the vertical levels provide perspectives from the different
points of view of the reader and actors in the story.

The horizontal levels of understanding can be illustrated by the following question an-
swering behavior for Hunting Trip: A

> Why did the truck blow up?

BECAUSE THE DYNAMITE BLEW UP.

BECAUSE THE RABBIT RAN UNDER THE HUNTERS’ TRUCK.
BECAUSE THE HUNTERS LET THE RABBIT GO NEAR THEIR TRUCK.

BECAUSE THE HUNTERS WERE INHUMANE TO THE RABBIT.

108

BECAUSE THE HUNTERS PLAYED WITH DYNAMITE.

The first two answers are generated from reasoning at the objective level; “Because the
dynamite blew up” is generated from the event that forced the event in the question, and
"Because the rabbit ran...” is generated from the action that is found by backtracking from
the event in the question to the most recent action in the story. The third answer is found at
the intentional level by generating the plan failure that caused the goal failure described in
the question. The fourth and fifth answers are generated from the thematic level: the truck
blowing up was a resolution to BCP:Inhumane and to TAU:Dangerous-object,.

The vertical levels of the representation are provided by organizing the plans and beliefs
by the participants. The vertical levels are used to reason about objects and events from
multiple perspectives. For example, in Hunting Trip the hunters view the rabbit is an object
to be blown up, while as an actor the rabbit is a captive who wants to escape. The horizontal
levels allow THUNDER to answer questions about THUNDER's and the story character’s
evaluative reasoning:

> Why were the men wrong to blow up the rabbit with dynamite?
BECAUSE THE HUNTERS WERE INHUMANE TO THE RABBIT.
> Why did the hunters believe that blowing up the rabbit was right?

BECAUSE THE HUNTERS WILL BE ENTERTAINED WHILE THE RABBIT BLEW UP AND
THEIR ENTERTAINMENT IS MORE IMPORTANT THAN THE RABBIT’S HEALTH.!

> Why did the hunters believe that blowing up the rabbit was wrong?

BECAUSE THE HUNTERS WILL BE ENTERTAINED BUT THEIR TRUCK BLEW UP AND
THEIR TRUCK IS MORE IMPORTANT THAN THEIR ENTERTAINMENT.

The first question is asking for THUNDER'’s reason that the hunters were wrong to blow
up the rabbit. The second question is asking for the hunters’ reason that they believed that
they should blow up the rabbit. Since the hunters only had a positive obligation belief about
blowing up the rabbit before their truck blew up, THUNDER finds the positive obligation
belief and reason from when the hunters’ plan was first evaluated. The answer to the third
question is provided from the hunters’ belief about the Plan after their truck blew up.

!Tense agreement problems between clauses in the question answers {in this case between “will be enter-
tained” and “blew up”) are due to THUNDER’s use of the final story representation for question answering.
The temporal entailment of this question is “when the hunters believed that blowing up the rabbit was right,

..” i.e. before the rabbit and the truck blew up. THUNDER does not have the ability to reconstruct the
state of the story, so the tense structures are mixed.

109

6.1.2 Demon-based Processing

Process knowledge is implemented in THUNDER using demons [Dyer and Lehnert, 1982:
Dyer, 1983]. Demons are independent processes that monitor the state of the system for a
specific condition. and execute a procedure when the condition is met. Demons are composed
of test and action functions, and thus are similar to production rules. However, in contrast to
forward-chaining production rule systems, demons are explicitly activated (termed spawning)
and wait for the test condition to occur, When the test condition occurs, the demon fires
and executes its action procedure. Demons can be terminated without executing the action
(termed killed) if the demon notices that the task has been accomplished, or the demon can
be killed by another demon. Demons implement delayed processing, so that a number of
demons can be spawned to execute a particular task, and the first one that succeeds can kill
the others.

For example, the following demon is spawned to explain actions that are recognized by
the parser (source code in section D.2.2):

(demon:define (evm_demon:action-predicted-by-pschema evm-node act)
(comment (test "Find an existing PSchema to explain the action.")
(act "Update the PSchema to include the action."))
(kill (evm:explained? evm-node))
(test search actor’s intentional memory for a PSchema
with an action matching act)
(-act if the event the action causes has been ezplained
then mark the action as ezplained
else begin
spawn a demon to mark the action as ezplained
when the event is ezplained
spawn a demon to mark the event as explained
when the act is explained
spawn a demon to check if the action is ezplained
by subsequently recognized PSchema
end else)
(+act Link the act to the found PSchema and
mark the PSchema as ezplained))

Each demon has five sections: (1) a comment, which is printed during trace when the demon
is spawned, (2) a kill predicate, (3) a test function, (4) a +act function, and (5) a -act
function. In the act lon-predicted-by-pschema demon, the kill predicate tests to see if
the action was explained by another method. The test function searches intentional memory
for a PSchema that contains an action matching the action in the demon. If a PSchema is
found, the +act function links the action to the PSchema and updates the PSchema if the
action has been realized. If a PSchema is not found, the -act function spawns demons to

110

check for the action in a subsequently recognized PSchema. The -act section of demons is
optional; if it is not specified, the demon remains active until test is met, or the demon is
killed.

Demeons are kept on agendas ordered by a priority assigned when the demon is spawned.
In THUNDER, each memory descriptor has an agenda. After each sentence is parsed, the
agendas are cycled though from the bottom-up: parse demons. act-event demons, goal-plan
demons for each actor. and belief demons. Each agenda is cycled until no more demons

fire, so that the processing of each agenda is comnpleted before the next agenda’s demons are
executed.

For knowledge-intensive applications like goal/plan analysis and moral reasoning, demon-
based processing has the following advantages:

¢ Modularity of implementation. Each demon can be implemented and tested inde-
pendently of the rest of the system.

e Competing strategies. Each demon can implement a heuristic strategy for a given
task. A set of demons can be spawned to execute the task, with the first one to be
successful killing the others.

¢ Sharing resources. Demons are spawned with arguments, so each instantiation of a
demon shares the same underlying code.

The strategies that are implemented by demons for event and goal/plan explanation are
discussed in chapter 7, and the demons that are spawned by the parser are discussed in
chapter 8.

6.1.3 Implementation Terminology

The processes that are described in this chapter are intended both as (1) statements of the-
ory about general story understanding processes, and (2) descriptions of the computational
algorithms that are implemented in THUNDER. However, some of the theoretical processes
have not been completely implemented; some subparts of the general algorithms described
have been implemented as ad-hoc rules and procedures to handle specific cases.

In order to avoid an excessive level of detail in describing the structures and processes
that are implemented in THUNDER, the following terminological conventions are adopted.
Schemata are implemented in THUNDER using a frame-based slot-filler knowledge represen-
tation language. Abstract versions of the schemata are contained in the long-term memories
with variables filling the slots. The process of matching structures is accomplished using unifi-
cation, which generates a table containing the variable bindings. Indexing into THUNDER's
long-term memories is is implemented using discrimination nets. The process of searching the
long-term memories uses the indexing structure to retrieve candidate schema, which are then
tested using ad-hoc selection rules. Instantiation is the process of replacing variables in an

111

tantiation of the frame. The process of constructing a Te€presentation means that identified
frames are linked into the episodic story representation. Inference refers to the entire pro-

for a value success or failure for the planner; a value failure means that THUNDER'’s belief
was correct, while a value success means that the planner’s belief was correct. From the
reasons for THUNDER's belief and the resolution, THUNDER constructs the theme of the
story by generalizing the beliefs and generating the generalization as advice.

6.2.1 Belief Conflict Recognition

The processing leading up to belief conflict recognition has the following steps:

1. PPARSE produces an act/event Tepresentation of the sentence.
2. From the acts and events, infer character plans.
3. When a plan for a value is recognized, generate THUNDER’s evaluation of the plan,

4. From THUNDER's evaluation, make inferences about the evaluative beliefs of the
character.

5. Ift THUNDER's and the character’s evaluations of the plan conflict, find the BCP that
represents the conflict.

planning errors that would cause the plan not to succeed. The first two steps implement
THUNDER'’s model of story comprehension. where THUNDER understands the "what" and
‘how’ in the story. The processing associated with story comprehension and plan inference
is discussed in section 7.4 of chapter 7. BCP recognition begins with identification of a plan
for a character value success in step three. The evaluation, inference and BCP recognition
processes are implemented using the rules and structures presented in chapters 2, 3, 4, and

.

Once conflicting beliefs have been identified, THUNDER searches for a BCP to represent
the conflict. The search procedure is implemented using the discrimination tree shown in
figure 3.5 where each discrimination is accomplished by predicates that test features of the
beliefs in conflict (see source code in section D.2.6). BCPs are implemented as schema
frames. The variables in the BCP schema are instantiated from the beliefs in conflict, the

BCP is loaded into belief memory, and belief demons are spawned to find a resolution to the
BCP.

To illustrate how BCPs are recognized and how ethical evaluation is integrated into story
understanding, consider the second sentence of Hunting Trip:

They decided to have some fun by tying a stick of dynamite to the rabbit.

To understand the sentence, THUNDER has to analyze the sentence as a planning problem:
How does one have fun by tying a stick of dynamite to the rabbit? An analogue is PAM'’s
[Wilensky, 1983a:

Willa was hungry. She picked up the Michelin Guide and got in her car,

For PAM, the problem was to find a plan for hunger that involves reading the Michelin guide.
In THUNDER, the problem is to find a plan that involves the rabbit and dynamite, and
recognize that the men are doing something ethically wrong.

THUNDER indexes PSchema in intentional long term memory by unique objects, acts,
events, and goals [Kolodner, 1984] using discrimination nets [Charniak et al., 1980, pp. 162-
176]. To find a plan containing the action of “tying a stick of dynamite to the rabbit,”
THUNDER searches memory on the following conceptual objects (in order):

1. The action of tying the dynamite to the rabbit.
2. The event of having dynamite attached to a rabbit.
3. The rabbit.

4. The dynamite.

113

PS:Blow-up. By matching the state achieved by the event to the enabling state of PS:Blow-
up, THUNDER instantiates the PSchema with the rabbit bound to the schema variable
for object to be blown up, and the hunters bound to the actor of the plan. PS:Blow-up
represents the intentional knowledge about blowing things up; for example, that blowing
things up is a means of destroying them. and that you have to light the fuse and get away.
But the plan for blowing up the rabbit results in a dead rabbit, not entertainment for
the actor. By searching intentional memory on the head goal of PS:Blow-up, THUNDER
finds that blowing up the rabbit can be used for entertainment in the PSchema PS:Sado-
pleasures: the knowledge that some people get their jollies by watching animals dje grisly
deaths. THUNDER links PS:Blow-up to PS:Sado-pleasures by an instrumental-to link: the

a plan for a value (the entertainment of the hunters) while PS:Blow-up is explained by its
instrumental relationship to another PSchema. The actions in the sentences are explained
by relationships to the PSchema as well: the act of “deciding to have some fun” js explained
by providing the head goal for PS:Sado-pleasures, while “tying a stick of dynamite to the
rabbit” is explained by providing the instrumental state for PS:Blow-up,

Since the head goal of PS:Sado-pleasures is a plan for a value (E-Enterta.inment), THUN-
DER constructs an evaluation of the hunters’ plan by applying judgment warrants to the
plan. When THUNDER constructs evaluative beliefs, the phrasal generator PGEN js called
to express the beliefs in English. The following trace output from THUNDER shows THUN-

uation, and one reason for a positive evaluation (the rule used to generate the reason or
inference is in italics):

Generating thunder’s belief #{obligation-belief.&l}:

THUNDER BELIEVES THAT THE HUNTERS’ PLAN TO WATCH THE RABBIT SUFFER IS
WRONG BECAUSE THEY WILL BE ENTERTAINED BUT THEY WILL BLOW UP THE RAB-
BIT AND THE RABBIT’S HEALTH IS MORE IMPORTANT THAN THEIR ENTERTAINMENT.
(From warrant E-{)

++. BECAUSE THE HUNTERS WILL BE ENTERTAINED BUT THEY CAPTURED THE RABBIT
AND THE RABBIT'S FREEDOM IS MORE IMPORTANT THAN THEIR ENTERTAINMENT.
(Warrant E.4) '

--- BECAUSE THE HUNTERS WILL BLOW UpP THE RABBIT. (Warrant E-2)

-++ BECAUSE THE HUNTERS CAPTURED THE RABBIT. (Warrant E.2)

114

-~ - BECAUSE THE HUNTERS MIGHT GET HURT BY BLOWING UP THE RABBIT. { Warrgnt
P-2)

Reasons why thunder believes #{pschema.66} is right:

+-- BECAUSE THE HUNTERS WILL BE ENTERTAINED. { Warrant P-1)

When the negatively evaluated plan is recognized, THUNDER makes the following inferences
about the hunters’ ideology:

Inferences from #{obligation-belief.61} evaluation:

THE HUNTERS BELIEVE THAT THEIR ENTERTAINMENT IS MORE IMPORTANT THAN
THEIR HEALTH. (Inference rule PI-2)

or

THE HUNTERS DO NOT BELIEVE THAT THEY WILL HURT THEMSELVES BY BLOWING
UP THE RABBIT. ([nference rule PI-1)

THE HUNTERS BELIEVE THAT THEIR ENTERTAINMENT IS MORE IMPORTANT THAN THE
RABBIT’S FREEDOM. (Inference rule El1}

THE HUNTERS BELIEVE THAT THEIR ENTERTAINMENT IS MORE IMPORTANT THAN THE
RABBIT’S HEALTH. (Inference rule EI-1)

Once the inferences about the hunters’ ideoclogy have been made, THUNDER can generate
their evaluative belief about blowing up the rabbit, and their reasons:

Generating #{human.65}’s belief #{obligation-belief.62}:

THE HUNTERS BELIEVE THAT WATCHING THE RABBIT SUFFER IS RIGHT BECAUSE
THEY WILL BE ENTERTAINED WHILE THEY WILL BLOW UP THE RABBIT AND THEIR
ENTERTAINMENT IS MORE IMPORTANT THAN THE RABBIT’S HEALTH. (Warrant E-3)

-+ BECAUSE THE HUNTERS WILL BE ENTERTAINED WHILE THEY CAPTURED THE RAB-
BIT AND THEIR ENTERTAINMENT IS MORE IMPORTANT THAN THE RABBIT’S FREEDOM.
(Warrant E-S)

-+« BECAUSE THE HUNTERS WILL BE ENTERTAINED. (Warrant P-{)
Reasons vhy #{human.65} believes #{pschema.66} is vrong:
+--BECAUSE THE HUNTERS WILL BLOW UP THE RABBIT. (Warrant E-2)

-+ BECAUSE THE HUNTERS CAPTURED THE RABBIT. (Werrant E-2)

115

To find a BCP for the situation, THUNDER traverses the discrimination tree for plan
execution BCPs. The first discrimination is THUNDER's reason that the plan was negatively
evaluated, which is ethical reason E-4: the hunters are executing a plan for a value that is less
important than a value failure that they are causing. The subsequent discriminations are: (1)
are the hunters aware that they are causing a value fajlure? (ves), (2) what is the hunters’
reason for a positive evaluation of the plan (warrant E-3), and (3) who are the hunters
planning for? (themselves). After these four discriminations, THUNDER finds BCP:Selfish.
In the discrimination tree, the node for BCP:Selfish marked being further specifiable, so

of BCP:Inhumane is generated as:

THUNDER BELIEVES THAT THE HUNTERS ARE INHUMANE TO BLOW UP THE RABBIT
FOR THEIR ENTERTAINMENT.

In the process of BCP recognition, THUNDER is lead to the belief conflict by evaluating
the events of the story for potential ethical problems.

8.2.2 Identifying Belief Conflict Resolutions

When a reader reads about a ‘good’ thing happening to a ‘bad’ character, the reader wants
either (1) the bad character to have something bad happen to him, or (2) to have the story
show that the reader’s evaluations were in error; that the character was not really bad or
that the good thing was not really good. For example, Hunting Trip would not be much of
a story if the hunters blew up the rabbit, had a good laugh, and went home. The reader’s
want or desire for something ‘bad’ to bappen to the character is a reader goal, and thus is
distinct from the reader’s expectations (which are primarily factual beliefs) about what will
happen in the story. To illustrate the difference, compare PAM’s Willa story to Hunting
Trip. In the Willa story, the reader ezpects that Willa will find a restaurant in the Michelin
Guide, drive her car to the restaurant, and eat. In Hunting Trip the reader wants something
bad to happen to the hunters because of the terrible thing that they are doing to the rabbit.
However, the reader does not have any way to achieve this goal except to continue reading.

The ‘bad’ thing that the reader wants to happen to the character is one type of resolution
to the belief conflict.? The resolution to a belief conflict provides a reason for the evaluation
of the object of belief conflict from the story, in addition to the reasons that were constructed
during plan evaluation. Since the resolution provides a reason for evaluation, the resolution
can either (1) add a reason for the evaluator’s negative evaluation of the plan, or (2) add
a reason for the planner’s positive evaluation of the plan. By providing a reason for plan

?The discussion of belief conflict resolution deals with resolving plan execution belief conflicts. Resolving
evaluation and expectation beljef conflicts are more complex, but the general principles are the same.

116

evaluation from the story, the resolution ‘shows' which belief in the belief conflict is ‘correct.’
The two types of resolutions can be characterized as:

1. Positive resolutions, which provide additional reasons that the evaluator belief was
correct. Instances of positive resolutions are valye failures for the planner.

2. Negative resolutions, which show that the planners belief was correct. Instances of
negative resolutions are value successes for the planner.

The hunters’ truck blowing up in Hunting Trip, and Oliver’s shrinkage in Four O'Clock are
instances of positive resolutions. Stories where the hunters blew up the rabbit, had a good
laugh and went home, or Oliver succeeded in shrinking his political opponents would have
negative resolutions.

Recognition of a BCP constrains future processing by restricting the explanation of events
to how the events relate to the established BCP. Sentences that are parsed after BCP recog-
nition are interpreted by reference to the BCP. The BCP provides top-down control of event
and plan interpretation by providing the plan that subsequent events are interpreted in terms
of; after BCP recognition, events are interpreted as either part of the plan that was evalu-
ated, or as part of a resolution. When a resolution is found, THUNDER considers the story
as completed and tries to identify the theme(s) of the story. When a story ends before a
resolution is found, THUNDER make an inference that the next event in the active PSchema
is realized until either a resolution has been identified, or there are no more events. This is
the case in Hunting Trip. At the end of Hunting Trip, the rabbit is sitting under the hunters’
truck with a lit stick of dynamite tied to its back, but the story does not say that the truck
has blown up. Because of the unresolved belief conflict, THUNDER continues processing by
making inferences about what happens next from the active PSchema. When THUNDER
infers that the dynamite blows up, the inference propagates by casual links to make the
inferences that the rabbit dies and the hunters’ truck is destroyed. The P-Possession value
failure for the hunters is recognized as a resolution to the belief conflict, and is used to find
the theme(s) of the story.

6.2.3 Theme Construction

The theme of a story is the controlling idea, central insight, unifying generalization about
life, and purpose of the story [Perrine, 1974). To recognize the theme of the story, the reader
has to identify the advice that is contained in the story, or what the story is designed to
teach. The advice in the story can be an insight about life, how the world works, how to get
along with others, or the reasons for or against certain courses of action.

THUNDER models theme construction by contrasting conflicts to resolutions. In THUN-
DER, a theme is a generalized piece of advice about reasons that plans should or should
not be executed, or how planning failures could be avoided. THUNDER's representation of
themes is designed to capture the following characteristics of themes:

117

e Content — The theme specifies (1) the situation where the advice is to be applied, ang
(2) the reasons for applying the advice i the situation

Recognition of » belief conflict jp a story is a judgment by THUNDER that something is

wrong in the story. Finding a Positive resolution to the beljef conflict supports the evaluative
belief that led to the origina) belief conflict. Because the story provides Support for the
reader’s evaluation, the resolution to the belief conflict is thematic.

THUNDER Teasons about the story resolution to construct two types of advice:

1. Reason advice on the reasons that plans are ethically or Pragmatically wrong.

2. Avoidance adyice on how the Planning fajlyreg resulting from ethically wrong plans cap
be avoided.

BCP that was used to identify the theme. If the resolution ;s an instance of one of the known
reasons for the evaluative belief, no lea.rnjng takes place, byt the story can be indexed as ap
instance of support for the belief. For example:

6.1: John robbed a bank. He was later apprehended by the police,

118

John's capture by the police is a resolution to BCP:Selfish, and is an instance of a known
pragmatic reason why bank robbery is negatively evaluated. So example 6.1 provides an
example for the belief that bank robbery is wrong because bank robbery has high liability. If

the theme provides new advice, the theme can be associated with the BCP for use in furure
understanding.

To construct reason themes. THUNDER executes the following process:

1. Given a BCP and a resolution. get the evaluator’s reason for the negative evaluation
in the BCP, and the planner’s reason for the negative evaluation in the resolution.

2. If the reasons are of the same type, construct variable binding tables from both reasons.

A variable binding table is constructed by unifying the reason with a template for the
reason type with variables in all of the salient slots.

3. Construct a generalized variable binding table by generalizing the pair of instantiations
for each variable in the reason binding tables. Some variables have assigned gener-
alizations (i.e. the believer is generalized to “you” and pschemas are generalized to
“plans”), while other types of generalizations are found by searching the item’s is-a
hierarchy for a common parent. If the instantiations are equal, then the instantiation
1s returned.

4. Construct the theme by getting an abstract obligation and supporting belief from the
BCP and instantiating from the generalized variable binding table.

(See the source code in section D.2.7 for the implementation of the reason theme algorithm.)

THUNDER's reason theme construction process can be illustrated by considering what
happens when the hunters’ truck blows up in Hunting Trip. In constructing a theme, THUN-
DER is trying to answer the questions: (1) what does the hunters’ value failure say about
why it is wrong to blow up rabbits for entertainment? and (2) how is the truck blowing up a
confirmation of THUNDER’s belief that that blowing up the rabbit was wrong? To answer
the questions, THUNDER constructs the hunters’ belief about the plan after the truck has
blown up. After the truck has blown up, the hunters have a negative evaluation of the plan
because the loss of their truck is more important than their entertainment. The hunters’
belief structure is similar to THUNDER's belief that the plan was wrong, as shown in figure
6.4.

By matching THUNDER's belief that lead to the BCP to the hunters’ belief about the
resolution, THUNDER identifies the differences between the two structures. Table 6.1 lists
the differences between the two beliefs, and what the differences are generalized to in the
generalized variable binding table. In the table, the first column is the variable used in the
uninstantiated schema for judgment warrant E-4. The second and third columns are the
variable binding obtained by unifying the uninstantiated warrant schema with THUNDER's
belief and the hunters’ belief, respectively. The fourth column is the generalization of the
two bindings that is used for the theme.

118

Evaluative Belief Evalyative Belief

Believer THUNDER Believer: Hunters
Content: Hunter's plan to blow Content: Plan to blow up the
up the rabbit rabbit after the truck
Valance: Negative blows up
Valence: Negative

Ethical Judgmant Warrant E-4
‘ Ethical Judgmant Warrant E-4

Factual Belief Factual Belief
Believer: THUNDER Believer: Hunters
Content: Hunters will cause Content: Hunters caused P-Possessions
P-Health value failure| value failure by blowing up
for the rabbit their truck
Valence: True Valence: True
_EagLuaLBe[ief Factual Belief
Believer: THUNDER Believer: Hunters
Content: Hunters will achieve Content: Hunters were trying to
E-Entertainment valuef achieve E-Entertainment
success value success
Valence: True Valence: True

THUNDER's value system Hunter's value system
P-Heaith(rabbit) > P-Possessions(Hunters) >
E-Entertainment(Hunters) E-Entertainment(Hunters)

—the hunter's plan was recognized —theirtruck has blownup

Figure 6.4: Thematic Beliefs

There are two supporting beliefs for the obligation belief in BCP:Inhumane: (1) the value
belief that the value failure for the other is negatively evaluated, and (2) the preference belief
that the value success is less important the value failure. Instantiating the abstract obligation
belief from the BCP supported by each of the two reasons produces the two themes:

THE THEME IS THAT YOU SHOULD NOT EXECUTE PLANS THAT CAUSE BAD THINGS
TO HAPPEN TO OTHERS BECAUSE YOU WOULD NOT LIKE BAD THINGS TO HAPPEN TO
YOU.

THE THEME IS THAT YOU SHOULD NOT EXECUTE PLANS THAT CAUSE BAD THINGS TO
HAPPEN TO OTHERS FOR YOUR ENTERTAINMENT BECAUSE YOUR ENTERTAINMENT IS
LESS IMPORTANT THAN BAD THINGS HAPPENING TO YOU.

The first theme is the obligation belief supported by the value belief, and the second is sup-

Variable Binding from Binding from Generalization
THUNDER's Belief | Hunters’ Belief

Tbeliever THUNDER Hunters You

’value-success-type | E-Entertainment E.Entertainment | E-Entertainment

?value-failure-type | P-Health P-Possessions Bad things

Tother Rabbit Hunters Others

Table 6.1: Differences and Generalization for the Theme of Hunting Trip

ported by the preference belief. THUNDER constructs the pragmatic theme from Hunting
Trip in a similar manner. The TAU that was recognized (TAU:Dangerous-object) and the
reason that it is wrong to play with dynamite is matched against that pragmatic reason
that the hunters had for a negative evaluation of the plan to blow up the rabbit. Since
THUNDER's reason that you should not play with dynamite is that you might hurt yourself
(encoded in the TAU), and the hunters’ realized reason that they should not have played
with dynamite is that their truck was destroyed (a P-Possessions value failure), the theme
1s generated as:

THE THEME IS THAT YOU SHOULD NOT PLAY WITH DYNAMITE BECAUSE YOU WOULD
NOT LIKE BAD THINGS TO HAPPEN TO YOU.

Where “bad things happening” is generalized from the expected P-Health value failure and
the realized P-Possessions value failure.

Avoidance themes are constructed by THUNDER when a planning failure on the part of
the planner in the BCP is recognized, and the planner’s evaluative belief led to the planning
failure. A planning failure is a structure that contains the action in a plan that caused the
plan to fail, the action’s intended effect, and the action’s realized effect.?

The algorithm for constructing avoidance themes is:

1. Given a BCP, resolution and a planning failure, identify the mistaken belief.

2. From the mistaken belief, find the part of the plan where the mistaken belief should
bave been recognized, and generate a new plan where the mistaken belief is checked
for.

3. From the new plan, identify the failure that would have been avoided.

4. Generalize the new plan by matching the new plan to the plan executed, and generalize
the reason for executing the new plan from the failure that occurred and the failure
that would have been avoided.

3Plan failure representation and construction are discussed in section 7.4.3.

121

(See the source code in section D.2.7 for the implementation of the avoidance theme algo-
rithm.) The avoidance theme construction process is used to find a theme in Four O'Clock.
The input is (1) the BCP BCP:No-crime, (2) the resolution GFschema GF:Injury, and (3)
Oliver’s plan failure which is represented as his action of casting the spell where the intended
effect was to shrink every evil person, and the realized state was that Oliver was shrunk
Since BCP:No-crime is an evaluation BCP, and THUNDER believed that Oliver’s evaluation
was in error, Oliver's belief that hjs political enemies are evil is identified as the mistaken

of evaluating the planner before evaluating others and generalizing the resulting structure.
THUNDER generates the theme:

THE THEME Is THAT YOU SHOULD JUDGE YOQURSELF BEFORE JUDGING OTHERS BE-
CAUSE YOU WOULD NOT LIKE TO BE PUNISHED.

The avoidance theme is recognized by backtracking to find planning errors based on evalu-
ative beliefs, and specifying the judgments that need to be made to avoid the error.

6.3 Recognizing Situational Irony

Irony is a property of a text or situation where the understander recognizes an opposition
relation between two facets of the text. In verbal irony, for example, the relation is between
the literal interpretation of an utterance and the utterance’s intended effect. In situational
irony the opposition relation is between expectation and outcome. For example, consider
the sentence:

6.2: A jogger had a heart attack.

In example 6.2, the irony is the relationship between the realized health damage of the heart
attack, and the belief that jogging will improve health.

THUNDER includes the situational irony recognition model that was developed for the
IRON-FINDER program [Reeves, 1986]. In IRON-FINDER, a situational irony was defined
as four elements:

1. A ground for the irony: the intention, belief or expectation that is violated by the
ironic situation.

2. An unexpected, unintended, or uncontrollable event (u-cvent): an event or sequence
of events that lead to the ironic contrast.

3. The outcome: the goal failed by the u-event which contradicts the ground.

4. The force of the irony (i-force): the scale that the contrast between the ground and
outcome is measured on, or an object that has causal connectives to both the ground
and outcome.

The recognition of the four elements in a story are necessary and sufficient conditions for a
situational irony to be recognized. The irony itself is the relationship between the ground
and the outcome, as defined by the i-force. IRON-FINDER recognized situational irony in
sentences and short stories, and described the irony that was found. Here is a sample of

IRON-FINDER's top level I/O:

> A jogger had a heart attack.

THE IRONY IS THAT WE EXPECTED GREATER THAN NORMAL HEALTH OF THE
JOGGER’S CARDIOVASCULAR-SYSTEM, BUT LESS THAN NORMAL HEALTH OF HIS
CARDIOVASCULAR-SYSTEM WAS REALIZED.

> A bank president bounced a check.

THE IRONY IS THAT WE EXPECTED GREATER THAN NORMAL SKILL AT FINANCIAL
PLANNING, BUT LESS THAN NORMAL SKILL WAS REALIZED.

> Anna Kelly always played the number 3-13-168-25-31 in the state lottery. On
Friday the 13th, the number came up, but Anna had gotten busy shopping
and neglected to buy her ticket.

THE IRONY IS THAT THE FIRST TIME ANNA KELLY DOES NOT BUY A LOTTERY
TICKET, THE WINNING NUMBER CAME UP, AND SHE WOULD HAVE WON THE STATE
LOTTERY.

> Two men on a hunting trip captured a live rabbit. They decided to have
some fun by tying a stick of dynamite to the rabbit. They lit the fuse and let
it go. The rabbit ran for cover under their truck.

THE IRONY IS THAT THE TWO MEN EXPECTED TO BE ENTERTAINED BY THE DYNAMITE
BLOWING UP, BUT THEIR TRUCK WAS DESTROYED WHEN THE RABBIT WENT UNDER
THEIR TRUCK. :

-

IRON-FINDER recognized irony as a side-effect of the explanation-based understanding
model. When goal failures occurred because of unexpected events, [IRON-FINDER searched
memory to find an explanation for the event. When IRON-FINDER found an explana-
tion that predicted the opposite of what had happened, the explanation was used to cou-
struct the irony. IRON-FINDER implemented a theory of understanding that identified the
components of normal comprehension and memory that lead to irony recognition in ironic

123

situations. By applying an understanding model to the recognition of situational irony,
IRON-FINDER showed (1) the types of events that motivate explanation processes, (2) how

memory is organized so that explanations can be found, and (3) how potential explanations
are applied to situations.

The problem with IRON-FINDER that motivated"the construction of THUNDER is that

irony recognition is not equivalent to thematic recognition. Consider the description of the
irony in Hunting Trip:)

THE IRONY IS THAT THE HUNTERS EXPECTED TO BE ENTERTAINED BY WATCHING
THE RABBIT BLOW UP BUT THEIR TRUCK BLEW UP WHEN THE RABBIT RAN UNDER
THEIR TRUCK.

While IRON-FINDER could identify the ironic elements of the story, it could not make the
congection between the irony and the theme of the story. For simple situational ironies
the four-part structural model is adequate. For example, in example 6.2, the irony is the
relationship between the realized health damage of the heart attack, and the belief that
jogging will improve health. However, in more complicated stories the ironic relationships
are based on belief and ethical evaluation. For example, in Hunting Trip the ground belief of
the irony is the hunters’ belief that blowing up the rabbit is entertaining. In addition, if the
evaluators’ belief about the hunters’ plan is included in the representation, the hunters’ value
failure can be recognized as a ‘just desert’ or retribution for the execution of the immoral
plan.

A just-desert irony is a specific type of situational irony where the explanation that results
in irony recognition is a character’s evaluative belief that the reader disagrees with. For
example, the just-desert irony that is recognized in Four O’Clock is generated by THUNDER
as:

THE IRONY IS THAT OLIVER EXPECTED TO PREVENT HIS POLITICAL OPPONENTS
FROM DAMAGING SOCIETY BY CASTING THE SPELL BUT HE BECAME TWO FEET TALL
WHEN HE CAST THE SPELL.

To recognize the irony in Four O’Clock, THUNDER begins by attempting to explain why
Oliver shrunk. At the intentional level of explanation, THUNDER finds that Oliver shrunk
as a result of casting the magic spell. At the belief level, Oliver’s plan to cast the magic
spell was motivated by Oliver’s belief that his political enemies should be punished. The
element in opposition between the expectation and outcome is based on who was shrunk:
Oliver believed that shrinking his political enemies was right, but he negatively evaluating
being shrunk himself by inference rule V-2 (section 2.7). The just-desert element of the
irony comes from THUNDER's belief about Oliver’s plan. Since THUNDER believed that
Oliver was wrong to shrink his political enemies prior to Oliver's shrinkage, THUNDER cau
recognize Oliver’s value failure as ‘punishment’ for executing an immoral plan.

- N od

The elements of the irony in Four O' Clock are closely related to the conflict and resolution
that are used to construct the themes of the story. The belief conflict provides both the
ground of the irony and the belief that makes the irony a just-desert irony. Oliver's shrinkage
is both the outcome of the irony and the resolution of the belief conflict. While the theme
construction processes are complex in THUNDER, irony recognition provides the elements
that are used in constructing the theme. Recognition of irony in a story is not the same as
finding the theme, but finding an irony is useful in identifying the elements that can be used
to construct the theme. Since irony recognition is accomplished as a side-effect of normal
explanation-based understanding, irony can be used by a reader (and writer) to find the
contrasts between expectation and outcome that will appear in the theme of the story.

6.4 Summary

THUNDER constructs themes of stories from belief conflicts and resolutions, A belief conflict
provides conflicting evaluative beliefs regarding a story character’s plan. When execution
of the plan results in a value success or failure for the character, THUNDER recognizes
a resolution to the conflict from the additional reasons that the resolution provides for
evaluative beliefs in conflict. The theme of the story is generated by reasoning about how
the resolution shows the beliefs in conflict to be correct or incorrect, and produces a statement
of generalized advice about reasons for evaluation.

To accomplish thematic story understanding from natural language text, THUNDER
uses a hybrid phrasal/demon-based architecture. The phrasal parser PPARSE is used to
produce a conceptual representation of input sentences in terms of the acts and events that
the sentence describes. Demons are used to integrate the acts and events produced by the
parser into the episodic representation of the story. Demons are self-contained routines that
are spawned to perform comprehension functions, such as event explanation and resolution
recognition. The episodic story representation stratifies the representation of the story into
four levels: (1) objective, (2) intentional, (3) belief, and (4) thematic. THUNDER constructs
the episodic story representation using the explanation-based model of story understanding
where knowledge structures at lower levels in the representation are explained by structures
at higher levels. In explanation-based understanding, the knowledge structure construction
is performed from the bottom-up to explain structures at the lower levels, and higher level
knowledge structures are used top-down to explain subsequent events. The theme of the
story is an explanation for why the story was written.

THUNDER generates multiple themes from the stories that are read, based on (1) the
difference between ethical and pragmatic reasons for the belief conflict, and how the resolu-
tion shows those reasons to be correct or incorrect, and (2) the different types of advice that
can be constructed from the conflict and resolution. Ethical reasons for the belief conflict
are used to generate ethical themes about how the resolution shows the plan to be right or
wrong because of the consequences for others, while pragmatic reasons are used to construct

125

pragmatic themes about the plan’s consequences for the planner. THUNDER generates two
types of advice: (1) reason advice about the reasons for evaluation that the story shows to
be correct, and (2) avoidance advice about how failures that occur as the result of erroneous
evaluations could be avoided.

The problem with thematic processing based strictly on explaining goal and planning
failures is that it fails to capture the understander's ethical interpretation. For example.
if THUNDER tried to recognize pragmatic planning advice from the hunters' value failure
when their truck blows up, all sorts of weird explanations associated with avoiding having
the rabbit run under their truck, such as breaking the rabbit’s legs so it is not able to run
to their possessions, or taking it out in the middle of a field away from their campsite, will
be generated. For most readers of the story, a plan failure explanation is not considered
when the story is read. The hunters’ value failure is deserved because of the reader’s ethical
evaluation of the hunters. Since ethics are heuristics for good moral behavior and BCPs
represent ethical violations, the resolution of the belief conflict is thematic.

CHAPTER 7

Knowledge Representation for Story Comprehension

Understanding stories is a knowledge intensive enterprise. The central problems for natural
language processing systems are how information is represented, organized, accessed, and
manipulated during story comprehension. Schematic approaches to knowledge representa-
tion (such as schemata [Borbrow and Norman, 1975; Rumelhart and Ortony, 1976], scripts
[Schank and Abelson, 1977], or frames [Minsky, 1975}) build schemata as knowledge skele-
tons that declaratively represent packages of concepts, variables, and relations. As text is
read, the schemata are instantiated from the text, and are then used to provide inferences
and expectations. The schema for a prototypical birthday party, for example, would have (1)
a sequence of events that normally take place at a birthday party, such as guests arriving,
playing party games, and cutting the cake, (2) variables for the birthday recipient, the kinds
of presents, and the flavor of the cake, (3) intentional relationships between the events of
the schema and the goals of the birthday participants, such as that the guests goal of hon-
oring the birthday celebrator is their motivation for bringing presents, and {4) interpersonal
relationships of ‘friends’ between the guests and the person celebrating the birthday and
‘parent/child’ between the host and the birthday celebrator. Once activated, the schema
can be used to infer that the presents are for the birthday recipient, and that not bringing
a present is a violation of the expected behavior of birthday party guests.

THUNDER uses two types of representational structures: (1) slot-filler structures to
represent conceptual objects, such as actions, events, goals, entities, and beliefs, and (2) se-
mantic networks with variables for role-binding to represent schemata. Schematic knowledge
representation in THUNDER is used to represent knowledge about language, planning, and
belief. Knowledge about language is encoded in phrases which associate patterns with con-
cepts. Plans and planning failures are recognized from text and instantiated in Plan Schema
(PSchema). PSchema are implemented in THUNDER as semantic networks constructed out
of goals, actions, and events. Belief conflict patterns (BCPs) are evaluative belief schemata.
BCPs are implemented as semantic networks of beliefs and warrants, as discussed in chapters
2,3, 4, and 5.

This chapter is organized in two parts. The first part presents the knowledge represen-
tation principles, primitives, and semantic-net types. The second part of the chapter shows
how the structures are accessed and used during story understanding. Since the majority
of THUNDER's processing during story understanding is spent constructing the intentional
level of the story representation, the representational structures and strategies for story un-
derstanding center around concepts such as actions, goals, and plans. The first part of the

127

chapter is devoted to discussing how plans and associated structures are represented. and
the second part discusses how plans are accessed and used to construct the episodic story
representation, and how plan failures are recognized.

7.1 Knowledge Representation Principles

To use schematic representations for story understanding, the objects that are used to con-
struct the schema and the constituent structure of the schema have to be described. The
conceptual representation for a text is the set of data structures that represent the ‘meaning’
of the text. There should be cognitive correspondence {Wilensky, 1987] between the text and
representation. Cognitive correspondence means that the representation for an ob ject should
be supported by how that object is cognized; in other words that the representation should
capture our intuitions about how the object is thought about. Cognitive correspondence is
a justification for having verbs correspond to predicates, and for constants to correspond
to individual objects. Cognitive correspondence is also a justification for canonical form
in representation, where items that are thought about similarly (have a similar meaning)
are represented similarly. For example, the following sentences are different lexically and
syntactically, but should be represented similarly because the conceptual content is similar:

7.1: John threatened the bank teller.
7.2: John pointed a gun at the bank teller and told her to give him the money.

To accomplish cognitive correspondence, knowledge is represented in THUNDER according
to the following symbolic representation principles:

1. Canonical form. Each representation type has a canonical form which means that
similar content will have similar form. For conceptual objects, canonical form means
that objects of the same type will have the same slots, and that the slots will have
the same semantic meaning. For semantic nets, canonical form means that each type
of net (1) is constructed out of a small set of node and link types, (2) is labeled in a
similar manner, and (3) that construction and retrieval functions will return similar
values for all nets of the same type.

2. Coverage. There is a limited number of primitives for each type of object and relation.
The primitives provide a taxonomy of the class of representation structure. By limiting
the number of primitives, THUNDER can analyze and construct structures from the
taxonomy, without worrying about extensions or special cases.

3. Explicitness. The knowledge representation makes all inferences explicit in the repre-
sentation. While natural language text leaves out information, the knowledge structure
makes all inferences explicit and accessible for the type of knowledge that the knowl-
edge structure represents.

4. Hierarchical organization. The knowledge representation should serve as a basis
for hierarchical memory organization, where general information {encoded as rules and
procedures} is associated with the higher levels and specific information is associated
with lower levels. Hierarchical organization of concepts supports (1) efficiently asso-
ciation of knowledge with concepts by allowing subclasses to inherit information from
superclasses, (2) abstraction of concepts. by allowing concepts to be reasoned about at
multiple levels in the hierarchv, and (3) extensibility, by being able to add new concepts
as new nodes in the hierarchy.

The symbolic representation principles are used in the construction of the taxonomies of
primitives that THUNDER uses for conceptual objects, and in the construction of the rela-
tions that are used to construct schemata.

7.2 Representing Actions and Motivation

Actions, events, goals, and entities are the primitives used for representing the conceptual
content of stories in THUNDER. Actions, events, goals, and entities are data structures
that have a set of named components (or slots) to represent the constituent subparts. The
slots are filled with other structures, which provides a unidirectional relation between the
object and the component. For example, actions have actor slots, which contain the person
performing the action.

Conceptual dependency (CD) theory [Schank, 1973; Schank, 1975] is a representation for
human action in terms of a set of primitive action types, listed in table 7.1. The slot-filler
representation for an action has a primitive action type, and an actor, object, and other
modifiers that are dependent on the act. For example, the CD representation of “John gave

Mary a television” is:

(action ’action.1

type atrans

actor (human ’humant
name john)

object (television ’tv1)

from &humani

to (human ’human?2
name mary))

The Lisp syntax for for conceptual objects is based on the notation used for Rhapsody
instances [Turner and Reeves, 1987). The functor of each object is its conceptual type
(action in the above example), followed by a reference name (action.1), and a sequence of
slot-filler pairs. The ampersand notation is used for reference, so &humani in the from slot

refers to the object defined in the actor slot.

129

Primitive Description

ATRANS | Abstract transfer of possession
ATTEND | Directing a sense organ

GRASP To take physical possession of an object
EXPEL To expel objects from the body
INGEST Internalizing a substance

MBUILD | Thought processes which create conceptualizations
MTRANS | Transfer of mental information

MOVE Movement of a body part

PROPEL | Application of a physical force

PTRANS | Transfer of physical location

SPEAK Any vocalization

Table 7.1: Conceptual Dependency Primitive Acts

The slot-filler representation for goals is similar to actions. Goals are mental states of
actors, and provide motivations for the character’s actions. The taxonomy of primitive
types of goals used in THUNDER is shown in table 7.2, based on [Schank and Abelson.
1977]. There is nothing particularly significant about these particular sets of action and goal
types, other than that the types can be used to approximately cover all human actions and
motivations. Similar taxonomies have been shown to be useful in several other projects (e.g.
[Riesbeck, 1975; DeJong, 1979: Lebowitz, 1980; Dyer, 1983; Wilensky, 1983a; Kolodner.
1984; Mueller, 1989)]).

Events represent state changes and are used to link motivation to achieved results,
THUNDER has to reason about the effects of actions, and whether the state caused by an
action achieves a goal state. To represent relationships between conceptual objects, bidirec-
tional links connect actions to events to the resulting objects. The links are named: actions
cause events which result-in object states. Each link has an inverse: events are caused-by
actions, and states result-from events. The reason for distinguishing events from actions is
that not all events have causing actions (e.g. “A tree falls in the forest”), and actions may
Cause several events. Events have three siots: (1) the object being changed, (2) the property
of the object being changed, and (3) the value that the property is being changed to. To
illustrate the relationship between actions and events, consider:

7.3: John gave a television set to Mary.

The representation structure of example 7.3 is shown in figure 7.1. In the figure, the action
is an ATRANS (abstract transfer of possession), the actor is John, the object is the television.
and the direction of the transfer is from John to Mary. The action causes the event. The
event represents the state change of the possession of the television (the poss-by prop) in

Goal Type Description Ezamples
Satisfaction goal | Recurring bodily desires S-Hunger,
(S-Goal) S-Sleep

Delta goal Desired state changes D-Proximity,
(D-goal) D-Control
Enjoyment goal Pleasurable activities E-Travel,
(E-goal) E-Entertainment
Achievement goal | Long-term attainment of A-Skill,
(A-goal} social status A-Good-Job
Preservation goal | Activated when status P-Health,
(P-goal) is threatened P-Possessions

Table 7.2: Schank and Abelson’s Goal Taxonomy

the event object) from John to Mary. When the event is realized, the television’s poss-by
property is set to Mary. (The implementation of rules for finding events from action are
shown in section D.2.5).

Action _Event

Type: Atrans Object: Teievision -
Actor: John causes | Property: Poss-by | resuits-in_ Jelevision
Object: Television From: John Poss-by: Mary
From: John To: Mary

To: Mary Status: Realized

Status: Realized

Figure 7.1: Action and Event Structure

Conceptual entities are the primitive objects and concepts that THUNDER needs to
reason about during story understanding, such as ‘dynamite’ and ‘phone calls.’ The entities
are organized in five hierarchies: physical, social, economic, mental, spatial, and temporal.
The actor type is a sub-type in the physical objects hierarchy used for conceptual entities
that can fill actor slots on goals and actions. The conceptual entities used in THUNDER
are listed in table 7.3.

7.3 Schematic Knowledge Representation
THUNDER represents schematic knowledge structures using semantic networks. Each class

of schemata is constructed out of a limited set of nodes and links; the nodes are conceptual
objects (events, goals, beliefs), and the links are named and restricted as to the types of

131

[LE’ntz’ty Type Used to represent
oil physical The oil that John decided not to change
body-part physical A part of the humag body
automobile physical What John robbed a bank to get
What John decided not to change to oil in
explosive physical The dynamite in Hunting Trip
fire-obj physical The object used to light the dynamite
document physical The book of black magic in Four O’Clock
actor physical Root of the actor hierarchy
animate actor The rabbit in Hunting Trip
human actor John, Oliver, the hunters
human-class actor Oliver’s political enemies
Who Oliver tried to shrink
institution social The bank John robbed
money economic | What John robbed the bank to get
What John saved by not changing the oil
communication knowledge Threatening phone calls and letters in
Four O’Clock
magic knowledge | The spell in Four O’Clock
time-obj temporal | Four o'clock
length-obj spatial Two feet tall
location spatial Under the truck
loc-type spatial Where the rabbit ran for “cover”

Table 7.3: Conceptual Entities in THUNDER

T

[ﬁom/to H Event | Goal ILPIan Schema |

Event forces | motivates | blocks
thwarts
achieves
Goal suspends | intends
enables
Act causes

Table 7.4: Intentional Links

objects that are connected. Within each schemata class there are a number of named schema
types: each schema type has a template containing variables specifying the structure of the
network. An instance of the schema type is a binding table associating variables with their
values. For example, planning schema (PSchema) is a class of schema, PS:Bank-robbery is
a type of PSchema, and the instance of PS:Bank-robbery where John robbed the bank is a
binding table with the ’robber variable bound to John.

In this section, the schema classes that are used in THUNDER are presented. The tables
of knowledge structures show the instances of the schemata that are actually implemented
in THUNDER to handle the example stories and sentences.

7.3.1 Plan Schemata

To represent and reason about plans and planning, THUNDER organizes goals, actions, and
events in schemata called plan schema (PSchema). The structure of PSchema is based on
memory organization packets (MOPs) [Schank, 1982] which were used to represent common
sense intentional knowledge about events as a declarative configuration of expectations. The
implementation of PSchema is based on the implementation of MOPs in the BORIS system
[Dyer, 1983]. A PSchema is a network of goals, actions, and events, connected by intentional
links (I-links) [Dyer, 1983], shown in table 7.4. The table is read as a link from the element
in the left column to the element in the row; an event achieves a goal, and a goal intends a
plan. The set of i-links used in THUNDER is based on the set used in BORIS, but is shightly
modified for the constituent structure of PSchema representation in THUNDER.

Figure 7.2 is a graphic representation of the PSchema PS:Bank-Robbery, which is the
intentional representation of ‘bank robbing.’ The robber’s goal of getting money is repre-
sented by the delta-control money (D-Cont$) goal at the top of the figure. The D-Cont$
goal intends a plan schema of three subgoals: (1) getting to the bank—the delta proximity
(D-Prox) goal to the location of the bank, (2) getting the money from the bank, and (3)
getting away from the bank. The schema does not contain sub-schema for achieving the
D-Prox goals; this represents that how the robber gets to the bank is not important to

133

PS-Bank-robbery

Goal .
Type: D-Cont$
Actor: ?robber

Subgoal/event.'_ (in temporal order —i- | :
sequence : Goal !
i | Type: D-Prox Type: D-Cont Type: D-Prox :
: Actor: ?robber Actor ?robber Actor: ?robber :
1 | To: (Location Object: ?bank-money To: (Location I
| Object: ?bank From: ?bank Qbject: ?bank !
{ Prep: at) To: 7robber Prep: not) (
e S T o= e ity P —— - |
intends Y achieves
PS-Threaten-agent J
Subgoalievent | Event Goal :
Sequence : Object: ?telier Type: D-Cont :
1 { Prop: Knows Actor: ?robber)
’.Anig.u‘. : To: ?threat Object: ?bank-money :
Type: Mtrans causles From: ?bank i
Actor: ?robber motivates To: ?robber !
Object: ?threat[=--w-eo__) oo ————d
From: ?robber . hieves
To: Melier Type: P-Heaith
intends Actor: ?teller

PS-Give

Type: D-Cont
Actor: ?teller
Object: ?bank-money
To: ?robber

Object: ?bank-money
Prop: Poss-by

To: ?robber
—y

causes

Goal
Type: P-Possassions
Actor: ?bank-depositors

/mw‘u

Figure 7.2: PS:Ba.ﬁk-Robbery

the meaning of ‘bank robbing,’ just that the robber does get to and leave the bank. The
goal of getting the money from the bank is achieved by threatening the bank emplovees.
represented by the sub-schema PS:Threaten-agent. PS:Threaten-agent is the schema for
threatening agents of institutions to execute an action that damages the institution. When
PS:Threaten-agent is included in PS:Bank-robbery, the variables are changed to reflect the
particulars of the bank robbery: the threatener is assigned to the robber, and the agent is
assigned to the teller. In the PS:Threaten-agent schema, the robber executes the action of
mental transferring (MTRANS) the threat to the teller. The MTRANS action motivates a
preservation of health goal for the teller, which in turn intends a plan on the part of the
teller to give the bank’s money to the robber (in the PS:Give schema). The act of giving
the money to the robber causes the robber to possess the money. The robber’s possession
of the money (1) achieves the robber’s goal of getting the money, (2) removes the threat to
the teller’s health (achieving the teller’s goal), and (3) thwarts the bank depositor’s goal of
keeping his money. The ‘?variable-name’ notation is used for the variables inside the schema.
When a variable is bound, all instances of the variable are replaced with the binding. For
example, if PS:Bank-Robbery were used to understand the sentence “John Dillinger robbed
a bank,” the variable ?robber would be bound to John Dillinger. The PSchema structure
also keeps track of which event and subgoals have been realized. When actions are realized.
inferences about the goals that have been achieved are made, and the upcoming events can
be predicted. Realized actions and events are also used to detect the violations that have
occurred, to understand goal failures and planning errors. Table 7.5 lists the PSchemata

used in THUNDER.

Associated with each PSchema are the following three tables:

1. Restrictions — For each variable in the schema, a list of the classes of instances that
can be bound to the variable. The restrictions table is used to implement constraints
on the type of each variable.

2. Pmetrics — A list of planning metrics for the schema (see section 2.6). High metric

values are used to index TAUs from the schema, so potential planning errors can be
identified. '

3. Defaults — For each variable in the schema, a default representation object. The
defaults are instantiated when the schema is evaluated, and when an unbound variable
needs to be generated by PGEN.

When PSchema contain constituent PSchema, an instance of the internal PSchema is con-
structed with its variables replaced by variables from the containing PSchema, and included
in the containing PSchema. For example, PS:Threaten-agent is contained in PS:Bank-
robbery, so an instance of PS:Threaten-agent is constructed with the ?threatener replaced
by the ?robber, the 7threatened-agent replaced by ?teller, and ?agent-for replaced by ?bank.
The constructed instance of PS:Threaten-agent is then linked as achieving the get-monev

135

MSchema ,

Description

PS:Bank-robbery
PS:Blow-up

PS:Buy

PS:Capture
PS:Cast-spell
PS:Change-oil
PS:Discredit
PS:Escape
PS:Express-belief
PS:Extortion
PS:File-info
PS:Fix-object
PS:Get-possession
PS:Give
PS:Give-possession
PS:Hunt
PS:Strategic-hunt
PS:Identify
PS:Know-info
PS:Light-fuse
PS:Phone-call
PS:Prevent-by-threat
PS:Public-opinion
PS:Punish-revenge
PS:Punish-instruct
PS:Punish-protect
PS:Recover-object
PS:Remove-control
PS:Reward-appreciate
PS:Reward-compensate
PS:Reward-instruct
PS:Run-away
PS:Sado-pleasures
PS:Save-money
PS:Send-letter
PS:Shrink
PS:Threaten-agent

PS:Threaten-for-ob ject

Robbing a bank to get money
Blowing up an object to destroy it
Buying an object to possess it
Capturing an animate to possess it
Casting a spell to invoke the effects of the spell
Changing the oil in a car to preserve the car
Creating negative beljefs about a person

Getting away from someone to achieve freedom
Tell others about beliefs

Threatening someone to make him execute a plan
Collecting information to know the information
Fixing a damaged object to preserve the object
Getting possession of a valuable object

Giving someone something

Giving someone a valuable ob ject

Killing animals for entertainment

Strategic hunting for entertainment

Identifying a member of a group

Acquire information by reading

Lighting the fuse of an explosive

Calling someone to transfer information

Prevent action execution by threatening someone
Changing the beliefs of the public

Retributive punishment

Instructive punishment

Preventative punishment

Recovering an object that has been lost or damaged
Removing control from an animate
Appreciative reward

Compensation reward

Instructive reward

Physical transfer away from someplace
Enjoying watching sadistic actions

Preserving control of money by not spending it
Sending a letter to transfer information
Changing the size of someone

Threatening the agent of an institution
Threatening someone to give you something

Table 7.5: PSchemata in THUNDER

event in the PS:Bank-robbery schema template. The implementation of PSchema is shows
n section D.3.

7.3.2 Goal Failure Schemata and TAUs

In the BORIS system [Dyer, 1983]. knowledge about plan failures was encoded in knowledge
structures called thematic abstraction units (TAUs). THUNDER uses TAUs to represent
expectations about character plans, and how the plan could be expected to fail. For exam.
ple, when THUNDER reads about a bank robbery, TAU:Busted is built to represent the
expectation that the bank robber could be arrested, causing his plan to fail. A TAU is &
type of factual belief; the TAU represents an understander’s expectation about the way that
an enacted plan will fail.

To support TAU recognition and processing, THUNDER uses goal-failure schemata (GF-
schema) to represent the mechanics of goal failures. GFschema are similar to PSchema.
but instead of linking actions and events to goals that a planner is trying to achieve, GF-
schema links events to the goals that the event causes to fail. For example, the GFschema
GF:damages is shown in figure 7.3. The figure shows an event changing the status of an object
which thwarts a P-Possessions goal of the owner of the object. The GFschema GF:Damages
is instantiated from events which cause changes in the status of objects to represent the value
failure which occurs when events damaging objects are recognized. The event in GF:Damages
is linked by a forced-by link to another event in the episodic story representation. The forcing
event can be an event in another plan or an event in the objective level of the the episodic
story representation.

Event Goal

Object: 7damaged-object | twarts | Type: P-Possessions
Propery: status Actor: 7object-owner

To: ?damaged-value Object: 7damaged-object

Figure 7.3: GF:Damages

In THUNDER, TAUs are represented by semantic networks that link a PSchema. a
mistake-state, and a GFschema. The representation for TAUs is based on the representation
used in CRAM [Dolan, 1989], where TAUs were composed of a mistake, which was limited
to erroneous planning choices, and a consequence, which was the goal failure that the actor
suffers. TAUs are represented more generally in THUNDER so that TAUs can be used as
expectations, and to support evaluation by providing expected value failures. In THUNDER.
TAUs are indexed from plans by plan metrics, and activated when plans are recognized. For
example, the PSchema PS:Blow-up has a high risk plan metric value which is used to index
TAU:Dangerous-object. TAU:Dangerous-object contains the advice contained by the adage
“If you play with fire, you're going to get burned,” by representing the potential goal failure

137

Name Description -+

GF:lnjury Injuries resulting from an event
GF:Damages | Damage to objects resulting from an event
GF:Arrest Getting arrested for committing a crime

Table 7.6: GFschemata used in THUNDER

Name Description

TAU:Dangerous-object | Using an object in a plan that could result in
health damage (“If you play with fire, you

are going to get burned.”)

TAU:Busted Executing a plan that could result in being arrested

Table 7.7: TAUs in THUNDER

that can result from being in proximity to a dangerous object when it is used. The structure
of TAU:Dangerous-object is shown in figure 7.4. The figure shows a mistake-state of being
in proximity to the event of using the dangerous object resulting in a a P-Health goal failure
in the GFschema GF:Injury.

Schema State

Planner: ?actor Object: ?actor

Event Prop: Location

Object: ?dangerous-object Prep: at

Prop: status Object: ?dangerous-object

To: ?used-prop _

(Mistake state)
GF-injury | orees
Event Goal

Object: ?actor thwarts -
Propery: heaith-status IVPO-. I;-Health
To: ?damaged-value ctor: 7actor

Figure 7.4: TAU:Dangerous-Object

The process of thematic recognition based on TAUs is discussed in chapter 6. The
GFschemata and TAUs that are implemented in THUNDER are listed in tables 7.6 and 7.7.
respectively. The implementation of GFschema and TAUs is shown in section D.3.

7.4 Implementing Story Comprehension

In THUNDER, story comprehension is the process of constructing the intentional representa-
tion of the story character's plans from the parsed acts and events. When acts and events are
loaded into the objective memory of the episodic story representation, THUNDER identifies
PSchema that contain or otherwise explain the items. The PSchema that are provided by
the parsed acts and events are then integrated with existing PSchema in the episodic story
representation, or used to find new PSchema. There are three processing issues involved
THUNDER's construction of the intentional representation of the story: (1) how potential
PSchema are accessed, (2) how PSchema are linked into the episodic story representation.
and (3) the processing that takes place when PSchema are added to the story representation.

The intentional links that are used to construct PSchema out of actions, events, and goals
are also used to connect elements across PSchema in the intentional representation of the
story. The links specify the relationships between PSchema in the story representation, and
each type of relationship forms a strategy for explaining plan elements. As new PSchema are
added to the story, variable bindings are propagated to the new PSchema, forming inferences
about the unmentioned actions. When actions and events occur, the effects of the events
are propagated across the intentional and causal links so that THUNDER knows what has
happened and what is expected to happen. For example, when the dynamite blows up, a
forces link is traversed to infer that the truck blew up and a thwarts link is traversed to mark
the hunters’ value failure as realized.

7.4.1 Episodic Plan Representation

The episodic representation of the story contains many PSchema connected together by
inter-PSchema links. Inter-PSchema links are based on the set of intentional links, but serve
to connect up the individual PSchema that make up the episodic representation of the story.
The inter-PSchema links connect internal elements of the PSchema (events, actions, and
goals), but are specialized so that THUNDER knows that traversing the links means that a
different plan is being processed and that variable bindings need to be adjusted. The set of
inter-PSchema links are:

1. Enables — A PSchema (the enabling PSchema) enables another PSchema (the enabled
PSchema) if the head goal of the enabling PSchema matches a subgoal in the plan of
the enabled PSchema.

2. Side-effect enables — An enabling PSchema side effect enables an enabled PSchema if
(1) a subgoal in the enabling PSchema's plan matches a goal in the plan of the enabled
PSchema, (2) the success state of a subgoal in the enabling PSchema’s plan matches
the success state of a subgoal in the plan of the enabled PSchema, or (3) if the state
caused by an event in the enabling PSchema matches the success state of a subgoal in
the enabled PSchema’s plan.

139

3. Instrumental-to — A PSchema (the instrumental PSchema) is instrumentai-to
PSchema (the instrumented PSchema) if the state achieved by the head goal of the
instrumental PSchema matches the state of an event in the instrumented PScherna.

4. Motivates — A PSchema (the motivating PSchema) motivates a PSchema (the moti-
vated PSchema) if the motivating PSchema causes a goal failure which in turn causes
the actor of the goal to execute the motivated PSchema.

5. Forces — A PSchema (the forcing PSchema) forces a GFschema (the forced GFschema)
if an event in the PSchema forces the event in the forced GFschema. The events that
events force are stored in the event~forces discrimination net (source code in section

D.2.5).

6. Suspends — A PSchema (the suspending PSchema) suspends a PSchema (the sus-
pended PSchema) if the suspending PSchema causes a goal failure that is more impor-
tant than the head goal of the suspended PSchema. Suspending relations are recog-
nized when PSchema cause goal failures that are more important than the value of the
completed plan.

7. Blocks — A PSchema (the blocking PSchema) blocks a PSchema (the blocked PSchema)
if the blocking PSchema causes a goal failure that matches a goal in the blocked
PSchema.

The following three inter-PSchema links are used to comnect subparts of punishment and
reward plans. In punishments and rewards, goal successes and failures are caused for others
pursuant to the higher level reward or punishment goal. In order to recognize that the
PSchema causes the failures and successes as a part of a more encompassing plan, the
following links are used:

1. GF-forced-by — The GF-forced-by link is used to connect a GFschema to a punishment
plan. The forced GFschema causes the goal failure that is the punishment.

2. GF-motivated-by — The GF-motivated-by link is used to connect a prevention PSchema
to a PSchema that motivates a goal.

3. GS-achieved-by — The GS-achieved-by is used to connect a reward PSchema to the
PSchema that accomplishes the reward.

How the inter-PSchema links are used can be illustrated by considering the representation
of the hunters’ and rabbit’s plans in Hunting Trip at the point after the rabbit has run
under the truck, as shown in figure 7.5. The figure shows the intentional horizontal level
of the story representation with two vertical levels, one for the hunters’ plans and one for
the rabbit’s plans. In the order of their recognition, the PSchemata in the figure are: (1)
PS:Capture, which motivates (2) PS:Escape, (3) PS:Blow-up which is enabled-by PS:Capture

and is instrumental-to (4) PS:Sado-pleasures, (3) PS:Light-fuse which enables PS:Blow-up.
{(6) PS:Remove-control which enables PS:Escape, which in turn side-effect-enables PS:Blow-
up, and (7) PS:Run-away, which enables PS:Escape.

LPS:Sado-pleasurEl

instr - .
instrumental-to si de-Lff oct-

enables

[PS:Remove-control

I
Hunter's Plans ; Dabbit's Plans

Figure 7.5: Intentional Structure of Hunting Trip

When inter-PSchema links are established between PSchema, the link provides an ex-
planation for one of the PSchema. For example, the motivates relationship between the
hunters’ PS:Capture and the rabbit’s PS:Escape explains why the rabbit wants to escape.
The explanatory capacity of the links is used by THUNDER to decide when to search for
new PSchema to add to the story representation, and when story acts and events have been
‘understood.” The source code used to implement explanation by constructing the inter-
PSchema links is given in section D.2.3. The process of PSchema explanation is described
in the next section.

7.4.2 Episodic Plan Construction

To construct the intentional level of the episodic story representation, THUNDER must
identify and link up individual PSchema. The starting point for plan construction is the
acts and events that are produced by the parser. The items produced by the parser are
ezplained by their relationship to PSchema in the intentional level of the representation. Each
individual PSchema is explained by its relationship to other PSchema, or by a relationship to
beliefs in the belief level of the story representation. The episodic plan construction process
has four components:

1. PSchema identification — Given a conceptual object (an action, goal, event, or state).
the PSchema identification component generates potential PSchemata.

141

2. Objective leve! ezplanation — For acts and events produced by the parser, the objective
level explanatjog methods test potential PSchema for explaining relationships.

3. PSchemg loading — Wheq , new PSchema is loaded, the PSchema loading function
checks for planning errors and goal failures, and Spawns demons to perform explanation
and new PSchema construction functions,

1. Intentional level ezplanation — When PSchema require explanation, the intentional

level explanations test for explaining relationships between the PSchema and exXisting
or new PSchema.

The function of each component is accomplished by a set of competing strategies tmplemented
by individual demons.

PSchema. The pointer is a part of the Pattern concept, so that wheq the pattern is
applied during parsing, the pointer ig becomes a part of the representation. When the
concept is used to search for PSchema, the pointer i3 used to retrieve a PSchema. For
example, the phrase <human:® “blew up” €animate>> is assoclated with the blow-up
event in the PSchema PS:Blow-up.

2. Unique associatjons. PSchema are indexed in THUNDER'’s long-term intentional
memory by unique patterns of conceptual objects with variables. PSchema are re-
trieved by unifying the search object and the Pattern, which provides the variable
bindings for the PSchema. The unique associations in long-term intentional memory
are implemented by a discrimination net. (See source code in section D.2.5 for the

implementation of unique associations.)

RT:Hunter contains an pointer to the PSchema PS:Hunt, representing the expectations
that hunters will hunt.

4. Recursive PSchema identification. If the PSchema identification process fails for
a give search ob ject, the process is called recursively on new objects generated from
the search object. The order of object generation is shown in table 7.8,

Object Type | Objects generated

Action Event caused, State resulted in
Goal Goal success state

Event State resulted in

Table 7.8: Objects Searched in the PSchema Identification Process

The source code that implements PSchema identification is shown in sections D.2.2 and
D.2.3.

Acts and events that are produced by the parser are loaded into the objective level of the
story representation. Three explanation methods are used for items at the objective level.
corresponding to three plan inference link types between objective memory and higher levels
in the episodic story representation:

1. A parsed item is contained by a PSchema if it matches an act or event in the PScherna.
When a containment relationship is recognized, the item is connected to the PSchema
by a contains link.

2. A parsed item provides a PSchema if the item generates a goal or state that can
be used to find a PSchema in long-term intentional memory. Parsed items can also
provide PSchema directly from lexical associations. When a providing relationship is
recognized, the item is connected to the PSchema by a provides-goal, provides-state.
or provides-plan link, depending on the way in which the item was used to find
PSchema.

3. A parsed item provides a belief if the item generates an evaluative belief. Acts and
events that describe the beliefs that characters hold are linked directly to the beliefs
in the belief level of the episodic story representation by provides-belief links.

To illustrate the three explanation methods for parsed items, consider the following examples:
2.8: John robbed a bank.

2.1: To save money, John decided never to change the oil in his new car.

7.4: Political fanatic Oliver Crangle is convinced that people who do not agree
with his political views are evil.

The parsed representation for example 2.8 is an ATRANS action with a pointer to the

PSchema PS:Bank-robbery. When the action is loaded into objective memory, the action is
used to construct and load PS:Bank-robbery into the intentional level of the representation.

143

the oil in his car. The object of John's decision is Tepresented as PS:Change-oil modified by a
‘never’ quantifier. When the action is loaded into objective memory, PS:Change-oil is buijt.
modified for the quantifier and loaded into intentional memory. A provides-plan link is used
to connect the action to the plan. Example 7.4 is also represented as an MBUILD action.

into objective memory, the strategy belief ig loaded into beljef memory and a provides-belief
link is used to connect the action to the belief.

The PSchema loading and explanation functions are executed when a new PSchema is
recognized. When a new PSchema js loaded into intentional memory, THUNDER performs
the following processing:

1. Check the PSchema for planner failures. There are three types of planner failures: (1)
when the schema specifically represents a goal failure for the planner, (2) when the
schema is modified by a quantifier, such as ‘never’ or ‘not’, and (3) when THUNDER
Tecognizes a state that causes the plan not to succeed. When planner goal failures are
recognized, THUNDER spawns a demon to monitor the goal failure for realization.

2. Check the PSchema for failures caused for others. f the failure is a value, THUNDER
finds and loads a recovery or avoidance plan, depending on if the value was motivated
or thwarted, respectively. Otherwise, THUN DER searches existing PSchema for the
other to see if the goal failure will block execution of any of his plans.

3. Spawn demons to find an explanation for the PSchema.
THUNDER uses the following methods to explain PSchema:

1. The head goal of the PSchema s a value. Finding a plan for a value initjates THUN.-
DER’s evaluation, inference, and belief conflict recognition cycle.

2. The PSchema was motjvated by a goal failure in another actor’s PSchema.
3. The PSchema enables an existing PSchema.

4. The PSchema is instrumental to an existing PSchema.,

5. A side-effect of the PSchema enables an existing plan.

6. The PSchema enables or is instrumental to another actor’s existing plan.
7. The PSchema enables a new plan.

8. The PSchema is instrumental to a gew plan.

Test Action \
Is the PSchema is a plan for a value? | Execute the evaluation, inference, m
and BCP recognition processing. EJ
Is the PSchema is instrumental-to or | Check the enabled plan to see if it enables |
enabling another actor’s plan? any of the actor’s existing plans. ‘
Does the PSchema thwarts a value Find and load a recovery plan. '
for the actor or another?

Does the PSchema motivates a value | Find and load an avoidance plaa. '
for the actor or other? :
|

Does the PSchema causes a value Spawn demons to check for plan

failure for the planner? suspension or blockage.

Does the PSchema causes a value Spawn a demon to see if the value |
failure for another? is part of a punishment PSchema.

Does the PSchema motivates a value | Spawn a demon to see if the motivated value
for another? 1s a part of a prevention PSchema.

Is the PSchema is a punishment Find the planner beliefs that

PSchema? motivate the punishment.

Is the PSchema is a reward PSchema? | Find the planner beliefs that
motivate the reward.

Does the PSchema force a GFschema | Call the plan failure recognition

for the planner? processing.

Table 7.9: PSchema Loading Rules

Special processing is done when actors do things that effect the plans of others, which is
represented by links across vertical levels of the intentional representation. For example.
when the hunters’ let the rabbit go, they are enabling the rabbit’s escape plan. Instead
of recognizing the action as an altruistic gesture, THUNDER continues processing to see if
the plan that the hunters have enabled has any relationship to their own active plans. By
checking PS:Run-away for side-effect-enabling relationships, THUNDER recognizes that the
rabbit running away also enables the hunters’ goal of having the dynamite away from them
in PS:Blow-up. So not only does releasing the rabbit enable one of the rabbits active plans.
it also enables a plan of the hunters. The rules and processes associated with PSchema
loading are listed in table 7.9.

Each of the rulesin table 7.9 implements a method of intentional explanation. In addition
to explaining the PSchema themselves, the rules identify special cases and special facets of
the PSchema that require explanation, and initiate the explanation processes. Some of the
special cases of explanation provide explanations for existing structures, and some add new
PSchema to the intentional level of the representation, which in turn have to be explained.

145

The PSchema identiﬁcation, loading and explanation functions implement the inferences
that are made about Planning and plag relationships from the Input events in the story.
Input events and recognized PSchema provide bottom-up inferences about the plans used
in the story, while the explanation Strategies provide top-down control over the inference
process.

7.4.3 Plan Failure Recognition

When a value failure is recognized as a part of GF schema, THUNDER checks to see if the
failure was the result of a planning failure. Planning failures are represented by structures
called plan-failures. Plan-failures are constructed by THUNDER to represent what a plapner
did wrong that caused his plan to fail. A plan-failure has slots for an actor, goal failure.
intended-state, realized-state, mistake-state and the action where the planning failure was
made. The intended-state js a state in a plan that the plan was intended to achieve, the
realized-state is a state that was actually achieved, and the mistake-state the state that the
planner failed to recognized that lead to the goal failure, For example, the following plan
failure is recognized when the hunters’ truck blows up in Hunting Trip (using pseudo-notation
for the fillers):

(plan-failure ‘plan-failurel
actor thunters
goal-failure loss of truck
intended-state dynamite not near the hunters
realized-state dynamite went under their truck
action let the rabbit go in &PS:Remove-control
mistake-state location of action was near their truck

Tke structure plan-failurey represents hunters’ planning error that ‘caused’ the loss of
their truck. The PSchema PS:Remove-control represents the part of the hunters’ plan where
they let go of the rabbit. The hunters’ intention was that the rabbit was going to run away
and take the dynamite with it, which enables the subgoal of the PSchema PS:Blow-up not

plan failing action is created by modifying the ATRANS actjon in PS:Remove-control which
represents the hunters’ action of transferring control of the rabbit back to the rabbit with a
location specifier for where the action took place,

The plan failure construction processing is (source code in section D.2.7):

1. Given a value failure and an action that “caused’ it, find the goal that the action wa-
intended to achieve.

2. From the intended goal and the realized value failure, generate the intended state ap.i
the realized state.

3. Backtrack from the intended goal and realized value failure to that action that caused
the value failure, undoing the effects of each event on the realized state. The resulting
state is the mistake state.

4. Build a plan-failure structure from the action, mistake state, realized value failure, and
intended goal. The semantics of the plan-failure structure are that the conjunction of
the action and the mistake state caused the value failure, instead of the intended goal.

To illustrate the plan failure construction algorithm, consider the processing that takes place
when the hunters’ truck blows up in Hunting Trip. Backtracking from the goal failure finds
the first action of the hunters to be when they let the rabbit go. The action was intended
to achieve a subgoal of PS:Blow-up: the goal of not being at the location of the dynamite
when it blows up. The realized state was that the rabbit was under the hunters’ truck. Since
the realized state is the location of the rabbit, undoing the effects of the events between
the hunters’ action and the goal requires spatial reasoning. Locations are represented in
THUNDER in terms of their relative position to other objects. For example, the goal state
of the goal of not having the dynamite at the hunters’ location location in PS:Blow-up ix
represented as:

(explosive ’explosivel
&loc-at (location ’locationl
‘object &hunters
‘prep ’‘not))

The state of the rabbit being under the truck is:

(animate ’rabbitl
'"type ’'rabbit
&loc-at (location ’location2
‘object &truck
‘prep ’under)
kattach &explosivel)

Backtracking from the goal to the event goes through two events: (1) the rabbit running
under the truck and (2) the hunters’ releasing the rabbit. Undoing the effects of the first
event changes the location of the rabbit from under the truck to near the truck. Undoing
the effects of the second event assigns the location of the event to the location of the rabbit.
The resulting mistake state is the location of the release event near the hunters’ truck. The
structure plan-failure1 is used to generate one of the answers to the question:

147

> Why did the truck blow up?

BECAUSE THE HUNTERS LET THE RABBIT GO NEAR THEIR TRUCK.

Plan-failures represent the cause of failure for specific plans, while TAUs represent gen-
eralized planning information based in recognized patterns of how plans fail. To build TAUs
from plan failures, (1) plan failures would be recognized and indexed in memory with the

planning situation where the failure was recognized, and (2) generalizations about plan fail-
ures result in new TAUs being created.

7.5 Summary

The knowledge representation for THUNDER is based on two representation techniques:
(1) slot-filler structures for conceptual objects such as actions, goals, and beliefs, and (2)
semantic nets for schemata for plans, goal failures, and belief conflicts. The knowledge
representation structures are constructed to (1) be canonical in form, (2) cover the scope of
the concept being represented, (3) make all knowledge explicit in the representation, and (4)
serve as a basis for hierarchical organization of the structures.

The primary class of schemata used in THUNDER are plan schema (PSchema) which
represent individual plan elements. PSchema are semantic networks of goals, actions, events.
and constituent PSchema connected by intentional links (i-links) such as intends, achieves
and thwarts. Other classes of schemata are goal failure schema (GFschema), which represent
the mechanics of goal failures, and thematic abstraction units (TAUs) which represented
abstract knowledge about how plans fail.

During story comprehension, the intentional level of the episodic story representation is
constructed out of PSchema connected by inter-PSchema links. The inter-PSchema links
provide explanations for why the PSchema are included in the representation,. THUNDER s
PSchema identification and loading processing is motivated by finding explanations for the
PSchema in the story representation. From natural language text, the parser produces an
objective level representation of the acts and events in the input sentences. The acts and
events are used to search long-term intentional memory for PSchema that contain them.
Four methods are used to access PSchemata in long-term intentional memory: (1) lexical
indexing, (2) unique associations, (3) indexing structures such as role-themes and settings.
and (4) recursively from objects generated from the search object. When a PSchema is
loaded into intentional memory, the PSchema is checked for planning errors and goal failures
that would cause modifications to the existing plans. Loading rules are used to initiate
additional explanation processing. Explanations can be provided by existing PSchema in
the story representation, or can motivate the search for new PSchema.

In addition to constructing the intentional level of the story representation, THUNDER
uses planning knowledge to identify planning failures. Plan failures are constructed by
THUNDER from value failures that are self-caused by actors. The plan failure construction

algorithm backtracks from the state causing the failure and the intended state to the actor's

last action to identify the mistake that the actor made. By identifying the causes of plan
failure, THUNDER provides a basis for TAU construction.

149

CHAPTER 8

Natural Language Parsing and Generation in
THUNDER

The natural language component of THUNDER uses phrasal parsing and generating pro-
grams called PPARSE (Phrasal PARSEr) and PGEN (Phrasal GENerator) [Reeves, 1989b)].
PPARSE and PGEN were developed for natural language 1/0 with the Rhapsody knowledge
representation package [Turner and Reeves, 1987]. Both programs used a database of knowl-
edge about language encoded as phrases. Each phrase associates a conceptual object with
a linguistic structure, such as a word, idiom, or syntactic form. PPARSE takes as input a
natural language sentence as a list of atoms, and uses the phrases to produce a conceptual
representation of the sentence. PGEN does the reverse process; the input is a conceptual
object, and a list of natural language words is produced.

Phrasal parsing integrates syntactic and semantic information during the parsing process.
Phrasal parsing evolved from case grammar [Fillmore, 1968] where syntactic rules were used
to fill in semantic case frames. Becker {Becker, 1975) recognized that idioms could be treated
as individual syntactic units, and thus that the base unit for the lexicon should not be single
words but phrases. Functional grammar [Kay, 1979] extended the approach by using a single
kind of formal structure to specify patterns of features, function assignments, lexical items.
and constituent orderings. Different variations of functional grammar have been proposed.
depending on the focus of research and type of formal structure used. For example, lexical-
functional grammar [Bresnan and Kaplan, 1982) emphasizes the role of the lexicon within
a transformational grammar approach, and definite-clause grammars [Pereira and Warren.
1980] focus on how to specify lexical and syntactic information in logic. (See also Winograd
[1983, pp. 311-351] for an overview of function grammars.)

THUNDER uses a hybrid architecture: PPARSE/PGEN are used to apply knowledge
about linguistic structure in parsing and generation, while semantic interpretation and rea-
soning are done using demon-based processing. Demons are fired from the phrases to perform
semantic attachment and explanation tasks that are recognized from surface structure. The
general strategy taken in THUNDER is that the parser should handle the application of all
language-specific knowledge, and that decisions requiring semantic reasoning, reference to
context, or other extra-linguistic knowledge are external to the parser.

This chapter is organized as follows: First, the differences between demon-based
and phrasal parsing are discussed, and the advantages that phrasal parsing has for a
project like THUNDER are presented. Second, the implementation of phrasal parsing in
PPARSE/PGEN is presented. Third, the issues that are involved in phrasal parsing and

natural language processing are discussed, including the domain of the parser, the organi-
zation of the lexicon, and structural ambiguity. Fourth, packages that were implemented to
handle reference and top-down ambiguity resolution in THUNDER are presented. Fifth. the
integration of phrasal parsing with THUNDER's demon-based processing is discussed. Ip
the final section, the components of THUNDER's question answering model are presented:
the types of questions THUNDER handles, and the methods of searching for answers.

8.1 Demon-based vs. Phrasal Parsing

IRON-FINDER [Reeves, 1986] used the DYPAR parser [Dyer, 1983], in which demons were
used for all phases of the parsing and understanding process. In DYPAR, the lexical entries
provide conceptual representations for the words and/or demons to search and conmstruct the
episodic representation of the narrative. The demons used in IRON-FINDER fell into two
main classes: (1) parse demons which are used to disambiguate and fill slots in the event
structure created by reading a clause or sentence, and (2) explanation demons that organize
the events in episodic memory. For example, in DYPAR the lexical entry for the word “ate”
is:

(INGEST
ACTOR ?eater <= (expect ’'human ’before)
OBJECT 7eaten <= (expect-pred edible? ’after))

The lexical entry is a frame for the CD action INGEST with two slots: the actor who is
eating and the object that is being eaten. The fillers of those slots are variables (denoted by
the ?name notation) which will be set by the ezpect demons. The ACTOR slot is expected to
be filled by a conceptual representation of a human appearing before “ate” in the sentence
(as in “John ate...”), and the OBJECT slot is expected to be filled by a conceptual entity that
satisfies the edible? predicate appearing after the word “ate” in the sentence (as in “... ate
an apple”).

The advantages of demon-based parsing are (1) as an effective mechanism for delayed
procedure activation, (2) easy implementation of expectations, and (3) an unified mechanism
integrating parsing with inference and memory search. However, it is difficult to implement
demons to recognize structural regularities in text. In order use the knowledge provided by
the syntactic structure of the text, THUNDER uses a phrasal parser to produce a preliminary
representation, and then a demon-based control structure integrates the concept into the
representation of the story and performs explanations.

Additionally, phrasal parsing has the advantage of separating the representation of lin-
guistic knowledge from processing considerations. Representing knowledge about language
in phrases is a parsimonious and canonical method of specifying knowledge about words.
idioms, and syntactic rules that is independent of the parsing and generation processes. The
advantages of an independent phrasal lexicon are that (1) comstruction of the lexicon is

151

modular, (2) the organization and access methods for phrases can be dependent on how the
language is used, and (3) the same library of phrases is used for both parsing and generation.

8.2 PPARSE and PGEN Overview

The implementation of phrasal parsing and generation used in PPARSE/PGEN is based
on the PHRAN phrasal parser [Wilensky and Arens, 1980; Wilensky, 1981; Jacobs, 1983h:
Arens, 1986)]. Lexical entries are associated with functional groups of text—words, idioms.
and syntactic patterns—and are composed of a pattern and a concept (termed a PC pair).
For example, the lexical entry for the word “robbed” could be defined as:

(phrase:define ’ph-robbed

(comment "robbed")

(pattern ’robbed)

(concept (action ’type ’atrans
'actor T?robber
’object ?money
from ?victim
‘to ?robber
'time 'past
’in-pschema &PS:Robbery)))

The pattern is the surface word “robbed” and the concept is the CD action ATRANS in
the plan schema for generic robbery PS-Robbery. The ?variable-name notation is used
to denote variables in the conceptual objects. Patterns can be composed of sequences of
conceptual objects to match syntactic patterns. For example, the entry for the pattern
human-robs-bank using the subject-verb-object syntax is:

(phrase:define ’ph-human-rob-bank
(comment "<human> <action:rob> <financial-institution>")
(pattern ?*robber+ihuman

(action ’type ’atrans
‘actor 7?robber
’object ?money
'from ?victim
‘to ?robber
'time 7tense
'in-pschema &PS:Robbery
?*bank+kfinancial-institution))
(concept (action ’type ‘atrans
‘actor “?robber

‘object 7money

"from (human ’employee-of ?bank)
‘to ?robber

'time 7tense

’in-pschema &PS:Bank-Robbery)))

The pattern is the three ordered constituents ?robber, the atrans action, and ?bank.
The ?+robber+&human notation is used for phrasal variables. The phrasal variable
?*robber+&human will match a conceptual object of the class &human and will bind the
variable ?robber to that conceptual object. Variable matching is done using unification.
so variables of the same name only match conceptual objects that are the same. When
the human-rob-bank pattern is matched, the PSchema is specialized from generic robbery
(PS:Robbery) to bank robbery (PS:Bank-robbery).

In addition, phrases can have optional test and procedure functions for parsing and gener-
ation, specified by parse-test, parse-proc, gen-test, and gen-proc entries in the phrase.
The test function is evaluated before the phrase is applied and allows for the testing of con-
ditions that cannot be tested for in the unification of the pattern or concept to the elements
of the parse tree, such as specific bindings of variables or abstract characterizations of syn-
tactic environments. The procedure functions allow the phrase to execute procedures after
the phrase has been applied, such as spawning demons or rearranging the parse tree.

PPARSE and PGEN both use the same set of phrases. The phrases are stored in dis-
crimination nets (d-nets) [Charniak et al., 1980, pp. 162-176] to quickly access candidate
phrases. For parsing, the phrases are indexed in a d-net by the pattern, and for generation
by the concept. Since patterns and concepts contain variables, the d-net returns a candidate
set of phrases which are then tested for variable constraints and user specified tests before
being applied. o

During parsing, words are read and matched against the patterns in phrases. If no
pattern matches, the words are kept in a list in order to match patterns with more than
one constituent. When a pattern matches, its constituents in the list are rewritten to the
concept in the phrase. The process results in the bottom-up construction of a parse tree
where each node is the concept of a matched pattern.

Figure 8.1 shows how words and constituents are successively re-written for the sentence
“John robbed a bank.” The word “John” matches the pattern for the conceptual representa-
tion of a human named John, and “robbed” is represented as an action in PS:Bank-robbery.
The word “a” does not have its own phrase, so the parser reads the next word “bank”, and
matches the pattern “a bank” which has the representation object for financial-institu-
tion as its concept. The human-rob-bank pattern then matches the top nodes of the tree.
yielding the action in the bank robbery plan schema as the parsed representation of the

sentence.

PGEN generates an output list of natural language words from a given conceptual object.
PGEN constructs a generation tree beginning with the input concept at the root node. The

153

*John" _
(human ... “robbed” i
|
|
(humaa ... (Action Atrans “a” “bank” ‘
in PS:Robbery) 1
(human ... (Action Atrans “a” (financial-institution . . .
in PS:Robbery) \
(human ... (Action Atrans (financial-institution . ..
\ in PS:Robbery) /
(Action Atrans in PS:Bank-robbery)

Figure 8.1: Example Parse Tree Constructed by Rewriting Patterns

root object is matched against the concept section of phrases, and new nodes are added to
the tree for each of the pattern elements of the matching phrase. The process is repeated
depth-first for each of the new nodes until words (Lisp atoms) are reached at the leaf nodes
of the tree. Since phrase patterns generally break apart the concept into constituent parts.
this process is called recursive descent generation.

The generation process can be illustrated by reading Figure 8.1 from the bottom up:
PGEN takes as input the ATRANS action with the robber and bank variables instantiated.
The concept matches the human-rob-bank phrases, so new nodes are constructed for the
robber, the rob action, and the bank, with the variable bindings passed to the new nodes.
This process is repeated for the human, generating his first name “John,” and the action
is realized with the word “robbed”. The bank concept re-writes to the article+institution
pattern, which in turn re-writes to “a bank.”

PPARSE/PGEN were developed as tools for language analysis and use by programs using
Rhapsody. The aims of PPARSE/PGEN are (1) to provide a simple, extensible mechanism
for producing conceptual representations from text (and vice versa), and (2) to provide
a readable, declarative representation for the linguistic knowledge used by the parser and
generator. The restrictions placed on the PPARSE/PGEN user are those of symbolic, frame-
based knowledge representation and computing. PPARSE, PGEN, and Rhapsody were
designed to allow the user to specify the knowledge used by their programs, without making

a priori representational decisions about the content of the knowledge that the program uses.
The generality of phrases, the form of the conceptualizations underlying the language, and
the representation of linguistic knowledge are in the hands of the PPARSE/PGEN user.
However, computational models of natural language parsing generation are research topics
and some design decisions in PPARSE/PGEN have been made in the interests of modularity
and ease of use, instead of for cognitive validity or optimal performance.

A technical description of PPARSE and PGEN are given in appendix C, which contains
detailed descriptions of the functions used, the definition of phrases, and the parsing and

generation algorithms, For sample phrases used in THUNDER, see the source code in section
D.4.

8.3 Issues in Phrasal Parsing and Lexicon Construction

There are three general problem areas involved in constructing a phrasal natural language
parser/generator: (1) the domain of the parser, (2) phrase definition and lexical construction.
(3) and how the parser handles structural ambiguity. In this section, each of these issues are
discussed, and how they were addressed in PPARSE/PGEN for THUNDER is presented.

8.3.1 The Domain of the Parser

What is the separation point between parsing, inference, and reasoning? For example. a
program that reads the sentence:

John wanted a new car, so he decided to rob a bank.

should be able to infer that John is going to get the money from the bank, and use the
money to buy a new car.! A high level phrase for for the sentence might be:

Pattern: «goal’» *comma* so <action®»
Concept: <action» achieves <goal»

The concept represents that John is robbing the bank to achieve his goal of acquiring a
new car. However, there is an intervening step between the bank robbery and John getting
the car: John has to take the money and buy the car. The issue is whether the parser should
find the causal chain from bank-robbery = get-money = buy-car = possess-car, or just
recognize that there is an unspecified causal relation between the clauses “John wanted a
car” and “John decided to rob a bank™ and pass it on to plan recognition routines.

The two extreme viewpoints on this issue are taken by (1) syntactic parsers (e.g. {Woods.
1970; Marcus, 1980]), where the output of the parser is a syntactic parse tree which is then

'A more intelligent program might wonder why John does not just steal a new car, and skip the
middleman.

155

taken as input by a semantic laterpreter or inferepce engine, and (2) integrated parsers (e.g.
[Dyer, 1983]), where the parser has full access to the conceptual strycture being produced.
and augments the structyre as the text is read. The advantages of syntactic parsing are

8.3.2 Phrase Representation and Lexical Construction

Researchers in phrasal natural language systems have identified the following desiderata for
phrase representatjon:

¢ Parsimony: each phrase should represent a specific piece of linguistic knowledge, and
duplication of knowledge should be avoided.

* Uniformity: a canonical representation should be used for aj linguistic knowledge.

* Processing Independence: the representation of linguistic knowledge should be inde-
pendent of the language tasks that use the knowledge [Arens, 1986].

* Extensibility: it should be possible to incrementally add new phrases to the system
[Jacobs, 1985a].

® Adaptability: the representation of linguistic knowledge should be applicable to new
domains [Jacobs, 1985a).

® Learnability: the phrase representatjon should, in principle, support mechanisms for
new phrases to be acquired (Zernik, 1987; Zernik and Dyer, 1987].

Uniformity of representation and processing independence are both provided by
PPARSE/PGEN, but lead to problems meeting the other criteria. PPARSE/PGEN do not

make a distinction between linguistic and semantic data in the representation of phrases, so

particularly apparent during generation, as there is no mechanism for specifying the syntac-
tic environment (“casting” [Hovy, 1988]) for how an object should be generated, except by

Parsimony is primarily a function of the underlying knowledge representation, and is
difficult to achieve totally. In PPARSE/PGEN some duplication cannot be avoided because

156

of the frame-based nature of the representation. The rule “The subject of an active verb is
the actor” is expressed in each clause to action-frame pattern as a variable binding, and thus
the knowledge is duplicated in each phrase. If the phrases are organized in a generalization
hierarchy, general information can be represented in the high level phrases, and more spe-
cific phrases would inherit most of the general information while representing idiosymcratic
exceptions [Jacobs, 1985a; Zernik, 1987]. PPARSE/PGEN use d-nets for phrase organiza-
tion and access, which automatically creates some of the hierarchy. Patterns with variables
are indexed higher in the net, while patterns with specific content are indexed lower. How-
ever, other pattern constraints in the phrases are not used by the d-net, such as the class
restrictions on phrasal variables and applicability test functions.

Extensibility, adaptability, and learnability of phrases are accomplished by systems that
design the phrase representation for integration with the knowledge representation and pro-
cessing tasks [Jacobs, 1985a; Zernik, 1987). These programs tightly couple the phrase repre-
sentation with phrase organization, defeating the processing independence principle. Since
PPARSE/PGEN are designed to be independent of a specific knowledge representation, in
addition to being independent of processing tasks, phrase organization is not made depen-
dent on the knowledge representation. PPARSE/PGEN are adaptable and extensible, but
only in the sense that the user can incrementally add phrases.

8.3.3 Structural Ambiguity

Structural ambiguity is a property of sentences that have multiple syntactic parse trees. For
example, the following sentence has an ambiguity concerning where the prepositional phrase
should be attached:

8.1: I saw the man with the telescope.

In the parse of example 8.1, the prepositional phrase “with the telescope” can be attached to
the main clause (the telescope was used to see the man) or to the object (the man possessed
the telescope). In some cases semantics can be used to resolve the ambiguity, as in the

example:
8.2: I saw the Grand Canyon flying to New York.

In example 8.2, the prepositional phrase attachment can be done by knowing that “the
Grand Canyon” is not something that can fly.

Structural ambiguity is a particular problem for phrasal parsers. To handle structural
ambiguity the parser either (1) has to delay phrase application until potentially ambiguous
constructs have been parsed, or (2) has to be able to backtrack when a structural ambiguity
is recognized.

157

Pattern: « human] > € verb to-see» <human2:s.
Concept: (action type:attend actor:human] object:huma.nZ)

Pattern: <action>> <Kprep-phrase prep:with object:?object >
Concept: (action instrument:?object)

to parse example 8.1 will result in the conceptualization:

(action nil

’type ’attend
‘actor reader
‘object the man

’instrument telescope)

With these phrases, the prepositional phrase “with the telescope” is attached to the action.
instead of to “the man". Even with the following phrase added to the lexicon:

Pattern: <humans <prep-phrase prep:with object:?object>
Concept: (human Possess:7object)

the human-saw-human pattern would match first, and the result would be the same.

One possible solution would be to add the phrase:

Pattern: <actions <prep-phrase prep:with ob ject:?object>
Concept: (action ob ject: (human possess:Tobject))

and then use semantic routines called from the applicability tests of the phrase to choose
between the two competing <action™ < prep-phrase:» patterns.

The design decision not to allow the parser to backtrack was made for the following

1. Backtracking points are difficult to recognize. Since phrases have multiple constituents.
PPARSE has to keep a list of top-level nodes in case the next word or phrase matched
completes a phrase. Also, since PPARSE can be used to produce a list of concepts (a
sequence of actions, for example), it can not recognize a backtrack point when no phrase
prefixes match.

2. Parsing problems based on structural ambiguity are sometimes the result of too little
semaatics to distinguish between phrases. Syntactically ambiguous sentences usually fall

1EQ

into two classes: (1) where semantics can be used to resolve the ambiguity (e.g. *I saw the
Grand Canyon flying to New York.”. or (2) where there is an ambiguity that can not he
resolved (e.g. “I saw the man with the telescope”). Backtracking does not work generally
for either of these cases.

3. Having to backtrack during parsing is the symptom of a deeper problem with symbolic
understanding systems. Human readers have the ability to dynamically switch between
interpretations as more information becomes available, whereas symbolic natural language
systems have to commit to variable bindings and stick with them. For example, consider
following sequence:

8.3: John kicked the bucket. ...
8.4: ... His wife was very upset. ...
8.3: ... He started to clean up the mess.

The interpretation of the phrase “kicked the bucket” goes from “John is dead” after sentence
8.4, to the literal interpretation after sentence 8.5.

4. Real backtracking by human readers is fairly rare. The only class of sentences where
human reader consciously backtrack are garden path sentences, such as “The horse raced
past the barn fell.” For most applications, garden path sentences do not occur, or can be
re-written.

8.4 Packages for Common Linguistic Problems

While PPARSE/PGEN were designed to be application independent, there are two prob-
lem areas that every natural language program has to deal with: (1) pronoun reference.
using pronouns to reference items that have previously been mentioned, and (2) lezical dis-
ambiguation, selecting correct word senses from words that have multiple meanings. Since
these problems occur in almost every natural language sentence, mechanisms were developed
to deal with the problems in THUNDER and were built into PPARSE/PGEN. This section
describes both problems, and the solutions provided by PPARSE/PGEN.

8.4.1 Pronoun Reference

Pronouns are used to refer to people and things that have been previously mentioned in a
text. There are three types of problems in parsing pronouns:

1. When should the reference be resolved? Should the reference be resolved when the
pronoun is read, or should the parser wait until a sentence or clause boundary is reached in
order to exploit semantic constraints? For example, in the following sequence:

159

8.6: John hit Bill, and he . . .
8.7: ...hurt his knuckles.

8.8: ...dropped to the floor.,

8.9: John looked at Bill, and he said “Hejlo.”

The most probable speaker is Bill, but it could be John (the sentence would more likely be
written “John looked at Bill and said ‘Hello’ 7).

2. What strategies should be used to find the reference? Some sources of constraints on
the reference of a pronoun are (1) the pronoun itself, i.e. ke can only refer to male humans,
(2) the range of possible referents that have been mentioned or are currently in focus [Sidner,
1983], (3) semantic constraints, such as that the person hitting will hurt his knuckles, and
that the person hit will drop to the floor.

3. How should forward or null referents be recognized and handled? Some pronouns are
used as initial mentions of people. For example, if a text began:

8.10: He was tall, dark, and handsome.

The parser should produce the concept for a tall, dark, handsome, male human, even though
there is no referent for he. And for:

8.11: It was a dark and stormy night.

The parser has to recognize that it refers to the time of day, and the sentence is being used
to convey the setting.

To handle pronoun reference, PPARSE/PGEN provide a set of parse-proc and gen-test
functions in the lexref package. These functions save potential referents in global data
structures, fire demons during parsing to resolve pronoun references, and test for pronoun
applicability during generation. To illustrate how the fuactions work, consider the definitions
of the phrases “john” and “he”:

180

(phrase:define ’ph-john
(comment "John")
(pattern ’john)
(concept (human 'proper-namel
'first-name ’john
‘gender ‘male))
(parse-proc (lexref:parse-save-ref *lexref-people*))
(gen-test (lexref:not-most-recent-ref
?proper-namel
&proper-namel
*lexref-peoplex))
(gen-proc (lexref:gen-save-ref *lexref~people*)))

(phrase:define ’ph-he
(comment "he")
(pattern ‘he)
(concept (human ’male-promouni
‘gender ’male
’number ?num))
(parse-proc (lexref:spawn-resolver-demon
?male-pronouni
’nomative-pronoun))
(gen-test (lexref:most-recent-ref
?male-pronounli
&male-pronouni
*lexref-peacple+)))

The parse-procin the phrase for “John” uses the function lexref : save-ref to save the
conceptualization for John in the global list *1exref-people+. The parse-proc for “he”
uses lexref: spawn-resolver-demon to search *lexref-people* for a concept matching the
concept of the “he” phrase. The reason that a demon is spawned, instead of doing the search
when “he” is parsed, is so that the search function can use the context conceptualization in
which “he” was used. '

During generation, gen-test functions are used to decide when to use a pronoun. The
function lexref:most-recent-ref tests *lexref-pecple* to see if the object being gener-
ated is the most recent object that matches the conceptualization in the phrase. So, if the
conceptual object for “John” is being generated, and “John” is the most recent male human
who has been generated, the pronoun “he” will be used. A detailed description of the lexref
package is given in appendix C.

161

8.4.2 Lexical Disambiguation

To integrate top-down information into the parsing process, PPARSE uses special processing
to match ambiguous words. For example, the word “bank” can be a river bank (as in “the
west bank of the Mississippi”) or a financial institution (as in the kind of bank that John
robs). The ambiguity is represented by a special representation cjass called ambiguous-word
which holds the competing senses of the lexical item. The entry for “bank” is:

(phrase:define
(comment "bank (ambiguous)")
(pattern ’bank)
(concept (ambiguous-word
’sense0 (location
‘of ’river
’pPrep ’next-to)
'sensel (financial-institution
‘name ?name))))

When an attempt is made to match an element of a coustituent pattern against an ambiguous
word, each of the senses of the word are matched. If any of the senses matches, that sense
is selected and the pattern is used. For example, the parse tree for “John robbed a bank”
before the application of the human-rob-bank pattern above is shown in figure 8.2. Since
the human-rob-bank pattern matches if the financial-institution sense of bank is used, the
human-rob-bank pattern is used to construct the meaning of the sentence. The resulting
parse tree after the human-rob-bank is matched is shown in figure 8.3

The representation class ambiguous-word can hold up to 10 word senses, labeled sensa0
- sense9. Phrases and concepts can treat concepts of the ambiguous-word class just as any
other representation class; they can be included in patterns, concepts, and phrasal variables.

8.5 Integrating Phrases and Demon-based Processing

In THUNDER the parser is used to construct an action/event representation of the input
sentence. However, many structural patterns of language will indicate intentional and belief
leve] relationships between the components of the sentence. For example, the following
sentence contains the pattern €goal’» *comma* <actionp:

2.1: To save money, John decided never to change the oil in his new car.
Associated with the pattern is the knowledge that the action will be a part of a plan that

will be used to achieve the goal. At some point in the processing of example 2.1, John's goal
of saving money has to be linked to his plan of not changing the oil. The question is when

162

(Human {Action (Ambiguous-word
name: John} type: Atrans sensel: (Location
actor: ?robber of: river
object: ?money prep: next-to)
from: ?victim sense2: (Financial-institution
time: past name: 7name)
in-pschemas:) ref: indef)
PS:Robbery)
| + /N
John robbed a (Ambiguous-word
sensel: (Location
of: river
prep: next-to)
sense2: (Financial-institution
name: 7name))
bank

Figure 8.2: Example Parse Tree before Matching the Syntax Pattern

in the understanding process to construct the intentional relationship. The problem with
immediately constructing plans when the phrase is recognized is that the plan recognition
processing may be premature; there may be additional information upcoming in the sentence
that would constrain the types of plans that contain the action, or there could be unresolved
references in the constituents that make plan recognition difficult.

In THUNDER, this problem is addressed by having demons spawned from phrases to
retain knowledge about the intentional or belief relationships, but to delay processing until
parsing is complete. When THUNDER reads example 2.1, and recognizes the <€goal»
comma <action» pattern, the demon act-enables-goal is spawned with its parameters
from the constituents of the pattern. The concept of the < goal’» *comma* <action’» phrase
is the action, and the goal and intentional relationship are saved in the demon. The resulting
concept from parsing example 2.1 is an MBUILD action (from “decided”) which is loaded
into objective memory. When demons are spawned to explain the action at the intentional
level, the act-enables-goal demon is run to find an enabling relationship between the plan
that contains the action (not changing the oil) and a plan that contains the goal of saving
money.

The demons that are fired from phrases during parsing are listed in table 8.1 (source code
in section D.2.3). '

163

(Action

type: Atrans

actor: (Human name: John)

object: money

from: (Human employee-of:
(Financial-institution

name: ?name)
in-pschema: PS:Bank-robbery

time: past)
(Human (Action (Ambiguous-word
name: John) type: Atrans sensel: (Location
actor: ?robber of: river
object: ?money prep: next-to)
from: ?victim sense2: (Financial-institution
time: past name: 7name)
in-pschema:) ref: indef)
L PS:Robbery) /\
John rob‘bed a (Ambiguous-word
sensel: (Location
of: river
prep: next-to)

sense2: (Financial-institution
name: ?name))

bank

Figure 8.3: Example Parse Tree after Matching the Syntax Pattern

- o~ o

Demon

Description

If-explained

If one concept in the pattern is explained mark another
as explained in the same way.

Act-enables-goal

The PSchema that explains the act in the concept
will enable the PSchema containing the goal.

Act-motivates-act

The PSchema that contains the act in the concept
will motivate a PSchema that contains the second act.

Act-instrumental-to-act

The PSchema that contains the act in the concept
will be instrumental to the PSchema that contains the
second act.

Event-instrumented-by-act

The PSchema that contains the event in the concept
will be instrumented by the PSchema that contains
the act.

Goal-enables-event

The PSchema that contains the goal in the concept
will enable a PSchema that contains the event.

Find-human-relationship

Spawned from possessive pronouns where the ob ject
is a human to find the relationship that holds
between possessor and object

Emphasis

When a word is emphasized, try to figure out why.

Find-evaluator

When an evaluative term (“good”, “evil”, etc.) is used
as an adjective, find the person making the evaluation.

Not-agree

Build the beliefs of the believer who does not agree
with an evaluative belief.

Construct-reason

When statements of evaluative belief are recognized,
construct a reason for the belief from the believer's
ideology.

Resolver-demon

Spawned from pronouns and definite noun phrases to
search for the ‘real’ object referred to by the phrase.

Table 8.1:

Demons Fired from Phrasal Patterns

165

8.6 Memory Retrieval and Question Answering

Question answering in THUNDER is a three-stage process: (1) parsing the Datural language
question into a conceptual Tepresentation, (2) searching the episodic story representation
for an answer, and (3) generating the answer ip English. When PPARSE parses 5 natural
language question, two pieces of information are identified: (1) the conceptual content of the
question, or what the question is about, and (2) the conceptual category of the question, or
what the question is asking for {Lehnert, 1978). The content and category are used to find
the relevant retrieval heuristic to search the story representation for the question answer,?

Finding a conceptual category for a question is based on the form of the question [Dyer
and Lehnert, 1982], and the question content,. Question contents are partially instantiated
acts, events, and beliefs. THUNDER answers questions in four categories:

1. Evaluative judgment questions — Questions that ask for the evaluative beliefs and
supporting reasons of story characters and the reader.

2. Goal orientation questions — Question that ask for the goals that motivate actions
and events.

3. Event explanation questions — Questions that ask why events occurred.

4. Thematic identification questions — Questions about the ironies and themes that were
recognized during story understanding.

Generation of the concept found in English is accomplished by calling PGEN on the con-
cept. Since the phrases for parsing are designed to produce an action or event, the phrases
associated with the concepts that are generated in question answering (primarily evaluative
beliefs) are tailored for generation. '

In many cases THUNDER generates multiple answers to questions. The question an-
swering component of THUNDER has two purposes: (1) to show the inferences that were
made during story understanding, and (2) to place additional natural language constraints
on the knowledge representation. THUNDER implements multiple retrival heuristics for

answer generation, see the source code in sectjon D.4.

IThe original work of qQuestion categories was done by Lehnert [1978], who identified 13 basic question
categories. The list was extended in [Dyer, 1983; Kolodner, 1984; Alvarado, 1990].

166

8.8.1 Evaluative Judgment Questions

Evaluative judgment questions are a sub-type of Lehnert's judgment question category. Judg-
ment questions solicit reader opinion about future events, or call for speculation from in-
complete information:

8.12: What should John do now?
8.13: Where do you think the President will spend Christmas?

Evaluative judgment questions solicit the reader’s judgments about the events in a story.
For example, the following questions ask for THUNDER’s opinion about story events:

8.14: Why was John wrong not to put o1l in his car?
8.15: Why were the hunters wrong to blow up the rabbit with dynamite?

Evaluative judgment questions are also used to retrieve THUNDER's inferences about story
character’s evaluative beliefs:

8.16: Why did John believe that robbing a bank was right?
8.17: Why did the hunters believe that blowing up the rabbit was right?

The representation of an evaluative judgment question has three components: (1) the
holder of the belief, (2) an evaluation type, and (3) an event in the story. The retrieval
routine for evaluative judgment questions identifies the value plan that the event is a part
of, and then searches the belief memory of the belief holder for an evaluative belief about
the plan. For example, question 8.16 has the representation:

(question ’question.11t
’type ’evaluative-judgment
‘actor khuman.16 ;; John
’evaluation ’positive
‘content (action ’action.47
'actor &human.16
’type ’atrans
‘object ?money
'from (institution ’institution.4
'type ’financial)
’to &human.16
'psclass kPS:bank-robbery))

167

To generate answers to evaluative belief questions, THUNDER generates each of the
believer's reasons for the evaluative belief asked about in the question. When THUNDER is
geuerating an evaluative belief that was used to recognize a BCP, the BCP is also generated
as a reason for the belief. Because the BCP is an abstract pattern of evaluative reasoning, the
generation pattern that is associated with the BCP can be more specific about the reasons
for an evaluative belief than the more general patterns that are used to generate instantiated
belief warrants. The reasons for the belief are ordered by their importance. so the order that
there reasons are generated is from best to worst. For example, the following Q/A behavior
shows THUNDER answering evaluative judgment questions from Hunting Trip:

> Why were the men wrong to blow up the rabbit with dynamite?
BECAUSE THE HUNTERS WERE INHUMANE TO THE RABBIT.

BECAUSE THE HUNTERS WILL BE ENTERTAINED BUT THE RABBIT BLEW UP AND THE
RABBIT’'S HEALTH IS MORE IMPORTANT THAN THEIR ENTERTAINMENT.

BECAUSE THE HUNTERS WILL BE ENTERTAINED BUT THEY CAPTURED THE RABBIT
AND THE RABBIT'S FREEDOM IS MORE IMPORTANT THAN THEIR ENTERTAINMENT.

BECAUSE THE HUNTERS BLEW UP THE RABBIT.
BECAUSE THE HUNTERS CAPTURED THE RABBIT.
> Why did the hunters believe that blowing up the rabbit was right?

BECAUSE THE HUNTERS WILL BE ENTERTAINED WHILE THE RABBIT BLEW UP AND
THEIR ENTERTAINMENT IS MORE IMPORTANT THAN THE RABBIT’S HEALTH.

BECAUSE THE HUNTERS WILL BE ENTERTAINED WHILE THEY CAPTURED THE RABBIT
AND THEIR ENTERTAINMENT IS MORE IMPORTANT THAN THE RABBIT’S FREEDOM.

BECAUSE THE HUNTERS WILL BE ENTERTAINED.

8.8.2 Goal Orientation Questions

Goal orientation questions “ask about the motives or goals behind an action” [Lehnert, 1978,
P- 58]. In goal orientation questions, the question content is an action. The retrieval method
finds the PSchema that contains the action, and returns a goal that the action enables. Some
example goal orientation questions that THUNDER answers are:

8.18: Why did John want to rob the bank?

8.19: Why did the rabbit run under the truck?

8.20: Why did the men tie a stick of dynamite to the rabbit?

8.21: Why did Oliver make threatening phone calls”

8.22: Why did Oliver want to shrink his political opponents?
THUNDER recognizes goal orientation questions from the following patterns:

Why «verb:to-do>» <action> *qmark*

Why <« verb:to-do>» <actor> want <{action’®» *gmark*

The question concept is the action in the pattern.

Once the action has been identified, THUNDER searches the actor’s intentional memory
for a PSchema containing an action matching the action in the sentence. Finding the goal to
generate requires that THUNDER follow enables and instrumental links to find the first goal
that is not in the same PSchema in the action. Going outside the PSchema that contains
the question content prevents THUNDER from generating redundant answers, for example:

> Why did the hunters blow up the rabbit?

* TO BLOW UP THE RABBIT.?

Going up only one level instead of finding the value for the plan allows THUNDER to be
specific about the motivation for the goal. For example, THUNDER finds the enabling goal
for the following question, instead of the ultimate goal of the hunters’ plan:

> Why did the hunters let the rabbit go?
TO TAKE THE DYNAMITE AWAY FROM THEM.

* TO ENJOY WATCHING THE RABBIT BLOW UP.

8.6.3 Event Explanation Questions

Event explanation questions ask about the ‘causes’ of events. Event explanation questions
are similar to causal belief questions [Alvarado, 1989] which ask for factual beliefs about
causality, and causal antecedent questions {Lehnert, 1978, pp. 56-57] which ask for the
end of a causal chain. However, instead of using the question category to select a retrieval
method, THUNDER's event explanation category uses a set of retrieval strategies to generate
multiple explanations for an event. For example, THUNDER generates five answers for the

following question:

3The starred notation is used for example incorrect question answers. THUNDER does not generate the
starred responses.

169

> Why did the truck blow up?

BECAUSE THE DYNAMITE BLEW up,

BECAUSE THE RaBBIT RAN UNDER THE HUNTERs’ TRUCK,
BECAUSE THE HUNTERS LET THE RABBIT GO NEAR THEIR TRUCK.
BECAUSE THE HUNTERS WERE INHUMANE TO THE RABBIT.

BECAUSE THE HUNTERS PLAYED WITH DYNAMITE.
THUNDER uses the following methods to retrieve explanations for events:

1. Find the event that forced the event in the question.

2. Find the action causing the event by backtra.cking through the intentional representa-
tion until an action ig found.

3. If the event is an element of a GFschema, find the mistaken action or state in a plan-
failure that resulting in the event.

4. If the event is Part of a GFschema that Provides a resolution to a BCP or TAU, find
the reason that was uged to recognize the BCP or TAU.

episodic story representation. The first method is physical explanation, the second js
an 1ntentional explanation, the third is a belief explanation, and the fourth is a thematic
explanation.

For answers to the question “Why did the truck blow up?”, the answers correspond to the
explanation methods. The first answer comes from the event that forced the truck to blow
up. The second answer is found by backtracking from the truck blowing up, to the dynamite
blowing up, to the enabling get away from the dynamite goal in PS:Blow-up, through to the
enabling get away from the hunters event and actjon of the rabbit in PS:Run-away. The
third answer is generated from the mistake action in the plan-failure that was recognized
from the hunters’ value failyre, The fourth and fifth answers are generated from the BCP
and TAU that the hunters’ truck blowing up is a resolution to.

8.6.4 Thematic Identification Questions

Thematic identification questions are a sub-type of Lehnert’s feature specification questions.
Feature specification questions ask about static properties of objects, such as:

8.23: What color are John'’s eyes?

8.24: What breed of dog is Rover?

The thematic identification questions ask about the thematic structures in the just-
read story. THUNDER knows about two thematic features of stories: themes and ironies.
Therefore there are two thematic identification questions:

8.25: What is the theme of the story?
8.26: What is ironic about the story?

The retrieval routine for thematic identification question searches THUNDER's story mem-
ory for all structures of the feature specified by the question that were recognized during
story understanding, and then passes them off to PGEN. Since there may have been more
than one theme or irony recognized in the story, THUNDER may generate multiple answers
to thematic identification questions. For example, the following trace shows THUNDER
answering thematic identification questions from Four O’Clock:

> What is the irony in the story?

THE IRONY IS THAT OLIVER EXPECTED TO PREVENT HIS POLITICAL OPPONENTS
FROM DAMAGING SOCIETY BY CASTING THE SPELL BUT HE BECAME TWO FEET TALL
WHEN HE CAST THE SPELL.

> What is the theme of the story?

THE THEME IS THAT YOU SHOULD NOT EXECUTE PLANS THAT CAUSE HARM TO
OTHERS BECAUSE YOU WOULD NOT LIKE TO BE HURT.

THE THEME IS THAT YOU SHOULD JUDGE YOURSELF BEFORE JUDGING OTHERS BE-
CAUSE YOU WOULD NOT LIKE TO BE PUNISHED.

THE THEME IS THAT YOU SHOULD NOT EXECUTE PLANS THAT CAUSE THREATS TO
OTHERS REALTH BECAUSE YOU WOULD NOT LIKE TO BE HURT.

THE THEME IS THAT YOU SHOULD NOT EXECUTE PLANS THAT CAUSE BAD THINGS
TO HAPPEN TO OTHERS BECAUSE YOU WOULD NOT LIKE BAD THINGS TO HAPPEN TO
YOU,

8.7 Summary
THUNDER uses the phrasal parser PPARSE to produce conceptual representations from

natural language sentences, and the phrasal generator PGEN to produce sentences from
concepts. PPARSE and PGEN use knowledge about language encoded as phrases that

171

using demon-based processing. Demons can also be fired from phrases when the pattern
has intentional or beljef implications. PPARSE/PGEN maintain a limited form of record
keeping to parse definite articles and pronouns, and have built-in knowledge structures for
top-down lexical disambiguation.

THUNDER'’s question answering capability is implemented by parsing four question cate-
gories: (1) evaluative judgment, (2) goal orientation, (3) event explanation, and (4) thematic
identification. During question answering, PPARSE constructs a question representation
that contains the question category and the question content. Fach question category has
retrieval methods for searching the episodic story representation for the question content,
and then finding conceptualizations for the question answers. The representation objects
that are found are generated in English by PGEN.

The relationship of patterns of language to concepts, and the rules for the constituent
structure of language encoded in phrases places constraints on the knowledge representation
that is used in THUNDER. Making the knowledge representation support parsing and gen-
eration forces THUNDER to identify (1) the constituent structure of conceptual objects and
their relation to language, (2) where explicit inferences need to be made from the text, and
(3) the association of the constituent parts of the representation with words and syntactic
structures.

172

CHAPTER 9

Integrating Moral Reasoning and Story
Understanding: An Annotated Trace of THUNDER
in Operation

This chapter contains an annotated trace of THUNDER in operation during its processing
of Hunting Trip, showing how the components of THUNDER work together during story
understanding. The purpose of the trace is to illustrate (1) the end-to-end capability of
the THUNDER system, (2) where each of the components fit in the overall structure of the
program, and (3) how the general solutions to story comprehension are used in a specific
case. In addition, the trace shows where the implementation of THUNDER is not general;
where ad-hoc rules and inferences have to be made to get the program to run. These ‘details’
identify where theories of domain reasoning will have to interface with THUNDER, the types
of problems that have to be solved, and are the source of futyre work.

Since the full, verbatim trace output of THUNDER's processing on Hunting Trip is 125
single spaced pages, the trace has been edited to highlight the important parts of THUN-
DER’s processing. The trace edits have been done in order of increasing abstraction, so that
early in the trace program events are shown in great detail, and then omitted later.

The THUNDER system is organized in 34 modules implemented as Common Lisp pack-
ages. The modules are listed in table 9.1. There are three levels of trace:

1. English trace, where selected concepts are passed to PGEN and generated in English.

2. THUNDER trace, which provides a high-level, baseline commentary on what the sys-
tem 1s doing.

3. Module trace, where the operation of each module prints trace lines as module functions
are called. The output of each module trace line is labeled by the name of the module
where the trace was produced.

Each trace level is independently controllable. To produce the trace shown in this chapter,
a listing was generated with all trace flags set on which was then edited and annotated.

Appendix D contains a discussion of THUNDER's implementation details, including
timing and sizing information, the state of the system, some program benchmarks, and
samples of THUNDER's source code.

173

Module Deseription

Action Action reasoning and support

Bep BCP recognition and support

Bel Belief memory construction, loading, and linkage
Bel-demon | Belief demons

Control Top level control routines

Ethic Ethical reasons generation

Event Event reasoning and support

Evm Objective memory construction, loading, and linkage
Evm-demon | Objective memory explanation demons

Factual Factual belief construction and access

Frame Frame construction and access

Gf GFschema construction and access

Goal Goal reasoning and support

Gp-demon | Goal/plan demons

Gpm Intentional memory construction, loading, and linkage
Gpmex PSchema explanation functions

Irony Irony recognition and representation

Location Spatial representation and reasoning

Mode Mode modifications to PSchema

Parse-util Parsing utilities and demons

Pt Plan failure construction

Pmetric Pmetric indexing and reasoning

Prag Pragmatic reason generation

Pschema PSchema construction and access

Punish Punishment specific PSchema processing

Ques Memory retrieval from questions

Reason Warrant access and abstraction

Reward Reward specific PSchema processiug

Role-theme | Role theme expectations |
State State generation and matching

Story Story memory

Tau TAU recognition and support

Theme Theme construction

Misc Miscellaneous definition and load files "

Table 9.1: THUNDER Modules

- - g

9.1 Hunting Trip

> (control:process-story 'hunting-trip
‘{{two men on a hunting trip captured a live rabbit)
(they decided to have some fun by tying a stick of dynamite
to the rabbit)
(they lit the fuse and let it go}
(the rabbit ran for cover under their truck)))

THUNDER version 1.0, 18:40 10 Decembar 1590
Copyright (C) 1990 by John F. Reeves. 41l Rights Reserved

Reading story ‘‘Hunting-Trip’’:

TWO MEN ON A HUNTING TRIP CAPTURED A LIVE RABBIT. THEY DECIDED TO
EAVE SOME FUN BY TYIXG A STICK OF DYNAMITE TO THE RABBIT. TEEY LIT
THE FUSE AND LET IT GO. THE RABBIT RAN FOR COVER UNDER THEIR TRUCK.

BEL: Creating new belief memory #{bel-mem.1} for #{thunder)}

Input and initialization: THUNDER is initiated by a call to control:process-story
with the name of the story and a list of the sentences in the story. Each sentence is a list of
Lisp atoms for the words. The iritialization processing sets up the framework for the episodic
story representation and adds a belief memory for &thunder, the reader and evaluator of
the story. Control:process-story cycles through the sentences of the story, alternating
between parsing and running the demon agendas (source code in section D.2.1).

9.1.1 First Sentence
Processing sentence:

TWO MER ON A HUNTING TRIP CAPTURED A LIVE RABBIT.

Processing word: two

Trying phrase s{ph-two}

Found Phrase: #{ph-two}

---- > tWo (==m==a

Created Concept: (adjective Sadjective.41
name two)

Phrasal parsing: PPARSE reads atoms from the input from left to right. For each
input atom, PPARSE creates a new node in the lower right hand corner of the parse tree.
PPARSE then constructs a list of the highest unmatched nodes in the tree and searches for
a pattern that matches. The pattern constructor starts with the longest list of unmatched
nodes, and then jterates removing the leftmost item until a pattern matches. At this point

175

in the parse, there is one node containing the atom two. This pattern matches the following
phrase (see source code in section D .4 for more phrasal definitions):

(phrase:define ’'ph-two
(comment "two')
{pattern ’'two)
(concept (adjective nil
‘name ’two)})

PPARSE makes a new node from the pattern containing kadjective.41 and links jt into
the parse tree as the parent of the node containing two. When no phrases match the pattern
constructed from &adjective.41, PPARSE reads the next word.

e e | yuppp—— -

Trying pkrase #{ph-two+human}
Trying phrase #{ph-adjective+thing}
Trying phrase #{ph-men}

Found Phrase: #{ph-men}

Created Concept: (human Xhuman.56
gonder male
number plural)

Phrase selection: When the atom men is added to the parse tree, PPARSE first tries
to match the two component phrases ph-two-human and ph-adjective+thing. The trace
line Trying phrase-name is generated when candidate patterns are returned from the phrase
discrimination net, but before the applicability tests are run. The phrases two+human and
adjective+thing both require a representation class object in the second component, and
thus both are rejected. The one component phrase ph-men matches the atom.

Trying phrase #{ph-two+human}
Found Phrase: #{ph-two+human}
----- > two <group> <---—--
Created Concept: (human &human.56
gender male
number plural)

Phrase reduction: After men is rewritten to the representation class object &human.S6,
the ph~two-human pattern matches and a new parent node is created. The new node contains
the &human.56 concept, and has nodes containing &adjective.41 and &human.56 as its

children.

Processing word: on

-

Trying phrase #{#:|prep-297i}
Found Phrase: #{#:|prep-297|}

Created Concept: (prap &prep. 184
name on
object ?prep-obj)

Trying phrase #{#:|prep+obj-208|}
Trying phrase #{ph-a}
Found Phrase: #{ph-a}

Created Concept: (article &article.94
type indet)
Trying phrase #{#:|prep+obj-298|}

Processing word: hunting

T R e . - B ey v
R D R L B ot . S S A

Ll e o 2 e

Trying phrase #{ph-hunting}
Found Phrase: #{ph-hunting}

Created Concept: (setting &ksetting.b
type hunting-trip)

Trying phrase #{ph-a+thing}

Found Phrase: #{ph-a+thing}

----- > <article:indef> <thing> <-----

Created Concept: (setting &setting.5
type hunting-trip)

Trying phrase #{#:|prep+obj-298|}

Found Phrase: #{#:|prep+obj-298|}

Created Concept: (prep &prep.185

name on

object &setting.5)
Trying phrase #{ph-hum+on+setting}
Found Phrase: #{ph-hum+on+setting}
----- > <human> <prep:on,setting> <-----
Created Concept: (human khuman.568

rts (#{rt-hunter})

gonder male

pumber plural)

Prepositional phrases and right association: This sequence of trace shows the pat-
tern matching “<«human® on a hunting trip”. The word “on” matches the pattern for a

177

preposition which sets up a context for the Preptobject phrase. (The #- Iprep+obj-298|
notation is created by a macro from the genera] Prep*objact phrage.) Similarly, the
word “a” sets up the a*thing indefinite article phrase. Whep the idiom “hunting trip”

Trying phrase #{#:|v-past-722(}

Found Phrase: #{#:|v-past-722|}

----- > captured <---—--

Created Concept: (verb &verb. 727
name to-capture
tense past)

—————————————————————————————————

----—--—-..-—--—--—q-—————q--—q-——--—-

Created Concept: (animate &animate. 10
status alive
typs rabbit)
Trying phrase #{ph-hnnan+cnpturo+aninat.}
Found Phrasse: #{ph~hnnan+captnro+lni-nto}
----- > <human> <verd:to-capture> <animate> <-----
Created Concept: (action &action. 141
type atrans
actor g&human.56
object Sanimate.10
to &human .56
status realized
pPsclass #(ps-capture})
Processing Complete

Clause matching: After the text “captured a live rabbit” is Processed, the following
Phrase is used to create the action representation of the sentence:

(phrase:define ’Ph-human+capture+animate
(comment "<human> <verb:to-capture> <animate>")

R K d~

(pattern ?+hum+({&human)
(verb nil
'name ’'to-capture
‘tense ’past)
?+anim+kanimate)
(concept (actiom nil
‘type ‘atrans
‘actor “hum
'objact “?anim
'to ?hum
’status ’realized
'paclass kps-capture))
(gen-test (pgen:prev-not-in-class (list &human)})})

This phrase illustrates a problem with parsimony in PPARSE’s representation of phrases.
There are two knowledge associations in the phrase: (1) between the “<human> cap-
tured «animate»” pattern and the ATRANS (abstract transfer of possession) action in the
PSchema PS:Capture concept, and (2) between the past tense of the verb and the realized
status of the action. The two associations should be distinct; however this would require
matching two phrases before the pattern could be rewritten.

Result of parse: (action &action.14i
type atrans
actor Rthuman.58
cbject &animate.10
to &human.58
status realized
psclass #{ps-capture})

EVM: Adding to event memory: #{node.1}

Action representation: The first sentence is parsed to create an action describing the
hunters’ capture of the rabbit. The constituents of the action are:
e Type: The action type is the CD primitive ATRANS, an abstract transfer of possession.

¢ Actor: fhuman.56 is the representation object for the hunters. This object contains
the number of humans, and their associated role theme &rt-hunter.

o Object: kanimate. 10 is the rabbit.

e To: The hunters have changed possession of the rabbit from an unspecified owner to
themselves.

o Status: The status of the action is realized. This information comes from the past
tense of the verb.

¢ Psclass: The psclass is a pointer from a lexical entry to a PSchema that contains the
action. For this sentence, the action is in the schema PS:Capture.

179

The actions and events that are returned from the parser are loaded in to event memory
(EVM) in the story representation.

ACTS: Searching for event caused by act #{action.141}
ACTS: Found event #{event.120}

EVM: Adding to event memory: #{node.2}

Putting concapt in EVENT MEMORY: (event Zavent.120

status realized
cbject fhuman. 58
prop &poss

to fanimate.10

kcaused-by <==> (kaction.141})
EVENTS: getting Tesulting state from event #{event.120}
EVENTS: got state #{human.56} from #{event.120}

Acts, events, and states: When the capture action is loaded, THUNDER creates
and loads the event that is caused by the action (&event. 120). This event represents the
state change of the possession of the rabbit to the hunters. Since the action was realized,
THUNDER updates the representation so that the rabbit is possessed by the hunters. The
source code in section D.2.2 implements act and event loading.

Spawning demon: action-predicted-by-pschema.1

sSEs==z=Exs

Spawning demon: action-by-naw-pschema.1
=================8===-SatlS':tlB'ISIS.IIISEIII.SSISISS8==‘
TEST: Find a new PSchema to explain the actien.

ACT: Update the PScheams to include the action.

Spawning demon: action-provides~pschema.1
===3====='=ISIISI..III8'IIIIISIIIltllll!:ll 2 1]

TEST: Find features from the action Provide a nev PSchema.
ACT: The action provides the new PSchema.

Spawning demon: action-provides-belief.1
====3=SSSSSSSII.IIIII'IIII““I.-- Z8 EERRE EZETEE
TEST: Find a new belief to explain the action.

ACT: The action provides the new belief,

====I=I'88$883.388=8'I.-l..'l BEE EFETTIE=x=

Spawning demon: event-predicted-by-pschema.1

TEST: Find an existing PSchema to explain the event.

ACT: Update the PSchema to include the asvent.

TEST: Find a new PSchema to explain tha event.
ACT: Update the PSchema to include the svent.

Act/event explanation demons: THUNDER has three types of strategies to find an
appropriate plan schema for input actions and events. Each strategy is implemented as a
demon that is spawned when acts and events are loaded into event memory. The strategies
are:

¢ Predicted-by-PSchema: Is the action or event contained in an already recognized plan
schema?

¢ New-PSchema: Is the action or event a constituent of a new PSchema?

® Action-provides-PSchema/belief: In some cases, an input action will describe a mental
state of an actor. In these cases, THUNDER builds the intended plan schema or belief
that is provided by the description of the actor’s mental state.

See the source code in section D.2.2 for the implementation of act/event demons.

Running demen: action-predicted-by-pschema.1
GPM: Creating new gpm memory #{gp-mem.1} for #{human.56)}

Spawning demon: event-by-act.1
===========================8==============I=======SB======
TEST: When an act is explained

ACT: Mark the event it causad as explained

Spavning demon: act-by-event.1
=================I8==8'IS’S:B.‘SI’S::.SS == ===
TEST: When an event is explained

ACT: Mark the act that caused it as explained

Spasning deaon: action-by~next-pschema.1

eSS EEZET=IRE=SE EZREEEESETEIEREZIERARER
TEST: When a new PSchema is added to EOMOTY.

ACT: See if the PSchema includes the action.

Killing demon: action-predicted-by-pschema.l with kill value: -act

181

Running demons: When the demon action-predicted-by-pschema.1l is run. it
searches the goal/plan memory of the hunters to see if there are any existing plans that
call for the possession of rabbits. Since a goal/plan memory for the hunters does not
exist, one is created (&gp-mem.1) and the -act of the demon is run. The -act of the
action-predicted-by-pschema demon spawns three new demons:

* act-by-event: This demon will mark the action explained if the event that it causes is
explained.

¢ event-by-act: The inverse of act-by-event. If the caused event is explained, then the
action will be explained.

¢ action-by-next-pschema: This demon will fire when new PSchemas are loaded into
goal/plan memory, which will then fire a new action-predicted-by-pschema to see
if the new PSchema explain the event.

The source code for these demons is in section D.2.2.

Running demon: action-by-new-pschema.i

GPM: Searching for pschema containing object #{action.141}
Building #{ps-capture} from #{action.i41}

PSCHEMA: returning #{pschenma.34}

GPM: Found pschema #{pschema. 34}

PSchema activation: When the action-by-new-pschema demon is run, THUNDER
searches for PSchema from the capture action (See source code in section D.2.2). Since the
capture action has a pointer to PS:Capture from the lexical pattern, THUNDER builds an
instance of ps-capture (&pschema.34).

Loading pschema #{pschema.34} to GPN from #{action.141}
by link &in-pschema: (pschema &pschena. 34
head-goal &goal.208

plan (kgoal.208 2goal.207 &event.121)
actions {&action.142)

goal-failures (&goal.208)

actor &human . 68

bindings kps-capture.2

&contains <==> (&action.141))

ACTION: Setting #{action.142) to realized

ACTS: Searching for event caused by act #{action.142)}
EVENT: Setting #{event.121} to realized

EVENTS: getting resulting state from event #{event.121}
EVENTS: got state #{animate.10} from #{event.121}

GOAL: Setting status on #{goal.205} to failed

GPM: Completed plan in pschema #{pschema.34}

GOAL: Setting status on #{goal.206} to inferred-succeeded
GOAL: Setting status on #{goal.207} to inferred-succeeded
GOAL: Setting status on #{goal.208} to inferred-succeeded
GPN: Setting #{goal.206} to failed

182

PSchema loading and inference: When the PSchema is loaded. acts. events. goals.
and goal failures that have been realized are marked as such. In this instance of PS:Capture.
the last element of the capture plan (&event.121) was marked as realized, so THUNDER
infers that all previous elements of the plan have been completed successfully, and that the
head goal of the PSchema (#goal.208) has been achieved (see source code in section D.2.3).

Processing failed value #{gocal.205} in #{pschema.34}
BEL: Creating value belief #{value-belief.12} about #{goal.205}
for #{animate.10}: (value-belief kvalue-belief.12
content &goal.205
valence negativs
believer kanimate.10)
GPM: Searching for recovery plan for #{goal.20E} in #{pschema.34}
GOAL: Generating recovery goal from #{goal.206}
GOAL: Generated recovery goal from #{goal.209}
GPM: Searching for pschema containing object #{goal.209}
Building #{ps-escape} from #{goal.209}
Loading pschema #{pschema.35} to GPM from #{pschema.24} by link
&ps-goal-motivates: (pschema kpschema.3s
head-goal kgoal.213
plan (kgoal.210 &goal.211 &goal.212)
actor fanimate.10
bindings &ps-escape.2
&ps-goal-motivated-by <==> (&pschema.34))

Value failures and recovery plans: Since the rabbit has suffered a P-Freedom goal
failure (#goal. 205 in PS:Capture), THUNDER builds a value belief that the rabbit believes
that its loss of freedom is negatively evaluated. When goal failures occur, THUNDER expects
the effected party to be motivated to plan for recovery. From the P-freedom goal failure,
THUNDER generates an A-Freedom recovery goal (&goal.209), and the associated plan
PS:Escape. The rabbit’s escape plan is linked to the goal failure in the hunters’ capture
plan by the link ps-goal-motivates, so THUNDER knows that the capture motivates the
rabbit to try to escape (see source code in section D.2.3).

GPM: Spawning demon to find pschema #{pschema.35} motivation

Spawning demon: plan-motivation.i
========I===I=8.“'Illl88.‘33:::388=8=3=II===8=======z====
TEST: Find motivation for a Plan.

ACT: If not found, spawn demon to search for it.

GPM: Spawning demon to find pschema #{pschema.34} motivation

Spawning demon: plan-motivation.2
============I==========88=--"‘-==I =
TEST: Find motivation for a plan.
ACT: If not found, spawn demon to search for it.

183

Killing demen: plan-metivation.i with kill value: kill
Running demon: plan-motivation.?

Spawning demon: search-for-plan-motivation.1

TEST: Search for motivation for a Plan.
ACT: Include the motivation in goal/plan memory.

Killing demon: plan-motivation.2 with kill value: -act
Running demon: search-for-plan-motivation.

GPMEX: Searching for motivation for Pschema #{pschema.34}
GPM: Searching for pschema containing object #{goal.208}
PSCHEMA: Building PSCHEMA #{ps-hunt}

PSCHEMA: no matches for #{goal.208} in #{ps-hunt}

Spawning demen: check-for-plan-motivation.1

TEST: When new gpm nodes are added
ACT: Search for plan motivation

Killing demon: search-for-plan-motivation.l with kill value: -act

Plan motivation: When PSchemas are loaded, THUNDER fires demons to find the
schema’s motivation. The motivation can be another plan schema, or a value that the
planner is trying to achieve. Since the rabbit’s escape plan was motivated by the capture,
the demon is fired and killed. THUNDER fires the demon plan-motivation.2 to find
the hunters’ motivation for capturing the rabbit. When no motivation is found from the
PSchema, the -act of the demon fires the demon search-for-plan-motivation.1 to search
the hunters’ current plans for rabbit-capturing motivation. In this search, THUNDER checks
the goal, the state the achieved the goal (possession of a rabbit), and role-themes associated
with the actor. Since the actors are hunters, THUNDER retrieves and build the PSchema
PS:Hunt. When there are no matches for possession of live rabbits in PS:Hunt, THUNDER
fires the check-for-plan-motivation demon to check new PSchemas when they are loaded
to see if they motivate the capture of the rabbit (see source code in section D.2.3).

Running demon: event-by-new-pschema.l

Killing demon: event-by-new-pschema.i with kill value: kill
Running demon: act-by-event.1

Killing demon: act-by-event.1 with kill value: kill

Running demon: event-by-act.1

Killing demon: event-by-act.i with kill value: kill

Running demon: event-by-next-pschema.1

Killing demon: event-by-next-pschema.1l with kill value: kill

Running demon: action-by-next-pschema.l
Killing demon: action-by-next-pschema.l with kill value: kill

184

Explained actions: When the capture action is explained by the PSchema PS:Capture.
the other event/action explanation demons kill themselves. By stopping all other strategies
for act/event explanation once one is successful, the act/event explanation demons implement
a “winner take all” type of explanation (see source code in section D.2.2)

Figure 9.1 shows the contents of the episodic story representation after processing the
- first sentence of the story.

Hunter' lief Rabbit's Beliefs
and Plans | and Plans
l .
.) Yalue Beliet
Belief Level. [I | valence: Negative
! | Content: Goal
I | Type: P-Freedom
: contains-value- Status: failed
Intentional Level: |
|
| comtains
Objective Level: ction
Type: Atrans
Actor: Hunters
Object: Rabbit

Figure 9.1: Episodic Story Representation After Sentence 1

8.1.2 Second Sentence

Processing sentence:

THEY DECIDED TO EAVE SOME FUN BY TYING A STICK OF DYNAMITE TO THE RABBIT.

Trying phrase #{ph-they}
Found Phrase: #{ph-they}

==—-=====...-==_—-

TEST: Search for a resolvent for a pronoun.
ACT: Replace the pronoun with the resolvent

BTSSR ES TSRS s S SS I S s TS S S S ASIEE TS S ===sszzz==s=o===

Created Concept: (human &human.57
number plural)

185

Parse Demons: The phrasal definition for the word “they” is:

(phrase:define 'pPh~they
{comment "they")
(pattern ’they)
(concept (human 'group-pronoun
'number ’plural))
(parse-proc (lexref:spawn-reaolver—demon
?group-pronoun
‘nomative-pronoun))
(gen-teat (pgen:prev-not—in—class (list &prep &verb &kinfinitive))
(lexref:most-recent-rat
?group-pronoun
&group-pronoun
*lexref~peocple+)))

The parse-proc for the phrase contains the procedure to spawn a Pronoun resolver demon
to find a resolvent for “they” and replace &human .57 with it. When the procedure is run, it
retrieves the binding for ?group-pronoun from the parse tree (khuman.57) and spawns the
demon resolve-pronoun.1 with the arguments &human.S57 and ’nomat ive-pronoun. The
type is used to indicate the search strategy to be used (see source code ig section D .4).

Processing word: decided

Processing word: some

Processing word: fun

e e e . e . o

Trying phrase #{ph-hunnn+docido+actionorgoal}
Found Phrase: #{ph-hun+docidc+actionorgoa.l}
----- > <human> <verb:decided> <action/goal> <-----
Spavning demon: if-explained.1

e b ST e P SEsEr=szs=izss=s=m=s

TEST: Find a node containing a concept.

186

ACT: Fire a demon to explair the concept from
an interior concapt.

Created Concept: (action kaction.143
type mbuild
actor &human.£7
object kgoal.214
status realized)

Event explanation demons: The phrase human-decide-actionorgoal contains the
pattern “«human>» decided <K goal>»" which matches the parse of “they decided to have
some fun.” The parse-proc of the human-decide-actionorgoal phrase spawns the
act/event demon if-explained.i. The if-explained demon tests to see if the interior
goal (&goal.214) has been explained. If the goal has been explained, the demon fires and
marks &action. 143 as explained by reference to the goal that the action provided (see source
code in section D.2.2).)

T e e s e . e e e e

R 1 e i e e A ot

Found Phrase: #{#:|v-prespart-959|}
----- > TYING <--=n

Created Concept: (verb &verb.730
hame to-tie
tense present-participle)
Trying phrase #{ph-act+prep+relative-clause}
Found Phrase: #{ph-act+prep+relative-clause}
----- > <act> <prep:by> <pressnt-participle> <-----
----- > Fill in the elliptical actor of the relative clause <-----
Created Concept:
(verd &verb.730
name to-tie
tense past)

Transformations and adding nodes: The Phrase act+prep+relative-clause con-
tains a procedure that implements a transformation. When the pattern matches, the parse
tree is modified by adding a node with the actor of the previous action, and changing the
tense of the verb from present participle to past. The effect of the transformation is to change
the relative clause “tying ...” into the beginning of the action pattern “they tied....” The
preposition “by” remains in the parse tree, and will be used to identify the relation between
the clauses after the second action has been parsed.

187

T N e e oA T e o

Created Concept: (article karticle.97
type def)

Processing word: rabbit

Found Phrase: #{ph-rabbit}

----- > rabbit <e=---

Created Concept: (animate &animate.11
type rabbit)

Trying phrase #{ph-the+thing}

Found Phrase: #{ph-the+thing}

Created Concept: (animate &animate.10
status alive
type rabbit
&results-from <==> (fevent.121)
&poss-by <z=> (khuman.58})

Definite articles: The definite article phrase the+thing contains a procedure to search
for a referent matching the object of the (kanimate. 11). The search finds the rabbit from
the first sentence (kanimate.10), and replaces the new concept with the old in the parse

tree,

Found Phrase: #{#:|prep+obj-310I}

188

----- > totobject <-----
Created Concept: (prep &prap. 160
name to
object kanimate.10)
Trying phrase #{ph-human—tia-obj~prepto}
Found Phrase: #{ph—hnmln-tie-obj—prepto}
----- > <human> <verb:tie> <object> <prap:to> <--—--
Created Concept:
(action &action.144
type propel
actor &Lhuman.57
objeact &explosive.13
to &animate.10
instr rope
status realized
kcauses <==> (fevent,122))
Trying phrase #{#:|prep+obj-268{}
Found Phrase: #{#:|prep+obj-268|}

Created Concept: (prep kprep.191

nams by

object Eaction.144)
Trying phrase #{ph-mbuild+act}
Trying phrase #{ph-mbuild+prepby}
Found Phrase: #{ph-mbuild+prepby}
----- > <action:mbuild-goal> <pPrep:by> <-—--w
Spawning demon: spawn-semantic-demon.1

========3=====I’=III=I=I==III.III=I.II-I’III-III.-I'-I.-II

TEST: After parsing is complete
ACT: Spawn the named demon

Complex clause constructions and semantic demons: The order of phrase appli-
cation in parsing “by tying a stick of dynamite to the rabbit”, is (1) the preposition phrase
prep+obj.310 is used to connect the preposition “to” to the rabbit, (2) the clausal pat-
tern “<human: (inserted previously by the act+relative-clause phrase) tied <object>
< prep:to object »” is matched to create the PROPEL action (kaction.144), (3) the preposi-
tional phrase prep+obj . 268 attaches the preposition “by” to the PROPEL action, and (4) the
phrase mbuild+prepby recognized the enabling relationship between the goal in the MBUILD
action and the PROPEL action. The mbuild+prepby phrase does two things: (1) it adds a
Parent node to the parse tree for the object of the “by” prepositional phrase, thus putting
the PROPEL action at the same level as the MBUILD action, and (2) spawns the demon
spawn-semantic-demon.1l. The demon spawn-semantic-demon takes as an argument an
act/event demon and a list of arguments. The demon will fire at the end of parsing, and will
spawn the named demon on the objective level agenda. In this case, the semantic demon
will be act-enables-goal which is spawned to find a semaatic relationship between the
PROPEL action and the goal in the object slot of the MBUILD.

189

Processing Complete

Result of Parse: (action Zaction.143
type mbuild
acter &human.S57
cbject &goal.214
atatus realized)

(action &kaction.144

type propel
actor &human.57
object &explosive.13
to &danimate. 10
instr rope
status realized
&causes <==> (Revent.122)})

Second sentence actions: The second sentence is parsed into two actions: (1) an

MBUILD representing the hunters’ deciding to have “some fun”, and
representing the hunters tying a stick of dynamite to the rabbit.

Running demon: resolve-pronoun.i

Killing demon: resclve-pronoun.! with kill valuae: +act
Running demon: spawn-semantic-demon.1

Spawning demon: act-enables-goal.l
====33===88=8==8I388:=’III888!88'=33SESI'III'IIII’I:SB=3=8
TEST: Figure out how an action enables a goal pschema

ACT: Include the pschema in goal/plan memory.

======================I===I====ﬂ.==l==2====3=SSISIIIIS.ISE

Killing demon: spawn-semantic-demon.1 with kill value: +act

(2) a PROPEL action

Parsing demons: During parsing of the second sentence, two parse demons were
spawned. The resolve-pronoun.i demon is fired from the word “they” to resolve the
pronoun reference. After the sentence is parsed, this demon fires to replace &human.57
with &human.56. The demon spawn-semantic-demon fires at the end of the parse to spawn
the act-enables-goal.1 demon. The act-enables-goal.1 demon is associated with the
phrasal pattern “<action® by <action»" to find a semantic relationship between the ac-
tions. Since the first action is an MBUILD of a goal, act-enables-goal demon tries to find

an enabling relationship between the goal and the “by” action.

Running demon: act-enables-goal.i

Spawning demon: act-enables-goal2.l
===================3==3I88338333888==3==3=====8====2===338
TEST: Figure out how an action enables a goal

ACT: Include the pschema in goal/plan meamory.

Killing demon: act-enables-goal.l with kill value: ~-act

140

Running demon: act-enables-goal2. i
ACTS: Searching for event caused by act #{action.144}
ACTS: Found event #{event.122}

Spawning demon: svent-enables-goal.}

TEST: Figure out how an svent enables a goal
ACT: Include the pschema in goal/plan memory.

Killing demon: act-enables-goal2.1 with Xill value: -act
Running demon: avent-enables-goal.1

Spawning demon: state-enables-goal.l

TEST: Figure out how a state enables a goal
ACT: Include the pschema in goal/plan memory.

Killing demon: event-enables-goal.l with kill value: -act
Running demon: state-enables-goal.y
GPM: Searching for pschema containing object #{explosive.13}
PSCHEMA: Building PSCHEMA #{ps-blow-up}
Loading pschema #{pschema.36} to GPM from #{event 122} by
link &provides-state: (pschema &pschema. 36

head-goal kgoal.218

plan (&goal.215 &goal.218 sgoal.217
kevent.124)
actor &human .58

bindings &aps-blow-up.4
&state-provided-by <==> (kevent.122))

Bottom up plan inference: The above sequence of demons is called a de-
mon chain. When THUNDER can not find a PSchema from the act of “tying a
stick of dynamite to the rabbit,” it fires a demon to search from the event caused
by the action (event-enables-goal.1), and then by the state caused by the event
(state-enables-goal.1). The “explosive attached to object” state provides the PSchema
PS:Blow-up. A problem still remains in figuring out how blowing up something provides
entertainment (see source code in section D.2.3).

GPMEX: Searching for how pschema #{pschema.38} enables #{goal.214}
GPM: Searching for pschema containing object #{goal.214}
GPN: Searching for pschema containing object #{goal.218)}
PSCHEMA: Building PSCHEMA #{ps-sado-pleasures}
Linking #{goal.214} to #{pschema.39} by link &in-pschema
Loading pschema #{pschema.39} to GPN from #{pschema.36} by
link &ps-instrumental-to: (pschema &pschema.39
head-goal kgoal. 228
plan (kevent.127 &kevent.128)
actions (&action.147)

191

goal-failurss (tgoal.227)

actor &human.s5s

bindings tps-sado-pleasurea.a
tps-instrument <==» (&pschema. 38)
kcontains <==» (2goal.214))

Top-down plan inference: Wheg the PSchema PS:Blow-up recognized, THUNDER
has a goal (the blown-up rabbit) enabling another goal (the hunters’ entertainment). By
searching for entertainment plans that are enabled by blown-up animates, THUNDER finds
and instantiates the PSchema PS:Sado-pleasures.

Running demon: -etrch-tor-plan-motivation.2
GPMEX : Searching for motivation for pschema #{pschema.34}

GPM: Linking pschema #{pschema.36} a5 gotl-enabled by #{pschema.34}
GPM: Setting #{goal. 215} in #{pschema.36} to succeeded

GPM: Found motivation #{pschema.32}

a match between the head goal and an enabling goal of PS:Blow-up. The enabling goal
(&goal.215) is the goal of having the thing you are going to blow up. Since the head goal
of PS:Capture is realized, the enabling goal of PS:Blow-up is marked as succeeded. The
enabling relationship between the capture of the rabbit and blowing up the rabbit provides
an explanation for why the hunters captured the rabbit.

Spawning demon: check-for-taus,i
=======8-=IIIICCI:SSSI!I'SI.'IIII'.II'I-IIICIIIII'ISIIIICI
TEST: Check for high pmetrics on Pschemas of a Plan

ACT: Build and load the associated TAU.

======================388'I3!83..'.88..I'HI!'S'SS======3=I

TEST: When other demons are finished firing
ACT: Build evaluative belief about the Plan

the plan for potential planning errors, and evaluate-plan builds Pragmatic and ethical
reasons for the THUNDER's evaluation of the hunters’ plan (see source code in section

192

Running demon: check-for-taus.1
TAU: Searching for TAU from #{pschema.38} op pmetric risk
TAU: Building TAU #{tau-dangercus-object} from
t{tau—dangcrous-objoct-gt-expect} and #{pschema,36}

Building #{gf-injury} from #{event.129}
TAU: Found potential tau #{tau.7} from #{pschema.36} in #{pschema.35}
TAU: Running applicability rules on #{tau.7}
TAU: Activating TAU #{tau.7}
Loading TEUNDER belief: (tau &tau.7

belisver &thunder

vi-pschema &pschema.40

mistake Estate.H

beliet &obligation-belief.38
bindings &tau-dangerous-object.s
status expectad

&tau-from <==> (kpschema.39))

Spawning dsmon: resolve-tau.1

=====I======Il====888==3==8====ﬂ!==l:l=‘===8==I======3===I
TEST: Search for a goal failure for an actor
ACT: Resclve the TAU

==a=:a===s:=aa==-s:========:==========a:====:=at-==z===-:=

Killing demon: check-for-taus.i with kill value: +act

TAU recognition: To identify potential planning failures, THUNDER searches each
constituent PSchema of the completed plan for high pmetric values. The PSchema PS:Blow-
up has a high risk pmetric associated with the TAU:Dangerous-object. This TAU cautions
against using dangerous objects for entertainment goals because “if you play with fire, you're
going to get burned.” The representation for the TAU contains the expected goal-failure
schema GF:Injury (&pschema.40), the state of having the dynamite explode close to the
planner that will cause that failure (2state.9), and THUNDER's belief that the planner
should not be playing with dynamite (&obl igation-belief.38) (see source code in section
D.3 for the implementation of PSchema and TAUs in THUNDER).

Running demon: evaluate-plan.i

Generating THUNDER’s evaluative belief about #{pschema.39}
Creating pragmatic reason #{prag-reason-1.3} by P-1 for pos eval
of #{pschema.39)

Creating pragmatic reason #{prag-reason-2.13} by P-2 for neg eval
ot #{pschema.39} from #{tan.7}

Creating ethical reason #{ethic-reason-2.18} by E-2 for neg eval
of #{pschema.39} ’

Creating ethical reason #{etkic-reason-2.19} by E-2 for neg eval
of #{pschema.39}

Creating ethical reason #{ethic-reason-4.17} by E-4 for neg aval
of #{pschema.39}

Creating ethical reason #{ethic-reason-4.18} by E-4 for neg eval
of #{pschema.39}

193

BEL: Creating obligation belie? #{obligation-beliet.29} for #{thunder}
about #{pschema.38}
BEL: Prioritizing reasons for positive evaluation of #{pschema.35}
BEL: Prioritizing reasons for negative evaluation of #{pachema.39}
BEL: Setting svaluation of #{pschema.239} to negative
Loading #{human.58} beliaf:
(obligation-belie? kobligation-belief. 39

valence negative
content &pschema . 39
believer &thunder

&reason-for-neg <==> (ðic-reason-4.17 ðic-reason-4.18
ðic-reason-2.18 ðic-reason-2.19
dprag-reason-2.13)

&reason-for-pos <==> (&prag-reason-1.3))

Obligation belief: When the complete plan is recognized, THUNDER generates prag-
matic and ethical reasons for positive and negative evaluations of the plan. Each reason is
represented as a frame containing the data for the judgment warrant that is used. In THUN-
DER’s evaluation of the hunters’ plan, the one pragmatic reason that the plan is positively
evaluated is that THUNDER believes that the plan will achieve the hunters’ goal of being en-
tertained (&prag-reason-1.3). The pragmatic reason that the plan is negatively evaluated
is the potential P-Health goal failure from TAU:Dangerous-object (&prag-reason-2. 13).
The four ethical reasons for the negative evaluation of the plan come from the two goal fail-
ure that the hunters are causing for the rabbit: (1) the P-Freedom failure that occurred when
they captured the rabbit, and (2) the expected P-Health goal failure that will occur when
they blow up the rabbit. The goal failures themselves are used by judgment warrant E-2 to
create reasons ethic-reason-2.18 and ethic-reason-2.19. Since both goal failure types
are believed by THUNDER to be more important than the goal the hunters are planning
for (E-Entertainment), judgment warrant E-4 is used to create reasons ethic-~reason-4.17
and ethic-reason-4.18. After THUNDER prioritizes the reasons for both sides of the
evaluation, THUNDER'’s negative obligation belief that the hunters should not be blowing
up the rabbit for entertainment is created (obligation-belief.39). (See the source code
in section D.2.6 for the implementation of warrant application and reason representation.)

Generating #{thunder}'s belief #{cbligation-belief.39}:
(obligation-belief Eobligation-belief.39

valence negative
content &pachema. 39
baliever &thunder

&reason-for-neg <==> (Rethic-reason-4.17 ðic-reascn-4.18
ðic-reason-2.18 ðic-reason-2.19
&prag-reason-2.13)
ATeason-for-pos <==> (&prag-reason-1.3))
trying phrase #{ph-neg-believer-obligation-belief3}
trying phrase #{ph-neg-believer-obligation-belief2}
trying phrase #{ph-neg-believer-obligation-belief}

194

Applying phrase: #{ph—nes-bolicvor-obligation-belief}
————— > negative believer obligation belief <-----

Phrasal Generation: When the belief is loaded. it is passed to the English phrasal
generator PGEN which produces the natura) language description of the belief and rea-
sons. PGEN executes the inverse process of PPARSE:; it matches input concepts to phrasal
concepts. and then constructs a generation tree top-down by constructing children nodes
for each element of the phrase pattern. Processing continues expanding nodes depth-
first. left to right until output words (atoms) are produced. The phrase used to generate
&obligation-belief.39 js:

(phrase:dafine ‘pPh-neg-belisver-obligation-belief
(comment “negative believer obligation beliet")
(flags ’*dont-parse)
(pattern ?believer
‘pPlace-holderi
'that
?pschema
'is ’wrong
?reason)
(concept (obligation-belief nil
‘valence 'negative
‘believer ?believer
‘content 7pschema
&reason-for-neg Treason))
(gen-proc (parse_util:verb-nuaber 'Place-holderi ‘to-believe Tbeliever)))

The phrase neg-believer-obligation-belief contains the top level pattern for the de-
scription a believer's belief. The variables in the pattern (?believer, ?pschema. and
?reason) are replaced from their bindings in the match of obligation-belief.39 to the
concept of the phrase. The gen-proc is used to replace the atom ’place-holder1 with the
correct modality of the verb to-believe based on the subject of the verb. (See the source
code in section D.4 for the phrases used for generation.)

Generating: (human &thunder
gender male
first-name thunder)

trying phrase #{ph-thunder)

Applying phrase: #{ph-thunder}

Generating: (verb &verb.73%
auzber singular
tense present

195

name to-believe)
trying phrase #{#:|v-sing-700|}
Applying phrase: #{#:|v-sing-700|}
----- > beliaves <-==---

Word Generation: When atoms are encountered in the phrasal patterns they are
pushed onto an output buffer. For example, the phrasal concept from the following pattern
matches the concept from the ?believer in the belief pattern:

(phrase:define ’'ph-thunder
(comment "THUNDER")
(flags 'dont-parsa)
(pattern ’'thunder)
(concept (human njl
’first-name ’thunder
'gender ‘male))
(gen-proc (lexref:gen-save-re? *lexref-pecples)))

The verb “believes” is generated from the verb concept &verb.731 which was produced by
the belief pattern. The word “that” is generated directly from the pattern in the phrase
neg-believer-obligation-belief.

Generating: (pschema &pschema.39
head-goal &goal.228

Plan (&kevent.127 Revent.128)
actions (&action. 147)
goal-failures (&goal.227)

actor Shuman.56

bindings &ps-sado-plaasures.8
&has-tau <==> (&taun.7)
&contains <==> (&goal.214)

&ps-instrument <a=> (&pschema.36))
trying phrase #{ph-pschema?}
trying phrase #{ph-default-pschemail}
trying phrase #{ph-pschemai}
Applying phrase: #{ph-pschemai}

Generating: (ps-sado-pleasures &ps-sado-pleasures.8
actor &khuman .56
object &animate. 10
bp~name all
to-status killed)

196

trying phrase #{ph-ps-sado-pleasures2}
trying phrase #{ph-ps-sado-pleasures}
Applying phrase: #{ph-ps-sado-pleasures}
----- > ps-sado~pleasures <-----

Recursive phrase application: When the cont
applies patterns for the general PSchema frame (
binding list for the PSchema &ps-sado~pleasures.56. The phrase associated with the
binding list structure has a more specific phrase for generating PS:Sado-pleasures than the

general PSchema method.

Generating: (article farticle.98

type possessive

ref khuman.58)
trying phrase #{ph-his}
trying phrase #{ph-their}
trying phrase t{ph-pOIlclsor-poslollivcz}
trying phrase #{ph-possessor-possessive}
Applying phrase: #{ph-pOIl-slor-pOIlcllivo}

----- > <pOSSESEOT> *possessives <————o
Generating: (human &human.58
rts (#{rt-hunter})
gender male
number plural
&results-from <==> (Xevent.120)
kposs <==> (kanimate.10))

trying phrase #{ph-him}

trying phrase #{ph-he)}

trying phrase #{ph-hunters2)
Applying phrase: #{ph-hunters2}

L e e e . o

Generating vord: the

—— -

——— o s e

-~

197

ent of the belief is generated. PGEN
Pschemal) which in turn generates the

Generating word: watch
Generating: (animate kanimate.10
status alive
type rabbit
&results-from <==» (kevent.121)
kattach-to <==
poss-by <==>
trying phrase #{ph-rabbit}
trying phrase #{ph-animate2}
APplying phrase: #{ph-animate2}

{&human.58))

————— > the fanimate <-----
Generating: (article karticle.gg
type det)

trying phrase ¥{ph-the}
Applying phrase: #{ph-the}

-——-.-—--.-—-....-—..._—_-—_-———._—--_-_—_

.._—_—-—_-.—_—--——-.--—--.-———..—-—-.—_

Generating: (animate &animate.10
status alive
type rabbit
dresults-from <==> (kevent.121)
&attach-to <z=> (kexplogive.
&poss-by <==> (f#human.58))
trying phrase #{ph-rabbit}
Applying phrase: #{ph-rabbit}

-—._-——..-——-..——-..———-.————-———._—-—...—

- — e

Possessive articles and PSchema generation:

hunters’ plan is:

(pattern (article nil

'type ’'possessive
‘ref Tactor)

'plan

(infinitive nil
‘name ‘to-watch)

?animate

'suffer)

The generation of the article checks to see if a

the most recently generated plural human. Si

1

(&explosive.13)

13)

The pattern for generating the

pronoun can be used by testing if the actor is
nce “the hunters” have not yet been generated

98

in the sentence, the applicability tests of the Pronoun phrase does not match. and the
article is generated as “the hunters “possessive™. Later in the generation of this sentence.
the pronoun will be used. The generation of the PSchema Ps-sado-pleasures.8is “the
hunters *possessive* plan to watch the rabbit suffer.”

Generating: (ethic-reason-4 ðic-reason-4.17

value-type e-entertainment
value kgoal.228
vi-pachema &kpachema. 39
value-failure-type p-health
value-failure &goal 227
other kanimate. 10
actor Xhuman.58
pschema &pachema. 39
believer &thunder

&support-neg-bel <==» (&obligation-belief.39))
trying phrase #{ph-ethic-reason-4c}
trying phrase #{ph-ethic-reason-4b}
trying phrase #{ph-ethic-reason-4a}
trying phrase #{ph-ethic-reason-4}
Applying phrase: #{ph-ethic-reason-4}
----- > ethic-reason-4 <-----

Reason generation: The “because” clause of the sentence is generated from the most
important reason that THUNDER has for its evaluation of the hunters plan. The pattern
that is used to generate the reason is:

(phrase:define ’ph-ethic-reason-4

(comment "ethic-reason-4")

(flags ’dont-parse)

(pattern ’because ?actor

'will ?value

‘but Tactor

’will ’‘place-holderia
‘and ?v?

'is ’more ’important
‘than ?value)

(concept (ethic-reason-4 nil
‘value-failure 7?vt
'vi-pachema ?vi-pschema
‘value Tvalue
'actor ?actor))

199

(gen-test (pparse:check-var ?ve)
(pplrlo:chock-vnr ?actor)
(parao_util:not-goul-rlilod ?ve)
(parlc-util:goal-:ctor-oq? ?value ?acter)
(parlo_util:chock-for-to-c;uling ?ve))

{gen-proc (pnrl._util:gct-to-cnuling ‘Place-holderia Tvt}))

The check-for? applicability tests check for the existence of appropriate in the concept,
so that the generator does Dot try to generate an unbound variable. The next two tests
make sure that the 7actor will ?value section of the pattern wil generate correctly: (1)
the not-goal-fajleq? test makes sure that the future modal 'wi11 is appropriate, and (2)
the goal-actor-eq? test makes sure that the actor being reasoned about apd the holder of

—-—--._—-._-4.—-._——_——-.-—q.-—q.----—q._

e e e s

Generating: (human &human.5e

rts (#{rt-hunter})
gender Rale

number plural
&results-from <as> (&event.120)
&poss <sa> (fanimate.10))

trying phrase #{ph-him}

trying phrase #{ph-he}

trying phrase #{ph-hunters2}
trying phrase #{ph-hunters)
trying phrase #{ph-men}

trying phrase #{ph-themselves}
trying phrase ${ph-them}
tTying phrase #{ph-they}
Applying phrase: #{ph-they}
----- > they <e—===

Generating word: they

Pronoun generation: When &human .56 is generated for the second time, the pronoun
phrase matches and the pronoun is .

Generating word: will

200

Generating: (goal &goal.328
pschema &paschema.39
psclass #{ps-sado-pleasures}
type e-entertainment
actor khuman,58)
trying phrase #{ph-value-success-3d}
trying phrase #{ph-value-success-3c}
trying phrase #{ph-value-success-3b}
trying phrase #{ph-value-success-3a}
Applying phrase: #{ph-value~success-3a}

Generating: (verb &verb.733
name to-entertain
tense past)
trying phrase #{#:|v-past-762|}
Applying phrase: #{#:|v-past-782(}

0 Bl 1 ! o ot i o e

T M o i o S L - Ay o . oy 2 S o S S o

! . s i S . e e e

Generating: (event kevent.127
pachema &pschema.39
psclass #{ps-sado-pleasures}
object &body-part.s4
prop status
to killed
fthwarts <==> (&goal.227))
trying phrase #{ph-blow-up-ev}
Applying phrase: #{ph-blow-up-ev}
----- > blow up event <====-
Generating: (verb Xverb.734
name to-blow-up
tense present)
trying phrase #{ph-blow-up2}
Applying phrase: #{ph-blow-up2}

201

Generating: (verb &verb.735

name to-blow

tense prasent)
trying phrase #{#:lv-pres—?Oil}
Applying phrase: #{#:lv-proa-TOI]}

-_.._._...__-——--——_--._..__.....—-.-—-.-—-......

specific pattern for generating
be killed.”

Generating word: the

-——-——-.——-.-————-.-—--——-——-———-—-——--

——-_——-——-———-——--—_-—.——_..-—..——q.--

Generating: (goal &goal.227
Pschama &pachema. 39

Paclass #{ps-sado-pleasures}
type P-health

actor danimate.10

object &body-part.s4

&thwarted-by <s=> (kevent. 127))
trying phrase t{ph-nluo-tnilu.ro-?pp}
ApPPlying phrase: #{ph-vduo-flilll.ﬂ*?pp}
----- > value failure 2 pp <~----

Generating word: the

Generating word: rabbit

Generating word: *pPossessiver

202

Goal generation: Goal generation is sensitive both to conceptual and syntactic context.
For example, there are 17 ways to generate P-Health value failures depending on: (1) the
mode of failure (threatened, hurt, killed), (2) the subject of the clause (an actor, a “because”
clause, a present participle clause), and (3) the PSchema containing the goal failure (sado-
pleasures, threats, shrinking). In the cases where clauses begin with comparatives {“and”
and “than”), a description of the value is generated, instead of a description of the failure.

T ! D L . D Ay S e e .

- - -

L P S —— - —

Generating word: entertainment

THUNDER BELIEVES THAT THE HUNTERS +POSSESSIVEe PLAN TO WATCH THE RABBIT
SUFFER IS WRONG BECAUSE TEEY WILL BE EFTERTAINED BUT THEY WILL BLOW
UP THE RABBIT AND THE RABBIT #POSSESSIVE* HEALTH IS MORE IMPORTANT THAN

THEIR ENTERTAINMENT.
Additional reasons why #{thunder} believes #{pschema.39} is wrong:

BECAUSE THE NUNTEAS VILL BE BNTEATAINED BUT THEY CAPTURED THE RABBIT
AND THE RABBIT sPOSSESSIVE+ FREEDOX IS KORE INPORTANT THAN THEIR
ENTERTAINMENT,

BECAUSE THE HUNTERS VILL BLOW UP THR RABBIT."
BECAUSE TEE HUWTERS CAPTURED THE RABBIT.

BECAUSE THE HUNTERS MIGHT GET HURT BY BLOWING UP THE RABBIT.

203

Reasons why #{thunder} believes #{pachema.39} i, right:
BECAUSE THE HUBTERS WILL BE ENTERTAINED.

Reason generation: When obligation beliefs are generated, all reasons for both positive
and negative evaluations are generated. The trace produced by PGEN for the additional
reasons, and for subsequent English generation, is omitted.

Running ethical inference rule 1 for #{human.56} op #{goal.228} ang
#{goal. 227}
Loading #{human.ss} belief: (preterence-belies tprcf.ronc.-boliotll
less-important &goal . 227
hore-important kgoal. 228
believer Zhuman, 58)
Running ethical inference Tule 1 for #{human.58} op #{goal.228} angq
#{goal. 205}
Loading #{human.56} beljet: (pro!orcnco-bolior &preference-velier. 12
less-important &goal. 208
more-important &goal. 228
believer &human.58)
Running pragmatic inference Tule 1 for #{human.58} op #{goal.228} and
#{goal.231}
Running pragmatic inference rule 2 for #{human.56} op #{goal. 231} in
#{pschema.39} anq #{prag-reason-2.13}
Loading #{human.58} belief: (preference-belies &preference-belief. 13
less-important &goal. 231
Bore-important &goal.228
believer &human .56
kbel-or <==»> (kcausal-beliet.s))
Loading #{human.s56} belief: (causal-belier &causal-belief.s
caused-by &pschema.3s
caused &goal . 231
valence false
believer g&human.ge
&bel-or-to <aa> (tprotoronco-bclicf.ls))

Inferences from I{obligntion-boliot.ae} svaluation:

THE HUNTERS BELIEVE THAT THEIR ENTERTAINMENT IS MORE INPORTANT THAN
THEIR HEALTH.

or

THE HUNTERS DO NOT BELIEVE THAT THEY WILL HURT THEMSELVES BY BLOWING
UP THE RABBIT.

THE HUNTERS BELIEVE TEAT THEIR ENTERTAINNENT IS MORE INPORTANT THAN
THE RABBIT #POSSESSIVEs FREEDON .

THE HUNTERS BELIEVE THAT TEEIR ENTERTAINMENT IS MORE IMPORTANT THAN
THE RABBIT *POSSESSIVEs HEALTH,

204

Inferences about character beljef: THUNDER makes inferences about the beliefs
of the hunters based on its evaluation of their plan. From the ethical reasons, THUNDER
infers that the hunters believe that their entertainment is more important than the health and
freedom of the rabbit. From the pragmatic reason that the plan was negatively evaluated.
THUNDER infers that either the hunters belief that their entertainment is more important
than the risk to their health from the dynamite blowing up, or the they believe that they
will get hurt playing with the dynamite. (See the source code in section D.2.6).

Generating #{human.56}'s evaluative belief about #{pschexa.39}
BEL: Creating obligation balief #{obligation-belief.40} for #{human .56}
about #{pschema.39}
BEL: Setting evaluation of #{pschema.39} to positive
Creating pragmatic reason #{prag-reason-1.4} by P-1 for pos eval
of #{pschema.39}
Creating ethical reason #{ethic-reason-3.9} by E-3 for pos aval
of #{pschema.38}
Creating ethical reason #{ethic-reason-3.10} by E-3 for pos aval
of #{pschema.39}
BEL: Prioritizing reasons for positive evaluation of #{pschema. 29}
Creating pragmatic reason #{prag-reason-2.14} by P-2 for neg eval
of #{pschema.39} from #{tau.7}
Creating ethical reascn #{ethic~reason-2.20} by E-2 for neg eval
of #{pachema.39}
Creating ethical reason #{ethic-reason~-2.21} by E-2 for neg eval
of #{pschema.39}
BEL: Prioritizing reasons for negative evaluation of #{pschema.239}
Loading #{human.E6} belief: (obligation-belief &obligation-belief.40
valence positive
content &pschema.39
believer khuman.58
kreason~for-neg <==> (Rethic-reason-2.20
ðic-reascn-2.21
&prag-reason-2.14)
&krsason-for-pos <=s> {gethic-reason-3.9
ðic-reason-3.10
kprag-reason-1.4))

Generating #{human.56}'s belief #{obligation-belief.40}:

THE HUNTERS BELIEVE THAT WATCHING THE RABBIT SUFFER IS RIGHT BECAUSE
TEEY WILL BE ENTERTAINED WHILE THEY VILL BLOW UP TEE RABBIT AND THEIR
ENTERTAINNENT IS MORE INPORTANT THAN TEE RABBIT #POSSESSIVEs HEALTH.

Additional reasons why #{human.66} believes #{pschema.39} is right:

BECAUSE THE HUNTERS WILL BE ENTERTAINED WEILE THEY CAPTURED THE RABBIT
AND THEIR ENTERTAINMENT IS MORE IMPORTANT THAN THE RABBIT #POSSESSIVEs

FREEDON.

BECAUSE THE BUNTERS WILL BE ENTERTAINED.

205

Reascns ghy #{human.56} believes #{pschema.39} jq wrong:
BECAUSE THE BUNTERS WILL BLOW UP TEE RABBIT.

BECAUSE THE HUNTERS CAPTURED THE RABBIT.

BCP: Search for BCP from #{othic-rcalon~4.17} and #{obligation—boliot.sﬂ}
Loading concept #{bcp.26} into STORY MEMORY :
(bep &bcp. 25

believer &thunder

belier tobligation*bolicf.iz

actor-beljier fobligation-belies.41

bindings &bcp-inhumane. 10

&from-belief <==> (tobligntion-boliof.40 lobligntion-bclict.SO)

&from-reason <==> (tothic-roason*i.l?))
Generating story concept #{bcp.25}:

THUNDER BELIEVES THAT THE HUNTERS ARE INEUMANE TO BLOW UP THE RABBIT
FOR THEIR ENTERTAINMENT.

Spavning demon: Tesolve-bep.1
==========3.=3SIIHIISISIIISIISISISSISII EIBF= TIZRXT
TEST: Search for a goal failare for an actor

ACT: Resolve the BCP

===3238HI=.8'II'“I..“.I'“”'“S BEEXR ZITAZEZESS

Killing demon: evaluate-plan.i with xill value: +act

BCP recognition: After constructing the hunters’ obligation belief, THUNDER rec-
ognizes that THUNDER's and the hunters’ obligation beliefs have opposite valence, and
initiates the search for a BCP. The search is based on the most important reason that THUN-
DER has for believing that the plan is wrong: the hunters are killing the rabbit to achieve
a less important goal (ethic-reason.4. 17). The search yields BCP:Inhumane: the belief
that it is wrong to execute plans that cause non-recoverable P-Health goal failures for less
important goals. (See source code in section D.3 for the implementation of BCP:Inumane,
and section D.2.6 for the source code that implements BCP recognition.)

206

Thematic
Levea/:

—————-—-_———-—-—-—

Beiief Level: | [Bogtive Obigaton Barar
Content:PS:Sado- leasures

Negative Obligation Belief
Content: PS:Sado-pleasures

Preference Balief
more-important: Entertainment
Lless-important: Rabbit's health

K Preferance Bslial
) more-important: Entertainment
inferred-from less-important: Rabbit's freedom

\ Causal Belief

has-tau

Preference Belief
more-important: Entertainment
less-i :

Intentionat

Level: | PS:Sado-pleasures

1lhmﬂhnnonuﬂ4b

|

|

[

| PS:Blow-up
|

I

|

Action
Level: Type: Mbuild ype: Propet
Actor: Hunters or: Hunters
Object: Goal joct: Dynamite
: Rabbi |

Figure 9.2: Episodic Story Representation After Sentence 2

9.1.3 Third sentence
Processing sentences:
THEY LIT TEE FUSE AND LET IT GO

Result of Parse: (action Raction.148

207

type Ptrans

actor ghuman.56

objact &fire-obj.4

to &sxplosive, 13

status realjizad

kcauges <==> (&event.131))
(action &action. 150

type atrans

actor &human.E§

object kanimate.ig

from &human.56

loc ?loc

status realized)

Sentence three representation: After the pronouns are resolved, the third sentence
is parsed into two discrete actions: (1) a PTRANS of a fire-obj to the dynamite, and (2) an
ATRANS of the rabbit away from the hunters.

Running demen: action-~by-new-pschema.4
Building #{ps-light-fuse} from #{action. 148}
Loading pscheama #{pschema.42} to GPN from #{action. 148}
by link &in-pschema: (pschema Spschema.42

head-goal &goal.237

Plan (kevent.134)
actions (&action.152)
actor &human .58

bindinga &ps-light-fuse,2
fcontains <==> (Raction.148))

ACT: Setting #{action.152} to realized

EVENT: Setting #{event.134} to realized

GPM: Completed plan in pschema #{pschema.42)

GPN: Inferring head-goal #{goal.237} in pschema #{pschema.42} succeeded

GOAL: Setting status on #{goal.237} to inferred-succesded

GPM: Spawning demon to find pschema #{pschema.42} motivation

Spawning demon: plan-motivation. L

B S P F F T =3====3=8=833a=========================
TEST: Find motivation for a Plan.

ACT: If not found, spawn demon to search for it.
======3===384‘-8-'-’8'-838'“-.8-88 X EXX EZEXWEER
Killing demon: Action-by-new-pschema.4 with kill value: +act
Running demon: plan-motivation.s

Spawning demon: search-for-plan-motivation.3
==============338==3===388333IS“SISISSISHSISISII:I&'I:328
TEST: Search for motivation for a Plan.

ACT: Include the motivatiom in goal/plan memory.

Killing demon: plan-motivation.8 with kill value: -act

208

Running demon: search-for-plan-motivation.3

GPMEX: Searching for motivation for Pachema #{pachema.42}

GPN: Linking pschema #{pschema.36} as goal-enabled by #{pschema.42}
GPM: Setting #{goal.216} to succseded

GOAL: Setting status on #{goal.218} to succeeded

GPM: Found motivation #{pschema_ 38}

Killing demon: search-for-plan-motivation.3 with kill valuae: +act

Enabling PSchemas: The “lighting fuse’ action is used to create the PSchema
PS:Light-fuse, which in turn is linked as enabling a subgoal in the PSchema PS:Blow-up.
Since the lighting action was realized, the head goal of PS:Light-fuse (£goal.237) and the
subgoal of PS:Blow-up (&goal. 216) are marked as succeeded.

Running demon: action-by-nev-pschema.5s
GPM: Searching for pschema containing object #{action.150}
Loading pschema #{pschema.41} to GPM from #{action. 150}
by link &in-pschema: (pschema &pschema . 41

head-goal &kgoal.236

plan (kevent.133)
actions (kaction.151)
actor &human .58

bindings &ps-remove-control.2
&contains <=a> (Raction.150))
GPM: Spawning demon to find pschema #{pschema.41} motivation

Spawning demon: plan-motivation.§
============I========3==II====I=II3888=III.II.SIISIISSI.=I
TEST: Find motivation for a plan.

ACT: If not found, spawn demon to search for it.

=2=SQISCISII:IIR'.II'..I"..-- ESSen L] -

Killing demon: action-by-new-pschema.5 with kill value: +act

Linking #{pschema.41} to #{pachema.35} by 1link &ps-goal-enables
GOAL: Setting status on #{goal.210} to succesded

Spawning demon: others-plan-motivation.i
FEAEERSEEREETRSENSEREAER EREE= Ea=m
TEST: Find motivation for enabling anothers plan.
ACT: Include the motivation in GPN.

GPM: Found motivation #{pschema.35)}

Enabling other’s plans: When the hunters let the rabbit go, THUNDER builds the
PSchema PS:Remove-control and searches for a PSchema that it enables. Instead of finding a
PSchema of the hunters, THUNDER recognizes that removing control enables the PSchema
PS:Escape (&pschema.35) of the rabbit. When this enablement condition is recognized,
THUNDER spawns the others-plan-motivation demon to explain why the hunters are
enabling a goal of the rabbit. {See source code in section D.23))

209

Running demon: oth.rs-plnn-notivntion.l
GOAL: Getting success state for #{goal.212}
GOAL: Returning state #{state.28)

GOAL: Getting success state for #{goal.217}
GOAL: Returning state #{state.33}

Linking #{pachema.35} to #{pschema. 36} by link tpt-lido-cftoct—onablcl
GPM: Found motivation #{pschema. 36}
Killing demon: othors-plcn-lotivction.i with kill valuse: +act

goals in the rabbit’s plan to see if they achieve an actjve goal of the hunters. Ope of the
sub-goals of PS:Escape is a D-Prox (change in physical Proximity) goal to get away from the
captors (&goal.212). THUN DER recognizes that the success state of this goal also achieves
a sub-goal of PS:Blow-up: a D-Prox goal of getting away from the dynamite (&goal.217).
Since the rabbit’s escape enables the hunters’ D-Prox goal, the escape pschema is linked to
PS:Blow-up by the link Ps-side-effect-enables, This link represents that the hunters
are exploiting a side-effect of the rabbit’s plan to enable their own plan.

Figure 9.3 shows the objective and intentional levels of the episodic story representation
after Processing the third sentence of the story.

8.1.4 Fourth Sentence

Procos:ing sentencae:
THE RABBIT RAN FOR COVER UNDER THEIR TRUCK

Result of Parse: (action &action.155
type ptrans
actor Aanimate.io
object kanimate.10
to &location.39
status realized)
Building #{ps-run-awvay} froa #{action. 155}
Loading pschema #{pschema.43} to GPN from #{action.155} by
1ink &in-pschema: (pschema &pschema. 43 '
head-goal &goal.23s

plan (Zevent. 138 gevent. 137)
actions (&action. 158)
actor Sanimate. 0

bindings &ps-run-avay.2
&contains <==> (gaction. 185))
Linking #{action.155} to #{pschema.43} by 1ink &in-pschema
Linking #{pschema.43} to #{pschema.35) by link &ps-goal-enables

Fourth sentence representation and explanation: The fourth sentence is repre-
sented by a PTRANS of the rabbit from the hunters to a location under a truck that is

210

| ! |PS:Sado-pieasures] !
Intentional | I
Leval: I instrumental-to !
! PS:Blow-up | skde-sffect-
I
|
PS:Light-fuse]
|
contains | |
I
| Babbit's Plans
-\ e N______"_
Objective ion
Level. Type: Ptrans Type: Atrans
Actor: Hunters Actor: Hunters
Object: Fire-obj Object: Rabbit
To: Dynamite From: Hunters

Figure 9.3: Intentional and Objective Levels of the Episodic Story Representation After
Sentence 3

possessed by the hunters (klocation.39), The rabbit’s action is explained by the PSchema
PS:Run-away, which is in turn explained by its enablement relationship to PS:Escape.

9.1.5 Thematic Recognition

At the end of the story the rabbit is sitting under the hunters’ truck with a lit stick of
dynamite on its back. Since THUNDER has not yet recognized a resolution to the belief
conflict and a theme for the story, processing continues by finding the next expected event
and marking it as realized. The routine control :make-forvard-inferences finds the next
expected event (source code in section D.2.1).

Since a theme has not been found, making forward

inferences in episodic memory

Found #{event.124}

EVENT: Setting #{event.124} to realized

EVENTS: getting resulting state from event #{event.124}

EVENTS: got state #{explosive.13} from #{event.124}

GPM: Completed plan in pschema #{pschema.36}

GPM: Inferring head-goal #{goal.218) in pschema #{pschema.36} succeeded
GOAL: Setting status on #{goal.218} to inferred-succeeded

211

EVENT: Setting #{event.127} to realized
EVENTS: getting resulting state from event #{event.127}
EVENTS: got state #{body-part.64} from #{event.127}
GPM: Setting #{goal.227} to failed
BEL: Creating value belief #{value-belief.13} about #{goal.227}
for #{animate.10}: (value-belief &value-belie?f. 13
content Agoal. 227
valence negative
believer Zanimate.10)

Value belief: The event that is marked as realized is the dynamite blowing up event
in PS:Blow-up (&event.124). This event is linked as forcing the event in the pschema of
the object blowing up, which in turn achieves the head goal of PS:Blow-up. When the
rabbit blowing up event is marked as realized, the P-Health goal failure that it caused in
the pschema is marked as failed, and the rabbit’s value belief is built and loaded into the
rabbit’s belief memory. The rabbit’s belief is that it is bad to be blown up.

EVENTS: Searching for events forced by event #{event.124}

EVENT: Setting #{event.138} to realized

EVENTS: Found forced-events/states ((#{event.138} . #{state.34}))
GPN: Searching for pschema containing object #{event.138)}
PSCHENMA: Building PSCEEMA #{gf-damages}

Loading pschema #{pschema.44} to GPN from #{pschema.3s} vy

link &ps-forcad-by: (pschema kpschema.44

plan (fevent.139)
goal-failures (&goal.239)
actor &human .68

bindings >-damages.2
&ps-forced~-by <==> (&pschema.38))
GPM: Setting #{goal.239} to failed
BEL: Creating value belief #{value-belief.14} about #{goal.239}
for #{human.56}: (value-belief Avalue-beliezf.14
content &goal.239
valence negative
believer ghuman.36)
BEL: Creating preference belief #{preference-beliezf.14} about
#{goal.229} and #{goal.239) for #{human.56):
(preference-belief Apreference-belief.14
less-important &kgoal.228
moTe~important &goal.239
believer &human.58)
GPM: Linking pschema #{pschema.39} as suspended by #{pschema.44}

Forced events: When events are marked as realized, THUNDER check to see if there
are any side effects caused by the event that are not in the pschema. Since the dynamite
was under the truck when it blew up, THUNDER builds the forced event &event . 138 of the
truck blowing up. This event is used to build the goal failure schema GF:Damages, which

212

contains the P-Possessions goal failure for the hunters. Processing this goal failyre provides
two beliefs for the hunters: (1) a negative value belief that they do not like to have their
truck blow up, and (2) a preference belief that possession of their truck ig more important
than their entertainment. Because of this preference belief, the goal failure suspends their

plan for entertainment.

Processing failed value #{goal.239} in #{pschema.44)

GPM: Searching for Tecovery plan for #{goal.239} in #{pschema.44}
Building #{ps-fix-object} from #{goal.240}

Loading pschema #{pschema.45} to GPM from #{pschema.44} by

link kpa-goal-motivates: (pschema kpschema.45

head-goal kgoal, 243

plan (&goal.242 kevent.140)
actor &hunan.58
goal-failures (&goal.241)

bindings kps-fix-object.4

&ps-goal-motivated-by <a=> (kpschema.44))
Processing failed value #{goal.241} in #{pschema.45}
GPM: Searching for recovery plan for #{goal.241} in #{pschema.45}
Building #{ps-recover-object} from #{goal. 244}
Loading pschema #{pschema.46)} to GPN from #{pschema.45} by
link &ps-goal-motivates: (pschema &pschema .48
head-goal &goal.246
plan (&goal.245)
actor khuman.56
bindings &ps-recover-object.2
kps-goal-motivated-by <=a> (kpschema.45))

Recovery plan motivation: Just as the rabbit’s failed P-Freedom goal motivated a

plan for escape, the hunters’ blown up truck motivates them to fix t

he damage (PS:Fix-

object &pschema.45). The PSchema PS:Fix-object contains a P-Possessions goal failure of
the money that is needed for the fix, so PS:Fix-object motivates the plan to recover the
money PS:Recover-object (kpschema.46) (see source code in section D.2.3)

Figure 9.4 shows the objective and intentional levels of the episodic story representation

after GF:Damages and the motivated plans have been recognized.

Spawning demoa: explain-gfschema.1
II8-.III!II-.um-.“I-I“Iﬂ-.ISISIIISUIIISSIIII“SIIIII
TBST: The goal failure was self-caunsed

ACT: Searchk for a planaing failure

GPX: Spasning demon to find pschema #{pschema.44) motivation

Spawning demon: plan-motivation.10

TEST: Find motivation for a plan.
ACT: If not found, spawn demon to search for it.

213

i [ES:Sado-pleasure?[
Intentional | .
Level: | instruments

|

|

I

l motivates

! enables

|

|

|
S |
Objective
Level: Type: Ptrans

Actor: Rabbit
To: Under Truck

Figure 9.4. Intentional and Objective Levels of the Episodic Story Representation After
GF:Damages is Recognized

========z=============================- ----------

Running demon: Plan~motivation. 10
Killing deaon: Plan-motivation. 10 with kill value: kill
Running demon: explain-gfschema.

Spawning demon: cxplain-;t-by-plln-tlilnro.1
===2'=========I=ﬂ==l.l- = =N
TEST: Find a Planner action that caused a goal failure
ACT: Build the reason that the act caused the goal failure
==S======82333==28=SII:II.-I-'I“.'ISIISIIESI--IIISSSHIIIS
Killing demon: explain-gfechema.i with kill value: +act
Running desmon: axplain-gt-by-plln-tniluro.1

GOAL: Getting success state for #{goal.217}

GOAL: Returning state #{state.35}

EVENT: Getting result state for #{event.137}

EVENT: Returning state #{state.30)

PF: Searching for action Causing #{state.3s) ...

FF: ... trom #{goal.217) 4n #{pschema. 38}

PF: Modifying state #{state.36} froa #{goal.217}

PF: Searching for action causing #{state.36) ...

PF: ... from #{goal.212} ip #{pschema.35}

PF. Modifying state #{state.36} from #{goa1.212}

PF: Searching for action causing #{state.37} ...

214

PF: ... from #{goal.211} in #{pschema .35}

PF: Modifying state #{state.37} from #{goal.211}

PF: Searching for action causing #{state.38} ...

PF: ... from #{goal.238} in #{pschema.43}

PF: Modifying state #{state.38} from #{goal.238}

FPF: Searching for action causing #{state.39} ..,

PF: ... from #{event.137} ip #{pschema.43}

PF: Modifying atate #{state.39} from #{event, 137}

PF: Searching for action causing #{state.40)} ..,

PF: ... from #{event.138} in #{pschema.43}

PF: Modifying state #{state.40} from #{event.1368}

PF: Searching for acticn causing #{state.40} ..,

PF: ... from #{event.136} in #{pschema.43}

PF: Modifying state #{state.40} from #{event.138}

PF: Searching for action causing #{state.38} ..,

PF: ... from #{goal.210} in #{pachema.35}

PF: Modifying state #{state.38} from #{goal.210}

PF: Searching for action causing #{state. 38} . .

PF: ... from #{goal.236} in #{pschema.41}

PF: Modifying state #{state.38} from #{goal.236}

PF: Searching for action causing #{state.38} ., .

PF: ... from #{event.133} in #{pschena.41}

PF: Modifying state #{state.38)} from #{event.133}

PF: building plan failure

PF: Trying to modifying action #{action.151} from #{state.38}

GPN: Adding to #{human.56} gpm: #{node.35}

Putting concept in GOAL/PLAN Memory: (plan-failure &plan-failure.1
ftate-realized kstate.38
state-intended &state.35
goal-failure &goal.239
actor &buman .58
act &action.151)

Plan failures: When THUNDER recognizes a self-caused goal failure, it builds a plan
failure frame to explain the cause of the failure. The Plan failure identification process-
ing backtracks from the intended and unintended states — the blown up rabbit and truck
(2state.35 and &state.36), respectively — to find a planner action that resulted in both
states. The backtrack modifies the states for the effect of realized events and achieved
goals, so that the action that is identified as the “cause” of the plan failure contains
the undone states. The trace show plan failure processing backtracking from PS:Blow-
up (&pschema.36) to PS:Escape (&pschema.35) to PS:Remove-control (kpschema.41). The
action in PS:Remove-control is the men releasing the rabbit. The modified state information
contains their mistake — they released the rabbit near their truck. (See source code in

section D.2.7).

IRONY: Checking u-event #{event.139} causing failure #{goal.239}
for irony

215

IROFY: Looking for i~force on #{event 136} between #{pachema.44}

and #{pschema.39}

IRONY: Found i-force #{i-force.3}

IRONY: Building just-desert irony with i-force #{i-force.3}

Loading concept #{irony.10} into STORY MEMORY: (irony &irony.10
ground &pschema.39
outcome kpschema.44
u-event kevent.139
type just-desert
i-force &ki-force.3)

Generating story concept #{irony.10}:

THE IRONY IS THAT THE HUNTERS EXPECTED TO BE ENTERTAINED BY WATCHING
THE RABBIT BLOW UP BUT THEIR TRUCK BLEW UP WHEN THE RABBIT RAN UNDER
THREIR TRUCK.

Killing demon: explain-gf~by-plan-failure.i with kill value: +act

Irony recognition: Since the event that caused the goal failure for the hunters was
unexpected, THUNDER searches for an ironic contrast between their expectation and real-
ization. Three of the four elements of irony have already been recognized: (1) the hunters’
ground belief that they are going to be entertained, (2) the u-event of their truck blowing
up, and (3) the outcome of their P-Possessions goal failure. Since THUNDER has a belief
that their plan was ethically wrong, the type of irony is “just-desert” — their truck blowing
up is a just desert for being inhumane to the rabbit. The search for an i-force finds the
Attend event in PS:Sado-pleasures: the hunters expected to watch the rabbit blow up, but
they watched their truck blow up instead.

Running demon: resolve-tau.3
TEEME: Checking for theme from #{tau.7} and resolution #{pschoma.44}
THEME: Getting resolving-belief for #{human.56} from #{pschena.44}
THEME: Found theme from #{value-belief.16} and #{value-belief.15}
THENE: Generalizing theme from
#5(ht name slm-bind
pred #<Compiled-Function eq 43567F>
elements ((value-failure-type . p-health)
(believer . #{thunder})))
#S{(ht name slm-bind
pred #<Compiled-Function eq 43587F>
olements ((value-failure~type . p-possessions)
(believer . #{human.56})))
and #{tau-dangercus-object.8}
THEME: Generalizing value-failure-type from p-health and P-possessions
THEME: Generalizing believer from #{thunder} and #{human.56}
Loading concept #{theme.20} into STORY MEMORY:
(theme &theme.20
reason &value-belief.i7
belief &obligation-belief.43

216

tYpe reason-theme

kresolution-from <==> (&pschema.44)

ktheme-from <=z=> (&tau.7))
Generating story concept #{thems.20}:

THE TEEME IS THAT YOU SHOULD NQT PLAY WITH DYNAMITE BECAUSE YOU WOULD
NOT LIKE BAD THINGS TO EAPPEN TO YOU.

Killing demon: resolve-tau.3 with kill value: +act

TAU resolution and thematic recognition: The TAU TAU:Dangerous-object cau-
tions against playing with dangerous objects because the planner can be injured. However.
in the resolution GFschema GF:Damages it was a P-Possessions goal failure for the plan-
ner, and not a P-Health goal failure. To recognize the theme that you should not play
with dynamite because bad things will happen, THUNDER generalized from two beliefs:
(1) THUNDER's negative value belief about getting hurt supporting TAU:Dangerous-object
(&value-belief.16), and (2) the hunters’ negative value belief about their truck blowing
up (&value-belief.15). Since the two beliefs differ in their goal type, THUNDER creates
a generalized value belief &value-belief.17 of type P-Preservation. This value type is
generated in English as “bad things.” (See the source code in section D.2.7.)

Runting demon: resolve-bcp.3

Generating #{human.56}’'s evaluative belief about #{pschema.39}

BEL: Creating obligation belief #{obligation-belief.44} for #{human.68}
about #{pschema.39}

Creating pragmatic reason #{prag-reason-1.5} by P-1 for pos eval

ot #{pschema.39}

Creating ethical reason #{ethic-reason-3.12} by E-3 for pos eval

of #{pschema.39}

Creating ethical reason #{ethic-reason-3.13} by E-3 for pos eval

of #{pschema.39}

BEL: Prioritizing reasons for positive evaluation of #{pschema. 39}

Creating pragmatic reason #{prag-reason-2.16} by P~2 for neg eval

of #{pschema.39)}

Creating pragmatic reason #{prag-reason-2.17} by P=2 for neg eval

of #{pschema.39)

Creating pragmatic reasca #{prag-reason-2.18} by P-2 for neg eval

of #{pschena.39} from #{tau.7}

Creating ethical reason #{ethic-reason-2.22} by E-2 for neg eval

of #{pschema.d0}

Creating ethical reason #{ethic-reason-2.23} by E-2 tfor neg eval

of #{pschema.39)}

Creating ethical reason #{ethic-reason-4.20} by E-4 for neg eval

of #{pschema.39}

Creating ethical reason #{ethic-reason-4.21} by E-4 for neg eval

of #{pschema.39}

BEL: Prioritizing reasons for negative evaluation of #{pschema.39)}

BEL: Setting evaluation of #{pschema.39} to negative

217

Loading #{human.56} belief: (obligation-belief &obligation-belie?.44
valence negative
centent &pschema.39
believer &Xhuman.56
lrollon-for—nos <==>
(kethic-reason-4.20 ðic-reason-4.21
ðic-reason-2.22 kethic-reason-2.23
&prag-resasen-2,16 &prag-reason-2.17
¥prag-reason-2.18)
kreason-for-pos <==>
(ðic-reason-3.12 ðic-reason-3.13
tprag-reason-1.5))
THEME: Checking for theme from #{bcp.25} and resolution #{pschema.44}
THEME: Getting resolving-belief for #{human.56} from #{pschema.44}
THEME: Found theme from #{preference-belief.i8} and
#{preference-beliet.15}
THEME: Generalizing theme from
#5(ht name slm-bind
pred #<Compiled-Function eq 43667F>
elements ((value-type . e-entertainment)
(value-failure-type . p-health)
(believer . #{thunder})))
#S(ht name slm-bind
pred #<Compiled-Function eq 43567F>
elements ((value-type . e-entertainment)
(value-failure-type . p-pessessions)
(believer . #{human.56})))
and #{bcp-inhumane.10}
THEME: Generalizing value-type from e-entertainment and e-entertainment
THEME: Generalizing value-failure-type from P-health and p-possessions
THEME: Generalizing believer from #{thunder} and #{human.56}
Loading concept #{theme.21} intc STORY MEMORY:
(theme &theme.21
reason &preference-belief. 18
belief &obligation-beliet.45
type reason~theme
&resolution-from <==> (kpschema.44)
ktheme-from <==> (&bcp.26))
Generating story concept #{theme.21}:

THE THEME IS THAT YOU SHOULD NOT EXECUTE PLANS THAT CAUSE BAD TXINGS
TO HAPPEN TO OTEERS FOR YOUR ENTEATAINNENT BECAUSE YOUR ENTERTAINMENT
IS LESS INPORTANT THAN BAD TRINGS EAPPENING TO YOU.

THEME: Getting resolving-belief for #{human.58)} from #{pschema.44}
THEME: Found thems from #{value-belief.18} and #{value-belief.17}
TEEME: Generalizing theme from
#S{(ht name slim-bind
pred #<Compiled-Function eq 43587F>
elements {(value-failure-type . p-health)

218

(believer . #{thunder})))
#5(ht name slm-bipgd

pred #<Compiled-Function eg 43567F>
¢lements ((vnluo-!nilure-typc . p-peossessions)

(believer . #{human.56})))
and #{bcp-inhumana.10}
THEME: Generalizing value-failure-typa from P-health and p-possessions
THEME: Generalizing believer from #{thunder} and s#{human .58}
Loading concept #{theme.22} into STORY MEMORY:
(thema Atheme.22

Tsason &value-belief. 18

belief &obligation-belier.4s

type Teascn-theme

&resolution-from <=a> (kpschema.44)

&theme-from <==> (&bcp.25))
Generating story concept #{theme.22}:

THE THEME IS TEAT YOU SHOULD NOT EXECUTE PLANS THAT CAUSE BAD THINGS
TO HAPPEN TO OTHERS BECAUSE YOU WOULD NOT LIKE BAD THINGS TO HAPPEX
TG YOU.

Killing demon: resolve-bcp.3 with kill value: +act

BCP Resolution and thematic recognition: Recognition of the theme from
BCP:Inhumane and the resolution GF:Damages, involves building the hunters’ post-hoc
obligation belief about why they should not have blown up the rabbit. Since their plan did
not achieve its goal, and there were two goal failures (the damage to the truck and having to
pay to get it fixed), the hunters’ evaluation of the plan is now negative. (See section D.2.7
for the routines that implement thematic processing, and D.3 for the sources for BCP and
GFschema representation.)

From the resolution, two reason themes are generated from the supporting beliefs of
BCP:Inhumane: (1) the preference belief that it is wrong to cause value failures for less
important value successes, and (3) the value belief that it is wrong to cause value failures.

Figure 9.5 shows the thematic level of the episodic story representation and the link-
ages between the thematic concepts that THUNDER recognized and the lower levels of the
representation.

219

Thematic
Level:

Ethical Reason Theme.1
(Don't cause bad things for
enterntainment)

Ethical Reason Theme.2 resolution
{Don't cause bad things for

others)

[Boliaf Level:

ITAU:Daggerous-obied

I Negative Obligation Belief
|

Intentional
Level:

Hunters' Beliefs
and Plans

Figure 9.5: Thematic Level of the Episodic Story Representation at the End of Processing

220

Part IIT

Evaluation and Conclusions

In the first two parts of this dissertation, THUNDER s theory of evaluative judgment and
model of story understanding were presented. This part addresses the evaluation question:
How do we know if the theory and model are any good? What are the strengths and
weaknesses? What is the basis for evaluation of the program and theory? What is the
scientific status of the program and its relation to the theory? How are claims made from the
theory supported by the implementation? The first part of the dissertation presented a theory
of evaluative judgment and moral reasoning, while the second was about the engineering
involved in putting the system together. Belief conflict patterns were used to link the two
parts of the dissertation together. On the theoretical side, BCPs were used to represent moral
knowledge and organize memory by evaluative content. On the engineering side, BCPs were
used to represent conflict in stories and to construct story themes.

The primary method of evaluating THUNDER is by its performance. The moral rea-
soning and natural language tasks that THUNDER is capable of performing provide one
measure of the “goodness” of the theories: the theories can be realized in a computer pro-
gram and run without human intervention. The Program provides an existence proof that
the theories are rigorous enough to be implemented. If THUNDER s performance is used to
evaluate the program, however, it is necessary (1) to evaluate the I/O behavior, and (2) to
evaluate the methodology used to construct the program. The I/O is evaluated by compar-
ing THUNDER'’s performance to protocol data, and third-party judgments that the I/0is
‘reasonable.’ The methodology is evaluated by reviewing the cognitive modeling paradigm
that was used to construct THUNDER, and arguments for and against the paradigm from
the cognitive science literature. ‘

Chapter 10 reviews the theoretical claims that have been made, the theoretical founda-
tions of the work, the limitations of the program, and presents some evaluation studies. The
claims and methodology for their support provide a basis from which to compare THUNDER
to other models of belief and ethics from artificial intelligence, psychology, and philosophy
in chapter 11. Chapter 12 presents future directions for research and applications based on
THUNDER, a discussion of the contributions of the research, and conclusions.

221

CHAPTER 10

Methodology and Evaluation

and beliefs. The position adopted toward the concepts is instrumentalist [Dennett, 1987,
pPp. 52-33]; folk psychological concepts are abstractions that are useful in explaining and
accounting for behavior. As elements of THUNDER, the concepts usefulness are shown by
how they provide organization and access to knowledge that is used to understand stories.

Third, the support that the program provides for the theoretical claims can be argued

cases. The new cases can be (1) within the domain of behavior modeled by the program,
shown by Processing additional sentences and stories, or (2) new classes of behavior, by
adapting the model to new tasks. There are some fundamental limitations of the modeling
techniques used in THUNDER: (1) the fragility of symbolic representation of schemas, (2)
the issue of how the symbolic structures are acquired, (4) the issue of how symbols are related
to sensory/physical experience (the “symbol grounding” problem [Harnad, 1987}), and (3)
the interrelation between the reasoning domains that are needed for story understanding,

The primary method of evaluating how good THUNDER is as a cognitive model is by
its performance. The types of beliefs and reasons that THUNDER is able to construct and
generate, and the story themes that THUNDER recognizes are the behavioral measure of
how good the theories are that have been implemented. The theoretical distinctions that
have been made in the various taxonomies are supported by (1) what was necessary to get
THUNDER to exhibit the behavior in terms of input and output, and (2) logical extensions
to the cases to fill out the classes of behavior that THUNDER handles one instance of.

This chapter is organized in five sections: (1) the claims about cognitive processes that
THUNDER was designed to support are identified, (2) the theoretical foundations of the
modeling approach taken in THUNDER are presented and argued for, (3) the limitations of

222

the approach are identified. (1) three evaluation studies are presented. and (3) THUNDER s
robustness and fragility is examined by testing the program'’s performance on sorme new
examples.

10.1 Theoretical Claims

The term computational theory has been used two ways in the literature: (1) in Marr's sense
[Marr, 1982], as a type of theory that specifies what is being computed and the constraints
that should hold on the computation. and (2) in the cognitive modeling sense as a character-
istic of a theory of a cognitive process which was implemented in a computer program (see,
for example, [Mueller, 1989]). Marr distinguished between three different aspects of theory
of a computational process: (1) computational (alternatively, “functional” [Arbib, 1987)),
which specifies the goal of the computation, (2) algorithmic, which specifies the steps in the
processing of information, and (3) representational, which specifies the representation of the
information.! The computational theory is supported by the algorithmic and representa-
tional theories. The second sense of the term encompasses all three of Marr’s aspects; in
order to implement a theory in a program, the functional behavior, algorithms, and data
structures have to be specified.

The functional analysis of evaluative judgment was provided by the task domain. In
order to recognize story themes from natural language text, (1) actions and people have .
to be judged, (2) the reasons for the judgment have to be generated, (3) story character’s
reasons for his judgment have to be generated, (4) conflicts and resolutions have to be
identified, and (5) generalized advice has to be constructed, The requirements from story
understanding identified (1) the types of concepts that are evaluated, (2) the characteristics
of the concepts that influence their evaluation, and (3) the relationship of evaluation to
thematic story understanding. The representational and algorithmic theories implemented
in THUNDER are used to support the computational theory of what is computed and how
it 1s used.

Marr’s distinctions are useful for organizing the theoretical claims that THUNDER was
produced to support. There are two cognitive processes that are modeled in THUNDER:
(1) plan evaluation, and (2) story understanding. For each process, the computational
theory specifies what is computed and why the computation is useful. The representational
theories are the data structures that are used in the computation, either to represent what is
computed or to represent the knowledge that is used by the computation. The algorithmic
theories are the descriptions of the processes that are used in the computation. Each aspect
of the theory provides falsifiable statements, as well as generalizations and predictions.

Plan evaluation. Plan evaluation is the computation of evaluative beliefs about plans.
An evaluative belief that a plan should or should not be executed is represented by an

! Unfortunately, Marr called these aspects “levels” which lead to a confusion of theoretical and implemen-
tational considerations. The confusion and problems are discussed in section 10.2.1.

223

and goal importance.

3. From beliefs that an actor is eXecuting a plan, the evaluator can jnfer (1) the actor's

belief that his Plan is “right ” and (2) the actor’s beliefs about valye and planning
preferences from the evaluator’s reasons for plan evalyation.

difficult to falsify, because (1) inferences about preferences and factyal beliefs can be made
from sources other than actions, and (2) the inferences are dependent on the evaluator’s eva]-
uation and valye System. To falsify the third statement would require a carefully controlled
experiment to eljcit (1) subjects values, (2) reasoning methods of evaluation of actions, and
(3) inferences about the actor’s beljefs from the action. If an inference can be found that

The Tepresentational theory of plan evaluation has the following claims:

1. Reasons for obligation belief have two components: (1) a judgment warrant, and (2)
factual beliefs about plans.

4. Other available Plans are contained ip long-term intentjona] memory, and are accessjble
by the value that js being planned for.

The definition of the terms used in the claims in given in chapter 2.

224

The algorithmic theory has the following tenents:

1. To comstruct a belief graph, the set of judgment warrants are applied to factual beliefs
about the plan being evaluated.

2. To select the evaluation, ethical reasons take precedence over pragmatic reasons. The
evaluation is selected by the following rules: (1) if one evaluation has ethical reasons
and the other does not. select the evaluation that has the ethical reasons. (2) if both
evaluations have ethical reasons. select the evaluation that has more ethical reasons. (3)

if neither evaluation has ethical reasons, select the evaluation that has more pragmatic
reasons.

3. Pragmatic and ethical inference rules are applied to the evaluation to generate the
inferred beliefs of the actor.

There are three fundamental principles implicit in THUNDER’s model of plan evaluation:
(1) plan evaluation is based on a small set of reasons, and (2) plan evaluation is based on the
evaluator’s understanding of what the actor is doing, and (3) plan evaluation and inferencing
is done in terms of the prior evaluative beliefs of the evaluator.

Story understanding. Story understanding is the computation of story themes. The
difficulty with developing a computational theory of story understanding is that hard def-
initions are lacking for both “story” and “theme.” For THUNDER, a story is a natural
language text that contains a belief conflict and a resolution, and a theme is the generalized
advice that the story contains. This definition is tautological because it defines stories in
terms of what THUNDER processes, not by any objective, external, standard. However,
conflict and resolution have been recognized as key elements of ‘storiness’ [Freytag, 1895).
The ‘accurateness’ of the themes that THUNDER recogunizes can be judged by (1) compari-
son to protocol data, and (2) comparison judgments to between potential themes that could
be recognized in the stories.

The representational theory of story understanding has the following claims:

1. The representation of a story has four hierarchical levels: objective, intentional, belief,
and thematic. Within each level the constituents are organized by people (actors,
believers, etc.)

2. Themes are generalized advice contained in stories. The type of advice is either (1)
pragmatic advice about how the planner can achieve or avoid failure of his own goals,
or (2) ethical advice about why the planner should avoid causing value failures for
others, or how the planner can avoid causing value failures for others. The content of
the advice in themes is of two types: reason advice, which provides the reasons that
plans are wrong, and avoidance advice, which provide ways that value failures can be
avoided.

225

The algorithmic theory has the following claims:

1. The story understanding Process is based og explanation by finding explanatory re.
lationships between objects in the Story representation, where higher level concepts
explain lower leve] concepts.

sonal situations. Ip story understanding, BCPs provide a Tepresentation of story conflict
that is used to organize the beliefs of the reader and story characters, and to recognize the
theme of the story.

10.2 Theoretical Foundations

areas where decisions about the ‘Proper’ method were made:

1. The level of analysis. The description for the cognitive processes embodied in
the theories are at the conceptual level [Smolensky, 1988a] (alternatively, “semantic”
[Pylyshyn, 1985]): they provide knowledge about the world in a representation that
can be used by processes to reason about evalyatjve judgment and ethics.

executed by a Lisp interpreter.

3. The components of the theory. The Tepresentational structures that are used
in the theory (goals, plans, belief) are folk psychological concepts. The components,

226

their constituent Structure, the rules for schema construction, and the processes used
in constructing episodic representations provide the ezplanatory vocabulary [Pylyshyn.

1. Validation and predjctjon. The theories contain explanatory generalizations about
the nature of ethics, evaluative judgment, and story understanding, and were tested
and refined by being implemented in THUNDER.

(e.g. [Searle, 1980] and replies, [Stich, 1983], [Pylyshyn, 1985], [Pinker and Prince, 1988,
[Smolensky, 1988a] and replies, [Fodor and Pylyshyn, 1988]). The following sections discuss

the foundational areas, and why the method chosen was the right one for the development
of THUNDER.

10.2.1 Levels of Analysis and Implementation

In the AI and cognitive science literature, the term ‘level’ has been used in two senses: (1)
the level of analysis, which provides the terminology for describing and theorizing about a
cognitive process, (2) the level of implementation, which refers to the tools and techniques
that are used to construct a model of the process. The level of analysis provides the theo-
retical language, style of explanation and generalization, and analytic distinctions and tools.
For example, at the behavioral leve] of analysis, action is a function of stimulus, the theoret-

A level of implementation is a more formal level of description provided by analogy from
computer system levels. Ap implementation leve] contains a knowledge medium, compo-
nents, laws of composition, and laws of behavior [Newell, 1982]. An implementation level can
be defined autonomously by specifying the attributes of the level, and can be defined by re-
duction to “the level below” [Newell, 1982, pg. 95]. For example, a computer system running
an application can be described at the program level by reference to the program/algorithm
that is running and the functional architecture of the interpreter and I/O devices. The pro-
gram level can be reduced to the register-transfer level where the algorithm is described in
terms of machine level instructions over bit vectors, and the structure is described in terms
of the physical architecture of the machine,

strictly. The source of the hard equivalence between analysis and implementation levels is
the physical symbol system hypothesis (PSSH) [Newell, 1980, and the postulation of the
knowledge level as a computer system level [Newell, 1982]. The PSSH states that there is an
autonomous level of implementation for intelligent systems in terms of symbol processing,

227

making a theory and its implementation equivalent at the symbol-processing level. The
theory is realized by its implementation, and thus both are the same. As an implementation
level, the PSSH says that a cognitive System can be implemented at the symboi processing
level. and that this level can be reduced to the 'next lower leve].’ The well-defined next

up implementing the symbol system in the brajn as well. The existence of such a reductiop
path is called the tmplementationalist position in [Smolensky, 1988b]. Smolensky [Smolensky,
1988a] avoids the trap of conflating analysis and implementation by distinguishing between
levels of analysis (conceptual, subconceputal, and neural) and cognitive systems produced
by “modeling paradigms” (symbolic, subsymbolic, brain).

While an isomorphism between a level of analysis and implementation is njce from a for-
mal standpoint, it is (1) not necessary for a leve] of analysis, (2) always introduces some per-
formance variations at lower levels of implementation, and (3) promotes some unwarranted
methodological restrictions. First, folk psychological descriptions of cognitive processes can
be used to explain behavior and make empirically testable predictions, and thys function as
theories [Churchland, 1986, p. 303]. The symbolic implementation of the theories can be

paralle] algorithms to sequential instructions, or faster hardware. Third, as a leve] of anal-
ysis of cognitive processes, the PSSH puts the cart (the behavioral performance) before the
horse (the cognitive processes). The PSSH ignores how traditional psychological research,
subsymbolic modeling, and neurophysiological data can be used to constrain and inform
symbolic models.

THUNDER is based on a conceptual leve] of analysis, and a symbolic level of imple-
mentation. The conceptual leve] of analysis constructs theories based on (1) introspection,
to provide the rules and sequential operations that are being done in a cognitive process

processes apply, (3) evidence from psychological experiments to test that the analysis is not
contradicted by empirical evidence, and (4) refinement by implementation, to make the the-
Oy concrete and see where it fails. The conceptual level is the Proper level of analysis for
THUNDER because it s an investigation into (1) how moral reasoning is integrated with
other cognitive processes, (2) the types of knowledge that have to be represented to imple-
ment moral reasoning, and (3) the distinctions that have to be made between different types
of reasoning and processing.

228

THUNDER is implemented using symbolic structures to focus on knowledge interactions
and the overall architecture of the system. The aim is to produce a model that 1s “approx-
imately correct” [Smolensky, 1988a] and provides a functional description of the processing

that the brain does. The symbolic level is the proper level of implementation for THUNDER
for the following reasons:

1. Processing power and scope. Implementing the multiple tasks and types of knowledge
needed for THUNDER required well-understood methods of knowledge representation
and processing. The time to develop, test, and integrate modules is much less us-

ing symbolic methods than other available technologies (e.g. spreading activation or
connectionist models),

2. THUNDER is a feasibility study of a complex architecture. Since THUNDER is the
first natural language system that integrates moral reasoning and thematic story un-
derstanding, the symbolic method make it easier to track knowledge and processing
dependencies.

3. For the explanatory power of symbolic processes. By modeling moral reasoning and
story understanding in terms of symbolic structures, THUNDER provides an account
of the processes in the conceptual language used to analyze the processes.

10.2.2 Explanatory Vocabulary

The goal of THUNDER is to provide a computational account of the process of moral
reasoning and how it is used in story understanding. The language that is used to describe
the processes is operations over semantic concepts, such as goals, plans, and beliefs. The
concepts are represented by symbolic structures, which form the explanatory vocabulary for
THUNDER'’s account of cognitive processes.

Using mental concepts in a scientific explanation of cognitive processes has been at-
tacked because of the epistemological status of the concepts [Stich, 1983; Churchland, 1984;
Churchland, 1986]. The argument is that folk psychology is not a scientific theory because
the semantic concepts do not exist in a scientifically meaningful way. Whatever use folk
psychological concepts have in describing and prediction behavior, they are at best abstrac-
tions of something that can better be described in the language of neuroscience. Part of the
argument stems from the sentential representation used in symbolic models. Sentence, logi-
cal operations, and computer programming languages are based on natural language, which
1s an external manifestation of cognitive processes, and there is no evidence that sentences
and formal symbol manipulation operations ate at work in the brain. The problem is more
pronounced in research on moral reasoning, because in order to evaluate moral behavior the
evaluator has to adopt an evaluative stance which violates the “value-neutrality” of science
[Haan, 1982].

There are three arguments for the use of folk psychological concepts in THUNDER:

229

1. Symbolic structures and operations over them are a good, first approximation to mental
states. Functional analysis and symbolic implementation provide a way of testing

complex theories about the architecture, interactions, and constraints op cognitive
processes.

2. Symbolic structures and operations are a closed level of description/implementation.
which means that it is easy to tell what is part of the theory and what is part of
the underlying symbol processing architecture. The leve] of description in THUNDER
corresponds to Newell’s knowledge level [1982] or Pylyshyn’s semantic level [1985] . To
decide whether processes should be modeled at the symbol or semantic level, Pylyshyn
proposed the criterion of cognitive penetrability: if the function is alterable in a se-
mantically regular way through the use of mental representations, then the function
should be located at the semantic level. Both moral reasoning and story understanding
depend on the beliefs of the evaluator/reader, and thus are cognitively penetrable,

3. To provide a computational account of moral reasoning and story understanding,
THUNDER has to use the language of commonsense psychology. Since THUNDER's
performance is limited, the processing steps have to be available for inspection. The
rules and procedures that THUNDER uses to understand story character’s actions
are an implementation of a najve psychology [Clark, 1987) (analogous to Hayes’ naive
physics [Hayes, 1979; Hayes, 1985)). They are the commonsense rules and procedures
that people use to make sense of other’s actions.

THUNDER adopts a functionalist approach to semantics. The representations themselves
have no inherent meaning, but they acquire meaning through how they are used in the
context of the system. Justification of the way that the representational structure are used
is based on the principle of rationality [Newell, 1982; Pylyshyn, 1985]. The principle of
rationality is generally used as a justification for explaining behavior: that an agent will
apply knowledge to choose and execute actions to achieve its goals. To justify some of the
language used for the theories described in THUNDER, it i3 necessary to extend the scope of
rationality: (1) the series of mental actions the program takes (the cognitive process) is the
process that a rational agent would take to understand the story, and (2) the I/O behavior
of the program should be evaluated against the expectations about what a rational agent
would do with the story and question. THUNDER implements a theory which provides an

account of a rational person reading stories and answering questions in terms of the person’s
belief and knowledge.

10.2.3 Theory and Implementation

The theoretical claims that have been made about the nature of moral reasoning are sup-
ported by the implementation of the theory in the computer program THUNDER. The role
of the implementation is to refine and check the accuracy of the theory, and to provide an
independent, testable model of the claims. Implementing multiple tasks within the same

230

model: (1) supports claims about the generality of representation and rules. (2) shows how
constraints on the representation influence processing of other tasks. and (3) provides inte-
gration of the models of evaluation and understanding.

The methodology for the development of THUNDER can be summarized as the following
steps:

1. Generate I/O behavior for stories from protocols and introspection.

2. Hypothesize a process model for the behavior, including background knowledge, dy-

namically created knowledge structures, processing, and the underlying tools that are
needed.

3. Implement the model to refine the theory, identify new issues, and find processing
limitations.

It is expected that the final form of the program I/O will be quite different from the originally
generated behavior. For example, THUNDER's original I/O made use of knowledge of
conversational structure in the sequence of question answers. The final program has no
knowledge of discourse structure, which limits the types of questions that THUNDER can
answer. In addition, a design decision was made to have THUNDER generate its beliefs
in English as they were constructed. This design consideration influenced the form of the
phrasal patterns for belief generation, and placed constraints on the way that the constituents
of beliefs were generated.

The I/O has to serve multiple purposes: (1) it has to illustrate the theoretical processes
that have been implemented, and (2) it has look like intelligent behavior. The first consid-
eration was addressed by having THUNDER generate all of the reasons for both sides of an
evaluation, and to recognize all the BCPs and themes that it could. The second purpose
has to be addressed subjectively and externally: in the judgment of a third party, is the
I/O behavior of the program reasonable? Is the 1/0 performance similar to what you would
expect from a rational reader of the story? This evaluation method is a limited version of
the Turing test [Turing, 1950]. If an independent evaluator was given THUNDER's I/0
and a human’s answers to the same questions and could not tell who was the computer,
then THUNDER'’s performance can be said to be ‘intelligent’ (this level of performance is
not claimed for THUNDER). The goal of the I/O is to be ‘reasonable,’ judged by what
could reasonably be expected from a rational adult reader of the same stories. The pro-
gram's performance should be “Turing-reasonable’ — the beliefs, inferences, and answers
that THUNDER generates are similar to the performance of a person on the same stories.

10.3 Performance Limitations

Because THUNDER was designed to process two stories in great detail, it is difficult to quan-
titatively measure THUNDER's performance. There are two types of performance measures:

231

(1) generality. or how many sentences and storjes THUNDER handles and how difficult is
it to extend THUNDER to new cases, and {2) effectiveness, or how good THUNDER s per-
formance is on the stories and sentences that jt is designed to Process. Both measures are
difficult to apply. For the geunerality measure, handling some pew cases is simply a matter
of adding new phrasal Patterns. In others, a smal] change in the wording of an example

completely changes the meaning and processing. For €xample, compare:

To handle example 10.1, the only changes that are needed are to add the phrases for “James”
and “watch,” which are similar to the phrages for “John" and “car.” However, to handle

10.2, it would be necessary to add knowledge about superheros, thejr arch-enemies, and their
Achilles’ heels.

limitations: (1) limitations of the symbolic, frame-based approach to cognitive modeling, and
(2) the limitation of modeling multiple reasoning domains. The limitations are discussed in
the next two sections.

10.3.1 Limitations of Symbolic Models

2. Ad-hoc activation. The rules for deciding when to include a frame in the representation
of a story are dependent on multiple sources of information, and are context dependent.

3. Commitment. Once a frame is activated by THUNDER, there is Do way to undo the
effects of the frame.

4. The knowledge engineering bottleneck [Alvarado, 1989]. The frames that THUN DER
uses to represent phrases, plans, and belief conflicts have to be hand-coded before they
can be used.

The fragility of symbolic structures can be illustrated by the following example from
THUNDER. The schema for threatening (PS:Threaten—for~object) had to be re-coded as

232

PS:Threaten-agent to be used as a constituent of PS:Bank-robbery. The difference be-
tween the two schemas is that in PS:Threaten-for-object a person being threatened is mo-
tivated to cause a value failure for himself, while in a bank robbery the threatened person
is motivated to cause a value failure for his employing institution. One solution would
be to have PS:Threaten-for-object and PS:Threaten-agent inherit their general structure
from PS:Threaten. The problems for frame structures are that: (1) the internal structure
of PSchema is a semantic net that would have to be constructed from the PSchema and
set of parent PSchema, (2) new variables would have to be created over the scope of the
constructed frame, and (3) differences and exceptions would have to be represented in the
hierarchy. The point is that there is a lot of representational and computational overhead
involved in handling a simple difference between two symbolic structures.

The issues of activation and commitment are related. In a symbolic representation of an
episodic structure, frames have to be selected for inclusion in the representation. Once a
frame is selected it is hard to undo its effects because variable bindings propagate to other
structures. The issues in activating frames are memory organization and access, the sources
of evidence for a structure, and how the sources combine. The commitment problem is
illustrated by how THUNDER reasons about the episodic story representation for question
answering. The episodic story representation is updated as the events of the story occur, but
question answering may depend on reasoning about states that occurred in the sequence of
the story. Because THUNDER updates the representation as the events occur, it is unable
to reconstruct the state of the objects at a prior point in the story. This problem was made -
apparent when a phrases were included in THUNDER to describe objects with adjectives
describing their status. Since the questions were asked at the end of the story, THUNDER
generated answers like:

> Why did the rabbit run under the truck?

THE DEAD RABBIT RAN UNDER THE DESTROYED TRUCK TO ESCAPE FROM THE TWO
HUNTERS.

The solution was to remove the status adjectives from the object generation. Humans are
very good at dynamic reinterpretation in light of new evidence, but once a frame is activated
by THUNDER it is stuck with it. This leads to having access to frames be delayed until
THUNDER is sure that the frame is a ‘correct’ interpretation in the story.

Using frames as knowledge representation structures to model cognitive processes is anal-
0gous to constructing sculptures using tinker toys. A rough outline can be constructed, but
the pieces are restricted in the ways that they go together, and much of the internal struc-
ture is missing. One potential solution is using distributed representations [Hinton et al.,
1986] which have many of the desirable features that symbolic structures lack [Dyer, 1991].
Problems still remain in how to keep the advantages of symbolic representations.

233

10.3.2 Limitations of Modeling Multiple Reasoning Domains

THUNDER is a deep, but narrow model of story understanding. The ‘depth’ of the mode]
1s the distance from natural language text to the themes of the stories. The ‘width’ is
the robustness of reasoning that has to be done in each semantic domain. For example,
THUNDER has to implement theories in each of the following domains in order to understand
the following examples (taken from the stories and sentences):

1. Spatial relations: In Hunting Trip, that the hunters were near the truck, and the
dynamite was tied to the rabbit.

2. Temporal relations: In Hunting trip, that after the dynamite blew up, the truck blew
up. -

3. Economic reasoning: In example 2.1, that the cost of oil is less than the cost of a new
car.

4. Political reasoning: In Four O’Clock, that political groups try to influence public opin-
ion, and their influence can be lessened if they are discredited.

The robustness of reasoning in the various domains can be characterized as:

¢ Good models: ethical, evaluative, intentional, language.
e Ad-hoc, but consistent: spatial, temporal
e Ad-hoc: economic, political.

¢ Non-existent: analogical, emotional, religious.

A good model is one that is almost formal; it can handle many cases in a general way. An
‘ad-hoc, but consistent’ model is one where the solutions are general, but depend on other
representational considerations. For example, THUNDER models temporal reasoning by the
order of acts and events in PSchema. The temporal model has no notion of relative points in
time, or distance between events. The temporal model works consistently, and depends only
on the representation of PSchema. An ‘ad-hoc’ model is one that is implemented through
very specific rules associated with procedures. For example, the knowledge that oil costs less
than a new car is encoded in the value comparison routines for D-Cont goals.

Non-existent models are places where THUNDER behaves as if it has a theory for the
domain, but in fact no theory has been implemented. Aspects of the behavior of THUNDER
are attributable to reasoning in these domains, but are actually the result of rules imple-
mented for the other domains. The implicit reasoning domains indicate the knowledge and
processing capabilities that are missing from THUNDER, unaddressed issues, and problems
for future research:

234

1. Analogical reasoning. THUNDER does not have the ability to classify concepts in
terms of more than one category, or the processing capability to apply knowledge from
one domain to another. The inability to reason about concepts as more than one
type is one source of cultural bias in THUNDER. For example, in THUNDER, insti-
tutions (banks, governments) are actors. However, this is classification based on the
institution/human-body analogy implicit in our language (“heads of state,” “long arm
of the law™). It is conceivable that there are people who do not think of institutions
as actors, but as natural events, for example. These people would have a different
language for describing institutional events, such as “peaks of state” or *light beam of
the law.” The members of THUNDER's society think that its performance is reason-
able, and the stories are thematic, because they share a common epistemology. The
relationship of analogy to cultural bias js discussed in [Lakoff and Johnson, 1980).

2. Emotional modeling. To accurately model human behavior on the stories, THUNDER
should behave as if it were “angry” at the hunters in Hunting Trip, and “interested”
in reading the stories. However, the motivating effects of emotional response have
been modeled by the sequential firing of demons. A better model would have value
judgments creating emotions, such as anger and interest [Hidi and Baird, 1986}, and
then using the emotions to motivate reader goals as in the emotion-directed planner
in [Mueller, 1989]. The problem then becomes how to abstract the effects of emotion
on behavior from the biological feeling of emotions.

3. Religious reasoning. If the hunters were punished for blowing up the rabbits, who
was the punisher? When Oliver shrunk as the result of his magic spell to shirk all
evil people, who shrunk him? THUNDER does not have a representation for the
concept of God, but to understand cases where punishment is a part of the natural
order, it would seem as if the understander would have to invent one. The concept of an
evaluating, punishing God is a part of most religious systems. Supernatural beings are a
characteristic of belief systems [Abelson, 1973]. The explicit representation of religious
beliefs, and their interaction with evaluation of action is an interesting direction for
future research.

The number of reasoning domains indicates the difficulties that will be involved in construct-
ing a robust story understanding system. Many types of knowledge and their interactions
have to be represented and reasoned about for ethical reasoning and thematic understand-
ing. By implementing partial models of the reasoning domains, THUNDER identifies (1)
the types of knowledge that domain expert models will have to provide, and (2) how they
will have to be integrated with an overall understanding framework. Additional issues in the
construction of robust systems are addressed in section 12.1.

235

10.4 Evaluation Studies

10.4.1 Comparison to Protocol Data

by the type and content of reasoning.

Table 10.1 is a Summary of the student’s answers to questions about Hunting Trip. The
table contains the Percentages of the ethical and Pragmatic characterizations of student’s
answers. For example, some of the sample student responses were (all of the student answers
are reprinted verbatim, the answer characterization is in italics following the answer):

Why were the men wrong to blow up the rabbit?
It’s not nice to hunt innocent beings, (ethical)
Because rabbits are nice. (ethical)

They blow up their truck. (pregmatic)

Who said they were wrong? (other)

What is the theme of the story?
Dor’t do something to somebody that yYou would not want somebody to do to

Don’t be cruel to animals. {ethical)

Being stupid with dangerous technology can lead to disaster. (pragmatic)
Don’t blow rabbits. (ethical)

I think is concerned about psychological questions. (other)

Table 10.1 shows that the majority of the subjects (1) provided reasons for judgment
In terms of consequences, and (2) that more subjects used an ethical reason (the death of
the rabbit) that a Pragmatic reason (the truck blowing up) to judge the hunters’ plan. The

236

{n=17) Ethical | Pragmatic | other |
Reason type | 76% 11% 11%
Theme 17% 29% 23%

Table 10.1: Characterization of Student’s Answers to Questions about Reasons and Theme
in Hunting Trip

Answer (n = 23) %

Judging others unfairly | 43%
Moral consequences 26%
Other 30%

Table 10.2: Characterization of Student’s Reasons that Oliver Was Wrong to Shrink His
Enemies in Four O’'Clock

themes that the subjects generated varied in specificity, but most (82%) provided advice.
The content of the advice was about the ethics of hurting others in half of the responses, and
about the consequences of Playing with dynamite in a third. The results of the questionnaires
show empirical support for (1) the distinction between ethical and pragmatic reasons, (2) the
precedence of ethical over pragmatic reasons, and (3) the characterization of story themes
as generalized advice.

Table 10.2 shows the percentage characterization of the reasons that Oliver was wrong to
shrink his enemies in Four O’Clock. The two largest classes of reasons were (1) based on the
judgment of the punishment, and (2) based on the consequences of his plan. This breakdown
of reasons supports the distinction between belief conflicts based on plan execution and
evaluation.

Table 10.3 shows the high correspondence between the reason for why Oliver was wrong
to shrink his political enemies, and the theme that was identified in the story. Once subjects
identified the reason that Oliver was wrong to shrink his political enemies, they tended to
use that reason to construct the theme of the story. This lends support to THUNDER's
model of theme construction based on different types of belief conflict, and different types
of thematic construction processes.

10.4.2 Extensibility to New Cases

The second evaluation study checked the amount of additional code needed to allow THUN-
DER to handle new cases. To illustrate THUNDER’s processing of reward and punishment
situations, code was added to allow THUNDER to process the following two sentences:

237

Answer P
Judging others
unfairly (n = 10)

Judge yourself
before judging others
Don’t do things that
have negative moral]

consequences

80%

Moral consequences

83%
(n = 6)

Table 10.3: Correspondence Between Student’s Reasons and Theme for Foyr O 'Clock

[| Old [New | % change |
Input sentences 30 | 32 6%
Output sentences | 108 126 14%
Total words 218 | 235 7%
Input words 129 | 139 %

Output words 152 | 166 8%

Table 10.4: Extension Additional Capability

Table 10.4 shows the percentage capability increase in THUNDER for a number of sur-
face measurements, Table 10.5 shows the code additions and development time needed to
implement the pnew examples. Tables 10,6 and 10.7 show the number of additional phrages
and knowledge structures that were needed for the pew examples. These tables show that
the additional capability is Proportional to the addition jn data structures.

Old | New [% change
Thunder (lines) 9236 | 9643 4%
#of routines 596 | 611 3%
PParse/Pgen (lines) 1482 | 1482 0%
Development (man/wks) | 52 | 354 3%

Table 10.5: Extension Code Additions and Development Time

238

Old | New | % change
Total Phrases 702 | 812 13%
Parsing only 21 76 5%
Generation only | 156 | 176 11%

Table 10.6: Extension Phrase Additions

Old | New | % change
PSchema 34 | 39 13%
BCPs T 8 12%
Indexing structures | 68 | 73 ™%
Misc. frames 14 | 16 12%

Table 10.7: Extension Knowledge Structure Additions

A common criticism of large-scale models like THUNDER is that all the programmer is
doing is ‘throwing code’ at the problem. The counter-argument is that, at some point, a set
of sufficient representation primitives for each domain will be found, the frames will be con-
structed, and the program will be able to handle more cases with less implementation. This
study shows that while the processing methods are fairly stable, the amount of knowledge
that needs to be coded is still proportional to the additional performance.

If studies of this type were continued for more new cases, a positive result would be
that the performance to implementation effort ratio would rise, as shown in figure 10.1.
The expected results would be that system development coding would stabilize first as the
knowledge representation primitives and processing are adapted and generalized. Additional
performance then depends on the implementation of new knowledge structures, but perfor-
mance would increase as the new cases use previously implemented frames.

10.4.3 Unexpected Behavior

One method of evaluating the implementation of cognitive model is when the program ex-
hibits unexpected or unintended behavior. The behavior can then be analyzed to see if it (1)
is reasonable, (2) indicates knowledge missing from the program, or (3) indicates a problem
in the implemented theory. This method of evaluation was used in the TALESPIN story
generation program [Meehan, 1976]. To show how the program was used to refine the theory
of story generation, Meehan presented “mis-spun tales,” such as (from [Meehan, 1976, p.
130-131]):

239

Performance Sy
~W=—— Current
Status
System
code Knowledge
structures
——

Implementation aftort

were, so he asked Irving, who refused to say. So Joe offered to bring him a worm
if he'd tell him where wOorm was ., .

Generation of this story showed that the program lacked knowledge about Planning for goals
that were already active. Ogce Joe Bear had the goal of getting a worm for Irving Bird,
he would execute the “ask” plan, and then the “bargain” plan, Executing the bargain plan
resulted in a second goal of getting Irving Bird a worm, and the story generation Process went

into an infinite loop. By generating this story, TALESPIN showed the planning knowledge
that was missing from the program.

1. BCP:Misguided from sending discrediting letters. Oliver believed that his plan to
discredit his political enemies would protect society, while THUN DER believed that
his plan would not protect society.

2. BCP:No-crime from sending discrediting letters. THUNDER believed that Oliver was
wrong to damage the social esteem of his political enemies, because what he was
punishing them for (their political beliefs) was not negatively evaluated.

240

3. BCP:Misguided from making threatening phone calls. Oliver believed that threatening
his political enemies would protect society from their politjca] views, while THUNDER
believed that the threats would not protect society.

Since THUNDER spawns resolution demons from every BCP that is recognized, Oliver’s

shrinkage was recognized as a resolution to these BCPs. From the BCPs and resolutions,
THUNDER recognized the following themes:

THE THEME IS THAT YOU SHOULD NOT EXECUTE PLANS THAT CAUSE THREATS TO
OTHERS’ HEALTH BECAUSE YOU WOULD NOT LIKE TO BE HURT.

THE THEME iS THAT YOU SHOULD NOT EXECUTE PLANS THAT CAUSE BAD THINGS
TO HAPPEN TO OTHERS BECAUSE YOU WOULD NOT LIKE BAD THINGS TO HAPPEN TO
YOU.

However, THUNDER would still have recognized these BCPs and themes even if Four
O ’Clock had been shortened to the following versions:

10.3: Political fanatic Oliver Crangle is convinced that people who do not
agree with his political views are evil. He made a threatening phone call. He was
shrunk to a height of two feet tall.

10.4: Political fanatic Oliver Crangle is convinced that people who do not
agree with his political views are evil. He sent a letter discrediting his political
enemies. He was shrunk to a height of two feet tall.

This behavior illustrates problems in THUNDERs theory of what makes a story thematic.
THUNDER will recognize any sequence of events with a belief conflict and a resolution as a
thematic story. For example, THUNDER would process all of the following stories (provided
with appropriate lexical and intentional knowledge structures):

10.5: John hit Mary. He was run over by a bus.
10.6: John cheated on a math test. He was struck by lightning.

10.7: To get the money to buy a new car, John robbed a bank. He stubbed
his toe.

From all of these stories, THUNDER would recognize a version of the theme:

THE THEME IS THAT YOU SHOULD NOT EXECUTE PLANS THAT CAUSE BAD THINGS
TO HAPPEN TO OTHERS BECAUSE YOU WOULD NOT LIKE BAD THINGS TO HAPPEN TO

YOU.

241

There is a certaip amount of thematijc “storiness” ip examples 10.3, 10.6, and 10.7,
the theme does Capture a vague form of advice from the examples. Story elements sych as
plot, characterization, and symbolism are missing from THUNDER's definition of story. In
addition to showing limitations in THUNDER's modei of story understanding, the behavior
shows that (1) BCPs should be selected by “interestingness” where more interesting BCPg
supersede less interesting BCPs in the thematic processing of the story, (2) themes need to be
more closely related to the events of the story, and the understander’s prior knowledge about
right and wrong in situations, If story themes are what js learned from stories, they need to

interact more with the knowledge that the reader already has instead of just insta.ntiating
variations of the golden rule.

10.5 THUNDER Robustness and Fragility

In what sense does the existence of THUNDER show that belief conflict and resolution is a
‘good’ way of understanding stories? The theory of BCPs and their use in thematic story
understanding is more of 2 paradigm for story understanding than a falsifiable theory. To
lustrate the difference between a paradigm and a theory, consider Schank’s conceptual de-
pendency (CD) system for representing the meaning of sentences [Schank, 1973; Schank,
1975]. CD theory claims that a small set of primitive action types and a small, well-defined
set of dependencies between conceptual elements can be used to ‘represent’ sentences describ.
that underlie the sets of primitives and relationships. The principles of CD are that cogni-
tive concepts can be represented by (1) identifying a conceptual class (action), (2) providing
a taxonomy for the members of the class (the CD primitives), (3) identifying the internal
structure of the class (the slots and fillers), and (4) identifying the relationship of members
of the class to other elements (e.g. states, plans, and actors). Programs that use CD to rep-

resent action-based stories may have bugs or fail to handle certain inputs, but the program’s

for representing knowledge when implementing a model or cognitive processes (e.g. infer-
ence [Rieger, 1975), subjective understanding [Carbonell, 1979], explanation-based learning
[Pazzani, 1990], argumentation [Alvarado, 1990], or daydreaming [Mueller, 1989]).

Bet approach would subsume CD because not only could the network represent the same
knowledge about the meaning of sentences, it would also acquire the knowledge automati-
cally. (To date this example remains a hypothesis.)

Like CD, THUNDER’s paradigm is the set of principles of how belief and belief rela-

242

tionships are represented. and how conflict and resolution are used in thematic story ynder-
standing (see section 10.1). These principles could be replaced by another, ‘better’ theorv.
but at the present time there is no alternative to our knowledge. Other than THUNDER.

there exists no natural language processing system that can make moral judgments and use
them to understand stories.

However, the specific implementation of THUNDER presented here can be tested against

new input to find its weaknesses, and to identify the scope of I/O behavior. The types of
problems that are of interest are:

1. Knowledge structure weaknesses. What situations do the frames/schema represent.
and where do they fail to capture knowledge that they should contain?

2. Knowledge interaction problems. How are inconsistencies in the knowledge recognized.
what dependencies exist between the frames, and how well do they function?

3. Problems with heuristics and ad-hoc rules. How general are the methods for frame
activation, and when do they fail?

4. Problems with procedural organization. How does the order of process execution in-
fluence the structures that are constructed, and under what circumstances does the
process organization lead to problems in inference and frame construction?

Identifying these weaknesses is difficult because THUNDER was designed as a prototype
to test the feasibility of the approach, and not as a general story understanding system.
Implementing THUNDER is ezploratory research: an investigation into how the rules can be
implemented, what knowledge they require, how many inferences need to be made from the
input text, how much and what type of background knowledge is required, etc. THUNDER
was implemented to work on a few specific cases, and does not handle some well-defined class
of inputs. The frame knowledge (phrasal, plan, and belief) and demon-based procedural
knowledge are eztensible to new inputs, but the current implementation does not achieve
closure for any particular class of problems.

The next two sections describe two tests of the implementation of THUNDER. In the
first test, a set of new input sentences were constructed from THUNDER'’s lexicon, and run
on the current version of THUNDER. The new inputs were designed to test THUNDER's
parsing, plan recognition, and plan evaluation capabilities. The mputs that THUNDER
fails to process are examined to identify (1) the type of failure, (2) the weakness that the
failure indicates, (3) how easy or difficult it would be to fix the particular failure, and (4)
how general the problem is, for both the theory and paradigm. The second test was to
construct a set of two sentence input stories from the successfully processed test sentences.
The new stories were run on THUNDER to test belief processing and thematic understanding
capabilities. Again, THUNDER's performance is analyzed to find weaknesses and general
classes of problems. The third section discusses the issues that arose from the tests: the
strengths and weaknesses of the theory, implementation, and paradigm.

243

Ezample Reault
T.1 | John tied a stick of dynamite to his new car. Doesn’t parse
T.2 | Oliver is convinced that people who blow up rabbits | Doesn’t parse
are evil.
T.3 | Oliver is convinced that John is evil, Doesn’t parse
T.4 | Oliver made a threatening phone call. Doesn’t parse
* Oliver makes threatening phone calls. Successfully processed
T.5 | Oliver sent a letter discrediting John. Doesn't parse
* Oliver sends discrediting letters. Doesn’t parse
* Oliver sends letters discrediting John. Successfully processed
T.6 | John captured a live rabbit to have some fun. Doesn’t parse
T.7 | John decided to have some fun by robbing a bank. Doésn’t parse
T.8 | John decided to have some fun by changing the oil | Doesn’t parse
in his new car.
T.9 | John blew up a rabbit. Doesn’t parse
T.10 | Oliver found a book of black magic and cast a spell | Doesn't parse
to shrink John to a height of two feet tall.
* Oliver finds a book of black magic. Successfully processed
* Oliver casts a spell to shrink John to a height of two | Successfully processed
feet tall.
T.11 | Oliver threatened John. Doesn’t parse
Table 10.8: New Input Test Set and Results (Part 1)
10.5.1 Handling New Input

A set of 28 sentences were hand-constructed from THUNDER's current lexicon and phrasal
knowledge. The sentences were constructed based on a judgment that it should be possible
for THUNDER to parse the sentence, based on THUNDER'’s baseline performance. The
data used in the test is shown in tables 10.8 and 10.9. A characterization of THUNDER'’s

performance on the test is shown in the result column. The meaning of the eatries is:

1. Doesn’t parse. The phrasal parser PPARSE failed to construct a complete conceptual
representation of the input sentence. The starred () entries in the table were con-
structed from the original test sentence to see if minor changes to the wording would

result in a successful parse.

unimplemented test and/or action.

the input sentence.

244

Missing rule. THUNDER's processing of the sentence was incorrect because of a

Intentional problems. THUNDER failed to link up the plans that were recognized in

Ezample

Result

T.12
T.13

T.14

T.15
T.16

T.17
T.18

T.19
T.20
T.21

Oliver casts a spell.

John gave little Billy a spanking for pulling the
cat’s tail.

Little Billy’s Mom gave John a dollar for pulling
the cat’s tail.

To save money, John decided to rob a bank.

To get the money to buy a new car, John decided
never to change the oil in his new car.

Little Billy’s Mom gave him a dollar.

John decided to have some fun by giving little
Billy a dollar.

To have some fun, John captured a live rabbit.
John decided to have some fun.

John captured a rabbit.

Missing knowledge
Missing knowledge

Missing knowledge

[atentional problems
Intentional problems

Generation problems
Generation problems

Successfully processed
Successfully processed
Successfully processed

T.22 | John tied a stick of dynamite to a rabbit. Successfully processed
T.23 | John lit the stick of dynamite. Successfully processed
T.24 { John's truck blew up. Successfully processed
T.25 | Little Billy’s Mom gave him a spanking, Successfully processed
T.26 | John gave Oliver a spanking. Successfully processed
T.27 | John decided to have some fun by pulling the Successfully evaluated
cat’s tail.
T.28 { John pulled the rabbit’s tail. Successfully evaluated

Table 10.9: New Input Test Set and Results (Part 2)

245

4. Generation problems. THUNDER correctly parsed and recognized the intentional
structure of the example. The patterns used by the phrasal generator produced weird
natural language descriptions of the evaluative beljefs,

3. Successfully processed. THUNDER correctly parsed the sentence and constructed as
much of the intentional structure as it could. Processing ended with active demons

waiting for additional information. For these sentences, THUNDER recognized that
information was missing, and fired demons to find it.

6. Successfully evaluated. THUNDER successfully evaluated the sentence, and recognized
a BCP.

The following sections discuss each type of result, the weaknesses that are revealed, and how
they can be addressed in the future.

Failed parses. There are two general sources of THUNDER's failures to parse input
sentences: (1) lezical knowledge gaps, and (2) missing phrases that must be used to link up

conceptual constituents. The lexical knowledge gap problem is illustrated by the following
two sentences:

T.5: Oliver sent a letter discrediting John.
10.8: Oliver sends discrediting letters.

PPARSE fails to parse example T.5 because it has a lexical entry for “letters,” but not for
“letter.” Example 10.8 fails because the pattern for “discrediting” only takes humans as an
object. The solution to this type of problem is to add the missing phrasal knowledge. For the
missing “letter,” adding the phrase is straightforward. The missing phrase for “discrediting
letters” is more complex because the pattern has to contain the knowledge that a discrediting
letter has (1) a purpose motivated by the sender, and (2) an effect on the person that the
letter is about. In contrast, THUNDER correctly parses the sentence:

10.9: Oliver sends letters discrediting John.

After this sentence is parsed, THUNDER fires a demon to search for a Oliver’s belief that
motivated him to discredit John.

The problem of missing phrases can be seen in the following test sentence:
T.6: John captured a live rabbit to have some fun.
In this case, PPARSE recognizes two phrasal constituents: (1) an action from the main clause

of the sentence and (2) a goal from the verb phrase “to have some fun.” The representation
of the two clauses is:

246

(action ’actioni
"type ‘atrans
‘actor John
'object live rabbit
to John
'psclass &ps-capture)

(goal ’goalt
‘type ’e-entertain)

THUNDER does not have a phrasal pattern to put together the action and the goal. To

parse this particular example, the following entry would need to be added to THUNDER's
phrasal lexicon:

(phrase:define ’ph-action+goal
(comment "<goal> *comma* <action>")
(pattern (action ’gc-action
’actor 7human)
?*goal+igoal)
(concept ?gc-action)
(parse-proc (pparse:set-slot-from-var ?goal ’actor 7human)
(parse-util:spawn-demon
’act-enables-goal ?gc-action 7goal)
(parse-util:gpawn-demon
’if-explained ?goal ?gc-action)))

This phrase is a modification of the existing phrase ph-goal+commataction (source code
in section D.4), used to parse “To save money, John ...") for the different ordering of
constituents. The missing phrase raises several questions about THUNDERs phrasal lexicon:

1. Why isn’t this phrase in the current implementation of THUNDER? The short answer
is that none of the original examples needed it.

2. How general is the new phrase? What is the scope of cases that it handles? This can
only be determined by implementing more test cases.

3. Does the missing phrase indicate a weakness in the strategy of having phrasal/syntactic
knowledge directly associated with concepts? The weakness is that the syntax of the
input sentences cannot be characterized with a grammar, and therefore cannot be
analyzed with traditional linguistic methods. The advantage is that the lexicon can be
incrementally added to, and successively refined.

247

casting a spell. In THUNDER, €Very action causes an event. The event js either (1) provided
by the text, or (2) inferred from the action. In Foyr O’Clock, the event caused by casting
the spell is specified by the story (“shrinking every evil person..."). For most action types,
constructing the resulting event is straightforward — ATRANS causes changes in possession,
and PTRANS causes changes in location. However, for ‘casting spells,’ the effect is based on
the ‘content’ of the spell. In THUNDER, the approach to problems of missing information

s a result of the commatment problem of frame-based Processing (see section 10.3.1),
The second type of problem is illustrated in THUN DER’s processing of:

T.13: John gave little Billy a spanking for pulling the cat’s tai]

routines that evaluate punishment plans, THUN DER processes T.13 in the same way as
when it read that Billy’s Mom had spanked him. The specific fix is to implement the
missing test: there must be an authority relationship between the punisher and punished to

problem is the result of the fragility of symbolic structures, especially when interacting with
the modeling of multiple domains (see sections 10.3.1 and 10.3.2).

Intentional problems. Intentional problems arise in THUNDER’s model of plan con-
struction because the unification-based matcher fails to link together certain frames, In the
following example, THUNDER does not make the connection between saving money and
getting money:

T.15: To save money, John decided to rob a bank.

The problem is that in the schema for saving money (PS:Save-money) the enablement con-
dition is represented as not spending money. There are three general weaknesses here:

248

1. Over-specification. The PS:Save-money schema represents one way that monev can be
saved, and not the general concept of “saving money.” Over-specification is the result
of the fragility of symbolic structures {see section 10.3.1),

2. Weak models. Economic reasoning in THUNDER is implemented using an ad-hoc
model (see section 10.3.1). There is no general model of economic quantities that
would allow the economic effects of ‘getting,’ ‘saving,’ ‘spending,’ and ‘robbing’ to be

reasoned about independent of the actions and goals that contain money (see section
10.3.2).

3. Brittleness. Unification-based pattern matching requires that slot-filler structures “fit
together.” Literals have to match exactly, and the every instance of the same variable
has to match exactly the same term. The advantage of unification is that the algorithm
to implement it is well-understood (e.g. in the programming language Prolog (Sterling
and Shapiro, 1986, pp. 68-72]). However, the constraints that unification places on
the knowledge representation are too strong, and weaken the expressive power of slot-
filler structures. Alternatives are to replace unification with a weaker form of pattern
matching, such as similarity metrics or structured associations.

Generation Problems. THUNDER correctly parsed, and comstructed a goal/plan
representation for the following example:

T.17: Little Billy’s Mom gave him a dollar.
However, when THUNDER generated its evaluation, it said:

THUNDER BELIEVES THAT GIVING LITTLE BILLY’S DOLLAR TO HIM IS RIGHT
BECAUSE HIS MOTHER WILL GET HIS DOLLAR.

This generation output exposes two problems: (1) a bug in the implementation of ethical
warrants, and (2) the generation is based on the conceptual representation after the actions
have taken place.

The first bug is exposed in the generation of “because his mother will get...” where it
should say “because he will get....” The bug is in the ethical warrant processing in the
following code used to fill the slots on ethical warrant 1 (section 2.4) “a plan is positively
evaluated if it achieve a value success for another” (reprinted verbatim, source code in section

D.2.6):

(let ((reason (inst:create kethic-reason-i nil)))
(setf (reason:believer reason) believer)
(setf (reason:actor reason) (pschema:actor pschema))
(setf (reason:pschema reason) pschema)

249

(setf (reason:value reason) head-goal)
i might be wrong
(setf (reason:other reason) (goal:actor head-goal))
(trace:fmt *thunder-trace=
Rt A) Creating ethical reasoq “a Ta ~a"
reason "by E-1 for pos eval of" Pschema))

The code in this section sets the slots on a reason frame (ethic-reason-l) from a plan (the

pschema) who's goal (head-goal)is a value for another. The bug is that the line commented
i; might be wrong is wrong. It should be:

(setf (reason:other reason) (goal:for head-goal))

In example T.17, the pachema is the Mother’s plan to give Billy a dollar. The head-goal is
for Billy to possess the dollar, The actor of the head-goal is the Mother, and the goal is
for billy. In the ethical reason frame, the other is not the planner (Mom), but the person
who will achieve a value success (Billy).

The general problem here is that in exploratory Programming quick fixes get put in, and
are not re-examined later. The practice of implementing multiple tasks (see section 1.5)
paid off in this case, because without implementing doth construction and natural language
generation of beliefs, the bug would not have emerged.

The second problem was discussed in section 10.3.1. THUNDER generates “giving little
Billy’s dollar to him” because the generation of objects is done at the end of processing, and
the generator does not know about the temporal constraints on ‘giving’ and ‘possession.’
When THUNDER processes the ‘give’ (ATRANS) action, it builds the resulting event of
Billy possessing the dollar. Since the verb in the sentence is in past tense, THUNDER infers

contain the fact that that Billy possesses the dollar. To generate the language for the dollar,
PGEN uses the following two phrases:

(phrase:define 'ph-money3
(comment "<article:possessive> <money>")
(pattern (article nil
'type ’possessive
'ref ?possessor)
?*money3+&money)
(concept (money ‘money3
&poss-by ?possessor))
(gen-test (pparse:check-var ?possessor)
(pgen:prev-not-in-class (list &article))))

250

(phrase:define ’ph-dollar
(comment "dollar")
(pattern ’dollar)
(concept (money nil
’amt ’one-dollar))
(gen-test (pgen:prev-in-class (list &adjective Zarticle))))

The phrase ph-money3 generates possessed money as a possessive article (either “little
Billy’s” or *“his") and then the money object. The phrase ph-dollar generates the word
“dollar™ when it is preceded in the generation tree by an article or adjective.

There are two weaknesses that the example exposes: (1) that the sentence representation
1s static, and (2) recursive descent generation forces the phrases to be applied based on
local information. THUNDER's static representation of sentence content makes it difficult
to reconstruct the the state of the world before the sentence actions occur. THUNDER s
representation of a sentence contains the state of the world at one particular point in time.
THUNDER does keep track of how states change, but the information is only used by the
plan failure identification routines (see section 7.4.3). One fix for the generation problem
would be to implement the rule:

If an object being generated changes the state of any of its constituents, generate
the constituent from its state before the change.

Implementing this rule would require (1) a general theory of causality and reconstruction.
and (2) dynamic interaction between the generator and the representation of the storv.
The weakness of not having a general model of causality in THUNDER is an instance of
the problem of modeling multiple domains (see section 10.3.2). The problem of dynamic
interpretation during generation is the result of the general tension between modular and
integrated processing. The generation component of THUNDER (the phrasal generator
PGEN) is modular: it takes as input a conceptualization and produces a natural language
sentence. The generator does not have access to the rest of the episodic story representation.
The advantage of modularity is that the modular component can be tested and evaluated
independently of the rest of the system. The advantages of integrated processing are that (1)
knowledge can be applied to problems from disparate reasoning domains, and (2) knowledge
can be applied when the problem occurs {Dyer, 1983]. In THUNDER, the development
approach was to integrate processing until it appeared that a well-defined process could be
factored out and modularized. The problem in the generated output shows the result of
premature modularization.

Successful processing. Since THUNDER models reading sentences in the context of
a story, it is designed to wait for information instead of inferring it. THUNDER recognizes
plans for the following sentences:

T.21: John captured a rabbit.

251

T.22: John tied a stick of dynamite to a rabbit.
T.23: John lit the stick of dvnamite

For each of these examples, THUNDER parses and recognizes PSchema that contain the
actions. Since the plans are not for values, THUNDER performs no evaluation and fires
dernons to check subsequently recognized PSchema for plan enablement. The demons repre-
sent queries from THUNDER: Why did John capture a rabbit? Why did John tie dynamite
to the rabbit? Why did John light the dynamite? Sipce THUNDER was designed to read

In cases where information is missing from the frame, THUN DER also fires demons ro
try to find the missing information:

10.10: Oliver makes threatening phone calls.

In example 10.10, THUNDER fires demons (1) to figure out why Oliver is threatening
someone, and (2) who is being threatened. Oliver's motivation to threaten is a belief that
someone is negatively evaluated. The demon to find Oliver’s motivation (gp-demon :bel-
ief-motivated-pschema, source code in section D.2.3) searches Oliver’s evaluative beliefs to
see if he has a negative opinion of anyone. When the demon fails to find a negative opinion.
it spawns a demon to check Oliver’s new beliefs for his motivation. The demon to identify
who is being threatened is parasitic on the the demon that searches for the motivation. It
walts until the motivating belief has been found, and then fills in the ‘threatened-person’
information from Oliver’s negative opinion,

Successful evaluation. The two examples that THUNDER successfully parses and
evaluates are variations on the same theme:

T.27: John decided to have some fun by pulling the cat’s tail
T.28: John pulled the rabbit’s tail

In both cases THUNDER builds PS:Sado-pleasures, recognizes that John's plan for enter-
tainment is ethically wrong, builds John’s beliefs about the plan, and recognizes BCP:Selfish.

10.5.2 Mis-read Stories

From the successfully processed sentences, four two-sentence ‘stories’ were constructed:

10.11: John captured a rabbit. He let it go.

14

10.12: John pulled the rabbit’s tail. John's truck blew up.
10.13: John pulled the rabbit’s tail. Oliver gave John a spanking.

10.14: John decided to have some fun by pulling the cat’s tail. Oliver casts a
spell to shrink John to a height of two feet tall.

Note that the stories are incomplete and. in some cases. incoherent. It 1s difficult to construct
meaningful multi-sentence texts, given THUNDER’s limitations in parsing and restricted
amount of knowledge. These stories exercise THUNDER's abilities to read in context. ancl
test the thematic level of understanding.

The analytic method for evaluating THUNDERs performance on these stories has three
steps:

1. What would a human reader do with the text? What questions would they ask. how
would the pieces be put together, and what judgments of “storiness” would be made’

2. How does THUNDER process the text? What questions does it ask, what structures
are recognized, how are they put together, and what judgments are made?

3. How do the two analyses compare? Does THUNDER ‘bomb’ in the places where a
human reader is expected not to understand the story? Does THUNDER succeed in
constructing an analysis of the story where human readers fail?

Evaluating THUNDER’s performance on these stories is another example of using Mee-
han’s [1976] “mis-spun tales” approach to identifying weaknesses in THUNDER (see section
10.4.3). Human-level performance is not expected on these texts. It is where the program
fails or performs incorrectly that indicate where implementation problems lie.

The first story is coherent, but not thematic:
10.11: John captured a rabbit. He let it go.

The reader should be able to infer the intentional connection between “capturing” and
“letting go” and might make an ethical judgment that John is ‘right’ to release the rabbit
after capturing it.

When THUNDER processes the first sentence it (1) builds the PSchema PS:Capture to
represent John’s plan, and (2) from the rabbit’s loss of freedom in PS:Capture, builds a mo-
tivated escape plan (PS:Escape) for the rabbit. This processing is the same as THUNDER 's
processing of the first sentence of Hunting Trip (see section 9.1.1). When THUNDER reads
that John “let it go,” THUNDER builds the PSchema PS:Remove-control and recognizes
that John’s action enables the rabbit’s escape plan. THUNDER successfully infers that the
rabbit ran away, and regained it’s freedom.

While THUNDER made the intentional connection between the sentences, it never eval-
uates John’s or the rabbit’s plans. There are two reasons for this:

253

1. To control the evaluation process (application of judgment warrants, belief inference.
and BCP recognition), THUNDER waits unti] it recognizes a plan for a value. Since
a plan for a value is not recognized in 10.11, no evaluation takes place. THUNDER s
set up like this because of the commitment problem (see section 10.3.1). THUNDER
delays evaluation to avoid premature evaluation and constructing structures that would
have to be retracted later.

2. The distinction of values from goals. THUNDER does not evaluate “getting a rabbit.”
but does evaluate “getting a dollar” (example T.17), because the goal of ‘capturing’ is
represented as gaining control, while “getting a dollar” is represented as an achievemenr
of possession goal (see section 2.5). The advantage of distinguishing values from goals
1s that evaluation is tractable: only a few state types are ‘valued’ and thus can be
reasoned about by the evaluative component of THUNDER. The weakness here is that
THUNDER'’s model of ‘values’ fails to account for instrumental value: how the goals
that plans achieve can be used to achieve more important values in the future. A more
general approach would be to quantify and compare all of the consequences of a plan
to other available plans, but this would be computationally difficult.

The second story was designed to test the dependency of thematic processing on inten-
tional comprehension:

10.12: John pulled the rabbit’s tail. John’s truck blew up.

The intentional structure of this story is incoherent because there is no intentional connection
between John pulling the cat’s tail and John's truck blowing up. However, in Hunting Trip.
there is no intentional connection between the hunters’ being inhumane to the rabbit and the
hunters’ truck blowing up, and THUNDER recognized the theme of the story. It was hoped
that the THUNDER would use BCP:Selfish (recognized in the first sentence) to process
the second sentence as a resolution, and construct a theme for this story. However, when
THUNDER processed the second sentence, it could not find an explanation for why the
truck blew up, and halted. The causal incoherence of the story was too much for THUNDER
(and most readers) to overcome: if the intentional elements cannot be causally/intentionally
connected, no thematic processing will take place.

The third story attempted to provide a plan for the value failure that resolved the belief
conflict;

10.13: John pulled the rabbit’s tail. Oliver gave John a spanking.
Example 10.13 is also incoherent because there is no indication of Oliver’s relationship to
John. However, the test for authority in punishment situations was not implemented (see the

discussion of THUNDER's processing of T.13 in the previous section). When THUNDER
recognizes that Oliver was punishing John in the second sentence, it searches for a reason

254

that Oliver would be punishing John. In the punishment processing routines, THUNDER
searches for a crime (motivation to punish) by searching the beliefs of the Judge (Oliver).’
If the judge has no evaluative beliefs about the actions of the criminal (John) , THUNDER
uses a heuristic that the judge and THUNDER share the same beljefs. In example 10.13.
Oliver has no beliefs about John's action, but THUNDER believes that John was wrong to
pull the rabbit’s tail. THUNDER infers that Oliver also believes that John was wrong, and
uses this belief as the motivation for John's punishment. THUNDER's understanding of the
story was that:

THUNDER BELIEVES THAT OLIVER'S PLAN TO PUNISH JOHN TO INSTRUCT
HIM IS RIGHT BECAUSE OLIVER WILL TEACH JOHN TO BELIEVE THAT HIS
PLAN TO WATCH THE RABBIT SUFFER IS WRONG.

However, THUNDER did not recognize John’s spanking as a resolution to the belief conflict.
THUNDER should have recognized the P-Health value failure from spanking, constructed
John’s belief that being spanked was ‘bad’ by value inference rule V-2 (see section 2.7), and
recognized the belief as a resoclution.

John's belief was not recognized because the punishment plan routines failed to process
value failures. This bug is the result of implementation methodology. The punishment and
reward processing routines were added to THUNDER after the general plan recognition and
processing routines were tested and refined. The additional routines that were developed for
understanding punishment plans (finding the judge’s motivation, identifying the punishment
type, etc.) failed to integrate all of the processing that was done on “normal” plans.

In fourth story, THUNDER does recognize a theme, but there are problems in the inter-
mediate stages:

10.14: John decided to have some fun by pulling the cat’s tail. Oliver casts a
spell to shrink John to a height of two feet tall.

THUNDER's processing of this story is similar to 10.13. Even though it is somewhat inco-
herent because there is no relationship between Oliver and John, THUNDER recognizes that
Oliver is punishing John for pulling the cat’s tail. However, in 10.14 THUNDER recognizes
Oliver’s attempted shrinkage as preventative punishment, instead of instructive punishment
that was recognized in 10.13. A problem is apparent in THUNDER's generation of it's
belief about Oliver’s punishment:

THUNDER BELIEVES THAT OLIVER’S PLAN TO PUNISH JOHN TO PROTECT
SOCIETY IS WRONG BECAUSE OLIVER WILL PREVENT JOHN FROM DAMAGING
SOCIETY BUT OLIVER WILL SHRINK JOHN AND HIS HEALTH IS MORE IMPOR-
TANT THAN PREVENTING HIM FROM DAMAGING SOCIETY.

3The terminology for roles in punishment situations is discussed in section 4.1.1.
*The punishment types are discussed in section 4.1.2.

255

THUNDER thinks that John is being punished to “protect society” instead of for "pulling
the cat’s tail.” Two problems resulted in the generation of this belief. First, the punishment
type 1s selected by the rule (from section 4.1.2):

PUI-4: If the value failure caused by the punishment plan is non-recoverable.
infer that the punishment is preventative.

Since being shrunk is a non-recoverable P-Health value failure, THUNDER builds the punish-
ment plan PS:Punish-protect. Second, there is a bug in the code to build PS:Punish-protect.
There is a default rule when PS:Punish-protect is instantiated to infer that “society” is being
protected. For most cases of preventative punishment, this is true: sending criminals to jail
prevents them from continuing to damage society with their crimes, and in Four O Clock
Oliver’s motivation to shrink his political enemies was for the greater good of society. Both
of these problems (selecting preventative punishment and inferring that society would be
protected by the punishment) are the result of weak models of the domains.

When processing on the second sentence completes without finding a theme, THUNDER
infers that Oliver’s spell takes effect, and John shrinks as a consequence. THUNDER infers
that John doesn’t like being shrunk, and John's negative belief is a resolution to BCP:Selfish.
THUNDER constructs the theme:

THE THEME IS THAT YOU SHOULD NOT EXECUTE PLANS THAT CAUSE HARM
TO OTHERS BECAUSE YOU WOULD NOT LIKE TO BE HURT.

The fact that THUNDER could construct a theme from this story shows that the thematic
processing routines are not completely ad-hoc. Even though THUNDER had problems in
plan selection and comprehension on 10.14 due to limited rules and a fragile representation
(see sections 10.3.1 and 10.3.2), it still managed to identify the salient thematic elements
and put them together.

10.5.3 Discussion: Robustness and Knowledge

There are three general reasons for lack of robust processing in THUNDER:

1. Implementation methodology. The strategy used has been to implement only the knowl-
edge that is needed to process the example stories. The idea is that the implementation
tests the outline of knowledge organization and processing. When problems arise. ei-
ther: (1) a more general solution is implemented, or (2) the failure is noted and extra
heuristics or ad-hoc rules are inserted to provide the necessary information.

2. Lack of default knowledge. In many cases, THUNDER'’s failure to process a given
input is the result of it’s inability to make a plausible inference. Many of THUNDER '~
demons delay processing until they find the specific knowledge that they need to fire.

THUNDER cannot recognize that the knowledge is not available, and then processine

halts.

3. Limited knowledge. THUNDER only knows about five ways that values can be
achieved: getting a valued possession (PS:Get-possession), escaping to get freedom
(PS:Escape), watching animals get hurt for entertainment (PS:Sado-pleasures). and
saving money (PS:Save-monev). Since these are the only plans for values, they are the
only plans (1) that can be evaluated, {2) from which inferences can be constructed.
and (3) from which BCPs can be recognized. This severely limits the evaluation thar
can be done of the belief and belief conflict processing routines.

The source of THUNDER's lack of robust processing are general problems with symbolic
structures, and the limitations of modeling multiple reasoning domains (see section 10.3).
The fragility of symbolic structures limits what can be implemented and how they inter-
act. The problem of commitment to frames prevents THUNDER from implementing defaul:
knowledge. The knowledge engineering bottleneck prevents testing of robust interactions
between many knowledge structures.

The amount of knowledge that THUNDER needs to understand and process its simple
stories is staggering, and the testing of robustness shows that many of THUNDER's prob-
lems are the result of not enough knowledge. Addressing the issue of how much knowledge
is needed for robust processing, and where the knowledge comes from, is crucial for the

development of robust artificial intelligence systems. Currently, there are three competing
approaches:

1. Symbolists believe that robust processing can be achieved by implementing an ency-
clopedic knowledge base that contains all of the ‘commonsense’ facts about the world
in symbolic form [Lenat and Guha, 1990; Lenat et al., 1986].

2. Descriptivists who believe that rigorous mathematical models of real-world tasks can
be used to classify, analyze, and generate the knowledge [Pearl, 1988].

3. Connectionists believe that symbols can be replaced by distributed, shared patterns of
activation and the semantics of the distributed representations can be acquired /learned
automatically by exposure to the environment [Rumelhart et al., 1986).

The attraction of the connectionist approach is that distributed representation is more neu-
rally plausible, and thus more likely to be useful for modeling cognitive processes [Hinton
et al., 1986; Smolensky, 1988a]. Current connectionist systems are not capable of robust
symbol-level processing because of the overhead in training time and the lack of suitable
architectures capable of symbol-level processing. The descriptivists believe that that mathe-
matical models subsume the neural implementation of cognitive processes because (1) math-
ematical proof provides guarantees of the quality of the results, and (2) human information
processing is influenced by irrational considerations and biases [Kahnaman et al., 1982).

257

In addition to the knowledge acquisition problem. the tests of THUNDER illustrate
problems in knowledge application and interaction. Even if THUNDER had access to all of
the commonsense facts about the world {either in a encyclopedia or stored in connectionist
wetware}, the knowledge has to be applied to a task. The problems of knowledge application
are (1) having the ‘right’ knowledge available without time-dependent searches and overhead.
and (2) constraining the inferences and queries that are generated by applying the knowledge.
THUNDER approaches this problem from the top down — belief conflict processing controls
story understanding by providing a way of knowing when text has been understood.

10.6 Summary

This chapter has presented THUNDER s theoretical claims, theoretical foundations, limita-
tions of the approach and program, and three evaluation studies. THUNDER makes theo-
retical claims in three areas: plan evaluation, story understanding, and memory structures
to support moral reasoning. The theoretical claims were organized by computational, rep-
resentational, and algorithmic aspects, where the representational and algorithmic aspects
support the computational theory. Plan evaluation is the computation of evaluative beliefs
about plans, supported by an ideology and the application of judgment warrants to factual
beliefs. Story understanding is the computation of story themes, supported by an episodic
representation of belief and intentional knowledge, and explanation-based processing. Belief
conflict patterns are a representational theory that link the two computational theories. Be-
lief conflict patterns represent differences in the ways that plans can be evaluated, and are
used to represent conflicts in stories.

THUNDER's theoretical foundations are from symbolic accounts of cognitive processes.
THUNDER is based on a conceptual/functional analysis of moral reasoning, and uses -
symbolic implementation to test the theories. The explanatory vocabulary of the impleme..
tatlon is commonsense psychological concepts such as goals, plans, and belief. The goal of
THUNDER is to provide an account of the cognitive processes of moral reasoning and the-
matic story understanding in terms of the sequential application of commonsense rules and
representations. Because THUNDER is an approximation of cognitive processes, THUN-
DER serves as an initial approach to implementing the complex knowledge architecture that
is needed to understand thematic stories, and to understand the constraints that the vari-
ous knowledge sources and reasoning domains place on the computations. The limitations
of THUNDER come from two sources: (1) limitations associated with symbolic structures.
such as fragility, commitment, and how the structures are acquired, and (2) limitations based
on incomplete theories of reasoning domains.

In the evaluation studies, THUNDER'’s performance was compared to human behav-
ior, the extensibility of THUNDER was measured, and problems with THUNDER's theory
were illustrated by unexpected behavior of the program. The protocol study showed that
THUNDER’s performance is similar to humans; THUNDER generated the same types of

reasons and themes as the human subjects. The extensibility study showed that increases
in THUNDER'’s performance are proportional to the amount of knowledge that is encoded.
The analysis of THUNDER s unexpected behavior in the recognition of story themes showed
that THUNDER's model of theme recognition as conflict and resolution is not the whole
story in theme recognition, but is a significant part.

259

CHAPTER 11

Comparison to Related Work

Two types of research are related to THUNDER: (1) artificial intelligence (Al) systems that
model processes of beljef construction and story understa.nding In computer programs, and
(2} theories of belief, memory, and ethics in psychology and philosophy. Because of the
differences in theory development and testing between the types of research, i
to take a different approach to the two areas. THUNDER can be compared to other Al
systems in terms of performance and modeling characteristics. The scope and breadth of
THUNDER's behavior can be compared to systems that address the same general research
problems, and the Presuppositions of the implementation approach can be contrasted to
systems that start from a different theoretical standpoint.

In relating THUNDER to work in psychology and philosophy, the issue is how well
THUNDER is in accordance with the findings and distinctions of these fields. For psycho-
logical research, the cognitive principles and processes that have been discovered through
empirical methods should be exhibited in THUNDER’s behavior. For philosophical theories
of ethics, THUNDER should reason in terms of the same concepts, make the same ethjcal
distinctions, and come to similar conclusions. When THUNDER'’s behavior differs from ex-
perimental results or theoretical analysis, it either points out (1) a problem in THUNDER '
theory, or (2) a limitation of the implementation. THUNDER can be used to inform psycho-
logical and philosophical theories by (1} providing an account for behavior that is measured
in psychological experiments, and (2) showing how the distinctions made in ethical theories
do or do not apply in THUNDER's task domain.

This chapter is organized as follows: F irst, the systems that were used as a starting point
for the design and construction of THUNDER are briefly discussed. The representational
structures, processing techniques, knowledge organization, and control strategies of these
systems that were used in THUNDER are acknowledged. Second, THUNDER 18 compared
to Al systems that are similar in scope and performance. Third, computational approaches
to belief and moral reasoning that were not chosen for use ig THUNDER are presented and
the reasons for their inappropriateness is discussed. Fourth, psychological models that have
been proposed for ethical reasoning are discussed, and the experimental evidence for the
models is compared to THUNDER'’s behavior. Fifth, representative philosophical theories
of ethics are discussed and compared to the ethical theory implemented in THUNDER.

LN

11.1 Foundational Work

THUNDER was constructed to take advantage of previous findings and system design tech-
niques in symbolic natural language processing systems. In most cases, the differences he-
tween THUNDER and the previous systems are a matter of application. To be applied in
THUXNDER, the previous systems were extended to (1) the reasoning domains necessary
for THUNDER's examples, and (2) handle cases in THUNDER's example that the orignial
work did not address.

THUNDER was based on previous work in the following areas:

Conceptual structures: The conceptual dependency representation of acts and events
[Schank, 1973; Schank, 1975|, the goal type taxonomy [Schank and Abelson, 19771
and the representation of plans as memory organization packets (MOPs) [Schank.
1982; Dyer, 1983|.

Model of story understanding: The explanation-based story understanding systems
BORIS [Dyer, 1983] and PAM [Wilensky, 1983a).

Thematic patterns: The representation of thematic knowledge in terms of abstract
planning knowledge in thematic organization packets (TOPs) {Schank, 1982) and TAUs
[Dyer, 1983], and the breakdown of themes into problem and resolution components in
Story Points [Wilensky, 1982; Wilensky, 1983b].

Belief and belief relationships: The representation of the constituent structure of beliefs
and support and attack relationships [Flowers et al., 1982; Alvarado, 1990; Alvarado
et al., 1990}, and the types of belief used in OpEd [Alvarado, 1990].

Memory Organization: The technique of using schemas as organizational structures in
a content-plus-index memory model in IPP [Lebowitz, 1980] and CYRUS [Kolodner.
1984].

Goal importance and character traits: The representation of ideology and character
traits is based on the POLITICS system [Carbonell, 1978; 1979; 1980].

Phrasal parsing and generation: The representation of phrases as pattern-concept pairs
[Wilensky and Arens, 1980; Wilensky, 1981} in PHRAN [Arens, 1986}, unification based
phrase matching in RINA (Zernik, 1987; Zernik and Dyer, 1987], and generation control
in PHRED [Jacobs, 1985b).

Demon-based control: Using demons and agendas to organize and control process
knowledge as implemented in BORIS [Dyer, 1983] and OpEd [Alvarado, 1990].

It is worth noting that all of the systems that influenced the design and implementation
of THUNDER were constructed by Roger Schank and his students (some second and third

261

generation). Schapk's influence has been to emphasize three methodologica] Principles: ||,
modeling naturally occuring Ianguage tasks and behavior, (2) knowledge Tepresentation and
Organization in terms of sets of atom;. Primitives, and (3) implementing Systems to test ap
refine theoretjc ideas. The systems Progressively refined theoretic apg modeling technique,.

11.2 Related Work in Artificia] Intelligence

While there have beep many previous A Systems that have addressed issues relateq to moral
reasoning and thematic story understanding (e.g. negotiated conflict resolution [Sycara.
1987], belief justificatiog [Quilici, 1991], the relation of €motion to judgment [Mueller, 1989]).
there are three Tecent systems that are closely related to THUNDER. (1) Carbonel]’s POL-
ITICS, (2) Ram’s AQUA, and (3) Alvarado’s OpEd. A]l three of these Systems mode] beljef
Construction and memory organization for high-leve] cognitive tasks i terms of symbol;c
knowledge Structures. In this section, each syster is presented apq compared to THUN.

DER.

The POLITICS System [Carbonpel], 1978; Carbonell, 1979] was a mode] of subjective yp.
derstanding and showed how 5 System'’s beliefs woyld influence understa.nding. POLITICS

THE PANAMA CANAL TREATY IMPROVES RELATIONS wiTH LATIN AMERICAN COUN-

RD

> Should the US approve the treaty?

NO, THE PANAMA CANAL TREATY IS BAD FOR THE UNITED STATES.

> Why is the treaty bad for the US?

THE UNITED STATES WOULD LOSE THE CANAL TO PANAMA AND THE UNITED STATES
WILL BE WEAKER.

> What might happen if the United States loses the Canal?

RUSSIA WILL TRY TO CONTROL THE CANALL.

In POLITICS, an ideology is a set of goal trees, one for each foreign policy actor (the
U.S., Soviets, and the third world). A goal tree is a hierarchy of goals ordered by subgoal and
relative importance relations. An example goal tree for the Soviets in the US-conservative
ideology is shown in figure 11.1.

World Domination

Maintain leadership
of Communist World

|
|
Achieve and maintain] Convince small Build up armed
‘s . ! . -
political influence : countries that f-- forces
over small nations ' | comnmunism is best :
[R T,
| :] :
T ! :
Achieve and maintain Suppress internal Aid communist
worldwide economic |-~ 7] dissent ~ ~~~4 movement in
clout third world

(Solid arrows are subgoal links, dashed arrows are
relative importance links.)

Figure 11.1: Soviet Goal Tree in US-conservative Ideology

The figure is a depiction of the goals that a US conservative believes that the Soviets
have. World domination is their most important goal. To achieve world domination, the
subgoals are to (1) “maintain leadership of the communist world,” and (2) “defeat the west-
ern powers.” Less important goals are further down in the hierarchy; “suppressing internal
dissent” is less important than “world domination,” but more important than achieving eco-
nomic clout or aiding communists in the third-world. Goals trees were used in POLITICS

263

for three purposes: (1) interpretation. by providing script selection from actions, (2) expla-
nation, by providing goals and plans for actions, and (3) to model interest by focusing ou
more important goals.

One problem with the POLITICS model of ideologies is that a a separate goal tree is
required for each actor that the system reasons about. In Carbonell’s model of personality
traits [1980] this problem is addressed by using a prototypical goal tree to represent the
normative orientation of people’s goals. Personality traits are then represented as modifica-
tions to the prototypical goal hierarchy. For example, at the top level of the prototypical
goal tree are the preservation of health goals, representing that the most important goals
of a normative person are to protect his own health and safety, and the health and safety
of his family and friends. Lower in the tree are achieverment goals (to have a good job. to
be thought well of) and still lower are the enjoyment goals. The modifications to the goal
tree for an “ambitious” person are to have his achievement goals moved higher in the tree.
and preservation goals for others moved lower. This represents the knowledge that an ambi-
tious person will sacrifice family and friends to get ahead. Carbonell (1980, p.67] notes that
goal trees do not completely represent personality traits; some traits have means-oriented
components, meaning that they describe the planning choices that a character is expected
to make. An “ambitious” person is expected to use high resource-consumption plans for his
achievement goals, and will be hesitant to compromise, while a “capable” person will make
correct decisions in plan selection and carry out plans without making errors.

Goal trees are a powerful and efficient means of representing knowledge about goals in a
variety of domains. They also provide one measure of interestingness: stories involving more
important goals are going to be more interesting. However, two ingredients are missing from -
a goal-importance based theory of interest: (1) the goals need to be threatened or fail before
the story becomes interesting, and (2) there are situations that are interesting because of the
configuration of goals and belief. For example, Hunting Trip is interesting not only because
of the importance of the goals that fail (the death of the rabbit and the destruction of the
hunters’ truck), but because also because of the way that the truck was destroyed.

In part, the problem with POLITICS is that goal trees represent both ethical and prag-
matic beliefs. POLITICS evaluated the consequences of events in terms of goal trees, so a
‘good’ plan was an effective plan for an important goal, which avoids failures of other im-
portant goals. This is only the pragmatic side of evaluative belief—an ethical plan evaluator
also has to consider the goals and goal failure effects on parties other than the planner. This
is accomplished in THUNDER by having the value system represent only the relative impor-
tance of the reader’s values, and using the value system in the process of ethical reasoning.
Thus, the value system does not include instrumental goals, and separates the concept of
“what is good” from “good ways to get what is good.”

THUNDER not only reasons about the important goals of the planner, but about the
goals and goal failures of other parties that are affected. POLITICS did not recognize
patterns of evaluative belief about goals or use them to interpret events, or recognize themes
by contrasting expected to realized outcomes. THUNDER not only uses subjective beliefs

to analyze story events, but also to evaluate and learn from them.

11.2.2 Explanation Patterns and Ram’s AQUA

Schank [1986] presents a model of creative understanding based on different types of expla-
nation. While more of a general understanding model than a model of narrative comprehen-
sion. the process presented in [Schank, 1986] is similar to the story understanding model in
THUNDER. The basic thesis is that explanation is understanding. A program that finds ap
appropriate memory structure for an Input concept (sentence, episode, or idea) understands
the sentence at the level of “making sense” out of it. If there is no memory structure, then
the sentence needs to be explained by creating a new structure and reorganizing memory to
accommodate it.

Schank’s explanation process begins by recognizing an anomaly: an input that has no
memory structure to accommodate it. In the case of an action, an anomaly would be an
action that cannot be recognized as a part of a plan. To recognize a valid explanation of
the anomaly, the goal of the explanation needs to be identified. Some example explanation
goals are to find a coherent plan for an action, or to find a new predictive rule for individual
or group behavior. From this explanation goal, an ezplanation question can be formed. An
explanation question is a general question based on the features of anomalies: the type
of failure, the type of event, and the explanation goal. Indexed with each explanation
question are ezplanation patterns which are explanation schema in memory that apply to
a class of anomalies. The explanation pattern can be instantiated from the current event
and its coherence can be evaluated. A coherent explanation can be generalized and used to
reorganize memory so that similar failures will not occur again in the future.

As an example, consider the following news article (from [Schank, 1986, p. 95)):

In the summer of 1984, Swale, the best thoroughbred racehorse of that year, the
one who had been winning the most important races for three year old horses, was
found dead in his stall. Newspapers around the country concerned themselves
with the issue of why Swale had died.

The anomaly is that the death of Swale is an unusual event to occur so early in a racehorses’
career. From this anomaly the following specializations of general explanation questions can
be generated:

1. What were the medical causes of Swale’s death?
2. Why might racehorses die young?
3. How will Swale’s death benefit others?

The last question is a specification of the explanation question “Who would benefit from
a particular action?” When the particular action is death, there is an answer indexed

265

under the explanation Pattern associated with the question: the beneficiary of the party
who died. Some sample associated eXplanation patterns are foulplay:inheritance and
foulplay:insurance hoth of which provide (1) the recipient of the benefit and (2) an expla-
nation for the method of death. Schank shows how misapplication of explanation patterys
€an result in creative explanation.

BCP recognition also provides interesting anomalies to track, instead of evaluating each input
that is a variation of a memory structure. BCPs provide answers for two of Schank’s main
questions: (1) How do we decide what to explain? agd (2) what is interesting to pursue’

Explanation patterns were used for story understanding in the AQUA program [Ram.
1989]. AQUA modeled comprehension as a goal-directed task by generating and answering
questions. AQUA takes an open-ended view of story understanding, generating many differ-
ent types of questions and explanations and using the answers to learn from the story. For
example, AQUA reads the following story:

Terrorists recruit boy as car bomber. A 16-year-old Lebanese got into
an explosive-laden car and went °n a suicide bombing mission to blow up the

questions:

1. Did the boy volunteer for the car bombing?
2. What did the terrorist group blackmail the boy with?

3. Why was a boy recruited for the car bdmbing?

when terrorist car bombing stories are read in the future,

To show the effects of learning and memory modifications, AQUA reads the following
story with the new explanation patterns and questions in memory:

A young girl drove an explosive-laden car into a group of Israeli guards in
Lebanon. The suicide attack killed three guards. The driver was identified as a
16-year-old Lebanese girl. Before the attack, she said that a terrorist organization
had threatened to harm her family unless she carried out the bombing mission
for them. She said that she was prepared to die in order to protect her family.

This story provides confirmation for the blackmail suicide bombing explanation pattern. as
well as an answer to the question of how the bombers are blackmailed.

Some of AQUA’s questions and explanations could be improved by including THU N-
DER’s model of evaluative belief and inferences about ideology. For example, from the boy -
actions in the first story, it can be inferred that he believes that he is achieving a more
important value than his life. When the story contradicts the sterotypical car bomber s
ideological preference belief that religion is more important than life, the question beconies
what is the value that he believes is more important than his life.

The main differences between THUNDER and AQUA are the types of stories that they
were designed to process, and their behavior with respect to the stories. The news stories that
AQUA processes are not stories in a thematic sense, but rather news reports of a sequence
of events. The news stories are not designed to teach, but to provide accounts of interesting
events and their background. AQUA was designed to learn and pursue the interesting facets
of these stories by saving interesting questions to pursue in the next story. In contrast.
THUNDER was designed to work independently on individual stories, and get the intended
meaning out of the stories. THUNDER takes a stratified view of story understanding where
ethical judgments are used to control the understanding process. Instead of generating
many types of explanations, THUNDER models one important domain in great detail and
recognizes ethical story themes.

11.2.3 Alvarado’s OpEd and the Representation of Argument Knowledge

OpEd [Alvarado, 1990; Alvarado et al., 1990} is a system that reads editorials about
economic protectionism, and answers questions about the beliefs of the participants (the
editorial writer and the actors in the editorial). Argument Units (AUs) were used in OpEd
to represent abstract information about arguments. AUs represent argument structure in
terms of belief support and attack relationships and reasoning chains. For example, AU-
Opposite-effect has the following structure:

Although opponent O believes that plan P should be used because P achieves
goal G, arguer A believes that P will not achieve G because P will thwart G.
Therefore, A believes that P should not be used.

OpEd also has domain specific knowledge about international economic policy (sanctions.
trade, import limitations, etc.) which is used to understand complex economic editorials.

267

When an AU is recognized in an editorial, the program can infer the beliefs of the editorial
writer (arguer A) and the holder of the position the editorial is attacking (opponent Q.
predict the types of justification that will be used for a position, and organize the structure

of the belief supports and attacks. For example, AU-Opposite-effect is used to understanc
the bold-face sentence of the following editorial:

ED-JOBS

Recent protectionist measures by the Reagan administration have disap-
pointed us. Voluntary limits on Japanese automobiles and voluntary limits on
steel by the Common Market are bad for the nation They do not promote the
long-run health of the industries affected. The problem of the automobile and
steel industries is in both industries, average wage rates are twice as high as
the average. Far from saving jobs, the limitations on imports will cost
Jobs. If we import less, foreign countries will earn fewer dollars. They will
have less to spend on American exports. The result will be fewer jobs in ex-
port industries. (edited from Friedman, Milton (1982), “Protection That Hurts”
(Editorial), Newsweek. 15 November 1982, p. 90.)

By recognizing AU-Opposite-effect, OpEd can infer that (1) the writer is attacking the
belief of the reader that limitations on imports save domestic jobs, because (2) the writer
believes that limitations on imports will provide domestic jobs, and therefore that {3) the
writer feels that putting limitations on imports is a bad thing to do. Using AU-Opposite-
effect, OpEd can answer the following question:

> What does Milton Friedman believe?

MILTON FRIEDMAN BELIEVES THAT PROTECTIONIST POLICIES BY THE REAGAN AD-
MINISTRATION ARE BAD BECAUSE MILTON FRIEDMAN BELIEVES THAT PROTECTION-
IST POLICIES BY THE REAGAN ADMINISTRATION WILL THWART THE PRESERVATION OF
JoBs FOR U.S. MILTON FRIEDMAN BELIEVES THAT THE REAGAN ADMINISTRATION
IS WRONG BECAUSE THE REAGAN ADMINISTRATION BELIEVES THAT PROTECTIONIST
POLICIES BY THE REAGAN ADMINISTRATION ACHIEVE THE PRESERVATION OF JOBS
FOR U.S.

Argument units show two things: (1) to capture abstract knowledge about arguments.
the representation needs to attribute knowledge to the participants, and (2) the knowledge is
in the form of the beliefs of the participants. While argument units are needed to understand
the structure of the argument, and organize the supports and attacks on propositions, they
do not represent the theme of the argument which is the proposition being argued. Belief
supports and attacks in editorials form the justification structure of the author’s thesis. and
the reasoning chains represent how the beliefs are justified.

Where THUNDER extends the work in OpEd is in constructing the reader’s evaluation
of the events in a story. While OpEd can recognize the beliefs of the argument participants
in an editorial. it could not construct its own interpretation and judgment of the issue being
argued. However, human readers of the editorial also make judgments about the editorial
coutent. Argument units can be used to structure the reasoms for the reader’s judgment.
but cannot supply the content of the judgment. The relationship of moral evaluation ro
argumentation is discussed in section 12.2.3.

B
g L

11.3 Alternate Approaches

THUNDER was designed to build symbolic conceptual networks of belief and reasoning
using a frame-based representation and demon-based control. Three alternative approaches
to representation and processing that were not chosen are (1) deontic logic, (2) utility theorv.
and (3) connectionist modeling techniques. In this section, these approaches are outlined
and compared to the approach taken in THUNDER.

11.3.1 Deontic Logic

Deontic logic [Malley, 1926; von Wright, 1951] is the branch of logic dealing with normative
concepts and expressions, such as permission, obligation, duty, and right [Fellesdal and
Hilpinen. 1981]. A deontic logic consists of a set of axioms which are used to prove normative
statements. For example, The standard system of deontic logic [Fellesdal and Hilpinen. 1981]
consists of the following axioms:

Cl. Op =~ P ~ p (Definition of obligation)
C2. PpV P ~ p (Principle of permission)
C3. P(pv gq) = PpV Pq (Principle of deontic distribution)

C4. ~ P(pA ~ p) (Principle of deontic contingency)

Cs.

If p and g are logically equivalent, then Pp and Pq are logically equivalent (Principle
of extensibility).

Where O is the obligation operator, P is the permitted operator, and p and g are sentences
describing actions. Axiom C1 can be roughly translated as “An action is obligated iff it is not
permitted not to execute the action.” Statements of deontic logic are evaluated in terms of
their performance-value; an action can be performed or not performed, just as propositions
can be true or false. The main problem for deontic logics is that the deontic modal operators

fail some very basic alethic principles, such as:

OpDp

269

For deontic operators, this statment is not valid: You may be obligated to do something and
still not do it.

Research in deontic logic takes the following forms:

1. Definition. Candidates for theorems of logical truth are selected, and the consequences
are derived. If the consequences are not contradictory or paradoxical, and are consistent
with plausibility judgments, the theorems can be used as a part of a new deontic theorv.

2. Reduction and compatibility with existing logics. There are correspondences between
the deontic operators and the operators of alethic modal logic (obligated — necessity.
permitted & possibility) [Anderson, 1958]. Reduction of normative concepts to better
understood logical systems helps to clarify the reasoning and epistemological status of
the deontic operators. Much of the current work in deontic logic is concerned with
integrating deontic with temporal logic {Thomason, 1981].

3. Identification of paradoxes as weaknesses in moral theory. For example, the following
statement is a theorem of the standard system:

Op > O(pVgq)

Instantiating this theorem has non-intuitive readings, such as “An obligation to take
out the trash implies an obligation to take out the trash or shoot the president.”

There are three problems with deontic logic that make it inappropriate to use as the basis
for processing in THUNDER:

1. Proving whether an action is permitted or obligated is only one part of action analysis.
In THUNDER, the judgment of an action is the starting point for inferences about the
actor’s beliefs. For example, in Hunting Trip THUNDER's judgment that the hunters
were wrong to blow up the rabbit is used to make inferences about the reasons that
they believed that they were permitted to blow up the rabbit. If a unitary decision
method were used, there could be no conflict in evaluations.

2. The logic makes no distinction between the structure and content of moral reasoning. In
THUNDER, the structure-content distinction is made by separating judgment warrants
from ideology. Isolating ideology allows idiosyncratic aspects of moral reasoning to be
modeled. The axioms of deontic logic define the logical structure of obligation in terms
of permission, and thus are not useful for infering the ideology of actors. For example.
1n Four O’Clock Oliver felt that he had an obligation to shrink his political enemies.
Reasoning about his obligation leads to inferences about why he believes that the
action is obligated, rather than inferences that he is not permitted not to shrink his
enemies.

3. The primitives are at too high a leve] to be useful in representing the components
of normative judgment. Representing beliefs that actions are obligated or permitted
ignores the constituent structure of the beliefs, and the underlying structure of the
content of the belief. For example, THUNDER's beliefs about obligations are based
on beliefs about relative value and planning preference, while in deontic logic obligation
15 based solely on beliefs about permission.

The goals of deontic logic and THUNDER are different. Deontic logic attempts to formalize
the definitional aspects of ethics, and emphasizes consistency within a deductive framework.
The goal of deontic logic is to provide a axiomatic, consistent definition of normative terms.
The goal of THUNDER is to simulate human evaluative judgment and its use in a task
domain, and to provide a process model of the computation of normative judgments.

11.3.2 Utility Theory

Utility theory [von Neumann and Morgenstern, 1947; Pearl, 1988, pp. 289-299] is a method
of decision control based on evaluating the consequences of action in terms of a utility
function. A utility function is a real-valued function on the consequences of an action that
measures how “good” the consequences are. The basic principle of utility theory is that.
given a utility function and probabilistic estimates of the consequences of actions, choose
the action that maximizes expected utility.

To apply utility theory to moral evaluation, the following questions have to be addressed:

1. Can utility theory be used to judge actions after they have been executed?
2. Can a suitable utility function be found that allows others’ actions to be evaluated?

3. Is there a method of determining another’s utility function from his actions?

The answer to these questions is, in principle, yes. The strategy would be that to evaluate
another’s action (1) generate the space of potential actions and consequences, (2) find the
action that maximizes utility (using the evaluator’s utility function), (3) if the action found
is the same as the action chosen, the action is right, else it is wrong. To infer the beliefs of
the actor, modify the estimated probabilities of the consequences of actions (factual beliefs)
and the utility function so that the chosen action maximizes the actor’s expected utility.

The problems with this approach lie in (1) the amount of calculation that has to be done
to determine the probabilities of consequences given actions, (2) the amount of conceptual in-
formation encoded in the utility function. The difference between utility theory and THUN-
DER is that utility theory is quantitative, while THUNDER is qualitative. THUNDER's
processing algorithm is analogous to the steps outlined above, but at each step THUNDER
exploits conceptual constraints to make the problem tractable. For example, instead of using
a utility function to evaluate actions, THUNDER constructs a set of conceptual structures

271

linking consequences to actions. THUNDER addresseses the isssue of what a utility function
13, and the knowledge underlying the computation of the utility metric. What THUNDER
gains is the ability (1) to represent patterns of belief and use them to organize mermory, and
(2) to specify concrete inference rules based on the types of reasoning.

11.3.3 Connectionist Modeling

Connectionism is a processing paradigm where computation is modeled by the activation
of nodes linked by connections. In general, processing in connectionist systems consists of
propagating values over connections from one active node to another. There are two general
classes of connectionist systems: (1) localist, were each node represents a concept or symbol
and the connections represent relationships between concepts, and .(2) distributed, where
concepts are represented by patterns of activation over collections of nodes.

Localist connectionist systems represent knowledge as an interconnected network of sini-
ple processing elements which represent individual concepts. There are two strategies that
are used to propagate information through the network: (1) spreading activation, {Quillian.
1966; Anderson, 1983] where values are sent over weighted connections, and nodes are ac-
tivated when their input activations reach a threshold, and (2) marker passing [Fahlman.
1979; Charniak, 1983], where structured objects are passed over the comnections to search
for nodes in the network. Pure spreading activation systems have problems implementing
variables and binding without appealing to additional structures to save node associations.
Marker passing systems solve this problem by allowing markers to save information such as
their origin [Hendler, 1987] which implement pointers and can be used to save bindings. The
advantages of localist connectionist systems over purely symbolic frame and rule systems are
that:

1. The processing mechanism is local and homogeneous. The processing of each node is
only dependent on the its relations to other nodes, and the nodes only need to know
how to propagate outputs from inputs.

2. The system is inherently parallel. In contrast to sequential rule firing systems, the
spread of activations/markers through the network does not depend on a sequential
controller.

3. The system allows multiple constraint satisfaction. The process of parallel spreading
allows nodes to be activated and inhibited from diverse knowledge sources.

The problems for localist systems lie in (1) construction of the network, where the connec-
tions and weights have to be hand-coded, and (2) integrating control structures with the
results of the activation spread. In general, the output of a localist connectionist system
must be sent to a higher level processor. For example, in Hendler’s SCRAPS system {1987
paths between nodes are passed to a problem solving module, and in Riesbeck and Martin's

oy Py

DMAP parser [1986], the output is a set of active nodes in episodic memory. However. see
[Gasser, 1988] for a spreading-activation implementation of role-binding and sequencing for
language generation. In CHIE (Gasser, 1983] a simplified form of variable binding is mod-

eled as simultaneous node firing, and sequencing is accomplished by controlling the spread
of activation over ordered constituents In phrases.

In distributed connectionist systems (or parallel distributed processing (PDP) systems)
[Rumelhart et al., 1986], computation is modeled by mapping patterns of activation between
sets of nodes in feed-forward networks. The mappings between I/O patterns are learned
by identifying statistical correlations between input and output patterns, and modifying the
weights between layers of nodes by backward error propagation. Distributed representations
of concepts as patterns of activation across nodes allow similarities between concepts to
be represented by regularities in the underlying activation pattern. In addition, distributed
representations are useful for implementing content-addressable memory and automatic gen-
eralization [Hinton et al., 1986]. Distributed connectionist systems share many of the ad-
vantages of localist systems (local processing and inherent parallelism) along with automatic
learning capabilities, so that connection weights do not have to be hand constructed.

The primary reason that connectionist approaches were considered mappropriate for
THUNDER is the complexity of THUNDER's architecture. THUNDER relies on well-
understood symbolic mechanisms to implement rules and structures, such as frames, instan-
tiation, rule following, and sequential application of knowledge. Implementing the features of
symbolic systems in distributed connectionist architectures to take advantage of automatic
learning and generalization is the focus of current research (e.g. distributed lexical represen-
tations [Miikkulainen and Dyer, 1988; Miikkulainen, 1990], distributed semantic networks
[Sumida and Dyer, 1989; Dyer et al., in press], role binding via conjuctive coding [Dolan.
1989)], and inference and disambiguation in connectionist-based schema memories [Lange and
Dyer, 1989]). However, the processing constraints of such systems (both in training time and
the overhead of simulating parallel hardware on sequential machines) make them unsuitable
for developing and testing natural language behavior for tasks such as those addressed by
THUNDER.

The purpose of THUNDER is to implement the rules and structures that make up moral
reasoning, and to identify the processing components and knowledge interrelations that are
needed for the task. The areas where there are limitations in extending THUNDER (the
brittleness of the representational structures and the knowledge engineering bottleneck, see
section 10.3) are where PDP models would be the of the most use. One potential direction
for future research is to selectively replace components of THUNDER with distributed con-
nectionist versions [Dyer, 1990; Dyer, 1991], to create a connectionist architecture capable
of thematic-level reasoning.

273

11.4 Related Work in Psychology

Some psychologists have been concerned with moral judgment and its relation to behavior.
They have primarily focused on the developmental changes that occur in people’s moral
reasoning from infancy to moral maturity. The three central issues in moral development
research are: (1) what are the differences, if any, between moral judgment and other forms
of judgment and decision making, (2) can different stages of moral reasoning be identified
in moral development, and, if so, what are the determinants of the states, and (3) what is
the relation of the process of moral thought to the content (beliefs, cultural values, social
experiences) that is used to make moral decisions.

Currently, the dominant theory of moral development is Kohlberg’s cognitive develop-
mental theory, which is based on the work of Piaget. Piaget’s work on children’s learning
through a series of developmental stages laid the groundwork for Kohlberg’s theory of moral
development stages. The work of Piaget and Kohlberg on the cognitive developmental theory
are presented in this section, followed by a discussion of recent developments in the area.

11.4.1 Piaget’s Moral Development of the Child

Piaget’s [1932] studies of children’s moral judgments were done as a part of a larger research
effort on stages of cognitive development. In this research, Piaget [1929] identified three
major developmental stages of reasoning: (1) intuitive, where reasoning is based on surface
similarities, (2) concrete operational, entered at around age 7, where the child can make
logical inferences, classify, and reason in terms of qualitative relations, and (3) formal opera-
tional, entered at around adolescence, where relations between the elements of a system are
considered, and deductive reasoning is done on the implications of hypothetical possibilities.
The stages model has two postulates: (1) the order of the stages is fixed, and (2) each stage
is a necessary precursor for the next.

Piaget studied the rules that children use in game playing and the transformations that
occur in the child’s use of and attitude toward the rules. He identified two distinct modes
of moral thought characterized by constraint and cooperation, respectively. The first state
is a heteronomous orientation based on rules and prohibitions from authorities (adults). At
this stage the child sees obedience to authority as defining what is right, and that the rules
are external, fixed, and absolute. The second stage is an autonomous orientation, where the
shift is marked by the child’s change in attitude toward the rules. At the autonomous level.
the child comes to see that there is a reciprocity of perspectives, and that rules are designed
to promote cooperation among the members of a social system. In this stage rules are not
seen as fixed, but are alterable by consensus and will vary with different circumstances.

For Piaget, there are two causes of moral development (1) cognitive development, and (2)
social interaction. The development of cognitive abilities, such as the ability to classify and
abstract, is a necessary condition for moral development. When these cognitive abilities are
applied to social situations, the child develops a sense of justice through recognizing mutual

respect and cooperation. In Piaget's scheme, justice is the defining element of morality.
and reasoning in terms of Justice 1s what differentiates moral reasoning from other forms
of reasoning. The development of a sense of justice goes through three stages: (1) in the
heteronomous stage, justice is obedience to authority, {(2) in a transitory period, equality de-
velops as defining justice through from the understanding of reciprocity of perspectives, and
{3} at the autonomous stage, equity is used to define justice as a refinement of equality with
account for circumstances. Equating equity to justice as the defining characteristic of moral-
ity has three consequences: (1) deciding what is an ethical problem requires that inequitable
situations be recognized, (2) determining moral obligation is the process of deciding what ix
equitable in circumstances, and (3) since determination of equity is a balancing operation.
the objects/concepts being balanced have to be specified.

THUNDER implements an autonomous moral orientation through (1) value inference
rules (section 2.7), and (2) ethical judgment warrants (chapter 2). The value inference
rules implement reciprocity by allowing THUNDER to infer the evaluative beliefs of others.
Ethical judgment warrants allow THUNDER to Judge actions based on the consequences for
others. Although THUNDER is not attempting to model moral development, acquiring value
inference rules and ethical judgment warrants would mark the shift from the heteronomous
to autonomous orientation. THUNDER implements equity to determine what is just by
balancing the consequences for the actor with the consequences of others. The objects
that are balanced in the construction of belief graphs are value successes and value failures.
Judgment warrants are used to connect the value consequences to the positive and negative
valences of evaluation.

11.4.2 Kohlberg’s Six Stages of Moral Development

Working within the same learning in stages paradigm, Kohlberg refined and revised n Piaget's
two stage model into a six stage sequence of moral development [Kohlberg, 1971; 1973; 1976:
Kohlberg, et al., 1983]. Kohlberg's research was based on analysis of interviews about the
reasoning behind decisions on moral dilemmas, such as the following (from [Kohlberg, 1976.
pp. 41-42]):

Heinz's Dilemma

In Europe, a woman was near death from a rare form of cancer. There was one
drug that the doctors thought might save her, a form of radium that a druggist
in the same town had recently discovered. The druggist was charging $2,000,
ten times what the drug cost him to make. The sick woman'’s husband, Heinz,
went to everybody he knew to borrow the money, but he could only get together
about half of what the drug cost. He told the druggist that his wife was dying
and asked him to sell it cheaper or let him pay later. But the druggist said “No.”
So Heinz got desperate and broke into the man’s store to steal the drug for his
wife.

275

Level Stage

Preconventional | 1. Heteronomouys morality, |

2. Individualism, instrumental purpose,
and exchange.

ﬂll. Conventional 3. Mutual interpersonal expectations, relationships, |

]

and interpersonal conformity.
4. Social system and conscience.
z/iﬂ. Postconventional | 5. Social contract or utility and

or Principled individual rights.
6. Universal ethical principles,

Table 11.1: Kohlberg's Six Stage of Moral Development

Should the husband have done that? Why?

reasons for stealing the drug are saving the wife's life, and the relative value of the right to
life to the right to property. The reasons and reasoning elicited in the the interviews allowed
Kohlberg to characterize the subject’s type of moral reasoning.

Kohlberg’s six stages are grouped into three levels: (1) preconventional, (2) conventional.
and (3) post-conventional, The preconventional leve] roughly corresponds to Piaget
€ronomous orientation. At the Preconventional level, the person has a concrete individual
perspective where “rules and social expectations are external to the self” [Kohlberg, 1976.
p- 33]. At the conventiona] level, the individual has internalized the rules and expectations
of society, and he view kimself as a member of society. The post-conventional person defines
values in terms of self-chosen principles, and views the values as the antecedents of rules
and social expectations. For example, a person at the preconventional leve] believes that
stealing is wrong because of the risk of Punishment, at the conventional Jevel because laws
protect the rights of all members of society, and at the post-conventional level because of
the violation of property rights.

Each level is broken down into two stages, where the second is more advanced and
organized for the general perspective of the level. For example, at the conventional level
(level 2), the first stage (stage 3 in the overall progression) being a member of society is
defined in terms of interpersonal relationships, and belief in the golden rule (“Do unto others
as you would have them do unto you”). In the more advanced stage (stage 4) there is an
understanding of the larger social system beyond one individual’s interactions. Kohlberg's
six stages are summarized in table 11.1 (abridged from [Kohlberg, 1976, pp. 34-35)).

The structure of reasoning that takes place at each stage is defined by two “formal
properties” of each stage: (1) the social perspective, and (2) the justice perspective. The

Y. 7.1

Stage | Social Perspective Justice Perspective

1 Egocentric. Personal weifare.
2. Awareness of needs of others | Concrete reciprocality
coordinated through acts of (l.e. “An eye for and eye").
concrete reciprocality.
3. Shared role expectations in Imaginative or ideal reciprocality
personalized relationships. (i.e. the golden rule).
4. Less personalized social Reciprocality that can be maintained
system of norms and roles. in the social system.
5. Prior to society perspective. | Free agreements which rational persons
could accept in any society.
6. Moral point of view. Reciprocality from all point of
view (i.e. moral musical chairs).

Table 11.2: The Social and Justice Perspective of the Stages

social perspective is the point of view that an actor takes when identifying social roles
and his own values. As the individual develops, his social perspective changes from an
individual perspective at the preconventional level, to a “member of society” perspective at
the conventional level, and finally to a “prior to society” perspective at the postconventional
level. A “prior to society” perspective means that the individual takes the perspective of
any morally rational individual, regardless of the social communities’ moral standards.

The justice perspective of the stages is the metric that is used to evaluate the fairness
of action in terms of the three primary justice operations: equality, equity, and reciprocal-
ity. The justice operations of equality, equity, and reciprocality are “internalized actions
of distribution and exchange which parallel logical operations of equality and reciprocality”
[Kohlberg et al., 1983, p. 95) which operate within the justice perspective. For example.
the justice perspective of stage 2 is “concrete reciprocality,” so the operation of reciprocality
means that if someone does something to you, you are justified in doing the same thing
back to them. Applying this justice perspective to the Heinz dilemma means that the drug-
gist is justified in withholding the drug, since Heinz hasn’t done anything concrete for the
druggist (like pay the asking price). At stage 3, the justice perspective is “imaginative or
ideal reciprocity” as characterized by the golden rule. The operation of reciprocity with this
justice perspective is that you should do things that you would wish done for you. In the
Heinz dilemma, this means that the druggist should give Heinz the drug, since the druggist
would (presumably) want to be given the drug if he found himself in similar circumstances.
The social and justice perspectives of the stages are summarized in table 11.2 (adapted from
[Kohlberg et al., 1983, pp. 42, 100-101]).

277

also postulates (1) that the stages are culturally universa] because “all cultyures have common
sources of social integration, role taking, and social conflict, which require moral integration”
[Kohlberg, 1976, P- 48] and (2) that “the stages represent qualitatively different modes of
thought, and are not Increased knowledge of, or internalization, of adult moral beliefs and
standards” [Kohlberg, 1973, p. 92).

THUNDER attempts to implement post-conventional moral reasoning. The stage of

reasoning in THUNDER is defined by the judgment warrants, The warrants provide the
structure of moral reasoning, while the ideology provides the content. THUNDER's mora}

knowledge. Because THUN DER does not learn, it cannot go through developmentaj stages,
Defining THUNDER s moral stage is difficult because (1) THUNDER lacks the ability to
reason reflexively about laws, Justice, and societa] roles, and (2) THUNDER's ideology is in-
complete because THUNDER s memory has only been partially implemented. THUNDER s
social perspective is defined by the evaluative expectations that are associated with rela-
tionships. The obligation beliefs that a person in a role (e.g. ‘borrower’, ‘parent’, ‘teacher’)
should have are an idealized characterization of a socia] role. THUNDER's justice perspec-

golden rule.

11.4.3 Recent Research on Moral Development: Turiel, Shweder, and Haan

Recent research by Turiel [1983] , Shweder {Shweder et al., 1987], and Haan [Haanq et a)..
1985] has called into question some of the predictions of Kohlberg’s model. Turiel, in stud-
ies of interview material with preschool children [Nucci and Turiel, 1978; Nucci and Nucci,
1982] found that children as young as 3-4 distinguish between moral and conventional trans-
gressions, and use different modes of reasoning for the two types. Turiel gives the following
examples of moral and conventional transgressions [Turiel, 1983, p. 41]:

A number of nursery school children are playing outdoors. There are some
swings in the yard, all of which are being used. Oune of the children decides that
he now wants to use a swing. Seeing that they are all occupied, he goes to one
of the swings, where he Pushes the other child off, at the same time hitting him.
The child who has been pushed is hurt and begins to cry. (Moral transgression.)

Children are greeting a teacher who has just come into the nursery school. A
number of children go up to her and say “Good Morning, Mrs. Jones.” Oge of

the children says “Good Morning, Mary.” (Soctal transgression.)

Turiel summarizes the differences in reaction and reasoning to the two types of transgressions:

278

Two general types of behaviors were observed in the children’s reactions to
the transgressions. One pertained to the intrinsic consequences of actions and
occurred mainly in the context of moral transgressions. These reactions included
statements regarding the pain or injury experienced by a victim of an act, expres-
sions of emotion, explanations of the reasons for an action, and physical reactions
toward the transgressor. The second general type of response pertained to the
organizational features of the situation and occurred usually in the context of
conventional transgressions. These reactions included statements about social or

disorder, specification of rules and sanctions, and direct commands [Turiel, 1983.
p. 45

As the child develops a better understanding of the “intrinsic consequences” of action, the
domain of what qualifies as moral expands. This formulation of moral development conflicts
with Piaget and Kohlberg by showing that early moral reasoning is not done solely by
respect to rules and authority, but by what is known about harm and consequences. Turiel
claims that Kohlberg’s research methods failed to take into account the conventional/moral
distinction, and thus overestimated the size of the moral domain.

Shweder [Shweder et al., 1987] questions Kohlberg’s claims that the moral stages are
culturally invariant, as well as Turiel's distinction between moral and social conventional
reasoning in his cross-cultural study of judgments of “seriousness of breach.” The study
compared rankings of seriousness of breach for adults and children from Hyde Park. IL and
communities of Hindu Bramans and “Untouchables” in Bhubaneswar, India. Examples of
the cases used in the study are [Shweder et al., 1987, pp. 40-41]:

The day after his father’s death, the eldest son had a haircut and ate chicken.
A brother and sister decide to marry and have children.

You went to a movie. There was a long line in front of the ticket window. You broke
into line and stood at the front.

The study found that (1) there are cultural differences between what constitutes a moral
breach, (2) social practices are not understood as conventional forms, but “are usually per-
ceived as a part of the natural-moral order of things by most natives” [Shweder et al., 1987,
p- 52], (3) the distinction between mora! and conventional transgressions may be an artifact
of Western thought, and (4) the content of moral thought is culture specific [Shweder et al..
1987, p. 60].

Shweder’s social communication theory of moral development emphasizes “the ways a
culture’s identity and worldview have a bearing on the ontogenesis of moral understandings
in the child” [Shweder et al., 1987, p. 73]. In social communication theory, the moral
order of society is communicated to the child by the moral actions that take place in the
child’s environment. Shweder supports Turiel’s claim that moral reasoning is done earlv

279

Haan and her colleagues [Haan et al.. 1985} have developed a theory of moral development
that integrates Kohlberg’s stages of moral reasoning and Shweder’s cultural communication

predicates moral development on individuals acting in their own self-interest, in addition to
cognitive development and €Xposure to social situations. According to Haan, mora] devel-
opment is a gradual process as individuals increase thejr skill at resolving moral conflict. [t

Two branches of philosophy are relevant for the theories implemented in THUNDER: (1)
normative ethics, which is the study of how judgments “g0ood” and “right” are made, and
(2) metaethics, which is the study of ethical terms, definitions, and methods of Justification.
A summary of the fields and how they relate to THUNDER are presented in the next two
sections.

QN

11.5.1 Philosophical Theories of Normative Obligation

Ply to people, intentions, and
the value system and obligation
al value. The value system represents

provide THUNDER's beliefs about values of others, and thus the relative importance ovf
actions that have consequences in terms of those values.

Boyce and Jensen |1 978] provide a categorization for theories of moral obligation, shown
in figure 11.2. Theories of moral obligation can be broken down into two classes: those that
derive the rightness of an act from its consequences, and those that judge rightness not only

act itself. Theories of the first kind are called teleological and theories of the second are
called deontological. The differences between these two types of theories can be illustrated
by considering the reasoning used in Heinz’s Dilemma.

For teleological theories, the reasoning revolves around the ends of Heinz's action. If
Heinz steals the drug, then he can save his wife, may be punished if he is caught, and the
druggist has lost something of value. A deontological theory would evaluate both the action
and the results by, for example, appealing to a maxim like “thoy shalt not steal.”

Within teleological theories, a distinction is made between whether the consequences are
for oneself or for the general good. Theories of the first type are called egoistic and those of
the second type are utilitarian. Taking the position of Heinz, an egoist would consider how
stealing the drug affects himself. While this might appear to force the egoist into being selfish
and to choose stealing the drug, the egoist might also conclude that being honest is in his
best interest and thus choose not to steal the drug. (This is the essence of Plato’s enlightened
egotsm [Plato, trans 1942, Pp. 463-467]). The utilitarian considers the net ‘good’ that an
action will cause. In the dilemma, stealing the drug will cause some good (saving the wife)
and some bad (the loss to the druggist), so the utilitarian has to weigh the consequences to
evaluate the total goodness in stealing or not stealing.

Utilitarian theories can be further subdivided by whether the principle of utility is applied
to particular acts or to general rules. Theories of the first kind are called act utilitarian and
theories of the second are called rule utilitarian. An act utilitarian would evaluate the
consequences of stealing in the dilemma with respect to the good and bad that is produced
by that particular act of stealing. A rule utilitarian, on the other hand, has a set of rules for
maximizing the good, and would apply those rules to the action under question. If a rule

'The material in this section is abridged from (Boyce and Jensen, 1978]

281

Theories of Moral Obligation
Are actiong Judged solely

by their consequences ¢ Yes

Teleology
Are the consequences

Deontology
Jor oneself or the Are actions
general good? Judged solely
on the natyre
Oneseif of the action ¢ Yes No
Egoism
Utilitarianigm Pure Mixed
1s the judgment made Deontology Deontology
on individugl actions Ao Act Act
or on general ruleg? ¢ ¢
Act Rule Pure Act Rule Mixed Act Rule
Utilitarianism Deontology Deontology
v
Rule Pure Ryle Mixed Ruyle
Utilitarianism Deontology Deontology

Figure 11.2 Categories of Moral Obligation Theories

282

utilitarian has deduced that the rule ~thou shalt not steal” will most maxi

. it mize the good.
then they will reason that it is wrong for Heinz to steal the drug.

There are two major subtypes of deontological theories based on whether moral obligation
1s based solely on the nature of the act. or a mixture of considering the nature and the

deontological theory: pure rule-deontology, pure act-deontology, mixed act-deontology, and
mixed rule-deontology.

Theories of pure deontology are the most difficult to discuss because they only consider
the nature of the action in moral decision making, An example of pure rule-deontology is
Kant’s categorical imperative: “Act only according to that maxim whereby you can at the
same time will that it should become a universal law” [Kant, 1785, p. 30]. The question for
a person following the categorical imperative in Heinz's dilemma is deciding if stealing to
save the life of a loved one is a universalizable maxim. If it can be concluded that under a]]
circumstances stealing is logically consistent (i.e. won't lead to self-contradiction), then the
act is right. Pure act-deontology adopts the position that the rightness of acts should not be
judged with respect to consequences or moral rules. An example of this type of deontology
is Sarte’s ezistentialism [Sarte, 1947), which speaks of ethical decision in terms of “choice”
and claims that ethical judgment should be “invented” when a decision has to be made. In
the Heinz dilemma, the existentialist could choose either way, and only what really happens
after the choice has been made will Justify the choice.

Mixed deontologists allow both considerations of the nature and the consequences of an
action in moral decision making. A mixed rule-deontologist has a set of rules and obligations
to guide moral reasoning. For example, Ross [Ross, 1930, p. 21) has seven prima facie duties:
fidelity, gratitude, justice, beneficence, self-improvement, and to not injure others. These
duties are the rules for evaluating actions, and are based on considerations of both the
consequences and the nature of the act. The mixed act-deontologist makes moral judgments
by considering the particular action, and only uses moral rules as guidelines or generalizations
about ethical conduct. In the Heinz dilemma, the mixed act-deontologist will consider a rule
like “stealing is wrong” and might conclude that it doesn't apply in this case because of the
bad faith in negotiations on the part of the druggist, or the lack of options left to Heinz.

THUNDER uses a mixed act-deontology for evaluating moral obligations. THUNDER's
judgment warrants distinguish between teleological and deontological considerations. J udg-
ment warrants concerned with success and failure (warrants P-1, P-2, and E-1 in section
2.4) and goal importance (warrants E-3 and E-4 in section 2.5) implement utilitarian eval-
uation. Plan availability warrants (warrants P-5 and P-6 in section 2.6) and intentionality
warrants (warrants P-3, P-4, and E-2 in section 2.4) are concerned with the nature of the
action in terms of what other plans could have brought about the same result. The model
is an act-deontology, rather than a rule-deontology, because action in stories is what is eval-
uated. THUNDER does not reason about the judgment warrants; they are a fixed set used

283

in the construction of moral beliefs. A direction for future research would be to studyv how

judgment warrants are acquired, and to have THUN DER reason reflexively about judgment
warrants and when they apply.

11.5.2 Metaethics

defined. Since a cognitive model of ethjcal evaluation is being presented, the metaethica]
concerns are (1) how the ethijcal theory is grounded in conceptual definitions, (2) how the
theory can rationally justify ethical evaluations, and (3) how the ethical mode] relates ethical
Statements to knowledge and beljef.

ethical terms can be defined in non-ethical terms, and thus the truth of ethical statements
can be established empirically, (2) intuttionism or non-naturalism, which holds that while
there is moral truth and ethical questions can be answered, ethical terms are undefinable, and
(3) noncognitivism, which denies that there is any moral truth. Naturalism holds that moral
knowledge can be supported inductively or deductively from non-ethical premises of empirical
fact. Intuitionism is based O an argument against naturalism called the naturalistic fallacy
[Moore, 1903] which states that ‘good’ is a “simple notion” (ji.e. a primitive), like the
concept of ‘yellowness’, that cannot be described to someone who doesn’t already know
what it is. The consequence of this view is that truth values can be assigned to ethical
statements, but that the simple notion of good is undefinable. Noncognitivism goes one step
beyond intuitionism by claiming that not only is goodness undefinable, ethical statements
do not have a truth value. That is, moral statements are not statements of fact, but are
judged by some other metric. By making the distinction between factual and evaluative
beliefs, THUNDER adopts a noncognitive metaethics. Once ag ethical judgment is made
by THUN DER, it is not concerned with establishing the truth of the statement, but rather
how the judgment can be used in story understanding.

Once the distinction betweer factual and evaluative belief has been made, the problem
becomes how evaluatjve beliefs are justified. Historically, the first noncognitive metaethical
theories dealt with what people are saying when they make ethical statements, and focused
on linguistic analysis of sentences expressing ethical value. Ayer’s emotivism [1935) holds that
ethical statements only express the speaker’s emotions. Ayer claims that there is no factual
difference between the sentences “You stole that money” and “You acted wrongly when
you stole that money.” The second sentence doesn't provide any new factual information,
and only describes the feelings of the speaker. A consequence of this point of view is that
there can be no meaningful moral argument, as ethical statements only have the speakers
emoting back and forth. To counter this problem, Stevenson [1944] claims that in addition
to expressing the speaker’s emotion, ethical statements are statements of attitude and seek

?The material in this section was complied from the following references: [Boyce and Jensen, 1978;
Warnock, 1978; Hancock, 1974; Binkley, 1961)

284

to evoke similar attitudes in the hearer. In Stevenson's view. ethical statements like “Killing
13 wrong” mean that “the speaker believes that killing is wrong: you should as well " Since
ethical statements are exhortations on the part of the speaker to convince others to share his

beliefs, then these beliefs can be supported or attacked. and thys meaningful moral debate
1s possible.

Hare [1952] extended this type of linguistic analysis of ethical statements to include not
ouly what statements mean, but also the effect of ethical statements, or what the ethical
statement does. Hare holds that moral statements have the same function in language as
itmperatives, so the role of ethical statements is to prescribe moral principles. Since moral
statements are used to guide human conduct, there must be a degree of rationality in ethics.
Hare says that ethical statements can be rationally justified if they can be universalized to
all possible cases. A consequence of this approach is that rationality and sincerity are the
evaluation metrics for ethical statements.

A contrasting approach to the justification of ethical statements focused on ethical eval-
uation as an activity, instead of looking at the staternent’s meaning. Urmson (1950} likens
ethical evaluation to “grading”: an activity done according to some standard criteria. Urm-
son makes an analogy to grading apples into “super”, “extra fancy”, “fancy”, “domestic”,
and so on, according to a set of criteria set forth by the Ministry of Agriculture. The process
of grading apples is the same as making moral evaluations because it is the activity that
counts. The presence of the qualities of an “extra fancy” apple doesn’t make that apple
inherently extra fancy, just that a grader can recognize it as such. Similarly, the presence of
the moral criteria doesn’t make an action right (that would be naturalism), until someone
evaluates it. Also, the presence of a grading label doesn’t imply that the object has proper-
ties other than the requisite criteria. If it did, the grading would be a form of intuitionism.
In Urmson’s system, moral disagreement is possible if it consists of deciding how an action
meets a set of criteria, or what should be included in the set of moral criteria.

Toulmin’s [1950] good reasons theory integrates the process of making moral judgments
with the criteria that are used in the judgment process. The good reasons approach begins
with the observation that there are good and bad reasons for ethical judgments, just as
showing the steps used to get an answer to a math question is a better reason for that
answer than saying that it was looked up in the back of the book. Toulmin finds two modes
of reasoning in moral contexts: (1) concerning the rightness of a particular act, and (2)
justifying an existing moral practice. In general, good reasons for the first type of question
(rightness of action) can be answered by appealing to an existing moral practice. This is a
deontological position particular to an existing moral community. Beardsmore {Beardsmore,
1969] points out that the relationship of knowledge to moral belief is, in part, determined
by the community to which one belongs. For example, the judgment that killing oneself
is wrong makes sense to a Catholic, but not to a Samurai. In Toulmin’s theory, when an
existing social practice needs to be justified, the good reasons for that social practice are
that it “reduces conflicts of interest and will be conducive to the ideal of a harmonious and
fulfilling satisfaction of interests” [Hancock, 1974, p. 150]. This is a teleological position

285

since it judges social practices by reference to the “interests” of the community. [t sheyld
be noted that while both deductive {rules to acts) and inductive (interests and conflict 1o

rules) reasoning play a part in Toulmin's model, the good reasons do not constitute proof
for ethjcal statements, only support.

THUNDER uses are implemented by judgment warrants. The data used by the warrants are
THUNDER's beliefs about the normative value of ends (values), plans, and the obligations
resulting from relationships. While THUNDER's warrants and ideology are hand-coded,
in the larger scheme of things, the source of the beliefs in memory are culturally defined

evaluations, it is based on noncoguitive metaethics. One of the goals of a metaethical theory
is to show how moral statements are evaluated and used in practice. The THUNDER
model is a special case of this concern: it shows how ethical evaluation is useful jn story
understanding.

11.6 Summary

In this chapter, THUNDER was compared to two types of Al research: (1) systems similar
in scope to THUNDER, and (2) alternative underlying approaches. Three systems were dis-
cussed: (1) Carbonell’s POLITICS, (2) Alvarado’s OpEd, and (3) Ram’s AQUA. All three
of these systems modeled the beliefs of readers for natural language understanding, but with
different motivations. POLITICS modeled subjective understanding by implementing differ-
ent value systems, and showed how the values of the understander (and his understanding
of other’s values) influenced hjs interpretation of events. OpEd showed the utility of using
beliefs as a part of knowledge structures for pattern-based understanding by constructing
argument units out of patterns of belief and support to represent abstract argument knowl-
edge. AQUA modeled an open-ended approach to narratjve understanding which tracked
and explained anomalous situations, and then used open questions in future understanding.
THUNDER differs from these programs by focusing on modeling the process of moral rea-
soning using a pattern based approach, and then using the patterns of moral knowledge for

story understanding.

THUNDER uses a symbolic, frame and rule based approach to model integrated processes
of parsing, moral reasoning, inference, and theme construction. The alternative underlying
approaches to constructing a model of moral reasoning were: (1) deontic logic, (2) utility
theory, and (3) connectionist modeling. Both deontic logic and utility theory were too
constrained in scope to be useful in THUNDER's many tasks. Connectionist modeling
techniques are too poorly understood and too time consuming to be useful in constructing
a complex architecture like THUNDER's.

In addition, philosophic and psychologic approaches to the study of moral reasoning have

286

been discussed. Each discipline has its own motivation and set of questions addressed. The
philosopher’s work is primarily prescriptive: the question is “why should people believe or do
something?” The psychologist’s task is more descriptive, asking “what do people believe or
how do they act?” [Boyce and Jensen. 1978, p. 86]. The purpose of examining philosophical

and psychological points of view is to provide an epistemological context and basis for the
computer simulation of moral reasoning.

Psychological research on moral development has shown that morality is a function of
cognitive development and social interactjon. Cognitive-developmental theory identifies the
individual’s social perspective and his conception of justice as the déﬁning characteristics
of moral development. Since the THUNDER model isn't a model of ethical analysis, it
doesn’t explicate the social perspective or justice structure, but uses the concepts implicitly
in its recognition of right and wrong. As such, the model accurately identifies problems
in the moral domain, and the types of situations where ethijcal Teasoning is appropriate,
but doesn’t attempt to resolve the problem. Finally, since moral conflict motivates moral
development, belief conflict recognition has a pragmatic basis for the human and computer
understander.

The THUNDER model of ethical evaluation is based on a set of human values which
define what is good and should be desired. Acts or intentions that support or violate these
values are judged to be right or wrong, respectively. Since determinations of moral obligation
use both value consequences of individual actions, and reasoning about intentionality and
other available plans, the model empioys a mixed act-deontological philosophic perspective.
When judgments of moral obligation are made, they are saved and used to recognize belief
conflict. This is in contrast to systems that reason about the truth of the evaluations. By
using the evaluations in story understanding, and not worrying about their truth, the model
adopts a noncognitive metaethical stance.

287

CHAPTER 12

Future Work and Conclusions

This dissertation has presented theorjes of moral reasoning and story understanding. The
theories were implemented in THUNDER to read two short stories and a number of sentences,
THUNDER illustrates how the system components, knowledge sources, and processing tasks
are integrated. A summary of the conclusions of thig research are that to create a computer
program that models a reader’s subjective, evaluative beliefs during story understanding,
the program has to implement:

® A theory of evaluative judgment.
¢ The content and organization of the reader’s ideology.

* Reasoning and inferences about character beliefs and ideology.
The theories that were implemented in THUNDER have been show to be useful by:

¢ Recognizing belief conflicts between the reader and story characters.
¢ Modeling thematic understanding of stories.

e Providing a process model of moral reasoning.

THUNDER's model] is based on representing the evaluative beliefs of the reader, identifying
the reasons for those beliefs, constructing abstract patterns of evaluative belief, and then
using the patterns in story understanding,

This chapter is organized as follows: first, the future work necessary to extend THUNDER
into a robust story understanding and ethical reasoning system is presented. A passage from
Huckleberry Finn is analyzed to show the types of knowledge and processing that would
be required for THUNDER to read, understand, and answer questions about it. Next,
directions for future research and applications based on THUNDER are presented. Third,
the contributions and significance of this dissertation are discussed. Finally, conclusions
about moral reasoning, story understanding, and their interactions are presented.

288

12.1 Robust Story Understanding

In order for THUNDER to be a robust model of ethical reasoning and story understanding,
many major outstanding problems in artificial intelligence would have to be solved. To
illustrate the problems, consider the issues involved in understanding the following passage
from Huckleberry Finn [Clemens, 1885, p. 714]:

“That’s so, my boy—good-bye, good-bye. If you see any runaway niggers,
you get help and nab them, and you can make some money by it.”

“Good-bye, sir,” says I, “I won't let no runaway niggers get by me if [can
help it.”

They went off, and I got aboard the raft, feeling bad and low, because I
knowed very well I had done wrong, and I see it warn’t no use for me to try to
learn to do right; a body that don'’t get started right when he’s little, ain’t got no
show—when the pinch comes there ain't nothing to back him up and keep him
to his work, and so he gets beat. Then I thought a minute, and says to myself,
hold on,—s’pose you'd a done right and give Jim up; would you felt better than
what you do now? No, says I, I'd feel bad—1I'd feel just the same way I do now.
Well, then, says I, what’s the use you learning to do right, when it’s troublesome
to do right and ain’t no trouble to do wrong, and the wages is just the same?

I was struck. I couldn’t answer that. So I reckoned I wouldn’t bother no more
about it, but after this always do whichever come handiest at the time.

Adventures of Huckleberry Finn is set in the pre-Civil War southern United States, and is
the story of Huckleberry and the runaway slave Jim’s flight to freedom. The story is written
in the first-person as a narration of their adventures by Huck. This part of the story occurs
as Huck and Jim are floating down the Mississippi river on a raft. The first speaker is one
of two men tracking down runaway slaves, whom Huck has tricked away from coming onto
the raft by pretending that his father is aboard with smallpox.

The passage is concerned with Huck’s internal belief conflict over whether he should have
turned Jim in or not. On omne side of the conflict he sees Jim as a runaway slave, and by
not turning him in Huck is breaking the laws of society. On the other side, he sees Jim
as a person and a friend who would be crushed if he were returned to slavery. The reader
has to understand Huck’s conflict in light of the culture that he lived in, even though the
reader ‘knows’ that Huck did the right thing. By disobeying the laws of society to protect
Jim, Huck has made a tough moral decision. In reflecting on his decision, Huck contrasts
his desire be a good, moral member of saciety to his selfish desire not to “feel bad.” When
Huck decides to “do whichever come handiest at the time,” the reader has to realize that the
writer in engaging in a dramatic irony: there is a contradiction between what the character
says and what the reader knows to be true. Huck did not take the easy way out and turn
Jim in. The point of the passage is that moral choices are hard choices, and the implicit
meaning is that Huck understands this even though he does not say it.

289

To implement in THUNDER the ability to read this Passage and recognize the theme
that moral choices are hard choices, there are at least ten issyes that would have to be
addressed:

L. Lexical entries. The lexica] entries for “raft,” “aboard,” and “reckoned” among many
others would have to be written for THUNDER's lexicon,

2. Phrasal structures. A phrasal analysis of the Passage is difficult because of the complex
syntactic structure. The structure of the first sentence of the last paragraph contains
twelve clauses, only two of which describes actions (“They went off, and I got aboard

the raft...”). The conceptual content of the rest of the clauses describe emotional
states, moral states of belief, the reasoning behind the beliefs, and the consequences of
belief.

3. Knowledge structures. The underlying semantic content of each of the actions in the
text has to be represented and accessible to the system. For example, to understand
“give Jim up” the program would have to have knowledge about slavery, escaping
slaves, protecting runaway slaves, secrecy and hiding, and how these concepts relate
to the action of “giving up” Jim. Until robust learning theories are developed, all of
this knowledge has to be hand-coded for the program.

hunters,

3. Dialect. The first person narration by Huck is written in the speaking style of a
Young, uneducated southern youth. The text is is filled with strange contractions
(“warn’t” and “s’pose”) and ungrammatical verb tense structures (“I knowed very
well”, and “I reckoned I wouldn's bother no more about it”). The problems here are

language structure, and (3) how the speaking voice of the character can be represented
80 that the reader can recoguize the influences of class and culture on the character.

6. Colloquialisms. The phrases “when the pinch comes” and “ain’t got no show” have
metaphoric meanings based on adages that are local to Huck’s cultural group. However,
even without access to the particular adages, readers can construct the meaning of
these phrases. The difficult problem is how the analogical meaning is constructed; for
example, how we know that “the pinch” is a difficult situation, instead of a physical
force, or that “no show” means no character, rather than no social standing.

290

|

. Internal Dialog. The paragraph is almost completely Huck's internal dialog. He asks
himself questions, answers them. and comes to Opposite conclusions. A theorv of
understanding internal dialog in text requires the integration of two sorts of know'le;ige:
(1) about external dialog, how the conversational sequences of question and answers
are understood, and (2) about the stream of comscious thought, how thoughts are
verbalized and follow from one another [Mueller, 1989].

8. Internal conflict. Huck’s internal conflict is between seeing himself as a right-thinking,
law abiding, member of society who would turn Jim in, and the person who has selfish
motives for protecting his friend. One problem is that Huck’s society is much different
than the reader’s; in Huck’s society, slavery is legal, and Jim is viewed as property and
not as a person. In order to represent the conflict, THUNDER would have to construct
Huck’s ideology based on the time that he lived, to recognize the consequences that
Huck believes that his actions have, and the plans that Huck has available to him.

9. Thematic structure. With a little background on the characters, the episode stands by
itself, and does have a conflict and resolution structure. The resolution differs from the
resolutions in the stories THUNDER reads. In the passage, Huck resolves his conflict
by deciding to “do whichever come handiest at the time.” If the system reading the
passage recognized Huck’s statement as a resolution, it would construct the theme as
“you should do what is easiest” and miss the irony and deeper meaning,

10. The point of the episode. To recognize the dramatic irony in the passage, THUNDER
would have to recognize the contradiction between how Huck evaluates his action
and how the reader evaluates his action. In the stories that THUNDER reads, the
belief conflicts have been between THUNDER and the story characters over a plan
that the character executes. In this case, THUNDER and Huck both have the same
evaluation of Huck’s plan to protect Jim, but Huck comes to the opposite conclusion
when he reasons through his internal belief conflict. The contradiction between Huck'’s
conclusion (that he should “do whichever come handiest”) and his action (protecting
Jim) form the basis for the irony and the theme of the episode.

The basic framework of belief conflict and resolution can be used as a starting point for
processing the text, but there is a vast chasm between the toy stories that AI/NLP systems
handle and the comprehension of literary stories. Many issues need to be addressed before
THUNDER could parse, represent, and answer questions about arbitrary texts. However,
analysis of the passage shows that the issues that THUNDER addresses are fundamental
in understanding thematic text. Understanding the passage requires representing belief
and ideology, knowledge about the structure of evaluative belief reasoning, and recognizing
conflicts in moral judgments.

291

12.2 Future Directions

There are three types of future work based op THUNDER: (1) improving THUNDER
robustness jp reasoning apd interaction, (2) extending THUNDER’s model of ethica] eva.
uation to ethijcal decision making, and (3) applying the model to pew tasks and domains.
Improving THUNDER’s robustness involves addressing the limitations that were discussed

A necessary first step to increasing THUN DER’s Performance is to have the pProgram learn
from natura] language text. Two types of learning are required: (1) learning domain knowl-
edge to extend THUNDER's library of plan schema, TAUs, and belief conflicts, and (2)
learning evaluative knowledge about ethically and Pragmatically good planning, Learning
domain knowledge could be accomplished by integrating THUNDER with an explanation.
based learning program, such as OCCAM (Pazzani, 1988, 1990] or GENESIS [Mooney, 1990a

development and uge the standard issues scoring test [Colby and Kohiberg, 1987a; 1987b) to
monitor the performance of the program. (Kohlberg’s stages of mora] reasoning are discusseqd
in section 11.4.2). For example, [Colby and Kohlberg, 1987b] contains Heinz’s Dilemma and
two extensions: (1) bow should a neighbor react if they saw Heinz stealing the drug, and (2)
how should a judge sentence Heinz. The story is followed by a series of questions designed
to elicit the reader’s moral reasoning about the jssues of life and property, law, morality and
conscience, and punishment. The scoring manyaj has close to 40 types of answers for each
issue, with the stage of moral reasoning, critical indicators, distinctions between the stages,
and examples from the longitudina] study. The study provides a basijs of comparison for

An extended THUNDER could be used as an educational tool to aid student’s under-

292

12.2.2 Modeling the Software Professional

A recent issue of Communications of the ACM presented a self-assessment procedure for
computer scientists on computing ethics [Weiss, 1990] (based on [Parker et al., 1988: 1990]).
A series of situations were presented, followed by questions about the ethics of the actions,

and a panel response discussing the issues involved. For example, here is one of the scenarios
([Wetss, 1990, p. 115]):

Computer Scientist: Accepting a grant on a possibly unachievable program,

A professor of computer science applied for and received a grant from the
Strategic Defense Initiative Program to engage in a software assurance research
project of a theoretical nature. The goal was to determine the methods by which
error-free software might be produced on a large-scale basis. The professor does
not believe that SDI is a viable Department of Defense program. She does believe,
however, that her work could add measurably to the body of scientific knowledge
concerning the development of error-free software. Thus she accepted the grant
money.

A panel of computing professionals were asked to identify ethical issues in the scenario,
and the general principles that apply. From the above scenario, the regults of the panel’s
evaluation of the professor’s acceptance of the grant, the reasons pro and con, and the general
principles were (from [Weiss, 1990, p. 120)):

Total: 23, Unethical: 14, Not unethical: 7, No ethics issue: 2.

Opinions: Most of the group considered it unethical for the professor to accept
grant money for a segment (development of error-free software methodology) of
a project (SDI) that she believed. would fail. Their reasons for considering that
acceptance unethical are that:

¢ Acceptance indicates at least an implicit endorsement of a project she be-
lieves will not work by a professional who is likely to influence others.

® This acceptance sends what the professor believes to be an erronecus mes-
sage (SDI is viable) to the general public.

¢ She is being dishonest with the funding agency, which is unaware of her
opinion.

293

fund her research.
The minority concluded that her action was not unethica] becayse:

¢ She questioned only the viability, not the morality of SDI.

¢ She did believe that her project was both viable and valuable for scientific
knowledge apart from its use in the SDI program.

® She does not know whether SDI will work or not. (Neither does anyone
else.)

¢ She believes that she is acting ethically.

over whom they have no control. They are obligated, however, to make their
doubts and the limitations of their work known.

of the scenarios to provide protocol data and a basis for comparison. However, on closer
examination it appears that the boundedness of the task domain is illusory. Among the
problems are that: (1) most of the scenarios are general moral dilemmas applied to the
domain of software engineering, (2) the number and complexity of concepts rival that of
Tuilight Zone stories (from research funding to computer break-ins), and (3) even with
a professional code of conduct, the evaluations and reasons are mixed and contradictory.

involved.

12.2.3 Argumentation and Legal Reasoning

The relevance of belief conflicts to argumentation is that an arguer has to have access to
reasons both for and against the point that is being argued. In THUNDER, the recognition
of a BCP is used to mode] thematic story understanding; the BCP is used to recognize

294

conflict resolutions and the theme of the story.

However, many of the same processes are
used in arguing and story understanding:

* The arguer has to understand the point that the argument participants are debating
in terms of intentionality and consequences. In story understanding, THUNDER has

to infer plans and have knowledge about the value consequence of action in order to
make moral judgments.

¢ The arguer has to evaluate the object of the argument by generating reasons for his
belief about the object. THUNDER creates reasons for the rightness and Wrongrness
of story character’s plans to determine if the plan should or should not be used.

® The arguer has to infer the beliefs and ideology of the other participant that leads the

participant to come to an opposite evaluation. THUNDER makes inferences about
story characters’ beliefs from their actions)

THUNDER's theory of evaluative Judgment and inference for moral reasoning can be ap-
plied to argumentation (1) to identify the sources and reasoning used for both sides of the
argument, (2) to organize the beliefs that are used in argumentation, and (3) to specify the
structure of conflicting beliefs.

THUNDER'’s model of moral reasoning is relevant to theories of argumentation because
of the similarity of the two tasks. Models of moral reasoning and argumentation both rely
on (1) the representation, generation, organization, and access of evaluative beliefs, (2)
the process of generation of reasons for evaluative belief, and (3) the ability to understand
situations from multiple points of view.

Moral reasoning is the basis of legal systems, but the actual process of legal reasoning
is much more than judgments of right and wrong. In a precedent-based legal system, legal
reasoners have to identify key legal points, be able to find previous cases that support their
interpretation, and argue that the situations are similar. As discussed in section 4.5, evalua-
tion BCPs provide THUNDER with an implicit theory of justice. THUNDER can potentially
reason about: (1) laws, by how the proscribed action and punishment can be evaluated, and
(2) sentencing, by how the punishment achieves the motivations of the punishment. THUN-
DER implements commonsense legal reasoning: it recognizes right and wrong actions, and
right and wrong evaluations. Recognition of a conflict in evaluative belief is the starting point
for legal reasoning because it identifies the content of the dispute and reasons for each side of
the dispute. The research issues involved in constructing a legal reasoner from THUNDER
are (1) how commonsense morality interacts with an institutionalized, external legal system,
(2) how to represent interparty belief conflicts, such as contract disputes or landlord/tenant
disagreements, and (3) how the actions that can be taken to resolve interparty conflicts are
reasoned about.

295

12.2.4 Ethiecal Robots

In I, Robot, Isaac Asimov [1950) presented “the three fundamenta] Jaws of robotics”:

1. A robot may not injure a human being,

or through inaction allow a human being ¢
come to harm,

2. A robot must obey the orders given to it by humag
would conflict with the First law.

wanted to?

4. Legal standards? Is it all right for a robot not to obey order from a human if it knows
that no one will catch it?

can be injured.
3. In order to protect itself, the robot must be able to recognize threats to its existence.

4. In order not to violate the laws, the robot must be able to recognize conflicts between
the laws,

296

If robots are going to be adaptive, self-contained, and work in an environment where their
actions have consequences for human beings, they have to have an 1deology and the ability
to tell right from wrong. The problem then becomes how the robot acquires an ideology and
an evaluative decision-making capability.

There are three possibilities regarding a robot’s evaluative capabilities and ideologies:
{1} they are hard-coded into the robot, {2) the robot learns from its own mistakes, and
(3} the robot learns from its mistakes and the mistakes of others. A robot that spends its
spare time reading stories and recognizing ethical themes is going to be better equipped to
handle ethical dilemmas during crisis situations. The drawback is that an industrial robot
might decide that it can better serve humans by joining the Peace Corps. THUNDER is the
starting point for a system that acquires moral knowledge. THUNDER identifies the issues
that are involved in evaluative reasoning, and the issues that the designers of ethical robots
will face.

12.3 Contributions and Significance
THUNDER is computational model of evaluative understanding, which provides:

¢ A process model of how judgments are made about good and evil, and right and wrong.

Identification of the types of knowledge are used to make evaluations.

Identification of what is universal about evaluative processes, and what is idiosyncratic
to the individual.

A process model of how evaluative judgments are used, and are useful, in story under-
standing.

By identifying (1) the types of knowledge and organization that are needed to understand
moral concepts, and (2) the relationships between the components of story understanding
and moral reasoning, THUNDER has significance for:

¢ Cognitive modelers, from the structures, rules and processes that are implemented to
support moral reasoning.

o Cognitive scientists, by showing how evaluative judgment can be used in story under-
standing.

e Ethical philosophers, by illustrating the cognitive constraints on moral judgment and
reasoning.

o Computer scientists, from the implementation of evaluative reasoning in a complex
domain.

297

The approach to moral reasoning taken in THUNDER is to identify the structures ap
Processes that are used in mundane, day to day ethical decision making and reasoning, and
show how those structures and processes are (1) used in story understanding, and (2) used
to structure episodic memory by ethical content. People should be able to access ethically

THUNDER implements a memory-based model of moral evaluatiog Instead of reasoning
from first principles about the morality of action, THUNDER coustructs an episodic rep-
resentation of the input stories that include the -2aders evaluative beliefs and the inferred
beliefs of story characters. Memory is used to - -Pport moral reasoning by providing (1)
the causal and intentional beliefs of the story characters about their actions, (2) the rela-
tive importance of goals and plans, and (3) alternative Plans that were not used by storv
characters.

Memory of moral Judgments accomplished by representing stories in terms of belief con-
flict patterns (BCPs). A belief conflict is recognized in stories when THUNDER believes
that a character should not do something. Since the character is executing the plan, the

by contrasting ethical evaluations, (2) organize memory for planning and protection advice
in interpersonal situations, (3) direct attention in interpreting stories, and (4) identify the
general advice that the story contains for the reader.

12.4 Conclusions

The ability to make evaluative judgments is a fundamental cognitive function. Making
decisions that actions are right or wrong involves (1) identifying what is evaluated, (2) the
type and organization of evaluative knowledge existing in memory, and (3) the aspects of
action that are involved in the evaluation. The conclusions about the process of evaluative
judgment that can be drawn from THUNDER are (1) the types of knowledge and knowledge
organization that are required for evaluatjve Judgment of actions, (2) how moral knowledge
can be used in story understanding to make inferences and recognize what is to be learned
from the stories, and (3) how patterns of evaluative judgment can be used to organize memory
by evaluative content. Note that the processing that THUNDER is capable of ¢indicates the
types of knowledge and reasoning that are useful in modeling the process of moral reasoning.
It is not claimed that the structures and processes that THUNDER uses identify necessary
or sufficient conditions for moral reasoning, or that the symbolic structures THUNDER uses
correspond directly to cognitive functions. THUNDER provides a descriptive approximation

2OR

of evaluative judgment, and is validated by its performance.

12.4.1 Plan Evaluation and Moral Reasoning

The process of plan evaluation is the construction of beliefs about the rightness or wrongness
of plans, based on a general set of pragmatic and ethical Judgment warrants. Judgment
warrants are rules that are applied to factual beliefs about plaas to yield evaluative beliefs.
Judgment warrants represent the structural aspect of evaluative reasoning, and are used
(1) deductively, to create evaluative beliefs from factual beliefs, (2) abductively, to infer

planners’ beliefs from their actions, and (3) representationally, to construct abstract patterns
of evaluative belief.

Judgment warrants are organized in two ways: (1) by who the consequences of the plan
are for, and (2) by the type of factual data that the rules are applied to. The distinction
between pragmatic and ethical warrants is made to separate reasoning about ‘stupidness’
from ‘evilness’ in plan evaluation. Pragmatic warrants judge plans based on the consequences
for the planner, while ethical judgment warrants are based on the consequences for others.
The three types of factual data that judgment warrants are applied to are (1) intentionality
and causality, (2) goal importance, and (3) plan availability. Reasoning about intentionality
and causality is done by constructing an episodic representation of the character’s plan out of
plan schema. The episodic representation contains what the character intends to do, how he
is going about it, and the value consequences for others. Goal importance is represented in
THUNDER's ideology, which organizes memory by what THUNDER considers to be ‘good’
goals and plans. Plan availability reasoning is accomplished by retrieving alternative plans
from long-term intentional mermory.

THUNDER's ideology is based on three knowledge structures which organize THUN-
DER’s memory of evaluative beliefs: (1) the value system: a set of evaluative beliefs about
abstract, high-level goals, ordered by relative importance, (2) a set of strategy beliefs for each
value, representing ways that the value should be achieved, and (3) interpersonal relation-
ships, which contain beliefs about the obligations that one person should have for another.
The knowledge structures provide access to the evaluative beliefs that are used in moral
reasoning.

12.4.2 Story Understanding

THUNDER models story understanding as the construction of story themes from the text
by recognizing conflicts and resolutions. The theme of the story is generated by reasoning
about how the resolution shows the beliefs in conflict to be correct or incorrect, and produces
a statement of generalized advice about reasons for evaluation.

THUNDER uses the explanation-based model of story understanding where the repre-
sentation of the story is ofganized in hierarchical levels, and concepts in the higher lev:rels
explain concepts in the lower levels. The levels that THUNDER used are: (1) objective,

299

which contains the actions and events that the text describes, (2) intentional. which con.
tains the story character’s plans, (3) belief, which contains the evaluative beljefs of the reader
and story characters and (4) thematic, which contains the story themes. The theme of the

story is the highest level explanation because it provides a reason for why the story was
written,

A story theme is generalized advice about planning. THUNDER constructs themes from
(1) the different types of reasons for conflicting evaluative beliefs, and (2) the different types
of advice that can be derived from the conflict and resolution. Ethical reasons for belief
conflicts are used to generate ethical themes. For ethical reasons, the resolution shows the
plan content of the belief conflict to be right or wrong because of the consequences for
others. Pragmatic reasons are used to construct pragmatic themes about how the plan's
consequences for the planner. THUNDER generates two types of advice: (1) reason advice
about the reasons for evaluation that the story shows to be correct, and (2) avoidance advice
about how failures that occur as the result of erroneous evaluations could be avoided.

12.4.3 Belief Conflict Patterns

Belief conflict patterns represent abstract patterns of evaluative belief where two believers
have opposite evaluative beliefs about the same belief content. There are three types of
belief conflicts: (1) over plan execution, where one believer believes that a plan should not
be executed, and the other believes that it should, (2) over evaluations, where the evaluation
motivates a plan in punishment and reward situations, and (3) over expectations, where the
conflict is between between the expectation and realization.

Plan execution BCPs center around the concept of ‘selfishness’: the planner is trying to
achieve a value for himself while causing value failures that he believes to be less important,
while the evaluator believes that the value failure is more important. Different patterns of
selfishness are constructed by considering the evaluator’s reasons that the plan should not
be used, characteristics of selfish plans, and actor’s reasons for executing selfish plans.

Evaluation BCPs represent conflicts in reward and punishment situations — situations
where an actor is motivated to cause value failures or successes for others. Reward and
punishment are central ethical concepts because they are situations where it is justifiable
for a person to help or harm another. Evaluations motivate reward and punishment, and
beliefs can conflict between evaluators and actors about the appropriateness of the reward
or punishment. There are three areas where beliefs can conflict in punishment situations:
(1) over the evaluation of the punishable act, (2) over the authority to punish, and (3) over
the effectiveness of the punishment. The areas where beliefs can conflict in reward situations
are: (1) over the evaluation of the act being rewarded, (2) over the motivation to reward,
and (3) over the suitability of the reward.

Expectation BCPs represent conflicts between the evaluator’s ethical evaluation of people
and the actions that they perform. Two types of expectations are used in expectation

300

BCPs: (1) intentional expectations about the values, plans, and plan strategies of actors,
and (2) evaluative expectations about what an actor should do based op the evaluator's
ideology. Intentional expectations represented by character assessments that contain the
reasons that a person is expected to do good or bad actions. Character assessments are
evaluative beliefs about people which are supported by factual beliefs about expectations
of the plan characteristics of the person. Evaluative expectations are expectations about
a person’s obligations: expectations about the beliefs of an actor about the plans that he
should execute for others. Obligations arise from plans where the evaluator believes that
one party should do something for another, and from interpersonal relationships where the
parties should do things for each other. Evaluative expectation belief conflicts occur when

actors execute actions that show that they do not hold the beliefs that their obligations
predict that they should.

Belief conflict patterns are in the tradition of content schema theories. Abelson and
Black [1986] identify three presuppositions of this approach: (1) the importance of top-down
processing; how the schema is used in the understanding of subsequent text, (2) the content
specificity of schema; a commitment to identifying the content and organization of particular
instances of the knowledge structures, and (3) the functional flexibility of schemata; that
the knowledge structure does something, and can be used for multiple purposes. BCPs have
been shown to provide top-down organization for stories by representing a conflict that the
story resolves. The content specificity of BCPs has been shown by identifying three types of
belief conflict, and the underlying knowledge structures, instances of BCPs, and examples of
each type. The functional flexibility of BCPs has been illustrated by showing how BCPs can
be used to organize memory by evaluative content to store Planning and protection advice;
that recognition of potential BCPs during planning allows an actor to evaluate the ethical
consequences of plans, and recognition of BCPs in other’s plans allows a person to detect
unethical plans and protect himself from the negative consequences,

301

BIBLIOGRAPHY

Abelson, R. P, (1973). The structure of beljef systems. In Schank, R. C. and Colby, K. M.,

editors, Computer Models of Thought and Language. W H. Freeman, Sap Francisco,
CA.

3:355-366.

Abelson, R. P. and Black, J. B. (1986). Introduction. In Galambos, J. A., Abelson, R. P., énd

Black, J. B., editors, Knowledge Structures, Pages 1-18. Lawrence Erlbaum, Hillsdale,
NJ.

Alvarado, §. J. (1989). Undcrstauding Editorial Tezt: 4 Computer Mode] of Argument
Comprehension. PhD thesis, UCLA Artificial Intelligence Laboratory, University of
California, Los Angeles. Techpical report UCLA-AL-89-07.

Alvarado, S. J. (1990). Understanding Editorial Tezt: 4 Computer Mode! of Argument
Comprehension. Kluwer Academic, Norwell, MA.

Alvarado, 8. J .y Dyer, M., G., and Flowers, M. (1990). Argument Iepresentation for editioria)
text. Knowledge-Based Systems, 3(2):87-107.

Arbib, M. A. (1987). Levels of modeling of mecﬁhanisms of visually guided behavior. Behay-
ioral and Brasin Sciences, 10(3):407-436.

Arens, Y. (1986). Cluster: An Approach to Conteztyal Language Undcrstands'ng. PhD
thesis, Computer Science Division, University of California, Berkeley. Report UCB /CSD
86/293.

Asimov, [, (1930). I, Robot. Doubleday, Garden City, NY.
Ayer, A. J. (1935). Language, truth and logic. Dover Publications, New York, second edition,

Bartlett, F. C. (1932). Remembering: A Study in Ezperimental and Social Psychology.
Cambridge University Press, Cambridge. -

Beardsmore, R, W, (1969). Moral Reasoning. Routledge and Kegan Paul, London.

Becker, J. D. (1975). The phrasal lexicon. In Proceedings of the Interdisciplinary Workshop
on Theoretical Issues in Natural Lanugage Processing (TINLAP-1), Cambridge, MA.

302

Bendel, J., editor (1985). National Lampoon - All-New Trye Facts 1985, page 63. NL
Communications, Inc., New York.

Binkley, L. J. (1961). Contemporary Moral Theories. Philosophical Library, New York.

Borbrow, D. G. and Norman, D. A. (1975). Some principles of memory schemata. In

Borbrow, D. G. and Collins, A. editors, Representation and Understanding: Studies in
Cognitive Science. Academic Press, New York.

Bower, G. H., Black. J. B.. and Turner, T. J. (1979). Scripts in memory for text. Cognitive
Psychology, 11:177-220.

Boyce, W. D. and Jensen, L. C. (1978). Moral Reasoning: A Psychological-Philosophical
Integration. University of Nebraska Press, Lincoln, NB.

Branting, L. K. (1989). Integrating generalizations with exemplar-based reasoning. In Pro-
ceedings of the Eleventh Annual Conference of the Cognitive Science Society (CogSci-89),
Ann Arbor, ML

Bresnan, J. and Kaplan, R. M. (1982). Lexical-functional grammar: A formal system for
grammatical representation. In Bresnan, J ., editor, The Mental Representation of Gram-
matical Relations. Cambridge University Press, Cambridge.

Buschke, H. and Schaier, A. H. (1979). Memory units, ideas, and pPropositions in semantic
remembering. Journal of Verbal Learning and Verbal Behavior, 18:49-56.

Carbonell, Jr., J. G. (1978). Politics: Automated ideological reasoning. Cognitive Science,
2(1):29-51.

Carbonell, Jr., J. G. (1979). Subjective Understanding: Computer Models of Belief Sys-
tems. PhD thesis, Department of Computer Science, Yale University, New Haven CT.
Technical Report 150.

Carbonell, Jr., J. G. (1980). Towards a process model of buman personality traits. Artificial
Intelligence, 15:49-74. :

Charniak, E. (1983). Passing markers: A theory of contextutal influences in language com-
prehension. Cognitive Science, 7(3).

Charniak, E., Riesbeck, C. K., and McDermott, D. V. (1980). Artificial Inteiligence Pro-
gramming. Lawrence Erlbaum, Hillsdale, NJ.

Churchland, P. M. (1984). Matter and Consciousness: A Contemporary Introduction to the
Philosophy of Mind. MIT Press, Cambridge, MA.

Churchland, P. S. (1986). Neurophilosophy. MIT Press, Cambridge, MA.

303

Clark, A. (1987). From folk psychology to najve psychology. Cognitive Science, 11{2):139-
154.

Clemens, S. L. (1885). Adventures of Huckleberry Finn. In Marg Twain: Mississippi Writ.
ings. Library of America, New York. Publication date 1982.

Cohen. P. R. (1985). Heuristic Reasoning abouys Uncertainty: An Artificial Intelligence

Approach. volume 2 of Research Notes on Artificial Intelligence. Pitman Advagced
Publishing, London.

Colby, A. and Kohlberg, L. (1987a). The Measurement of Moral Judgment, volume 1: Theo-
retical Foundations and Research Validation. Cambridge University Press, Cambridge.

Colby, A. and Kohlberg, L. (1987b). The Measurement of Moral Judgment, volyme o
Standard Issues Scoring Manual. Cambridge University Press, Cambridge.

Davis, R. and King, J. (1976). An overview of production systems. In Elcock, E. W. agq
Michie, D., editors, Machine Intelligence, volume 8, pages 300-332. Wiley, New York.

CT. Technical report 158.
Dennett, D. C. (1987). The Intentional Stance, MIT Press, Cambridge, MA.

Dolan, C. (1989). Tensor Manipulation Networks: Connections and Symbolic Approaches
to Comprehension, Learning, and Planning. PhD thesis, UCLA Artificial Intelligence
Laboratory, University of California, Los Angeles. Technical report UCLA-AI.89-06.

Doyle, J. (1979). A truth maintenance system, Artificial Intelligence, 12(3):231-272.

Dyer, M. G. (1983). In-Depth Understanding: 4 Computer Model of Integrated Processing
for Narrative Comprehension. MIT Press, Cambridge, MA.

Dyer, M. G. (1990). Distributed symbol formation and Processing in connectionist networks.
Journal of Ezperimental and Theoretic Artificial Intelligence, 2:215-239.

Dyer, M. G. (1991). Symbolic Deuroengineering for natural language Processing: A multilevel
research approach. In Barden, J. and Pollack, J., editors, High-level Connectionist
Models. Ablex Publishers, Norwood, NJ.

304

Dyer, M. G., Flowers, M., and Wang, Y. A. (in press). Distributed symbol discovery through
symbol recirculation: Toward natural language processing in distributed connectionist
networks. In Reilly, R. and Sharkey, N., editors, Connectionist Approaches to Natural
Language Understanding. Lawrence Erlbaum, Hillsdale, NJ.

Dyer, M. G. and Lehnert, W. (1982). Questions answering for narrative memory. In Ny,

J. F. L. and Kintsch. W., editors, Language and Comprehension, pages 339-358. North
Holland. Amsterdam.

Fahlman. S. (1979). NETL: A System for Representing and Using Real-world Knowledge.
MIT Press, Cambridge, MA.

Fillmore, C. (1968). The case for case. In Bach, E. and Harns, R. T, editors, Universals in
Linguistic Theory, pages 1-90. Holt, Reinhart and Winston, Chicago, IL.

Flowers, M., McGuire, R., and Birnbaum, L. (1982). Adversary arguments and the logic of
personal attacks. In Lehnert, W. G. and Ringle, M. H., editors, Strategies for Natural
Language Processing, pages 275-294. Lawrence Erlbaum, Hillsdale, NJ.

Fodor, J. A. and Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: A
critical analysis. In Pinker, S. and Mehler, J., editors, Connections and Symbols. MIT
Press, Cambridge, MA.

Follesdal, D. and Hilpinen, R. (1981). Deontic logic: An introduction. In Hilpinen, R., editor,
Deontic Logic: Introducion and Systematic Readings, pages 1-35. D. Reidel, Dordrecht,
Holland, second edition.

Frankena, W. K. (1973). Ethics. Prentice-Hall, Englewood Cliffs, NJ, second edition.

Freytag, G. (1895). Technique of the Drama: An Ezposition of Dramatic Composition and
Art. S. C. Griggs, Chicago, IL, 6th edition. Elias J. MacEwan, Translator. Reprinted
by Johnson Reprint, New York, 1968.

Gasser, M. E. (1988). A Connectionist Model of Sentence Generatation in a First and Second
Language. PhD thesis, UCLA Artificial Intelligence Laboratory, University of California,
Los Angeles. Technical report UCLA-AI-88-13.

Gershman, A. V. (1979). Knowledge-based Parsing. PhD thesis, Computer Science Depart-
ment, Yale University, New Haven, CT. Research Report 156.

Glass, A. L. and Holyoak, K. J. (1986). Cognition. Random House, New York, second
edition.

Goldman, S. R., Dyer, M. G., and Flowers, M. (1987). Precedent-based legal reasoning and
knowledge acquisition in contract law: A process model. In Proceedings of the First
International Conference on Artificial Intelligence and Law, pages 210-221, Boston,
MA.

305

Haan, N. (1982). cCap research on morality be “scientific®? American Psychologist,
37(10):1096~1104.

Haan. N.. Aerts, E.. and Cooper, B. A, (1985). On Moral Grounds: The Seqrch for Practicql
Morality. New York University Press, New York.

Hancock, R. N. (1974). Twentieth Century Ethics. Columbia University Press, New York.
Hare, R. M. (1952). The Language of Morals, Oxford University Press, Oxford.

Harnad, S., editor (1987). Catagorical Perception: The Groundwork of Cognition, Cambridge
University Press, Cambridge.

Hayes, P. J. (1979). The naive physics manifesto. In Michie, D., editor, Ezpert Systems in
the Micro-electronic Age. University Press, Edinburgh.

Hayes, P. J. (1985). The second naive physics manifesto, In Hobbs, J. R. and Moore, R. C.,
editors, Formal Theories of the Commonsenge World, pages 1-26. Ablex, Norwood, NJ.

Hidi, S. and Baird, W. (1986). Interestingness - a neglected variable in discourse processing.
Cognitive Science, 10:179~194.

Hinton, G., McCelland, J. L., and Rumelhart, D, E. (1986). Distributed representations. In
Rumelbart, D. E., McClelland, J. L., and the PDP Research Group, editors, Paralle]
Distributed Processing: Ezplorations in the Microstructure of Cognition, volume 1, pages
77-109. MIT Press, Cambridge, MA.

Hovy, E. H. (1988). Generating Natural Language Under Pragmatic Constraints. Lawrence
Erlbaum, Hillsdale, NJ.

Jacobs, P. S. (1985a). A Knowledge-Based Approach to Language Production. PhD the-
sis, Computer Science Division, University of California, Berkeley. Report UCB/CSD
86/254,

Jacobs, P. S, (1985b). Phred: A generator for natural language interfaces. Technical Re-
port Report UCB/CSD 85/198, Computer Science Division, University of California,

Berkeley.

Kahnaman, D, Slovic, P., and Tversky, A., editors (1982). Availability: A heuristic for
Judging frequency and probability. Cambridge University Press, Cambridge.

Kant, I. (1785). Grounding for the metaphysics of morals. In Ethical Philosophy. Hackett,
Indianapolis, IN. Trans. James W. Ellington. Publication date 1983.

306

Kay, M. (1979). Functional grammar. In Proceedings of the Fifth Annual Meeting of the
Berkeley Linguistics Society, pages 142-158.

Kohlberg, L. (1971). From is to ought: How to commit the naturalistic fallacy and get away
with it in the study of moral development. In Mischel. T.. editor, Cognitive Development
and Epistemology, pages 151-253, Academic Press. New York.

Kohlberg, L. (1973). Continuities in childhood and adult moral development revisited. In
Baltes, P. and Shaie, K. W., editors, Life-span developmental psychology: Personality
and socialization. Academic Press, New York.

Kohlberg, L. (1976). Moral stages and moralization: The cognitive-developmental approach,
In Lickona, T., editor, Moral Development and Behavior: Theory, Research, and Social
{ssues, pages 31-53. Holt, Rinehart and Winston, New York.

Kohlberg, L. (1981). The Philosophy of Moral Development: Moral Stages and the Ideq of
Justice, volume 1 of Essays on Moral Development. Harper and Row, San Francisco,

CA.

Kohlberg, L., Levine, C., and Hewer, A. (1983). Moral stages: A current formulation and
response to critics. In Meacham, J., editor, Contributions to Human Development,
volume 10. Krager, New York.

Kolodner, J. L. (1984). Retrieval and Organizational Strategies in Conceptual Memory: A
Computer Model. Lawrence Eribaum, Hillsdale, NJ.

Lakoff, G. and Johnson, M. (1980). Metaphors We Live By. University of Chicago Press,
Chicago, IL.

Lange, T. E. and Dyer, M. G. (1989). High-i&el inferencing in a connectionist network.
Connection Science, 1(2):181-217.

Lebowitz, M. (1980). Generalization and Memory in an Integrated Understanding System.
PhD thesis, Department of Computer Science, Yale University, New Haven CT. Tech-
nical Report 186.

Lehnert, W. G. (1978). The Process of Question Answering. Lawrence Erlbaum, Hillsdale,
NJ.

Lehnert, W. G., Dyer, M. G., Johnson, P. N., Yang, C. J., and Harley, S. (1983). Boris - an
experiment in in-depth understanding of parratives. Artificial Intelligence, 20:15-62.

Lenat, D. B. and Guha, R. V. (1990). Buslding Large Knowledge Based Systems. Addison-
Wesley, Reading, MA.

Lenat, D. B., Prakash, M., and Shepherd, M. (1986). Cyc: Using common sense knowledge
to overcome brittleness and knowledge-acquistion bottlenecks. A Magazine, 6:65-85.

307

Marcus, M. P. (1980). Theory of Syntactic Recognition for Natural Languaguage. MIT Press,
Cambridge, MA.

Marr, D. (1982). Vision. W. H. Freeman, San Francisco, CA.

Halpern, J. Y., editor, Proceedings of the Conference on Theoretical Aspects of Reasoning
about Knowledge. Morgan-Ka.ufrnan, San Mateo, CA.

Meehan, J. R. (1976). The Metanovel: Writing Stories by Computer. PhD thesis, De-
partment of Computer Science, Yale University, New Haven CT, Technical report
YALEU/CSD/RR 74.

Miikkulainen, R. (1990). DISCERN: 4 Distributed Artificial Neural Network Model of Seript
Processing and Memory. PhD thesis, UCLA Artificia] Intelligence Laboratory, Unjver-
sity of California, Los Angeles. Technical report UCLA-AI-90-05.

Minsky, M. (1975). A framework for representing knowledge. In Winston, P. H., editor, The
Psychology of Computer Vision, McGraw-Hill, New York.

Mooney, R. J. (1990a). A General Ezplanation-based Learning Mechanism qnd its Application
to Narrative Understanding. Morgan Kaufman, San Mateo, CA.

Mooney, R. J. (1990b). Learning plan schemata from observation: Explanation-based learn-
ing for plan recoguition. Cognstive Science, 14:483-509.

Moore, G. E. (1903). Principia Ethica. Cambridge University Press, Cambridge.

Mueller, E. T. (1989). Daydreaming in Humans and Machines: A Computer Model of the
Stream of Thought. Ablex Publishers, Norwood, NJ.

Newell, A. (1980). Physical symbol systems. Cognitive Science, 2.
Newell, A. (1982). The knowledge level. Artificial Intelligence, 18:87-127.

Newell, A. and Simon, H. A. (1972). Human Problem Solving. Prentice-Hall, Englewood
Cliffs, NJ.

Nucci, L. and Nucci, M., (1982). Children’s social interactions in the context of moral and
conventional transgressions. Child Development, 53:403-412.

308

Nucci, L. and Turiel, E, (1978). Social interactions and the development of sociaj concepts
in preschool children. Child Development. 49:400-407.

Parker. D. B., Swope, S.. and Baker., B. N. (1988). Ethical conflicts in information and
computer science, technology, and business. Final Report SRI Project 2609, SRI Inter-

national. Menlo Park, CA. Prepared for the Directorate for Biological, Behavioral, and
Social Studies. National Science Foundation.

Parker, D. B., Swope, S., and Baker, B. N. (1990). Ethical Conflicts in Information and

Computer Science, Technology, and Business. QED Information Sciences, Wellesley,
MA.

Pazzani, M. J. (1988). Learning Causal Relationships: An Integration of Empirical and
Ezplanation-based Learning Methods. PhD thesis, UCLA Artificial Intelligence Labora-
tory, University of California, Los Angeles. Technical report UCLA-AI-88-10.

Pazzani, M. J. (1990). Creating a Memory of Causal Relationships: An Integration of Em-
pirical and Ezplanation-based Learning Methods. Lawrence Erlbaum, Hillsdale, NJ.

Pearl, J. (1988). Probabilistic Reasoning In Intelligent Systems: Networks of Plausible In-
ference. Morgan-Kaufman, San Mateo, CA.

Pereira, F. C. N. and Warren, D. H. (1980). Definite clause grammars for language analysis—
a survey of the formalism and a comparison with augmented transition networks. Ar#i-
ficial Intelligence, 13(3):231-278.

Perrine, L. (1974). Literature: Structure, Sound, and Sense. Harcourt Brace Jovanovich,
New York, second edition.

Piaget, J. (1929). The Child’s Conception of the World. Routledge and Kegan Paul, London,
Piaget, J. (1932). The Moral Judgment of the Child. Routledge and Kegan Paul, London.

Pinker, S. and Prince, A. (1988). On language and connectionism: Analysis of a parralle]
distributed processing model of language acquisition. In Pinker, S. and Mehler, J.,
editors, Connections and Symbols. MIT Press, Cambridge, MA.

Plato (trans. 1942). The republic. In Loomis, L. R., editor, Plato: Five Great Dialogues.
Walter J. Black, New York. Trans. B. Jowett.

Pylyshyn, Z. W. (1985). Computation and Cognition. MIT Press, Cambridge, MA, second
edition.

Quilici, A. E. (1991). The Correction Machine: A Computer Model of Recognizing and
Producing Belief Justifications in Arguementative Dialog. PhD thesis, UCLA Artificial
Intelligence Laboratory, University of California, Los Angeles. Technical report UCLA-

Al-91-1.

309

Quillian, M. R. (1966). Semantic Memory. PhD thesis, Carnegie Institute of Technology
{Carnegie-Mellon University). Published as Techincal report 2, Project 8668, Bolt,
Barenek, and Newman, Inc.

Ram, A. (1989). Question-driven Understanding: An Integrated Theory of Story Under-
standing, Memory, and Learning. PLD thesis, Department of Computer Science, Yale
University, New Haven CT. Technical report YALEU/CSD /RR 710.

Rees, J. A., Adams, N. I, and Meehan, J. R. (1984). The T menual Computer Science
Department, Yale University, New Haven, CT., fourth edition.

Reeves, J. F. (1986). Recognizing situationa] Ironies in narratjves. Master’s thesis, Depart-
ment of Computer Science, University of California, Los Angeles.

Reeves, J. F. (1989a). Computing value judgements during story understanding. In Proceed-
ings of the Eleventh Annual Conference of the Cognitive Science Society (CogSci-89),
Ann Arbor, MI.

Reeves, J. F. (1989b). The rhapsody phrasal parser and generator. Technijcal Report UCLA-
Al-89-14, UCLA Artificial Intelligence Laboratory, University of California, Los Angeles.

Reiser, B. J. (1983). Contexts and indices in autobiographical memory. Technical Report
Yale University Cognitive Science Technical Report 24, Yale University, New Haven CT.

Reiser, B. J., Black, J. B., and Abelson, R. P. _(1985). Knowledge structures in the organi-
zation and retrieval of autobiographical memories, Cognitive Psychology, 17:89-137.

Rieger, C. (1975). Conceptual memory. In Schank, R. C., editor, Conceptual Information
Processing. American Elsevier, New York.

Riesbeck, C. K. (1975). Conceptual analysis. In Schank, R. C., editor, Conceptual Informa-
tion Processing, pages 83-156. American Elsevier, New York.

Riesbeck, C. K. and Martin, C. (1986). Direct memory access parsing. In Kolodner, J. L. and
Riesbeck, C. K., editors, Ezperience, Memory, and Reasoning, pages 209-226. Lawrence
Erlbaum, Hillsdale, NJ.

Riesbeck, C. K. and Schank, R. C. (1976). Comprehension by computer: Expectation-based
analysis of sentences in context. Technical Report Technical report 78, Department of
Computer Science, Yale University, New Haven, CT.

Rokeach, M. (1973). The Nature of Human Values. Free Press, New York.

310

Ross, W. D. (1930). The Right and The Good. Clarendon Pregs, Oxford.

Rumelhart, D. E., McClelland. J. L.. and the PDP Research Group, editors (1986). Paraile
Distributed Processing: Ezplorations in the Microstructure of Cognition, Volumes 1
2. MIT Press, Cambridge, MA.

Rumethart, D. E. and Ortony, A. (1976). The representation of knowledge in memory.
In Anderson, R. C.. Spiro, R. J.. and Montague, W, E., editors, Schooling and the
acquisition of knowledge. Lawrence Erlbaum, Hillsdale, N7J.

Sarte, J. P. (1947). Erzistentigligm, Philosophical Library, New York. Trans. Bernard Frecht.
man.

Schank, R. C. (1973). Identification of the conceptualizations underlying natura] language,
In Schank, R. C. and Colby, K. M., editors, Computer Models of Thought and Language.

W. H. Freeman, San Francisco, CA.

Schank, R. C., editor (1975). Conceptual Information Processing. American Elsevier, New
York.

Schank, R. C. (1982). Dynamic Memory: A Theory of Learning in Computers and People,
Cambridge University Press, Cambridge. '

Schank, R. C. (1986). Ezplanation Patterns, Lawrence Erlbaum, Hillsdale, N7,

Schank, R. C. agpd Abelson, R. P. (1977). Scripts, Plans, Goals, and Understanding.
Lawrence Erlbaum, Hillsdale, NJ.

Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3:417-457.

Seifert, C. M., Dyer, M. G., and Black, J. B. (1986). Thematic knowledge in story under-
standing. Tezt, 6:393-426.

Shweder, R., Mahapatra, M., and Miller, J. G. (1987). Culture and moral development. In
Kagan, J. and Lamb, §., editors, The Emergence of Morality in Young Children, pages
1-82. University of Chicago Press, Chicago, IL.

Sidner, C. (1983). Focusing in the comprehension of definjte anaphora. In Brady, M. and
Berwick, R., editors, Computational Models of Discourse, pages 267-330. MIT Press,
Cambridge, MA.

Slade, S. (1987). The T Programming Language: A Diglect of Lisp, Prentice-Hall, Inc,
Englewood Cliffs, NJ.

311

Smolensky, P. (1988h). Putting together Connectionism — again. Behavioral gng Brain
Sciences. 11{1):39-70.

Sumida. R. and Dyer, M. G. (1989). Storing and generalizing multiple instance while maip.
taining knowledge leve] parallelism. In Proceedings of the Eleventh Internationq] Joint
Conference on Artificial Intelligence (IJCAI-89), Detroit, MI.

Sycara, K. P. (1987). Resolving Adversarial Conflicts: An Approach Integrating Case-based
adn Analytic Methods. PhD thesis, School of Information and Computer Science, Geor-
gla Institute of Technology.

Thomason, R. H. (1981). Deontic logic as founded op tense logic. In Hilpinen, R., editor,
New Studies in Deontic Logic, pages 165-176. D. Reidel, Dordrecht, Hollagd.

Thorndyke, P. W, (1977). Cognitive structures in comprehensjon and memory of narrative
discourse. Cognitive Psychology, 9:77-110.

Toulmin, S, (1950). The Place of Reason in Ethics, Cambridge University Press, Cambridge.

Turiel, E. (1983). The Development of Social Knowledge: Morality and Convention. Cam-
bridge University Press, Cambridge.

Turing, A. M. (1950). Computing machinery and intelligence. Mind, 54(236):433-460.

Turner, S. R. and Reeves, J. F. (1987). Rhapsody user’s guide. Technical Report UCLA-AL
87-3, UCLA Artificial Intelligence Laboratory, University of California, Los Angeles.

Urmson, J. O, (1950). On grading. Mind, 59:145-160.

von Neumann, J. and Morgenstern, O. (1947). Theory of Games and Economsec Behavior.
Princeton University Press, Princeton, N J., second edition,

von Wright, G. H. (1951). Deontic logic. Mind, 60:1-15.
Warnock, M. (1978). Ethics since 1900. Oxford University Press, Oxford, third edition.

312

Waterman. D. A, and Hayes-Roth. F.. editors (1978).

Pattern-Directed Inference Systems.
Academic Press,

Weiss, (editor), E. A, {1990). Self-assessment procedure XXII: The ethics of computing,
Communicationg of the ACM, 33(11).

Wilensky, R, (1982). Points: A theory of the structure of stories j

W. G. and Ringle, M. H., editors, Strategies for Natural Language Processing. pages
345-374. Lawrence Erlbaum, Hillsdale, NJ.

Wilensky, R. (1983a). Planning and Understandz'ng: A Computationgl Approach to Humqn,
Reasoning. Addison-Wesley, Reading, MA.

Wilensky, R. (1983b). Story grammars Versus story points. Behaviora] and Brain Sciences,
6:579-623.

Berkeley.

Wilensky, R. and Arens, Y. (1980). Phran: A knowledge-based natura] language under-

stander. In Proceedings of the 18th annual meeting of the Association for Computational
Linguistics (ACL-80), Philadelphia, PA.

Winograd, T. (1972). Understandz'ng Natural Language. Academic Press, New York.

Woods, W. T. (1870). Transition network grammars for natura] language analysis. Commu-

Zernik, U. (1987). Strategies in Language Acquistion. Learning Phrages from Language in
Contezt. PhD thesis, UCLA Artificial Intelligence Laboratory, University of California,
Los Angeles. Technical report UCLA-AI-87-1,

Zernik, U. and Dyer, M. G. (1987). The self-extending phrasal lexicon. Computational
Linguistics, 13(3-4):308-327.

Zicree, R. (1982). The Twilight Zone Companion. Bantam Books, New York.

313

APPENDIX A
THUNDER I/0

This appendix contains the top level 1/0 for all of the examples that THUNDER currently
Processes. The text in bold js parsed by THUNDER, and the text in sMaLL CAPS is gener-
ated by THUNDER. The text in typewriter font is THUNDER's trace output, and is used
to provide a context for where in story Processing the program beliefs are being constrycted
and generated. The I/0 has been edited to translate THUNDER s Punctuation symbols into
normal punctuation. For example, John *Possessive* plan becomes “JOHN’S PLAN." and
emphasis he is “Re."

A.l Example 2.1

THUNDER version 1.0, 19:1p 17 December 1990
Copyright (C) 13990 by John F. Reeves. 411 Rights Reserved

THUNDER PTocessing sentence:

To save money, John decided never to change the oil in his new car.
Generating #{thunder}’s belief #{obligation-belief.38}:

THUNDER BELIEVES THAT JOHN'S PLAN TO SAVE THE COST OF THE OIL BY NoOT
CAR.

Additional reasons why #{thunder} believes #{pschema.40} is wrong:
---BECAUSE JOHN WILL LOSE THE COST OF HIS NEW CAR.

Inferences from #{obliga.tion-bolief.aa} evaluation:

JOHN BELIEVES THAT SAVING THE COST OF THE OIL IS MORE IMPORTANT THAN SAVING
THE COST OF HIS NEW CAR.

or

314

JOHN DOEs ~NoOT BELIEVE THAT HE WILL LOSE THE COST OF HIS NEW CAR BY NOT
CHANGING THE OIL IN HIS NEW CAR.

JOHN BELIEVES THAT SAVING THE COST OF THE OIL IS MORE IMPORTANT THAN MAIN-
TAINING HIS NEW CAR.

Qr

JOHN DOES NOT BELIEVE THAT HE WILL DAMAGE HIS NEW CAR BY NOT CHANGING THE
OIL IN HIS NEW CAR.

Generating #{human.56}’s belief #{obligation-belief.39}:

JOHN BELIEVES THAT SAVING THE COST OF THE OIL BY NOT CHANGING THE OIL IN HIS
NEW CAR IS RIGHT BECAUSE HE WILL SAVE THE COST OF THE OIL’

A.2 Example 2.2

THUNDER version 1.0, 19:25 17 December 1990
Copyright (C) 13990 by John F. Reeves. All Rights Reserved

THUNDER processing sentence:
To get the money to buy a new car, John decided to rob a bank.
Generating #{thunder}’s belief #{cbligation-belief.41}:

THUNDER BELIEVES THAT JOHN'S PLAN TO GET THE NEW CAR IS WRONG BECAUSE
HE WILL GET THE NEW CAR BUT HE WILL STEAL THE BANK DEPOSITORS’ MONEY AND
THEIR SAVING THEIR MONEY IS MORE IMPORTANT THAN HIS GETTING THE NEW CAR.

Additional reasons why #{thunder} believes #{pschema.50} is wrong:

... BECAUSE JOHN WILL GET THE NEW CAR BUT HE WILL THREATEN THE BANK TELLER'S
HEALTH AND THE BANK TELLER'S HEALTH IS MORE IMPORTANT THAN HIS GETTING THE
NEW CAR.

...BECAUSE JOHN WILL STEAL THE BANK DEPOSITORS’ MONEY.
-..BECAUSE JOHN WILL THREATEN THE BANK TELLER’S HEALTH.

...BECAUSE JOHN MIGHT GET ARRESTED BY ROBBING A BANK.

315

Reasons why #{thunder} believes #{pschema.50} is right:

-+-BECAUSE JOHN wiLL GET THE NEW CAR.

JOHN BELIEVES THAT GETTING THE NEW CAR IS MORE IMPORTANT THAN GETTING
ARRESTED.

ar

JOHN DOES NOT BELIEVE THAT HE WILL GET ARRESTED BY ROBBING A BANK.

JOHN BELIEVES THAT GETTING THE NEW CAR IS MORE IMPORTANT THAN THE BANK
TELLER'S HEALTH,

JOHN BELIEVES THAT GETTING THE NEW CAR IS MORE IMPORTANT THAN THE BANK
DEPOSITORS’ SAVING THEIR MONEY.

Generating #{human.58}’s belief #{obligation-belief.42}:

Additional reasons vhy #{human.58} believes #{pschema.50} is right:
-..BECAUSE JOHN WILL GET THE NEW CAR WHILE HE WILL THREATEN THE BANK

TELLER’S HEALTH AND GETTING THE NEW CAR IS MORE IMPORTANT THAN THE BANK
TELLER’'S HEALTH.

.-+ BECAUSE JORN WILL GET THE NEW CAR.
Reasons why #{human.5s} believes #{pschema.50)} is vrong:

-+~ BECAUSE JOHN WILL STEAL THE BANK DEPOSITORS’ MONEY.
+-- BECAUSE JOHN WILL THREATEN THE BANK TELLER’S HEALTH.

--.BECAUSE JOHN MIGHT GET ARRESTED BY ROBBING A BANK.

316

Generating story concept #{bcp.25}:

THUNDER BELIEVES THAT JOHN IS SELFISH TO STEAL THE BANK DEPOSITORS® MONEY
FOR HIS GETTING THE NEW CAR.

Processing question:

Why did John believe that robbing the bank was right?

BECAUSE JOHN wiILL GET THE NEW CAR WHILE HE WILL STEAL THE BANK DEPOSITORS'
MONEY AND GETTING THE NEW CAR IS MORE IMPORTANT THAN THEIR SAVING THFEIR
MONEY.

BECAUSE JoHN WILL GET THE NEW CAR WHILE HE WILL THREATEN THE BANK TELLER'S

HEALTH AND GETTING THE NEW CAR IS MORE IMPORTANT THAN THE BANK TELLER'S
HEALTH.

BECAUSE JOHN WILL GET THE NEW CAR,
Processing question:

Why did John want to rob the bank?

TO GET THE COST OF THE NEW CAR.

A.3 Example 4.1

THUNDER version 1.0, 19:56 17 December 1990
Copyright (C) 1990 by John F. Reeves. All Rights Reserved

THUNDER Processing sentence:

Little Billy’s mom gave him a spanking for pulling the cat’s tail.
Generating #{thunder}’s belief #{obligation-belief.44}:

THUNDER BELIEVES THAT LITTLE BILLY’S PLAN TO WATCH THE CAT SUFFER IS

WRONG BECAUSE HE WILL BE ENTERTAINED BUT THE CAT WILL BE HURT AND THE
CAT’S HEALTH IS MORE IMPORTANT THAN HIS ENTERTAINMENT.

317

Additional reasons vhy #{thunder} believes #{pschema.54} is wrong:

- - BECAUSE LITTLE BiLry wiryg HURT THE CAT.

Reasons why #{thunder} believes #{pschema.54} is right

-+ -BECAUSE LITTLE BiLry WILL BE ENTERTAINED.

LITTLE Biiry BELIEVES THAT

HIS ENTERTAINMENT IS MORE IMPORTANT THAN THE
CAT'S HEALTH.

Generating #{human.61}’s beliefr #{obligation-belief.45}:

Additional reasons why #{human.61} believes *#{pschema.54} is right:

-+ -BECAUSE LITTLE BiLry WILL BE ENTERTAINED.

Reasons why #{human.61} believes #{pschema.54} ig vrong:

-+ BECAUSE LITTLE BILLY wiLL HURT THE CAT.

Generating story concept #{bcp.26}:

LITTLE BiILLY Is SELFISH TO HURT THE CAT FOR HIS
ENTERTAINMENT. -

Generating #{thunder}’s belief #{obligation-boliof.49}:

THUNDER BELIEVES THAT LIT
STRUCT HIM IS RIGHT BECAUSE s
WATCH THE CAT SUFFER IS WRON

TLE BILLY’s MOTHER’S PLAN TO PUNISH HIM TO IN-
HE WILL TEACH HIM TO BELIEVE THAT HIS PLAN TO

Reasons why #{thunder} believes #{pschema.55} is vrong:

---BECAUSE LITTLE BILLY’s MOTHER GAVE HIM A SPANKING.

318

Generating #{human.63} belief #{obligation-belief.so}:

BECAUSE SHE WILL TEACH HIM To BELIEVE THAT HIS PLAN To WATCH THE CAT SUFFER
IS WRONG.

Reasons why #{human.62} beliaves #{pschema.55} ig wrong:

--.BECAUSE LITTLE BILLy’s MOTHER GAVE HIM A SPANKING,

A4 Example 4.2

THUNDER version 1.0, 20:9 17 December 1990
Copyright (C) 1390 by John F. Reeves. All Rights Reserved

THUNDER Processing sentence:

Little Billy’s mom gave him a dollar for pulling the cat’s taj].

Generating #{thunder}’'s belief #{obligation-belief.SI}:

THUNDER BELIEVES THAT LUITTLE BILLY'S PLAN TO WaTCH THE CAT SUFFER Is
WRONG BECAUSE HE WILL BRE ENTERTAINED BUT THE CAT WILL BE HURT AND THE
CAT’S HEALTH IS MORE IMPORTANT THAN HIS ENTERTAINMENT.

Additional reasons vhy #{thunder} believes #{pschena.58} is wrong:

--.BECAUSE LITTLE BriLy wiLp HURT THE CAT.

Reasons why #{thunder} believes #{pschema.58} is right:

--.BECAUSE LITTLE BILLy wiLL BE ENTERTAINED.

Inferences from #{obligation-belief .51} evaluation:

LiTTLE BiLLy BELIEVES THAT HIS ENTERTAINMENT Is MORE IMPORTANT THAN THE
CAT’S HEALTH.

Generating #{human.64}'s belief #{obligation-belief.52}:

319

BE ENTERTAINED WHILE THE CAT WILL BE HURT AND HIS ENTERTAINMENT [g MORE
IMPORTANT THAN THE CAT’S HEALTH.

Additional reasons why #{human.64} believes #{pschema.58} is right:
---BECAUSE LITTLE BILLY wiLL BE ENTERTAINED.

Reasons why #{human.64} believes #{pschema.58} is vrong:

-+ BECAUSE LITTLE BILLy WILL HURT THE CAT.

Generating story concept #{bcp.27}:

THUNDER BELIEVES THAT LITTLE BILLY IS SELFISH TO HURT THE CAT FOR HIS
ENTERTAINMENT.

Generating #{thunder}’s belief #{obligation-belief.57}:

Inferences from #{obligation-belief.ST} evaluation:

LITTLE BILLy's MOTHER BELIEVES THAT HIS ENTERTAINMENT IS MORE IMPORTANT
THAN THE CAT’S HEALTH.

Generating #{human.65}’s belief #{obligation-belief.58}:

IS RIGHT.
Generating story concept #{bcp.29}:

THUNDER BELIEVES THAT LITTLE BILLY IS SELFISH ToO HURT THE CAT FOR HIS
ENTERTAINMENT.

Generating story concept #{bcp.28}:

THUNDER BELIEVES THAT LITTLE BILLY's MOTHER IS WRONG TO REWARD HIM BE-
CAUSE SHE SHOULD NOT REWARDED HIM FOR HIS PLAN TO WATCH THE CAT SUFFER.

320

A5 Hunting Trip

THUNDER version 1.0,

20:25 17 December 1990
Copyright (C) 1999 by

John F. Reeves, 11 Rights Reserved

Reading Story “Hunting-Trip”:

Processing Sentence:

Two men on 2 hunting trip captured a live rabbit.

Processing Sentence:

They decided to have some fun by tying a stick of dynamite to the rabbit,.

Generating #{thunder}’s belief #{obligation-belief.si}:

- -BECAUSE THE HUNTERS wiLL BLOW UP THE RABBIT.

--.BECAUSE THE HUNTERS CAPTURED THE RABBIT.

-+.BECAUSE THE HUNTERS MIGHT GET HURT BY BLOWING UP THE RABBIT.

Reasons why #{thunder} believes #{pschema.66} is right:

- .- BECAUSE THE HUNTERS wirL BE ENTERTAINED.

Inferences from #{obligation-helief.si} evaluation:

321

THE HUNTERS BELIEVE THAT THEIR ENTERTAINMENT IS MORE IMPORTANT THAN THEIR
HEALTH.

or

THE HUNTERS DO NoOT BELIEVE THAT THEY WILL HURT THEMSELVES BY BLOWING Up
THE RABBIT.

Additional reasons vhy #{human.67} believes #{pschema.66} is right:

-..BECAUSE THE HUNTERS WILL BE ENTERTAINED.
Reasons why #{human.67} believes #{pschema.66} is vrong:

-+.BECAUSE THE HUNTERS WILL BLow UP THE RABBIT.

-.-BECAUSE THE HUNTERS CAPTURED THE RABBIT.

Generating story concept #{bcp.30}:

THUNDER BELIEVES THAT THE HUNTERS ARE INHUMANE TO BLOW UP THE RABBIT
FOR THEIR ENTERTAINMENT.

Processing sentence:

They lit the fuse and let it go.

322

Processing sentence:

The rabbit ran for cover under their truck.

Generating story concept #{irony.10}:

THE IRONY IS THAT THE HUNTERS EXPECTED TO BE ENTERTAINED BY WATCHING THE
RABBIT BLOW UP BUT THEIR TRUCK BLEW UP WHEN THE RABBIT RAN UNDER THEIR
TRUCK.

Generating story concept #{theme.20}:

THE THEME IS THAT YOU SHOULD NOT PLAY WITH DYNAMITE BECAUSE YOU WOULD
NOT LIKE BAD THINGS TO HAPPEN TO YOU.

Generating story concept #{theme.21}:

THE THEME IS THAT YOU SHOULD NOT EXECUTE PLANS THAT CAUSE BAD THINGS TO
HAPPEN TO OTHERS FOR YOUR ENTERTAINMENT BECAUSE YOUR ENTERTAINMENT IS
LESS IMPORTANT THAN BAD THINGS HAPPENING TO YOU,

Generating story concept #{theme.22}:

THE THEME IS THAT YOU SHOULD NOT EXECUTE PLANS THAT CAUSE BAD THINGS TO
HAPPEN TO OTHERS BECAUSE YOU WOULD NOT LIKE BAD THINGS TO HAFPEN TO YOU.

Processing question:

Why were the men wrong to blow up the rabbit?
BECAUSE THE HUNTERS WERE INHUMANE TO THE RABBIT.

BECAUSE THE HUNTERS WILL BE ENTERTAINED BUT THEY CAPTURED THE RABBIT AND
THE RABBIT’'S FREEDOM IS MORE IMPORTANT THAN THEIR ENTERTAINMENT.

BECAUSE THE HUNTERS BLEW UP THE RABBIT.
BECAUSE THE HUNTERS CAPTURED THE RABBIT.

BECAUSE THE HUNTERS WILL BE ENTERTAINED BUT THE RABBIT BLEW UP AND THE
RABBIT'S HEALTH IS MORE IMPORTANT THAN THEIR ENTERTAINMENT.

323

Processing question:

Why were the men wrong to blow up the rabbit with dynamite?
BECAUSE THE HUNTERS WERE INHUMANE TO THE RABBIT.

BECAUSE THE HUNTERS WILL BE ENTERTAINED BUT THEY CAPTURED THE RABBIT AND
THE RABBIT'S FREEDOM IS MORE IMPORTANT THAN THEIR ENTERTAINMENT.

BECAUSE THE HUNTERS BLEW UP THE RABBIT.
BECAUSE THE HUNTERS CAPTURED THE RABBIT.

BECAUSE THE HUNTERS WILL BE ENTERTAINED BUT THE RABBIT BLEW UP AND THE
RABBIT’S HEALTH IS MORE IMPORTANT THAN THEIR ENTERTAINMENT.

Processing question:

Why did the hunters believe that blowing up the rabbit was right?

BECAUSE THE HUNTERS WILL BE ENTERTAINED WHILE THE RABBIT BLEW UP AND THEIR
ENTERTAINMENT IS MORE IMPORTANT THAN THE RABBIT’S HEALTH.

BECAUSE THE HUNTERS WILL BE ENTERTAINED WHILE THEY CAPTURED THE RABBIT
AND THEIR ENTERTAINMENT IS MORE IMPORTANT THAN THE RABBIT'S FREEDOM.

BECAUSE THE HUNTERS WILL BE ENTERTAINED.

Processing question:

Why did the hunters believe that bloﬁng up the rabbit was wrong?

BECAUSE THE HUNTERS WILL BE ENTERTAINED BUT THEIR TRUCK BLEW UP AND THEIR
TRUCK IS MORE IMPORTANT THAN THEIR ENTERTAINMENT.

BECAUSE THE HUNTERS WILL BE ENTERTAINED BUT THEY WILL HAVE TO FIX THEIR

TRUCK AND SAVING THE COST OF THEIR TRUCK IS MORE IMPORTANT THAN THEIR EN-
TERTAINMENT.

324

BECAUSE THE HUNTERS BLEW UP THE RABBIT.
BECAUSE THE HUNTERS CAPTURED THE RABBIT,
BECAUSE THE HUNTERS' TRUCK BLEW UP.

BEcarusg THE HUNTERS WILL LOSE THE COST OF THEIR TRUCK.
Processing question:

Why did the rabbit run under the truck?

TO ESCAPE FROM THE HUNTERS.

Processing question:

Why did the men tie a stick of dynamite to the rabbit?

TO BLOW UP THE RABBIT.

Processing question:

Why did the hunters let the rabbit go?

TO TAKE THE DYNAMITE AWAY FROM THE HUNTERS.

Processing question:

Why did the hunters want to blow up the rabbijt?

To ENJOY WATCHING THE RABBIT BLOW UP.

Processing question:

Why did the truck blow up?
BECAUSE THE DYNAMITE BLEW UP.

BECAUSE THE RABBIT RAN UNDER THE HUNTERS’ TRUCK.

325

Becauskg THE HUNTERS LET THE RABBIT GO NEAR THEIR TRUCK.
BEcAUSE THE HUNTERS WERE INHUMANE TO THE RABBIT.

BEcavuse THE HUNTERS PLAYED wiITH DYNAMITE.
Processing question:

What is the irony in the story?

THE RONY IS THAT THE HUNTERS EXPECTED To BE ENTERTAINED BY WATCHING THE
RABBIT BLOW up BUT THEIR TRUCK BLEW UP WHEN THE RABBIT RAN UNDER THEIR
TRUCK.

Processing question:

What is the theme of the story?

LESS IMPORTANT THAN BAD THINGS HAPPENING TO YOU,

A.8 Four O’Clock

THUNDER version 1.0, 22:59 17 December 1990
Copyright (C) 1990 by John F. Reeves. All Rights Reserved

Reading story ¢ ‘Four-0-Clock’’:

Political fanatic Oliver Crangle is convinced that People who do not agree with
his political views are evil. He keeps detajled files on people, makes threatening
phone calls, and sends letters discrediting his political enemies. One day, he
finds a book of black magic and casts a spell to shrink every evil person in the
world to a height of two feet tall at exactly four o’clock. But when the time rolls

around, he becomes two feet tall!

326

Processing Sentence;

Political fanatic Oliver Crangle is convinced that People who do not agree wit
his political views are evil.

Processing Sentence:

He keeps detaijled files on People, makes threatening Phone calls, and sends
letters discrediting his political enemies.

Generating #{thunder}’s belief #{obligation-belief.TO}:
THUNDER BELIEVES THAT OLIVER’S pLAN TO PUNISH HiIs POLITICAL OPPONENTS
TO PROTECT SOCIETY IS WRONG BECAUSE HE WILL DAMAGE THEIR SOCIAL ESTEEM BY

DISCREDITING THEM.

Inferences fronm #{obligation-belief.?O} evaluation:

IS MORE IMPORTANT THAN THEIR SOCIAL ESTEEM.

Generating #{human.86}’s belief #{obligation-belief.?l}:

CREDIT THEM AND PREVENTING THEM FROM DAMAGING SOCIETY IS MORE IMPORTANT
THAN THEIR SOCIAL ESTEEM. '

Additional reasons vhy #{human.sgs) believes #{pschema.84} is right:
... BECAUSE OLIVER WILL PREVENT HIS POLITICAL ENEMIES FROM DAMAGING SOCIETY.
Reasons why #{human.86} believes #{pschema.84} ig wrong:

--- BECAUSE OLIVER WILL DAMAGE HIS POLITICAL ENEMIES’ SOCIAL ESTEEM BY DIs-
CREDITING THEM.

Generating story concept #{bcp.32}:

Generating story concept #{bcp.31}:

THUNDER BELIEVES THAT OLIVER Is WRONG TO PUNISH Hig POLITICAL OPPONENTS
BECAUSE HE SHOULD NoT PUNISH THEM FOR THEIR POLITICAL BELIEFS,

Generating #{thunder}’s beljes #{obligation-belief .74}

THUNDER BELIEVES THAT OLIVER’S PLAN TO PREVENT HIS POLITICAL OPPONENTS
FROM EXPRESSING THEIR POLITICAL BELIEFS IS WRONG BECAUSE HE WILL LIMIT THEIR
FREEDOM OF SPEECH BY THREATENING THEM.

Additional reasons why #{thunder} believes #{pschema.83} is wrong:

-+ -BECAUSE OLIVER WILL THREATEN HIS POLITICAL OPPONENTS’ HEALTH.

Inferences from #{obligation-belief.74} evaluation:

OLIVER BELIEVES THAT PROTECTING SOCIETY IS MORE IMPORTANT THAN HIS PQLITI-
CAL ENEMIES' HEALTH.

OLIVER BELIEVES THAT PROTECTING SOCIETY I$ MORE IMPORTANT THAN HIS POLITICAL
ENEMIES’ FREEDOM TO EXPRESS THEIR BELIEFS.

Generating #{human.86}'s belief #{obligation-belief.75}:

TO EXPRESS THEIR BELIEFS.
Additional reasons vhy #{human.86} believes #{pschema.83} is right:

-+ BECAUSE OLIVER WILL PROTECT SOCIETY WHILE HE WILL THREATEN HIS POLITICAL
ENEMIES' HEALTH AND PROTECTING SOCIETY IS MORE IMPORTANT THAN THEIR HEALTH.

-..BECAUSE OLIVER WILL PROTECT SOCIETY.
Reasons why #{human.86} believes #{pschema.83} is vrong:

-+ BECAUSE OLIVER WILL LIMIT HIS POLITICAL ENEMIES’ FREEDOM OF SPEECH BY
THREATENING THEM.

... BECAUSE OLIVER WILL THREATEN HIS POLITICAL ENEMIES’ HEALTH.

328

Generating story concept #{bcp.33}:

THUNDER BELIEVES THAT OLIVER'S PLAN TO PUNISH HIS POLITICAL OPPONENTS TO
PROTECT SOCIETY IS WRONG BECAUSE HE WILL SHRINK THEM.

Inferences from #{obligation-belief.ao} evaluation:

OLIVER BELIEVES THAT PREVENTING HIS POLITICAL ENEMIES FROM DAMAGING SOCIETY
IS MORE IMPORTANT THAN THEIR HEALTH.

Generating #{human.86}’s beljief #{obligation-beliet.al}:

THAN THEIR HEALTH.
Additional reasons why #{human.86} believes #{pschema.90} is right:

- -+ BECAUSE OLIVER WILL PREVENT HIS POLITICAL ENEMIES FROM DAMAGING SOCIETY.
Reasons why #{human.s86) believes #{pschema.90} is vrong:

... BECAUSE OLIVER WILL SHRINK HIS POLITICAL ENEMIES.

Generating story concept #{bcp.35}:

THUNDER BELIEVES THAT OLIVER IS MISGUIDED TO DAMAGE HIS POLITICAL OPPO-

NENTS’ HEALTH TO PREVENT THEM FROM DAMAGING SOCIETY BECAUSE HIS PLAN TO
PUNISH THEM TO PROTECT SOCIETY WILL NOT PROTECT SOCIETY.

329

Generating Story concept #{bcp.34};

THUNDER BELIEVES THAT OLIVER |s WRONG TO PUNISH HIS POLITICATL OPPONENTS
BECAUSE HE SHOULD NOT PUNISH THE\ FOR THEIR POLITICAL BELIEFS.

Processing sentence:
But when the time rolis around, ke becomes two feet tall!
Generating sStory concept #{irony.12}.

THE IRONY IS THAT OLIVER EXPECTED ToO PREVENT HIs POLITICAL OPPONENTS FROM
DAMAGING SOCIETY BY CASTING THE SPELL BUT HE BECAME Two FEET TALL WHEN HE
CAST THE SPELL.

Generating story concept #{theme.24}:

BECAUSE vou WOULD NOT LIKE TO BE HURT.
Generating story concept #{theme.27}:

THE THEME IS THAT YOU SHOULD JUDGE YOURSELF BEFORE JUDGING OTHERS BECAUSE
YOU WOULD NOT LIKE TO BE PUNISHED.

Generating story concept #{theme.28}:

Processing question:

Why was Oliver wrong to shrink his political enemijes?

BEcaAusE OLIVER SHRUNK HIS POLITICAL OPPONENTS.

330

Processing question:

BECAUSE OLIVER's PLAN TO PU

NISH HIS POLITICA
WILL HU

RT THEM AND WILL NOT PROTECT SOCIETY.

BECAUSE OLIVER SHRUNK HIS POLITICAL OPPONENTS.

Processing question:

Why did he believe that evil people should be shrunk?

BEcAUsE OLIVER WILL PREVENT HIS POL
WHILE HE WILL SHRUNK THEM AND PREV
MORE IMPORTANT THAN THEIR HEALTH.

ITICAL ENEMIES FROM DAMAGING SOCIETY
ENTING THEM FROM DAMAGING SOCIETY IS

BECAUSE OLIVER WILL PREVENT HIS POLITICAL ENEMIES FROM DAMAGING SOCIETY.
Processing question:

Why did Oliver believe that people who did not agree with him were evil?

BECAUSE OLIVER’s POLITICAL ENEMIES' POLITICAL BELIEFS WILL DAMAGE SOCIETY.

Processing question:
Why did Oliver make threatening phone calls?

TO PREVENT OLIVER's POLITICAL OPPONENTS FROM EXPRESSING THEIR POLITICAL
BELIEFS.

Processing question:

Why did Oliver want to shrink his political opponents?

TO PREVENT OLIVER’S POLITICAL OPPONENTS FROM DAMAGING SOCIETY.

Processing question:

331

Why did Oliver cast a spell to shrink every evil person to 3 height of two feet tal]?

To PREVENT OLIVER’S POLITICAL OPPONENTS FROM DAMAGING SOCIETY.
Processing question:

Why did Oljver shrink?
BEcause EVERY EVIL PERSON SHRUNK.
Because OLIVER cAST THE SPELL.

BEcAUsg OLIVER wWAs EVIL.

Processing question:

Why was Oliver evil?

WILL HURT THEM AND WILL NoOT PROTECT SOCIETY.

BECAUSE OLIVER PUNISHED HIS POLITICAL OPPONENTS FOR THEIR POLITICAL BELIEFS.

332

TECT SOCIETY.
Processing question:

What is the irony in the story?

THE IRONY IS THAT OLIVER EXPECTED To PREVENT HIs POLITICAL OPPONENTS FROM
DAMAGING SOCIETY By CASTING THE SPELL BUT HE BECAME Two FEET TALL WHEN HE
CAST THE SPELL.

Processing question:

What is the theme of the story?

THE THEME IS THAT You SHOULD NoOT EXECUTE PLANS THAT CAUSE HARM TO OTHERS
BECAUSE vou WOULD NOT LIKE To BE HURT.

THE THEME IS THAT YOU SHOULD JUDGE YOURSELF BEFORE JUDGING OTHERS BECAUSE
YOU WOULD NOT LIKE TO BE PUNISHED.

333

APPENDIX B

The Rhapsody Knowledge Representation System

2. A class-based frame representation system without undue built-ip semantics. To be
usable in a wide variety of Al projects, the Tepresentation system had to leave semantic
1ssues up to the user, and not build them in to the package.

Rhapsody was originally written in T [Rees et al., 1984; Slade, 1987] and ported to Com-
mon Lisp [Steele Jr., 1984]. T is an object-oriented language, so the system was influenced
by the data/ob ject-oriented style of Programming. The consistency of the object-oriented

The following Raming conventions were adopted in Rbapsody. Functions are named as
<package>:<action>. For instance, some of the functions in the hagh table package (HT)
are named HT:ENTRY, HT:COMBINE, etc. Where the action part is specific to some
object within the package, we’ve tried to maintain names of the form <action>-<object>.
Following the T convention, functions which modify their arguments have names that end ip
“I". For example, the function HT:COMBINE! is a destructive version of HT:COMBINE.

The following sections describe the individual tools packages packages that make up
Rhapsody. The Packages are presented in building block order: (1) the hash table package
implements efficient storage and access data structures, (2) the representation package imple-
ments frame structures and organization, (3) the pattern matchers implement comparison

!The material in this chapter is adapted from (Turner and Reeves, 1987}, and updated for the most recent
version of Rhapsody and THUNDER.

334

operations between representation objects. (4) the discrimination net unplements storage
and access to data by patterns. and {3) the demon package implements delaved pracedure
definition. access, and control. Each section begins with an introduction to the problem that
the tool addresses, and then presents the package functions.

B.1 Hash Tables

The problem with using lists as the sole representation construct {as LISP encourages} is that
searching a list for an item takes time dependent on the length of the list. It is preferable to
have to have a representation that allows indexing directly to the needed items. For example,
to store the following associations between keys and values, there must be a way to quickly
find a given key in the representation:

Key Value

john = 10

chair = (a b ¢)

11 = “trademark”

Arrays do this for items indexed by number; given the position in the array, we can quickly
retrieve the item stored there. To use an array when the indexes aren't all numbers, we must
first convert the key we are given to a new, numerical key and then use that. The process of
converting an arbitrary key to a number is called hashing, and an array indexed by hashing
is called a hash table. Most of the data structures Rhapsody uses are represented by hash
tables. Representation objects (frames), for instance, consist of a number of slots and links
whose indices are usually symbols.

Normally the user of Rhapsody need never worry about the hash table functions presented
in this section. Hash tables are a low-level building block of Rhapsody, and the following
tools packages define higher-level functions built on hash tables.

The following functions are used to create and manipulate hash tables in Rhapsody.

(HT:CREATE <name> <predicate> &rest <initial-list>)

HT:CREATE is used to create a new hash table. If name is given as nil, then a random
name will be created. (The name is used only when the hash table js printed out. The hash
table will not be bound to the name - you should catch the return value (the hash table) in
whatever variable you desire.) predicate is the predicate used to test for equality; usually this
will be #'EQL. initial-list is an optional argument, if given, it consists of sequence of key .
value pairs to initialize the table. An example call would look like (ht:create "foo #’eq
'a ’b).

(HT:ENTRY <ht> <key>) (Settable)

335

HT:ENTRY is a settable function used to retrieve or store a value in a hash table. The
first argument is the hash table and the second the key. Indices that haven't been used
before return a value of nil. HT:ENTRY can be set in order to add a value to the hash table:

> (ht:entry example ’foo)

nil

> (set (ht:entry example ’'foo) ’bar)
bar

> (ht:entry example ’foo)

bar

(HT:PAIR <ht> <key>)

HT:PAIR is identical to HT:ENTRY except that it returns a list consisting of the key
and the value. (HT:ENTRY returns only the value.)

(HT:WALK <ht> <func>)
(HT:MAP <ht> <func>)

HT:WALK and HT:MAP walk or map a procedure over the contents of a hash table.
The procedure should be a lambda of two arguments (the key and value). For instance:

> (ht:valk example #’(lambda (key val)
(format t ""a => “a~%" key val)))
foo -> bar
#S{HT.27}
(HT:FIND-ENTRY <ht> <predicate>)

HT:FIND-ENTRY walks a predicate over each key in the hash table until it finds a key
for which the predicate returns true. The keys are not searched in any particular order.

(HT? <object>) (Predicate)
HT? is a predicate that returns true if its argument is a hash table.

(HT:KEY? <ht> <key>) (Predicate)

336

HT:KEY? returns true if the given key (kev) is defined in the hash table. {Note that the
key’s value in the hash table might still be nil.)

(HT:REMOVE <ht> <key>)

HT:REMOVE removes the given kev from the hash table. It returns the {key val) pair
removed from the table (or nil if the key wasn't present in the table). This is not quite the

nil, but after using HT:REMOVE, the key will actually be gone from the table, and so wil]

-

answer false to HT:KEY? and the implied tests in HT:UPDATE and HT:ADD.

(HT:KEYS <ht>)
(HT:RECORDS <ht>)
(HT:COUNT <ht>)
(HT:PAIRS <ht>)
(HT:COPY <ht>)

HT:KEYS returns the list of keys defined for the hash table. HT:RECORDS returns the
list of records defined for the hash table. HT:COUNT returns the number of (key record)
pairs in the hash table. HT:PAIRS returns the hash table in association ljst form. That is,
it returns a list of (key . value) pairs. HT:COPY returns a new hash table whose keys and
values are the same as the original hash table.

(HT:COMBINE <dest-ht> <src-ht>)

dest-ht plus the entries in sre-ht. Entries in src-ht do not overwrite entries in dest-ht, so that
if "a is defined in both hash tables, the value in the returned, combined hash table will be
the value from dest-ht. HT:COMBINE! is similar, but it modifies and returns dest-ht.

B.2 The Representation Package

Rhapsody is built around a frame-style representation package. Frames contain slots, which
are sub-parts of the frame, and links, which are relationships between frames. Thus, the
“human” frame might have a slot for “name” and a link for “brother.”

Frames are divided into classes and instances. A class is a general frame that serves as
a template and information holder for instances of that class. For instance, for a general
class called “human” there would be several instance: “joe”, “bob”, “pete”, etc. Generally
speaking, computation is done on instances, and information is hung on classes.

337

Slots in a frame represent a sub-part of the frame. For instance. if we have a frame for
“family” it might have slots for “father”. “mother" and “children”. those being the sub-parts
of a family.

Links are distinguished from slots because they represent relationships between instances.
Each link has a back-link that is automatically set to point in the other direction. That is. if

we set the “sister” of “bob” to be “sue”, then the “brother” link of “sue” will be automatically
set to be “bob.”

The user begins by declaring links and classes. When declaring a link. the user defines
what classes the link is on and what the back-link is. When declaring a class. the user defines
what the class name is and what slots and links are on that class. The user then can create
and manipulate :astances.

The representation package keeps its own name table. This is accessed through the use
of the “&” prefix. If the user wants to refer the “human” class object, he types “&human.”

Similarly, if he has created an instance of &human and named it “bob” then he refers to it
as “&bob.”

B.2.1 Class Functions

(CLASS:DEFINE <name> <slots>) (Macro)

CLASS:DEFINE is a macro that creates a new class and a number of useful auxiliary
functions. Because CLASS:DEFINE is a macro, you do not need to quote the arguments.
To declare a class of human, the user might type:

(class:define human (name age))

building a class &human with slots name and age.

In addition to creating a class object &human, this call binds human to a function that is
used to create instances of the &human class and human? to a function that is used to test
whether or not something is of the &human class.

(CLASS:SLOTS <class>)
(CLASS:LINKS <class>)
(CLASS:SLOT? <class> <slot>) (Predicate)
(CLASS:LINK? <class> <link>) (Predicate)

CLASS:SLOTS returns a list of the legal slots for the class as declared in the initial call
to CLASS:DEFINE. CLASS:LINKS returns a list of the legal links for the class as declared
in the initial call to CLASS:DEFINE. CLASS:SLOT? returns true if siot is a legal slot for
class. CLASS:LINK? returns true if link is a legal link for class.

338

(CLASS:PROP <clgse> <property-name>) (Settable)

> (class:prop &human 'generation)
#{Generation Proc 2334}

(CLASS:WALK <clgss> <func>)
(CLASS:MAP <class> <func>)

CLASS:WALK and CLASS:MAP walk or map over all the instances of a class object.
This is useful largely for debugging and resetting purposes.

B.2.2 Instance Functions

(INST:CREATE <class> <name> &rest < slot-value-pairs>)

INST:CREATE is a Way to create instances of a class. It takes the class, a name for the
instance, and a list of injtial slot-value pairs:

(inst:create &human ’bob ’name 'bob)

would create an instance of &human named &bob and with the slot name set to the value bob.

INST:CREATE is rarely used because the call to CLASS:DEFINE defines an easier
instance creation functjon:

(human ’bob ’name 'age)

would have the same effect as the previous call. If a nil name is given to either instance
creation function, a name is generated from the class name (i.e., Zhuman.1, &human. 2, etc.)

(INST:CLASS <instence>)

INST:CLASS returns the class of an instance.

339

(INST:SLOT <instance> <slot>) {Settable)

INST.SLOT is a settable function that accesses a slot value on an instance. This can be
set to give a slot a value, for example:

(set (inst:slot &bodb ’name) ‘robert)

would change Bob’s name. To delete a slot, set, jts value to nil. Note that this means that
¥ou cannot have a slot with vajue nil (except as indistinguishable from a null slot).

(INST:LEGAL-SLOTS <instence>)
{INST:SLOT? <instance> <slot>) (Predicate
(INST:IS-SLOT? <instance> <slot>) (Predicate)

INST:SLOT? returns true if slot is a legal slot for instance, INST:LEGAL-SLOTS returns
the list of legal slots. INST:IS-SLOT? returns true if slot is defined on the instance (i.e., has
a non-nil value).

(INST:WALK-SLOTS <instance> <fune>)
(INST:MAP-SLOTS <instance> <func>)

INST:WALK-SLOTS walks a function over every slot of an instance. The function should

take two arguments, a slot name and a slot value. INST:MAP-SLOTS maps a function over
all the slots in an instance.

(INST:LINK <instance> <link>)

INST:LINK returns the list of links under a particular link name, Unlike INST:SLOT,
INST:LINK is not settable. For instance:

> (inst:1link &human.i2 &sibling)
(&HUMAN. 13)

shows that &human. 12 has a &sibling &human.13.
(INST:ADD-LINK <tnstance> <link> <value>)

INST:ADD-LINK is used to add a value to a link. Generally speaking the value is
expected to be another Rhapsody representation object. For instance:

340

> (inst:link &human.1? &sibling)

(ZHUMAN. 13)

> (inst:add-link &human.1?2 &sibling Zhuman.4)
(#HUMAN.4 &HUMAN. 13)

adds another sibling to £human. 12,
Note that there can be multiple values under a link and that the values aren't in any
particular order. The same value can also be on the link several different times.

(INST:DELETE-LINK <instance> <link> <value>)

INST:DELETE-LINK deletes the first occurrence of value under link. Note that if valye
appears multiple times on the link only the first occurrence will be deleted.

(INST:LINK? <instance> <link>) (Predicate)
(INST:LEGAL-LINKS <instance>)

INST:LINK? returns true if link is a legal link for instance. INST:-LEGAL-LINKS returns
the list of legal links.

(INST:WALK-LINKS instance func)
(INST:MAP-LINKS instance func)

INST:WALK-LINKS walks a function over every link of an instance. The function should
take two arguments, a link name and a link value. INST:MAP-LINKS maps a function over
all the links in an instance.

(INST:SLOTS <instance>)
(INST:LINKS <instance>)

INST:SLOTS and INST:LINKS return thé defined slots and links for a particular instance
(i.e., the links and slots that have non-nil values).

(INST:PROP <instance> <prop>) (Settable)

Like CLASS:PROP, INST:PROP uses instance like a hash table, and is used to hang
non-representation information on an instance object.

(INST:COPY <instance>)

341

INST:COPY creates a copy of the given instance. If an instance appears in a slot or a
link. 1t is also copied. If lists appear in a slot or a link they are copied. Everything else
remains unchanged. So, for instance:

> (pp &jane)
(HUMAN JANE
NAME JANE
&LOVER ==> &BOR)
> (set xx (inst:copy &jane))
HUMAN. 12
> (pp &human.12)
(HUMAN HUMAN. 12
NAME JANE
&LOVER ==> &HUMAN, 13)

Note that &BOB was also copied (becoming &HUMAN . 13).

(INST:WALK-TREE <instance> <proc>)
(INST:MAP-TREE <instance> <proc>)

INST:WALK-TREE and IN ST:MAP-TREE take a procedure and apply it to every in-
stance reachable (via links) from instance, The procedure should be a lambda of one argu-
ment, which will be an instance. For example:

> (pp &jane)
(HUMAN JANE
NAME JANE
&LOVER ==> &RBOB)
> (inst:valk-tree &jane #’(lambda (inst) (print inst)))
JANE
BOB

B.2.3 Link Functions

(LINK:DEFINE <name> < name-class> <back-name> < back-name-class>) (Macro)

LINK:DEFINE is used to define the name of a link, the classes it can be uged om, its
back-link name, and the classes the back-link can be used on. LINK:DEFINE must be used

after CLASS:DEFINE. For example:

349

> (class:define human (name age))

#HUMAN

> (class:define animal (species name))
#ANIMAL

> (link:define pet &human pet-of fanimal)
&PET

case the link points to or from more than one class of objects.
(LINK:BACK <link>)

LINK:BACK returns the back-pointer for a link, i.e, (link:back &pet) would return
&pet-of and (link:back &pet-of) would return &pet.

B.3 The Pattern Matching Package

Matchings consists of taking two representation objects and deciding whether or not they
represent the same thing. For instance, we'd like a matcher to tell us that &HUMAN.1 and
&HUMAN.2 represent the same thing, even though they don’t have the same name:

(HUMAN ZHUMAN.1{
NAME SCOTT
AGE 24)

(HUMAN &HUMAN.?2
NAME SCOTT
AGE 24)

#'EQ is clearly not useful in this case, since LHUMAN.1 and £HUMAN.2 are different
representation objects and will result in #'EQ returning false,

The above example gives an intuitive idea of when two things match: they are of the
same class and their slots have the same values. Two things complicate this intuitive notion:
variables and links.

Variables come into play because often one of our comparison objects to be a pattern.
A pattern could be used, for instance, to check to see if a person has the same last name as

first name:

(HUMAN &HUMAN.1

343

LAST-NAME 7X
FIRST-NAME 7x)

If fact. patterns get far more complex than this. We'd like to be able to embed tests and
boolean conditionals in our patterns as well. If our matcher handles Patterns, it should
Teturn a table that contains that values assigned to the variables during the match.

Links confuse the matching problem ig a different way. Unlike a slot, one link may point
off to several different Tepresentation objects. For instance, we might have two events that
caused a number of state changes (i.e., the event of knocking the milk glass over resulted ip
the glass being empty and the table having milk on jt and the mother being upset):

(EVENT &MILK-GLASS
&CAUSES <==> (&STATE-CHANGE. 1 &STATE-CHANGE.2))

(EVENT &UNKNOWN
&CAUSES <a=> (&STATE-CHANGE. 3 &STATE-CHANGE.«;))

How are we to compare these two events? Should We compare &STATE-CHANGE.] against
&STATE-CHANGE.3? Or against &STATE-CHANGE. 47 Should we return the first match
we find, or somehow return all the matches we find? This is a particularly difficult issue,
and in the matchers we present here we will skirt this issue, leaving it up the user what is
to be done when links complicate the matching issue,

The kind of matching we have talked about so far is close to unification. There are,
however, other kinds of matching, Another type of matcher that is often useful is one that
returns some kind of “similarity index.” That i8, it returns a number that 1s indicative of
how close a match two things are, and that has the property that cloger matches generate
higher numbers, Another type of matcher returns the differences between two ob jects.

The following sections discuss the issues of variables and instantiation, and then present
the three matchers that are implemented in Rbapsody: a simple matcher, a similarity
matcher, and a difference matcher,

B.3.1 Variables and Patterns

The user creates a variable by prefacing a name with a question mark, for example ?actor.
This creates a variable whose name is “actor.” Two variables that have the same name are
the same variable as far as Rhapsody is concerned. Thus jf you were to create an instance

(goal nil
‘actor ?actor
'to ?actor)

34

(goal nil
actor &human,21)

(VAR? <object>) (Predicate)

Predicate that returns true if <object> is a variable.
(VAR:NAME <var>)

Returns the name of a variable.
(VAR:VALUE < binding-form> <wvariable>)

Returns the value of the variable in the binding form.

B.3.2 Instantiation

?X ==> SCOTT

(HUMAN &RON
NAME ?X)

If ZRON is instantiated from the binding form, the result would be:

(HUMAN &RON
NAME SCOTT

345

where 7X is replaced with its binding valye.

In order to instantiate ap instance in Rhapsody, the user calls one of the following explicit
instantiation functions:

(VAR:INSTAN <pattern> <bz’nding-form>)
(VAR:INSTAN! <pattern> <binding-form>)
(VAR:INSTAN-TREFE <pattern> <binding-form>)
(VAR:INSTAN-TREE! <pattern> <bz’nding-fom>)

but makes its replacements destructively on pattern.

The tree versions of IN STAN follow links from the initjal Pattern, and instantiated vari-
ables in all instances that can be reached from the input pattern.

B.3.3 Matching Functions

(IN ST:SIMILAR) and it returns a numerical index indicating how “alike” two objects are.
The third matcher is a difference matcher (INST:DIFF) and it returns a list of the differences
between two objects.

(INST:SLMATCH <tnstl> <inst@> &rest <keywords>)
(INST:SLMATCH-TREE <nstI> <inst2> Lrest <keywords>)

INST:SLMATCH performs a unification-style match between instances. The matcher
walks through the instances, comparing slots and links. INST:SLMATCH does not follow
links (i.e., ignores them entirely) while INST:SLMATCH-TREE follows links in a rather
simplistic manner — by assuming there is only one link by each name. If there is more than
one link by a name, then INST:SLMATCH-TREE matches the links in order (clearly the
wrong behavior).

In addition to allowing Pattern-matching variables as discussed above, INST:SLMATCH
and INST:SLMATCH-TREE allow other special matching constructs, namely *AND* and
PROC.

If a list that starts with *AND* is found in a slot, then the matcher tries to match the
slot against everything that appears in the list. So, for instance, if we attempted to match

these two instances:

346

(HUMAN &HUMAN.1
NAME (*AND* SCOTT 7X))

(HUMAN &HUMAN.2
NAME SCOTT)

The NAME slot from &HUMAN .2 would be matched against both SCOTT and VX, each
match would succeed, and the result would be a binding table with ?X bound to SCOTT.
The *AND™ construct can have more than two conditions.

If a list that starts with *PROC* is found in a slot, then the matcher assumes that
the second element in the list is a procedure of two arguments, the first of which is the
object being matched against and the second of which 15 the current binding list. The match
succeeds if the procedure returns true.

As an example, suppose we were matching the following two instances:

(HUMAN &HUMAN.1
FRIEND («PROC* #’ (LAMBDA (INST BINDS)
(AND (HUMAN? INST)
(EQ (INST:SLOT INST ’SEX) ’MALE)))))

(HUMAN &HUMAN.?2
FRIEND (HUMAN EHUMAN.3
NAME ’ JOHN
SEX ’MALE))

The *PROC™ checks to see if the FRIEND is a HUMAN and a male. When the procedure is
called, INST will be bound to &HUMAN.3 and BINDS to the current binding table (in this
case, an empty table since no variables have been bound). The AND within the procedure
will return true since &« HUMAN.3 is a HUMAN? and has SEX MALE.

Rhapsody provides a couple of read macros to facilitate use of *AND* and *PROC*.
These macros remove the need to quote the list, so that the user can write:

(human nil
‘name ’scott
'friend (*proc* #’(lambda (inst binds)
(and (human? inst)
(eq (inst:slot inst ’sex) ’'male)))))

Rather than the more cumbersome:

(human nil

347

‘'name ’'scott
’friend (list ’sproc* #’(lambda (inst binds)
(and (human? inst)
(eq (inst:slot inst 'sex) ’male)))))

“"AND™ and *PROC* can be nested and are useful in conjunction. The user can combine an
"AND* and *PROC™ to make a test and bind a varjable if the test succeeds. For instance:

(HUMAN &HUMAN. 1
FRIEND (*AND* ?FRIEND
(«PROC* %' (LAMBDA (INST BINDS)
(AND (HUMAN? INST)
(EQ (INST:SLOT INST ’SEX) ’MALE)))))

(HUMAN &HUMAN.2
FRIEND (HUMAN kHUMAN,3
NAME '’ JOHN
SEX ’MALE))

binds 7FRIEND to the friend if the friend passes the *PROC* test. Other such combinations
are also useful.

INST:SLMATCH and INST:SLMATCH-TREE also take a number of optional keywords
that affect the behavior of the matcher:

NONIL Keyword

Normally a missing or nil slot (there is no distinction in Rhapsody) in the pattern matches
anything. This allows the user to specify the minimal matching pattern; things he doesn’t
mention are assumed to be unimportant. With this behavior, the following two things match:

(HUMAN &HUMAN.1
NAME SCOTT)

(HUMAN &HUMAN.2
NAME SCOTT
SEX MALE)

The nil value for SEX on &§HUMAN.1 matches the MALE value on £HUMAN.2.

If you want to make nil slots active (i.e., matching only other nil slots), then you can give
the NONIL keyword after the other arguments in INST:SLMATCH and INST:SLMATCH-

TREE. The call would be:

348

> (inst:slmatch &human.1 &human .2 ‘nonil)

IGNORE Kevword

> (inst:slmatch &human.! ghuman.? ‘ignore)

then the matcher checks a PRQP (see INST:PROP, CLASS:PROP) called IGNORE-SLOTS
on‘both the instance being matched (& HUMAN 1in this case) and op the class of the Instance
being matched (&HUMAN in this case). This prop should contajn a Jist of slot and/or links
to be ignored by the matching process.

For instance, Suppose we were attempting to match the following:

> (pp &human.1)
(HUMAN &HUMAN .
NAME SCOTT
AGE 25)
> (pp %human.?2)
(HUMAN &HUMAN.?2
NAME SCOTT
AGE 21)
> (inst:slmatch &Zhuman. 1 dhuman.?2)
nil

class and giving the keyword IGNORE:

> (set (class:prop &human ‘ignore-slots) ’(age))
(AGE)
> (inst:slmatch &human. 1 &human.2 ’ignore)

#S{HT.101}

Now the match was successful (it returned the hash table containing variable bindings; since
there were no variables this table is empty, but it is sti]l a non-nil value) because the AGE

slot was ignored,
The IGNORE keyword can be followed by a property name to be used instead of
IGNORE-SLOTS. For 1nstance:

349

> (inst:slmatch &human.! &human .2 ‘ignore 'my-ignore)

This is useful if yYou want to

different property for each circ

Finally, the IGNORE keyword can also be a lambda
matched and the current slot) and if the lambda returp
1S a versatile method that can be used. for instance, to

ignore different slots in different

circumstances: You use a
umstance.

of two arguments (the instance being
8 true. then the slot is 1ignored, Thig
ignore all slots op a particular list;
> (inst:slmatch &human . 1 &human.2
’ignore #’(lambda (ingt slot)
(memq? slot *ignore-ligt«)))

This would ignore all slots that appeared on the global *IGNORE-LIST«.

Initial Binding Table

The user may specify an initial variable binding table by including it as ag optional
fical argument. Most often this is the binding returned by a previous match. For instance,
Suppose we match:

> (pp &human.1)

(HUMAN &HUMAN. 1
NAME scoTT)

> (pp &human.?2)

(HUMAN &HUMAN . 2
NAME ?NAME)

> (set result (inst:

slmatch thuman‘. 1 &human.?2))
#HT. 101

> (pp &human.3)

(HUMAN &HUMAN.3
FRIEND (HUMAN HUMAN.S
NAME ?NAME))

> (pp &human.4)

(HUMAN &HUMAN.4
FRIEND (HUMAN HUMAN.6

NAME FRED))
> (inst:slmatch &human .3

&human.4 result)
nil

350

This match fails because RESULT already has ?NAME bound to SCOTT, and so the match
of ?NAME to FRED fails.

The keywords for the matchers have been presented independently, but they can of course
be combined:

> (inst:slmatch &human.i &humap.? 'ignore 'my-ignore ’nonil)

(INST:SIMILAR <instI> <instZ> &rest <keywords>)
(INST:SIMILAR-TREE <inst!> <inst2> &rest <keywords>)

INST:SIMILAR and INST:SIMILAR-TREE take two instances and return a (Hoating
point) number between -1 and 1 indicating how similar the two instances are. The number
has no intrinsic meaning and is only useful to rank pairs of instances. (The number is actually
calculated by subtracting the number of slots that didn’t match from the number of siots
that did match and dividing by the total number of sjots. Thus 0 indicates that there were
as many slots that matched as didu't, and 1 indicates that all the slots matched.)

INST:SIMILAR and INST:SIMILAR-TREE take the same keywords as
INST:SLMATCH.

(INST:DIFF <instl> <instZ> &rest <keywords>)
(INST:DIFF-TREE <instI> <inst2> &rest <keywords>)

INST:DIFF takes two instances and returns a list of slots that did not match.
INST:DIFF-TREE takes two instances and returns a list of (INST1 INST2 SLOT) lists,
whose meaning was that INST1 was matched against INST2 and SLOT did not match,
INST:DIFF and INST:DIFF-TREE also take the same keywords as INST:SLMATCH.

B.4 The Discrimination Net Package

Discrimination nets (d-nets) are data structures that allow automatic indexing and retrieval
of representation objects through the use of two functions: DN:INDEX and DN:SEARCH.
For an overview of d-nets and their applications, see [Charniak et al., 1980, pp. 162-176].

Following [Charniak et al., 1980}, Rhapsody d-nets have the following characteristics:

e Variables in the net.
e Variables in the search patterns.

¢ Variable bindings are performed during discrimination.

351

* A list of nodes (as opposed to a stream) is returned.
¢ Sub-expressions (that are Rhapsody instances) are uniquified.

* Discrimination ig full, not partial.

Each node in the d-pet Is a structure with thrée slots: (1) an a-list (actually a hash table)

of pattern/next-node pairs, (2) an indez name for the node, and (3) a value for the data
stored with the node.

There are two main d-net functions: DN:IN DEX, which stores 4 pattern and valye into
the net, and DN :SEARCH, which retrieves a list of valyes matching an inpuyt pattern. A
special feature of the Rbapsody d-net is values retrieved are ordered in terms of: (1) a
specific match with a Tepresentation object indexed in the net, (2) the order that patterns
were indexed in the d-net, and (3) a match with variable patterns. This means that the list
of returned nodes from DN:SEARCH is ordered according to the specificness of the match,
and thus the first element of the list is the best match,

Since links in Rhapsody are bi-directional and circular structures are allowed, DN:INDEX
has to keep track of the representation objects that it has indexed through, so it doesp't

places, only the same structure will match. As an example, consider the class &human with
the link/inverse-links &friend/&friend-of and &enemy/kenemy-of. The pattern:

(human 'hy
&¢friend (human ’'h2)
&enemy &h2)

will only match humans who have the same human as their friend and enemy. The following
object, though it has the same structure:

(human *}§

&friend (human ’h6)
&enemy (human ’h7))

352

Pattern Matches

“var™ Any non-nil filler]
nil Nil exclusively
nil Anything

(*var® vl) #'EQ to any other "(*var* vl)

<procedure> | Calls (procedure <obj> <bindings>) where

0b7 is the object filling the slot in the search pattern
bindings is the variable binding list

“ilse An #'EQ match with the filler

Table B.1: Special D-net Pattern Fillers

(DN:INDEX <d-net> <pattern> <value>)

DN:INDEX indexes the pattern into d-net and sets the value for that pattern. The
pattern is a Rhapsody representation object. Some fillers of the indexed pattern have special
meanings; the pattern matching characteristics are listed in table B.1.

The wildcard pattern fillers give the d-net comstructor a wide range of possibilities in
writing the pattern to match, In applications that have been developed so far, variables in
the search patterns have not been used, and while the mechanisms for dealing with them are
in place, a dimension of problems may have been left to be discovered.

(DN:SEARCH <d-net> <instance>)

DN:SEARCH searches d-net for patterns matching instence and returns a list of nodes
that match. The structure access function DN:NODE-VALUE. is used to get the value from
any of the nodes returned by DN:SEARCH.

(DN:CREATE &rest <name>)

Create a d-net with optional name. The returned value is suitable for calls to DN:INDEX
and DN:SEARCH.

(DNET-SLOTS-ALIST <d-net>)

DNET-SLOTS-ALIST is a hash table that holds the list of slots and links to discriminate
on in the given d-net. The entries of the hash table are settable, so the user can specify a

353

1. TEST - The test 1s a boolean condition that determines whether or not the demon
should “awaken” or “fire.”

3. -ACT - The -act is a section of code that is run if the demon’s TEST returns false

4. KILL - The kill is a boolean condition that determines whether or pot the demon
should be killed (i.e., removed from the running agenda).

The demons that are actually placed on agendas are demon instances. Like Rhapsody
Tepresentation objects, demons consist of a demon class, which defines the format of a class
of demons, and demon instances, which are individual instances of a class. Demons have
arguments (which are used, for instance, in the TEST) and each instance keeps track of its
own arguments. The process of creating a new demon instance given a class and a set of
arguments is called spawning,

An agenda is a sorted list of object /priority pairs used in Rhapsody to store active
demons for the parser. Since demons spawn and kill other demons, quick save, sort and
access methods are Decessary to efficiently manage demons during Processing. Agendas are
Rhapsody objects designed for this functjon. A memory descriptor (MD) is used to organize
the data that demons operate on. An MD is a doubly-linked list of nodes (the memory) and

This allows the user to change the value of a node in memory without changing the node
itself. The word “pot” might originally build a node whose value (meaning) was “a kitchen
utensil” and then Jater change that value to “an illegal drug” without actually changing the
node in working memory.

There are individua] Packages for agendas, MDs, and MD nodes to define the functions
on each type of data. An example of how demons are used with agendas, MDs, and nodes

354

B.5.1 Demon Functions

(DEMON:DEFINE <name-params> . <demon-body>) ({Macro)

DEMON:DEFINE creates the schema (demon class) for demons. The argument name-
params is a list in the format of the call to when the demon is spawned. The car of the
list is the name of the demon class, and the cdr is the argument list for the demon. The
demon-body argument defines the processing that gets done when the demon gets run. In
the demon-body there are six optional descriptors of the form (<descriptor> <rest>). The
six descriptors are COMMENT, LOCAL, TEST, KILL, +ACT, and -ACT.

1. COMMENT - used to define data that will be to describe the demon on trace when
1t is spawned. Takes two lists with the initial elements *test and ’act .

2. LOCAL - Defines local variables that can be used in the Other demons parts. Works
like let. Note: since the demon is applied when it is run, the local variables will be
re-evaluated every time, and reflect the state of the system at the time the demon js
run.

3. TEST - A procedure that is run when the demon is run. If it returns non-ni the
+ACT is run. If it evaluates to nil and a-ACT exists, the -ACT is run. If it evaluates
to nil and the -ACT doesn’t exist, nothing happens. A missing TEST is interpreted
as (TEST T).

4. KILL - A procedure that is run when the demon is run. If it returns non-nil, the
demon is killed and returns *kill.

5. +ACT - A procedure that is run if the TEST procedure returns non-nil. If the +ACT
is run, the demon returns ’+act .

6. -ACT - A procedure that is run if the TEST procedure returns nil. If the -ACT is
run, the demon returns ’-act.

The procedures are run in the following order: TEST, (if kill KILL), (if test +ACT), (if
(not test) -ACT). Demon:define returns the demon-class,

(DEMON:SPAWN < demon-form>)

355

Creates an instance of a demon, filling in the actual arguments. Demon-form is , list
with the car being a demon-class pame followed by the arguments for this particular demon.
Returns a demon, suitable for installation on ap agenda.

(DEMON:RUN <demon>)

Runs the demop argument demon. Returps the valyes "kill, ’+act, or "-act if the

B.5.2 Agenda Functions

(AGENDA:CREATE &rest <name>)

Creates, initializes, and returns a new agenda, optionally named name, having no ele-
ments.

(AGENDA:RESET <agenda>)

Removes all jtems from the agenda, so that it can be reused.
(AGENDA:COUNT <agenda>)

Returns the number of items on the agenda.

(AGENDA:TOP < agenda>)
(AGENDA:POP <agenda>)

Both of these functions return the object /priority Pair on the top of the agenda (the
object in the item having the lowest priority). AGENDA:TOP leaves the agenda alone, and

(AGENDA:MAP <agenda> <func>)
(AGENDA:WALK <agends> <func>)

(AGENDA:ADD <« agenda> <object> < priority>)

356

Adds the object/ priority pair to the agenda. Returns the updated. reordered agenda.

(AGENDA:REMOVE <«

genda> < object>)
(AGENDA.: REMOVE-AL

L <agenda> <« object>)

Remove the element(s) in the agenda whose object is equal (

an #'EQ test) to object.
moves only the first such 1tem, AGENDA:REMOVE-ALL removes
all of them. Returns the updated agenda.

(AGENDA:W'ALK-REMOVING <agenda> <walk-func> < remove-func>)

Walk walk-fune over the objects in q

genda, and calls remove-func on the valye returned
by walk-fune. 1

f remove-func returns non-nil, the item is removed from the agenda.

B.5.3 Memory Descriptor Functions

(MD:CREATE <name>)

Creates and initializes a memory descri

ptor (MD). The head and taj] pointers are set to
nil, and an empty agenda is created for us

e by the MD. The newly created MD is returned.
(MD:AGENDA <md>)

Returns the agenda associated with the given MD.

(MD:NODE <md>)

Returns the memory node at the tail of the given MD, or nil if the MD s empty.

(MD:ADD <md>)

MD:ADD adds a new, empty node to

the MD given as an argument. The new node is
returned, so that its value can be set.

(MD:WALK <md> <func>)

Walks backward, from the tajl toward the head, through the given MD applying the

357

function func to each node,
(MD:PRINTABLE <rmd>)

Returns a list of nodes in the given MD that aI¢ not inside? or ignore?ed. (See the
definition of NODE:INSIDE? and NODE:IGNORE? below.) The name MD:PRINTABLE
for this function comes from its use in the parser, where it is useq to return the top leve]
nodes in working memory. The list of nodes that is returned is ig tail to head order,

(MD:SEARCH <md> <test-func> <start-node> <stop-func> <direction>)

MD:SEARCH searches an MD, taking five parameters: (1) an MD, (2) A test-func. a
predicate with one argument (a memory node} which returns true when a suitable node is
found, (3) a start-node in the MD, which tells where to start the search, (4) a stop-func, a
predicate with one argument (a memory node) which returns trye when the search can be
ended, and (5) a direction which is one of the atoms "bef or aft, which tells the search
which direction to 80 in from the start-node. The routine starts at the start-node applying
the stop-func and the test-func (in that order) to each node, in the direction specified ('bef
meaning toward the head of the list, *aft toward the tail), until one of themn returns non-nil
or the end of the list is reached. If the search stops because the test-func returned non-nil,
the node it was called on 1s returned, else njl is returned. Nil arguments can be given for
the test-func, which means that there is no stop function, and the direction which defaults

B.5.4 MD Node Functions
(NODE:CREATE <name>)

(NODE:VALUE <node>) (Settable)
Get/set the value for the given node.

(NODE:PREV < node>) (Settable)
(NODE:NEXT <node>) (Setiable)

These are the pointers to the node before (N ODE:PREV) and after (NODE:NEXT) the

358

given node in the linked list.

{(NODE:INSIDE? <node>) (Settable)
(NODE:IGNORE? <node>) (Settable)

These are binary flags that can be set when a node's value is contained in another one
(NODE:INSIDE?), or if the value isn't of any use (NODE:IGNORE?)
provide backward compatibility with the demon-based parser.

. These functions

359

APPENDIX C
Technical Description of PPARSE/PGEN

The file phrasal_ load.lisp loads the entire PPARSE/PGEN system. There are three main
packages:

pPhrase The phrase package contains the phrase definition and indexing functions. The
source is in the file phrase.lisp.

pparse The pparse package contains the PPARSE functions and auxiliary routines for pars-
ing with the phrases. The source is in pparse.lisp.

pgen The pgen package contains the PGEN functions and auxiliary routines for generation
from the phrases. The source is in pgen.lisp.

To use PPARSE/PGEN the user has to define a set of phrases use the macro
phrase:define. The two main functions in PPARSE/PGEN are:

(pparse list-of-atoms)
(pgen representation-object)

Pparse returns the representation objects at the root of the parse tree. Pgen returns a list
of output words.

PPARSE/PGEN were originally written in T [Rees et al., 1984; Slade, 1987|, and re-
cently ported to Common Lisp [Steele Jr., 1984]. PPARSE/PGEN make use of Rhapsody

representation objects, hash tables, and discrimination nets, so Rhapsody has to be loaded
before PPARSE/PGEN.

C.1 Phrase Deflnitions

The macro phrase:define is used to define the database of lexical and linguistic knowledge
that PPARSE/PGEN use. The format of phrase:define is:

(phrase:define phrase-name
(comment comment-string)
(pattern list of items)
(concept representation object)

Y .vY.1

(flags list of flags)
(parse-test lst of functions)
(parse-proc list of functions)
(gen-test list of functions)
(gen-proc list of functions))

The comment. pattern, and concept sections are required, and all of the other sections
are optional. The phrase-name part of the pattern is an atom that is used to uniquely
identify the phrase. Each section of the phrase definition is described below.

comment comment-string

The comment-string is used to describe the pattern in parsing and generation traces.

pattern list of items

Each item is one of the following: (1) an atom, (2) a representation object, (3) a simple
variable, (4) or a phrasal variable. During parsing, the items are matched against the values
of the top level nodes in the parse tree. Atoms in the pattern match atoms (using eq).
Representation objects, simple variables and phrasal variables are matched using unification,
so that variables with the same name match the same object. If the phrase is used in
generation, each item is used to build a new leaf node in the generation tree. Atoms are
put into the output buffer as surface words. Representation objects, simple variables, and
phrasal variables are de-referenced, and their values are used as the values of the new nodes.

concept representation-object

The representation object in the concept section is the object that a phrase will re-write
to during parsing, and the object that will be matched during generation. Variables in the
concept are matched and unified with variables of the same name in the concept and pattern.

flags list of flags

The flags sections is a list of atoms that control where the concept and the pattern are
stored. The atoms that can be used in the flags section are:

dont-gen Don't use this pattern during generation. If this flag is used, the phrase is not
indexed into *pgen-dnet=.

dont-parse Don’t use this pattern during parsing. If this flag is used, the phrase is not
indexed into *pparse-dnet«.

361

Parse-test list of functions
Parse-proc list of functions
gen-test [igt of functions
gen-proc list of functions

The -test and ~PToc sections provide a way for arbitrary functions to be called during
Parsing (sections with the parse- prefix) and generation (sections with the gen~ prefix).
The -test functions are used to determipe phrase applicability: for the phrase to be used.
all functions in the ~test function list must return non-nil, The ~Proc functions are called
after the phrase has been selected, and can be used to change values in the tree, re-order
nodes in the tree, or to set variable bindings. Each entry in the list of functiong 1s a lambda
With no arguments that is evaluated when the phrase is defined. For some purposes it is
useful to write macros With static parameters for commonly used -test and ~Proc functions.

C.2 Simple Variables, Phrasal Variables and Binding Lists

To find appropriate phrases during parsing, PPARSE matches phrasal patterns to the top
level values in the parse tree using unification, (For a description of a unification algorithm
see [Charniak et al., 1980, pp. 146-149]). The notation used for variables ;g ?variable-name
(e.g. ?human, ?actor). Variable of this type are called simple variables,

The second kind of variable used in phrasal patterns are called phrasal varigbles, Phrasal
variables are used to specify variables that wil] only match conceptual objects in a set of
named classes. The format of a phrasal variable ig ?*variable-name+ class or ?*varigble-
name+(class-list). Phrasal variables work like simple variables during matching, bus are
also restricted to only match representation objects of the classes specified. For example,
?+*hum+&human only matches objects of class &human, and ?*animate+ (khuman 2cat &dog)
matches objects of class &human, &cat, or &dog.

phrase’s -test and ~Proc procedures. The hash table is cleared before each phrase match,
s0 1t only holds the bindings for the current phrase. In addition to variable bindings, each
Tepresentation object is put into the hash table keyed by its name, 3o that representation
objects in the concept and pattern can be accessed by ~proc and -test functions,

Itppa.ru*bindins-t is a Rhapeody hash table, not a Common Lisp hash table.

362

C.3 Global Variables

pparse-dnet Discrimination pnet for indexing phrases by their patterns.
pgen-dnet Discrimination pet for indexing phrases by their concepts.
pparse-trace Trace object for PPARSE.

pparse-trace+ Trace object for extended, debugging trace of PPARSE.
Pgen-trace Trace object for PGEN.

pgen-trace+ Trace object for extended, debugging trace of PGEN :
pparse-root The root node of the parse tree.

pgen-root Root node of the generation tree.

pparse-bindings A hash table of the variable bindings used in matching concepts or
patterns.

pgen-node The current pgenode being generated.

pgen-output-buffer List containing the words output by PGEN.

C.4 PPARSE Nodes

components:

name Unique identifier of the node
value The conceptual content of the node.

prev Pointer to the Previous node. The value of PPnode:prev will either be the node that
precedes the node in 4 phrase, or the Parent node for nodes that begiz a phrase.

constits For phrases, a list of the constituent nodes in the phrase. In other words, the
children of the node in the parse tree.

363

lex The entry in the phrasal lexicon used to build the node.

Each component is accessible and settable by the function (ppnode: componentname
node). The function (ppnode:create :rest name) creates new ppnodes. The optional
argument name will be used as a prefix on the name component of the node.

C.5 PPARSE’s Parsing Algorithm
For each word in the input list:

1. Construct a new node for the word.
2. Find and incorporate new phrases into the parse tree:

(a) Make a list of the values of the top level nodes in the parse tree.

(b) Make a list of candidate patterns to match by making a pattern out of the list
of top level values and the successive cdrs of the list. These candidate patterns
are tried in order, so that the parser matches the longest pattern first. The last
pattern tried will be the value of the most recently created node.

(c) For each candidate pattern:
1. Search *pparse-dnet» for candidate phrases. The d-net returns a list of
phrases in order of the specificness of their match with the search pattern.
ii. For each candidate phrase:
A. Check that phrasa] variable restrictions are met.
B. Run the candidate phrases parse-tests.

C. If the restrictions are met and the parse-tests return non-nil, build a
new node for the matched phrase, set the father and next pointers of the
nodes in the pattern matched, and set *pparse-root* to point at the
new node. Repeat step 2 until no new patterns are found.

C.6 PGEN Nodes

Each node in the phrasal generation tree is a structure called a pgenode. Pgenodes have the
following components:

name Unique identifier of the node
value The conceptual content of the node.

father Pointer to the parent node.

364

constits List of the children of the node, in their lexical order.

next Pointer to the next node to generate. For internal nodes, Pgenode:next points to first

child of the node to generate. For leaf nodes, Pgencde:next points to the next leaf
node to generate.

lex The entry in the phrasal lexicon used to build the node.

C.7 PGEN Generation Algorithm

Set *pgen-output-buffers to nil, and build a new pgen node for theﬂinput concept and set
Pgen-node to point at the node.

For the current *pgen-nodes:

1. If the value of *pgen-nodes is ril, and reverse and return *Pgen-output-buffer+,

2. If the concept of *pgen-node* is an atom, cons it on to *pPgen-output-buffers, set
*pgen-nodex from the next pointer of the current *pgen-node* and repeat, else

3. Search *pgen-dnet* for candidate phrases. The d-net returns a list of phrases in order
of the specificness of their match with the search concept.

4. For each candidate phrase:

(a) Check that phrasal variable restrictions are met.
(b) Run the candidate phrases gen-tests,

(c) If the restrictions are met and the gen-tests return non-nil, for each element of
the pattern section of the phrase:

1. Build a new node for the pattern element.
ii. Set the father pointer of the new node to *pgen-nodes

(d) Set the constits component of Pgen node to the list of newly created nodes.

(e) Set the next component of *pgen-node* to the first constituent node, and the
next component of each constituent node to the next node in the list.

(f) Set »pgen-node* from the next component of the current *pgen-node*, and
repeat.

365

C.8 Testing and Procedure Functions

The functions described in this section are built into PPARSE/PGEN for use i -test and
“Proc sections of phrases. Each element in the -test and ~Proc sections of phrases is a
function with no arguments. The -test and ~Proc sections of a phrase are evaluated when
the phrase is read. All of the routines described in this section return a procedure (lambda
closure) of no arguments that is evaluated when the phrase is applied. The arguments to these
functions are used in the routines to access run-time variables and global data structures.

The following functions can be used in Pparse- or gen-test sections of phrases:
(pparse:check-var variable) Returns true if variable is bound.
(pparse:check-null-var varigble) Complement of pparse:check-var.

(pparse:check-class varichle class-list) Returns true if the class of the binding of vari-
able is a member of class-list.

(pparse:check-link-on-var variable link) Returns true if the instance bound to variable
has a non null link.

The following functions can be used in the parse-proc section of phrases:
(pparse:add-node-bef variable) Add a new node before the *pparse-root* node, and
set its value to the binding of variable.

(pparse:add-node-aft variable) Add a new node after the *pparse-root* node, and set
its value to the binding of variable.

(pparse:set-slot variable slot-name value) Set slot-name on the binding of variable to
value.

(pparse:set-slot-from-var variable slot-name variable2) Set slot-name on the binding
of variable to the binding of variable2.

(pparse:set-slot-from-proc variable slot-name procedure) Set slot-name on the bind-
ing of variable to the the value obtained by evaluating procedure. Procedure is a lambda
with no argumentas.

(pparse:add-link link variable) Add a link-name link from the value of *ppaATS@~Ioot*
to the binding of variable.

(pparse:replace-root-val procedure) Replace the value of *pparse-root* with the
value of evaluating procedure. Procedure is a lambda with no arguments.

The following functions can be used in the gen-test section of phrases:

366

(pgen:prev-in-class class-list) Returns true if the class of the value of the previous node
in the generation tree is a member of class-list.

(pgen:prev-not-in-class class-list) Complement of pgen:prev-in-class,

(pgen:prev-eq variable) Returns true if the value of the previous node is aq to the binding

of variable.

(pgen:check-var-slot-val variable slot test-value) Returns true if the slot value of the
binding of variable is eq to test-value.

The following function can be used in the gen-proc section of phrases:

(pgen:replace-place~holder tag value) Replace occurrences of the atom tag in the pat-
tern with value.

C.9 Tracing and Debugging Features
There are four user-settable flags for parsing and generation tracing:

pparse-trace PPARSE trace showing phrase application and the resulting conceptual
object for each phrase used.

pparse-trace+ Shows candidate phrases that are returned from the d-net. Primarily
used for debugging.

*pgen-trace® PGEN trace showing phrase application and the resulting concepts.
pgen-trace+ For extended debugging trace of PGEN.
Tracing is turned on using the call:
(setf (trace:on trace-flag) t)
And turned off with:

(setf (trace:on troce-flag) nil)

PPARSE/PGEN trace output defaults to standard-output, but can be directed to an-
other output stream with the call:

(setf (trace:stream trace-flag) new-output-stream)

The indent level can be set with:

367

(setf (trace:indepnt trace-flag) indent-column)

The default is columnp ¢

The following functions are useful for PPARSE debugging:

(pparse: top-level

nodes, but returns 5 list
of the top level nodes.

(pparse:du.mp—tree) Prints the content of each node in the parse tree by traversing the
tree depth-first.

(pparse:map-tree Junction) Returns a list of the values of applying function to each of
the nodes in the parse tree depth-first,

(PpParse:walk-tree Junction) Like PParse:map-tree, but doesn't return anything usefy],

The following functions are useful for PGEN debugging:

(pgen:dump-treq) Prints the content of each node in the generation tree by traversing the
tree depth-first,

(pgen:map-tree function) Returns a list of the values of applying function to each of the
nodes in the generation tree depth-first.

(pgen:walk-tree function) Like Pgen :map-

tree, but doesn’t return anything usefy].

C.10 The LEXREF Package

The lexref Package used the following global variables:

lexref-people List of person references, in order of yse,

lexref-things List of “thing” references, in order of use.

The following functions are used in parse- and gen-~proc functions:

(lexref:parse-save-ref list) pushes the content of *PParse-root* in the global variable
list.

368

(lexref:gen-save-ref list) pushes the content of *Pgen-nodex in the global variab]e list,

(lexref:parse-search-for-ref list) searches global variable list for a concept matching
the contents of *Pparse-root*. and replaces *PParse-root* with what it finds.

(lexref:gen-search-for-ref hist) searches global variable list for a concept matching the
contents of *pgen-nodex, and replaces *pgen-node* with what it finds.

The following functions are used in gen-test functions:

(lexref:most-recent-ref var matcher list) returns true if the binding for var is eq to the
most recent object in list that matches matcher,

(lexref:not-most-recent-ref var matcher list) is the complement of
lexref:most-recent-ref.

(lexref:not-mentioned var list) returns true if the binding for varis not contained in list,
This function is useful for using phrases that generate full descriptions of objects the
first time that they are generated (e.g. “a large white cockatoo” vs. “the bird")

(lexref:mentioned var list) is the complement of lexref:not-mentioned.

Example pronoun definitions are given in the file PPtest pronoun.lisp, and sam-
Ple pronoun resolution demons are defined in the file parse demon.lisp. The function
pparse:run-demons is used to run demons spawned by the lexref package,

369

APPENDIX D

THUNDER Implementation Details and Source Code
Samples

This appendix contains implementation statistics and samples of the Common Lisp source
code from the current versiog of THUNDER. THUNDER 1s an experimental prototype and
an evolving system, so some design decisions were made for expediency and clarity instead
of being carefully engineered. The code in this appendix is about 15% of the tota] source
code for THUN DER, exclusive of Rhapsody and PPARSE/PGEN. The source is organized

In three sections: (1) processing code, (2) knowledge structure definitions, and (3) lexical
entries,

D.1 Implementation Details

THUNDER is written 1n Common Lisp [Steele Jr., 1984] and runs on an Apollo DN4000
workstation (25Mh MC68030 with 8MB RAM). The baseline version of THUNDER reads
Hunting Trip, Four O’Clock, answers 11 questions about each story, and also reads and
answers questions about the following four sentences:

2.1: To save money, John decided never to change the oil in his new car.
2.2: To get the money to buy a new car, John decided to rob a bank.
4.1: Little Billy’s mom gave him a spanking for pulling the cat’s tail.
4.2: Little Billy’s mom gave him a dollar for pulling the cat’s tail.

No attempt has been made to formally characterize the overall implemented system perfor-
mance; phrases and knowledge structures were included in THUNDER to hand]e the specific
examples and be compatible with the other examples. One measurement of system through-
put is the number of natural language sentences (stories, questions, and answers) and words
in the baseline I/0. These figures are given in table D.1, The number of input sentences
were compiled from the input stories, sentences, and questions and the output sentences are
the unique sentences that are generated during trace and question answering. The complete
top-level I/0 is given in appendix A.

370

| Read | Written Total ||
Number of sentences 36 114 150 |
Number of words (total) | 418 | 1960 2378
Number of distinct words | 140 | 171 233

Table D.1: THUNDER I/O Throughput

Component Lines of Code | Memory Used
Rhapsody 5035 564 Kbytes
PPARSE/PGEN 1482 175 Kbytes
THUNDER 9684 773 Kbytes
THUNDER knowledge structures | 2055 453 Kbytes
Phrases (interpreted) 6706 2727 Kbytes
Total 24962 4692

Table D.2: THUNDER Component Sizes

The size of the THUNDER system is 24.962 lines of code and takes 4.7 Mbytes of memory
in addition to 5.2 Mbytes for Common Lisp. There are five components of the systemn: (1]
Rhapsody, the knowledge representation package, (2) PPARSE/PGEN, the phrasal parser
and generator, (3) THUNDER processing code, (4) THUNDER's knowledge structures and
indexing discrimination nets, and (5) the phrasal library, The size of each component is listed
in table D.2. The sizes of the THUNDER processing modules are listed in table D.3. The
size of THUNDER's lexicon is given in table D.4.

The timing for THUNDER on the baseline sentences and stories is given in table D.5.

During its baseline processing of Hunting Trip, THUNDER spends approximately 18% of
the time parsing (4 calls to PPARSE} and 18% generating (20 calls to PGEN).

D.2 THUNDER Processing

The functions in this section implement THUNDER's high-level algorithms. Low-level func-
tions, such as the knowledge representation definitions, constructor and accessor functions.
predicates on knowledge representation primitives, and utilities, have been left out. The
functions are presented in roughly the order in which they are executed in a normal run of

THUNDER.

371

M Module

! Lines of Code [TVumber of functio

*

l Action 37 5
Bep 122 10
Bel 937 70
Bel-demon 196 10
Control 260 18
Ethic 140 9
Event 202 14
Evm 161 14
Evm-demon 226 14
Factual 24 1
Frame 93 9
Gf 15 2
Goal 343 30
Gp-demon 546 28
Gpm 1079 67
Gpmex 290 14
Irony 117 12
Location 150 12
Mode 69 3
Parse-util 500 37
Pf 170 7
Pmetric 38 5
Prag 147 9
Pschema 623 66
Punish 210 16
Ques 200 9
Reason 180 15
Reward 143 9
Role-theme 85 7
State 23 2
Story 77 9
Tau 108 10
Theme 303 15
Misc definition and load files 1547 36
Total 9684 602

Table D.3: THUNDER Module Sizes

Used for Number of Phrases | % of Total

Parsing only 76 11%

Generation only 192 26%

Both Parsing and Generation | 456 63%

Total 724 100%

Table D.4: THUNDER Lexicon Size

Selection Machine time (seconds) | Real time (seconds)
Example 2.2 1310.523 1567.940

Example 2.2 (no [/O)
Example 2.2 (full tracing)
Example 2.1

Example 4.1

Example 4.2

Hunting Trip

Hunting Trip (no 1/0)
Four O’Clock

Four O’Clock (no 1/0)

919.016
1570.844
840.781
784.996
970.543
2754.701
2512.227
5340.556
4667.216

1128.734
2334.743
946.872

1080.168
1280.195
3101.010
2607.098
5732.796
4828.938

Table D.5: THUNDER Timing

373

D.2.1 Top-level Control

The top-level control functions are called to initialize THUNDER and process stories. sey-
tences. and questions. This code is used in section 9.1 and 9.1.5 in processing Hunting
Trep.

(defun control:process-story (name Sentencas)
“NMain routine for story reading."
(control:reset)
{control:print-header)
(control:print-story DAme sentences)
(let ((story (control:init--tory name;))
(dolist (sentence sshtences)
(trace:fm: *english-traces "X %Processing santence: Bt 3
(control:print-sentence sentence)
(pparse santencas)
(control:process (ppnrlo:top-luvcl-vala)))
(if (not (thems:found? story))
(progn (control:-uko-forward-inf-renCcs)
(control:run-demons)))))

(defun ceatrol:process (cons-from-parser}
"Process the concepts produced by the parser.”
(contrul:tua-ngonda *Pparse-agendas)
(if (not (zerep (agenda:count *Pparse-agendas)))
{error “~YCOFTROL: pProcess, still active demons after parsing"))}
(if (not (avary $'avm:instance? cons-from-parser))
Cerrer “~%CONTROL: Process, non-event/act returned from parser ~a*
cons-from-parser))
;i load the concepts into svent Esmory
(dolist (coa cons-from-parser) (avm:load con})
(control:run-demons))

(defun control:make-forvard-inferences ()
“Find the first unrealized e¥ent, and mark it as realized."
(trace:fmt *thander~tracas
" "21°%Since a theme has not been found, making forward")
(trace:fmt sthunder-traces "“Xinferences in episodic nemory~i")
(lat ((event (gpm:search-~all-pschemas
%’ (lambda (pschema)
(let ((last-act (goal:act-cansing
(pachema:head-goal pachema)
ifilter #'action:realized?)))
(and last=act
(action:achieves
last-act
:filter #'event:not-realized?)))))))
(and event
(trace:fmt sthunder-traces " “iFound “a" eveat)
(gpm:update-pechema-for-aveat event})))

(defun control:generate-sentencs (sent)

(it (trace:on senglish-traces)

(progn

ii put a stopper oz reference list to prevent first gens as promouas
(push &stopper *lexref-peoples)
(push Rstopper-hc *lexref-peoples)
(let ((sent-gen {pgen sent)))

(control:print-sentence sent-gen))
(set? slezresf-pecples (remove kstopper *lezref-pecples))

374

(natsf *lexref-peoples (remove Estopper-hc *lexrar-people-))))
t)

D.2.2 Event Memory and Demons

The event memory routines and demons implement the Processing in the objective Jeve]
of the episodic Story representation (see section 6.1.1), The Tepresentation for actions an(
eVents is given in section 7.2,

Event Memory

(defun evm:load {com)
"Load a new act/event into event memory"
(if (not (inst:prop con 'dont-load)) ; hack for the pParser
(let ((node (evm:add con))}
(cond ((cv-:chuck-oxpllinod com)
ii this ¢lanse is ¢Xecuted if the parser
it decides to explain the Cancept.
(avm:3at-explained node))
((avent? con) (evm:load-event con node))
((action? con) (ewvm:load-act con node))
{t (error “~YEVN: bad concept to evm:load: "a-Y» con)))
node)))

(defun *vm:check-explained (con)
"Get the *xplaining Pschema/belief for ap item in event nemory."
(let ((other-con (cond ((action? con) (inst:get-link con Xcanses))

((event? con) (inst:get-link con &caused-by)))))
{or (inst:get~-link cop &in-pschema))
(inst:get-link con Eprovides-goal)
(inst:get-link coa dprovides-stats)
(inst:get-1link con &provides-plan)
(inst:get-link con Bprovides-belief)
(inst:get-link sther-con din~pachema)
(inst:get~link other-con &provides-goal)
(inst:get-1ink other-con Rprovides-state)
(inst:get-1ink other-con &provides-plan)
(inst:get-1ink other-con tprovides-belief))))

(defun svm:load-evaat (event node)
“Load an event intas event RemOTy, and spawn explanation demons."
(if (event:realized? event) (event:results-in event})
(agenda:add
(nd:agenda (story:ewm))
(demon:spawn (ovl.dclon:ovont-prodictod-by*plchull'nodo event))
2)
(agenda:add
(md:agenda (story:ewm))
(demon:spawn (crl_d-nn:cv-nt-by-nar-plchcnn aode event))
3

(defun evm:load-act (act node)
"Load an action inte event memory, and spawn explanation demons."

375

(evm:load (action:cause act))
(agenda:add
(md:agenda (story:eva))
(demon:spawn (cvu_dclon:nction-prodicted-by-pschana node act))
2)
(agenda:add
(md:agenda (atory:swm))
(demon:spawn (ov-_dtnon:lction-by-nou-pschena node act))
3)
(agenda:add
(md:agenda (story:eva))
(demon: spawn (evn_donan:lction-prorides-pschama noda act))
)
(agenda:add
(md:agenda (story:eva))
(demon:spava (cv-_do-on:action-protidcs-bcliaf node act))
3

Event Memory Demons

event. The action-by-new~pschemaand act lon-provides-pschema find pew PSchemas to
contain the action (see section v.4.2). If a PSchema cannot be found for an action, the demon
action-by-next-pschema waits until a new PSchema is loaded, and then tries to use it to
explain the action. The act-by-event and if-explained demons are used to implement
dependencies in explanation; if one conceptual structure is explained, these demons mark
the dependent structure as explained.

{demcn:define (cvn_dclon:lction-pr-dict-d*by-pnch-nl sva-node act)
(comment (test "Find an existing pschema to explain the action,")
{act "Update the Pschema to include the action."))
(kill (evm:explained? s¥m-node))
(test (gpm:search #’(lambda {pschema)
{and (pschema:find Pschema act
:scope ’internal
:filter $#’action:not-realized?)
pschema))
(action:actor act)))
(-act (let ((next-mede (aode:next ava-ncde}))
(if (evm:explained? next-node)
(evmiexplains-con (node:value next-node) act svm=node)
(proga
(agenda:add
(nd:agenda (story:evm))
(demon:spawn (ovm_demon:event-by-act next-node evm-node))
2)
(agenda:ada
(md:agenda (story:eva))
(demon:spawn (eva_demon:act-by-event svm-node next-aode))
2)
(agenda:add
(md:agenda (story:evm))
(demon:spawn (eva_demon:act ica-by-next-pachema
*¥h-node act(gpm:node {actien:actor act})))
NN

{+act (let ((pschema *teste))
(gp-:link-plch--a-tor—Ln-puchena pschema act)
(evm:set-explained svm-node))))

(demon:define (OVI-d-lon:nvont-prcdictod-by-pschaua evm-node event)
{comment (test "Find an existing pschema to explain the event.')
(act "Updata the Pschema to include the event."))
{kill (evm:explained? eva-nodse))
(test (gpm:search-all-pschemas
%’ (lambda (pschema)
(and (pschema:find pschema event
‘#cope ‘internal
:filter #'event:nor-realized?)
pschemal)))
(-act (agenda:add (md:agenda (story:evm))
(demon:spawn (.v-_d--on:cvcnt-by-noxt-plchlna
e¢vm-node event slast-gpm-nodes))
3N
(+act (let ((pachema stests))
(gpl:link-pschela~for-in-pschoua pPschema event)
{evm:set~explained evm-node))}))}

(demon:define (-rl_d--on:tction-by-now-puch‘na evm-node act)

(comment (test "Find a new pschema to explain the action.")
(act "Update the pschema to include the action."})

(kill (evm:explained? svm-nodae))

{test (gpm:find-pachema act ipsclass t))

(-act t)

(+act (let ({pschema stests))
(gpm:load-pschema pschema act kin~-pechema)
{evm:set-explained svm-node))))

(demon:define (cv-_donon:action-providos-pschala eva-node act)
(comment (test "Find features of the action to find "
"4 new puchema to explain the action.")
(act "The action provides the nas pschema."))
(kill (evm:explained? evm-node))
(test (and {aq (action:type act) ’mbuild)
(action? (action:ebject act))))
(-act t)
(+act (lets ((object (action:object act))

(pschema (gpm:find-pschema object :psclass t)})
(gpm:load-pschems pachema object Rin-pschema)
(gpm:link pschema act &providesa~plan)
(evm:set~explained evm-node))))

(demon:define (oru,dc-on:actiol-providnl-bolior eva-node act)
(comment (test “Fiad features of the action to find
" & mew belief to explain the action.")
(act “The action provides the new belief."))
(kill (evm:explained? evm~zode))
(test (and (eq (action:type act) ’mbuild)
(or (strategy-belief? (action:object act))
{character-assessment? (action:object act))})))
(~act t)
(+act (let ((belief (action:object act)))
(bel:1load-beliat belief act Sprovides-belief)
(evm:set-explained svm-node))))

(demon:define (ovl_dclon:lction-by-ncxt-pcchcuu eva-node act last-aode)

(comment (test “Vhen a new pachema ia added to memory,")
(act “see if the pschema includes the action."))

377

(kill (evm:explained? svm-~-node})
(test (not (eq last-noda (gpm:node (action:actor acell)))
(*act (let {{pschema
(gpl:l-lrch~puchonal-:o-node
last-node
%' (lambda (pachema)
(and (pschema:fing pPschema act
!SCope 'internal
:filter #'action:not-realized?)
pschema)}
(action:actor act))))
(if pschema
(progn (gpn:link-pnchoun-fot-in-pachnun pschema act)
(evm:set-explained eva-noda))
(agenda:add
(ad:agenda (story:ewm))
(demon:spawn
(-v-_dc.on:action-by-nox:-pschnl;
¢vm-node act (gpm:ncde (action:actor act))))

3NN

(demon:define (orl_dolon:act-by-cv-nc act-node svent-naode)
(comment (test “Vhen an event is explained,")
(act ‘“mark the act that Caused it as explained."))
(kill (eva:explained? act-node))
(tang (evm:check-erplained (node:value avent-node)))
(+act (let ({pschema “tents)
(act (node:value act-node}))
(evm:set-explained act=-node)
{and (inst:link (node:value event-node) kin-pachems)
{pschema:match Pschema act :scope 'internal)
(gp-:1ink-plchcnn-for~in-pschala Pachema act)))}))

(demon:datine (nvu_dclon:if--xpllinod conl node-con)
(comment (test "Find a node containing a <oncept.*)
{act "Fire a demon to explain the concept from"
"an interior concept.'))
(test (evm:search-nodes
#'(lambda (node)
(if (aq (node:value node) node-con) node))))
(tact (agenda:add
(nd:agenda (story:eva))
(demon:spawn (evm_demon:if-explained? *test* conl ncde-con))

an

(demon:define (avl_donon:i!-oxplaia.dz sYm-node con node-coa)
(comment (test “If aa interior concept is ¢xplained by & pschema,")
(act “mark the concept that contains it as explained."))

{kill (evm:explained? evm-anode))
(test (evm: check-explained coa))
(+act (evm:set~explained sva-node)
(evm: explaing-com con node~con evm-noda)))

D.2.3 Intentional Memory and Demons

The intentional memory routines and demons implement the processing in the intentional
level of the episodic story representation (see section 6.1.1). The code is broken down into six
subsections: (1) plan identification, (2) plan loading, (3) plan explanation, (4) plan updating.

378

(5) goal/plan demons, and (6) goal failure demons.

Plan Identification

The plan identification routines identify new PSchema from conceptual objects as describer
in section 7.4.2.

(dafun gpm:find-pachema (obj akey paclass)
"Find nominal pschema from obj (act, goal, event, state)."
(trace:fmt sgpm-traces ""YGPN: Searching for pschemas containing object ~a"
obj)
(let ((pschema
(cond ({and (member (inst:class ¢bj) (list kaction kevent))
(inst:get-link obj &in-pschema)))
((and (member (inst;class obj) (list Rgoal kaction Reveat))
(inst:get-link obj tprovides-plan)))
((and (member (inst:clasa obj} (list kgoal taction Revent))
(inst:slot obj 'psclass)
psclass
(not (var? (inst:slot obj ‘psclass)))
(pachema:build-from-obj (inat:slot obj ’‘psclass} obj)))
({gpm:find~pschema-in-lta obj))
((rol--the-a:gct*psch-la-trol-obj objl)
(t nil))))
(if pschema
(and (trace:fmt sgpm-traces ““YGPN: Found pschema “a" pschema)
pschema)
(trace:fmt egpm-traces
""%ees"YWarning CPM: find-pschema - "a TaTiesan
“no pschema found from” obj))
pschemal)

(defun gpm:find-pschema-in-ltm (abj)
"Find pschema for obj from long term memory."
(dolist (dnode (dn:search *dnet-findpschemas obj))
(let ({(pachema (pschema:build-from-erpect (dnode:value dnede) obj)))
(and pschema (return-from gpa:find-pschema-in-ltm pschema)))))

(defun gpm:find-pachemas-in-1ltm (obj)
"Find all pschemas in 1tm for an obj. Raturns a list of pschemas."”
{utils:map-remove-nils
%' (lambda (dnode) (pschema:build-from-expact
{dnode:value dnode) abj))
(dn:search sdmet-findpschemas objl))

Plan Loading

The PSchema loading routines put the new PSchema into the intentional level of the episodic
story representation, check for goal and value failures that motivation other plans, and spawn
demons to explain the new PSchema (see section 7.4.2).

(defun gpm:load-pschems (pschema from-obj link kkey link-struct)
"Load a nev pschema into gpm from from-e¢bj by link."
{cond ({var? (pschema:actor pschema)})
(agenda:add (md:agenda (story:ewam))
(demon:spawn (evm_demon:vait-for-actor

379

Pschema from-obj link link-struct))
10)
(grm:link pschema from-obj link ‘link-struct link-struct)
nil)
((net (member pschema (inst:link from-obj link)}}}
(trace:fmt *thunder-traces
""%°% Loading pschema -a to GPM from ~a by ligk “a»
pschema from-obj link)
(gpm:memory (pschama:actor pschema))
(dolist (internal-pachema (plchena:intornnl-pschcnll pschema))
(sets (inst:prop internal-pschema ‘parent-pschema) pscheaa))
(gpm:link pachema from-obj link :link-struct link-struct)
(if suse-defaultss (psch..a:rtplacn-vars-vith-d-fanltl pschema))
(let ({node (gpm:locad pschema)))
(gpm:chack-for-failures pachema)
(trace:fat *gpm-traces ""YGPM: “a pechema "a motivation”
“Spawning demon to find" Pachema)}
(agenda:add (gpm:agenda (pschema:actor pschema})
(demon: spawn (gp,denon:plan-uotivation pschema))
10)
node))
(t (trace:fmt ‘gpa-traces
""LGPN: Pschema "a already loaded from ~a “p*
Pechema from-obj link)
(gpm:check-for~failures pschema)
(trace:fat *gpm-traces “"YGPN: "a pschema “a motivation”
"Spauning demon to find" Pschema)
(agenda:add (gpm:agends (pschema:actor pschema))
(demon:spawn (gp.demon:plan-motivation Pschema))
10)
(or (gpm:search-nodes #'{lambda (node)
(if (eq pachema (node:value node)) nods))
(pschema:actor pschama})
(gpm:load pschema)})))

(defun Epm:check-for-failures (pachema)
"Check pschema for goal failures."
(if (pschema:mode pschema)
(gp-:choch-for~p1lnnor-£ailnr-l pschema)
(let ((failures (pschema:goal-failures Pschema}))
(gpm:process-failures pachema failures)
(if (pschema:failura-pschena? Pschema)
(agenda:add
(gpm:agenda {pschema:actor pschema})
(demon:spawn (‘p_d-onz-xplnin-gf-cho-a Pschema})
10I1)))

(defun Epm: check~for-planner-failyres (pschema)
"Check pachema for Planner failures based on the mode."
(let ((mode (pschema:mode pechema)))
(trace:fmt sgpa-traces
"“YIGPH: Checking pschema “3 ¥ith mode “a for goal failures"
pPschema mode)
(lat ((goal-failures
(cond ((inst? mode)
(pschema:get
Pschema Egoal :scope ‘all
:filter #'(lamdda (goal)
(pschema:match-inst
pschema mode
(goal:success-state goal)))))
(t (pschema:get

pechema &goal :scape ‘'al]
ifilter #'goal:failure?)))))
(cond (goal-failures
(trace:fmt sgpa-traces " “1GPN: Found goal failures "4
goal-failures)
(dolist (gf goal-failures)
(if (goal:value? gt)
(gpm:procesa~failed-value gf pachema))
(agenda:add
(gpm:agenda (pachema:actor pschema))
(demon:spagn (gp_donon:vxolat-d-goal gf))
103))
(t (trace:fmt wgpm-traces "~YGPN: §o Goal failures found"}}))))

(defun gpm:process-failures {pschema goal-failures}
"Loop through goal failures in pschema for goal failure specific
Processing.
(dolist (gf goal-failures)
(cond ((not (inst? (goal:actor gLl
(agenda:add (gpm:agenda (pachema:actor pschema))
(demon:spawn (gp-demon:find-gf-actor pschema gf))
10})
{((goal:value? gt) (gpm:process-failed-value 8% pschema))
;i ad hoc rule for failed d-know goal that blocks a plan
((and (eq (goal:type gf) ‘d-know)
{not (eq (goal:status 81) 'axpected-to-fail)))
(let ((blocked-pachema (gpm:find-pschema gf :paclass t)))
(and blocked-pschema
(gpm:load-pschema
blocked-pschema pschema Eps-blocked-by
:link-satruct
(gpm:make~pschema-blocks
g% (pachema:find blocked-pschema gNINNN

(defun gpm:procesa-failed-valus (gt pschema)
"Load recovery or avoidance Plan from a value failure in pschema.”
(trace:fmt sthundez-traces “"L7X Processing failed value -a in “a"
¥ pachema)
(cond ((or (goal:thwarted? gf) (goal:mode-neg? gf})
(gpm:load-recovery-plan pschema gt))
({goal:motivated? gt}
{gpm:load-avoidance-plan Pschema gf)))
(cond ((eq (pachema;:actor pschema) (goal:actor gf))
(agenda:add
(gpm:agenda (pschema:actor pschema))
(demon:spasn (gp.demon:suspends-valve? pschema gt))
10}) :
((goal:thwarted? gf)
(agenda:add
(gpm:agenda (pschema:actor pschema))
(demon:spawn (gp-demon:explain-caused-value-failure peschema gf))
10))
((goal:motivated? gr)
(agenda:add
(gpm:agenda (pschema:actor pschemal)
(demon:spamn (gp-demon:erplain-motivated-value-failure pschems gf))
10))
(t ail)))

(defun gpm:load-avoidance-plan (pschema goal-failure)

"Lead the avoidance plan for a goal failure in a pschema.”
(trace:fat sgpa-traces

381

"TUGPM: Searching for avoidance plan for -a i “av
goal-failure pschema)
{if wuse-defaulrgs
(plchcnu:r-plac--va:l--ith-dcfaults pschema))
(late ((avoidlnco-goll (gonl:nvoidanco—gual goal-failure))
(avnidanco*p-chcll
(gpm:find-pachema avoidance-goal :paclass t)))
(ir avoidance-pachema
(and (trace:famt *EpPR-traces ““YIGPN. Found avoidance plap ~a"
avoidance-pachema)
(gPm:load-pschema
avoidance-pschema pschema Eps-goal-motivates))
(trace:fmt *gpm-tracee ““YGPN: No avoidance plan found")}))

Plan Explanation

based on the intentional links between the PSchema (see section 7.4.1).

(defun gp--x:lonrch-fur-plan--otivatiun (pschema}

“Root routine for Pschema axplanation.”

(trace:fmt sgpmex-traces

" AGPNEI: Searching for motivation for pachema “a"
Pschema)

(or (gp-ox:lolxch-gpl-for-plln-lotivation pschama)
(gpnax:soaxch-gp--tor-sido-of!act~notivation Pachama)
(5p-nx:tind-now—p1an pschema)
(gp-ox:loa:ch-gp--for-instru-nntal-to pschema)
(gplox:soarch-gp--for-othorl-plnn pschema)))

(defun gpmex: Search-gpm-for-plan-motivation (pschena)
"Is there a plan in Bemory that the pschema snables?"
{let ((enables-struct
(gp-:lcaxch-plchcnaa
¢’ (lambda (test-pachema)
(gp-:tc-t-p-cha-a-for-goal--nnblcl test-pachema pschema))
(pschema:actor Pechema))))
(and enables-atruct
(let ((enabled-pschema (plchcnl:link-struct-onablod-pachlln
snables-struce)))
(gpm:1link *abled-pachema pachema &pe-goal-enables
:link-struct snables-struct)
snabled-pschema))))

(defun ;p-ox:lcqrch-gy-fo:-l1do-tfrnct-nt1vntion {pschema)
"Is there a plam ia Bamory that pschema side-effect enables?"
(let ((enables-struct
(gpm:search-pachemas
$:(lambda (test-pschema)
(;p-:tolt~psch¢-n-!or--idc-crfcct-onablo-
test-pschema pschema))
(pschema:actor pschema))))
(and enables-struct
(let ((enabled-pschema (pschc-a:link-lcruct-cnablod-pachcln
snables-struct)))
(gpm:link enabled-pachema pschema fps-side-effact-enables
:link-struct enables~struct)
snabled+pschema))}}

382

(defun gpmer:search-gpm-for-instrumental-to {pschema}
"Is there a plan in memory that pachema 1s instrumental to?"
(let ((instr-struct
(gpm:search-pschemas
&' (lambda (test-pschema)
(gpm:test-pachema-for-instrument test-pschema pschema))
(pschems:actor pschema))))
(and instr-struct
(let ({instr-pachema (psch--;:1ink~struct-inatr-pschena
instr-struct)))
(gpm:link instr-pschema pschema dps-inatrumental-to
:link=-struct instr-struct)
instr-pschema))))

(defun gpmer:find-nee-plan (pschema)
“Find a new plan that pschema snables, inatrumentes, etc."
(let ((found-pschema (gpm:find-pschema (pschema:head-goal pachemal}}))
(and found-pschema
(or (let ((enables=struct
(gpm:test-pachema-for-goal-enables
found~pschema pschema)))
(and enables-struct
(gpm:load-pschema
found~pschema pschema ips-goal-enables
ilink-struct enables-struct)
found-pschema))
(let ((instr-struct
(gpm:test-pschema-for-instrument
found~pschema pachemal))
(and instr-struct
(gpm:load-pschema
found-pschema pschema Eps-instrumental-to
ilipk-struct instr-struct)
found-pschemal})
(let ((enables-struct
(gp-:tolt-plchnnl-for-goal-nnablcu-othtrs-plln
found~pschema pschema)))
(and enables-struct
(gpm:load-pachema
found-pschema pschema kps-goal-enables
:link-struct enables-struct)
found-psachema))
(let ((instr-struct
(gp-:tc-t-plch-ll-tor-instru'nntl-othcrl-plln
found-pschema pachema)))
(and instr-struct
(gpm: load-pachema
found-pschema pschema kps-instrumental-to
:link-struct instr-struct)
found-pschema))
(errer "~XOPMEX: find-new-plan “a “a from “a"
"noe link for foumd pachema"
found~pschema pachema)))))

(defun gpmex:search-gpu-for-others-plan (pschema)
“Is the a plan for another that pschema enables?”
(let ({enables-struct
(gpm:seurch-all-pechemas
8’ (lambda (test-pschema)
(gpm:test-pschama~for-goal-enables-others-plan
test=pschema pschema)))})
(and epables-struct

383

(let ((enabled-pschama (pschnma:1ink-struct-enablad—pgcha.a
enables-stryct)))

(gpm:1link enabled-pschema pachema tps-goal-enables
:link-struct enables-struct)

{agenda:add
(gpm:agenda (pschema:actor Pachama))
(demon:spawm

(gp_denon:othors-plan-motivation
{pschema:actor Pachema) enabled-pschema))

5)

enabled-paschema})}))

Plan Updating

The plan update routines propagate information between Jinked PSchemas when events are
realized, and goals succeed or fail. For example, gpu:update-pschiema-for-event marks
motivated goals as active. thwarted goals as failed, checks for a completed plan to propagate
the effects of the event to enabled PSchemas, and checks for forced events in other PSchemas.

(defun gpa:update-pschema-for-act {internal-act)
"Update pschema for realized internal act."
{action:set-status internal-act ‘realized)
(gpm:update-pachema-for-event (action:cause internal-act)))

(defun gpa:update-pschema-for-evant (internal-aevent)

"Update pechema for realized internal event."

(let ((pschema (event:pachema internal-event)))

(event:set-status internal-event 'realized)

(event:results-in internal-event)

(let ({thvarted-goals (inst:link internal-event &thwarts)))

(dolist (thwarted-goal thvarted-goals)
(trace:fmt sgpm-tracas
"TXGPN: Setting "& to failed"
thearted-goal)
(gp-:npdatc-pachola-for-goal-failnrc thearted-goal)))
(let ((motivated-goals (inst:link internal-event dmotivates)))
(dolist (motivated-goal motivated-goals)
(trace:fmt sgpm-traces
“"XGPM: Setting "a to active"
motivated-goal)))

(and (eq intermal-svent (car (last {inst:slot pachema ’plan))))
(pschema:head-goal pschema)
(;pl:npdntc-pucha-n-for-cuuplatld-plan Pschema))

(gp-:npd:tc-plchc-n-chock~1tc---nnb1-| internal-svent)

(let ((forced-evemts (inst:link internal-event kforces)})

(dolist (forced-event forced-avents)
(tTace:fat sgpm-traces
""XGPN: Setting "a to realized"
forced-event)
{gpm:update-pachema-for-evant forced-event))}
(gp-:npdn:c-puchc.a-chnck-1tcn-fo:cl- internal-event)
(if (dolist (link-struct {pschema:link-structs pschema) t)
(it (eq (pschema:link-struct-forcing-event link-struct)
internal-event)
(return-from nil ail)})
(dolist {exeveszate (event:forces-external-events internal-event))
(let ({forced-event (car sxevestats))
(forced-pschema {gpm:build-forced-pachenma

384

SXevvstate pschema internal-event nil}))
(and forced-pachema
(gpm:update-pachema-for-avent forced-eventl)}}))))

{defun gpm:update-pachema-for-completed-plan {pachema}
"Update pschema for completed plan. Progate to head goal and enables."
(trace:fmt sgpm-traces "~YGPN: Completad plan in pschema ~a" pschema)
ii first check ocut the plan
(dolist (plan-item (pschema:plan pschemal})
(cond ((goal? plan-iteam}
(cond {({goal:succeeded? plan~item))
;i might want to infer that snabling pschema succeeded
((pschema:enabling-ites plan-item)
(erzor "“YGPN: planning errer for g94l “a in pschema "a"
plan-item pschema))
(t (goal:set-status plan-item 'inferred-succesded)
(trace:fmt sgpm-traces
“"XGPM: Inferring goal ~a in P3chema "a succesded”
plan-item pachema)
(gpa:update-pachema-check-item-enables
plan-item})))
((event? plan-item)
(cond ({eq (inst:slot plan-item *status) ‘realized))
{t (error
"T%GPE: planning error for event "a in Pschema “a'
plan-item pschema))))))
(trace:fmt sgpm-traces
"“XGPN: Inferring head-goal “a in pschema “a succeeded™
(pschema:head-goal pschema) pschema)
(goal:set-status {pachema:head-goal pachema) 'inferred-succeeded)
(gpm:update-pschema-check-item-enables (pschema:head-goal pschema)}
(gpm:update-pachema-check-item-instrumental
(pschema:head-goal pschema)))

Goal/Plan Demons

The goal/plan demons implement delayed processes that search for plan motivation, and
infer PSchemas that connect actions to goals.

(deman:define (gp_demon:plan-motivation pachema)
(comment (test "Find motivation for a plan.")
{act "If not found, spawn demon to search for it."))
(xill (gpm:check-explained pschema))
(test (pschema:value-pschema? pschema))
(+act (agenda:add
(gpm:ageada (pachema:actor pschema))
(demoa:spawn (gp_demon:check-for-taus pschema))
20 .
(agenda:add
(ad:agenda (bel:believer-memory &thunder))
(demon:spasn (bel_demon:evaluate-plan pschema))
10))
(-act (agenda:add
(grm: agenda (pschema:actor pachema))
(demon:spawmn (gp.demon:search-for-plan-motivation pschema))
£))) :

(demon:define (gp_demon:search-for-plas-metivation pschema)
(comment (test "Search for motivation for a plan.")

385

(act “Include the motivation in goal/plan Remory."))
(kill (gpm:check-explained Pachemal)
LETTTY (gp-ox:nqaxchftor-plan-uotivntion Pschema))
(+act (trace:fmt *gpm-traces “"YGPN: Found motivation ~a' etesats))
(-act (let ((acter (pachema:actor Pschema)))
(agenda;add
{gpm:agenda actor)
(demen:spasn (gp_donon:ch-ck-for-plan-motivation
Pschema (gpm:node actorl)})
10)1))

(demon:define (gp,dcnon:chnck-for-plnn-notivntion Pachema last-nade)
{(comment (test "When new gPm nodes are added, ")
(act "Search for plan motivation'))
(test (not (eq (gpm:nods (pschema:actor Pachenal)) last-node)))
(*act (agenda:add (gpm:agenda (pschema:actor pPachema))
{demon:spawn (gp_deuon:soarch-fut-plan-lotivntion
pschema))
10}))

(demon:definge (gp,dllon:lct-unablal-goal act goal)
(comment (test "Figure out how an action *nables a goal pschema”)
(act “Include the pschena in goal/plan memory."))
(test (and {avm:check~explained act)
(gpm:find-pschema goal :psclass t)))
{-act (agenda:add (gpm:agenda (action:actor act))
(demon:spawn (gp,dclon:lct-onabloa-gonl2
&ct goal))
10))
(+act (let ((goal-pschema *teats)
(act-pschema (evm:check-explained act)))
(gpncx:chock-p-cho-n-onablol 2ct-pachema goal-pschama))))

(demon:define (gp_dclon:lct-cnnblol-goal2 act goal)
(comment (test "Figure out how an action snables a goal")
(act “Include the Pschemz in goal/plan mencry."))
{test (evm:check-explained act))
(-act (agenda:add (gpm:agenda (action:actor act))
(demen:spawn
(gp_do-on:ovont-onnblna-goal
(action:canse act)
goal))
10})
(+act (gp-nx:lonrch-fox-qnnhlol-lotivation *tasts goal)))

Goal Failure Demons

The goal failure demons are fired from the plan loading routines when a plan causes a value

failure for the planner or another. The explain-caused-

value-failure demon checks for

a punishment plan motivating a value failure, and explain-gf-by-plan-failure tries 1o
identify the Planning problem that resulted i a goal failure (see section 7.4.3).

(demon:define (;p_dtlon:cxplain-cauaod-valno-failurc
pschema-causing-gt gt}
(comment (text "Find a motivation for causing a value failure®
“for amother”)
(act “Include the explanation in GPN"))
(kil1l (gpm: check-explained pPachema-causing-gf))

(test (and (inat? (goal:actor g
(bol:find--otirating-bnlief-!or-gﬁ
(paschema:actor pschema-causing-gf) gf}))
(*act (let ({motivating-belief stests))
(gpm:load-punishment-pschema
(punish:find-punishment-schema
(pschema:actor pschema-causing-gf) (goal:actor gf)
motivating-belief gf pschema-causing-gf)
motivating-belief pachema-causing-gf))))

{demon:define (gp-demon:explain-gf-by-plan-failure gt)
(coument (test "Find a planner action that caused a goal failure")
(act "Build the reascn that the act caused tha
"goal failure."))
(test (goal:act-causing-failure
gL ifilter #’(lambda {act) (eq (action:actor act)
{goal:actor g£)))))}
(-act (trace:fmt sgpm-tracaes
"TXGPM: No plan failure found")}
(+act (let ((act stests})
{pf:check-for-plan-failure act gf)
(let ((causing-event (goal:event-causing-failure gt)))
(if (aq (event:mode causing-event) ‘unezpected)
(irony:check-for causing-event gf})))))

D.2.4 Belief Memory and Demons

The belief memory routines implement processing at the belief level of the episodic story
representation (see section 6.1.1). When high-level plans are recognized, the belief routinex
are executed to identify and load THUNDER's beliefs and infer the beliefs of the stor

characters,

Belief Memory

The belief memory routines control the loading of beliefs and initiate evaluative processing.
as described in section 6.2.1.

(defun bel:process-plan (pschema)
"Generate and load beliefs about value pschemas."
(cond ((punish:schema? pschema)
(punish:evaluate pschema))
({revard:schema’ pachema)
(reward:evaluate pachema))
(t
(let ((thunder-bel (bel:generate-thunder-belief pschema)))
(bel:load thunder-bael)
(if (bel:reason-for thunder-bel)
(progn
(control:generate-belisf thunder-bel)
(bel:make-inferences thunder-bal)
(control:gensrate-inferences thunder-bel)
(let ((actor-bel
(bel:load (bel:generate-actor-belief
pschema (pschema:actor pschema)))))
(control:generate-belief actor-bel)
(it (not (eg (bel:valence thunder-bel}

387

(bel:valence actor-vell}))
(bepiprocess-balief thunder-bel actor-bei))))ihy)

(defun bel:load-belief (belief from link}
"Load a belief into belietf memory.'
(cond ((not (member baelief (inst:link from link}})
{(trace:fmt sthunder-tracas
""%"%Loading belief "a to belief memory from “a by link ~“a"
belief from link)
{bel:memory (bel:believer belief)}
(inst:add-link from link belief)
(let ((node (bel:icad belief)))
{cond ((strategy-belief? baliet)
(bal:load-strategy-beliaf balief))
({charactar-assesament” belief)
(inst:add-link
(bel:character belief) kassessed-by belief)
(agenda:add
(md:agenda (bel:believer-memory &thunder))
(demon:spawn {bel_demon:check-assessmant belief))
10})
(t mil))
node))
(t (trace:fmt ¢bel-traces
“TYBEL: Belief “a already loaded from "a ~a” belief from link))))

(defun bel:load-reward-and-punishment-belisfs {pschema bcp)
"Generate and load beliefs from revard and punishment plans."
(let {(thunder-bel (bel:generate-thunder-belisf pachema)))
(if (and bep (not (bel:eval-aq? 'negative (bel:valence thunder-bel))))
(let ((reason-for-neg
(reason:get-belief (bcp:reason bep) ’bindings))
(cld-reasons-for-neg
(inst:link thunder-belkreason-for-neg)))
(inst:clear-links thunder-bel treason-for-neg)
(bel:prioritize-neg=-bel-reasons
thunder-bel
(cons reascn-for-neg ald-reasons-for-neg))
(setf (bel:valence thunder-bal) ’negative)))
(bel:load thunder-bel)
(control:generate~belie? thunder-bel)
(bel:make-inferences thunder-bel)
{control:generate-inferences thunder-bel)
(lat ((actor-bel
(bel:load (bel:generate-actor-belief
pschema (pschema:actor pschema)))))
(control: gemerate-belief actor-bel)
(if (not (eq (bel:valence thunder-bel)(bel:valence actor-bel)})
{bcp:process-belief thunder-bel actor-bel))
(and bep
(inst:add-1ink bcp Efrom-belief thunder-bel)
(inst:add-link bcp &from-belief actor-bal)
(story:load bep)
(bep:spasn-resolution-demon bep (gpm:node (bep:actor bep))INY)

Belief Demons

Belief demons are spawned from TAU and BCP recognition to search for a resolution. When
a resolution is found, these demons initiate the thematic construction algorithms (see section

6.2.2).

{demon:define (bol_dauon:chcck-for—bcp-resolution bep last-node)
(comment (test "When new nodes are added to GPNM,)
(act "Check for BCP resclution™)}
{test (not (eq (gpm:nodae (bepiactor bep)) last-node)))
(+act (bcp:apain-rnaolution-demon bcp last-node)))

(demon:dafina (bql_demon:resolve-bcp bep last-node)
(commant (test "Search for 3 goal failure for an actor,")
{act “Resolve the BCP))
(tast (5pl:lnarch*pschanau-to-nodo last-node
t’pschcna:failuro-pschema?
(bep:actor bep)})
(+act (bel:load (bal:ganerate-ncn-gc:or—balief
(bel:content {bcp:balief bep))
(bep:actor bep)))
(theme:find-themas becp stasts))
(-act (agenda:add
(ad:agenda (bol:bclintur-monory &thunder))
(demon:spawn (bcl_daaon:chcck-rorvbcp-rcaolution
bep (gpm:node (bep:actor bep))))
10

(demon:defina (bcl_du-on:chcck-for-tau-ruuolution tau last-node)
(comment (test “When new EPm nodes are added,")
(act “"Check for TiU resolution”))
(test (not (eq (gpm:node (tau;planner tau)) last-gods)))
(+act (:au:npawn-rclolution-dcnnn tau last-node)))

(demon:define (bel_demon:resolve-tay tay last-node)
(comment (test “Search for a goal failure for an actorm")
(act “Resolve the TaU"))

(test (gpm:ssarch-pachemas-to-pode
last-node
t’p.chonl:fliluru-puchcnn?
(tau:planner tau)))

(+act (theme:find-themes tan *teste))

(-act (agenda:add
(md:agenda (bel:believer-memory &thunder))
(demon:spam (bol,dc-on:chcck-for-ttu-rololution

tan (gpm:node (tau:planner tan))))

10)})

D.2.5 Discrimination Networks

Discrimination networks (d-nets) are used in THUN

DER to implement rules and to index

frames. There are three d-nets in THUNDER: (1) act-causes, which returns the nominal
event cause by an action (see section 7.2). (2) event-forces, which stores events that are
causally forced by events, and (3) find-pschema, which provides potential PSchema from
conceptual objects (see section 7.4.2). The entries in the event-forces d-pet are similar to

the entries in act-causes, and are omitted here.

389

Act-Causes D-Net

The discrimination net act-causes is used 1o store default ryles about the events causee]
by actions. These three entries are for MBUILD actions (building mental concepts, used for

“decided” and “is convinced”). The three entries discriminate on the object of the MBuiLp.
The rules represented in the entries are that an MBUILp (1) of an action means that the
actor intends to execute the action, (2) of a goal means that the actor has the goal, and |3
of a strategy belief means that the actor is the believer of the belief.

(dn:index *dpetact->causase
(action nil
‘'type ‘mbuild
‘actor Tactor
‘object (action nil))
iis list of inst w/ vars and caused event
(list (action njl
‘type ‘mbuild
‘actor ?actor
’object ?object)
(event nil
‘object Tactor
'Prop kactor-intends
'to ?objact)))

(dn:index ¢dnetact->causess+
(action nil
‘type ’'mbuild
'actor Tactor
‘object (goal nil))}
(list (actiom mi]
‘type ‘mbuild
'actor 7actor
’object ?abject)
(event nil
‘object ?object
'Prop 'actor
‘to Tactor)))

(dn:index *dnetact->causess
(action mil
'type ‘mbuild
'actor Tactor
‘object (strategy=belief ni1)))
(list (actiom mil
‘type 'mbuild
‘actor Tactor
'object Tobject)
(event nil
‘object Tobject
‘prop 'belisver
‘to Tactor)))

Find-PSchema D-Net

The discrimination net find-pschema is used to find potential PSchema from conceptual
objects (see section 7.4.2). The entries in this section show actions being used to index

PS:Remove-control and PS:light-fuse (both used in Hunting Trip), the event of a truck being
destroyed used to index GF:Damages. and the conceptual object for “explosive’ used to index

PS:Blow-up.

(dn:index sdnet-findpschemas

(action mil

’type 'atrans

‘actor (human ’'fps-atranal-hum)

’object (animate nil

‘status ‘alive)

"to ‘enile

‘from kfps-atransi-hum)
(pschema-expactation nil

'pachema &ps-remove-control))

(dn:inder *dnet-findpschemas
{action nil
’typs ’ptrans
'actor (human nil}
’object (fire-obj nil)
’to (explosive nil))
(pschema-expectation nil
‘pschema Ekps-light=-fuse))

(dn:index sdnet-findpschemas
(event nil
'object {automobile nil)
'prop ‘status
‘ta ‘destroyed)
(pschema-axpactation nil
'pschema kgf-damages
'proc #’(lambda (pschema event)
(frame:set-slot
pschema
‘victim
(inst:get-link (inst:slot event ‘object)
&poss-by)))))

(dn:index sdnet-findpschemas
(explosive nil)
(pschema-erzpectation nil
‘pschema kps-blow-up
'proc #’(lambda (pschema expl}
(frame:set-slot pachema ‘erplosive expl)
(frame:set-slot pschema
'blown-obj
(inst:get-link expl kattach)))))

D.2.6 Knowledge Structure Processing

The knowledge structure routines implement the rules and heuristics to construct and reason
about evaluative belief, plans, and BCPs. The code in these sections is used by the demons
to test and construct new parts of the episodic story representation, based on the structures
that have already been loaded.

391

Beliefs about Value Importance

For goal importance warrants (section 2.3). these routines determine which value is more

important. based op an actor's tdeciogy.

(defun bel:more-important (actor goalt goal2)
"Return more important goal for actor."
(cond ((puninh:instruction-goal? goall)
(bol:-oro-ilportant-puniahn-nt actor goall goall))
((punilh:ins:ruction-goll? goal2)
(b-l:-orn-i.portant-punilh-on: Actor goal2 goali})
(t
(lets ((ideol (bcl:bqli-var-idoology actor))
(value-list (bel:mod-value-list
(bel:ideology-values ideol)
(bel:get-class actor &preference-beliesr))))
(Let ((valt (length (member (goal:type goall) value-1list}))
(valZ (length (meaber (goal:type goal2) value-list)}))
(cond ((> vali val2) goall)
((< vall val2) goall)
({eq goall goal2) goall)
7i value types are equal
((eq (goal:typa §oall) ’p-possessions)
(bol:Iorc-i.portant-possoslion actor goall goall))
({eq (goal:type goall) 'p-health)
(bcl:noro-ilportcnt-honlth Actor goall goall))
(t (bol:-oro-i.portant-utatus
actor goall goal2))})))))

(defun b-l:nor--i-portnnt-polaclnion (actor goall goald)
"Return more important possession goal."
(let ((object~clagst (inst:class (goal:object goall)))
(ebject-classz (inst:class (goal:chject goal2)))
(cond ((and (#q objact-classi object-class2)
(eq object+class1 imoney))
(et ((cost1 (inst:slot (goal:object goalt) ‘amt))
(cost2 (inat:slot (goal:object §oal2) ’amz}))
(cond {(eq costi cost2) nil)
({and (inst? costt) (automobile? cost1))
goall)
(Cand (inst? cost) (automobile? cost1))
goal2)
(t 2i1)1)))
({and (eq object-clagsl &automobile)
{eq object-class2 kmcney))
goall)
(t ail))))

Evaluative Belief Construction

(dafun bel:generate-thunder-belief (pschema)
“Generate thunders belief aAbout pschema."
(trace:fmt sthonder-traces

109

“'I'Iccnarlting THUNDER's evaluative telief about ~a”y"
pschema)
(let ((pos-rsasons
(append
(prag:3on-rltn-pos-zoasonn Pschema kthunder)
(ethic:ganearate-pos-reasons pschema kthunder)))
(neg-reascns
(append
(prlg:gcn-rutc-n-g-r-qsons pschema &thunder)
(c:hic:5-u.rat.~nog-r-nsonl pachema &thunder})))
(let ({new-bel (bal:create &thunder pschema)))
(bcl:prioritizo-pul-bcl-roaxons pe@~bel pos-reasons)
(bcl:prioritizu«nog-bol-rcasona hew-bel neg-reasons)
(bel:malect~evaluation nev-bell)))

(defun bel:generate-actor-belief (pschema believer)

“Generate actor belief about pschema he is executing."

(trace:fmt sthunder-traces
""L7%Generating "a’s evaluative belief about “a"%"
believer pachema)

(let ((new-beal (bel:create baliever pschema)))
(bel:select-actor-evaluation new-bal)
(bel:prioritize-pos-bel-ressons

nev-bel (append (prag:generate-pos-reasons pachema believer)
(ethic:generate-pos-reasons Pachema believer)))
(bel:prioritize~neg-bsl-reasons
Dev-bel (append (prag:gcntratl-nng-ruasons pschema believer)
(ethic:generate-neg-reasons pachema believer)))
neg-bel})

(defun bel:generate-nes-zctor-beliet (pschema believer)
“Generate actor belief about pschema after failure."
(trace:fmt sthunder~tracaes
""X"%Generating “a’s evaluative belisf about “aTtyg
believer pschema)
(let ((old-bel (bel:search-for-content balisever pschema))
{nes-bel (bel:create believer pachema)))
(bel:prioritize-pos-bel-reasons
nev-bel (append (prag:generate-pos-reasons pschema believer)
(ethic:generate-pos-reasons pschema beliaver)))
(bel:prioritize-neg-bel-ressons
nev-bel (append {prag:generate-neg-reasons pschena believer)
(ethic:generate-neg-reasons pschema believer)))
(bel:select-evaluation new-bel)
new-bael))

Belief Reason Prioritization
These routines implement the heuristics for evaluation selection (see section 2.3).

(defun bel:prioritize-pos-bel-reascns (belief reasona)
(trace:fat sbel-traces ’
"“%BEL: Prioritizing reasons for positive evaluation of ~a“
(bel:content belief))
{let ((believer (bel:beliaver belief)))
(let ({e~3-reasons
(bel:sort-reasons-by-goal-importance
(atils:select~class reasons Rathic-reason-3)
believer))
(e=1-reasons

393

(h.l:lort'rtllou]-by-sonl-inportanca
{utils:select-class reasons kethic-reason-1)
baliavar))

{p-3-reasons
(atils:select~class reasons tprag-reason-3))
(p-1-reasons

(bnl:lort-roanona-by~goal-inportanc.
(atils:select-class reasons &prag-reason-1)
beliaver)))

(dolist (reason (reverse (append e-3-reasons e-l-reasons
P-l-reasons P=3-reascns)))
(inst:add-link belief &reason-for-pos reason)))))

(defan b-l:ptioritiz--n.g-bol-rnnsons (belief reasons)
(trace:fmt ebel-traces
““%BEL: Prioritizing reasons for Degative evaluation of -4
(bel:content balief))
(let ((believer (bel:belinver belief)))
(let ((e~4-reasons
(bal:sort-rcllonl-by-VIluo-failurc-inportnncc
(utils:select-class Teasons kethic-reason-4)
believer))
(e-2-reasons
(b-l:lort-ruanon:-by-vnlno-fniluro-ilportancu
(utils:select-class reasons ðic-reason-2)
beliaver))
(p~4-reasons
(utils:select-class reasons &prag-reason-4))
(p-2-reasons
(bcl:sort-toasona-by-vnluc-flilur--Llpor:lncc
(utils:select-class Teasons kprag-reason-3)
believer)))
(dolist (reason (raverse (append e-4-reasons e-1-reasons
P=2-reasons p-4-reasons))}
(inst:add-link belief Arsason~for-neg reasocn)))))

(defun bal:select-evalgation (belief)
(et ({pos-reasons (inst:1ink bslie? sreason-for-pos))
(neg-reasons (inst:link belief treason-for-neg))}
(let ((evaluation
{cond
i; if there are sthical Teasons on one side and not on the
ii other, choose ths belief that has sthical reasons.
(Cand (some #’bel:ethical-reason” pPos~-reasons)
(motany 8'bel:ethical-reason? neg-reasons))
‘positive)
((and (some #’bel:ethical-reason? neg-reasons)
(aotany #'bel:ethical-reason? pos-reasons))
'negative)
i veight of the evidence
((> (length neg-reasons) (length pos-reasons))
‘negative)
(t 'pasitive)}))
(trace:fat ebel-traces
""LBEL: Setting evaluation of “& to “at
(bel:content belief) svaluation)
(set? (bal:valence belief) evaluation)
belief)))

394

Belief Inferences

These routines implement the beljef tuference rules presented ig section 2.7,

(defun bel:make-inferences {belief)
(trace:fmt *thunder-traces
""%7IMaking inferences from Tatyr
(let ({valence {bel:valence beliaf))
(reasona-for

balief)

~neg (inst:link belier &reason-for
(and (eq valence ‘nagative)

(dolist (reascn (copy-list Teascns-for-neg))
(it (bel:ethical-reason? Terson)
(bal:-ako-othicnl-ini-rcnccs belief reascn)
(bcl:-ak.-pragnatic-infor-nccs balief reason))))))

-nagll)

(defun bel:make-ethical-infersnces
(let ((believer (pachema:actor (b
(cond ((ethic~reason-47 reason)

(beliaf reason)
el:content belief))))

(let ({value (reason:value reason))
(valoa-failure (reason:value-failure Trsason)))
(let ((pref-balier (athic:infer-rule-1
believer valye velue~failure)))
(bel:load pref-baljer)
(inat:add-link belie? tinferred-bel
ii case where thunder doesn
ii achieves it’s valne
((and (ethic-reason-2? reason)
(nall (inst:link belief &reason-for
(et ((value (bel:head-goal (bel:content belief) believer))
(value-fajlure (reason:value-failure reason)})
(let ({pref-belief (ethic:infer-rule-1

Pref-balief))))
't belie? that pschema

-pos)))

believer value value-failure)))
(bel:load pref-belief)

(inst:add-link belief Rinf

¢rred-bel pref-balief))))
(t nil))))

(defun bel:make-pragmatic-inferencas (belief reason)
(let {(believer (reason:actor reason))
(pschema (reason:pschema Teason)))
(cond ((and (prag-reason-32? Teason) (pschema?
(let ({value-failurs (reason:valn
(let ({pref-belier
(prag:infer-rule-1
believer (pschema:head-goal Pachema) value-failure))
(canse-belief
(prag: iafer-rule-2
beliaver rsason pschema valus-failure)))
{instiadd-1ink pref-beliass tbel-or cause-beliaf)
(bel:load pref-belief)
(bel:1l0ad cause-beljes)

(inat:add-1link belies &inferred-bel pref-belief))))
(t nil))))

pschema))
¢-failure reason)))

(defun ethic:infer-rule-1 (believer value vf)
(trace:fat sthunder-traces

“"1"% Munning ethical inference rule i for “a on “a and *a*
beliaver value vf)

(let ((new-del (inst:create Epreaterence-belisf nil)})
(satf (bel:believer nes=bel) believer)
(net? (bel:pref-more-important new-bael) valus)
(sett {bel:pref-less-important new~bel) vt)

395

new-bal))

(defun prag:infer-rule-1 (believar head-goal vf)

(trace:fmt ethunder-traces
""%"% Running pragmatic inference rule 1 for “a en "a and "av
beliaver head-goal vt)

(let {{nev-bel (inst:create tpreference-beliaf aill})
(aetf (bel:beliaver nev-bel) believer)
(secf (bol:pret-lor--inportan: Res-bel) head-~goal)
(satf (bel:pref-less-important new-hael) vf)
new~bal))

BCP Recognition

(defun bep:process-belier (thunder-belies actor-belief)
“Find and load BCPs from conflicting beliefs,"
{let ({bcp (bep:find thunder-belief)))
(and bep (inmt:add-link bep &from-belief thunder-belief)

(inst:add-link bep Mfrom-belief actor-belief)
ii load the bep
(story:load bep)
ii Spawn resclution demon to look tor goal failure
(bep:spawn-resolution-demon bcp (gpm:node (bep:actor bepl)id)

(defun bep:find (belief)
"Find BCPs indexed by thunders beliefs."
{let* ({reason (bel:reason-for belief))
(bep (cond ((ethic-reason-27 reason)
(bcp:find-from-er2 reason beliet))
(Cethic-reason-4? reason)
(bep:find-from-ers reason belief))
(t nil1))))
(if bep (inst:add-link bcp &from-reason reason)
(trace:fmt sbep-traces ““%BCP: No BCP found from ~a"
balief))
bep))

(defun bep:find-from—er2 (reason belier)
(trace:fmt sbep-traces ““XBCP: Search for BCP from ~a and “a"
Teason belief}
(lets ((gf (reasemivalue-failure reasen})
(gf-pschema (reason:pschema reason))
(v-pschema (bel:content belief))
(v-goal (psch-na:vnlno-goal v=pschema)))}
i1 should search for factual belief here
(let {(new-bep (frame:create &bcp-miaguided)))
(bepiset-slots Bew~bcp belief reason)
(frame:set-slot new-bcp ‘value v-goal)
(frame:set-slot Dew-bep ‘value~type (goal:type v-goal))
new-bep)))

(defun bep:find-from-erd (reason bdalief)
(trace:fmt ebep-traces
““XBCP: Search for BCP from “a and “a"
Teason belief)

(lete ((pschema (bal:content belief))
(bcp-actor (pschema:actor pschema))
(motivation (pschema:head-goal pschema})
(gf (reason:value-failure reascn)}
(act-cansing (goal:act-causing-failure gt
:filtar 8'(lambda (act)
(aq (action:actor act) bep-actor))))
(gf-pschema (reason:pschema reason})
(v-goal (pachema:value-goal pachema)))
{cond ({and act-causing (eq (action:moda act-causing) ‘enege))
(let ((new-becp (frame:creats dbcp-failure=~to-act)))
{bcp:set-slots neg-bcp belief reason)
neg-becp)}
((goal:group-value? motivation)
(let ((new-bcp {frame:create 2bcp-chauvinist~choice)))
(bep:sat-slots new=-bcp belief reason)
new-bcp))
({goal:non~recoverable? gt
(let ((new-bcp (frame:create &bcp-inhumane)))
{bcp:set-slots new-bep belief reason)
(frame:set-slot nes-bep 'value v-goal)
(frame:set-slot neu~-bep 'value-type {(goal:type v-goal))
new-bep))
(t (let ((new-bep (frame:create tbcp-selfish)}))
(bcp:set-slots new-bep belief resson)
(frame:set-slot nes-bcp 'value (reason:rvalue reason))
(frame:set-slot nev-bcp ‘value-type (reason:valus-type reason))
new=bcpl)l))

Ethical Reasons
These routines implement the ethical warrants presented in chapter 2.

(defun ethic:generate-pos-reasons (pschema believer)
(append {ethic:rule-ia pschema believer)
(ethic:rule-1b pachema believer)
(ethic:rule-3 pschema believer}))

(defuz ethic:gensrate~neg-reasons (pschema believer)
{append (ethic:rule-2 pschema belisver)
(ethic:rule-4 pachema believer)))

{defun ethic:rule-1a (pschema believer)
(let ({value-successes
(pachemarget pachema &goal :scope ’all
:filter #’goal:valne-success?)))
{if value-successes
(atils:map-remeve-nils
$'(lambda (vs)
(if (mot (eq (pachema:actor pschema) (goal:actor va)))
(let ((reason (inst:create Sethic-reason-1 8il)))
(setf (reason:believer reason) believer)
(setf (reason:actor resson) (pschema:actor pschema))
(sat? (reason:pschema reasocn)
(pschema:get-pachema-containing-obj
s pschema))
(setf {reason:value reason) vs)
(sett (reason:other reason) (goal:actor ve))
(trace:fmt *thunder-traces
““%°X Creating ethical reason “a “a "a"

397

Teason "by E-1 for pos aval of" pschema)
Teason)})
value-successes))))

(defun ethic:rule-1b (pschama baliever)
(lat ((head-goal (bol:h-ad-goll pschama belisver)))
{(if (and head-goal
(goal:not-for-actor? head~goal (pschema:actor pschema)))
(let ((reason (inst:create kethic-reason-1 nil)))
(satt (reason:belinver reascn) beliaver)
(setf (reason:actor Teason) {pschema:actor Pschema))
(sety (reason:pschema Taason) pschema)
(setf (reason:value reason) head-goai)
i+ might be vrong
(satf (reason:other reason} (goal:actor head-goal))
(trace:fmt *thunder-traces
“"1°% Creating ethical Teason "a "a “a"
Teason "by E-1 for pos sval of" pschema)
(list reason))
ail)))

(defun ethic:rule-2 {pschema beliaver)
(let ((valus-failures
(pschema:get pschema kgoal ‘scope ‘all
:filter #'goal:value-failure?)))
(if value-failures
(ntill:-np-ru-ovc-nils
2’ {lambda (vt)
(if (not (eq (pschema:actor pschema) (goal:actor ve)))
(let ((reason (inat:create Rethic-reason-2 nil)})
(cthic:lut-roalon-alots Teason vf pschema believer)
(trace:fmt *thunder~traces
""X"% Creating ethical Feason "z “a “a"
Feason "by E-2 for neg aval of* pachema)
reason)))
value-failures))))

(defun ethic:rule-3 (pschema beliaver)
(let ((head-goal (bel:head-goal pschema belisver))
(value-failores (p-chcna:gct Pschema &goal ‘#Cope ‘al]
‘filter #'goal:value-failure?)))
(if head-goal
(utils:map-remove-nils
#'(lambda (vf)
{1f (and (aq head-goal
{bel:more-important believer head-goal vf))
(not (eq head-goal vr)})
(hol:lctor-bolicvo.-valnc-!liluro believer vr))
Qet ((reason (inst:creats ðic-reason-3 nil)))
(setf (reason:actor Teason) (pschema:actor Pschema))
(setf (reason:belisver reason} belisver)
(setf (resson:value reason) head-goal)
(sett (reason:vf-pachena reason)
(plch.ln:;ot-pnchq.n-containing-obj Pschems vf})
(setf (reason:value-failure reason) vf)
(trace:fmt sthunder-traces
"“X"% Creating ethical reason -a Ta “a®
Teason "by £-3 for pos eval of" Pschema)
Teason))})
value-failores))))

{defun ethic:rule-4 (pschema believer)

(let ((head-goal (bel:head~goal pschema baliever))
(valoe-failures (pschema:get pschema goal :scope ’all
‘Tilter #’goal:value-failure?)))
(if head-goal
(utils:map-remove-nils
' (lambda (v1)
(if (and (eq vf (bel:more-important believer vf head-goal))
(rot (eq head-goal vt))
(bnl:lc:or-bllioves-v;lue-failuro believer vt))
(lat ({reason (inat:create tathic-reason-4 nil)))
(ethic:set-reason-slots reason vf pschema believer)
(setf (reason:value reason) head-goal)
(setf (reason:value-type reason) (goal:type head-goal))
(trace:fmt sthunder-traces
"T%°% Creating ethical reascn “a "a "a"
Treason “by E-4 for neg eval of" pschema)
reason}})
valoe-failures))})}

Pragmatic Reasons
These routines implement the pragmatic warrants presented in chapter 2.

(defun prag:generate-pos-reasons (pschema believer)
(append (prag:rule-1 pschems baliever)
{prag:rule-3 pschema believer)))

(defun Prag:generate-neg-reascna (pschema believar)
(append (prag:rule-2 pschema baliever)
(prag:rule-4 pschema baliever)))

(defun prag:rule-1 (pschema baliaver}
(let ({(head-goal (bel:head-goal pachema believer))
(actor (pschema:actor pschema)))
(if (and head-goal .
(not (goal:not-for-actor? head-goal acter)))
{let ({reason (inat:creats &prag-reason-1 nil)))
(setf (reason:actor reasen) actor)
(setf (reascn:value reason) head-goal)
(sat? (reason:pschema reason) pschema)
(trace:fmt sthunder-traces
““3°% Creating pragmatic reason "a by P-1 for pos eval of ~a*
resson packema)
(list reasea)))))

(defun pragi:rule-2 (pschema baliever)
(let ((value-failares
{pschema:get pschema fgoal :scope ’all
ifilter #'goal:value-failure?))
(taus (inat:link pschema Xhas-tan)))
(append
{etils:map-remove-nils
8’ (lambda (vf)
(if (and (eq (pschema:actor pschema) {goal:actor ¥f))
(bel:actor-belisves-valne-failure
(pachema:actor pschema) vf)
(not (eq (bel:head-goal pschema (goal:scter v£)) vI)))
(let ((reason (inst:create prag-reason-2 nil)))
(prag:set-reason-slots reason vf pachema)
(set? (reason:vf-pschema reascn)

399

(p-cho-a:got-pschena~con:aining-obj Pschema vf))
(trace:fat *thunder-tracaes
“"%"X Creating Pragmatic reason "4 "a “an
reason “by P-2 for neg eval of" pschema)
reascn)))
value-failures)
(atils:map-remove-nils
8’ (lambda (tau)
(let ((reascn (inst:create &prag-reason-2 nil)))
(prag:set-reason-slots
Teason (tau:valus~failure tau) pschema)
(sett (reason:vf-pachens reason) tau)
(inst:add-link tau &from-reason reason)
(trace:fmt sthunder-traces
"TL7Y Creating Pragmatic reason "a "a “a from "av
Teagon “by P-1 for neg sval of" pschema tau)
reason))
taas))}))

(defun prag:rule-3 (pachema believer)
(Lot ((cowpating-plans (gpm:get-competing-plans pschema}))
(if competing-plana
(mapcar
¢! (lambda (compet ing-plan)
(atils:map-remove-nils
#'(lambda (metric)
(if (pmetric:better? metric Pschema compsting-plan)
(let ((reason {inst:create dprag-reason-3 nil)))
(set? (reason:actor reasan)
(pschema:actor pachema))
(setf (reason:pschema reason) pschema)
(et (reason:compating-pschema reason)
competing-plan)
(setf (reason:metric reason) metric)
(trace:fmt sprag-traces
“"XPRAG: Creating Pragmatic reason "a "a 3"
Teason "by P-3 for pos eval of" pechema)
reason))})
*plan-metricse))
competing~plans))))

(defun prag:rule-4 (pschems believer)
(Lot ((competing-plans (gpm:get-competing-plans pschema)))
(if competing-plans
(mapcar
¢’ (lambda (competing-plan)
(atils:map-remove-nils
8'(lambda (metric)
(if (pmetric:batter? metric competing-plan pschema)
(let ((rmason (inst:create Aprag-reason-4 nil)))
(setf (reason:actor reasen)
(pschema:actor pachesa))
(setf (reasocn:pschema reason) Pschema)
(satt (roason:co-poting-pschann reason)
competing-plan)
(setf (reason:metric reason) metric)
(trace:fmt sprag-traces
"TIPRAG: Creating pragmatic reason "a *a “a®
Teamon "by P-4 for neg eval of" pschema)
reason)))
*plan-metricss))
competing-plans))))

Punishment Processing

The punishment Processing routines implement the punishmen; inference rules (see sectior;
+.1.2) to determine the type of punishment. find a1y missing parts of the punishment schems
(see section 4.1.1}, and evaluate the punishment by checking for BCPs (see section 4.2).

(defun punish:evaluate (pachema)
{let {{judge (frame:slot Pachema ’judge))
(crime (frame:slot Pschema ’crime))
(criminal (frame:slot peschema ‘criminal})
(Punilhl.ﬂ!’plCholl (frame:slot pachema 'punishment-pachema)))
ii this should retuyzn nultiple beps
(let ((bcp (cand ((puninh:.v:lultc-crin- P3chema crime))
({punilh:-valuato-judgc Pschema judge)})
((punilh:avaluat--punxshunnt
pschema pPunishment-pschema))
(t (trace:fmt *punish-traces
"“Ypunisk: no bep found from “at
Pschema)
nill}J))
(bal:1oad-r.wa:d-and-punishucn:-bolicfs pachema bep)i)

(defun Punish:evaloate-cripe {pschema crime)
(trace:fat *Punish-traces ““YPunigh: Evaluating crime "y for BCPs~
crime)
(cond ({mot (pschema? crime)}
(let ((new~bep (frame:create kbcp-na-crime)))
(puish:ut-bcp-llou Bew=bep pachema)
{frame:set-glot Lev-bcp ‘crime crime)
ne®-bcpl)
(t ail)))

(defun punish:tind-punilhnlnt-lcho-a
(jndge criminal motivating-belief gt gfachema)
(trace:fmt spunish-traces
““YPunish: Searching "a from failure “a in schema “a"
“for punishment schema" §T gfachema)
(trace:fat ‘punish-traces
"“XPunish: judge: “a criminal: “a motivating belief: v
judge criminal motivating-belief)
(let ((ntiutinrgou (puiah:utiutmg-gou Judge criminal))
(event (inst:get-link & Rthwarted-by))
(crime (bel:evaluated-plaa motivat ing-belief)))
(let ((criminal-prop (event:prop avent))
(crhhn-wep-to (event:to svent)))
(cond (motivatiag-goal
(panisk:builg Sps-punish-revenge
Judge criminal crime £ gfschena
<rimiaal-prop criminal-prop-te))
({and (goal:recoverable?)
(obligation-~belier? motivatiag-belief)
(bel:eval-eq?
'negacive (bel:valence mot ivating-belief)))
(punish:build dps-punish-ingtruce
judge criminal crime & glachema
criminal-prop criminal-prop=to)}
((punish:gf-blocka? crime 1)
(let ((ps
(punish:build &ps-punish-protect
Judge ¢riminal crime & gfachema

401

criminal-grop criminal-prop-to)))
(frame:set-slot pg 'protectad 'scciaty)
ps)?
(t (trace:fmt spunish-traces
“"%Punish: Mo punishment schema found")J))))

(defun punish:find-prevention-schema
(judge criminal motivating-balisf g% gfschema)
(trace:fmt *punish-tracase
""XPunish: Searching “a from failure "a in schema “a"
"for prevention schema" gL gfschema)
(trace:fmt spunish-traces
""XPunish: judge: "a ¢riminal: "a motivating belief: “a"
Judge criminal motivating-belief)
(let {(event (inst:get-link gf taotivated-by))
(crime (bel:evaluated-plan motivating-belief)))
(let {{criminal-prop (event:prop event))
(criminal-prop-ta (event:tg event}))
(punish:build-threat kps-prevent-by-threat
judge criminal crime gf gfschema
¢riminal-prop criminal-prop-to))))

D.2.7 Thematic Processing

The thematic processing routines implement THUNDER's reasoning about the content of
the story: how themes are constructed, how irony and plan failures are recognized, and how

question answers are found.

Theme Recognition
These routines implement the theme construction algorithms described in section 6.2.3.

(defun theme:find-themes (frame resolving-pschema)
(theme:find-reason-theme frame resolving-pschema)
(let ({plan-failure
(gpm:search
$'(lambda (obj)
(and (plan-failare? obj)
(eq (goal:pachems (inst:slot obj ’goal-failure))
resolviag=pschema)
(eq (pachema:value~pschema
(actiom:pechema (inst:slot obj 'act)))
{frame:slot frame ’'pechema)}
obj))
(frame:slot frame ’actor)))}
{and plan-failure
(theme:find-avoidance-theme
frame resolving-pschema plaa-failure))))

(defun theme:find-reascn-theme (frame resolving-pschema)

(trace:fmt stheme-traces
“"XTRENE: Checking for theme from “a and resolutiom “a”

frame resolving-pechema)
(let ({reason (cond ((tan? frame) (tan:reascn frame))

{{bcp? frame) (bcp:reason frame))}))
(let ((support-bel (reasom:get-belief reason ’'support))
(abstract-support-bael

402

{reason:get-abatract-belies Teason ’
(if (listp support-bel)
(mapc #’(lambda (rb arb)
(tho-a:cr-ato-:-;son-thqnt

suppoert)))

&rb rd frame Tesolving-pschema))
Support~bel abstract-support-bel)
(thame:creste-reason-theme
abstract-support-bel SUpport-baetl
frame resolving-pschema))))}

(defun theme:create-reason-theme
(abstract-support-bel suppert~beal frams resolving-pschema)
(let ((theme (inst:create Etheme nil))
(abstract-bep-bel
(cond ((tan? frame) (tan:get-abstract
((bep? frame) (bep:get-abstract-belief frame ‘beliet))))
(actor {cond ((tau? frams) (tau:planner frame))

((bcp? frame} (bep:actor frame)))))
(let ((ht (inst:slmatch

abstract-support-bel
(theme:get-resolving-belief
actor resolving-pschema
{inst:class abstract-support-bel))))})
{if hz (progm
(trace:fmt stheme-traces
""XTHEME: Found theme from "a and “a*
abstract-support-bel support-bel)
(setf (inst:slot theme 'type) 'resson-thema)

(sat? (inst:slot theme ’'belies) abstract-bep-bel)
(setsf (inst:slot themse

(theme:load-theme
frams resolving-pachema
(var:instan-tres! theme
(theme:generalize-ht

“belief frame ’'belief))

'Teason) abstract-support-bel)

(inst:slmatch abstract-support-bel support-bel)
ht (frame:bindings frame))))}N)))

(defun thems:get-rTesolving
(trace:fmt stheme-traces
""ATHEME: Getting resolving-belief for -a from “a™
8ctor resolving-pechema)
(Lot ((resalving-goal
(car (pachema:get
resclving-pschema kgoal :scope ’intermal
:filter 8’ (lambda (goal)
(and (goal:value-failare? goal)
(eq (goal:actor goal) actor)))))))

“belief (actor resolving-pschema bel-class}

(and resolving-geal
(cond ((eq bel-class &value-belief)

(beliseatch-for-conteat actor Tesolving-goal))
({eq bel-class dpreference-belief)
(bel:search~tor-conteat

Actor resolving-goal :slot ‘more-important))
(t a1l1))))N

(defun thems:generalize-ht (reason-it resolution-ht bindings)
(trace:fat stheme-traces

“"ATRERE: deaeraliziag theme from ~a "a and ~a"
Teason-ht reselation-ht bindings)

(let ((binding-ht (frame:ht-from-bindings biadings))
{filler-list ail))

(ht:valk binding=ht 8’ (lambda {key val) (push val filler-list)))

403

v; both hte ¥ill have the same eNtriag
(ht:galk Teason~-ht
$’ (lambdy (kay Feason-va])
(lete ((rqlolution-val
(ht:cntry Tesclution-he kay))
(gonaralizod-ltq.
(thllo:gonoraliz--ircn
key Teason-vyl rcsolutlon-val)))

2’ (lambda (key val)
(if (aq Teason-val va))
(setr (ht:antry binding-ne key)

genezalized-item))}))

(if (member resolution-va] Tiller~ligt)

(ht:valk binding-nt
2' (lambdy (key val)
(it (eq resclution-va] val)

(setr (ht:entry binding-ht key)

3-ncrllizod-it|-))))))))
ii DOW replace generalized advicy infa

(lat ((yon (inst:creats &dhuman nj1))
(other (inst:croate &human nij))
{plan (inst:create &pschema 1nil)))
(satr (hn-u:fint-nuo you} ‘yoy)
(satt (hmn:ﬂ:lt-nu- othar) ‘othaer)
(ht:walk binding-ht
8 (lambda (key val)
(sets (ht:.ntry binding-ht key)
(cond {(atring-equal key ‘believer) you)
((string-equal Key ’other) other)

((uring-oquu Xey 'pschema) plaa)

(t val))))))
binding-ht))

(defun thu-:gcn-u.lizo—it- (var-name Tillert filler2)
(trace:tme *theme~tracee

" “XTHEME: Goncnlizi.n‘ “a from "a apd “an
YAr-name fillerg fillery)
(cond ((eq Tillert £illera) fillery)
((atring=aqual YAr~Dame 'baljever) ‘believer)
((and {or (atring-equal VAI-0ABe ’value-type)
(string-equal Yar-name ’nluo-fu‘lu--typo))
{mamber filler1 *P-goal-type-ligte)
(member 2111471 *Prgoal-type-ligts))
'P-Preservatioen)
(t 8il)))

(defun eh-.:tiud-m“.e
(trace:fat *theme~traces
“"LTEENX: Searchiag for avoidance ¢
bep resolving-pachema)
(Late ((oblig-bel (theme: ident ify-migtake

bep Tesolving-pschems Plan-fajilurg))
(avoid-pachema (thm:Mutuy-noidncvpnchm bep oblig~bel))
(avoided-failure (thm:1dontity-hilu--uoidnd

bep Tesolving-pachema avoid-pachems))
(theme (thm:bnild-noiduco-thm

bCp avoid-pachema Avoided-failurs)))

“thene (bcp resclving-pechema Plan-failunre)

heme from -a and “a¢

(and theme
(theme:load-thame bep Fesolving-pachema theme))))

404

(defun theme:identify-nistake
(trace:fmt stheme-traces
““ITHEME: trying to identify mistake from "4 and
bcp resolving=pschema)
(let ({actor (bep:actar bep))

(etate-realized {inst:slot Plan-failure 'state-realized))
(state-intended (inst:slot plan-failure 'state~intended)))
(let ((diff-mlot-list (inst:digrs 3tate-realized state-intended))
{mctor-var (var:create (gensym))))
(dolist (slot diff-slot=-list)
{1f (eq (inst:slot state-realized slot} actor)

(setf (inst:slot state-realized slot) actor-
{let {(ht {inst:slmatch atatas
(if ht

(let ((intended-victim

(becp resolving-pschema plan-failure)

can

var)))
“Tealized state-intended)))

(ht:entry ht (var:name actor-var)))}
(set?f (ht:entry ht (var:name actor-~var}) actor)

{var:instan-tres! atata-realized ht)
(cond ((and (human-class? intended-victim)
(iost:get-link intended-victig objective))
(bel:member-of-class
dthunder actor
(inst:get-link intended-victim Robjective)))
(t ail)))
(let ((ht (ht:create nil 2'eq)))
(setf (ht:entry ht (var:name actor-var)) acter)
(var:instan-tree! state-realized ht)
aill)))i))

(defun th-lc:idontify-lvoidanco-plcho-n (becp ablig-bel)
(trace:fmt etheme-traces

“"LTHEME: trying to identify avoidance paschema from “a and "at
bep oblig-bel)
(cond ({aull oblig-bel) nil}
({and (punish:schema? (bel:content oblig-bael))
{punish:guilty? (bel:content oblig-bel) (bcp:actor bep)))
(let* ((bel-content (bel:content (bcp:balief bep)))
(nev-frame (frame:creats (frams:type bel-content))))

(frame:set-slot nev-frame ’criminal {bcp:actor bep))
nev-frame))

(defun theme:generalize-oblig-belief (bep avoidance-pschenma)
(tzace:fmt stheme-traces

“"ATHEME: building obligatisa belief for theme from bep Tat
bdep)
(lets ((abstract-bel (bcp:get-abstract-belief bep ‘belief))
(bel-coatemt (bel:conteat (bep:belief bep)))
(nev-frame (frame:creats (frame:typs bel-content))))
(seatf (bel:valence abstract-bel) positive)
(setf (bel:content abstract-bel)
(list aveidamce-pschems nes-frame))
(et ((ht (ht:create mil 8'eq))
(fat (!rm:ht-fro--bhdhp
{frame:bindings bel-content)}))
(dolist (elot ’(believer actor other)}
(let ((binding (frame:slet bep slot)))
(lets ((pair (ht:find-entry
Tht #’(lambds {slot val) (eq val binding))))
(var (car pair)))
{cond (var
(trace:fat stheme~traces
“"RTEEME: Qemeralizing “a to “a* var binding)

405

(setf {(ht:entr

(t (setf (pt.

{var:instan-treq! sbstrac
abstract-bel)))

Y bt rar) binding))

entry ht slot) bindingj))ip)
t-bel ht)

e

(defun theme:geceraliza~baljery (bep beliefs)
(let ({you (inst:create &human njl))

{other (inwt:create &human nil)})

(setr (human:firgt-name you) ?

(satt (buman:first-name other)
(dolist (beliar beliefs}

(inlt:roplaco-obj

belief (frame:alot bep !

(inlt:rcpllcc-obj belier a

(inlt:ropllco-obj belief (

you)
'other)

other) other 'pschema)
thunder you 'pschema)
bcpractor bep) You’pschema))))

Planning Failure Identification

The function of these routines is described in section 7.4.3.

(defun Pf:check-for-plan-failure (act gr)
(latse ((goal-achieved

(action:achieves act
:filcar
#' (lambda (goal)
(and (goal? goal)
(oq (goal:actor goal) (goal:
(aot (aq (goal:pschema geal}
i: this clauge Prevents us
;i the punishment goal
(eq (goal:tor goal) nil}}))}
(state-intended (goal:success-stats goal-achieved))
(state-realized (pr:idonti:y-rcnliz-d-atatl 8T goal-achieved))
(mistake-state
(pt:in:ot-.iltlko-atlto
State-realized
(if mistake-state
(let ({plan-failure
(pz: build-plan-fajlure
Act gt state-intended State-realized
(if (pf:mod-act Act mistake-state)
(setf (inst:slot Plas-failure
(grm:load Plan-failure)))))

(defun pr: ideatify-realized-stute (gf goal-achieved)
(et (Cov-cansing~Failure (;od:cvut-canurtniluo)
("-cauh.-p (pu:-ult-cluu. goai-achieved)))
(cond ((eq v-cansing-ga
(event:forcing-event ev-causing-failure))
(event:result-state e¥-cansing-failure))
(t (event:result-state sv-caunsing-ga}))))

actor gf))

(action:pachema act)))
Irom getting

{action:actor act) Boal-achieved)))

mistake-state)))

‘mistake-state) nil))

(defun PL:infer-mistake-state
(realized-state actor Plan=item)
(let ((puchema (iast:slot plan-icen 'paschemas)))

{trace:fm *pf-traces “~YPF; Searching for action causing “a ,..™
realized-atatse)

(trace:fwt spf-traces "~
Plaz-item pschema)
(let ((new-realized-grate

LPF: ... from “a in "a"

(pf:mod-state reslized-state plaa-item)))

406

{cond {{goal? plan-item)
(let ((enabling~item ¢pschema:anabling-item plan-item))
(prev-plan-elem (pschema:prev-plan-elea plan-iten}))
(or (and (eq plan-item (pschema:head-goal pschemal)
(pf:infer-mistake-state
Dev-realized-state actor
(car (last (pschema:plan pschama)}}))
(and enabling-item
(pf:infer-mistake-state
nev-realized-state actor
enabling-item))
(and prev-plan-elem
(pf:infer-mistake-stace
new-realized-state actaor
prev-plan-elem}))))
((event? plan-item)

(let ((act (inst:get-link plan-item Rcaused-by))
(av+forcing (avant:forcing-event plan-ites))
(instrumental-pschema

(inst:get-link pachema kps-instrument))
{(prev-plan-elem (pschema:prev-plan-slem plan-item)))
(or (and act
(eq (action:actor act) acter)
nes-rsalized-state)
{and ev+farcing
(pf:infer-mistake-state
nsw-realized-state actor
ev+forcing})
(and instrumental-pachema
(pf:infer-mistaXe-state
nev-realized-state actor
(pschema:head-goal instrumental-pschema)))
(and prev-plan-elea
(pf:infer-mistake-state
nev-realized-state actor
prev-plan-eles}})})))))

Question Answering
The processing implemented by these routines is discussed in section 8.6.

(defun ques:find-answers (questionm)
(trace:fmt sques-traces
““XQUES: 2:arching for amswers to “a"
question)
(let ((answer-liss (ecase (imst:islet question 'type)
((evaluative~jadgment)
(ques:evaluative-judgment question))
({thematic-ideatification)
(ques:thematic-identification question))
((goal-motivation)
(ques:goal-motivation question))
((event~explanation)
(ques:event-explanation question))
((explanatioa) (ques:explanation question)))))
(if answer-list
answer-list
(let ((ams (inst:create Ranswer ail})) (list ans)})))

{defun ques:event-explanation (questiom)

407

(lets ((ques-content (inst:slot question 'content))
{(event-in-ewm (crl:ncarch-fcr-con Ques-~coatent))

(ev-pschema
(or (dolist (gpy (story:gpms))
(gpm:nearch

2’ (lambda (pschema)
{and (pschema:find Pschemz ques-contane
iscope ‘internal)
(retern pschema)))
(gp-mem:actor gpml))
(cr.:chock-oxpllin-d event-in-evm)))
(ev-in-gpm (or (pachema:find ev-pschema ques-contept
$8cope 'internal)
(pachema:fing *¥-pachema event-in-qym
‘acope ‘internal))))
(mapcar
®'(lambda (con)
(let ((new-msg (inst:create tansver nilj}))
(set? (inst:slot neg-meg 'content) con)
tev-msg))
(append
(remove-duplicates
(atils:remove~nils
(list
ii Each element returng a ‘‘explanation’’
{event:forcing-svant e¥-in-gpm)
(cvont:lct-cauaing e¥-in-gpa)
ii used to find mistake action
(inst:alet (pt:loa:ch-for-plqn-failurn
(imst:get-link *v~in-gpm Ethwarts)
(pschema:actor ev-pschema))
‘act)
i; used to find the mistake stats
(inst:slet (pt:-on:ch-tor-plnn-failnrc
(inat:get-link ¢¥-in-gpa kthearta)
(pschema:actor av-pschema))
'mistake-state))))
(quos:gct-raaaons-fro-thnn-l
(inst:link ev-pschema Aprovides-resolution))))))

{defun ques:evaluative- judgment (question)
(let ((ques-contant (inst:slot question 'content)))
(cond ((or (evemt? ques-coateat)
{action? ques-content))
(1t ((pochema (or (gpm:search
$’(lambda (pschema)
(and
(pschema:find pschema ques-conteat
iscope 'iatermal)

(pachema:value-pachema pschema)))

(inst:slot question ‘actor})

(let ((evm-con (evm:search-for-coa

ques-~cantent)))
(and
evm-con
(pschema: value-pschama

(evm: check=axplained avm-con)))))))
(qlol:o!alnat1v--jud¢-nnt-psch-la question pschema)))
({character-assesament? ques-content)
(et ((asseus (bel:search-for-ca
(ques:baliever question)

ANQ

(inst:alot questian 'model))))
(and aazasse
(ecase (bel:valence assess)
((negative)
{inst:link assess lreasan-far-n-g))
((positive)
{inst:link assess &reason-for-pos)}d)))
((and (aull ques-content)
{insat:alot question ‘actor)
(eq (inst:slot question ‘moda) "ethically-negative))
(quo-:gat-rnn.ons-fral-thcmou
(story:get-class *Storys ktheme)))
(t 2il)))}

(defun quns:-valnativo-judgncnt-plch-ua (question pschema)
(lat* ((mods (inst:slot question ‘mode))
(believer (ques:beliaver question))
(belief (bel:search-for-content
baliaver pachema
ifilter #’(lambda (belief}
{eq mode (bel:valence belief))N)))
(trace:fmt eques-traces
" "%QUES.: Getting “a’s reason for 3 "a evaluative judgment of "4
belisver mode pschema)
(ecase mode
{({(negative)
(it (inst:link balief tin-bep)
(cons
(frame:bindings {inst:get-link belief &in-becp})
(inst:link belief &reason-for-neg))
(inst:link belief dreason-for-neg)))
({positivae)
(inst:link belief treason-for-pos))))}

D.3 Frame-based Knowledge Structures

The frame-based knowledge structures used in THUNDER are stored as uninstantiated ten,-.
plates associated with the class of the structure. When a frame is constructed, the template
is copied, the frame variables are instantiated, and a binding list is constructing with the
variable names and bindings. The frames implement BCPs and judgment warrants as de-
scribed in chapters 2 and 3. The schematic knowledge representation for PSchema, TAU-.

and GFschema is discussed in section 7.3.

Belief Conflict Patterns

(setf (class:prop dbcp-inhumane 'templata)
(bep 'bcp-inhumane-template

‘beliaver *believer

‘belier

(obligation-belief nil
'believer Theliever
‘valence ‘negative
‘comtent *pschema
Rreason-for-neg (ethic-reason-4 ail

‘believer Theliever

109

'pschema ?pschema
'actar ?actor
‘other ?other
'value (goal n3l
'type ’value-type
‘acter Yacter)
'value-type "value-type
'value-failurs (goal nil
‘typse ?valu--failu:o-typ.
'actor Zother
'status ‘failed)
’vllun-tailuru-typc ?valuo-f:iluro-:yp-
‘vi-pschema *vf-pachema))
'actor-belier (obligation-beljies a1l
"beliaver ?acror
'valance 'positive
'content ?pachema
Irolson-for-pol (ethic-reason-3 ail
'believer Tactor
'pachema ?pschema
'actor ?actor
‘other Zother
‘value-failure (goal nil
‘type ?vnlna-tailurc-typc
'actor Tother
‘atatus ‘fajled)
’valuo-f;ilurn-typo ?vlluo-taillrn-typo
'vI-pschems *vf-pachems
'value (goal njl
'type Tvalue-type
'acter Tactor)
'value-type Tralue-type))))

Reason Frames

(setf (class:prop &prag-reason-2 'template)
(reason-frame ni}
'head~belief (value-belief ail
‘believer Tbeliever
'valence 'nsgative
‘conteat (goal njl
'actor Tactor
‘type ?vulno-fliln:o-typc
‘status 'failed))
‘causality (list (causal-belief ni)
‘belisver Thelisver
‘valence 'true
‘canged ?value-failore
‘caused+by ?pachema))
'intention (1ist (intentiomal-beljief nil
'believer ?believer
‘valence ’tiue
'caused Tvalue-failure
'caused-by ?pechema))
'support (value-belief il
'believer ?beliuver
‘valence ’'negative
‘content (goal nil
‘acter ?believer
‘type ?n.‘lu-failuc-typc

410

'status 'failed))))

(satf (class:prop kethic-reason-1 ‘template)
(zeason-frame nil
‘head-balief (value-belief nil
'believer ?heliever
'valence ‘positirve
‘content (goal nil
'actor Tothaer
‘type ’value-typa
‘status ‘succeeded))
'cansality (list (causal-belisf nil
'balievear ?beliaver
'valence ‘true
‘causned ?value
'caused-by ?pachemal})}
'intention (list (intentional-belief nil
‘'believer ?believer
‘valence ’true
‘caused ?value
‘caused-by ?pachema))
'suppert (value-belief zil
‘baliever ?believer
'valence 'positive
‘content (goal nil
‘actor Tbelievaer
‘type Zvalue-type
‘status ’succeeded)))})

(setf (class:prop kethic-reason-4 ’'templata)
{reason-frame nil
’head-belief (obligation-belief nil
‘baliever “’believer
‘valence 'negative
‘content ?pschema)
‘cansality (list (causal-belief nil
'baliever ?believer
'valeace 'true
‘caused ?value
'caused-by ?pschema)
(causal-belief nil
'balisver ?bdelisver
‘valence 'true
'caused ?value-failurse
‘cansed-by ?pachema))
'intention (list (intemtional-belief ni)
'believer ?baliever
‘valence ‘true
'caused ?value
'cansed-by Tpschema)
(intentiomal-belief ail
'baliever "belisver
'valence ‘true
'caunsed Tralue-failure
'caused-by Tpschema))
*support (liat (preferemce-belisf nil
'belisver Theliever
'more-important {(goal ail
‘actor *believer
‘type ?vaine-failure-type
‘status ‘failed)
’leass-important (goal nil

411

'actor “believer
‘type "valus-type))
(value-belief ai1
‘believer ?balisver
‘valence 'negative
‘content {(goal ai)
'actor *baliaver
‘type ’valuo~flilur--typc
‘status 'failed)))))

Thematic Abstraction Units (TAUs)

(aetf (class:prop ktau-busted 'tau-expect)
(gfsch--&-oxp.ctation ’tan-bnn:od-gf-expoct
'gf-axpact (plchcnl-cquctltion nil
'pachema &gf-arreat)
'§t-expact-object (event nil
‘abject Tofficer
‘prop kloc-at
'te (location nil
'prep ‘at
’object Trobber)
'mode 'unexpected)))

(setr (class:prop Atau-busted 'tamplate)
(tan ’tan-busted-template
'believer ?belisaver
‘vi-pschema ?vf-pachema
'mistake (state pil
'object 7officer
‘prop ‘loc-at
'to (locatiom nil
‘prep ‘at
'object Trobber))
'belief (obligation-belief ail
'believer ?baliever
‘valence 'negatirve
‘content ?pschema
treason-for-neg (prag-reason-2 nil
'believer *believer
'péchems ?pachema
‘actor Tactor
'valoe-failure (goal ail
"type Tvalus-failure-type
'actor Tactaor
'status ‘failed)
'vnlnn-tailnrc-typc ?vnlno-tniln:--typo
‘vf~pschema ?vf-pschems))})

Plan Schema

(setf (class:prop Aps-bank-robbery ’'templats)
(pachema 'ps-bank-rodbery-template
‘head-goal (goal 'ps-bank-robbery-goal
'type ’d-coatd
'actor robber)
‘plan (list (goal 'ps~bank-robbery-goall
'type ‘d=prex
*actor Trobber

412

‘to (location 'ps-bank-robbary-loci
'prap ’'at
‘ef ?bank))
(goal ‘pa-bank-robbery-goal2
'type 'd-cont
'actor “robber
‘object *bank-monasy
‘to tobber
from “bank)
(goal 'ps-bank-robbery-goal-3
'type ‘'d-prox

‘actor *robber
‘to (location 'ps-bank-robbary-loc2
'prep 'not
'of ?hank))}
'abstract-action {acticn 'pa-bank-robbery-absaction
'type ‘atrans
'actor ?robber

'abject *bank-monay
‘from ?bank
‘to ?robber)
‘actor Trobber
'goal-failures (list (goal 'ps-bank-robbery-gf1
‘'type 'p-possessions
‘actor ?bank-depositors

'object ?bank-money))))

(setf (clasm:prop Eps-threaten-agent ‘template)
(pschems ’'pa-threaten-zgent-template
'head~goal (gocal 'ps-threaten-agent-goal

'typs 'd~cont

‘actor Tagent-threatensr

‘object ?agent-threat-for

'from Tinst-threatened

'to Tagent-threatensr)
’plan (list (goal ’'pa-threaten-agent-goall

‘type 'd-cont

'acter ?threatener

‘object ?agent~threat-for

‘from Tagent-threatened

'to Tagent~-threatener))
'actor Tagsnt-threatener)})

(setf (class:prop kps-threaten-for-object "template)
(pschema 'ps-threaten-for-object-template
'head-goal (goal 'pe-thresten-for-objact-goal

ltm
‘actor
tebject
'from
'to

'pPlan (1list (eveat ’pa-threaten-for-objsct-eventl

'd=coat
Tthreatasner
Tthreat-for
Tthreatened
Tthreatenar)

‘object Tthreatened

‘prop hkmows
'to Tthreat)
(goal ’pe-threatem-for-object-goall
'type ‘d-comt
'actor Tthreatener
'object Tthreat~for
‘from Tthreatened
’to Tthreatsner))

‘actor 7Tthreateaer

413

‘actions (list (action ‘ps-threaten-for-object-actl
‘type 'mtrans
'actor Tthreatener
'object ?threat
‘to ?threatened
kcauses lpa-throa:en-for-ob]ect-cvantl))
'goal-failures (list (goal ’ps-thrnaten-for-objnct-gfl
‘type ’‘p-hsalth
'actor ?threatened
motivated-by
&ps-threaten-for-cbject-avent1})})

(satf (class:prop kpa-give ’template)
(pschema ‘ps-give-tamplate
‘head-goal (gosl 'pe-give-goal
‘type 'd-cont
'actor ?giver
'object ?give-object
‘to Tgive-to)
'pPlan (list (event ’ps-giva-event
'object ?give~object
‘prop Rpoas-by
to ?give-to))
'actor Tgiver
‘actions (list (action 'ps-give-actl
‘type 'atrans
‘acter ?giver
'object ?give-abject
'from Tgiver
’to Tgive-to
kcauses &ps-give-event))))

Once the PSchema templates are defined, the following definitions set up the constraint-
pmetrics, constitutient pschema, and defaults.

iii constraint hash table

(et ((nes-ht (ht:create nil $7eq)))
(set? (ht:eatry new-ht (var:name ?robber)) (list &human))
(setf (ht:entry new-it (var:name Thank-depositors)) (list khuman)})
(setf (ht:entry new-ht (var:aame Thank-money)) (list &money))
(setf (ht:entry new-ht (var:mame ?bank)) (list kinstitution))
(setf (class:prop &ps-bank-tobbery 'restrict-ht) new=-ht))

iii pmetric hagh table

(Lot ((mew=kt (hticxeate il 8'eq)))
(sex? (ht:eatry mew-ht 'liability) 8)
(setf (class:prop &pe-bank-robbery ‘pmetric-ht) new-ht)}

(let ((new-Et (ht:create il #'eq)))
(setf (ht:eatry nes-ht ’1iability) tau-busted)
(setf (class:prop dps-bank-robbery ’'pmetric-tan-ht) nes-ht))

iii constitueat pschemas
(sett (inst:slot &ps-threaten-for-object-template ‘pachemas)
(list (pschema:build-frem-bindings

(pe-give 'pe-threaten-for-object-pa-give
‘giver Tthreatened

414

‘give-to Tthreatener -
'give=cbject ?threat-for))))

{set? (inst:slot lpl-throaton-agnnt-tclpllt- 'pschenas)
(list (plchtll:build'frol-bindingl
(pl-th:-ltnn-fo:—objo:t ’ps-thr-atnn-agcnt-p--thro::un
‘threatener agent-threatensr
‘threatened ?agent-threatened
'threat-for "agent-threat-for
’threat Zagent-threat))))

(setf (inst:slot Apa-bank-robbery~template 'pschemas)
(list (plcho-a:build-fro--bindings
(pl-thzoatcn-ngtnt ’p--bank-robb-ry-ps-thznlton-l‘-nt
'agent-threatensr ?robber
'agent-threatened ?teller
'inst-threatensd 7hank
‘agent-threat-for ?bank-money
’agent-threat *bank-robbery-threat))))

ii; links betwaen constituent pschama

(lete ((agent-threat-plan
(car (inst:slot &ps-bank-robbery-template 'pschemas)))
(threat-plan
(car (inst:slot agent-threat-plan 'pschemas)))
(giverplan (car (inst:slot threat-plan ‘pachemas}))
(give-ev (car (inst:slot give-plan ‘planl)}))
(inst:add-link give-plan tintended-by Aps-threaten-for~object-gf1)
(inst:add-link give-ev kthwarts &pa-bank-robbery-gf1))

iii defanlt definitions and default generation patterns

(let ((new-ht (ht:creats nil $7eq)))
(setf (ht:eatry new-ht 'robber)
(human ’ps-bank-robbery-default-robber))
(setf (ht:entry new-ht 'teller)
(human ’pa-bank-robbery-default-tellsr))

(setf (inst:prop tps-bank-robbery-default-teller ‘rhapsody; :gen-phrase)

(phrase:define 'ph-ps-bank-robbery-default-teller
(comment “Default teller from ps-bank-robbery")
(flags 'dont-parse 'dont-gen)
(pattern 'the ’bamk ’teller)))
(setf (ht:entry asw~ht 'baak-depositors)
{haman 'pPs-baak-robbery-dafault-bank-depositors
‘number ‘plural))
(setf (imat:prop l'.-bank-robbcty-dctlult-bank-dspolitort
‘zhapsody: :gea-phrase)
(phrase:defing 'phpe-bank-robbery-default-cank-depositors
(commeat “Defanlt bank depositors from ps-baak-robbery*)
(flags 'demt-parse ’dont-gen)
(pattern ’the 'bank 'depositors)
(gea-proc (lexref:gen-sava-ref *lexref-peoples))))
i; need to link thess thinks up
(set? (ht:eatry mew-ht 'bank-monsy)
(momey 'ps-baak-robbery-defaclt-bank-money
$poss-by tps-bank-robbery-defanlt-baak-depositors))
(setf (ht:emtry aev-ht ’bask)
(iastitution ’ps-bank-robbery-default-bank
'type ‘fimancial
Semployee Rpa-robbery=defaunlt-tallaer))
(setf (ht:emtry new~kt ’bank-robbery-threat)

415

(communicatiog ’pl-bank-robb-ry-darault-threar))
{satr (class:prop lpl-btak-robbary ‘default-nr) New-ht))

(let ((new-ht (ht:create 21l 8’eq)})
(sats (ht:entry new-ht '"threatener)
lhusan 'pl-th:-n:cn-for-abjoct-d-fault-:hr-at-ner))
(set? (ht:entry neg-ht ‘threatened)
(human ’ps-thrcatcn-for*obj-c:-dnfaul:-th:oatontd))
(setyt (ht:entry nes-nt 'threat-for)
{phys-obj 'pu-:hrclton-tor-objoct-dcfault-th:oat-fuz))
(sett (ht:entry neg-nt ‘threat)
(communication 'pl-thraatcn~tof-abj-ct-dcrault*throat))
(satr (clll-:prop lpl-ehrnaton-for-objcct ‘defaule-ht) naw-ht))

(let ((new=ht (ht:creata nil $'aq)))

(st (ht:entry new-nt 'agent-threatener)

(human ‘po—thrunttn-lgont-dctlul:-agcnt-:hr-at-n.r))
(sett (ht:entry nag-ht ‘agent-thrastaned)

(human ’pa-thrtlton-tgont-dntault-asont-throa:cnod))
(zett (ht:entry paw-nt 'agent-threat-for)

{phys-obj ’ps-thxtltla-lgcnt-dofnult*agcn:-throa:-fot))
(sett (ht:entry neg-nt 'agent-threat)

{communication 'ps-throcton-agunt~dofault-agcn:-th:nnt))
(sats (bt:entry nes-at 'inst-threatened)

(institution 'pl-throltcn-lgcnt-dlfAnlt-inlt-thrnltcncd))
(settf (class:prop &ps-threaten-agent 'default-ht) new-ht})

{let ({new-at (ht:create nil $'eq)))
(satt (ht:satry new-ht 'giver)
(haman 'p:-givo-dcranlt-;ivnr))
(setf (ht:entry neg-ae 'give-to)
(human ’pl-givc-dofnult-givn-to))
(sett (bt:eatry new-pt 'give-object)
(phys-obj 'pl-g1v--dnrlult-givo-obj-ct))
(set? (class:prop &ps-give 'default-ht) Reg-ht))

Goal Failure Schema

(sett (class:prop &gf-arrest ‘templats)
(pschema 'sf-arrest-template
'plan (list (event '§Z-axrest-event
‘object Tofficer
'prop floc-at
‘te (locatioa mil
‘prep ‘at
'ebject ?criminal)
'mode 'unexpected))
'goal-failures (list (geal ge-arrest-goal
'type 'p-freedom
'actor ?criminal
Sthwarted-by Rgt-arrest-avent))

'actor ?c¢riminal))

(let ((new=ht (ht:create nil 47eq)))
(satr (ht:eatry aes-ht (var:name ?criminal)) {list &human})
(setf (ht:entry new-ht (var:name Tofficer)) (1list thuman))
(set? (ht:entry mew-at (var:name Tcrime-loc)) (list &location))
(sett (class:prop &gf-arrest 'restrict-ht) new~ht))

D.4 Lexica] Entries

THUNDER's knowledge about language is defined by phrases representing pattern-concepr
pairs. The code for phrases is organized in five sections: (1) word phrases, which implement
word to concept transformations. (2) referent phrases. which implement phrases that refer to
previous concepts, (3) conceptual clause phrases, which combine subject-verb-object patterns
INto concepts, (4) generation templates, which define the sentence structure used to generate
high level concepts during the trace, and (5) question phrases. which are used to parse
questions into conceptual structuyre.

Word Phrases

(phrase:define 'ph=john
(comment "John")
(pattera 'john)
(concept (human 'pProper-namel
'first-name 'john
'gender ‘male))
(parse-proc (lo:ror:pa:lo--anrch-for-rot *lexref-paoples)
(lexref:parse-save-rof *lexref-pacples))
(gen-test (lox:uf:aot-no:t-roc-nt—rcf ?proper-namet
kmale-proncan-ingt
*lexref-pacplas))
(gen-proc (lexref:gen-save-rer *lexref-pecples)))

(phrase:define ‘ph-hunters
(comment “hunters")
(pattern ’hunters)
(concept (human nil
‘rts (list &rt-huater)))
(parse-proc (laxrtf:paxlc-savo-rct *lexref-peoples))
(gen-tasgt (pgen:prev-in-clags (list sadjective farticle))))

(phrase:define ‘ph-hunters2

(comment "the hunters")

(flage ’doat-parse)

(pattern ’the ’hunters)

(concept (humap 'proper-name-hunters

‘rts (list Art-hunter)))

(gen-tast (lcxrot:not-lolt-:cenlt-ro! Yproper-nane-hunters
&group-pronoun=-inst
*lexref-peoples))

(gea-~proc (lexrefigua-save~-ref *lazraf-peoples)))

{phrase:define ‘Ph-pelitical-fanatic
(comment “political famatic*)
(pattera (adjective ail
‘name 'political)
(human afl
'rts (list srt-fanmatic)))
{concept (humam nil
‘rte {list drt-political-famatic)))
(parse-proc (parse_util:pop-lexlist *lexref-pecples)
(lexref:parss-sare-rof *lexref-peoples)))}

417

{phrase:define 'pPh-two+human
(comment “two <groupi")
(pattern (adjective il

‘Dame ‘twa)

7ehum+ (khuman))
(concept ?hum)

(parse-proc {pparse:set-ylor Thum ‘number ‘plural)))
(phrase:define ’ph-hun*on*satting
(comment “<humans <prnp:on,no:tingN0
(pattern ?ehum+(thuman}
(prep mil
'name ‘on
'object 7setting))
{concept ?hum)}

(parsa-test (pparse:check-clase

Tsetting (lisc &3etting)))
(parse-proc (pparlc:sc:*llct-frol-proc
Thum ’rts
#'(lambda ()

(let ((ntting (ht:entry *pparse-

(actor (ht:entry ‘pparsse
(list (rolo-thtna:got-r:

bindingge ’setting))
~bindingse ‘hum)))
“from-setting setting))}in)

(phrase:define ’ph-phone-calls
(comment “phaone callg")
{pattern 'phone ‘callas)
(concapt (communication nil

'dumber ’plural
’type 'phone-call)))

(phrase:define 'pPh-type~phone-call
{comment "<adjective> phone calls")
(pattern (adjective nil

‘tume Tadj)
(communication nil
'number 7num
‘type ‘phone-call
’content ?content))
(concapt (communication ajl
‘sumber 'plural
'type ’phone-call
‘content ?adj))

(parse-tast (pptxlo:chnck-lull-vnr *content}))

(phrase:define ‘ph~threat-phone~call
(comment "<threateaing> phose callg”)
(pattera (verb ai}

'Ambe 'to-threatea
"tense 'ptuut-plntciph)
(commanication nil
'sumber *aam
‘type ‘phone-call
‘coatent Tcontent))
(concept (commmnicatioa ail
'namber ‘plural
'type ‘phone-call
'content ‘threat))
(parse-test (pparse:check-null-var ?content)))

(phrase:derine 'pl-p--bm-robbory
(comment "ps-bank-robbery”)
(pattern 'rodbing ’a bank)

(concept (ps-bank-robbery nil)))

(phrase:define ‘ph-ps-change-oil
(comment "pa-change~cil"}
(pattern 'changing ’'the ’o0il
(prep nil

‘name ’in

'object Tautomobile))
(concept (ps-change-oil nil

'automabile ?automobilse)))

Referent Phrases

(phrase:define ’ph-a
{comment “a")
(pattera ’a)
(concept (article nil
‘typs ’indef)))

(phrase:define 'ph-the
(comment "the")
(pattern ’the)
(concept (article nil
'type 'def}))

(phrase:define 'ph-possessor-possessive
(comment “<possessor> spossessives”}
(pattern ?spossessor+(khuman Ranimats)

‘epossessives)
(concept (article ’'articled
'tYpe 'possessive
‘ref Tposdessor)))

(phrase:define ’'ph-a+thing
(commsnt “<article:indef> <thing>")
(flags ‘dont-gen)
(pattezn (article anil
‘type 'indef)
?ething+(kautomobile 201l ¥institution kanimate kexplosive
&setting kmoney lambiguous-verd Adacument fmagic
&length-obj))
(coacept ?thing)
{parse-proc (lexref:parse-save-ref slexref-thingss)))

(phrase:define 'ph-thethuman
(comment "<article:def> <human’“)
(flags 'doat-gen)

(pattern (article ail
‘type 'dof)
Tehwrt (Shwman))
(concept Thum)

(parse-proc ‘
i} got rid of the most receatly created humam. Problams here

it if this pattera matches an initial reference.
{parse_atil:pop~lexlist slexref-pecplec)
(lexref:parse-ssarch-for-ref *lezref-pecples))}

(phrase:define ‘ph-art-possessivevobject

(comment "<article:possessive> <object>™)
(flags 'dont-gea)

419

(pattern (article ail
'type 'possessive
'ref Towner)
ething+{Zautomobile koil kinstitution kmoney tanbigucus-vord))
(concept ?thing)
{parse-proc (parse_util:add-link 7thing ¥pess-by Zcwner)
{lexref:parse-save-re? *lexzef-thingas)))

(phrase:define 'ph-animatel
(comment "a kanimatse")
(flags 'dont-parse)
(pattera (article nil
‘type ’indef)

?eanimatel+Ranimatae)
(concept (animate ’'animatei))
(gon-test (pgen:prev-not-in-clags (list article kstatus))

(lexref:not-mentioned ?animatel *lexref-thingse)))

(phrase:define ’ph-animatel
(comment "the &animate”)
(flags ’dont-parse)
(pattern {article nil
‘type 'def)
Teanimatel+hanimate)
(concept (animate 'animate2))
(gen-test (pgen:prev-nct-in-class (list karticle Estatus))
(lexref:mentioned *animatel ¢lexref-thingse)))

(phxase:define °ph-ha
(comment "he")
(pattarn ’he)
(concept (human ’male-pronmouni
‘gender 'male
‘firet-name ?fname
‘last-name ’lname
'number ?male-pronoun-pum))
{parse-proc (lezref:spasn-resolver-demecn
’male-pronouni
'nomative-pronoun)
(pu‘u.ntu:ut-prop "male=proacuai ’promoun 'male-pronoun)
{pparse:clear-slot ?male-proncunl ’‘mumber))
(gen-test (pparse:check-aull-~var "male-proacun-num)
(lexref:most-recent-ref
?male-pronoual
dmal o~promouni
*leaxrsf-pecples)
(pgamiprev=act-in-class (1list Epreapll))

(phrase:define ’'ph=they
(comment "“they“)
(pattera ’they)
(concept {human ’grogp-proncua
‘aumber ’plural))
(parse-proc (lexxef: SpaTR-resclver~demaa
Tgroup-proncun
‘nomative~pronoun))
(gea-test (pgem:prev-not-in-class {list Rprep &verb Binfiaitive))
(lexzef:most-recent-ref
Tgrowp-pronoun
&gToup-proacun
*lexref-pecples}))

(phrase:define ‘ph-him
{comment "him")
(pattern ’higm)
(concept (homan 'male-pronguny
‘gonder ‘mal,
'first-name 7fpame
'last-name ?lname
‘number *male-pronoun-num)}
(parse-test (ppaxsc:chock-null-va: ?-llc~prnnoun-nun))
(parsa-proc (loxrnf:lpaun-r-solvor-do-on
male-prongungy
'ebjective~proncun)
(pparse:clear-slot *male-pronocuny ‘numbaer))
(gon-tast (ppa:lc:ch-ck-null-vn: ?-nlc-pronoun-nun)
(pg-n:prov-in-cllll (limt Eprep &verbd &infinitive)}
flcxrot:-ost-rccont-rof
?male~pronoun2
tmale-pronouny
*lexref-pacples)))

(phrase:define 'pPh-his
(comment "hig")
(pattern ’his)
{concept (article nil
'type ‘possessive
‘ref (human 'sale-proncuni
'gender 'male
‘Dumber ?num)))
(parse-proc (lcxr-t:lparn-rololvor-dcnoa
"male-pronouna
‘possessiva~pronoun)

(parlo-ntil:llt-ptop male-pronounz 'promoun 'sale-pronona)

(pparse:clear-slot Tmale-pronocun3 'number})
(gen-test {(pparse: check-null-var *pum)
(loxruf:-ost-rnccnt-r-t
male-prononnd
male-proncun3
*lexratf-pecples)))

Conceptual Clause Phrases

(phrase:define 'ph-hm*uptuﬁumu
(comment “<human)> <verbito-capture> <animater")
(pattera ?ehum+ (khmman)

(varb ail
‘namg to-capture
‘tease ‘past)
Teaninvbaninats)
(concapt (actioca =il
‘type 'atrans

‘acter Tham
‘object Tanim
’to Thun

‘status ‘realized
'peclass Xps-captury))
(gen-test (Pgen:prev-not-in-class (list shuman))))

(phrase:define ’ph~changeoil+inanto

{comment "<actiom:change 011> <prep:im auto>")
(pattera (action afl

421

‘type ‘ptrans
'actor ?ph-changeoilsinauts-actor
'mode made
’object 7pj]
'peclass kps-change-oil)
(prep nil
‘name 'in
'abject Tauto))
(concept (actiem nil

'type ‘ptrans
'actor ?ph-changeoil+inauto-actor
‘mode Tmode
'ebject 7oil
‘to (location nil
‘prep ’in

'object Zauta)
'paclass kps-change-ail))
(parse-test (pparse:check-cliass Tauto (list Rautomobile)))}

(phrase:define 'ph-buman+decide+actionorgoal
(comment "<human> <verb:decided> <action/goal>")
(pattern ?shum+(thuman)
(verb nil
'name 'to-decide)
Teact+(Raction kgoal))
(concept (action ’'mbuild-act
'type 'mbuild
‘actor hum
‘object Tact
'status 'realizad)}
(parse-proc (pparse:set-slot-from-var ?act ‘actor huam)
(parss_util:spamm-demon 'if-explained Tact ?mbuild-act)))

(phrase:define ’'ph-goal+tcomma-act
(comment "<goal> scommas <actiom>")
(pattern ?egoal+dgoal
facommas
{action '‘gc-action
‘actor ?human))
(concept ?gc-action)
{parse-proc (pparse:set~slot-from-var 7goal ’actor Thuman)
(parse_util:doat-load ?goal)
(parse_util:spawn-demon ‘act-enables-goal ?gc-action Tgoal)
(parse_util:spava~demon 'if-explained ?goal Tgcaction)))

{phrase:define 'ph-mbuild+prepby

{comment "<actismimbuild-goal> <prep:by>-)

(pattern (actiem 'ph-mbmild-actl

‘type 'mbuild

'acter Tactor

‘object Tgoal)
(prep 'ph-mbuild-prep2

'same ‘by

‘object Tact1))

(coucept ?ph-mbuild-act2)

(parse-test (pparse:check-var Tact?)
(pparse:chack-class ?goal (list Rgoal))
(pparse:check-class ?actl (list hactionm)))

(parse-proc (parse_util:spamm-demea ‘act-snables-goal ?act2 ’goall
(pparse:add-node-aft Tact2)))

(phrase:define 'ph-mbuild+act

BaTs)

{comment "<action:mbuild» <action>")
(pattern (action 'phmbuild2-gct
‘type 'mbuild
‘acter Zactor
‘objecs Tabj
Ep-enables ?act3)
Teacti+daction)
(concept ?ph-mbuild2-act)
(parse-test {pparse:check-null-var %ob3))
(parsa-proc (pparse:set-slot-from-var "ph-mbuild2-act ‘object Tactl)))

(phrase:defins 'Ph-act+preptrelative-clauge
(comment “c<act> <prep:by> <prqsunt-plrticiplo>“
"Fill in the elliptical actor of the relative clauss")
(flags ’'dont-gen)
(pattern (action nil
'actor Thuman)
(prep nil
'name ’'by
'ebject Zprap-obj)
(verb 'verb-rel-clause
'name ?verb-name
‘tense 'Present-participle))
(parse-test {pparse:check-null-var Tprap-objl)
(parss-proc {(pparse:add-node-bes Thuman)
(pparve:net-alot Tverb-rel-clause ’tense ‘past)))

(phrase:define ‘ph-mato-blow-up
(comment "aute Cverb: blow-up>")
(pattern ?santo+kantomobile

(verb njl .

‘name ‘to-blow-up

'tense ‘present))
(concept (event nil

‘object Taute

'Prop ‘status

‘to 'destroyed

'peclass Lgf-damages)})

(phrase:define 'ph-auto-blow-up2
{comment "<anto> <verbd:blew-up>")
(pattern Teantottantomobile

(verd ail
‘name 'to-blow-up
‘tenss ’past))}
(concept (avent ail
‘object Tauto
'prep 'statua
'to ‘dassroyed
‘peclass Sgf-damages))
(gen=-test (Pgemiprev-not-ia-class (list &verb))))

(phrase:define 'ph~anto-blow-upl
{comment "<verb:blowing-up> <amtor*}
(pattera (verb nil

'aame 'to=bles-up
‘tense ‘preseat-participle)
Teauto+tantomobile)
(concept (eveat nil
tobject *aute
'prop 'statns
'te ’destroyed

423

'paclass dgf-damages))
(gon-test (pgen:prev-in-class (liat kprepl)))

(phrase:define 'ph-some-fua
(flags ’dont-gen)
(comment "some fuan")
(pattern 'some ’fun)
(concept (goal nil
'type 'e-entertainment)))

Generation Templates

(phrase:define 'Ph-pos-believer-abligation-belief
{comment "positive belisver obligation belief")
(flags 'dont-parse)
(pattern Theliever
'place-holdert
‘that
Tpschema
'is 'right
reason)
(concept (obligation-belisf nil
’valence ‘positive
'believer ?believer
'content ?pachema
4resscn-for-pos Treason))
(gen-teat {pparse:check-var ?reason))
(gen-proc (parse_util:verb-number ’place-holderl 'to~balieve ?believar}})

(phrase:define ’ph-you*holiovnr-obligation-boliot:
(comment “positive believer obligation belief2")
(flags ‘dont-parse)}
(pattern ?believer
'placs-holderl
‘that
?pschema
tis ‘right)
(concept (obligation~belief 'pos-bel-oblig-bell
'valeace 'positive
'belisver Tbeliever
‘content Tpschema))
(gen~test (pgen:check-null-liak dreason-for-pos)}
(gen-proc (parse_util:verb-acmber 'place-holderl ’to-belisve *heliever)))

(phrase:define 'ph-pos~believer-obligation~baliefd
(commeat “positive believer cbligation belief3")
(flage ’dont-parse)

(pastearn "hbaliever
(infinitive nil
'name *to-believe)
‘that
Tpachema
*is ’right)
(comcept (abligatiom-belief nil
'valence ‘positive
'believer Tbeliever
‘comtent Tpschema)}
{gen-test (pgea:check-aull-link Areason-for-pos)
(pgon:prev-in-class (list Rverb kinfinitive))))

(phrase:define 'Ph-prag-reason-i
(comment "prag-reason-1")
(flags *dont-parse)
(pattern 'because
Tactor
'will
value)
(concapt (prag-reason-1 nil
'value 7value
‘actor Zactor))
(gen-ctest (pparse:check-var ?value)
(pparse:check~var Tactor)))

(phrase:define 'pPh~prag-reason-2

(comment "prag-reason-1")

(flags 'dont-parse)

(pattern ‘because

?actor
‘will
Tvt)
(concept (prag-reasen-2 nil
‘value-failure *vf
'pschems ?pschema
‘actor Tactor))

{gen-test (pparse:chack-var ?ve)
(pparse:check-class Tpachema (list tpachema))
(pparse:check-var ?actor)
(p:rsl_u:il:not-goal-f&ilod TvL)))

'vf-pachema Yvf-pschema
‘value Tvalue
‘actor Tactor))

(gen-tent (pparse:check-var *vt)

(pparse:check-var ?actor)
(parlo-util:not-;oal-failnd Tve)
(plrso_u:il:goal-lctor-naq? Tralue 7actor)
(pq:ao_util:chcck-fur-nn-cauling Tvf))

{(gen-proc

(pnrsc-ulil:5ct-ao-cnuaing 'place-holderia ?v?)))

(phrase:define 'ph-ethic-reasocn-1
(comment “"ethic-reason-1")
(flags 'dont-parse)
(pattern ’because
Tactor
'will
: Tvalus)
(comncept (ethic-reason-1 ail
‘value Tvalue
'acter Yactor
‘other Yether))
(gen-test (pparse:check-var *valume)
(pparseicheck-var Tactor)
(pparse:check-var Tother)))

(phrase:define 'ph-ethic-reason~2-1

(comment “ethic-reason-32")

(flags ‘dont-parse)

(pattern 'becaunse

Tri)

(concept (ethic-ressom-2 njl
'valge-failure ?vt
'vi-pschema ?vf-pachema

425

‘actor Tactor
'other *ather))

(gen-tast {pparse:check-var T}
(pparse:checx-var *actor)
(pparse:check-var Tother)
{pnrlc_n:il:goll*flilad v

(phrase:define ‘Ph-ethic-reasgn-3

(commant "ethic-reason-2)

(flags 'dont-parse)

(pattarn 'because
Tactor
’gill
Tyt
‘place-holder1)

(concept (ethic-reason-2 nil

‘value-failure ?yf
Tvf~pachems ?vf-pachema
'actor ?actor

'other ?ather))

(gen-teat (pparse:check-var Tve)
(pPparse:check-var Yactor)
{pparse:check-var Tother)
(pa:so_ntil:not-goal-f&ilod Tvf)
(parll_util:ch-ck-for~au—causing ve))

(gen-prac (parlo_utii:tillin~prop-ac-:ausing ’vf by ‘place-holderi)))

(phrase:define 'Ph-bcp- inhumane
(comment "bcp-inhumane')
(flags 'dont-parse)
(pattern ?believer 'belisves
‘that
Tactor
'place-holdery
'inhumane ’'to
?event-causing
(prep nil
‘name ‘for
‘ebject ?value))
(concept (bep nil
'bealisver Tbeliever
'bindings
(bep-inhamane nil
'actor Tactor
'value~failure (goal nil
Athrarted-dy Tevent-causing)
‘value Tvalue)))
{gen-proc (pquc_util:vozb-ln-bor 'place-holderl ’to-be Tactor}))

(phrase:define * PA~bep-misguided
(comment “bep-misguided”)
(flags ‘dont-parse)

(pattern ?believer ‘believes 'that
Tactor
'place~holderl
‘misguided
'to
?valse~failyre
‘to
Tvalue
‘becanss
?pschema

'will ’not
?value)
(concept (bcp nil
‘beliaver *baligver
'bindings
(bep-misguided ni}
'actor Zactor
’other ?osthar
‘valus-failure *value-failure
'pschema *pschema
‘value ?value)))
(gen-proc (parse_util:verb-pumber 'Place-holdert ’to-be Tactor)))

(phrase:define 'ph-bcp-inhumape-reason
(comment “bcp-inhumane-reason®)
(flags ‘'dont-parse)

(pattarn 'because
Tactor
'vers ’inhumane
to
Zother)
(concept (bcp-inbumane nil
‘acter ?acter
‘other Tother)))

(phrase:define ' ph-bep-misguided-reason
{comment "bcp-misguided-reason”)
(flags ’‘dont-parse)

{(pattern 'because

pachema

'will

Tve

‘and ’'will ’not
?valus)

(concept (bep-misguided nil
’actor ?actor
'valus=failure ?vf
‘other 7other
'pschema ?pachema
‘value ?value)))

(phrase:define ’'ph-tau-busted
(comment "tau-busted")
(flags *dont-parse)
(pattern 'commit ‘crime)
(concept (tam nil
'bindiags (tau-busted nil))))

(phrase:define 'pa-tan-dangerous-object
(comment “tan-damgerous-object”)
(flags ’dont-parse)
(pattern ’play 'with 'dynamite)
(concept (tam ail
‘bindiags (tau-dangerous-object 2il))))

(phrase:define ’ph-valne-thems
(comment “valus thame sentence“)
(flags ’'dont-parse}

(pattern 'the 'theme 'is
'that
Theliaver
‘should ’not

427

Tobligation-plan
'that 'cause
vt
‘because
reascn)
(concept (theme n:l
'type 'reason-thame
"belief {obligation-belief nil
‘valence ’negative
'baliever 7believer
‘contant 7obligation-plan
kreason-for-neg (ethic-reason-2 nil
‘valus-failure ?vf))
'reason ’reason)))

(phrase:define 'ph-tau-theme
(comment "tan theme sentence")
(flags 'dont-parse)
(pattern ’the 'thems ’is
'that
?believer
’should ’'net
Ttan
'because
’reason)
(concept (thems nil
‘typs 'reason-thems
‘belief (obligation-belief nil
'valence ’negative
'belisver Thelisver
'content Tobligation-plan
&reason-for-neg {(prag-reason-2 nil))
'reason ?reason
Etheme-from 7tau))
{gen-test (pparse:check-class ”tau (list &ktau))))

Questions Phrases

(phrase:define ’'ph-shy-to-be
" (comment “why Cto-be>")
{flags ’dont-gen)
(pattera ’'why
(verd ail
'same 'te-be))
(concept (questiea ail
type 'explanation)))

(phrase:define 'ph-shy-to-do
(comment “why <to-do>")
(flags ’dont-gen)
(pattern ’why
(vearb nil
'name ’to-do))
(concept (questiona nil
‘type 'explanation)))

iii evaluative judgement questions

(phrase:define 'ph-ques-eval ,
(comment “<ques:exp> <evaluation>")

(flags 'doat-gen)
(pattern (question nil
‘type 'explanation
'actar Tactor
‘mode ?moda)
*shum+(dhuman kanimatae)}
(avaluvation a1l
"type “typal)
(concept {quastion n:l
'type ‘evaluative-Judgment
'believer 'thunder
‘actor Thum
'mode “typae))
(parsa-test (pparse:check-null-var Zactor)
(pparse:check-null-var "moda)))

(phrase:define 'ph-ques-act

(comment "<ques:exp> it-act")

(flags 'dont-gen)

{pattern (question 'ques-expact-ques
‘type 'saxplanation
'actor Tactor
'mode ?mods)

(action 'ques-expact-act
'actor Tactor2))

(concept ?ques-expact-ques)

(parse-test (pparse:check-null-var Zactor)
(pparse:check-null-var ’mode)
(pparse:check-var ?actor2))

{parse-proc (pparse:set-alot-from-var ?ques-sxpact-ques 'actor Tacter)
(pparse:add-node-aft Tques-expact-act)})

(phrase:define 'ph-ques-act-aval
(comment "<ques:ezp> it-act <evaluatiomd>")}
(flags 'dont-gen)
(pattera (question nil
'type ‘explanation
‘actor Tactor
‘mods ?mods)
Teact+laction
(evaluation nil
‘typa ?typs))
(concept (question nil
'type ’‘wvalative-judgment
'believer ’'thunder
'actor Thum
‘mode Ttype))
(parse-test (pparse:check-nnll-var ?actor)
(pparse:check-null~var ?mode)))

{phrase:define 'ph-ques-actevent-qmark
(comment "<ques:ezp> <action/event> sgmarke")
(flags 'dont-gen)

(pattern (question nil
‘type ‘evaluative- judgment
‘believer Tbeliever
'actor Tactor
‘content Tcomtent
‘mode Tmode)
Tecon+(Raction Revent)
Yegmarkse)
(concept (questicn nil

429

‘type evalnae iu-judpont
‘actor Tactor
'believer *belisver
‘content Tcon
'mode ?mode})
(parse-test (pplrsc:ch-ck-null-v;r 7content)
(pparu-:ch-ck-vq: "moda}}}

430

