Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

PERFORMANCE OF LCFS QUEUEING SYSTEMS
WITH IMPATIENT CUSTOMERS

Chialin Chang June 1991
CSD-910016






UNIVERSITY OF CALIFORNIA
Los Angeles

Performance of LCFS Queueing Systems with Impatient Customers

A thesis submitted in partial satisfaction of the
requirements for the degree Master of Science

in Computer Science

by

Chialin Chang

1991



The thesis of Chialin Chang is approved.

/Nfano Gerla

Richard R. Muntz

%/m-

Leonard Kleinrock, Committee Chair

University of California, Los Angeles
1991

i



1 Introduction
Model Description and The Optimal Scheduling Policy . . . . . .
3 The LCFS-TO Policy for M/G/1 Queues

]

3.1
3.2
3.3
34
3.5
3.6

TABLE OF CONTENTS

..............................

Model Assumptions . . . ... ... ... .. ..
Anmalysis . . ... ... . ... .. . .. .. .
The Conditional Waiting Time Density Function . . . . .
The Probability That The System Is Busy. . ... .. ..
The Final Results . .. .... ... .. . .. .
An Example : The M/M/1 Queve . . ......... . .

4 The LCFS-TO Policy for M/M/m Queues . . . .. ...... .

4.1 Model Analysis and Policy Description . . . . . .. .. .
4.2 Analysis . . .. ... ... ... ... ...
4.3 The Waiting Time Density Function . . . ... ... . .
44 ‘The Probability of Being In The Fully-Loaded State
4.5 Numerical Results . . .. ... ... .. ... . . .
5 Conclusion .. .... ... ... .. ..... ... .. ... .. .
References

...................................

iii



SQDOO'\IOBOTQC.QMH

i
b —

—
W

14
15
16
17
18

19
20

LIST OF FIGURES

.................
..............

The goodputs of the three systems at A = 0.9, and y =1.

The fraction of jobs that are discarded A=09, u=1). ... ..
The fraction of jobs that are served unsuccessfully (A =109, u4 = 1).
The goodput of system 1 with different system loads. . . . . . ..
The optimal goodputs of the three systems. . .. ... ... ...
The optimal thresholds Ty corresponding to Figure 10. . . . . .
The optimal goodput of system 1 (under the LCFS-TO queueing
policy) and the goodput of the STE queueing policy (u =1). . .
The state transition diagram of an M/M/m queueing system under
the LCFS-TO policy. . . . . .. ..... ... .. ... .. .. .

The validation of the approximation for Pry, (u =1, Ty = 2). ..
The probability that the system is in the fully-loaded state ob-
tained via simulation and via approximation (u=1m=2). .
The probability that the system is in the fully-loaded state ob-
tained via simulation and via approximation (k=1,x=4). ...
The goodputs of an M/M/m queueing system with ¢4 =1 and
A=09. ...
The probability that a job is discarded (A =4, p=1). .. .. ..
The probability that a job is served unsuccessfully (A =4, u = 1).

iv

26
30
33
40
40
41
42

43
43



ACKNOWLEDGEMENTS

I wish to thank Dr. Leonard Kleinrock, who is my advisor and committee
chair, for his great help and constructive comments in this thesis. I am grateful
as well to Shiou-Pyn Shen and Jonathan Lu for all those discussions that solved
some of the problems. I also wish to acknowledge Doris Sublette and Lily Chien
for all the help they provided.

Last of all, I wish to express my appreciation to Tsung-Yuan Tai, Fu-Chung
Wang, Mi-Sui Ling and my family, for their continuing support and encourage-

ment.



ABSTRACT OF THE THESIS

Performance of LCFS Queueing Systems with Impatient Customers
by

Chialin Chang
Master of Science in Computer Science
University of California, Los Angeles, 1991

Professor Leonard Kleinrock, Chair

In many applications, jobs that arrive in a queueing system have real-time
constraints to their waiting times, and these Jobs should begin their service before
their respective deadlines expire. Otherwise, the jobs are considered lost. There-
fore, it is desired to schedule Jobs such that a fraction of jobs that begin their
service within their respective deadlines is maximized. In this thesis, we consider
a queueing policy, known as LCFS-TO, in a system where only the distribution
of jobs’ deadlines, rather than the exact deadline of each arriving job, is available
to the server. Based on the waiting times of the quened jobs, the policy decides
the job service order and also which job(s) to discard, since jobs are unaware of
their deadlines and therefore, even if their deadlines have expired, they have no
idea about the expiration and do not leave the system automatically. We build
an approximate model to analyze the performance of the LCFS-TO policy for

M/G/1 and M/M/m non-preemptive queueing models.
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1 Introduction

In many applications, jobs that arrive in a queueing system have real-time
constraints, and these jobs should be served before their respective deadlines.
The deadlines can be the limiting constraint either on the jobs’ waiting times
or on the jobs’ sojourn times (namely, waiting time + service time). For some
systems, it is unacceptable for any job to miss its deadline. In these systems,
which are referred as hard real-time systems, job service demands are usually well
understood and much work has been done on the development and evaluation
of scheduling policies [Liu 73, Mok 78]. Other systems consist of jobs for which
it is not critical that all jobs meet their deadlines. In this thesis, we will focus
on the latter model with a limiting constraint on a job’s waiting time (i.e. time
in queue). Typical examples of this model are impatient customers that give
up their connections in a telecommunication network before the connections are
completely connected, hospital emergency rooms handling critical patients, and
the operation of radar screens of air defense systems. The common feature of
these applications is that if any job begins its service after its deadline expires,
the job is considered lost, and any service that it received is cousidered useless.
Thus, it is desirable to schedule the jobs such that the fraction of jobs that begin
service within their respective deadlines is maximized. This fraction is usually
referred as the goodput.

There are usually two kinds of scenarios in these queueing systems. The first
one is that the server is aware of the exact deadline of each arriving job. The
application of radar screens of air defense systems fits in this scenario. Once the
signal received by the radar is not processed within some known (and maybe
fixed) interval of time, the signal is no longer useful. In this scenario, the server

can discard the jobs whose waiting times exceed their associated deadlines, and



therefore no service work is useless. It can be shown that under certain conditions,
the best policies when the deadlines are available to the server belong to the class
of policies that choose to serve the job closest to its deadline (STE and STEI)
[Tows 88].

The other scenario is that the server only knows the deadline distribution of
the arriving jobs, rather than the exact deadline of each job. This often happens
when the deadlines are not available to the server, and the only time we learn that
the deadlines expire is when the results of the service are returned back to the
users who submitted the jobs. For example, in a telecommunication network, the
server (i.e. the switching box) is never able to know exactly how impatient each
customer is, but may know the distribution of customers’ impatience through
some statistical investigation. Compared to the first scenario, this is a model
with reduced information. Without knowing the exact deadline of every specific
job, the control action is to decide, at appropriate decision instants, which job to
serve and which job(s) to reject. A rejection scheme is necessary since the jobs are
unaware of their deadlines in our model and, even if their deadlines have expired,
they have no idea of the expiration and thus do not leave the queue automatically.
Therefore a job could be either served in an order decided by a service discipline,
or discarded by a rejection scheme. And due to the unawareness of the respective
deadline, a job that gets served may or may not have met its deadline. We call
a job that gets served and meets its deadline a successful job, and one that gets
served after its deadline expires an unsuccessful job. Thus, a job in the system
can either be discarded, successful, or unsuccessful. We will also use the term
queueing policy in this thesis to refer the combination of the service discipline
and the rejection scheme in a queueing system. Note that some server work may
be useless due to the unawareness of the expiration of the jobs’ deadlines. It can

also be shown that under certain conditions, the last-come-first-served policy



with a time-out rejection mechanism (LCFS-TO) [Zhao 91] is the optimal policy
in this scenario. The objective of this thesis is to build a model of the LCFS-TO

policy, and using the model to solve for the goodput of the system.



2 Model Description and The Optimal Scheduling Policy

We consider a non-preemptive M/G/1 queueing system with an infinite num-
ber of buffers. The distribution of the arrival times is Poisson with parameter A,
and the distribution of the service times is an arbitrary function. All the service
times are independent and identically distributed. Upon being generated, each
job randomly selects a deadline, which is only known to the user who generated
this job. This deadline is the maximum acceptable waiting time (in queue). All
jobs draw their deadlines from a common distribution function Fy(-) on the set

of positive real numbers. That is,
Fy(t) = Pr{deadline < ¢}

Note that Fy(-) is a non-decreasing function. It is assumed that the server only
knows the deadline distribution function Fy(-), and is unaware of the exact dead-
line of each job.

The deadline of a job may expire whiie waiting in the queue. As mentioned
above, if a job with an expired deadline gets served, its service is considered un-
successful. Therefore, an optimal scheduling policy would maximize the fraction
of jobs that begin their service before their deadlines expire, namely, this policy
maximizes the system’s goodput. Zhao et al. [Zhao 91] showed that if Fy()isa
concave function (for example, see Figure 1), that is, if jobs are more likely to
have short deadlines rather than long deadlines, then the following two theorems

hold.

Theorem 1 For a non-preemptive M/G/1 queue, if the jobs’ deadlines are in-
dependent and identically distributed with a concave function Fy(.), there exists
an optimal scheduling policy which does not reject a job with a given waiting time

while another job present in the buffer with a larger waiting time get served later,
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Figure 1: An example of a concave function.

and will not allow unforced idle times (that is, the server is allowed to become

tdle only when the system is empty).

The intuition behind this theorem is that since all jobs have the same service time
distribution and all tend to have short deadlines, serving the job with a shorter
waiting time would always have a higher probability to produce successful service
than serving one with a longer waiting time. Furthermore, when the queueing
policy decides that some job in the queue should get served, it should be served
at once, without further delay. Inserting unforced idle times only decreases the
probability that the service is successful.

However, some jobs may wait in the queue for a long time. For example,
when the arrival rate to a queueing system is larger than the service rate of the
server, the queue will build up and some jobs may never reach the server if a
rejection scheme is not applied to the system. These jobs stay in the buffer for
ever which is equivalent to being rejected. In general, a job waiting in the buffer

for a very long time will have an expired deadline, with a probability approaching



one. Since serving these jobs could very possibly result in useless server work,
it is worth rejecting them and serving another job with shorter waiting time, or

even waiting for a new arrival and serving it.

Theorem 2 Consider a non-preemptive M/G/1 queue where the watting times
of queued jobs are available. If the jobs’ deadlines are independent and identi-
cally distributed with a concave function F4(-), there exists an optimal stationary

queueing policy, the LCFS-TO policy, which is described below.

1. the service discipline is last-come-first-served.

2. every arriving job that joins the buffer will get discarded if its waiting time

ezceeds some threshold Ty - a time-out rejection mechanism.

3. unforced idle times are not allowed.

Imagine how the system works under the LCFS-TO scheduling policy with some
waiting time threshold Tj. Every job that arrives in the system will join the buffer
and be time-stamped with its arriving time. Whenever the server becomes idle,
it selects from the buffer the job with the newest arriving time if the buffer is
not empty, or waits for a new arriving job if the buffer is empty and selects it
immediately upon its arrival. This selection process implements the last-come-
first-served service discipline. Now the server has to check the selected job’s
waiting time, which can be obtained by subtracting the selected job’s arriving
time, or, its time-stamp, from the server’s current system time. If the waiting
time is not greater than Tp, the selected job is served, and hopefully the service
will be successful. If the waiting time exceeds Tp, the selected job is discarded
by the time-out mechanism. In fact, if the process overhead for selecting a job
and calculating the waiting time is negligible and thus no arrival occurs between
the time the job is selected and the time it is discarded, the server can not only

throw away the selected job, but also discard all the jobs waiting in the buffer.



This is because with last-come-first-served service discipline, all jobs waiting in
the buffer will always have waiting times longer than that of the selected job,
and certainly longer than the threshold Tp.

It can easily be realized that the waiting time threshold Ty plays an important
role in the LCFS-TO queueing policy. The value of T decides how often does the
policy discard queued jobs. If Tj is too small, many jobs will be discarded, even
though they could be successful with a high probability. If T; is too large, many
queued jobs with long waiting times will receive service which would turn out to
be unsuccessful with a high probability. In both cases, the fraction of successful
jobs would decrease, and the performance of the queueing system is degraded. In
the next section, we will build an approximate model to analyze the performance
of the LCFS-TO queueing policy for an M/G/1 queueing model. The extended

model for m servers will be presented in section 4.



3 The LCFS-TO Policy for M/G/1 Queues

In this section, we analyze the performance of the LCF S-TO queueing policy
under an M/G/1 non-preemptive model, and find the goodput of the queueing

System.

3.1 Model Assumptions

For our M/G/1 model, the arrival process is assumed to be Poisson with mean
arrival rate X. The jobs’ service times are independent and identically distributed
with an arbitrary distribution, whose Laplace transform is denoted as B*(s). The
mean service time is Z. The jobs’ deadlines are also independent and identically
distributed with distribution function Fy(-). As mentioned in the previous section,
if Fy(-) is a concave function, then the LCFS-TO queueing policy is known to
be the optimal policy. Our investigation of the LCFS-TO policy does not require
Fy(+) to be concave. It is also assumed that the processing overhead to enforce

the LCFS-TO queueing policy is negligible.

3.2 Analysis

The performance metric that we are interested in is the fraction of jobs that
begin their service before their respective deadlines expire. When the system
reaches equilibrium, all jobs statistically have the same behavior. Specifically,
they all have the same waiting time distribution. And with the same deadline
distribution, the fraction of successful jobs for a system in equilibrium is the
same as the probability that a job is successful. Let P, be the probability that

an individual job is successful. It can be expressed as follows.

T
P, = jo [1 — Fy(t)]wa(t)dt (1)

where wy(w) is the probability density function of the job’s waiting time.



Realizing that a job which arrives in an idle period, namely a period of time
during which the system is idle (empty), will always be successful, we can rewrite
equation (1) by conditioning on whether the system is idle or not when the job

arrives. Define

P2 Pr{a job arrives in a busy period}

Then, we have
Ty
Py = (1~ Pp) + Py [ (1 ~ Fy(t)ua(t[busy)dt 2)

where wy(t|busy) is the conditional probability density function of the job’s wait-
ing time, given that the job arrives in a busy period.
Now, all we need to know is wy(t|busy) and Pg. We will find them in the next

two subsections.

3.3 The Conditional Waiting Time Density Function

Consider a tagged job that arrives at the system during a busy period. Let
Wr be the random variable of the waiting time of our tagged job. With the time-
out mechanism, our tagged job may get discarded when its waiting time exceeds
the waiting time threshold 7. Let’s define Wr to be 0o when this happens. This
means that the density function of Wy would be some kind of continuous curve
in the range (0, Tp], with an impulse at Wy = .

Note that under the LCFS-TO queueing policy, the tagged job will always
be selected by the service discipline before any other job that arrives before
the tagged job and is still waiting in the buffer. Therefore, in addition to the
job in service, only jobs that arrive after our tagged job arrives will affect the
tagged job’s waiting time Wr. Furthermore, whenever some job that arrives after
our tagged job arrives is selected by the service discipline but discarded by the

time-out mechanism, our tagged job will automatically be discarded too. In other



words, if our tagged job eventually enters the server and receives its service, none
of the jobs that arrive within the waiting time of our tagged job are discarded,
and the system appears to our tagged job as a simple LCFS queueing system
without any constraint on the waiting time. That is, if Wy is the random variable
of a job’s waiting time in the simple LCFS queueing model, the distribution of Wr
would be exactly identical to that of Ws in the range of (0, Ty}, which is exactly
the range that we need for equation (2). Therefore, we temporarily forget about
19, and imagine that our tagged job now arrives in the simple .LCFS queueing
system instead. Note that the waiting time of our tagged job is now Wi.

Let wp(¢) be the density function of Wy with Laplace transform W}(s). Fur-

thermore, define the following random variables (see Figure 2).

X = the service time of the job in the server when our tagged job arrives
Y = the residual life of the service time X after our tagged job arrives
N = the number of jobs that arrive during the residual service time Y

G = the duration of a busy period in an M/G/1 queueing system, with proba-
bility density function g(-), and its Laplace transform G*(s).

From Figure 2, we can see that the waiting time of our tagged job consists of
two parts: the residual service time Y, and the N sub-busy periods generated by

all the jobs that arrive after our tagged job. Thus we have the following relation.
W3=Y+GN+GN—1+...+G2+G1 (3)

where G; is the duration of the sub-busy period generated by job C;. Note that
each of G; has the same distribution as that of G, the duration of a busy period
in an M/G/1 queueing system.

10



some job begins its service

the tagged job arrives
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Figure 2: The tagged job arrives in a busy period.
Therefore,

E[eMaW.g,X — .’L‘,Y =y, N = n] — E[e—a(y+G'n+G,.,;+...+G:+G|)]

= e WE[e *CneCr1 e *C2g™5C1]

Since the sub-busy periods have durations that are independent of each other,

we may write this last as
Ele™|X =z, Y =y, N = n] = e ¥[G*(s)]"

For Poisson arrivals with mean arrival A, the probability to have n arrivals
during an interval of y is e=*(\y)"/nl. Therefore,
Ele™ X =2,Y =¢y] = Ze_“’[G'( ne (/\y) e M
n=0
— —[a+z\ AG*(s)ly
Knowing that the joint density function of X and Y is [Klei 75]

dy dB(x)

Priy<Y <y+dyz< X <zr+dz}= (4)

11



We can uncondition on X and Y over the appropriate ranges, and obtain the

following result.

iy © 2 e dB(z)d
Ele™*%s] = /;zo/,,,:oe [s+A-AG*(s)ly (j) Y
o ] — e—[s+A—AG‘(s)]z
B fz=o [s+X- AG"(s)]:EdB(x)
* 1— B'ls + A~ AG*(s)]
or  Wa(s) T A— GGz (5)

This is the known result for the conditional waiting time transform as found,
for example, in [Klei 76]. Since A, Z, and B*(s) are known, and G*(s) can be

obtained from the following relation [Klei 75],
G*(s) = B*[s + A — AG*(s)]

we can get the density function of Wy by applying inverse Laplace transform to

the result in equation (5). Namely,
wq(t|busy) = L™ {Wj(s)} (6)

where L~'{-} stands for inverse Laplace transform.

3.4 The Probability That The System Is Busy

In this subsection, we will find Pg, the probability that a job arrives in a busy
period. We know that for Poisson arrivals, the system states found by arrivals
always have the same distribution as that of the real system states [Klei 75].
Therefore, the probability that an arrival sees a busy period is the same as the
probability that the system is busy, or the fraction of time that the system in a
busy period.

Since the system passes through alternating cycles of busy periods and idle
periods, Pp can be obtained from the following expression.

E[duration of a busy period)]

Fs = Elduration of a busy period] + E[duration of an idle period]

12



For the Poisson arrivals with mean arrival rate A,

¥ . . . 1
T4 El[duration of an idle period] = X
However, due to the time-out rejection scheme, the duration of a busy period
is not easy to obtain directly. Define r to be the probability that a job which
arrives in a busy period will eventually receive its service. Note that r is also the
fraction of arrivals during a busy period that actually receive service. Clearly r

depends on Tj. r can be obtained from the following expression.

r = Pr{waiting time < Tj|the job arrives in a busy period}

fo " we(t|busy)dt (7)

Realizing that only a fraction of arrivals during a busy period will receive
service and therefore contribute to the busy period, we consider a new M/G/1
non-preemptive queueing model, as opposed to the original model we had be-
fore. We call this new model the approzimate model. The approximate model
differs from our original model in two ways. First, there is no time-out rejection
mechanism, namely, all arrivals will eventually receive their service. Second, the
mean arrival rate of its Poisson arrival process is 7. The first modification makes
our analysis easier to handle, and the second modification tries to capture the
characteristic of the rejection scheme in our original model.

Since only a fraction r of the arrivals during a busy period in the original
model contribute to its busy period, the duration of a busy period in the approx-
imate model with a reduced arrival rate r, should roughly be the same as that

of the original model. Let

ga = Elduration of a busy period in the approximate model]

Then for an M/G/1 model, we have [Klei 75|

_ T
gA_I—rA:E

13



0.2 —{— Simulation
' —+— Approximation

8 10
To
Figure 3: The validation of the approximation for Pg (& =1).

Approximating the mean duration of a busy period in the original model with

ga in the approximate model, we have Py as follows.

ga
Py = —
Sy
AT
1+(1-r)Az ®

Figure 3 shows the results of Py obtained via approximation and via sim-

ulation. It can be seen that the approximation is very close to the simulation.

3.5 The Final Results

Substituting for Pp, we can finally obtain the goodput from equation (2).

P, ~ 1—-7r)\%

1+(1-r)Az *
1+ (f Z foToll — Fy(t)]wq(¢|busy)dt (9)

14



In addition, knowing wy(t|busy) and Pp from equation (5) and (6), we can

also obtain the following relations.

P & Pr{a job gets discarded}
AZ To '
(1 -7)AZ

1+(1-r))z

Pr{a job is unsuccessful}

A% T
TTa e Feuatbusy)a

I

&

(10)

(11)

To achieve the maximum goodput, Ty must be chosen such that the derivative

of P, with respect to Tj is equal to zero. But first, let’s find the derivative of r

with respect to T;.

dr

d D
aTg = d_il‘o./o wd(tlbusy)dt

= wq(To|busy)

Now, differentiating equation (9) with respect to Ty, we get

dP, d 1~ r\%
dTy,  dT,

- 1+ (1= 1)z

[dg’o (1 + (1/\f ) ,\i)] /;Tu [1 — Fy(t)wa(t|busy)de +

(1 + (1/\-:—f r)/\i) dg“o _[on [1 — Fu(t)]wa(t|busy)dt

([,\1:?_ 1(1114(_T(;J)}.'JAU;]);) {/;Tb[l — Fy(t)]wq(t|busy)dt — 1} +
AZ 1
1+ (1— r))\a‘:[ B

Fy(To)Jwa(Tpjbusy)

The optimal threshold, Ty, must satisfy the following equation.

dP,
dTy

=0
=T

15
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3.6 An Example : The M/M/1 Queue

Here we apply the results we obtained in the previous subsection to an M/M/1
queueing system, in which the jobs’ service times are exponentially distributed

with mean service time 7 = 1 /.

3.6.1 Analysis

For an M/M/1 system, we have the following relations [Klei 75).

B*(s) = H
s+ pu
G*'(s) = B'[s+ A= AG(s)]

i
S+A-AG*(s) +

Namely,
MG ()P = (s+ 2+ WG (8)+u=0

Solving for G*(s) and restricting our solution to the required (éta.ble) case, for

which |G*(s)| < 1 for Re(s) > 0, gives

. 3+A+p—-\/(s+z\+p)2-—4)\u
G*(s) = )

This equation may be inverted (by referring to transform tables) to obtain the

probability density function for the busy period, namely,

90) = e, 213 (13)

where p = A/u, and I, is the modified Bessel function of the first kind of order
one.
Plugging G*(s) into equation (5) and substituting Z with 1/, we have

1-G*(s)
[5+ A= AG*(s)]Z

Wa(s) =

16



sHA+p— /(s tu)2-dhpu
e )

25+ 22 —s—A—p+/(s+ A+ p)? -4y
,u()\—s—,u+ \/(s+)\+u)2—4)\u)
)\{3+)\—,u,+\/(s+/\+u.)2—4)\,u}

Note that \/(3 +A+u)P —-p= ‘/(s + A — 1)? + 4us. Hence

H 2s
Wz(s) = “<¢1~
? ’\{ s+)\—,u+\/(s+z\—u)2+4ps}

_ J!_L{l_'_23[(3-!—/\—,11)—\/(.:;+/\—p.)"’+4:,uss]}

A 4us
s A p— /(s A+ )2 — 4
B 2\
= G'(s)

The equation that we just derived says the distribution of the waiting time Wy
in the simple LCFS M/M/1 queueing system is statistically the same as that
of the duration of a busy period in an M/M/1 queueing system. The reason
is that in an M/M/1 system, the exponential distribution of the jobs’ service
times is memoryless. This implies that the residual service time ¥ has the same
distribution as that of the service time X. Therefore, the waiting time Wy of our

tagged job in equation (3) can be rewritten as
W3=X+GN+GN_1+...+G2+G1

This sum is exactly the same as the duration of a busy period [Klei 75]. Thus,
in an M/M/1 queueing system, the waiting time W always has the same distri-
bution as that of the duration of a busy period.

From equation (13), we have the result of the inverse Laplace transform of

W5 (s) for free.

wy(t|busy) = %e"(’\“‘)‘h [2t\/)\p,]

17



w, (t1busy)
1.0

Figure 4: The conditional density function wq(t|busy) with g = 1.

Figure 4 plots this function with different values of \’s.
Plugging the result above into equation (7), we have r, which then defines Py

from equation (8). Namely,

To 1
= ——eg Aty (o ]dt
/0 N h [2 Au
A

P, -
SOV Y

Hence, the goodput can be obtained by plugging the results above into equation
(9).
-7

P‘~p+(1-—r)/\+,u+(1 r)/\f[ Fd(t] ‘(”“)‘I [Qt\/_]dt (14)

Furthermore, knowing wy(t|busy) and P, the proba.blhty that a job is dis-

carded and the probability that a job is unsuccessful can also be obtained from

equation (10) and (11).

A T 1 —
Fa p+{(1-— r))\./o t\/f)e h [2 Auj dé
A T 1
P~ — 2[Rl 0w [2::\//\ ]d.t

18



From equation (12), we can find as well the equation that defines the optimal

threshold 77.

A2e~(+uTa g [2T0\/E] T 1 ow
lu+ (1-r)A\To /p { A [1_Fd(t)]z'\_/—;e (g, [th] dt ~ 1} +

A 1
— 1 - F(T ~(A+u)Ty [ ] =
ol Fl o)l e I 2Tyy/p| = 0

3.6.2 Numerical Results and Discussion

In this subsection, we present and discuss some numerical results for the
LCFS-TO queueing policy in an M/M/1 queueing system. We use the following

three concave functions as examples of the deadline distribution functions.

1

4
Rl = 1=

9
Fl(t) - 1_(t+3)2

Consider three M/M/1 queueing systems, each of which has one of the Fi(t)
functions as its deadline distribution. In the rest of this section, we shall refer
to the queueing system with deadline distribution Fi(t) as system i (i = 1,2,3).
Figure 5 shows the three functions graphically. Note that F 1(t) approaches 1 much
faster than the others, and Fy(t) approaches 1 faster than F3(t). This means that,
with the same waiting time, a job served in system 1 has the lowest probability
to be successful, while a job served in system 3 has the highest probability to be
successful. In other words, jobs in system 1 tend to have stricter deadlines than
those in system 2, which tend to have stricter deadlines than those in system 3.

Figure 6 shows the goodputs of the three systems with A\ = 0.9 and p=1,
obtained from equation (14). When Ty = 0, namely, when only the jobs that
arrive in idle periods are served, all jobs that get served have waiting time 0.

Therefore, the deadline distribution functions have no effect on the goodput,
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Figure 5: The three concave deadline distribution functions.
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Figure 6: The goodputs of the three systems at A = 0.9, and px = 1.
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and the three systems behave identically and all have the same goodput. As Tp
increases, more jobs tend to get served. When Ty, though increasing, still remains
small enough so that jobs that get served have very short waiting times and hence
very high probabilities to be successful, the goodput increases. System 3 has the
most relaxed deadline distribution, and not surprisingly its goodput increases
faster than the others.

However, if Tj becomes too large, more jobs with long waiting 'times will get
served. The service times of these old jobs not only have higher probabilities
to become useless, but also block the new arrivals and force them to wait in
the buffer. This decreases the probabilities for those new arrivals to become
successful. Hence, the system performance is degraded and the goodput decreases.
System 1 has the strictest deadline distribution, and thus its goodput deteriorates
more significantly than the others. On the other hand, the deadline distribution
of system 3 is so relaxed that even with a large Tp, the jobs that get served can
still be successful with high probabilities. Therefore, the goodbut of system 3
only has insignificant decay as 7T} increases.

When Tj becomes even larger, the probability that a job with a waiting time
comparable to Ty becomes very small, and very few jobs really have to wait in
the queue for Ty before they are served. Therefore the speed of degradation slows
down, and as T, approaches oo, the system approaches an M/M/1 queueing
system with last-come-first-served service discipline and no time-out rejection
scheme. Note that when the deadline distribution is strict enough, the goodput
at a large Tj could be worse than that at Ty = 0 (e.g. system 1 in Figure 6).

Figure 7 and Figure 8 show the fraction of jobs that are discarded (P4), and
the fraction of jobs that are served unsuccessfully (P,). The deadline distribu-
tion function has no effect on P, and all three systems have the same P,, which

decreases as T increases. System 1 has the strictest deadline distribution, there-
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Figure 7: The fraction of jobs that are discarded (A = 0.9, p = 1).
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Figure 8: The fraction of jobs that are served unsuccessfully (A = 0.9, p=1).
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Figure 9: The goodput of system 1 with different system loads.

fore jobs that are served in system 1 have the highest probabilities to become
unsuccessful.

Figure 9 shows the goodputs of system 1 with different mean arrival rates.
Since the mean service rate is fixed at u = 1, different \'s correspond to differ-
ent system loads. Note that with the time-out rejection scheme, A\/u is not the
effective system load, and the system remains stable even if A exceeds u. From
the figure, we see that the goodput decreases significantly as the system load
increases. This is because the heavier the system load, the longer the waiting
times, and thus the less the number of jobs that get served.

When Tj = 0, the goodput is determined by the probability that the system
is idle, which is closely related to the mean arrival rate A\. As A increases, the
probability that the system is idle decreases, and therefore more jobs are rejected
and the goodput decreases. Note that when system load is heavy (e.g. A = 3),
the goodput at large Tj is even worse than that at Tp = 0.

In order to achieve the maximal goodput, the optimal value of the waiting
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Figure 10: The optimal goodputs of the three systems.

time threshold 7o must be chosen for each set of given system parameters. Figure
10 shows the optimal goodputs for the three systems over a range of \'s, and
Figure 11 shows the corresponding optimal threshold T5. We can see that when
system load is light, T3 is large. This is because that with light system load, the
probability for having a new arrival during the service time is very small and thus
serving an old job is very unlikely to do any harm. Hence the LCFS-TQO queueing
policy tends to serve each job that arrives in the system. However, as the system
load becomes heavy, Ty decreases, and the LCFS-TO queueing policy tends to
reject old jobs waiting in the buffer and wait to serve new arriving jobs. This
is because new arriving jobs have higher probabilities to become successful, and
with large A, the new jobs arrive so frequent that it is worthwhile for the server
to wait for a new job instead of serving an old job in the buffer. System 3 has
the most relaxed deadline distribution function and thus has the best goodput.

Note that the difference among the goodputs of the three systems are small

when the system load becomes very light (e.g. A < 0.1) or very heavy (e.g. A > 2).
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Figure 11: The optimal thresholds Ty corresponding to Figure 10 .

This is because when system load is very light, most of the arriving jobs will find
the system empty and are served immediately without further waiting. Therefore,
even the optimal threshold Ty is large, very few jobs would actually have to wait
in the buffer. On the other hand, when the system load becomes very heavy, the
optimal threshold Tj tends to approach 0, and each arriving job is only allowed
to wait for a very short interval in the buffer. If its waiting time becomes a little
larger, it is discarded. In both situations, the waiting times of the jobs that are
served are very small, either due to the light system load when X is small, or due
to the small Ty when X is large. Thus the strictness of the deadline distribution
function has little effect on the goodput, and the three systems tend to have
similar goodputs.
We mentioned before that when the exact deadline of each job is available
to the server, the STE policy - the policy that serves the job with the closest
deadline to expire - is the optimal policy. Note that jobs are either discarded or

successful under the STE policy, and no jobs are unsuccessful. However, when
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Figure 12: The optimal goodput of system 1 (under the LCFS-TQ queueing
policy) and the goodput of the STE queueing policy (u = 1).

the exact deadlines are not available to the server, the LCFS-TO policy has to
”guess” which job to serve and which job to discard, based on the job’s waiting
time and the deadline distribution. Note that LCFS-TO is using less information
than STE does, and therefore any wrong decision degrades the system’s goodput.
This brings up an interesting question: how much penalty does one have to pay
for not knowing the exact deadlines? Figure 12 shows the optimal goodput of
system 1 and the goodput of the corresponding system under the STE queueing
policy. In this figure, both systems have the same mean service rate and the
same deadline distribution. The data here for the STE policy is obtained via
simulation. Note how well the LCFS-TO policy compares to the optimal (STE)
policy. It can be seen that when the system load is very light, most arrivals
find the system empty, and begin their service immediately. These jobs surely
will succeed. Since the LCFS-TO policy always serves jobs with waiting time zero

when possible (i.e. when the server is idle), it seldom has a chance to make wrong
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decisions when the system load is light. This makes the goodput of system 1 very
close to that under the STE policy for small . However, as ) increases, more
Jobs have to wait before getting served. In general, without the exact deadlines,
it is not easy to decide whether the deadline of a job with a non-zero waiting
time has expired. Any wrong decision made by the LCFS-TO policy to decide to
to serve a job whose deadline has expired or to discard a job whose deadline has
not expired, degrades the goodput of system 1, and thus makes the goodput of
the LCFS-TO policy inferior to the goodput of a system under the STE queueing
policy.

We can see from Figure 12 that in the case of system 1, LCFS-TO still per-
forms quite close to STE, though the former uses less information. In fact, the
performance of LCFS-TO is closely related to the variance of the deadline dis-
tribution function. If the variance of the deadline distribution function Fy(-) is
small, then Fy(-) provides more accurate information. This improves the correct-
ness of the decisions made by the LCFS-TO policy, and thus makes the goodput
of LCFS-TO closer to that of STE.

Since the LCFS-TO policy is much easier to implement than the STE policy,
it seems to be a good alternative policy when its performance is close to STE,
namely, when a queueing system is operating at light system load or has a low

variance deadline distribution.
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4 The LCFS-TO Policy for M/M/m Queues

In this section, we generalize the previous results to a queueing system with
m servers. Since the time-dependent behavior of an M/G/m queueing model is

intractable, we assume that the service times here are exponentially distributed.

4.1 Model Analysis and Policy Description

We assume that there are m identical servers in the M/M/m model. The
mean arrival rate and the mean service rate of each server is denoted as A and i
respectively. The deadline distribution is again an arbitrary function F;().

The LCFS-TO queueing policy in the M/M/m model basically behaves the
same as it did in the M/G/1 model. When a job arrives and finds some server(s)
idle, it would randomly be assigned to one of the idle servers, which are all
identical, and begins its service immediately. If a job arrives and finds no idle
server, it would join the buffer, and waits for its service. Every arrival is time-
stamped with its arriving time, and whenever a server becomes idle, it selects
the job from the buffer with the most recent arriving time — the last-come-first-
served service discipline. Again, servers are allowed to become idle only when
there is no job waiting in the buffer. When a job enters an idle server, its waiting
time is first compared to the waiting time threshold, 7p. If its waiting time does
not exceed Tp, the job is served. If its waiting time exceeds To, then the job
is discarded. Since the processing overhead to enforce the queueing policy is
assumed to be negligible, whenever a job is discarded, all the other jobs waiting
in the buffer are also discarded from the system. This is because that under the
last-come-first-served queueing policy, all the jobs waiting in the buffer always
have waiting times longer than that of the job that is selected by the service

discipline, and therefore longer than the threshold Tj. Note that jobs that arrive
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and find some idle servers always get served. In other words, the system will
discard jobs only when all the m servers are busy. This means when jobs waiting
in the buffer are discarded by some server, the rest of the m — 1 servers must
still be busy serving some jobs, and thus m — 1 jobs are left in the system after
the discarding. Figure 13 shows the state transition diagram of the LCFS-TO
queueing policy. In this diagram, the system state is defined by the number of
jobs in the system. In state k, all the k jobs will be in the servers if k < m, and
m of the k jobs will be in the servers if £ > m. The transitions that go from
state k to state k 4+ 1 and vice versa correspond to arrival and departure events
in the queueing system, while the transitions that go from state & (k > m) to
state (m — 1) correspond to the case when jobs are discarded from the systerm.
As defined before, jobs that are served before their deadlines are said to be
successful, and those that are served after their deadlines are said to be unsuc-

cessful.

4.2 Analysis

Just like the M/G/1 queueing model, the performance metric that we are
interested in is the fraction of jobs that begin their service before their respective
deadlines (the goodput). Or, equivalently, the probability that a job is successful,

which is denoted as P, ,.

Py = fo It = Bu®)Jwn(t)dt

where wp(t) is the density function of the job’s waiting time in the M/M/m
queueing system.

Realizing the fact that all arrivals that find some idle server(s) are always
successful, we can break down the system states into two large states: the lightly-

loaded state (LL), which is a set of states in which some server(s) in the system
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the fully-loaded state

the lightly-loaded state

Figure 13: The state transition diagram of an M/M/m queueing system under
the LCFS-TO policy.
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is (are) idle, and the fully-loaded state (FL), which is a set of states in which all
the m servers are busy. That is, the system is in the lightly-loaded state when
there are less then m jobs in the system, and in the fully-loaded state when there
are at least m jobs in the system. As shown in Figure 13, the lightly-loaded state
consists of state 0, 1, ..., m — 1, and the fully-loaded state consists of the others.

Therefore, conditioning on whether a job arrives in the lightly-loaded state

or the fully-loaded state, we have

Psm = Pr{ajob arrives in LL} +

T
Pr{a job arrives in FL}/0 c'[1 -~ Fy()|wpr (t)dt

where wpy,(t) is the conditional waiting time density function, given that a job
arrives in the fully-loaded state.

We will find the expressions for the probability that a job arrives in the fully-
loaded state, and the conditional density function for the waiting times, given
that a job arrives in the fully-loaded state. In the rest of the section, we use the
symbol M/M/m-(A,B,C) to represent an M/M/m queueing system with mean
arrival rate A, mean service rate for each of the m servers B, and queueing policy
C, which may be last-come-first-served with no rejection scheme (LCFS), or last-
come-first-served with time-out rejection scheme (LCFS-TO). For example, the

model that we are discussing here is M/M/m-(}, i, LCFS-TO).

4.3 The Waiting Time Density Function

Consider a tagged job that arrives in the fully-loaded state of the M/M/m
queueing model under the LCFS-TO queueing policy. Since no server is idle in
the fully-loaded state, the arrival will join the buffer and waits for its service. Let
Wrm be the waiting of our tagged job. The tagged job may be discarded if its

waiting time exceeds Ty. Let Wr,, be oo if it is discarded. This means that the
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density function of Wr,, would be a continuous curve in the range (0, Ty, with
an impulse at Wr,, = oc.

Suppose that our tagged job eventually receives its service. Under the LCFS-
TO queueing policy, all the jobs that arrive before our tagged job and are present
in the buffer when the tagged job arrives will be scheduyled after the tagged job
starts its service, and therefore have no effect on the waiting time Wr,,. Only the
™ jobs in the servers when the tagged arrives, and the jobs that arrive during the
tagged job’s waiting time Wr,, will affect Wr m. Note that servers are allowed to
become idle only when there is no job waiting in the buffer, thus the system will
surely stay in the fully-loaded state until the tagged job begins its service. With
exponential servers, we know that as long as the system stays in the fully-loaded
state, the m servers behave wholly as a single large server with mean service rate
mu. And since no jobs will be discarded before our tagged job begins its service,
the system looks just like an M/ M/1-(A, mu, LCFS) system to the tagged job.

Now, imagine that our tagged job arrives in an M/M/1-(A, -m,u, LCFS) sys-
tem instead, and let Wr, be the waiting time. Note that Wpgr has the same
distribution as that of Wrm in the range of (0, Ty]. Let random variables Y, N
be the residual life of the service time, and the number of arrivals within ¥ (see
Figure 14). Parallel to the relations we have for the M/G/1 case, we have the

following relations.
Ele™r|Y =y, N =n] = e ¥[G},(s)]

where G;,(s) is the Laplace transform of the duration of a busy period in the

M/M/1-(A, mu, LCFS) queueing system. Unconditioning on N, we have
E[e-stLly — y} _ Z e-—ay[Gt (3 ]n (/\y)
_(3+A) Z AyG* (3)]’1

— —[.Hn\ AGm(a)]y
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Figure 14: The tagged job arrives in the fully-loaded state.

But we know that with exponential service time, the distribution of the resid-

ual service time is the same as that of the service time, B(z). Therefore,

E[e—stL] — /oc; e—[s+A-AG;n(s)lydB(y)
= B's+ A - AG,.(s)]

G (3) (15)

Again we find that due to the memoryless property of the M /M/1 queueing
system, the distribution of the waiting time is always equal to that of the duration

of a busy period. For M/M/1-(A, mpu, LCFS), we know that [Klei 75]

mu

B(s) = s+ mu

Hence,
Gn(s) = B*[s+ - AG.(s)]

my
s+ A-AGL(3) + mu

33



Solving for G, (s) and restricting our solution to the required (stable) case, for

which |G} (s)| < 1 for Re(s) > 0, gives

s+A+my— \/(3+A+mu)2—4/\mp
5N (16)

Go(s) =
Let Wi, (s) be the Laplace transform of the density function of Wg;, i.e.
Ele™™"rt] = Wy (s)

From equation (15) and (16), we have

s+A+mp\/(s+A+mp)2—4Amu
2\

Wir(s) = Gr(s) =

This equation can also be inverted (by referring to transform tables) to obtain

the probability density function.

wrr(t) = e Armulty, [2t )\m,u] (17)

1
tr/Pm
where p, = A/my, and I, is the modified Bessel function of the first kind of

order one.

4.4 The Probability of Being In The Fully-Loaded State

In this subsection, we will find the probability that a job arrives in the fully-
loaded state, denoted as Pry. Let Py be the probability that a job arrives in the

lightly-loaded state. Surely we have,
Prr+ Ppp =1 (18)

Since the arrival process is again Poisson, like the M/G/1 queueing system,
the system states of an M/M/m queueing system found by the arrivals still have
the same distribution as that of the real system states. Therefore, the probability

that an arrival finds the system in the fully-loaded state is equal to the fraction of
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time that the system is in the fully-loaded state. We refer the interval of time that
the system stays in the lightly-loaded state before transferring to the fully-loaded
state as the lightly-loaded period, and the interval of time that the system stays
in the fully-loaded state before transferring to the lightly-loaded period as the
fully-loaded period. Realizing that the system passes through alternating cycles
of the lightly-loaded periods and the fully-loaded periods, we have the following

relation.

Pr,  E[duration of a lightly-loaded period)
Ppr,  E[duration of a fully-loaded period]

(19)

Let 7, be the probability that a job who arrives in the fully-loaded period is

eventually served. Namely,

Tm = Pr{waiting time < Ty| arriving in the fully-loaded period}
T
- fo " wpr(t)dt

Before obtaining Ppy, let’s consider three queueing systems. The first one
is the old model that we have been discussing. That is , the M/M/m queueing
system with the mean arrival rate X and the mean service rate for each server
p. The queueing policy is LCFS-TO. The second queueing system, referred as
model A, is another M/M/m queueing system which is almost identical to the
old model. The only difference between model A and the old model is that the
queueing policy in model A is last-come-first-served with no time-out rejection
scheme. All arrivals in model A are served. The last queueing system, referred as
model B, is an M/M/1 queueing system. The mean arrival rate is rmA, and the
mean service rate is mu. The queueing policy in model B is also last-come-first-

served with no time-out rejection scheme. In short,

the old model is M/M/m-(}\, u, LCFS-TO)
model A is M/M/m-(\, mu, LCFS)

35



model B is M/M/1-(A, mu, LCFS)

Let px be the probability that model A has k jobs in the system. From the
analysis of the classic M/M/m model [Klei 75), we know that

k
m m
po( z! ) k<m
Pk = (20)
m kmm
Po(p 131! k>m
where
m—1 k m 1 1
Do = (mpm) (mpm)
k! m! 1— pm
and
A
Pm = Eﬁ (21)

Realizing that model A goes through alternating cycles of the lightly-loaded

periods and the fully-loaded periods, we have

E[duration of an LL period | model A]

E[duration of an FL period | model A]
_ Pr{system in LL | model A}
~ Pr{system in FL | model A}
_DPotpit.. 4 Pm

og
Z Pk
k=m

Furthermore, when model A is in the fully-loaded state, it behaves just like an

(22)

M/M/1-(A, mu, LCFS) queueing system in a busy period. Hence

E[duration of an FL period | model A]

= E[duration of a busy period | M/M/1-(}, my)]
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Under model B, we have the mean duration of its busy period from the
analysis of M/M/1 models [Klei 75].

1

my

E[duration of a busy period | model B] =

1 — T}
my
_ 1
C omg— A

Comparing the mean duration of a busy period in model B to the mean duration

of a fully-loaded period in model A, we have the following relation.

E[duration of a busy period | model B) o omp— A
E{duration of an FL period | model A] ~ mpy — r,A

E[duration of a busy period | model B] =

E[duration of an FL period | model A] (%) (23)
~ —fm

Now let’s go back to the old model. What we want is the probability that the
system is in the lightly-loaded state, Prz, and the probability that the system
is in the fully-loaded state, Pp;. Observe that when the old system is in the
lightly-loaded state, it behaves just like model A in the lightly-loaded state,
since no time-out rejection scheme can be activated during the lightly-loaded

state. Therefore, they must have the same duration of a lightly-loaded period.

E[duration of a LL period | old model] =

E[duration of a LL period | model A] (24)

Next, consider the case when the old model is in the fully-loaded state. Due to the
rejection scheme, only a fraction 7, of the jobs that arrive during a fully-loaded
period are served and thus contribute to the full-loaded period. With the similar

argument that we used for the M/G/1 case, we can approximate the duration of
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a fully-loaded period in the old model with that in model B, an M/M/1 queueing

system with reduced arrival rate r,A. That is,

E[duration of a FL period | old model]

~ E[duration of a busy period | model B]
1

- MU — T A (29)

Plugging equation (24) and (25) into equation (19), we have

P, Elduration of a LL period | old model]
Pp;,  E[duration of a FL period | old model]
Elduration of a LL period | model A]

E[duration of a busy period | model B]

Using equation (22) and (23), we can rewrite the equation above.

P, E[duration of a LL period | model A]
Pey, E[duration of a FL period | model A]-#=2_

Ma—FmA
_ Potpit. +Pm (mp—rm)\)

> mu — A
P

Substituting px with equation (20) and using equation (21), we have

m—1
Dk
Py, g (m,u, - rm)\)
P " muy - A
FL Z P 4]
k=m
"‘f po {0m)"
_. _k=0 k! (mu(l - rmpm))

i (prm)fm™ \ mpu(l - Pm)
k=mp0 m!

m—1

_ (A =rn)pmm! " (mpm)*
 (mpm)™ k;{, k!

Note that the pole (1 — p,,) is eliminated, and thus this equation is still valid

even when p,, = 1.
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Combining equation (18) with the result above, we have

Ppp, = 1-Ppy
1— (1 —rp)m! mz_l (Mmpm)*

P

(mom)™ & KT
Let

m! T (mp,)*

C =
(mMpm)™ g k!
Note that C is independent of Tp. Then, we have
Ppp 2 [1+ (1~ r,)C) ™! (26)

Figure 15, Figure 16 and Figure 17 show Pr; obtained via approximation
with that obtained via simulation. If we let u to be fixed at 1, Ppp depends
on three variables, A, m and Tj. In order to plot the results on a 2-dimension
graph, we have to make one of the three variables fixed each time. In Figure 15,
the threshold T is fixed at 2, and Pry, is plotted for the cases that m = 2 and
m = 4. Similarly, in Figure 16, m is fixed at 2, while in Figure 17, A is fixed at 4.
The simulation shows that the approximation is very close to the real queueing
system under the LCFS-TO queueing policy.

Obtaining wry(t) and Per from equation (17) and (26), we can now get the
probability that a job is successful.

e —(A+mult

N (1 —-ry)C
Fom =~ 1+(1—rm)0+1+(1—r C/

Il [2:: Amp| dt (27)

We can also obtain the the probability that a job is discarded and the prob-

ability that a job is unsuccessful.

oo g—{A+mu)t
Pr{a job is discarded} = PFL/T € I1 [2t\/ ]dt (28)

b
e (,\+m,u.)t

job i ful} ~ P, / Fi(t
Pr{a job is unsuccessful} FL o Fa (t)—— N

—1 [Qt Am,u.] dt (29)
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Figure 16: The probability that the system is in the fully-loaded state obtained

via simulation and via approximation (z =1, m = 2).
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Figure 17: The probability that the system is in the fully-loaded state obtained

via simulation and via approximation (g =1, A = 4).

Differentiating equation (27) with respect to 73 and setting it to zero gives

us the equation for the optimal threshold Tj. But first let’s find the derivative of

rm with respect to Tp.

drm d B 1 —{Amult [ ]
— = 2t/ A t
aT, 4T fo N/ I iy d
1
— —(A+mu)Ty
- e I [2T Jom ]
To/pm 1 0 o
Now, the derivative of P,,, with respect to 7} can be obtained.
dPym [1 = Fiy(Tp))e”CtmulD [ /——]
= = I [2T5/ X +
T, 1+ (1= r)ClTo/pe L [FOVATH

Ce~Mmuho [ 12T/ Am T
1 [ Y IJ'] {/’ 0 —1_6_(A+m,u)11'1 [2t /Amu] dt — 1}
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The optimal threshold, T, must satisfy the following relation.

dP,

=0
To

=Ty
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Figure 18: The goodputs of an M/M/m queueing system with #=1and A=0.9.

4.5 Numerical Results

In the following, we show Some numerical results for the M/M/m queueing

system. As an example, we use function

1
B

which is defined in the previous section as the deadline distribution function.

Fi(t) =1

Figure 18 plots the goodputs for the M/M/m system with A = 0.9 and w= 1
Note that when m = 1, we have system 1 defined in the previous section. One can
find that as m increases, the effective system load decreases, and therefore the
goodput increases. When m becomes larger, the effective system load becomes
so small that most of the arrivals can find an idle server and begin their service
immediately. This reduces the effect of Ty on the goodput. Therefore, the curve
in the figure for m = 4 almost stays flat over a wide range of Tj’s.

Figure 19 and Figure 20 show the probability that a job is discarded (Py)
and the probability that a job is served unsuccessfully (P,). As m increases, not

surprisingly P; decreases. What is interesting is how P, is related to Tp. When
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Figure 19: The probability that a job is discarded (A =4, u = 1).

Figure 20: The probability that a job is served unsuccessfully (A =4, y = 1).

43



Tp is small, P8’ for the three cases, m = 1,2, 3, are quite close, with the P, for
the case m = 3 slightly smaller then that for the others. As Ty increases, P, for
the case m = 3 exceeds the others and has the largest value. This shows that
although the system with m = 3 is able to serve the largest number of jobs, yet

it suffers the highest percentage of useless work when Ty is large.
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5 Conclusion

We considered a real-time queueing system where jobs have randomly selected
deadline constraints on their waiting times. We assume that only the deadline
distribution is available to the server, rather than the exact deadline of each arriv-
ing job. If the deadline distribution function is concave, the LCFS-TO queueing
policy is known to be the optimal policy which maximizes the fraction of jobs
that begin service before their respective deadlines expire.

We developed the approximate models for the goodput of the LCFS-TO
queueing policy and obtained closed form solutions for the M/G/1 queueing
system and the M/M/m queueing system. Simulations showed that the approxi-
mation was very close to the real system. The effect of the deadline distribution
function on the system’s goodput was also discussed.

Comparisons between the STE queueing policy and the LCFS-TO policy
were shown for the M/M/1 queueing model and the M/M/m queueing model.
We pointed out that when the system is (-)perating at light system load and has a
low variance deadline distribution, the LCFS-TO queueing policy performs very
close to the STE policy, and is a good alternative policy due to the simplicity of

its implementation.
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