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ABSTRACT OF THE DISSERTATION

Tools and Techniques for
Performance Measurement
and
Performance Improvement
in Parallel Programs

by

Carl Kesselman
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1991
Professor Milos D. Ercegovac, Chair

Programming a parallel computer is inherently more complex than pro-
gramming a sequential computer. This complexity is due to: 1) additional
design parameters, such as program partitioning and task to processor map-
ping, and 2) nonintuitive performance tradeoffs. Because of this complexity,
it is inevitable that the initial design of a program will not utilize the avail-
able processing resources as effectively as possible. In this dissertation, we
investigate methods for understanding and improving the performance of
parallel programs. There are two aspects to this work: measurement and
presentation. OQur approach is to base performance measurement on extend-
ing execution profiling to parallel programs. Although profiling has long
been recognized as a valuable tool in sequential programming, 1ts value to
parallel programs has not been extensively investigated. In this dissertation
we show that there are compelling advantages to profiling over other forms
of measurement in parallel programs. We develop a set of low overhead tech-
niques for measuring an execution profile and integrate these techniques into
a parallel programming system called PCN.

To present a parallel execution profile to a programmer, we have devel-
oped a performance visualization tool called Gauge. Gauge is unique in its

X111



simple and concise method of data presentation and its use of interactive data
analysis techniques to aid in the comprehension of multidimensional perfor-
mance data. To demonstrate the effectiveness of our approach, we examine
the performance of a large parallel application executing on 160 processors.
Using the tools and techniques developed in this thesis, the execution time
of the application is reduced by almost 20%.
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Chapter 1

Introduction

Within the past few years, parallel computing has moved from the research
laboratory into computing centers. As parallel hardware becomes more
prevalent, the community of people who write parallel programs expands
from specialists to a broad range of applications programmers. The task
facing these programmers is to obtain the best use possible from a parallel
computer, in a word: performance.

Performance plays an important role in parallel computing. Parallel pro-
cessing is justified only when the solution to a problem 1s more cost effective
on a parallel computer than on a uniprocessor. Since the main motivation
for writing a parallel program is performance, a “working” program must
not only be functionally correct, but it must also meet performance and/or
efficiency requirements.

Programming a parallel computer is inherently more complex than pro-
gramming a sequential computer. In addition to the normal algorithmic
concerns, a parallel program must be split into tasks that can execute con-
currently. These tasks must be mapped onto the available processors and
the order of task execution on each processor determined. In addition, the
costs associated with communicating data between processors should be min-
imized and the interaction of program actions that occur in parallel must be
controlled.

Because of this complexity, it is inevitable that the initial design of a
program will not utilize the available processing resources as effectively as
possible. In light of this, we ask:



How can we understand and improve the performance of parallel
programs?

Our answer to this question is to measure the performance of a parallel
program and to use these measurements to guide the process of improving
the program. Measurement is the key to understanding a parallel compu-
tation for without measurement, a programmer must guess which elements
of a program are limiting performance. Even in sequential programs, a pro-
grammer’s intuition about what the program is doing is often wrong [Ben82).
Moreover, in parallel programs, the issues of program partitioning, mapping,
communications and synchronization make the situation even more difficult.
With performance measurement, a systematic and directed approach to im-
proving a parallel program’s performance is possible. That is: 1) understand
a program'’s behavior, 2) identify performance bottlenecks, 3) formulate cor-
rective actions and 4) evaluate the improvement.

Measuring and improving the performance of parallel programs is hard
for several reasons:

e The process of measuring parallel execution can change a program’s
behavior. Because of this, ensuring the validity of the performance
data is difficult.

e Parallel programs can generate large amounts of performance data.
The sheer volume of this data can make performance measurement
impractical in real parallel programs.

e To be of practical value, we must be able to measure the behavior
of programs on the available parallel hardware, but there is minimal
hardware support for measurement on current parallel computers.

e Performance data from parallel programs is complex. This makes in-
terpretation of the data difficult.

In light of these difficulties, we identify five specific issues as important
to the use of measurement as a practical tool for performance improvement.

These are:

e What are the appropriate measurements to make?



e How accurate do performance measurements need to be?

What is the impact of measurement on program performance?

e What is the minimum hardware support needed for practical perfor-
mance measurement tools?

o How can performance data be presented to a user in a manner that
facilitates performance improvement?

We address these problems by proposing a new method for making perfor-
mance measurements. Qur focus is on developing techniques and tools that
aid in the production of large scale parallel applications running on hundreds
or thousands of processors.

1.1 Contributions

In this dissertation, we advocate the use of execution profiling as the funda-
mental means of performance measurement for parallel programs. Although
the value of execution profiling has been downplayed in other works, we
demonstrate that it is a valuable and useful tool with advantages over cur-
rent methods of performance measurement.

The contributions of this dissertation are:

¢ Novel, low overhead, measurement techniques to obtain execution pro-
files from parallel programs. No hardware support beyond a microsec-
ond timer is required.

e A concrete demonstration of these measurement techniques integrated
into the implementation of a parallel programming system.

e A new approach for visualizing performance data obtained from parallel
programs.

e A methodology for performance understanding and improvement based
on parallel execution profiling.



The techniques developed in this dissertation have been used to con-
struct a working system for profiling the execution of parallel programs. In
Chapter 8, we show how our profiler is used to improve the performance
of a computational fluid dynamics program. Additionally, our measurement
tools have been used to improve other applications in domains such as climate
modeling and genetics [Fos90]. In a real sense, our most important results
are the improved parallel programs that have resulted from this work.

1.2 Organization of the Dissertation

In Chapter 2, we introduce the concept of performance and show how it ap-
plies to parallel programs. The problems associated with measuring the per-
formance of parallel programs are discussed in detail and current approaches
to performance measurement of parallel programs are presented.

Limitations of current methods of measurement are discussed in Chap-
ter 3. We then introduce execution profiling as a means to overcomming
these limitations.

Chapter 4 introduces PCN, a parallel programming system which we use
to demonstrate how the techniques developed in this dissertation are applied
in practice.

In Chapter 5, we present a framework for designing measurement tech-
niques for execution profiling. Using this framework, we develop a measure-
ment process specifically for profiling the execution of parallel PCN pro-
grams.

The implementation of a profiling system for PCN 1s given in Chapter 6.
In this chapter, we describe how the measurement techniques developed in
Chapter 5 are integrated into the implementation of PCN.

Chapter 7 focuses on the presentation of performance data to the user.
We describe Gauge, the interactive performance visualization tool we have
developed to present the data collected by our profiler.

A major claim of this dissertation is that execution profiles are effective
in improving the performance of a parallel program. To support this claim,
Chapter 8 shows how the tools and techniques developed in 1his disserta-
tion are used to improve the performance of a nontrivial parallel application
program: a simulation of wavy Taylor vortices using the three dimensional
Navier-Stokes equations.



Chapter 9 summarizes the main results of this dissertation and proposes
future research.






Chapter 2

Performance, Measurement
and Parallel Programs

The term “performance” is often used without much thought as to what it
really means. In this chapter, we will clarify what is meant by performance,
how the performance of a system is determined and what performance means
in the context of a parallel program. We conclude with a survey of the
methods currently used to measure the performance of parallel programs.

2.1 The Performance of Systems

Performance is an abstract idea that can be applied to any system. We first
introduce performance in this general context and then discuss how these
concepts apply to parallel programs.

2.1.1 A definition of performance

Performance can be defined as the property of a system that makes that
system valuable to its user [Fer79]. In other words, performance indicates
how well a system does the task it was designed for. From this definition,
performance provides a somewhat subjective means of systemn evaluation.
What one user considers to be important might be of no value to another.
If performance is to be used to evaluate the effectiveness of a system, or to
compare the relative worth of two systems, a more quantitative assessment
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is required.

This is achieved by representing the performance of a systemn by a set of
one or more performance indezes. Each index has a value which is a measur-
able aspect of the system or its behavior. When more than one performance
index is used, the performance of the system is described by:

P=> puw; (2.1)

where P is the performance of the system, p; is the value of the it perfor-
mance index and w; indicates the relative importance of each performance
index with respect to overall system performance. The w; are defined such
that 3 w; = 1.

For the purposes of this dissertation, all performance indexes will be as-
sumed to take on numeric values. This eliminates subjective indexes such
as “programmability” from consideration unless they can be assigned a nu-
meric value. In examining the characteristics of program execution, one is
primarily interested in indexes that reflect how a system uses resources; for
example, how long it takes to complete an operation or how many proces-
sors are being used. Clearly, indexes such as these can be assigned numeric
values.

Selecting an appropriate set of performance indexes can be difficult. For
example, the value of a computer system may be determined by how powerful
it 1s. One measure of computing power is the speed at which the computer
can perform basic operations. A number of different indexes can be used to
represent this notion of performance, including:

e The number of floating point operations completed in second (FLOPS)
e The number of instructions executed per second (MIPS)

e The amount of time required to complete the execution of a benchmark
programs ( Whetstones, Dhrystones, etc)

This set of performance indexes could be further extended by considering
whether the value of an index is determined by the system’s best case be-
havior, its peak performance, or the behavior of the system over a range of
activities, its sustained performance.



The users of a system must ultimately decide which indexes best represent
their requirements. If multiple indexes are used, then the relative weighting
between them must be determined as well. It is important to realize that
no combination of performance indexes might fully capture the true value of
the system. However, by selecting a specific set of performance indexes, we
have a basis from which an objective system evaluation can be made. In this
dissertation, the word performance is used to mean the value of the weighted
sum of performance indexes being used to represent a system’s value, as in
Equation 2.1.

2.1.2 Methods of performance evaluation

The performance of a system is determined by a performance evaluation
study. Such a study consists of two parts. First, we identify the performance
indexes to be used to represent system performance and second, we determine
the value of these indexes. There are two types of performance evaluation
studies — performance analysis and performance measurement.

In performance analysis, the values of performance indexes are derived
from system parameters using mathematical models. Many different tools
for performance analysis exist. Of particular importance to parallel pro-
grams and parallel computers are queuing models and models based on Petri
nets [MBC86]. Analytic methods are most useful when the system has not
yet been built, or when the cost of performing experiments on the actual
system would be prohibitive.

Alternatively, if the system in question has already been constructed, the
values of performance indexes can be obtained directly by taking measure-
ments as the system accomplishes its task. Obtaining the value of perfor-
mance indexes in this manner is called performance measurement.

There is an important distinction between the values obtained through
performance analysis and the values obtained though performance measure-
ment. Performance analysis methods generally determine the value for a
performance index via statistical abstractions. For example, the index val-
ues obtained might be representative of a class of system inputs whose size
varies according to a Poisson distribution with a specific mean.

The values obtained through performance measurement differ in that they
are based on one specific sequence of actions taken by the system in response
to one specific set of inputs. Generalizations beyond this sequence of system



actions require that the input to the system used for performance measure-
ment be representative of the range of inputs the system will have during
actual use.

When performance evaluation is conducted via measurement, the system
is instrumented and measurements are made while the system operates. At
some point during the development of the system, a decision 1s made to enter
a performance evaluation phase. An alternatlive is to make measurement a
permanent part of the system. In this approach, called continuous monitor-
ing, performance measurements are made during the entire lifetime of the
system — from the time it is deployed until it is no longer used. Continu-
ous monitoring allows the user to constantly evaluate the performance of a
system.

Continuous monitoring has a number of advantages over “one shot” per-
formance evaluation studies. An important aspect of continuous monitoring
is that, by definition, the performance of the system is obtained from ac-
tual use and not specially constructed test cases. Performance data obtained
from a continuously monitored system is more representative than perfor-
mance data obtained during a performance evaluation study. When making
performance measurements, one must be concerned with interfering with the
operation of the system. Continuously monitored systems have the property
of including the effect of measurement as part of the behavior of the system;
so by definition, there is no interference caused by the measuremeni.

There are disadvantages to continuous monitoring, however. Continuous
monitoring is not without cost; the performance of a continuously monitored
system will always be less than optimal. To justify its use, the loss of perfor-
mance incurred by continuous monitoring must be kept small. Consequently
the performance data collected by continuous monitoring will be limited. It
can not be as detailed or as comprehensive as data obtained though a care-
fully designed performance evaluation study. In spite of this limitation, we
will show in Section 3.3 that continuous monitoring can be an important
tool.

This dissertation studies techniques for performance measurement of par-
allel programs. Given a parallel program and a parallel computer, we wish to
determine how well the program executes. Since we assume that the parallel
program and parallel computer already exist, we limit our attention to per-
formance measurement and continuous monitoring. Analytical performance
evaluation techniques are not discussed further.
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2.2 Performance and Parallel Programs

Performance is an important aspect of many programs, those intended for se-
quential execution as well as those intended for parallel execution. However,
when one sits down to write a parallel program, it is with the expectation
that the program will execute faster in parallel than not. Furthermore, there
is an expectation that increasing the number of processors will resull in a
commensurate decrease in execution time. Even if it is not explicitly spec-
ified, performance is part of the design specification of a parallel program;
a failure to perform well means the program is wrong. Thus understanding
performance is an essential aspect to developing parallel programs.

To the programmer, performance data provides a means of identifying
which elements of a program are degrading its performance. After perfor-
mance bottlenecks are identified, alternative algorithms or data structures
can be tried in order to alleviate the performance problem. When used to
improve program performance, the presentation of performance data to the
user is very important. In Chapter 7, we will introduce a tool designed to
present performance data for a parallel program graphically, allowing the user
to interactively explore the measurements in order to gain an understanding
of the data.

Performance improvement by the programmer is not the only use for
performance data. Other elements of the computing environment, such as
the compiler or operating system, can also make use of performance data. For
example, in {GT88], the execution time of a procedure is used to determine
which procedures in a program should execute in parallel. Other resource
allocation problems, such as partitioning and scheduling, can be aided by
performance data as well. While the performance data obtained with the
techniques developed in this dissertation can be nsed for this purpose, this
application of performance data is not pursued further.

2.2.1 Characterizing parallel program execution

Many factors contribute to the runtime behavior of a parallel program. The
particular characteristics of a program’s execution are the result of the in-
teraction of the program with components of the parallel computer on which
it executes. In addition to the program itself, the compilers, operating sys-
tem and underlying parallel hardware all have an impact on a program'’s
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performance. The details of these interactions determine the values of the
performance indexes for program execution.

The value of a performance index is determined by conducting a per-
formance experiment during which measurement are collected. Before pro-
ceeding further, we define the parameters of a performance experiment. An
experiment is defined by the tuple:

(A,N.P,T)
where:

A is a paralle]l architecture. We direct our attention solely to multiple in-
struction stream, multiple data stream (MIMD) parallel computers.
The two basic types of MIMD computers are shared memory mul-
tiprocessors and message passing multicomputers, both of which are
considered in this dissertation. A parameterizes all aspects of the com-
puter system as visible from the program, accounting for the effects
on program behavior caused by compilers, the operating system, the
processor node architecture and interprocessor communications mech-
anisms. For example, A encompasses the time required to complete
basic operations such as floating point arithmetic as well as the time
required to communicate data from one processor to another.

N is the number of processors allocated to the computation. In practice,
it 1s common to execute a program with less than the total number
of processors available on a parallel computer. If the total number of
processors available on the computer is AV, then 1 <A < A,

P is the program to be executed. P is assumed to be in source code form
so as not to become involved in issues of the mapping of a high level
language program onto an instruction set. The impact of translation of
a program to an architecture specific form is included in the parameter

A.

An example will clarify the relationship between A and P. In Sec-
tion 5.6.1, the execution time of a program is determined by expressing
it in terms of a sequence of abstract operations and counting the number
of times each operation occurs in the program. The abstract operations
that are needed are a characteristic of the program. The parameter P
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is the number of times each abstract operation is used in the program.
The parameter A specifies the amount of time required to perform each
type of abstract operation, accounting for factors such as the mapping
of the operation onto the computer’s instruction set architecture, the
operating system overhead (if paging or I/O are required), and the
speed at which the computer executes instructions.

T is the input data to the parallel program. Measured values of performance
indexes are meaningful only with respect to the input data used for the
experiment. The input data used for a performance experiment should
represent the range of inputs the program will process in actual use.

Our performance experiments are developed {from the perspective of the
performance of the program. That is, given A’ processors on computer A
and input data I, what is the performance of program P?

2.2.2 Performance indexes for parallel programs

As discussed earlier, the performance of a program is represented by a set of
performance indexes. We now examine performance indexes that are of par-
ticular interest to the execution of parallel programs. T'wo basic performance
indexes for program execution [Fer79] are:

Execution Time: The length of time, {, required for the program to com-
plete its task.

Cost: The resources required for the program to complete its task. These
could be a number of cost metrics, such as the actual execution cost
i dollars, the number of processors used or the amount of memory
required.

Execution time is an index that can be applied to any program — parallel
or sequential. However, having spent time and money developing a program
capable of being executed in parallel, we would like to have an index that
reflects scalability: how much faster a program runs as A” incrcases. This
requires a performance index that combines the execution time with the cost
of the computation in terms of the number of processors used, A'. There are
a number of performance indexes with these characteristics [KBC*+74].
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Onmne such index is speedup. We find that there are two commonly used
definitions for speedup. In one, the speedup of a program P executing on A
processors, Sp(A'), is defined as:

Sp(N) = L (2.2)
ty

the ratio of the execution time for the program on one processor to the
execution time of the program when executed on A processors. To simplify
the notation, we drop dependence on P in the sequel. The problem with
this definition is that it only indicates how well the program executes in
parallel rather than how well the program executes. A program with large
speedup can have an execution time greater than a better program with lower
speedup. A more honest evaluation is obtained by defining speedup as:

where %, is the execution time for the best sequential program that performs
the same task.

Recently there has been some argument as to whether speedup is a good
performance index. An alternative metric called scaled speedup has been
proposed in [GMBB88]. In calculating scaled speedup. the size of the problem
being solved is scaled by the number of processors being used. For example, in
a grid problem, the number of grid points on each processor is kept constant
regardless of how many processors are being used. Scaled speedup is then

defined by:
by o r
S,,(n) =1+ (1 - -t‘-')J\/

Scaled speedup is motivated by the fact that for many types of problems, a
parallel computer is not used to solve a specific problem faster, but in order to
solve a larger problem. Many scientific applications, such as computational
fluid dynamics, fall into this category.

An index related to speedup is efficiency. Efficiency, defined as:

t

FE =
Nty
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indicates how effectively a parallel program used a parallel computer. Note
that efficiency can be related to Equation 2.2 by:

S(N)

B = 5

An index similar to efficiency is processor utilization. Utilization is the
fraction of a program’s execution time spent working. Utilization differs from
efficiency in that utilization does not discount additional work introduced
into a computation in order to parallelize it.

Average parallelism [EZL89] provides another characterization of the per-
formance of a parallel program. Average parallelism is defined by:

P = 5(c0)

This index is a good representation of program performance in that a good
lower bound for S{A) for any A can be derived from P.

The performance indexes of execution time, speedup and efficiency view
program execution at a high level of abstraction, the program as a whole. Not
surprisingly, these indexes can only determine the existence of a performance
problem in the program as a whole. At this level, it is not possible to identify
where in a program performance bottlenecks occur. To accomplish this, it is
necessary to use a performance index that represents program execution at
the level of abstraction where the bottlenecks exist. For example, if a specific
procedure is responsible for a performance bottleneck, a performance index
that abstracts program execution as a set of procedures is appropriate.

For the purpose of measurement, program execution can be viewed as a
hierarchy of abstractions. At the top level is the execution of the program as
a whole. At the bottom are the activities of the hardware that make up the
computer. In traversing the hierarchy, program execution is decomposed into
smaller and smaller components. Figure 2.1 shows an example of one set of
abstractions; alternative hierarchies are given in [BGK89, MCH*90, McK88|.
Corresponding to the execution hierarchy is a hierarchy of performance in-
dexes which, in turn, structures a hierarchy of possible measurements.

It is important to select the appropriate level at which to represent pro-
gram performance. As the level of abstraction decreases, the amount of
detail revealed by the performance index increases. However, the number
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Program execution

Procedures

Program Statements
Machine Instructions
Hardware actions

Figure 2.1: An abstraction hierarchy for parallel program execution

of measurements that must be made to evaluate the performance index also
increases. McKerrow estimates that for each level of the measurement hier-
archy descended, one order of magnitude more data is generated [McK88].

While speedup is often the performance index of choice when describing
a parallel program, we do not consider it further. ‘To calculate speedup or
efficiency, one must conduct at least two performance experiments. Instead,
we prefer to focus on execution time and processor utilization, both of which
can be determined in single performance experiment. In Chapter 3, we de-
velop techniques for determining the execution time of a program at the
program statement level of the execution hierarchy. In Chapter 8 we show
how this index combined with processor utilization is sufficient to improve
the performance of a parallel program.

2.2.3 Measurement models

We now turn our attention to the actual process of measurement and how
measurements are related to a performance index. The relationship between
measurement and performance indexes is established by defining a measure-
ment model. A measurement model defines:

e The aspects of program execution that are measurable.
o The data associated with a measurement.
e How measurements are related to the value of performance indexes.

Several different measurement models have been proposed for program
execution. In [Fer79], Ferrari associates a set of states, ¥, with a program.
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Each state corresponds to the program performing a specific activity. For
example, a state might be associated with the execution of a procedure. An-
other state could be defined to represent a program waiting for the availability
of some system tesource. Program execution is modeled by 1} the sequence
of states that a program is in and 2} the amount of time spent in each state.
An event is defined as the program being in a particular state for an amount
of time. A measurement can be made whenever an event occurs. The value
of a performance index is obtained from the measurement sequence:

Md = (0’], tl)-: (O’z,tg) e (O'm,tm)

where o; € ¥ is the th state of the program and ?; is the amount of time the
program spends in o;. Measurements of this type are said to be generated
by a state/duration measurement model.

By decomposing program execution into alternative sets of states, dif-
ferent performance indexes can be obtained. However, a performance index
does not determine a unique decomposition; a performance index can be de-
termined from several different decompositions. Conversely, it is also possible
to compute the value of several performance indexes from a single decompo-
sition.

The state duration measurement model can be directly applied to a par-
allel program in the following way. Let 0¥ € £V where 4 is the A" dimen-
sional cartesian product of ¥ with itself. Each of is the instantaneous state
of the parallel computation. The measurement sequence becomes:

M;IV - (o-'l’va tjl\f)a (O-év': tJZV) T (0'::{1 tﬁ.)
In this model, a computation enters a new state whenever the state on any
processor changes.

This model has a practical limitation in that detecting an event requires
determining the state of the entire parallel computation. Since the state of
a computation on a parallel computer depends on the status of each proces-
sor within the computer system, it is distributed throughout the computer.
Although it is possible to obtain the global state of a program [CL85], in
general it is difficult.

A more practical measurement model can be defined by restricting the
types of events that can be detected within the model. We extend the sequen-
tial model to parallel programs by recording the events from each processor
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as a separate sequence. Each event in this model records the local state on
a processor and the amount of time spent in that state. The measurement is
now a sel of sequences:

(Jiﬁ t})ﬂ (J%’ té) U (0-71??,1 1 t}?ll)

(J{\fft{v)v(oé\rftéf)”'(ah’ t )

M TN

The primary drawback of this model is that the time relationship between
states on different processors is implicit rather than explicit; states are not
placed absolutely in time. If the measurement sequence does not account for
every action that the program may take, relating states between processors
will not be possible.

Rather than observing program activity as a sequence of state/time du-
ration pairs, Svobodova proposed modeling program activity by observing
the times at which a state change took place [Svo76]. We will call this a
state /timestarnp model. In this model a program is decomposed as above.
However, events are associated with changes in state rather than with the
states themselves. The data associated with an event is the state transition
and the time at which the transition takes place.

Measurements consist of the sequence:

My = 091(11), 012(T2) - Ot (Tm)

where ¢,;41 is the state transition from state o; to state o4 and 7 1s
the time at which the transition took place. With the appropriate set of
states, measurements from a state/timestamp model can be converted into
a state/duration form. In practice, events are associated only with entering
or leaving a state and not the transition between two states.

This model can be easily generalized to parallel execution by augmenting
the event data with the identity of the processor on which the state change
took place. This requires that a timestamp be available globally on the par-
allel computer. Fortunately, this problem is easier to solve than determining
global state. Some computers such as the Sequent Symmetry [Seq99] main-
tain a single clock accessible by every processor. On computers without this
facility, algorithms for synchronizing local clocks exist [Fre89]. Most current
performance measurement tools for parallel programs are based on the state
transition/timestamp.
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2.2.4 Deriving performance indexes from performance
measurements

When a performance index is computed from a set of measurements, that
index is called a derived index. Svobodova has identified four diflerent ways
in which the value of a performance index can be derived from a measurement

model [Svo76]. These are:

e An cvent trace: The sequential record of each event that occurred
during execution. An important state decomposition is to assign a
different state to each statement within a program. If every event is
measured, the resulting data is called a program trace.

¢ Relative activity: The ratio of resource utilization for a specific activity
to the total resource utilization of the program.

s Event frequency: The total number of times an event occurred during
the experiment.

® Distribution of activity intervals: The distribution of resources used by
a specific activity.

In addition to a program trace, we identify one other type of data col-
lection: an erecution profile. An execution profile is obtained by defin-
ing a different program state for each subprogram (or program statement)
and the data collected is limited to relative activity and event frequency.
Knuth [Knu71] originally defined a execution profile to consist solely of fre-
quency data. However, current usage of the term generally includes time
data as well [Ben82]. In Section 3.3, we will show how execution profiles can
be applied to parallel program execution.

As an example of how different decompositions determine performance
indexes, assume that we wish to determine processor utilization. This index
is given by:

Time the processor is busy

Utilization = — - - - —
Time the processor is busy + Time the process is waiting

One possible decomposition splits program execution into two states, one
for processor busy and one for processor idle. Utilization is determined by the
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relative activity of the processor busy state. An alternative decomposition
is to use a program trace. Typically, specific statements within a program,
such as lock requests or message reads, causc a processor to become idle.
The execution for the program statements can be summed, separating the
statements that cause processor idle time from all the others. Processor
utilization can then be calculated as in the first decomposition. However,
the many additional performance indexes can be calculated from a program
trace.

2.3 Issues in Performance Measurement of
Parallel Systems

In performance measurement of parallel program execution there are three
concerns: 1) deciding the measurements to make, 2) dealing with the interac-
tion between the measurement process and the program being measured and
3) managing the volume of measurement data. In this section, we examine
how measurements of parallel programs are made and the aspects of parallel
execution that make the measurement process difficult.

The process of performance measurement can be broken into three steps:

e Instrumentation. Measurements are made by instrumenting a program
(or underlying system) with sensors. The type and placement of a sen-
sor is determined from the measurement model. Generally, a different
sensor is associated with every event in the measurement model. When
an event occurs, 1ts sensor is given the opportunity to observe the data
associated with the measurement.

¢ Data collection and storage. During program execution, the values
of sensor observations must be collected and stored. The collected
data can be simply stored unchanged, stored along with additional
information such as a timestamp or some data reduction can take place
and the result stored.

e Data analysis and formatting. Collected data is analyzed and pro-
cessed. The value of derived performance indexes are determined. The
data is formatted and presented to the programmer in a comprehensible
form.
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In this section, we only address the first two steps of the measurement pro-
cess: instrumentation and data collection. We present a more detailed dis-
cussion of the problems associated with instrumentation and data collection.
The problems associated with data analysis and formating are discussed in
Chapter 7.

2.3.1 Instrumentation and the implementation of sen-
SOI'S

During a performance experiment, data is collected from an executing pro-
gram by instrumenting the system with sensors, objects responsible for ac-
tually obtaining the measurement data. The functionality of a sensor can be
broken into three parts [GS83]:

1. Detection. A sensor must determine when an event in the measure-
ment model has occurred.

2. Isolation and Filtering. Not all events in the measurement model
need to be measured. The sensor can apply various criteria to determine
if measurement data will be collected for an event.

3. Notification. An identifier for the event with its associated data is
transferred to the performance measurement system for collection and
storage.

When a parallel program is instrumented with sensors, a tradeoff 1s made
between the type and accuracy of the data obtained. the impact the sensor
has on program execution and the ease of use and flexibility of the sensor.
Three implementation options are possible: sensors can be implemented in
hardware, in software, or as some combination of the two.

The advantage of hardware sensors is that very accurate measurements
can be made with little or no impact on the program being executed. In
addition, if the data required pertains to the operation of subsystems in the
parallel computer itself, a hardware sensor may be the only way to capture
the information. For example, a hardware sensor is the only practical ap-
proach to accurately measure the impact of contention for memory modules
in a shared memory parallel computers. However, it can be very difficult to
capture events defined by actions within the program, such as the execution

21



of a specific program statement, with a hardware sensor. More significantly,
designing and installing hardware sensors can be both costly and difficult.
Finally, by its very nature, hardware solutions to sensor implementation limit
the flexibility of the measurement system.

An example of hardware measurement facilities can be found on the
Cray X-MP. The Cray hardware is instrumented with 32 counters that col-
lect performance data [CRA]. The counters record the number of floating
point operations, the number of memory conflicts and instruction use his-
tograms. Access to these values is provided to the user program via a system
call. Because of the overhead associated with a system call, frequent ex-
amination of these counters slows down program execution. Details of the
overhead associated with examining the counters can be found in [MLR90].

The obvious alternative to hardware sensors 1s 1o implement sensors com-
pletely in software. This approach is attractive because of its flexibility and
the relative ease of construction and installation. The primary drawback of
software sensors is that their execution can interfere with the execution of
the program that is being measured. As discussed in the next section, this
can have dire consequences in a paralle] program.

The approach to sensor implementation in the Parasite system [AGS88] is
an interesting example of a software based measurement system. Parasite
was designed to execute on the Encore Multimax, a shared memory mul-
tiprocessor. When a parallel program executes, Parasite creates a monitor
process which attaches itself to the program by mapping a shared memory
segment from the program into the monitor. The monitor can instrument the
parallel program by setting a breakpoint, much like a debugger. When the
brealpoint is reached, the necessary data is passed to the monitor through
shared memory. The program then continues execution while the monitor
finishes processing and storing the collected data. Because the monitor runs
on a “spare” processor using shared memory, the disturbance to program
behavior is minimized.

The final alternative in sensor design is to implement part of the sen-
sor in hardware and the remainder in software. Although there are many
ways in which the measurement task can be divided, flexibility is maximized
and overhead minimized by performing event detection in software and the
remaining sensor functionality in hardware.

An example of a hybrid approach is found in HPERMON [MAA*89], a per-
formance measurement system for the Intel iPSC/2 (a multicomputer based
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on the Intel 80386 microprocessor). The HPERMON hardware is responsible
for capturing events, event processing and analysis and storage of events onto
a disk storage device. Each HPERMON unit contains two microprocessors and
512 Kbytes of memory and can service up to 16 processing nodes. Events
are generated in software by issuing an I/O write request {from a processing
node. The 1/0 request with four bits of data is passed over a special global
bus to the HPERMON event capture hardware. In the hardware, a timestamp
is generated for the event and the resulting data is stored. There is a cost
associated with event detection; the 1/0 request required to signal an cvent
requires at least 12 clock cycles on the node processor to complete.

2.3.2 The placement of instrumentation in a parallel
program

The location of instrumentation in a program is determined by the measure-
ment model from which the desired performance indexes are to be obtained.
With the measurement model defined, instrumentation can be inserted into a
program manually or automatically. With manual placement, the program-
mer is responsible for identifying the appropriate location in the program
to place the instrumentation. Automatic placement is typically performed
in the compiler or thorough the use of instrumented library routines. If the
comnpiler is responsible for placement, the location of the instrumentation is
determined by an analysis of the program code.

In sequential profiling, instrumentation is typically placed on routine en-
try and exit and basic block boundaries. However, the activities of interest
in a parallel program, such as sending a message or obtaining a memory
lock, can occur at levels below the basic block. Consequently, instrument-
ing parallel execution can require more detail than instrumenting sequential
execution. This increases the measurement overhead and the amount of per-
formance data generated during performance measurement.

2.3.3 The probe effect

A fundamental issue in measuring a parallel program is to design a sensor
that can observe a parallel program without altering the program’s behav-
ior. The execution of a parallel program depends not only on the actions
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being performed, but also on the spatial and temporal relationships between
concurrently executing program components. Unlike sequential programs,
changes in the time needed to perform an operation can have drastic eflects
in the behavior of the program. To make matters worse, the impact of a dis-
turbance is not necessarily local. Interference with program behavior at one
location can impact the behavior of other components of the program [Col79].

The changes in the behavior of a program when it is instrumented are
called the probe effect [Gai86]. The probe effect was first discussed in the
context of debugging parallel programs. It was shown that as instrumenta-
tion overhead in a program changed, different errors present in the program
would manifest themselves. In some cases, the errors would not appear at
all. As with debugging, the probe effect 1s of concern with performance mea-
surement. If the behavior of a parallel program is altered by the process of
measurement, the measurements are of questionable value.

Three approaches to managing the impact of the probe effect have been

identified [MH89]. These are:

o Fast sensors: Minimize the impact of the probe effect by making
sensor operations as fast as possible. However, there i1s no guarantee
that the program’s behavior has not been altered in some way. Un-
fortunately, this seems to be the technique most commonly used in
performance measurement.

s Leave the sensors in: Sensors are not added and removed as needed.
Rather, a set of sensors is inserted into the program when it is created
and never removed. This approach results in a continuzously monitored
program. Since the behavior of the system is defined with the sensors
in place there is no probe effect. Obviously, this approach will result
in some degradation in program performance. Therefore, the overhead
of the sensors must be kept low so as not to outweigh the benefits of
avoiding the probe effect.

¢ Logical time: Sometimes the impact of sensor overhead can be com-
pensated for by viewing program activity on a virtual timeline rather
than the actual timeline. For example, in PIE [LSV*89], measurcment.
overhead is compensated for by adjusting the values of all of the event.
timestamps.
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2.3.4 Volume of performance data

Measurements of a parallel program can generate large amounts of perfor-
mance data. Each processor in a parallel process is a source of performance
data. Thus, a one thousand processor computer has the potential to generate
a thousand times more performance data than a uniprocessor. In addition,
applications that warrant parallel execution tend to be large problems re-
quiring hours or days of computer time. The longer a program runs, the
more performance data it can generate.

As the amount of data grows, it becomes increasingly difficult to extract
the data from the computer and store it. Once a measurement is made, the
resulting performance data must be stored somewhere. This can be in a
processor’s memory, off loaded onto a mass storage system or displayed im-
mediately. Storing hundreds of megabytes of performance data in processor
memory is not feasible. If the data is transferred from the node onto a disk or
displayed, valuable 1/O and communications bandwidth is consumed. Both
of these factors complicate the measurement process.

2.4 Current Performance Measurement Sys-
tems for Parallel Programs

In this section, we review several different performance measurement systems
for parallel computers. All the systems discussed in this section rely on event
traces as the primary means of data collection. Although this survey is not
exhaustive, it is representative of the current state of the art in performance
measurement of parallel programs.

2.4.1 Generating event traces on the BBN TC2000

The TC2000 1s a non-uniform access shared memory multicomputer devel-
oped by BBN Advanced Computers. It can support up to 528 processors
interconnected by an eight-by-eight butterfly switch. BBN provides two soft-
ware based facilities for generating event traces, or as BBN refers to them,
event logs [BBN90]. Performance data on the TC2000 is collected by instru-
menting a program with calls to the ELOG event logging library. FEach log
entry is 16 bytes long and contains a timestamp, an event type, a processor
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number and an event value. As the program executes, logged events are
stored in a per node buffer located in the program’s virtual address space.
The amount of execution time overhead caused by generating event traces
depends on the program and the number of calls to the logging library. How-
ever, overheads in the range of 10% or higher are typical.

The second facility is a low level event logging mechanism in the operation
system kernel. An system call is used to store event data into a buffer the
kernel maintains. Access to the buffer is provided through a separate utility
program. In addition to user-defined events, the kernel itself generates a set
of events to monitor such things as locking, page faults and [/O activity.

2.4.2 Collecting performance data on the NCUBE
multiprocessor

The NCUBE is a distributed memory computer with up to 1024 nodes
connected in a hypercube topology. Fach node has 512 Kbytes of memory;
there is no virtual memory. Stmplex [KCHC89| is a nodal operating system
for the NCUBE that supports performance measurement. Two types of
performance data are collected: summary statistics are collected directly by
the nodal operating system and event traces can be generated by placing
calls to event logging library.

Event traces are generated by placing calls to an event generation routine
in an application program. The event collection implementation capabilities
are much like those on the TC2000 [Cou88|. However, because of the limited
memory on an NCUBE node, much less buffer space is available. To over-
come this problem measurements are stored into a circular buffer; thus new
entries overwrite the oldest entries. Simplex has a mechanism to transfer a
range of buffer entries to the system host.

Simplex automatically collects a large number of summary statistics such
as the number of messages read and sent, the current number of processes
on a node, etc. The statistics provide information on a per node basis, a per
process basis and a per communication channel basis. The value of individual
statistics can be collected by monitor program executing on a workstation
with network access to the NCUBE. To minimize the impact of collecting
the statistics, a program on the NCUBE can be run in burst mode. In burst
mode, each node runs for a time slice, then program execution on every node
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is suspended and statistics collected.

2.4.3 Performance measurement in IPS-2

IPS-2 is a performance measurement system developed for performance mea-
surement of parallel and distributed programs [MCH*90]. It currently runs
only on the Sequent Symmetry, a shared memory parallel computer with
from 2 to 28 processors. In IPS-2, performance data is collected in the form
of event traces. Sensors to genecrate the trace are automatically placed into
a program at the entry and exit points of a procedure during program com-
pilation.

An interesting aspect of event generation in [PS-2 is that a state/duration
measurement model is used to reduce the number of events that must be col-
lected. For example, measuring the acquisition of a lock on a shared memory
computer would require two timestamped events: one to capture when the
request for the lock was initiated and one when the lock was granted. If the
exact time of the lock request is not required, then the two timestamped
events can be replaced by a single state/duration event.

2.5 Summary

In this chapter, we discussed the concept of performance and how it is repre-
sented by performance indexes. We then extended these concepts to parallel
computers, presenting a framework for conducting performance measurement
experiments on parallel programs.

In reviewing the current approaches to performance measurement, we
find that all the tools generate an execution trace. In the next chapter, we
will discuss the problems with this form of measurement and propose an
alternative approach to performance measurement.
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Chapter 3

A New Approach to
Performance Measurement

The performance measurement systems surveyed in the previous chapter all
suffer from a common set of problems: their runtime overhead can be 7%
or higher and they can generale arbitrarily large amounts of data. In this
chapter, we present an approach to performance measurement that over-
comes these limitations. Based on execution profiling, our approach has the
following advantages:

e The runtime overhead is less than 3%.
e The space overhead is less than 10%.
e There is no probe effect.

A constant amount of data is collected regardless of how long a program
executes.

® The measurement technique scales to large numbers of processors.

o [t can be used on any program with any input data without programmer
intervention.

We start with this chapter with a discussion of the problems with current
approaches to performance measurement. We then introduce our approach
and show how it overcomes these problems.
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3.1 Limitations of Current Performance Mea-
surement Systems

The measurement systems discussed in Section 2.4 rely on event tracing as
their primary means of data collection with the events defined on a per pro-
cessor basis using the state/timestamp measurement model. The major ad-
vantage to this approach is the level of detail that can be obtained. Assuming
a time source with adequate precision, a complete accounting of program ac-
tivity is possible. However, trace based performnance measurement has some
significant limitations. These are: 1) nontrivial execution time overhead of
the sensors, 2) controlling the volume of data generated and 3) the level of
user interaction required for use.

The runtime overhead of generating an event trace is nonnegligible. The
source of the overhead is in the work that a sensor must do to detect an
event, collect the event dala, allocate a storage spot for the data and then
actually copy the data. At a minimum, the data copied includes an event
type and a timestamp. Additional data may also be required. Each element
of data associated with an event requires at least one memory operation to
collect and store. In addition, a slot in the Jog buffer must be allocated, caus-
ing additional overhead. Although the total runtime overhead will greatly
depend on the program being instrumented and the amount and placement
of instrumentation, experience indicates that an overhead of over 7% is not
exceptional [Coul.

More significantly, the collection of event traces can require a huge amount
of storage space. The longer a program runs, the greater the amount of data
that must be collected. Typically, the designer of the performance experiment
1s responsible for keeping the amount of data collected reasonable. There are
three options available to the programmer: measuring at a higher level of
abstraction, selective tracing, and limiting the execution time of the program.
Each has disadvantages.

Reducing the number of states in the measurement model reduces the
amount of performance data generated. One way to accomplish this is to
use a performance index higher in the measurement hierarchy described in
Section 2.2.2. However, this defeats one of the great advantages of tracing
— detail.

Alternatively, one could collect performance data from a subset of the
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events in the measurement model. This requires the programmer to guess
which parts of the program are causing the performance problem and then
limit the measurement to those parts. The question then arises: Where
does the programmer get a priori knowledge about the performance of the
program? Experience has shown that programmers arc bad guessers when it
comes to making these types of assessments [Ben82].

The final option is to limit the execution time of the program by exccuting
it on smaller input data set or test case. It is then the responsibility of the
programmer to design a test input that is small enough to collect data from,
while still accurately reflecting the program’s behavior when it executes using
actual input data.

Recognizing these problems, most trace based perlormance measurement
systems require the programmer to manually place sensors into the program.
Some measurement systems, IPS-2 for example, places a limited number of
sensors automatically. Usually these sensors capture procedure entry and
exit. However, in programs in which parallelismn is present within a proce-
dure, such as parallel loop execution, this level of measurement not detailed
enough and programmer intervention is still required.

3.2 Ouwur Approach to Performance Measure-
ment

We have developed a performance measurement technique specifically to
overcome the limitations of measuring parallel programs with event traces.
Our approach is based on a parallel generalization of an execution profile.
The profile data is collected by simple software sensors that generate a fixed
amount of data, regardless of how long the program runs. By leveraging
compile time information, much of the data in a profile is collected by sim-
ple counters; the other data collection relies on lapse time computed from a
microsecond clock.

Recall that an execution profile records the number of times an action
within a program is performed and the amount of time spent performing that
action. Because a profile collects totals rather than individual events, the
amount of storage needed for the measurement data is fixed and determined
by only by the text of the program. Regardless of how long a program runs,
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the size of its execution profile remains constant. This has two ramifications:

¢ Performance data can be collected from the entire program. We do not
need to guess time what parts of a program are important.

e The input data normally processed by the program can be used as
input for the performance experiment as well.

In measuring the overhead of a range of parallel applications, we have found
that the storage requirements for profiling do not exceed 10% of a program’s
code size.

The sensors are placed into a program automatically based on an analysis
of the program text. Because the storage overhead of an execution profile is
low, the placement of the sensors can detail operations within a program that
are relevant to parallel execution, not just procedure calls. The fixed storage
requirements and automatic placement of instrumentaiion in the program
eliminates any need for the programmer to direct the process of performance
measurement. Because profiling can be applied to any program with any
input, it is a more general approach to performance measurement than exe-
cution profiling.

The sensors required for execution profiling are very simple. As a result,
they are implemented in software and have little runtime overhead. Our
experiments show that using our techniques described in Chapter 5, a parallel
program can be profiled with an execution time at of at most 3%. Often it is
an order of magnitude less. An advantage of software sensors is portability.
Our measurement techniques are currently in use on four completely different
parallel architectures including both multicomputers and multiprocessors.

Because the runtime and storage overhead of our instrumentation is so
low, we make the sensors an integral part of the parallel programming en-
vironment. Profiling is always performed. By defining the behavior of a
parallel program with sensors in place, we are freed from consideration of
the probe effect.

Of course, profiling is not without its disadvantages. The primary draw-
back is that there is less detail available in an execution profile than pro-
vided in an event trace. Information about specific instances of procedures
or statements, temporal information, and most information about sequences
of events is not available. However, our experience has shown that a great

32



deal of insight into parallel program execution can be obtained without tem-
poral information. Furthermore, by exploiting causal information implicit in
the structure of the program, some causality of actions can be inferred from
a profile. 5till more temporal data can be recovered by generating a sequence
of profiles through the use of snapshots. Finally, if an execution profile does
not provide enough information to identify and correct a performance bot-
tleneck, it can be used as a tool in designing a more detailed performance
experiment utilizing execution tracing.

A performance measurement system based on low overhead measure-
ments, execution profiling and continuous measurement provides a basic set
of performance measurements that should be provided in any parallel pro-
gramming system. With its global view of program execution, execution pro-
filing answers the first set of questions that must be answered before more
detailed analysis can proceed. It is a general technique in that it can be
applied to any program without concern to program size or execution time.
The program can be instrumented for profiling automatically, requiring no
interaction by the programmer. Consequently, no a priori knowledge about
problem areas in the program is required to generate a profile.

3.3 Profiling Parallel Programs

Of all the current performance measurement systems for parallel programs,
none directly support execution profiling. While it is true that program
profiles can be extracted from procedure or stalement level program iraces,
all the inherent limitations of event tracing remain. To fully exploit its
advantages, execution profiling should be directly supported as part of a
parallel programming environment.

Profiling is considered to be essential for sequential programs [Ben82,
Knu71] and tools for profiling sequential programs have been available for
some time. However, these tools are lacking for parallel programs. To
our knowledge, profiling techniques specifically designed for parallel program
have not been developed. In fact, some authors have gone so far as to claim
that profiling is not important for parallel programs [Mal89)]. It is our belief
that nothing could be further from the truth.

The argument made against profiling asserts thal sequencing informa-
tion 1s required to properly identify performance bottlenecks. For example,
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consider the call graph fragment in Figure 3.1. Each block represents a sub-
program with its execution time indicated along side. Assume that the left
and right branches of the graph are executing on different processors.

B 1.5 Sec

2 Sec. A

|
|
C 1.5 Sec
l

g

Figure 3.1: Execution graph of a program to be profiled

The existence of a performance bottleneck can be identified hecause the
execution time of three seconds on two processors results in a speedup of
1.66 when the best case is a speedup of 2. Consulting the sequential program
profile would lead one to focus on the execution of procedure A with 2 seconds
of execution time. The profile does not indicate that in fact the performance
bottleneck is the result of the combined execution of B and C.

The preceding analysis is limited by its attempt to apply a sequential
execution profile to a parallel program. In order to understand parallel pro-
gram execution, sequential execution profiles must be generalized. We define
a parallel execution profile by:

Definition 1 A parallel execution profile of a program is obtained by defin-
ing a state/duration measurement model extended for parallel programs as
defined in Section 2.2.3. The program is decomposed into components such
as procedures or statements. For each component ¢, three states are defined:
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ot Component is executing user code.
z' Y . gy .
o. Component is waiting (idle).
ol Component is communicating with another processor.

If measurements are limited to the total number of times a program is
in each state and the total time spent in each state, the resulting data is a
parallel execution profile.

Let us return to Figure 3.1 and investigate what happens when we collect
a parallel profile. First, we observe that the call graph of Figure 3.1 is
incomplete. There must be some form of synchronization to coordinate the
termination of the left branch executing A and the right branch executing
B and €. We augment the original graph by placing a barrier procedure to
perform this synchronization in processor one. Figure 3.2 shows the graph
with the barrier added.
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Figure 3.2: A more complete parallel profile

We have annotated each procedure with parallel profile data. A matrix
formulation is used where for a procedure ¢, the kth row of the matrix is:

(03, 0%, 02)
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where the elements are the total time spent in the states of Definition 1 on
processor k.

The total time spend in this graph is 3.7 seconds. From the profile data,
we can compute the processor utilization. On processor one, we spend 2.0
seconds in A and 1.0 seconds idle and 0.5 seconds executing the barrier. Com-
paring the computation time to the total execution time gives us a utilization
of 68%. On processor two, we spend a total of 3.0 seconds executing B and
C. In addition, €' spends 0.2 seconds communicating with the barrier. This
results in a utilization of 81% in processor 2. The difference in utilization
between the two processors indicates a performance bottleneck on processor
twao.

To find the cause of the bottleneck, we consult the graph of Figure 3.2
and the execution times of the programs. The bottleneck manifests itself
as idle time in the barrier. Execution of the barrier requires that A and C
complete and (' requires B. From this information we conclude that the
difference in execution times between procedure A and procedures B and C
is responsible for the idle time at the barrier and consequently degrades the
performance. The performance of the program fragment can be improved by
decreasing the execution time of B or ' or splitting B or €' into smallers
tasks and allocating one second’s worth of computation to processor one.

The purpose of this simple example is to demonstrate that it is possible
to understand and improve the performance of a parallel program using an
execution profile. A more convincing argument is presented in Chapter 8
where using a method similar to that in the preceding paragraph, we obtain
a 19% performance improvement on a 5000 line program executing on 160
ProCessors.

The values in the matrixes in Figure 3.2 constitute a parallel execution
profile. While the profile in this example is based on a decomposition of
program execution into procedures, other measurement models are allowed
by Definition 1. In Chapter 5, we discuss the issues that arise in selecting a
measurement model and develop a set of measurement techniques to obtain
the data needed for a profile.
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3.4 Summary

In this chapter, we have introduced a new approach to measuring the per-
formance of a parallel program: parallel execution profiles. This approach
eliminates the issue of the probe effect while limiting the amount of data to
be collected. Almost all current performance measurement systems use some
form of event tracing. While there will always be a place for performance
measurement that is detailed and accurate, this should not be the first line
of defense when developing parallel programs. Rather, execution profiling,
which 1s generally applicable without programmer intervention, should lorm
the basis of performance measurement.

We now turn our attention to ways in which parallel computers are pro-
grammed and how these interact with the process of performance measure-
ment.

37



38



Chapter 4

Programming Parallel
Computers and Performance
Measurement

Our approach to measuring and improving the performance of parallel pro-
grams is not dependent on a specific programming language. However, a
demonstration of our techniques requires that a specific language be chosen.
For this purpose, we use a parallel programming system called the Program
Composition Notation or PCN. PCN has the dual advantage of being an
effective method for expressing parallel computation and having a structure
that facilitates performance measurement. In this chapter, the syntax and
semantics of PCN are described and an overview of its implementation is
presented.

4.1 Program Composition Notation

The Program Composition Notation { PCN) is a high level parallel program-
ming language. Designed by Taylor and Chandy [CT89], PCN combines the
lessons learned from the Strand|[TF89] programming language with the for-
mal foundations of the Unity [CM88] parallel programming model. In this
section we present a brief overview of PCN. A more complete discussion can

be found in [CT90].
PCN 1is based on one simple idea:
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A complex program can be budt by composing simpler programs.

The concept of composition is essential to building complex parallel pro-
grams from existing parts [Bac78]. The more powerful the composition oper-
ators, the easier is to construct complex programs within a simple language
framework.

The focus of PCN is on providing a means to combine programs without
placing restrictions on the programs themselves. PCN is a complete pro-
gramming language and the programs being composed can be written totally
in PCN. However, PCN is just as capable of combining programs written
in other languages, such as Fortran or C. This gives rise to a programming
style called multilingual programming.

From the early days of high level languages, multilingual programming
has been a means to improve the performance of a program. Most high level
language compilers provide a “trap door” from which in-line assembly code
can be embedded into a program or assembly language subroutines called.
Multilingual programming is a means of exploiting the efficiencies that can
only be obtained from a lower level of abstraction.

Applied to parallel programs, multilingual programming combines opera-
tions written in a sequential programming language and a high level parallel
programming language in a single program. Parallel multilingual program-
ming is motivated by the following observations:

¢ Most commercially successful MIMD computers are built from stan-
dard high performance microprocessors which execute an instruction
set optimized for sequential high level language programs.

e Compilers for sequential programming languages do a good job of gen-
erating code that exploits the capabilities of high performance micro-
Processors.

e Iven a highly parallel application contains some tasks which are essen-
tially sequential.

By utilizing existing sequential compilers to encode sequential operations,
a multilingual program can offer performance superior to a program written
in only a parallel programming language. In addition, since representing
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Sequential . Sequential Sequential
Program Program Program

Figure 4.1: A multilingual program

sequential computation in a parallel language can be cumbersome, the re-
sulting sequential code is easier to write and understand. Likewise, using a
high level parallel language to represent the coordination and interaction of
the sequential components vields a direct, clear and concise representation
of the parallel aspects of the program.

An important benefit of multilingual programming is that existing se-
quential procedures can be embedded into a parallel program, preserving the
time and money investmented in sequential algorithm development. Further-
more, multilingual programming provides a migration path from an existing
sequential application into a parallel application.

Experience to date has shown that multilingual programming is an effec-
tive means for developing high performance parallel applications [F0O90]. The
portability inherent in a high level language approach to parallel execution
results in programs that are easily ported to different parallel computers. By
coding a program’s kernel operations in an efficient sequential programming
language, performance degradation of less than 1% is seen in single processor
execution[FOO1].

The structure of a multiingual PCN program is shown in Figure 4.1. The
top level structure of the program is written in PCN, forming a collection
of concurrently executing tasks. At some lower level in the program, the
basic mode of computation switches from parallel to sequential. A sequential
programming language such as C or Fortran is used from that level on down.

Multilingual parallel programming has advantages from the perspective
of performance measurement. Programming for observability is the process
of developing a parallel program in a manner that facilitates the observa-
tion of performance data {GS85]). Multilingual PCN programs have several
characteristics that aid in this process. First, PCN is a simple language in

41



which parallel operations are represented in a straightforward manner. Con-
sequently, it is easy to instrument a PCN program. Second, the boundary
between parallel and sequential code provides a buili-in abstraction mecha-
nism. Sequential operations that are not relevant to the parallel performance
of a program are easily identified by the boundary.

This dissertation focuses on execution profiling for parallel applications
written as multilingual PCN programs. This choice is motivated both by the
advantages of PCN as a means of expressing complex parallel computations
in an efficient and portable manner and by the degree to which PCN enables
observability. PCN currently executes on a number of commercially avail-
able parallel computers. One of the contributions of this dissertation is the
design and implementation of the elements in the PCN system that support
performance measurement [CTKF90].

4.1.1 Basic concepts of PCN

The building blocks of PCN are programs, which correspond to procedures in
other languages, and composition operators. The mechanism used to create
a program from simpler programs is a composition operator. If P,,... B,
are programs and O is a composition operator, then {OF,... P} is a pro-
gram. Note that this is really no different from the way most traditional
programming languages work; however, in PCN | rather than only being able
to compose programs sequentially, a richer set of compositions is provided.

The programs that are glued together by a composition operator can in
fact be compositions themselves. Thus a new PCN program can be created
from existing PCN programs by composition. A composition operator can
also be used to create a new PCN program from programs written in “for-
eign” languages such as Fortran and C. In the context of PCN, all foreign
code components are referred to as programs, regardless of whether they are
actually complete programs, or just subroutines or procedures.

Programs interact with each other by means of shared variables. There
are two classes of variables in PCN, mutable variables and definitional vari-
ables. PCN variables can contain integer and floating point values and struc-
tured data such as arrays. Mutable variables are like the variables found in a
sequential programming language such as C. The value of a mutable variable
is set by an assignment, a program that is a primitive in the PCN language.

A definitional variable is equated to its value by a definition, which is also
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a primitive program. Definitional variables obey the single assignment rule;
a variable can appear on the left hand side of an assignment at most once.
The following rule applies to all uses of definitional variables:

If a program needs the value of a definitional variable and that
variable has not yet been defined, then execution of the program
is delayed until such a definition has been made.

This single rule forms the basis of all synchronization and communication
within a PCN program.

4.1.2 PCN data types

PCN has three scalar data types: integers, floating point numbers and char-
acters. These data types can be stored either in a mutable or a definitional
variable. In addition, PCN has two complex data types: arrays and tuples.
An array 1s a linear sequence of any of the scalar data types. As with the
scalar data types, arrays can be both definitional and mutable. A string is
an array of characters and can be represented within a program by enclosing
its value within double quotes.

Tuples differ from arrays in that: 1) they are only definitional and 2) the
elements of a tuple can be any nonmutable PCN data type or a definitional
variable. A tuple is similar to a C structure or a Pascal record except that
elements are accessed by integer index and not by a field name. A tuple is
written in a program using the syntax:

{e1, ...e,}

where the e; are the elements of the tuple. A tuple with n elements is said
to have arity n. With tuples, recursive data structures such as trees and lists
can be built.

Lists, which are nonmutable, are often used in PCN programs. In PCN
lists are written as:

[e1, .. .e,]

The empty list is represented by a tuple of arity zero and is written as [].
Finally, a vertical bar is used to designate the tail of a list, i.e., ["a” | T] is a
list whose head is the string ¢ and whose tail is the value of the variable T.
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Tuples and lists can be explicitly written in a PCN program. When such
a program executes, data structures of the specified type and contents are
automatically created. Arrays are also dynamically created. However, there
is no syntax to specify an array in a program. Rather, arrays are created via
a declaration, much like automatics variables in C.

4.1.3 The PCN programming model: syntax and se-
mantics

The basic syntactic structure from which a PCN program is built is a block.
A block is one of:

e program call
e assignment

definition

implication
e composition

The simplest type of block is a program call. The syntax for a program
call module:program(a;, ...a,). Every PCN program belongs to a module.
When called from outside its defining module, the module name must be
specified. If a program is called from within its defining module, the module
name and colon can be eliminated from the calling syntax. Foreign program
names are global and a module name is not required. The a; are the actual
parameters to the call and can be constants, PCN variables or expressions.

Foreign programs are written in accordance with the syntax and semantics
of the programming language. No special interface between PCN and the
foreign language program is required, however, there are some restrictions as
to what data types can be passed from PCUN to a foreign program.

PCN programs are defined in a manner similar to C procedures: the pro-
gram name is followed by an optional declarations section which is followed
by the body of the program. The exact format of a PCN program is:
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program(py, ... Pn)
type; vary,1, varim,

type, vary,, ... Val, m,,
B
where type; are PCN data types and B is a block. Only mutable variables
are declared in a PCN program. If a variable is not declared, it is assumed
to be a definitional variable and can contain any PCN data type.
An assignment is specified by:

X = expression

where X is a mutable variable. If the expression contains any definitional
variables that have not yet been defined, then the assignment is delayed
until the value of the expression has been completely defined.

The value of a definitional variable 1s defined by the block:

X = expression

Before a definition can take place, the right hand side must be completely
defined. When this is true, expression is evaluated, and the resulting value
equated into X. If any mutable variables appear in the defining expression,
then a snapshot of the mutable values is made; the value of X is defined with
the current values of the mutable variable.

Conditional execution is performed by an implication block. An impli-
cation contains two parts: a guard and a body. The guard is a sequence of
comma-separated tests which are evaluated from left to right in the order
that they appear within the guard. The guard tests are predicates that eval-
uate to true or false. The tests include relational tests and type checking.
The syntax for an implication is:

T4, ... Tn —> B
where T; are guard tests and B is a block.

If all the guard tests in a guard evaluate to true, the guard succeeds and
the body of the implication is executed. If the ¢th guard test of a guard fails
and all other tests 7}, 5 < 2 evaluate to true, the guard fails and no further
action is taken. If the ith test in a guard requires the value of a definitional
variable and the variable is not yet defined and all tests T}, 7 < ¢, evaluate
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to true, the guard suspends. In this case, the guard evaluation is repeated
until 1t either succeeds or fails.

To simplify guard tests on PCN tuples, a pattern matching guard is
provided. For example, the guard test: X ?= [{"foo” ,x} | Xs] is true if the
variable X 1s defined as a list whose head is a pair whose first element is
the string "foo”. The variable x is bound to the second element of the tuple
and the variable Xs 1s bound to the tail of the list. No variable in a pattern
matching test may appear more than once on the right hand side of a pattern.

Complex programs are built from simpler ones with compositions. The
syntax of a composition is:

{Op Bl,...Bg}

where op is one of the PCN composition operators and the B; are the blocks
that are being composed.

There are three composition operators defined in PCN: parallel compo-
sition, sequential composition and choice composition. The syntax for each
of these composition operators is shown in Figure 4.2.

l Composition Type | Syntax ]
Parallel {l| B;,...B, }
Sequential {;By,...B, }
Choice® {1, .0}

“The arguments of a choice composition must be implications

Figure 4.2: Syntax of PCN composition operators

Sequential composition is used to sequence operations on mutable vari-
ables. If B; and B; manipulate a mutable variable in any way and ¢ < 7, then
sequential composition ensures that the execution of B; is complete before
B; is allowed to start execution.

The blocks within the scope of a parallel composition operator execute
concurrently. The execution of blocks in a parallel composition is fair: every
block in the composition that has not terminated will eventually execute.
Mutable variables are not allowed within the scope of a parallel composition
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operator. A parallel composition terminates when all blocks in the compo-
sition terminate. However, termination is neither required nor detected by
PCN.

Both synchronization and conditionals are expressed in PCN by a choice
composition. Only implications can be composed by a choice. When exe-
cuted, the choice composition arbitrarily selects an implication and attempts
to evaluate its guard. This process repeats until either one guard succeeds or
all guards fail. If a guard succeeds, then that guard’s body is executed and
the choice terminates. If all guards fail then the choice simply terminates.
A special implication with the single guard test default is allowed within
a choice composition. The default guard succeeds only if all other guards
within the implication fail. It is imporiant to recognize that the order in
which implications in a choice are selected for guard evaluation is completely
arbitrary. If more than one guard is true, any of them can be selected for
body evaluation.

4.1.4 Executing PCN on multiple processors

The parallel composition operator defines semantics for parallel execution.
Regardless of how many processors a program executes on, these semantics
must be followed, even if the composition is executed totally on a single
processing node. However, because of these semantics, blocks composed by
a parallel composition operator may be executed simultaneously.

Parallel composition fulfills an important function in addition to enabling
simultaneous execution. Paralle] execution semantics within a processor can
be used to mask the latency of interprocessor communications or the unavail-
ability of required values. Specifically, if the value of a definitional variable
is needed and it is not currently available, either because it has not yet been
defined or it resides on another processor, execution can be suspended and
another program in a parallel composition executed. The ability to tolerate
latency is an important property of a parallel programming language [AI83].

To execute a PCN program in parallel, one must map specific parallel
compositions onto different processors. Partitioning and mapping a parallel
program onto a processor graph is a difficult problem and has been studied
extensively [Bok81, KT86, Mar87, BS84]. PCN makes no attempt to solve
this problem. Rather, PCN provides a simple mechanism to facilitate the
implementation of a mapping function, but leave the determination of that
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function to the programmer. Eventually, we hope to develop a mapping
tool, such as in [SH86), that can automatically generate program partitioning
and processor mapping from the PCN program and the performance data
collected by our measurement techniques.

To specify a processor mapping in PCN, the processor on which a com-
position executes is 1dentified by annotating blocks within a parallel compo-
sition with a mapping notation:

program@location

where location indicates the node on which the program is to be executed.
Thus the composition

{1l pL{x.y)@1, p2(y.x,2)@2, p3(z,y)@3 }

would execute program pl on processor one, program p2 on processor two,
and p3 on processor three. The semantics of parallel composition are the
same as without the annotation, the definitional variables x, y and z will be
usable to cach program as if it had been executed on a single processor.

Program to architecture mappings are simplified by the embedding a
virtual topology within the actual physical topology of the communications
paths in the parallel computer. PCN supports this idea by allowing the
mapping to specify a direction from the current node on the virtual topology.
For example, from any processor in a ring topology, a program can be mapped
forward and backward. In a mesh, mappings can be directed up, down, left
or right of the current node. In addition, the annotation random can be used
to specify a random mapping. The embedding of the virtual topology onto
the physical topology of the parallel computer is handled by the PCA.

4.1.5 A PCN example

We conclude the overview of PCN syntax and semantics with two small
examples. The first is shown in Figure 4.3. This program recurses over a
tree and computes the sum of the values stored in the nodes. The top level
composition is an implication. It checks the values of the input argument:
tree. If tree is defined to be a tuple with three elements, the first is assumed
to contain the value associated with the tree node and the second and third
the left and write subtrees. The value of sum is defined to be the sum of the
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/* Compute the sum of the nodes in a tree.
Fach node contains a value and the left
and right subtrees. A empty subiree is
indicated by the constant "null_tree”

*/

sum_tree(tree,sum)
{? /* Are we al a tree node ? */
tree 7= {valueleft,right} —>
{|} /* Sum is node value plus sums of left and 10
right subtrees */
sum = suml -+ sumr | value,
sum_tree(left,suml),
sum_tree(right,sumr) },

/* Empty tree terminates recursion */

tree == "null_tree" —> sum = 0,
default —>
printf("Improperly structured tree\n") 20

Figure 4.3: A PCN program to sum the nodes in a tree

current node and the left and right subtrees. These values are all computed
in parallel. Note that the definition of sum can not take place until the values
of suml and sumr have been defined.

The second example shows the use of mutable variables and sequential
composition. Figure 4.4 shows a PCN program to compute the DAXPY, a
double precision operation from the BLAS library [LHKK79]. The DAXPY

calculates:

ye—aoar—+y

where & and y are vectors and « is a scalar. In this program, y is a mutable
variable. A sequential composition is used to ensure that the updates to
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/*
Compute the vector sum: Y =aX + Y
where “a” is a scalar and X and Y are vectors.
The length of the vector is N and [ is initialized
to the first element to be computed.
*
/
daxpy(res,a,x,y,|,N)
double x[],y[].a;
{7iI0<N-—>
£y = 2 * ] + vl .
daxpy(res,a,x,y,|+1,N)
}

Figure 4.4: A PCN program to perform the DAXPY operation

y occur in order and that all updates are complete before the composition
terminates. Note that since the argument | is not declared, it is a definitional
variable.

4.2 Implementation of PCN

In the next chapter, we present a set of techniques for measuring the per-
formance of PCN programs during exccution. These techniques depend not
only on the structure and semantics of PCN, but also on the details of the im-
plementation of PCN. For this reason, it is necessary to give a brief overview
of how PCN is implemented on a parallel computer. Some simplifications
are made for the purposes of this overview. However, a detailed discussion
of PCN implementation can be found in [FT90].

There is no single way in which PCN must be implemented. Many trade-
offs were made in arriving at the current design. The tradeoffs were driven
by four factors. These factors are:

¢ Observability. The PCN implementation was designed so that ob-
servability is a property of the programming language rather than the
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program. Enabling the performance measurements detailed in the next
chapter is a factor in the design of the PCN implementation.

e Portability. There are many different types of parallel computers
currently available. These machines have different communications ar-
chitectures as well as different processor architectures. It is necessary to
port the PCN sysiem to any of these machines with a limited amount
of effort. Therefore there can be no reliance on architectural features
such as shared memory, or a particular instruction set architecture.

s Efficiency. Decreased execution performance is often the price paid
for high level programming abstractions. Minimizing this performance
penalty is a major concern in designing the PCN implementation.

e Simplicity. Portability and correctness require that the implementa-
tion be as simple as possible. In some cases efficiency has been sacrificed
for simplicity. The result is that a complete working PCN system has
been implemented in six months.

4.2.1 The Program Composition Machine

A PCN program is a specification of a parallel computation. However to
be useful as a programming language, a PCN program must be converted
into a form which can be executed on a parallel computer. In PCN, as in
many other programming languages, efficient implementation requires that a
compiler translate operations in the language into operations in the target ar-
chitecture. However, rather than compiling PCN directly into the instruction
set of the target architecture, the compiler generates code for an architecture
and instruction set specifically designed to support the execution of PCN.
This architecture is called the Program Composition Machine or PCM.
The PCM defines a set of resources and an instruction set. The resources
include a set of registers and memory for allocating PON data structures.
The abstract instruction set manipulates these resources to perform the PCN
computation. The instruction set is defined to expose potential optimizations
to the compiler. However, because the instruction set is tailored to PCN
execution, it is much easier to apply these optimizations than if a native
instruction sequence had been generated. In addition, all code generation
and optimizations targeted to the PCM can be applied regardless of the
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actual architecture on which the PCN program is to execute. A summary of
the architecture and instruction set of the PCM is found in Appendix B.

Once a PCN program has been translated mmto PCM code, the PCM
code can then be translated into the native instruction set of the computer
on which the program is to execute. However, for the initial implementation
of PCN, this approach is not taken. Rather, the PCN program is executed
directly by emulating the actions of the PCM on the target architecture. The
emulator is a program that runs on the target architecture and interprets a
PCM instruction stream. If the emulator is written in a high level language
such as C, a very portable system results.

When executing on a parallel computer, one copy of the PCM executes
on each processor. To maximize portability, communication between PCMs
1s accomplished by message passing. The only architectural characteristic
assumed is the ability to asynchronously send and receive messages. On
multicomputers, this capability is usually provided by the operating system
on the processing node. On multiprocessors, a message passing library built
on shared memory is used; outside of this library, there is no shared memory

or locking used in the PCM.

Obviously, executing PCN by an emulator has an impact in the execution
time of a PCN program. The emulator must fetch and decode PCM instruc-
tions, operations that are not performed if the PCM code is translated into
a native instruction sequence. However, experience with similar languages
shows that the size of a native code implementation of a PCN program is
much larger than an interpreted implementation [Tay89]. This tends to have
a negative impact of the performance of the memory subsystem; in partic-
ular more cache misses and page faults can be expected. In the long run,
an implementation that uses native code compilation of selected procedures
yields the best tradeoff between speed and size.

4.2.2 Core PCNand the PCM execution model

To further simplify PCN implementation, the PCM is not actually capable
of executing the complete PCN language. Rather, prior to compilation, a
PCN program is translated to a simpler form called core PCN. Core PCN
differs from PCN in the following respects:
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o There is no sequential composition operator. Parallel compositions
are sequenced explicitly with definitional variables to provide the same
Tunctionality.

e The are no nested blocks. The body of a parallel composition can only
contain assignments, definitions, PCN and foreign program calls.

o All choice compositions have a default implication. The body of this
implication can be a call to the program skip(), which does nothing.

¢ The body of an implication must be a parallel composition.

o Assignments and definitions only occur within a choice composition
whose guard ensures that all definitional variables on the right hand

side been defined.

With core PCN, the PCM only needs to be able to evaluate the guards
of a choice composition and spawn the programs in a parallel composition.
All other operations, such as sequential composition and nested implication,
are encoded directly in core PCN. Not only does core PCN reduce complex-
ity of the emulator, but it makes instrumenting a program for performance
measurement easier as well,

Runnable instances of a composition are created by the execution of a
parallel composition. Each instance, called a process, is specified by the pro-
gram code and the arguments with which the program was invoked. Because
many processes can be created from the execution of a single parallel compo-
sition, the state of a PCN program is determined by a collection of processes,
called a process pool.

Because core PCN only has parallel composition, there is no structure
to the process pool. Any dependencies and interactions between programs
are determined solely by the definitional variables shared between process
arguments. Thus any process in the collection can be selected for execution.
This fact forms the basis of the core PCN execution algorithm, which is
shown in Figure 4.3.

Because processes are selected from the pool in any order and interaction
between processes is controlled by definitional variables, a parallel execution
algorithm can select more than one process from the pool at once. By in-
voking multiple instances of the algorithm of Figure 4.5, parallel execution
1s obtained.
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. Program selection. Select any process from the process
pool and remove it.

Guard evaluation. Evaluate the guards for each implica-
tion 1n the program.

If at least one guard is successful, go to step 3.

If none of the guards succeed but at least one suspends,
go to step 4.

Guard success. Arbitrarily select one of the implications
whose guard was successful.

If the body of that implication is an assignment or defini-
tion, perform it. Otherwise, {for each program call in the
body, add an instance of the program to the process pool.

Go to step 1.

4. Guard suspend. Place the program back into the process
pool.

Go to step 1.

Figure 4.5: The abstract execution algorithm for core PCN
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Core PCN is implemented by a collection of PCMs, one per processing
node. Within a PCM, the core PCN execution algorithm is implemented in
two pieces: a reduction component and a communication component. The
reduction component is responsible performing process reductions: removing
a process from the pool, evaluating the guard and adding new processes to
the pool. The communications component is responsible for ensuring that
the values of all definitional variables are available to every PCM. Recall
that since a variable can be defined only once, consistency of variable values
within the PCM 1is not an issue.

Within an instance of the PCM , the execution of the reduction component
and communications component alternates. The reduction component is
allowed to perform some number of process reductions and then control is
turned over to the communications component. The number of reductions
executed is determined by a system parameter called the timeslice. The
communications component executes until all outstanding communications
requests have been processed, at which time control returns to the reduction
component.

4.2.3 The reduction component

In the reduction component of the PCM, abstract machine code representa-
tions of PCN programs are executed. The basic layout of the sequence of
PCM instructions generated by the PCN compiler is shown in Figure 4.6.
Implications are placed one after another. Within an implication, code for
the tests in the guard appears first, followed by the PCM code to spawn
the parallel tasks in the implication body. The method used for sequencing
between implication guards is discussed in detail in Section 5.5.3.

Each instance of a PCM has a storage area called the heap. All PCN
data structures, including process records and PCN code, are allocated from
this area. A garbage collector i1s used to reclaim unused data items from
the heap when storage space runs low. New structures are allocated on the
heap only during the execution of parallel composition, never during guard
evaluation.

Definitional variables are allocated on the heap along with the other data
structures. The compiler arranges to create a definitional variable the first
time 1t is referenced during program execution. When first created, the
contents of a definitional variable are set to a value which indicates that it
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Guard 1
testy; ... testy,,
Body 1
SPawIly 1 ...Spawn
Fxit

Guard N
testN’l e teSthtN
Body N
SPAWNN; ... SPAWNN 4,
Exit
Default
default test
default body

Figure 4.6: Basic structure of PCM code representation of a core PCN pro-
gramn
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is undefined. When a definition is made, the variable contents are replaced
with a pointer to the defining value. If the variable has already been defined,
a runtime error is generated.

Definitional variables never move from the heap on which they were cre-
ated. However, consider the following example:

{il p(x).q(x)@fwd }

The definitional variable x is created in the PCM which executes the
program p. However, the variable is also referenced from that PCM which
executes q. On this processor, x is represented by a remote reference to its
location on the PCM that creates x. When x is defined, this reference can
be replaced by the value of the definition. If the definition of x is made in
program q, then a request to perform the definition along with the defining
value must be sent to the PCM executing p.

An executable instance of a program is represented by a structure called
a process record. Each process record contains a pointer to the PCM code
implementing the program and the arguments with which the process in
invoked. Process records are linked into one of two lists: a run gqueuc or a
SuUsSpension queue.

If a program is not currently being executed and is ready to run, it is
linked into the run queue. If a process is executed but suspends, the process
must wait until the required definitional variables become defined. So as not
to waste time retrying the process, the process record is pushed onto the
suspension queue'. The reduction process is summarized in Figure 4.7.

4.2.4 The communications component

The communications component is entered whenever the reduction compo-
nent’s timeslice is over or the run queue is empty. The primary job of the
communications component 1s to update the state of the memory of the PCM
based on the actions of the PCMs executing on other nodes. These actions
are 1) another node has requested the definition of a locally created variable
and 2) provide the value of a definitional variable to another PCM .
Communication between PCMs is performed by sending messages. Three
basic types of messages are sent: read, value and define. If during the exe-
cution of an implication guard, the value of a remote reference is required,

UThis is a simplification of how things actually work. For details consult [CTKF40].
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Check timeslice. 1f timeslice is over, go to communications
component.

Check run queuwe. If it is empty, go to communications
component.

Install process. Remove the first process record from the
run queue copying the A process arguments from the pro-
cess record into the first A abstract machine registers.

Execute guard. Execute PCM instructions for guards for
all imnplications of a choice composition.

If the guard succeeds go to step 5.

If the guard suspends go to step 6.

Ezecute body. Execute PCM instructions for body of im-
plication.

For each program call in the body, allocate new process
records and insert them on to run queue.

Perform any assignments.

If a definitional variable is defined then: 1) perform the
definition, if the variable was created on another node,
then this is done by requesting that node to perform the
definition, 2) move any local processes from the suspension
queue to the run queue and 3) notify other nodes who have
requested the value that the definition has taken place.

Go to step 1
Guard suspension. Arrange to get values of definitions
when they become defined.

Go to step 1.

Figure 4.7: The reduction process within the PCM
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a read message is sent to the PCM to which the reference points. The re-
quested value is returned in a value message. The define message is used to
perform a definition when the left hand side is a remote reference. The send-
ing of read and define messages takes place within the reduction component.
Sending value messages and all processing of received messages takes place
within the communications component.

An overview of the communications component is given in Figure 4.8.
Note that in addition to performing the communications task, this algorithm
has the side effect of implementing an idle loop. That is, when there is no
computation to perform, the PCM cycles through the communications com-
ponent waiting for variable definition that will enable execution to continue.

1. Perform definitions. If a definition of a locally created def-
initional variable has been requested by another processor
then: 1) perform the definition, 2) move any local pro-
cesses waiting for this variable from the suspension queue
to the run queue and 3) inform nodes that have requested
the variable value that the definition has been made.

2. Wake processes. Another PCM has executed a definition
of a variable whose value 1s required. For each new defini-
tion value, replace the remote reference with the defined
value. Move any processes waiting for this variable from
the suspension queue to the run queue.

3. Check run queue. If run queue is empty go to step 1 else
go to reduction component.

Figure 4.8: The communications component with the PCM
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4.3 Summary

In this chapter, we have reviewed the different ways in which a parallel execu-
tion of a program can be achieved. We have selected the Program Composi-
tion Notation or PCN to demonstrate our approach to performance measure-
ment. PCN is a parallel programmming notation based on the single concept
of composition. PCN was designed to enable multilingual programming, a
programming methodology in which both PCN and sequential programming
languages are used to represent a parallel algorithm. This approach combines
the clarity of notation of a parallel programming language with the cfficiency
of sequential programming languages.

In the next chapter, we turn our attention to developing measurement
techniques for PCN programs.
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Chapter 5

Profiling Techniques for
Parallel Programs

In Chapter 2, we discussed the advantages of performance measurement
based on execution profiling over performance measurement based on event
logs — the probe effect can be eliminated and the amount of data generated
is not dependent on execution time. In this chapter, we examine how to
make the measurements required for an execution profile. We proceed in two
steps. First we develop a general framework for designing a measurement
process. We then apply this framework within the context of PCN to obtain
a set of measurement techniques for profiling.

5.1 Measurement and Execution Profiling

In an execution profile, measurements are made to determine the frequency
and duration of events in the measurement model. As discussed in Sec-
tion 3.3, the events of interest are program execution, interprocessor commu-
nication and processor idle time. Within the definition of a parallel execution
profile, a considerable degree of freedom exists in selecting exactly which data
is needed and how it s to be measured. In deciding how and what to measure
for an execution profile, one trades off the cost of measurement against its
advantages.

The cost of measurement is determined by the overhead in terms of exe-
cution time and storage space. The execution time of a computation can be
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expressed as:

T'=Tpcy+ Tforeign + Teommunication + Tidle

where T'py is the amount of time spent executing PCN programs, Trores n
is the amount of time spent executing foreign programs, 7commumcatzon is
the amount of time a PCM spends communicating and T, 77, is the amount
of time the PCM spends idle. Tor clarity, the dependence of T on P is not
shown. If T, cnsurement 18 the amount of time spent making and recording
performance measurements during the execution of a program, we define the
execution time overhead of the computation as:

TO = Tmeasurement (5.1)
Tpon + Tecommunication + Tz’dle

To focus on the parallel components of program execution, thoreign is not
included in the overhead calculation. As a result, the values of TO presented
in this chapter are conservative.

Storage overhead is the fraction of the static size of a program devoted
exclusively to profiling. The code size of a program is

S=Spen+ Sforeign +Spoy

where S prpy is the size of the PCN parts of a program, Sfo-rfign is the size

of the foreign programs and S p¢ps is the size of the abstract machine. We
define storage overhead by:

SO = Smeasurement (5.2)
SPCN
where S easurement 15 the amount of additional storage required to make
and record the measurements. Again, to focus on the parallel aspects of a
program, only the storage requirements of the PCN programs are included
in the overhead calculation.

5.1.1 Principles of design

To structure the design of the measurement procedure for execution profiling,
we formulate three design principles. These principles enumerate the design
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tradeoffs that are possible in the measurement process. The design parame-
ters that fall under the control of these principles are: 1) the measurement
model and method of measurement used, 2) the accuracy of the measurement
required and 3) the implementation of the parallel programming system.

5.1.2 Determining how to measure

The cost of measurement depends directly on the measurement model and
state decomposition. These factors determine:

e What is to be measured
¢ The number of measurements made
e How are the measurements are made

For example, an execution profile can be derived from an execution trace.
But the storage overhead of an execution trace is always greater than the
storage overhead incurred when a profile is measured directly. This tradeoff
is an instance of our first design principle.

Design Principle 1 Choose a state decomposition and measurement model
that balances the requirements of the profile with the cost of measurement
associated with the measurement model.

The level of abstraction at which the state decomposition takes place
determines what 1s to be measured and how often measurements are made.
The measurement hierarchy for a PCN computation, shown in Figure 5.1,
ranges from measuring program execution in terms of a whole computation
down to the execution of machine instructions. For each performance index in
a profile, the appropriate decomposition is determined by how a programmer
will use the index and the cost of measurement.

In addition to directing what to measure, Principle 1 also directs how
to measure. That is, what measurement model to use. We identify three
classes of measurement models based on the type of measurements they re-
quire. These are: direct measurement of index values, measurement based
on statistical inference and indirect measurement. We now discuss each of
these alternatives and their applicability to parallel execution profiles.
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Per Computation
Per PCM
Per Module
Per Composition

Per Implication
PCM Instruction/ PCM Operation
Native Instruction

Figure 5.1: The measurement hierarchy for a PCN computation

5.1.3 Direct measurement

The obvious way to evaluate a performance index is to directly measure its
value. A program is instrumented with sensors; each sensor is capable of
observing and recording the value of a performance index. The sensors are
placed in a program in accordance to the mapping from program state to
program code defined by the measurement model.

Implementing software sensors to count event frequency is straightfor-
ward. For each state, a storage location of suitable size is allocated on each
processing node. The minimum size of the storage location needed depends
on the total execution time of the program and the relative frequency of the
event being measured. The instruction sequence that implements the sensor
increments the contents of the storage location by one. If the storage size is
one word, the addition can be performed by a single integer add instruction.
Depending on the computer architecture, fetching the current counter value
and storing the new value requires up to three additional instructions.

Capturing the time duration of an activity on current parallel computers
is more involved. Time duration can not actually be measured. Rather it
is computed by measuring the time at which the activity in question starts
and stops. The accumulated time is stored into a memory location whose
size depends on the accuracy of the time measurement and the maximum
expected total time spent in the activity.

The way time is measured depends on the level of support for timing
provided in the computer system hardware and software. Fortunately, most
parallel computers provide a low overhead mechanism for determining the
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current time, from which lapse time can be computed. Typical of such a
mechanism is the timing facility found on the BBN TC2000 parallel com-
puter. Each processing node on the T(C2000 maintains a 32 bit counter that
is incremented once a microsecond. The current contents of the counter can
be obtained by a library call. The Sequent Symmetry provides similar mech-
anism; however, the counter can be mapped directly into a program’s address
space and accessed via a single move instruction.

Lapse time is computed from counter values by subtracting the value
of the counter at the beginning of an action from the value of the counter
recorded at the end of the action. The result is added to the storage lo-
cation used for recording time duration of action being timed. Typically,
the execution time overhead for computing lapse time is five to ten machine
instructions.

A consideration when directly measuring lapse time is the resolution of the
counter; a processor such as the TC2000 can execute about 30 instructions
within a single microsecond counter tick. In practice, the effects of limited
timer resolution and the overhead for computing lapse time combine to place
a lower bound on the size of an action that can be observed directly. The
minimum execution time of a PCN program falls below this bound and direct
measurement is not feasible.

For our profiling techniques, most frequency measurements are made di-
rectly. The remaining frequency measurements are made using the indirect
methods discussed in Section 5.1.5. For the reasons given above, we cannot
use direct measurement for PCN programs. However, other components in
the execution profile, such as the execution of foreign programs, have indi-
vidual execution times long enough to make direct measurement possible.

5.1.4 Statistical methods (sampling)

Statistical inference provides a second method by which the values of per-
formance indexes can be obtained. In this method, a histogram of states
15 constructed by repeatedly sampling the state of the program. If enough
samples are taken and the sampling interval is independent of program ac-
tivity, the histogram approachs the actual frequency distribution of states.
Furthermore the time spent in each state can be estimated by:
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number of samples in state s

Total execution time =
Total number of samples

Sampling is often used for profiling execution times in sequential [Knu71,
GKMS83] and vector [Cra89] programs. In these, the value of the program
counter is sampled and execution time is determined from the resulting his-
togram of program addresses. Program counter sampling in PCN is com-
plicated by the existence of two program counters: the program counter in
the target architecture and the program counter in the PCM. To determine
the amount of time spent in foreign programs as well as in PCN programs,
two measurements must be made. First the program counter of the target
machine must be examined. Its value determines if the PCM is executing
PCN code, is executing a foreign program, is idle or is communicating. If
the program counter in the target machine is pointing to the reduction com-
ponent of the emulator, a PCN program is being executed and the PCM
program counter 1s sampled to determine its identity.

The applicability of sampling depends on having enough samples to make
the histogram statistically significant. In PCN execution, actions of inter-
est such as guard execution account for a small fraction of total execution
time. This suggests that either high sample rates or long execution times are
required to obtain meaningful information. The nature of multilingual pro-
grams exacerbates this problem since the time spent in the PCN component
of a commputation is often small compared to the time spent executing foreign
programs. Because of these factors, we do not use sampling as a means of
measurement in our profiling techniques.

5.1.5 Indirect methods

There are situations where, due to difficulty in placing sensors or the cost of
measurement, direct measurement of a performance index is not practical.
In these cases, an alternative is to express the value of a performance index
n terms of measurements that are easier to make or less costly to obtain; we
call this an indirect method.

The basis for indirect methods is the use of a performance model to
relate measurements to the value of a performance index. Models can be
deterministic - relating measurements to a single performance index value,
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or probabilistic — relating measurements to a distribution of performance
index values. An example of a probabilistic model is given shortly.

The general structure of a performance mode!l is shown in Figure 5.2.
In addition to the measurements collected during program execution, the
model utilizes two other sources of information: 1) statically determined
characteristics of the program and 2) characteristics of the implementation
of the programming language on a specific parallel computer. As the figure
indicates, different performance indexes can be obtained from a single set of
measurements by using different performance models.

@...

‘ J A
Y YUY Yy ) YYYVYY
Performance Performance
Model 1 Model N

B S S5

! ;

Performance Program Source Architecture Performance
Data Code Parameters Data

Figure 5.2: The form of a performance model

As a clarifying example, we present a indirect method to determine exe-
cution time from execution frequency. For each instruction, iy, in the PCM
instruction set, let n;, be the number of times the instruction executes during
an execution of a program p. The execution time of the program, #, can be
determined by:
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tp = anktik (53)
k

where t;, 1s the execution time of instruction .

If the execution time of each instruction is always the same, then the
model is deterministic and {, has a well defined value. However, for a variety
of reasons, such as dependence on value of the instruction’s arguments, the
contents of the computer’s cache memory or contention for the main memory
bus, an instruction can have a range of execution times. When this is the
case, the execution time of an instruction can be represented by a random
variable whose value is characterized by a probability density function. This
implies ¢, must also be a random variable and the performance model is
probabilistic. A parameter of the distribution of 7,, such as the mean, can
be used to represent the program’s execution time. By taking the expected
value of both sides of Equation 5.3, we see that a single value for execution
time can be obtained by using the average instruction execution time in place
of t'ik .

The profiling techniques we present in this chapter rely extensively on
indirect methods. The recognition of the importance of indirect methods to
parallel profiling is unique to the methods presented in this dissertation.

An obvious concern with indirect methods is the potential for error in the
resulting value of the performance index. In the next section, we address the
issue of accuracy in performance measurement.

5.2 Accuracy in Performance Measurement

It is usually assumed that a high degree of accuracy is required when mea-
suring the performance of parallel programs. However, we argue that the
special demands of parallel systems dictate that some error in measurement
be tolerated and expected. The advantage of this view is that measurement
overhead can be reduced by sacrificing measurement accuracy.

By favoring an execution profile over an event trace, a tradeoff between
accuracy and overhead has already been made. While there is less informa-
tion in a profile, the cost of getting that information is less than that for a
event trace. Going a step further, we argue that a profile is useful even when
there are errors in the values of its performance indexes.
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Profiles are generally not used to answer detailed questions about actual
values of performance indexes. Often we are interested in locating an ex-
tremal value: the processor that has the least amount of work, the program
that took the longest to run, etc. Relative values are also of interest; for
example, program A spent about twice as much time idle as program B. In
either case, errors of 10% or 20% do not drastically affect the course of the
performance analysis. As a case in point, the Cray X-MP has a profiler based
on sampling the program counter only once every 200,000 instructions. Yet
the users of this system still find the profile data useful {Rei90].

Another factor in measurement accuracy is the number of processors used
for a computation. As the number of processors on a parallel computer
increases, it becomes more diflicult to analyze and interpret performance
data with respect to an individual processor. Rather, it is likely the user is
presented with a statistical summary of the performance data and the value
of any one data point becomes less important. In a summary, individual data
values will deviate from the statistic, introducing uncertainty.

Finally, it 1s not always possible to associate a single “correct” value with
a performance index. Instead of having one well-defined value, some per-
formance indexes are best described by a random variable. For example,
in the previous section we showed a situation in which the execution time
of a program could have more than one “correct” value. In this case, the
probabilistic description arose from the use of a model that did not distin-
guish between different instruction execution times. However, uncontrollable
factors such as cache memory contents, contention for shared resources and
external interrupts can all affect the execution time of a program. Because
of this, execution time is often best represented by a random variable with
some probability distribution.

In a profile, this distribution is represented by a statistic such as mean
value. It is possible, however, that no single performance experiment can
ever produce that value and some error will be present. Nomne of this is a
great surprise — almost any measurement process is prone to some degree
of error and measuring program execution is no exception.

For these reasons, we take the approach that measurement accuracy can
and should be sacrificed if something is gained in return. In return for accept-
ing “poisy” performance measurements, one is given a new freedom in how
performance indexes are measured. Hence, the following design principle:
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Design Principle 2 If the cost of a measurement is too high, consider a
less accurate measurement if it can be made at a reduced cost.

5.3 Implementation and Measurement

The first two design principles focus on how the type of measurement affects
the overhead of execution profiling. For the third and final design principle,
we look at the interaction between the implementation of a programming
system and measuring the performance of that system. This interaction is of
particular interest if we accept that observability is a design criteria of the
implementation of PCN.

There is no single way to implement a programming language. Differ-
ent approachs to implementation have advantages and disadvantages with
respect to speed, size, ease of implementation, etc. In addition, varying the
method of implementation can have a significant impact on the performance
measurement. This design tradeoff is represented in the following design
principle.

Design Principle 3 The method used to implement a programming lan-
guage has an impact on the overhead of performance measurement. Consider
this interaction by balancing the advantages of an implementation against the
cost of measurement.

5.3.1 Design goals

To design the measurement process for execution profiling, we have taken a
qualitative approach. Rather than attempting to formulate a single design
equation to be optimized, our design is based on discussions with potential
PCN users and PCN implementors on the relative importance of the costs
and benefits that alternative designs offer [TF].

Invariably, users rank minimizing runtime overhead over all other factors.
Of secondary importance is storage overhead, followed by accuracy. Based
on these considerations, our design goal is to produce an execution profile
with the following characteristics (in order of importance):

e Runtime overhead of less than 3%
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e Storage overhead of less than 10%

e Accuracy within 20%

5.4 Test Programs

Throughout the remainder of this chapter, we will require the use of actual
PCN applications for various measurements. We have selected seven bench-
mark programs for this purpose. The seven programs used are summarized
in Table 5.1.

| Program Name | Task performed |

similarity Search for similar DNA sequences

2PTBVP Solve a two point boundary problem

Composite Solve the shallow water equations on a
sphere projected onto two planer surfaces

gauss Solve a set of linear equations using gaus-
sian elimination

rhombus Solve shallow water equations using con-

trol volume method based on a thomboidal
tiling of a sphere

triangle Solve a simple puzzle by search
FLOW Simulate Taylor voriices in an incompress-
ible fluid

Table 5.1: Test programs used to study measurement overhead

Because PCN is a recent development, a large number of major appli-
cations do not exist. Even so, we were able to obtain several application
programs that solve large scale problems. The programs cover a range of
application domains and parallel programming techniques. The seven pro-
grams were written by six different people, with gauss and triangle having
the same author. We now give a brief description of the programs.

Similarity is a program, written completely in PCN, that matches DNA
sequences. The basic process structure is a single master and a set of work-
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ers. The workers repeatly request sequences from the master, which are then
matched against the worker’s own sequence database with a dynamic pro-
gramming algorithm. To mask the latency between requesting and receiving
work, a single element bounded buffer is used to prefetch the next sequence
from the master. The communications topology is a star, with the master at
the center. There is no communication between the workers. The amount of
parallelism in similarity depends on the number of sequences to be matched.
In actual use there are thousands of sequences matched; for our tests, a small
number of sequences are matched repeatly.

2PTBVP is solves a two point boundary value problem. It is written
in PCN and Fortran. The parallelism in 2PTBVP is obtained by parti-
tioning the problem into a set of subproblems, solving the subproblems and
combining the results. The communications structure is a binary tree with
computation occurring at each node. The performance of this program is hm-
ited by the decreasing amount of work available as the locus of computation
moves up the tree.

Composite, written in PCN and C, solves a set of partial differential
equations on a sphere. These equations, known as the shallow water equa-
tions, are a simple model of the earth’s climate. To handle the singularities
in the polar coordinate systems, the north and south poles are solved on a
plane, and the results interpolated back onto the sphere. There are three dif-
ferent communication structures used in Composite. Grid cells on the sphere
have nearest neighbor communications. At the poles, the interpolation from
the plane to the sphere results in a communications structure which is not
nearest neighbor. Finally, there is a global broadcast which is implemented
by connecting grid points together in a spanning tree. The amount of paral-
lelism in the program is determined by the partitioning of the grids.

(Gauss solves a set of linear equations using gaussian elimination. The
input to gauss is a randomly generated set of equations that are guaranteed
to be solvable; the size of the system is specified by an input parameter.
Gauss i1s written completely in PCNand uses mutable variable and sequen-
tial composition extensively. Each row in the input matrix is encapsulated
by a process. Consecutive rows are mapped onto adjacent processors in a
virtual ring topology. In the elimination phase of the algorithm; the diag-
onal elements of the input matrix are broadcast to all other row processes
by a shared definitional variable. The same method is used to propagate
solution values during the back propagation phase. Most of the computation
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time in gauss 1s spent in the double precision vector calculation: ax -+ y. The
amount of parallelism in gauss depends on the size of the system of equations
being solved. However, its performance is limited by the algorithm since in
both the elimination and back substitution phases. the number of rows to be
processed decreases as the algorithm progresses.

Rhombus is another solution to the shallow water equations. However,
this program solves the equations by an icosahedral tiling of the sphere.
Written in PCN and Fortran, thombus is designed to run on 13 processors.
Each data partition is encapsulated by a PCN process and the computa-
tion is locally synchronized by the availability of data from the neighboring
rhombuses. All communication is nearest neighbor.

Triangle is written in PCN and solves a simple puzzle by breadth first
search. The basic structure and characteristics of triangle are very similar to
that of similarity, a master/worker process structure in a star topology.

FLOW is a multilingual PCN and Fortran program to simulate Taylor
vortices in an incompressible fluid using the three dimensional Navier-Stokes
equations. FLOW is the subject of a case study in Chapter 8. The simu-
lation is based on a grid, with parallel computation taking place on a set of
grid points called a cell. Each cell is encapsulated in a process and the pro-
cess mapped onto a processor. The most frequent type of communications
1s nearest neighbor in the grid space, implemented by a sharing a defini-
tional variable between adjacent cells. There is also a global communica-
tions component which is implemented by a combination of merger processes
and shared definitional variables. The amount of parallelism in FLOW is
determined by the size of the grid being used for the simulation.

5.5 Measuring Event Frequencies

In this section, we develop methods for determining the frequency of events
which occur during the execution of a PCN program. The sensor used to
measure event frequency is a counter. The number of counters used and the
frequency of their update determines the measurement overhead for execution
profiling.

The objective of our measurements is to determine the number of times
each PCM instruction in a composition is executed. From this, higher level
frequency metrics can be derived. Examples of such metrics include the
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number of times a program is used, how often a specific implication guard
fails and how many times a program is called from a specific implication.

Although the user writes a program i PCN, it is core PCN that the
PCM executes. Our measurement techniques are limited to core PCN. The
execution frequency of a PCN program is found by summing the frequencys
of the core PCN programs that implement it. This means that for any PCN
program, we need only know how to measure parallel compositions, choice
compositions, assignments, definitions and foreign program calls. We address
each of these in turn.

5.5.1 Frequency measurement of parallel composition

A parallel composition appears either by itself or as the body of an im-
plication in a choice composition. The operations performed in a parallel
composition are limited to: 1) start the execution of a PCN program, 2)
perform assignments and definitions, 3) call foreign programs and 4) allocate
new data structures on the PCM heap.

The basic structure of the PCM code generated for a parallel composition
is shown in Figure 5.3. A new PCN computation is started by executing a
fork instruction which allocates a process record and appends it onto the
active queue. The arguments to the process are allocated on the heap by a
sequence of put_value instructions, which also place references to the argu-
ments in the process record. After all the programs in the composition have
been forked, the execution of the parallel composition terminates with a halt
instruction, which dequeues the current process record.

The fork and put_value instructions are only used to call PCN pro-
grams. If the program is written in a foreign language, then call_foreign
and put_foreign instructions are used instead. Frequency measurement of
foreign programs is discussed in Section 5.5.12. Special instructions are also
used to implement definition and assignment of variables. This is discussed
m Section 3.5.11.

The number of times a parallel composition executes can be measured
by counting the number of times the halt instruction in the composition is
used. The operations in a parallel composition are performed in sequence.
Thus if the number of times each halt instruction executes is known, then
the number of times each instruction in the parallel composition executes is
also known. The actions performed by the PCM during the execution of a
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fork
put_value A,

| put-va.h-Je Al n, |

fork
put.value A,

put_value Ay,
halt

Figure 5.3: Basic structure of the PCM code for a parallel composition

parallel composition are completely determined by the instruction sequence
executed in that the behavior of the instructions does not depend on the
state of the PCM.

We now consider an optimization to the implementation of parallel com-
position and its impact on the measurement process. Tail recursion opti-
mization is a technique that improves the performance of the last fork in a
parallel composition by having it reuse the process record from the currently
executing composition. This eliminates the cost of enquening and later de-
queueing the program on the active queue. In addition, the rate of memory
consumption is reduced by reusing the process record.

Tail recursion optimization only applies to parallel compositions that call
at least one PCN program. To implement the tail recursion optimization,
a recurse instruction is used instead of the normal fork --- halt instruction
sequence which terminates such a composition. The recurse instruction sets
the program counter to the program specified in the instruction’s argument,
executing the new program with the current contents of the argument regis-
ters.

As defined, there is a problem with the recurse instruction: a program
can recurse infinitely, violating the fairness requirement of parallel execution.
To prevent this, the PCM has a time slice register which is set to a system
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defined value whenever a process record is taken from the front of the active
queue. Every time a recurse instruction executes, the contents of the time
slice register are decremented. If the time slice is not zero, the execution
of the recurse instruction proceeds as described in the previous paragraph.
However, if the contents of the time slice register are zero, the recurse in-
struction does not execute the program. Rather, the argument registers of
the PCM are copied into the current process record and the process record
is enqueued on the active queue. With the time slice register, tail recur-
sion optimization can be used and still guarantee that every runable PCN
composition will still have a chance to execute.

These alternative behaviors cause the problem from the perspective of
measurement. Depending on the value of the time slice register, the behavior
the PCM will be radically different during execution of a parallel composi-
tion. Using Principle 3 is not feasible because tail recursion optimization is
far too important to the performance of PCN not to use. Looking to Prin-
ciple 1, we observe that altering the measurement to record how many times
each behavior occurs would result in a increase in space overhead of 100% in
the worst case.

The final option is to apply Principle 2 and not distinguish between the
two cases in the recurse instruction. In the current PCM implementation,
the initial timeslice value is fifty. Thus at most 2% of the executions of a
recurse instruction will require enqueueing and dequeueing a process record.
In practice, guard suspension and execulion of halt instructions often reset
the time slice register before it reaches zero. For example, in the test program
gauss, recurse instructions are never executed with a timeslice value of zero.
Based on the frequency of use of the non-tail recursive case, the doubling
of measurement overhead is not justified. Thus, frequency measurements of
parallel compositions count the number of time a halt or a recurse instruction
is executed.

5.5.2 Frequency measurement of choice composition

We now turn our attention to the execution of a choice composition. In ad-
dition providing if/then type conditional execution, the execution of choice
composition enforces the synchronization requirements between concurrently
executing PCN programs. Recall from Section 4.1.3 that a choice composi-
tion 1s constructed from one or more implications:
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{? testy 1, ... test; ,, —> {|| programy 1, ... programy,, },

test,_yq, ... test,_1 4., —> {|| program,_y 1, ... program,_y,. .},
default —> {|| program,, 1, ... program, .}

}

Each implication has a guard, consisting of a sequence of guard tests,
and a body, consisting of a single parallel composition. The guard of the
last implication in a choice composition must contain a single default test.
Corresponding to its struclure, the execution of a choice composition takes
place in two phases: guard execution and body execution. Since the body
of an implication is always a parallel composition, the techniques of the
preceding section apply. In this section, we focus on measuring the actions
taken during guard execution. To understand the tradeofls that can be made
in measurement, it is first necessary to understand how guard evaluation is
implemented.

5.5.3 Implementation of guard evaluation

The semantics of guard evaluation specify that each test within the guard of
an 1mplication is tried sequentially in the order in which the tests appear in
the program text. However, with the exception of the default implication,
which must be tried last, the guards themselves can be evaluated in any
order. In fact, because guard tests do not alter the state of the computation,
more than one guard can be evaluated simultaneously.

These semantics allow two different strategies for implementing guard
execution: linear search and decision tree. As we will see, the implementation
used has a direct effect on the measurement of guard execution.

Linear search compilation is the most direct method for implementing an
implication guard. In this approach, an implication is selected and its guard
is evaluated. If every test in the guard evaluates to true, then the body
of that implication is executed and the execution of the choice composition
terminates. On the other hand, if any test in the guard fails or suspends,
another implication is selected and the process repeats. Linear search opti-
mizes guard execution by trying the next implication as soon as the first test
in a guard fails.

When the selection of implications is exhausted, the defanlt implication
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is executed. H all the guards fail, then the default succeeds and its body is
executed. If at least one guard test suspends, the default test appends the
process record onto the suspension queue to be tried again later.

A flow diagram of this scheme is shown is Figure 5.4. Each circle rep-
resents a guard test and arrows indicate possible flows of control. Guard
execution starts with the first test of the first clause, indicated by the arrow
in the upper left corner of the figure. If a test succeeds, execution continues
by following the arrow to the right. If a test fails, the downward path is
followed and the guard of the next clause is tried. With the exception of the
default guard, which is tried last, the order in which the guards are evaluated
18 not necessarily the order they appear in the program text. If the default
guard fails, the search is repeated using the algorithm of Figure 4.7.

Test 1 Test2 Test N

Imphcatlon 1

Imphcatlon 2

@® —» Default

|

|
|

L

Figure 5.4: Flow graph of linear search implementation of guard evaluation

The PCM needs to support three operations to sequence the flow of
control through the guards tests:
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e jump to first test of the first clause
e cxecute the next test
e jump to the first test of the next clause

The first two operations are normal sequencing operations within the PCM.
The first happens whenever a process record is taken from the active queue.
The second is the normal next instruction sequencing that occurs as part
of instruction execution. Jumping to the first test of the next clause is
implemented by the try instruction, which stores the address specified in
its argument failure register in the PCM. If a test fails, the contents of the
failure register are copied into the program counter and execution continues.

While simple to implement, the linear search algorithm can waste time
trying tests that can never succeed or are redundant. For example, consider
the code fragment in Figure 5.5.

p(x)

(7 x 7= [137] —> astul(),
X 7= [nbu] N b_StUﬂ:(),
X == [] —>> C_Stu'ﬂ:();
default —> skip()

}

Figure 5.5: A PCN program in which linear search executes tests that are
redundant or tests that cannot succeed

The steps followed in a linear search implementation are shown in Fig-
ure 5.6. Note that the argument x is tested twice to see if it is a list. In
addition, consider the situation where x is defined as a list whose head is
undefined. In this case, the test in the third implication is executed, even
though it is already known that it must fail.

Decision tree compilation [Tay89] is method of implementing guard eval-
uation that eliminates this type of inefliciency. In a decision tree implemen-
tation, tests in two or more guards are combined into a single tesi. The effect
is to evaluate the guards in parallel. To combine type or equality tests, a
combined test whose action resembles a case statement is used.
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Implication 1. Check the value of x. If it is not defined to
be a list, go to Step 3.

Implication la. Check the head of the list. If it is not
defined to be the constant a, go to Step 3. Otherwise add
a_stuff() to the active queue and terminate.

Implication 2. Check the value of x. If it 1s not defined to
be a list, go to Step 5.

Implication 2a. Check the head of the list. If it is not
defined to be the constant b, go to Step 5. Otherwise add
b_stuff() to the active queue and terminate.

. Implication 3. Check the value of x. If it is defined to

be the empty list add cstuff() to the active queue and
terminate. Otherwise go to Step 6.

Default. If any test could not proceed because it required
a value that was undefined, place the choice composition
back onto active queue and terminate. Otherwise, just
terminate.

Figure 5.6: Linear search implementation of sample program

80




The control structure that results from combining tests in different im-
plications is a decision tree. At each leaf of the tree a single non-default
implication is identified. Since it is possible to identify a single implication
without trying all the tests in the guard, any remaining tests at the leaf are
tried as in a linear search implementation. If a test fails at any point in the
decision tree, the default implication is executed.

A general flow graph of the decision tree approach to guard execution is
shown in Figure 3.7. The dots indicate decision points while the triangles
indicate a subtree. The tests remaining after a single implication is identified
are represented by the rectangles at the leaf of the tree. Note that any point
during execution, control can jump to the default case.

N

»@) Default

Implication N

|
Implication N-2  Implication N-1

Figure 5.7: Flow graph of decision tree implementation of guard execution

Figure 5.8 shows the steps followed in a decision tree implementation
of the code in Figure 5.5. The redundant tests on the first argument are
eliminated by combining the two list tests and the empty list test into a single
multiway branch whose target depends on the type of the first argument.

A decision tree implementation reduces the execution time of an implica-
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[u—y

Test type. Check the value of x. If it is an empty list go to
Step 3. If it 1s a list go to Step 2. Otherwise go to Step 4.

2. Test head. We know the first argument is a list; extract
the head of the list and check its value. If it the constant
a or b add astuff() or b_stuff() respectively to the active
quene and terminate. Otherwise go to Step 4.

3. Check null. Add c_stuff() to the active queue and termi-
nate.

4. Default. H any argument was not defined, place process
record back onto active queue. Then terminate execution.

Figure 5.8: Decision tree implementation of sample program

tion by reducing the number of guard tests which need to be tried. However,
the sequencing operations in decision tree compilation are more complex
than in linear search and correspondingly, the cost of sequencing through
these tests is greater than in linear search. The control operations required
for a decision tree implementation are:

e jump to first test of the first clause
s execute the next test

e based on data type or value, compute an index into a jump table, and
jump to that location

In addition to the normal sequencing operations within the PCM, two
additional instructions are used in decision tree compilation. These instruc-
tions are: switch_on_type and switch_on_value. The switch_on_type instruc-
tion branches to an address based on the data type of its argument. The
switch_on_value instruction uses a hash table to map the value of its ar-
gument into an address to branch to. Clearly, the amount of computation
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required to implement the switch instructions will be higher than that re-
quired to implement the try instruction.

Because of the complexity and overhead associated with the switch in-
structions, the most efficient execution is obtained by combining both com-
pilation methods, using the decision tree method only to the extent that
the decrease in execution time from reducing the number of redundant tests
executed offsets the increased cost of the switch instructions [TF88].

5.5.4 Profiling guard evaluation

With an understanding of how the guards in a choice composition are im-
plemented, we turn to the problem of profiling their execution. Qur goal
is to be able to measure the operations which have been performed during
the execution of a choice composition. A second objective is to investigate
the impact which the two different guard implementation techniques have on
measurement. Understanding the relationship between implementation and
measurement is important if performance observability is to be included as
factor in the tradeoffs made when designing a PCN implementation.

Qur initial approach to measurement is to view the execution of a choice
composition as a unit rather than an implication at a time. From this view,
the frequency profile of a choice composition determines the number of times
each execution path in Figures 5.4 or 5.7 is taken. Since decision trce compi-
lation takes a composition wide view of guard execution, starting with this
high level view of a profile facilitates a comparison of the two implementation
methods.

As we see from the flow graphs, there are many different execution paths
that can be taken during guard execution. The number and length of these
paths determines on the execution time and storage space overhead of mea-
surement.

Consider a linear search implementation of a choice composition, ', with
¢(C') implications: fy,...f). Each implication, /i, has a guard consisting
of go(Iy) guard tests. One storage location is required to record the use
of each path. Therefore, the amount of storage needed, sls (C)

; . measurement®
depends on the total number of different execution paths. For implication
k, the number of paths resulting in successful guard execution depends on

the number of failure paths in implications 1 through & — 1. The number of
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failure paths out of implication k& are the product of the number of failure
paths into f; and the number of guard tests in I;. Thus we have:

l HC) H(C) k—1
Srieasurement(c) = !H gc(Ix) + (Z H QC(IJ))] (5.4)
k=1

k=1 ;=1
where §2;, is the amount of storage required to record the number of times a
single path is used and F=1ifj <.

By recording the identity of each guard test that fails, the execution path
through Figure 5.4 can be determined. Therefore, ngeasurement’ depends
on the number of tests that have failed and the number of paths executed. If
a flow graph exits on implication f; there must have been k — 1 test failures.
Thus for a single execution of a composition, the time spent in measurement
is:

T = kO, (5.5)

where @, is a the amount of time 1t takes to record the occurrence of a guard
test failure.

Now let us look at decision tree compilation. Assume that the decision
tree is applied to the extent that each leaf of the tree points to a single non-
default implication. The number of nodes in the tree, n(C'}, is determined by
the number of internal nodes, n,(C'), and the number of leaf nodes. Because
the default implication is not a leaf node,

easurement( C, k)

n(C) = ni(C) +#(C) — 1

Since the default implication 1s accessible from each decision point as well
as after each test at a leaf node, the number of paths in a decision tree
implementation is determined by the number of nodes in the tree and the
number of guard tests that occur at each leaf. Therefore, the storage overhead
for measuring the path taken in a decision tree implementation is:

H{OY=1
ngeasurement(c) =Dy [2 (n,-(C) + Zk: A(Ik)) +4(C) - 1} (5.6)

where A({;) is the number of tests remaining at the leaf for implication I
and {4 is the space required to record the occurrence of a single path. Since
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the storage location serves the same purpose in Equations 5.4 and 5.6, it is
reasonable to assume that ;. = 2 ;. We will no longer distinguish between
the two and use {2 instead.

The expression for the runtime overhead for recording a path in a decision
tree implementation is very simple. Because of its structure, the path taken
through the decision tree can be completely deltermined by knowing the single
guard test that failed. Thus the runtime overhead is a constant:

T (C) =0y (5.7)

measurement

5.5.5 A comparison of the storage overhead for linear
search and decision tree implementations

Let us now compare linear search and decision tree implementations in terms
of measurement overhead. We start with the space requirements for measure-
ment. In the worst case a decision tree can eliminate only one implication
per level. The number of internal nodes in this tree will be (C') — 1 and
n(C) = 2i(C) — 2. Since M) < ¢(Ix) we can bound the storage require-
ment by:

H{C)—1
Sg:,teasurement <5 (5i(0) —o+12 kE Q(Ik)) (5.8)
=1

Knowing that [y is the default implication and therefore g(fic)) = 1,
we can compare the space requirement for the two implementation methods

by:

{)-1 () —1 k—1
6(S)y=Q154(C)—5—-2 [ gclle)+ > (zg(fk)— ch(lj))] (5.9)
k=1 k=1 g=1

When the value of Equation 5.9 is negative, decision tree compilation will
require less space to store an execution profile than a linear search implemen-
tation. This equation is dominated by the product terms and if a guard has
more than one test, decision tree compilation will require less storage space
for measurement than linear search. While the exact form of a program 1s
needed to make a concrete statement, an examination of the 2300 different
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implications in the test programs shows that 38% have two or more tests in
their guards. From this, we can generally expect Equation 5.9 to be negative.

A true comparison of linear search and decision tree implementations can
be made by computing the storage overheads for the programs of Table 5.1.
Assuming that € is one heap cell, Equations 5.4 and 5.6 are evaluated for
each choice composition in the test programs. The value of Sp¢rprfor a linear
search implementation is determined by compiling the programs. Obtaining
S peyy for a decision tree implementation is more difficult because a decision
tree compiler does not exist for PCN. While a decision tree implementa-
tion generates fewer instructions per choice composition, the inclusion of a
jump table increases the size of the individual instructions. Therefore, it is
reasonable to use Sp¢yy from the linear search compiler as an approxima-
tion for the decision tree value. We can now evaluate Equation 5.2 for both
implementations. The results are found in Figure 5.9.

Linear Search msm

Decision Tree gz==

unacceptable
triangle S—u
rhombus /-
gauss |
composite :
2PTBVP

Similari t’y [y

T l | T | | |
40 50 60 Y0 80 80 100

Percent space overhead

Figure 5.9: Storage overhead required to profile guard evaluation on the basis
of execution path.
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The minimum storage overhead for linear search is 10% while the largest
shown is 33%. In Figure 5.9, the linear search data does not include the
execution paths through three of the programs in FLOW. These three pro-
grams have a large number of paths and including them increases storage
overhead for FLOW to over 180,000%. Thus a real program can have a
storage overhead that is so high as to make execution path measurement
infeasible.

The storage overhead for decision tree compilation ranges from 7.4% to
15%. The number of paths in FLOW are reduced to 1647 total. In every
case, using decision tree compilation reduces the storage overhead of per-
formance measurement. These results support our claim that decision tree
compilation will in general require less storage space for an execution profile.

5.5.6 Comparing the runtime overhead of linear search
and decision tree implementations

The total time spent recording the execution path through a choice composi-
tion will alway be less in a decision tree implementation than in a linear search
implementation. Because it is easier to record the identity of path through
a decision tree, © j < 0, and Equation 5.5 will bound Equation 5.7. How-
ever, since decision tree compilation can reduce the total execution time of
the composition, it is not necessarily the case that the percentage of runtime
overhead will be less.

To apply Equations 5.5 and 5.7, the values of @y and O j must be
known. Measurement from an appropriately instrumented PCM is the only
way to obtain meaningful values for these. Since the me;surements made to
Tmt

easurement and easurement & well,

we measure 1, cncurement instead of applying the equations.

determine © Is and © dt determine Tfﬁ

To obtain the measurement for execution time overhead, the test pro-
grams are executed on a single processor of a Sequent Symmetry, a shared
memory parallel computer based on the Intel 1386 microprocessor. Because
the execution is on one processor, both Toommunication @0d Ty, are zero.
By executing each program with and without measurement, the values of
T easurement gnd T'pcyy are obtained. Using Equation 5.1, the results
summarized in Figure 5.10 are computed.

For the linear search case, the PCM was modified to keep a list of the
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guard tests that failed. When the flow graph is exited, this path is used as
an index into a hash table and the contents of the storage location allocated
for the path is incremented. Runtime overheads range from 0.87% to 3.1%.

Because a decision tree implementation does not exist, it is not possible to
obtain actual decision tree overhead data. As an approximation, we recorded
only the exits from a linear search flow graph. Since the objective of a
decision tree implementation is to reduce execution time, it follows that this
approximation provides a lower bound. The measured values range from

0.31% to 1.7%.

Linear Search s

Decision Tree

unaceeptable
—

FLOW B
triangle M
rhombus [
gauss
composite -
2PTBVP punm

similarity

I I : ; 1 T }
0 1 2 3 4 3 6 7 8 9 10

Percent execution time overhead

Figure 5.10: Runtime overhead for measurement of execution paths

The difference in runtime overhead between a linear search and decision
tree implementation is largest for the programs triangle and similarity, with a
overhead ratio of 5.5 and 10 respectively. In both of these programs, a choice
composition with 5 to 16 implications is heavily used. These compositions are
considered large; a choice with 5 implications is in the 99th percentile with
respect to cholce composition size. In addition, these choice compositions
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select a implication based on an equality test and the decision tree implication
is very effective in these cases. This explains the high overhead ratios for
similarity and triangle.

Finally we note that the values of @7, and © j; can be computed from
the runtime overheads, the number of times each path was taken and Equa-
tions 5.5 and 5.7. We find that @y = 1.54 x 107° seconds and Oy =
4.28 x 107 seconds. As we expected, 0 < 9.

An interesting observation about the decision tree implementatiion can
be made at this point. It has been our experience that obtaining the per-
formance of a program is more difficult in an optimized system than in an
unoptimized system. Optimization tends to make it harder to get at the de-
tails of execution. Happily, the reverse is true for an implementation based
on decision trees. Because of the reduced number of alternative paths in
guard evalnation, the overhead in measuring guard execution is reduced.

We have shown how the implementation of choice composition has a dra-
matic impact on the cost of execution profiling. Even if there were no ad-
vantages, Principle 3 would dictate that a decision tree implementation be
used. However, the implementation complexity has precluded its use in PCN
to date. We expect that as the PCN system matures, a decision tree imple-
mentation will be undertaken.

5.5.7 Reducing the measurement overhead

The overhead for linear search shown in Figures 5.9 and 5.10 exceeds our
design goals. In this section, we investigate ways in which these costs can be
reduced. Given that linear search will always be a component of any PCN
implementation, such reductions are important. By applying Principles 1
and 2, it is possible to reduce the overhead of measuring a linear search
implementation to that of decision tree compilation and less.

The decision tree implementation technique views choice composition as
a unit; as such, it 1s amenable to producing a profile based on execution
paths. In contrast, the linear search technique views a choice composition as
a collection of implications where each implication is compiled as a separate
entity. For this reason, a composition wide view of execution is costly to
obtain.

A more appropriate approach for linear search is to measure the exe-
cution path within each implication separately. For each implication in a
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choice composition, the number of times each guard test fails is measured.
We call this the implication local execution path. Although the number of
PCM instructions executed is still determined exactly, information about
how 1mplications interact is lost.

The space required for measuring the execution path within an implica-
tion depends on the number of tests in the implication guard: one storage
location is required for each test. Given that implication /) is the default
implication and has single test, the space overhead is:

, {(C)-1
S?&Leasurement =0 (1 +iC) + Z gC(I’C)) (5.10)
k=1
Comparing Equations 5.6 and 5.10 we obtain:
" {0)-1
555 =2m 423 (2MI) - goll) - 2 (5.11)
k=1

where the value of 6(S s ) is negative whenever the implication local execution
path through a linear search implementation requires more storage space than
recording the execution path through a decision tree implementation. While

{o)-1 i(C)--1

D M) < Y gty
k=1 k=1

always holds, Ei(fl}_l g{I.,) must be less than twice the size of Zi(fl)_l A(ly)

in order for Sirszeasurement < ng;asurement‘ Qur experiments show that
this condition does not hold in practice.

Returning to programs of Table 5.1, we use Equations 5.10 and 5.2 to
compute the storage overhead for implication local execution paths. These
results are shown in Figure 5.11. The space overhead ranges from 8.2% to
16% and is within 14% of SO in all cases.

The runtime overhead depends on the number of implications tried and
Fquation 5.5 still holds. However, less work is required to identify a path
within an implication than within a composition. Consequently, we find thai

}3 < OlS'
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Figure 5.11: Storage overhead for measuring implication local execution path

5.5.8 Statistical models of guard execution

Although we were able to reduce the measurement overhead in a linear search
implementation, the level of overhead still exceeds thal of a decision tree im-
plementation as well as the design goals. A further reduction in measurement
overhead can be obtained by simplifying the siructure of the linear search
flow graph and applying Principle 2.

Such a simplified graph is shown in Figure 5.12. This graph is obtained
from the one in Figure 5.4 by collapsing all the guard test nodes within an
implication into a single node. The collapsed node appears as a rectangle in
the flow graph of Figure 5.12. The last implication has only a single default
test and it remains a circle. All arcs pointing to the right represent the flow
followed by successful guard execution, while the downward pointing arcs
indicate that a guard test in an implication has failed. The guard test that
causes the failure is not observable from the simplified flow graph.

Extending the idea of implication local paths to the simplified graph, the
measurement procedure consists of determining the number of times each
arc in Figure 5.12 is traversed. In other words, the measurements count the
number of successes and failures that occur in each implication guard.

As with the previous measurements, 57, space required

easurement? the

91



Implication 1

[
" TImplication 2

!
J» Default

Figure 5.12: A simplified flow graph for linear search implementation of guard
evaluation

for measuring the execution path through the simplified flow graph. is depen-
dent on the number of paths through the flow graph. This would lead one to
the conclusion that the space overhead for measurements based on 5.12 is:

53

measuremen

;= 204(C)

However, as a result of the structure of the simplified flow graph, the number
of traversals of some arcs can be deduced from other arcs. Storage locations
do not need to be allocated for those arcs whose traversal count can be
deduced.

For implication I of choice C let v&(k) and vl(k) be the number of
traversals of the right pointing (successful guard execution) and down point-
ing (failed guard execution) arcs respectively. Also let v4(0) be the number of
traversals of the entry arc in the upper left hand corner of the flow graph. An
examination of the flow graph of Figure 3.12 yields the following recurrence:

vh(iC) = 1) = vl((C)) +ve(i(C)) (5.12)
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(i —1) = wgli)+vE() (5.13)
Ve (0) = wa(1) 4 vh(1) = v o) (5.14)

From this recurrence, we see that if for every implication the number of
successful guard executions is known, the number of failed executions can be
determined and vice versa. In either case, both the number of successful and
unsuccessful executions of the default test must be available.

However, if the number of procedure entries is known, only v&(:(C))
or V(j;(i(C)) is needed. not both. The value of v&(0) can be computed by
summing the number of invocations of all parallel compositions that call C.
Based on this analysis, we see that the space overhead for the measurement
based on the simplified flow graph is actually:
¢ = u(C) (5.15)

8
Mmeasuremen

Comparing Equation 5.15 with Equation 5.6, we see that

Sineasurement < S;irfeasurement

This fact is borne out by Figure 5.13, which shows the storage overhead in
the test programs for measurement based on a simplified flow graph. The
overhead measured ranges from 3.8% to 6.3%. This falls within the range of
storage overhead in the design goals for the measurement procedure.

From the perspective of storage overhead, it does not matter if the num-
ber of guard failures or guard successes are measured. However, the choice of
measurement does make a difference when runtime overhead is being deter-
mined. If failures are measured, then the runtime overhead for the simplified
graph is the same as that in Equation 5.5. One failure must be recorded for
each implication tried. Alternatively, if successes are recorded, only one mea-
surement is made per traversal of the flow graph. In this case the execution
time overhead is a constant:

T heasurement = 0, (5.16)

With the simplified model, we have achieved our goal in making the
measurement overhead of linear search as low as for decision tree compilation.
The measured runtime overhead for the test programs, which ranges from
0.94% to 1.7%, is shown in Figure 5.14. The highest runtime overhead is
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Figure 5.13: Space overhead with measurements based on a simplified flow
graph

1.7% for the thombus program. We recall that the overhead statistics are
computed only from the PCN components of the multilingnal programs.
When the sequential components are included, the runtime overhead will
decrease by at least one order of magnitude,

5.5.9 Accuracy of the simplified performance model

In the previous section, a method was developed to reduce the measurement
overhead of linear search to that of a decision tree implementation. This
method also limits the accuracy with which the measurement can be made.
In this section, we address the issue of measurement accuracy.

The degree to which a measurement process based on a simplified flow
graph will be in error depends on two factors: 1) the number of tests executed
in guards that fail compared to the total number of guard tesis executed
overall and 2) the manner in which we account for activity within a guard
that fails. We investigate each of these factors in turn.

The first consideration is how much error is present in a measurement
based on the simplified flow graph. If the total number of guard tests ex-
ecuted by a program is g, the number of tests executed in a guard that
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Figure 5.14: Time overhead with measurements based on a simplified flow
graph

eventually fails is g; and the number of tests assumed executed in failed
guards is gy, then the measurement error is defined by:
95— 4s

Gt

Error =

Assume that the &1 test of an implication guard fails. If &£ < (C) — &,
the maximum possible measurement error is obtained by assuming that the
first guard test failed; if £ > ¢(C) — k, the maximum measurement error is
obtained by assuming that the last guard test has failed. Using these values
for the number of tests executed in a failed guard, the maximum possible
measurement error for a computation can be determined.

To obtain the maximum measurement error for the test programs us-
ing the simplified flow graph, the per implication execution path must be
measured. Because guard failure is affected by the availability of data, the
programs must be run in parallel for the results to be meaningful. This is ac-
complished by a specially instrumented PCM executing on a shared memory
parallel. Each PCM in the computation shares a small amount of memory
with a monitor process which executes concurrently on another processor.
For every guard failure, an integer that identifies the test that failed is writ-
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ten into the shared memory. The monitor program observes the data value
and collects the test failure statistics. Interfacing to the monitor process in-
creases the size of the PCM by 0.2% and increases the execution time of the
prograrns by less than 2%. With the PCM /monitor pair, guard failures can
be measured with minimum impact on the behavior of the program.

The maximum error calculation was performed for the seven test pro-
grams and is summarized in Figure 5.15. The maximum error of 47%, which
occurs in FLOW, exceeds the design goal of 20% accuracy. In the next
section, we will describe a technique to reduce the measurement error.
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Figure 5.15: Maximum possible error in guard execution

5.5.10 Reducing the measurement error in the sim-
plified flow graph

The amount of error in a measurement based on the simplified flow graph is
determined by the method used to account for activity within failed implica-
tion guards. Generally speaking, less then 50% of the guard tests executed
occur in a failing guard. As illustrated in Figure 5.15, this limits the max-
imum error to less 30% as well. In this section, we investigate a method to
reduce the measurement error to under 20%.
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One approach to reducing measurement error is to take advantage of
static program analysis or ¢ priori knowledge of program functionality or
input. For example, if the frequency of successful execution is known for all
of the implications in a choice composition, the compiler can arrange to try
the most successful guards first. This reduces the number of tests executed
in a failed guard and consequently reduces the measurement error. This type
of improvement is especially interesting because the frequency of successful
execution is a performance index included in the execution profile — profiling
can be used by the compiler to improve the accuracy of profiling. However,
because of its reliance on prior knowledge, we consider a different approach.

The approach we now present reduces the measurement error by using
a probabilistic model of guard behavior to make an guess at which test has
failed. In order for this model to be generally applicable, it cannot rely
on any information about the program other than the instruction sequence
generated by the compiler and properties of PCN in general.

In the simplified flow graph model of Figure 5.12, the number of times a
guard fails is known. If #4(k) is the number of times implication I, fails and
Ve (1) (7) is the number of times the j' guard test in I, fails then:

,f gc(Ii) ‘
vi(k) = 7 voo(r)(J)

i=1

Our objective is to devise a function #y.(r,)(k, j) to approximate the actual
value of vy.(1,)(7).

For a single failed execution of [, the test that caused the failure is
represented by an integer valued random variable g. The value of g ranges
from 1 to go (1) and 1s described by the discrete probability density function
fz(g), where g is the parameter of the function. In reality, the exact form
of fg(g) depends on the program in which the guard occurs and the values
of the arguments that the implication will process. However, in order to
be practical as a measurement tool, we construct an approximation of the
density function based solely on the structure of the guard and a general
characterization of PCN execution.

To obtain a density function for guard failure, we characterize the behav-
1or of the each guard test in PCN. By combining the characterizations of the
tests in a guard, the density function for the entire guard is determined. Qur
method relies on two assumptions:
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o The behavior of any use of a test in a guard can be characterized in
terms of the behavior of that test in all guards.

o The behavior of tests in a guard is independent.

The behavior of a test is characterized by the probability that the test fails
whenever it occurs within a guard that fails. In other words, the behavior of
a guard test in any PCN program is determined by the conditional failure
probability:

P{test g makes I fail|f fails}

Using the assumption that the conditional {ailure probabilities for guard
tests are independent, the probability that a guard fails on the j'M test is
equal to the probability that test 7 — 1 executes successfully and test 7 fails.
Thus we define fa(g) by:

g—1

felg) = (H(l — P{ith test fails)], fa,ils})) P{g*? test fails|7, fails)
i=1
(5.17)
Using this density function, an estimate of the distribution of test failures
can be obtained by:

':'gc(lk)(kag) = fg(g) * V(J;(k) (5.18)

A few comments on the estimation process are in order. The assump-
tion that the conditional failure probabilities of the tests in a guard are
independent is not always true. In particular, guard tests used to extract
elements from structured data are likely to be dependent on one another.
Equation 5.17 can be extended to correctly handle such cases. However,
as we shall see shortly, the equation produces adequate results without the
additional complication of introducing dependent probabilities.

The other important assumption we are making is that a single failure
probability can characterize the behavior of any test in any implication guard.
While undoubtedly there are circumstances where this assumption will not,
hold, we find that many uses of tests are stereotypical. This makes their
behavior predictable validating our assumption. Loops are a primary source
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of predictability. In addition, many PCN programs are constructed using a
small number of programming techniques [TF89]. This adds to the ability to
characterize guards. A precedent to our use of branching probabilities can
be found in compilers such as [El85], where a statistical characterization of
test behavior is used to improve the code being generated.

It is important to remember that the job of the estimator is not to predict
when a guard will fail, but rather to predict where it failed given that a
failure has occurred. Knowing that clause guard failed or succeeded limits
the range of possible behavior available to a guard and reduces amount of
variation caused by data dependence.

A technique similar to ours is reported in [MEG9]. In this work, branch-
ing probabilities are used to calculate the mean path length through a graph
representation of a program. Although solving a similar problem, the re-
stricted structure of our graphs leads to a simpler formulation of the density
function.

The conditional failure probabilities of the test instruction in the PCM
must be known to apply Equation 5.18. Using the instrumented PCM de-
scribed in Section 5.53.9, the failure statistics for each test instruction were
measured and the conditional failure probability computed. The results of
these measurements can be found in Appendix C.

Returning to the test programs, Equation 5.18 is applied to the simplified
flow graph measurements obtained when the programs execute in parallel.
Figure 5.16 shows the resulting measurement error which ranges from .001%
to 19.9%. In all cases, the error is within the accuracy goal for our measure-
ment procedure.

The highest measurement error occurs in the FLOW program. Most
of the measurement error can be attributed to a single implication in the
program. The implication in question has eight tests, which places it in the
98.8% percentile in terms of guard length. Equation 5.18 overestimates the
number of failures of the first guard test by a factor of two and the excep-
tional length of guard magnifies the effect of this error. A closer examination
reveals that the first test in the guard is a continuation test for a loop. Since
PCN does not have an explicit iteration notation. this use of a lest is not
distinguished. However, if this use of a test can be detected, a lower failure
probability would have been obtained and the total error reduced.

Situations with the potential for large amounts of measurement error
can be detected by computing the maximum measurement error from the
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Figure 5.16: Measurement error using conditional failure probabilities to
estimate the guard test that fails

simplified flow graph measurements and the probabilistic model of guard
failure. For each implication, the probabilistic model is applied and the
procedure of Section 5.5.9 is nsed to determine the maximum error in the
number of tests executed within a failed guard. Dividing this number by the
minimum number of tests executed in the implication yields the maximum
possible relative error.

This concludes the discussion of frequency measurement of choice com-
position. In the next section, we consider the remaining parts of the core

PCN language.

5.5.11 Assignments and definitions

Assignments and definitions always occur within the context of a parallel
composition. The number of times a specific assignment or definition exe-
cutes is determined via the measurement techniques of Section 5.5.1. There
are, however, additional characteristics of assignment and definition that are
of interest.

If the right side of a definition or assignment is a mutable variable, then as
described in Section 4.1.3, a snapshot of the variable’s value must be taken.
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The copy_mutable instruction makes a snapshot by creating a new copy of a
mutable variable on the PCM heap.

In some instances, it is possible to determine the size of a mutable to be
copied by analyzing the text of the PCN program. When this is the case,
the behavior of an assignment or definition can be completely determined by
measuring the number of times it executes. However, because definitional
variables are not typed, it is not generally possible to determine the amount
of data that must be copied prior to actually performing the operation. In
such cases, an 1important aspect of assignment and definition is not known.

Because the cost of snapshotting has an impact on deciding to make a
variable mutable or definitional, the amount of copying performed needs to be
recorded as well as the number of copy operations. A single storage location
is allocated to record the number of heap cells copied during an assignment
or definition. When the copy is performed, the size of the data structure
on the right side is determined and recorded in the storage location. Thus
copying can be measured with a constant space cost of 2 and a constant time
cost of ©,.

5.5.12 Foreign programs

The final component of core PCN is foreign language programs. The seman-
tics of PCN views a foreign program as a black box; there is no concern with
its inner workings. This philosophy is extended to profiling as well; our mea-
surements do not attempt to capture what goes on within a foreign program.
From the perspective of a frequency measurement, this limits us to determin-
ing the number of times a foreign program is called. Since foreign programs
are alway called from a parallel composition, the execution frequency of a
foreign program can be determined indirectly from the execution frequency
of compositions that call the foreign program. No additional measurements
are required.

This concludes the discussion of measuring a program’s execution fre-
quency. We now consider how to measure the execution time of a program.
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5.6 Measuring Execution Time

In this section, we examine methods for measuring the time spent executing
program code. Techniques for measuring the amount of time a computation
spends communicating and idle are discussed in Section 5.7. We proceed
with a discussion of measuring the time spent executing PCN code followed
by a discussion of how to measure the time spent executing foreign programs.

5.6.1 PCN procedures

QOur first concern in measuring the execution time of PCN code is to choose
between a direct or indirect methods of measurement. The execution of
PCN code can be split into the time spent executing compositions and the
time spent executing assignments and definitions. Recall from Section 5.1.3
that if the time duration of an activity too small, direct measurement is
not applicable. The size of the smallest possible PCN program, one PCM
instruction, falls below this threshold. In additional comnsideration is that
direct measurement effectively doubles the measurement’s runtime overhead.
For these reasons, the execution time of PCN code is measured indirectly.
The method used is based on Equation 5.3. Approaches similar to ours can
be found in [GK&7] and [Sar89).

The time spent executing a composition depends on the number of times
each instruction in the composition executes. Restating Equation 5.3, if n;,
is the frequency of occurrence of instruction % in a composition, and there
are K different instructions in the PCM, then the execution time of the
composition is given by:

K
fe = niti, (5.19)
k=0

The execution time of a definition or assignment will depend on two fac-
tors: the fixed cost associated with starting the copy operation and a variable
part whose cost will depend on amount of data to be copied. The fixed cost
part of definition or assignment is already accounted for in Equation 5.19.
Adding the variable part to the model we have:
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K
t, = ni. + Z n;. ti, (5.20)
k=0
where n, is the amount of data copied and ¢, is the per data element cost of
copying.

5.6.2 Validation of the PCN execution time model

The cost parameters t. and ¢;, in Equation 5.20 must be obtained before
the cost model can be used. The values of these parameters will depend on
the parallel computer on which the computation executes. We note that the
architectural component of a performance experiment, A, is comprised of
these cost parameters. In this section, we describe the process by which the
values of the parameters in the execution time model are determined.

The basic approach is to execute a set of calibration program and measure
the execution time of each program. Each calibration program is a parallel
PCN application. After subtracting the time spent in foreign programs, the
parameter values can be determined from Equalion 5.20 and the instruc-
tion frequencies via linear regression. Once the parameter values have been
obtained, the execution time of any PCN program can be determined by
applying Equation 5.20.

There are 38 different instructions in the PCM . Including the copying cost
parameter, a total of 39 parameters must be determined in the execution time
model. Since regression requires an overdetermined system of equations, at
least 39 test programs must be run. In practice, we find that closer to 100
programs are required for good results. Obtaining and executing such a large
number of test cases is awkward and it is advantageous to reduce the number
of parameters in the execution time model.

By grouping instructions with similar execution times into an instruction
class, the number of parameters in the execution time model can be reduced.
The following procedure is used. A rough estimate of the execution time
for each PCM instruction is obtained with a specially instrumented PCM .
The PCM determines the average execution time of each instruction with a
microsecond timer. This measurement is performed on a single processor and
measurement overhead is not an issue. The estimated times are only used
to for instruction classification; they can not be used to determine execution
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time.

Classes of instructions are formed using the k-means clustering algo-
rithm [JD88]. For a given number of instruction classes, the k-means algo-
rithm assigns instructions to classes in a manner that minimizes the variance
of the execution times within an instruction class. In Figure 5.17, the class
variance for different numbers of instruction classes is shown. The error in
the final execution time measurement is directly related to the variance in
the instruction classes. Taking the results of Figure 5.17 and the number of
test programs available into consideration, we choose to use four instruction
classes. Thus the execution time model has five parameters.

3000
2500
2000
Variance 1500
1000

500 —

0_
0 246 8101214161820

Number of instruction classes

Figure 5.17: Variance versus the number of instruction classes

The regression was performed on eight test programs executed with two
to four different inputs. To reduce the variance in the measurement of total
execution time, each test program and input combination was executed five
times. IFigure 5.18 shows the distribution of relative error for the test pro-
grams. This figure shows that the maximum measurement error is 17% and
in most cases the error in execution time is less than 5%. If the time spent
in foreign programs is included in this figure, the measurement error would
decrease further.
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Figure 5.18: Distribution of errors in execution time

5.6.3 Execution time of foreign programs

In keeping with the black box view of foreign program execution, measure-
ments of the execution time are limited to the total time spent in a foreign
program. The use of time in a foreign program is not relevant in explaining
the behavior of the parallel parts of program execution.

Performance measurements which detail the actions taken within a foreign
program can be obtained with a sequential performance measurement tool. It
is also possible to extend the indirect measurement techniques used for PCN
programs to sequential languages. However, the complexity of languages such
as C or Fortran puts this beyond the scope of our research.

Experience with multilingual programming has shown that the time spent
in a single invocation of a foreign prograin is typically much greater than the
time spent executing a PCN composition [FO90]. The granularity of foreign
computation makes direct measurement practical. Every call lo a foreign
program is timed and the lapse time added to the content of the appropriate
storage location.

There are situations where the amount of computation in a foreign pro-
gram will be so small that direct measurement will not be able to capture
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its execution time. Such a situation is encountered Chapter 8. Occurrences
of foreign programs of this type are easy to detect; they have a non-zero
execution frequency but an average execution time close to zero. No special
provisions have been made for foreign programs with small execution times.
We assume that their impact on the performance of the program is negligible
and knowing of their existence and their execution frequency is adequate for
the purposes of performance improvement.

This concludes our discussion of execution time measurement. We have
seen that by combining direct and indirect measurement methods, we are
able to obtain the execution time and frequency data required for a parallel
execution profile and meet our design goals. In the next section, we dis-
cuss the remaining components of a parallel execution profile: interprocessor
communications cost and idle time.

5.7 Profiling Multiple Processor Execution

Execution time and frequency are only one part of a parallel execution profile.
A parallel execution profile has two other components: communication cost
and idle time. We now show how to account for the time spent in these
activities.

5.7.1 Profiling idle time

A PCM becomes idle when it is waiting for the value of a definitional variable
and the active queue is empty. When the value of a definitional variable is
received by an idle PCM, it leaves the idle state, moving the programs waiting
for the received value into the active queue. The amount of time spent idle
i1s an important performance index and is included as a part of a parallel
execulion profile.

Measuring idle time in a PCN computation is problematic in that idle
time is not the amount of time spent waiting for a data value. Rather, it is
that portion of the time spent waiting that can not be masked by executing
some other program. As such, idle time is disassociated from the composition
that is its cause. One would be tempted to say that idle time is a processor-
wide attribute of program execution and the execution profile should contain
a single idle time figure for each PCN executing the computation.
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However, a processor-wide measure provides no insight as to the cause of
idle time. The reason a processor becomes idle is that it is waiting for an arc
in a precedence graph of a program to be satisfied. Ideally, a parallel execu-
tion profile would identify this precedence arc by its source and destination
compositions and attribute the idle time to the arc.

However, because a definitional variable can be embedded into any non-
mutable data structure, the precedence arcs do not correspond to the pro-
gram call graph and determining the precedence arcs prior to program exe-
cution is difficult. Furthermore, determining the precedence arc at runtime is
also hard, for at the time a definition is made, one must know if another pro-
cessor is idle waiting for the value of that definition. This requires knowledge
of the global state of the computation and as such, is specifically excluded
from our measurement model. To overcome these problems, the following
definition of idle time is used:

Definition 2 Assume that the k1 time a PCM enters the idle state, it re-
mains in that state for t*. seconds and exits the idle state with the active
queue containing the programs, Q. The idle time t,:(p) for a PCN program
p is defined as:

ti(p)= 3. th/lQl

{klpeQs}

If more than one precedence arc is active at one time, the idle time is
distributed equally to all the programs at the destinations of the arcs. Ide-
ally, we would prefer that idle time be assigned to the precedence arc that
represents the critical path in a computation’s precedence graph. However,
given that the source programs are not known, determining which destina-
tion to credit with the idle time is not possible. Dividing the time equally
between all activated programs is a good compromise and has proven useful
in practice.

A drawback to Definition 2 is that a program can be charged for idle
time that it is not responsible for. An example of such a situation is shown
in Figure 5.19. Program T and program A execute in parallel. Program A
has just requested a data value that is produced on another processor and
will take some time to arrive. Program T is a timer; it waits on a stream that
will receive a new value periodically and then starts again. When the data
value for program A actually arrives, there is no idle time left to attribute
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to A, and T is given full responsibility for the time spent idle. While this
result is misleading, we have not seen this problem occur in any of the PCN
programs we have examined.

T A T | T A

Time ——»

Figure 5.19: Example of how assignment of idle time to programs can be
fooled

5.7.2 Measuring idle time

Two methods for measuring idle time have been investigated: direct mea-
surement and indirect measurement. Direct measurement is well-suited for a
computer with low overhead access to an accurate timer. The time of entry
to and exit from the idle loop is recorded and the resulting lapse time is at-
tributed to the appropriate programs. Computing the lapse time will delay
to the execution of the first program in the active queue by the time it takes
to perform the subtraction.

The storage overhead for this measurement will be one location for every
composition that can become suspended waiting for a variable being defined
on ancther processor. The runtime overhead will be dependent on the total
number of programs whose execution is enabled when exiting the idle state.

An alternative is to measure the idle time indirectly. Referring to Fig-
ure 4.8, when a processor is idle, it executes a loop within the communications
component of the PCM. The idle time can be inferred by measuring the num-
ber of times the loop is taken and the amount of time required for one pass
through the loop. With indirect measurement, the lapse time computation is
no longer needed, reducing the execution time overhead of the measurement.

Experience with PCN thus far indicates that idle times are measured in
milliseconds rather than microseconds. For this reason, the overhead advan-
tages of the indirect method are negligible. Since the direct method is more
accurate and somewhat simpler to implement, we choose this approach to
measure idle time.
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5.7.3 Profiling communication time

Concurrently executing PCMs communicate by sending messages to one an-
other. There are eight different types of messages in the PCM; five deal
with garbage collection and system shutdown and the remaining three are
used to define and distribute the values of definitional variables. Six of the
message types have a fixed size, while the two messages that send the value
ol variables have variable size. A parallel execution profile includes data on
the number of messages sent, the amount of data sent and how much time
was spent communicating.

From the point of view of an execution profile, the cost of communication
is strictly in terms of the processing time required to send or receive a message
and not the time actually required to transfer the data between processors.
The transfer time is either not seen because the processor can execute some
other PCN program while the transfer is taking place or the transfer time is
already being measured as idle time.

As with the measurement of idle time, a decision must be made as to
what level to profile interprocessor communications: the program level or
the processor level. Measuring communication cost at the processor level
is straightforward: the cost depends on the messages sent and the messages
received. Attributing a communication to a specific program is more difficult.
Certainly, when the value of a remotely defined variable is requested, it is
possible to attribute the cost of making the request to the sending program.
However, if prior to receiving the value another program requests the same
variable, it will register its requirement and wait {for the response to the
message sent earlier. A question arises as to whether the cost of sending the
message should be redistributed to both programs.

Attributing the cost of processing a received message causes more prob-
lems. If the message contains the value of a definitional variable, it would
make sense to assign the cost to the program that was waiting for the value.
In general, this will not be possible as pointers from variables to the programs
that are waiting for their value are not always kept.

There is even a more fundamental problem. Consider the code of program
p of Figure 5.20 executing on processor 1. The variable x 1s created on
processor 1, defined on processor 2 and used on processor 3. This means
that processor 1 will process a message defining x, and a message requesting
and providing the value of x to processor 3. It is not at all clear to what
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program the cost of these communications should be assigned. Any reference
to p is long gone as the program has completed execution. Likewise, there
1s no information about programs f or g on processor 1. Because of these
problems, we have chosen not to try to assign a communications cost to an
individual PCN program. Rather, communications costs are accumulated
on a per processor basis.

p(x) {11 10002, g(x)€3 }
109 {lix = "a" )

g(x)
{? x== "a" —> h(),
default —> h{)}

}

Figure 5.20: Code sample showing how communication is unrelated to a
programm

We now consider what to profile. A detailed profile would record the total
number and size of each type of message sent and recetved. This data would
be collected separately for each pair of processors in the parallel computer.
Obtaining such a degree of detail can result in committing a large amount
of memory to measuring communications: on a 192 processor computer with
3 Mbytes of memory per processor, such as the one used for the case study
in Chapter 8, 75% of total system memory would be required to record this
data.

The storage requirement can be reduced by collecting data about the
communications activities of a single processor without regard as to which
processor the message is going to or coming from. This simplification makes
the total storage requirement proportional to the number of processors in the
computer rather than the square of the number of processors.

For every message sent or received on a processor, a profile records: 1)
that the message was processed, 2) the size of the message and 3) the amount
of time required to send or receive the message. While cach of these quan-
tities can be measured directly, there are advantages to using an indirect
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measurement for communications time. We expect message processing to
occur frequently and be completed rapidly, making direct measurement diffi-
cult. Furthermore, with direct measurement of communications time, three
separate profiling operations must take place for each message processed.
Reducing the number of operations will reduce the execution time overhead
of profiling communications.

To the first order, there are only two factors that contribute to the cost
of processing a message: a fixed, per message startup cost and a per byte
transfer cost [Dun88]. Using this simple linear model, communications time
is determined indirectly from the number of messages processed and the total
message volume. Because time does not need to be recorded, the indirect
measurement will have less runtime overhead than a direct measurement.

Runtime overhead can be further reduced by making the following obser-
vation. Six of the eight message types have a fixed size. For these messages,
there is no need to record the volume of data sent, as this information is
implicit in the message type. The storage overhead for these messages is a
single storage location while the runtime overhead is one counter update per
message sent or received. The remaining two messages move the values of
definitional variables between PCMs and their size varies with the amount
of data being moved. Two storage locations are needed to measure variable
sized messages, one for the number of messages sent and one for the total
number of memory cells transferred. The runtime overhead is two counter
updates per message sent or received.

The runtime overhead observed when executing the test programs in par-
allel is shown in Figure 5.21. The overhead ranges from .04% to 1.5%!. The
storage overhead of this method will be 12€) per processor, where () is the
amount of storage required for a counter. This overhead is insignificant when
compared to the size of all but the most irivial PCN programs.

The two cost parameters for the execution time model for communication
are computed along with the program execution time cost parameters using
the procedure discussed in Section 5.6.2. The input data to the regression
procedure is obtained by executing the test programs in parallel, varying
the input data as well as the number of processors used. The calibration was

1The C compiler used to build the PCM for these measurements generates a redundant
add instruction at one of the instrumentation points, increasing the measurement overhead
for a frequently sent message type by about 33%.
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Figure 5.21: Runtime overhead for communications measurements

done on a 10 processor Sequent Symmetry with 32 Mbytes of shared memory.
The number of processors used varied from three to seven. Figure 5.22 shows
the results of the calibration procedure. The measurement error is on the
horizontal axis while the vertical axis shows the fraction of test cases that
exhibit that error. The error is calculated from Tpry and Ty munication
not just the communications component.

In 4.1% of the test cases, the measurement error exceeds that of our design
goal. We suspect that the cause of these errors is the limited number of test
cases used as input to the regression procedure. For some programs, varying
the number of processors does not alter the amount of processing done on a
PCM , exacerbating the problem. This hypothesis is supported by examining
the range of the singular values obtained by the singular value decomposi-
tion of the data matrix. Although none of the singular values are zero, we
find a difference of over three orders of magnitude between the largest and
smallest singular value. This indicates that there are linear combinations of
the input data that do not contribute additional information to the regres-
sion [PFTV88]. The solution is to have a more extensive set of calibration
programs from which the parameter values are obtained. Unfortunately, due
to the newness of the PCN system, obtaining more test cases is not possible
at this time.
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Figure 5.22: Distribution of errors in times including communications mea-
surements

5.8 Summary

We opened this chapter with a discussion of three basic principles for design-
ing methods for profiling the exccution of a parallel program. These prin-
ciples are general and can be applied to any parallel programming system.
We then showed how the principles are applied in the design of a profiling
system for PCN.

The result is a set of measurement techniques that provide a wide range
of alternatives to the system designer. The iradeoffs in cost and accuracy
were demonstrated for a set of parallel applications. In the next chapter, we
show how the techniques developed in this chapter are integrated into the
PCN system to form a practical performance measurement system.
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Chapter 6

Implementation of a Parallel
Execution Profiler

The focus of Chapter 6 is the design and implementation of our profiler for
PCN. A profiler is a system whose function is 1o collect profile data from
a running program and present it to the user in a meaningful form. In our
profiler, data collection is based on the measurement techniques developed
in the preceding chapter. The methods used to integrate our measurement
techniques into the implementation of PCN are discussed in this chapter.

6.1 Profiler Overview

An overview of the PCN profiler is shown in Figure 6.1. The profiler has
two components: the PCN system, which we will refer to simply as PCN,
and Gauge. PCN is responsible for obtaining the basic data needed in an
execution profile, while G'auge is responsible for generating a profile from the
raw data and presenting it to the user.

The PCN system consists of the PCN compiler, the PCN environment
and the PCM. The environment, which has not been previously discussed, is
the interface between the PCM and an application program; its functions in-
clude loading code into the memory of the PCM | starting new computations
and providing an interactive top level. Profiling starts with the compiler
where PCN programs are instrumented in accordance with the requirements
of Sections 5.5.1 and 5.5.8. As the program cxecutes, profile data is col-
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Figure 6.1: An overview of a performance analysis system

lected by the PCM. On program termination, the environment extracts the
raw performance data from the PCM and outputs it in a form that can be
interpreted by Gauge.

Gauge 1s an interactive tool which processes the raw performance mea-
surements into an execution profile and then graphically presents the profile
data to the user. To obtain an execution profile from the data output by
the PCN environment, the data analysis component of Gauge applies the
performance models of Section 5.6.1. Because of the complexity inherent in
parallel performance data, Gauge presents the profile to the user graphically.
A unique aspect of Gauge is that the user can dynamically construct and
display alternative views of the profile data. A detailed discussion of Gauge
is found in Chapter 7.

In the remainder of this chapter, we examine how profiling has been
integrated into the implementation of the PCN system. The PCM will be
discussed first, followed by the compiler and finally the environment.

6.2 Runtime Support for Profiling

As discussed in the previous section, measurements for a profile are made
by the PCM, which accumulates measurement values in its memory until
they are extracted by the environment. Recall that a measurement consists
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of counting or timing the occurrence of an event and that all measurements
corresponding to the same event are summed into one storage location. The
first problem we consider is how the storage location for measurements are
allocated.

6.2.1 Storage for counters and timers

- Storage for profile data is allocated by the compiler as part of a module.
This decision was motivated by the manner in which modules are used, The
storage space for modules is allocated from the PCM heap and therefore the
absolute location of a module is not know until runtime. Consequently all
PCM code must be position independent. It {ollows that references to profile
data from within PCM code must be position independent as well.

To obtain posttion independence, we include the storage space needed
to profile the programs in the module along with the program code. In
Figure 6.2, the format of a module generated by the PCN compiler 1s shown.
The storage space for profile data is found in the counter section, which
is located after the PCM code for the programs in the module. Since the
code and instrumentation are allocated from the same data structure, the
offset from an instruction to a counter or timer is constant regardless of the
module’s location. Hence, a reference to a counter or timer from the program
section is encoded by the offset from the point of reference to the counter or
timer being referenced.

An advantage of this module layout is that the profile data is in a con-
tiguous block on the heap. Using the offset to the counter section and the
number of counters and timers, the profile data for an entirc module can be
obtained with a single block copy operation. Thus collecting profile data is
both simple and fast. This 1s important if snapshots of the profile data are
to be made during program execution.

The amount of PCM memory used to store the value of an individual
counter or timer determines the maximum time a programn can execute and
still produce a meaningful profile. As discussed in Section 2.3.4, parallel ap-
plications can run for extended periods of time. The PCN profiler is designed
to accommodate programs that execute for up to one week. Practical con-
siderations further constrain the amount of memory used to store a profile
measurement; sizes of 8, 16, 32 or 64 bits long map most efficiently onto the
memory of the target architectures on which the PCM is hosted.
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Figure 6.2: The layout of sections and fields in a PCM module
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For counters, the amount of memory required is determined by the maxi-
mum frequency at which a counter update can occur. When profiling choice
or parallel composition, the worst case occurs in a computation consisting
of a single parallel composition that does nothing but call itself recursively.
When executed on a Sun Sparcstation 1, such a program can execute for
about 285 hours before overflowing a 32 bit storage location. Based on this
data, we conclude that 32 bits is large enough to store a counter.

The value of a timer is the number of clock ticks that occur during the
event being timed. On the current generation of parallel computers, clock
ticks occur at one microsecond intervals. With a 32 bit timer, the maximum
time that can be recorded is 71 minutes — a value that is far short of the
maximum times we wish to measure. Thus 64 bits of storage are used for
timers in the profiler. Unfortunatelv, many of the architectures on which
PCUN executes do not directly support addition of 64 bit integers. Conse-
quently updating a 64 bit wide timer will be more than twice as slow as
updating a 32 bit timer.

6.2.2 Measurement in the PCM

In this section, we discuss how performance measurement is integrated into
the PCM. In PCN, two types of measurements are made: 1) measurements
which record the activity of a program and 2) measurements which record
activities in the PCM that are not direct consequences of executing PCW
instructions.

The method used to integrate measurement into the PCM differs for the
two types of measurements. Measurements of the first type are integrated
into the PCM via the instruction set. The measurements are generated
explicitly by the instruction sequence produced by the PCN compiler. The
second type of measurement is integrated into the PCM via a set of profile
registers included in the machine definition. The contents of the registers
are manipulated implicitly by the communications component and garbage
collector during PCM operation.

6.2.3 Measuring program activity

The first type of measurement is triggered by the execution of specific PCM
instructions. Specifically, to profile choice and parallel composition, a mea-
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surement is made each time a halt, recurse or default instruction executes.
Measurement of foreign programs is indicated by the execution of a call_foreign
instruction and snapshotting in assignments and definitions is indicated by
a copy_mutable instruction.

The measurement of program activity is integrated into PCN through the
PCM instruction set. Two different approaches to integration are considered.
The first is to have special purpose instructions to make measurements. The
second is to add measurement to the basic functionality of existing PCM
mmstructions and have the instructions which trigger a measurement make
the measurement.

The required measurements can be implemented by three special purpose
PCM instructions. Counter measurements are made by a update_counter
instruction and lapse time measurements are made by pairing start_timer and
stop_timer instructions. The update_counter instruclion has two arguments:
the location of the counter to be updated and the value by which the counter
1s incremented. The start_timer instruction has no arguments while the single
argument of the stop_timer instruction points to the storage location of the
timer.

Because these instructions are completely orthogonal to the rest of the
PCM instruction set, optimizations to reduce the number of counters and
timers needed are possible. For example, interprocedural analysis can iden-
tify counters whose value is expressible in terms of other counters. The
redundant update_counter instruction can be eliminated, reducing the exe-
cution time and storage overhead of the measurement. Another potential
optimization is found in a choice composition whose implication guards con-
sist only of data tests. Compositions of this type are often produced by the
compiler in converting a PCN program to core PCN. In such programs, the
defaunlt implication can never succeed and update_counter instruction can be
eliminated.

The disadvantage of using separate measurement instructions is that
the runtime overhead of a measurement is increased by the cost of the
instruction decode. Because of this cost, we choose the alternative tech-
nique: measurement is made part of the functionality of the halt, recurse,
copy_mutable and call_foreign instructions. In essence, the halt instruction
becomes halt_and_update_counter, and so on.

Combining measurement with other instruction functions has one draw-
back. If optimization to eliminate unnecessary measurements is desired, ver-
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sions of the instructions that don’t perform the measurement are also needed.
These additional instructions increase the size of the emulator, which is not
desirable. With the current instruction encoding, measurement optimization
requites the addition of four instructions, a 13% increase in the number of
instructions in the PCM.

When an instruction makes a measurement, the value is added to the
a storage location passed to the instruction by an argument. The halt and
recurse and default instructions have a counter as an argument. Following the
procedure of Section 5.5.1, the counter of a halt and recurse is incremented
by one every time the instruction executes. From Section 5.5.8, we find that
the counter of a default instruction is incremented by one only when the
default test fails.

Snapshotting of mutable data values during an assignment is performed
by the execution of a copy_mutable instruction. This instruction has three
arguments: a source register, a destination register and a counter. The model
of Section 5.5.11 requires recording the number of heap cells copied during the
execution of a copy_mutable. The size of the data structure being copied, 1s
determined before the copy starts and is added to the contents of the counter
by a single addition.

The call_foreign instruction is the only instruction in the PCM that up-
dates a timer. The function of this instruction is to call a program writlen
in a foreign language. As per Section 5.5.12, the time spent in the foreign
program 1is directly measured as part of the call_foreign instruction. The
lapse time between the entry and exit of the foreign program is added to the
timer and passed to the instruction as one of its arguments.

To summarize, we integrate profiling into the instruction set of the PCM
by adding measurement to the functionality of four instructions. Measure-
ment optimization is not currently supported, so unmeasured versions of the
instructions are not required. In total, the fraction of the emulator devoted
to profiling accounts for about 3% of its size. The cost of profile measurement
in execution time was reported in Section 5.5.

6.2.4 Measuring PCM activity

We now turn to the measurement of activities in the PCM not associated with
the execution of PCM instructions. Within the communications component
of the POCM, measurements of idle time and interprocessor communications
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are made. Measurements are also made in the garbage collector, which mea-
sures the amount of time spent by a processor in garbage collection.

Idle time is measured according to the model developed in Section 5.7.1.
To store idle time, a timer is allocated for each PCN program when it is
compiled. This timer is located a known distance from the beginning of
the program. Since a process record points to the start of the code to be
executed, the idle timer for a program can be localed from its process record.

Idle time is measured as follows. The total time spent in any one instance
of the idle loop 1s directly measured and the value is stored in a register
internal to the communications component. After exiting the idle loop, the
number of process records on the active queue is counted and the contents of
the idle time register is scaled by this amount. The active queue 1s scanned
again. This time, the scaled contents of the idle time register are added to
the idle timer for each program on the queue.

A set of ten counter registers has been added to the PCM into which
measurements for the communications model are stored. Updates to these
registers are directly coded into the implementation of the inter- PCM com-
munications component of the PCM. The procedure for counter updates
follows the communications model of Chapter 5.

The last measurement records the amount of time a PCM spends in
garbage collection. Each PCM has single timer register to store the amount
of time spent in garbage collection. As with the communications component,
the update of this timer is coded directly into the garbage collector.

6.3 Compiler Support for Profiling

The job of the PCN compiler is to take a file containing PCN source code
and convert it into a file containing PCM code. The PCN compiler supports
profiling in three ways, it:

o allocates the storage space for counters and timers used to measure
program activity

o generates PCM instructions with counters and timers as arguments

e builds performance models for the PCN programs in a module.

122



Allocating storage for timers and counters was discussed in Section 6.2.1.
We now focus on the second and third points. Figure 6.3 shows an overview
of the compilation process. The shaded boxes represent compiler steps that
support profiling in some way. Files containing PCN source code are input
on the left and the compiler produces a file containing PCM code on the
right. In addition to PCM code, the performance models for the module are
output into a separate file.

PCN Module

l

! Tokenizer
: Parser

Performance PCM code
Model

Figure 6.3: The PCN compilation process

The first steps in compilation are the tokenizer and parser. The output
of the parser is a list of parse trees, one tree for each program in the module
being compiled. The transformer then converts these trees into a format
compatible with core PCN. As part of this process, the compiler maps a single
program written by a programmer into a collection of compiler generated core
PCN programs. The transformed parse trees are then encoded into PCM
instruction sequences. Next, the modeler scans each instruction sequence and
builds a cost model to be used for profiling. Finally the assembler converts the
PCM assembly language programs into binary format, resolving references
to labels, counters and timers. The resulting binary executable module is put
into a file. A step-by-step discussion of how profiling affects each compiler
stage follows.

The transformer converts a single user defined PCN program into one
or more core PCN programs. Although knowing which programs are gen-
erated by the user and which programs are generated by the compiler is
inconsequential to the operation of the rest of the compiler, this information
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is needed by the profiler. When a profile is presented to the user, it should
be in terms of the original programs — compiler generated programs should
not be included. To enable the profiler to make this distinction, each parse
tree is tagged to indicate its source. The tag is passed through the encoder
to the modeler where the information is recorded for Gauge.

The instruction encoder generates a sequence of PCM instructions for
each parse tree received from the transformer. Within the instruction stream,
each occurrence of a halt, recurse, default, copy_mutable and call_foreign
contains an unresolved reference to a counter or timer. These refcrences are
resolved to locations within the counter segment of the module in the PCN
assembler.

The modeler produces performance models from the instruction sequences
generated by the encoder. In addition to knowing the instruction sequence,
generating a performance model requires knowing which instructions are part
of an implication guard and which instructions are part of an implication
body. This information is provided to the modeler by having the encoder
annotate the instruction stream to indicate the Jocation in the instruction
sequence where each implication guard and implication body starts. The for-
mat of the output of the encoder is shown in Figure 6.4. The boxes containing
start_guard and start_guard are the markers put into the instruction stream
so the modeler has enough information. In addition to locating the position
of implication guards, the type of composition the instruction stream imple-
ments is also identified by the markers: a parallel composition has only one
start_guard marker and it is followed immediately by a start_body without
any intervening instructions.

The modeler is the only component in the compiler that is exclusively
dedicated to profiling. The input to the modeler is a list of encoded pro-
grams. For each program, the modeler builds a performance model and
outputs it along with other information needed by the Gauge. After remov-
ing the start_guard and start.body markers, the modeler passes the encoded
programs on to the assembler.

For each program in a module, the modeler outputs the data listed in
Table 6.1. The program’s name and source are determined from the infor-
mation passed on by the transformer. To determine the composition type,
the first two PCM instructions of the program are examined. If they are
begin_guard and begin_body markers, then the program is a parallel com-
position; otherwise it is an implication. The program code is then scanned
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Figure 6.4: The structure of the PCM code generated by the encoder

for copy_mutable and default instructions. Once the counter arguments to
these instructions have been resolved, the resulting offsets into the counter
segment are stored into the program copy and defoult failure fields of the
model. The default counter is included with the composition specific data
because there is only one per composition and it is interpreted differently
from any other implication counter. If the composition type is parallel, then
the default counter field is empty.

The idle timer for a program is used to store the results of the idle time
model. The idle timer is unique in that it is not referenced from an instruction
in the program; updates to the idle timer are performed directly by the PCM.
The reference to the idle timer is generated by the modeler and explicitly
passed to the assembler. The assembler resolves the reference and outputs
the offset Lo the idle timer as part of the composition header. The offsct of
the resolved timer is stored as part of the per composition data.

In addition to the per composition data, there is a set of data associated
with each parallel composition in a program. Because the body of a core
PCN implication is a parallel composition, we call this per implication data.
The contents of the per implication data are summarized in Table 6.2. The
compositions called and foreigns fields are used to build the call graph of
the programs in a module. The call graph serves two purposes. First, the
execution frequency of a foreign program is computed from the execution
frequency of its callers. For this calculation the call graph is needed. Second,
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Per Composition Data

Element Name | Value
program name string
program type user /system
composition type | parallel/choice
program idle timer offset
program copy counter offset
defanlt failures counter offset

Table 6.1: Model components for each PCN program

the call graph is needed to collapse performance data from compiler gener-
ated programs back into the user specified program from which they were
generated.

The performance model is split into two parts: 1) a failure model which
applies to the execution of an implication that terminates in guard failure
and 2) a success model, which applies to all other situations. Each model is
a vector whose length 1s equal to the number of instruction classes defined
in Section 5.6.1. The value of each element in the vector is the weight of
the corresponding class in the model. In the success model, the weight is
the number of times an instruction of that class appears in the code. The
weight of an instruction class in a failure model is determined by summing
the probability of execution for each occurrence of the instruction class in
the implication guard.

The actual allocation of timers and counters is left to the assembler.
For each program encountered, the assembler allocates an idle timer and a
copy counter. Although more than one copy.mutable instruction can occur
in a program, for space reasons we have chosen to use a single counter for
all instances of the instruction within a composition. The offsets to these

locations are passed back to the modeler to be stored with the per program
data.

When assembling the instruction sequence for a composition, the assem-
bler allocates one counter for each halt, recurse or default instruction en-
countered. When a copy_mutable instruction is assembled, a reference to the

126



Per Implication Data

Element Name I Value
compositions called | list of strings
foreigns list of strings
foreign timers list of timer offsets
success counter counter offset
failure model instruction class vector
success model instruction class vector

Table 6.2: Model components for each PCN implication

previously allocated copy counter is placed in the counter argument. Finally,
a new timer is allocated for each call.foreign instruction assembled. To re-
solved counter and timer references into program counter relative offsets, two
complete passes thorough the module are required. An interesting feature
of the assembler is that since it i1s written in PCN itself, both passes are
executed concurrently using parallel composition.

This concludes the discussion of compiler support for profiling. We now
discuss support for profiling in the PCN runtime environment.

6.4 Collecting the Profile Data

A feature of our approach to performance measurement is that every com-
putation is instrumented. While measurements are always made during pro-
gram execution, there is no requirement to collect the data once the program
terminates. Performance data is only collected if the programmer explicitly
specifies that the program execution is part of a performance experiment.
Performance experiments were discussed in Section 2.2.1. To support pro-
filing, we extend PCN runtime environment with the ability to conducl a
performance experiment.

A performance experiment is initiated by entering a profile command into
the environment. The parameters are required to specily an experiment are:

e The computation being profiled
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A termination signal

The modules that are part of the experiment

The processors participating in the experiment

The name of the performance experiment

The computation parameter of a performance experiment is specified by
the module name, program name and program arguments. One of the argu-
ments to the program must be a termination signal, a definitional variable
that s defined to a constant when the computation has completed. Because
of the cost of detecting global termination in a distributed environment, PCN
does not provide a general mechanism for termination detection. To ensure
that profile data is not collected until the computation is done, the program-
mer is required to provide an explicit termination signal. If no compositions
are suspended when a computation terminates, the termination signal can
be generated automatically via a source to source transformation [HSS87].

To facilitate modular programming, PCN allows the module component
of an intermodule call to be a variable. This means that in general it is
not possible to determine all the modules used in a computation. Thus, the
specification of a performance experiment must include a list of modules from
which to collect performance data. There is no requirement that the module
list include every module used in the computation.

The default behavior is to collect performance data from every processor
participating in a computation. However, there are situations where it is
desirable to only collect performance data from a subset of the processors.
Therefore, the range of processor from which to collect performance data is
specified as part of the performance experiment.

While naming a performance experiment is a simple idea, we can find
examples, such as the Unix profilers gprof [GKM8&3], where this capability
is not provided by the profiler. Performance evaluation studies can require
that many experiments be performed and keeping track of the individual
experiments can become difficult. Naming the experiment provides a simple
means to organizing the performance data.

Performance experiments are conducted in the environment by a profile
server. When a profile request is forwarded by the environment to the profile
server, the following steps are taken: 1) initialize the counter segments of the
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modules being profiled, 2) start the computation, and 3) collect and output
the raw performance data. The performance data output by the profiler for
cach processor is summarized in Figure 6.5. This data is in a raw form and
is not an execution profile until it is converted by Gauge. a process that is
described in Section 7.1.1.

| Processor Number |

[ Processor ldentifier I

Communication Counters
Garbage Collection Measurements

Module; Data
Number of Counters
Counter Values
Number of Timers

Timer Values

Module,, Data
Number of Counters
Counter Values
Number of Timers
Timer Values

Figure 6.5: The format of the data output for each processor by the profile
server

The profile server is split into two parts: a master profiler and a node
profiler. There is only one master profiler, typically executing on the same
processor that dispatches user requests. In contrast, a copy of the node
profiler executes on every processor in the parallel computer.

The actions of the master profiler are summarized in Figure 6.6. As we
see, its responsibilities are to start the node profilers, initiale the computation
and coordinate the collection of the resulting performance data. It is the node
profiler that obtains the values of the counters and timers from a module.
The complete activities of a node profiler are summarized in Figure 6.7.
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. Initialize node profilers. Inform the server on each node
of the list of modules to be profiled and the variable that
will be used to indicated termination of the computation.

. Heset modules. Request each server to reset the mod-
ules on its module list. Wait for acknowledgment from
all servers that reset is done.

. Ezecute computation. Start a lapse timer to compute total
execution time. Spawn the computation to be performed.

Wait for termination. Stop lapse timer, record the total
execution time under the name of the experiment.

. Record data. For each node, request profile data. Format
data and save it under the name of the experiment.

Figure 6.6: The master profiler algorithm
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. I'ind modules. For each name in the list of modules, obtain
a pointer to the actual module on the heap. Ensure that
the module has been loaded into the PCM.

. Reset modules. For each module in the module list, reset
the module timers and counters to zero. Indicate to the
master profiler when the initialization has been done.

. Wait for termination. Wait for the done variable to be-
cotne defined.

. Collect node specific data. Record the communications
counters and the time spent in garbage collections for the
node.

. Collect module data. For each module in the module list,
snapshot the module timers and counters.

. Record processor data. When requested by master profiler,
provide the node specific data and the profile data for each
module in the profile.

Figure 6.7: The node profiler algorithm
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6.5 Summary

A number of conclusions can be drawn from our experience in implementing a
profiling system for PCN. Profiling has some impact almost every component
of the PCN system. Most of the code to support profiling is found in the
profiler, the node profilers and the modeler. Qutside these components, the
amount of code added to the system is quite small.

In terms of object code, the percentage of the PCN implementation ded-
icated to profiling is shown in Table 6.3. Compiler support is completely
written in PCNwhile the support within the abstract machine is written in
C. Low level data collection and timer manipulation in the node profiler is
written in C, while the top level coordination of the node profiler is written

in PCN.

Component Percent of code
Abstract machine 2.3
Compiler 8
Environment 18

Table 6.3: Fraction of PCN devoted to supporting execution profiling

While the code required for profiling is minimal, it must be integrated
into the PCN system at a fundamental level. We have carefully examined the
interaction of profiling with the semantics of PCM instructions, the layout
of program memory, the garbage collector and virtunally every other aspect
of the PCN implementation. The lesson is clear: the only way to cleanly
achieve the low level integration necessary for efficient profiling is to design
the profiler into PCN from the beginning, not to add it as an afterthought.
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Chapter 7

Interactive Performance
Visualization for Parallel
Execution Profiles

In this chapter, we address the problems associated with presenting perfor-
mance data for a parallel program to the user. In our system, there are two
parts to this process: the raw performance data is converted to an execution
profile and then the profile is graphically presented to the user. Both tasks
are performed by Gauge, our performance visualization tool for presenting
parallel profile data.

7.1 Gauge

Gauge[FKT90] is a tool that we have developed to present a parallel exe-
cution profile to the user in an intelligible manner. It is not part of PCN
proper and is used after the performance experiment has completed. The
functions of Gauge are:

e To convert the raw performance data output by PCN into a paralle]
execution profile

e To graphically display profile data

¢ To enhance a programmer’s understanding of multidimensional execu-
tion profile data thorough interactive data analysis.
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The output of Gauge is a graphic representation of the parallel execution
profile, an example of which can be seen in Figure 7.1.

KE Gauge prefile of prof_1_10_13.cnt
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Execution Time
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rh_chart:method/b
rh_chart:init_geos/d
rh_chart:get_sidersD

Total Execution Time {mins:secs:msecs): 1:3:730
Total Reductions: &6391
Total Suspensions; 16665

Figure 7.1: A flat 3D display of execution time

7.1.1 Obtaining an execution profile from measure-
ment data

There are three sources of input to Gauge: the performance models generated
by the compiler, the raw measurement data collected by the environment and
the architecture specific model parameters determined by the system calibra-
tion of Section 5.6.1. When invoked, Gauge combines these inputs to build an
mternal representation of the parallel execution profile. This representation
puts the performance data into a form that is convenient for the interactive
visualization component of Gauge. The data structure, shown in Figure 7.2,
is built in three stages: 1) the models for each module in the computation
are read in, 2) the performance data is inpul and 3) performance models
are used to convert the raw data into an execution profile. We examine this
process in detail.

At the top level, the data structure Gauge builds consists of the list of
modules used by the profiled computation. The models, which consist of
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Calling programs
Module

e
// *,

Figure 7.2: The representation of profile data in Gauge

the data from Tables 6.2 and 6.1, are read in one program at a time. Using
the compositions called and foreigns fields from Table 6.2, the call graph for
programs in a module is built. The nodes in the graph are linked in both
upward and downward directions, allowing easy access to both the callers of
a composition and the programs called from a composition. The data from
the tables is stored in the call graph node corresponding to the program.

The profile data is input next. For each processor, a data structure is
created to hold the communications and garbage collection data. The pro-
cessor identifier field from Figure 6.5 is used as an index into a database of
cost parameter values. Each entry in the database contains the model pa-
rameters determined by the calibration procedure for the different types of
processors on which PCN can run. Since a PCN computation can execute
on different types of processors simultaneously, the parameter values must
be accessed for each processor in the computation.

The values for the counters and timers for a module are in the form of a
vector, one vector per processor. When they are read in, the values are stored
in the module data structure indexed by the processor number. The value of
a specific counter is determined by using the processor number to obtain the
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appropriate counter vector and using the offset stored in the program model
as an index into the vector.

With the performance data input, Gauge generates an execution profile.
The first step is to determine the execution frequencies of all programs in
the computation. This is done first for PCN programs and then for foreign
programs. If a PCN program is a parallel composition, it has only one success
couynter field. The value of the counter indicated by this field is the execution
frequency of the program.

In a choice composition, we compute the execution frequency of each
implication and from this, the execution frequency of the composition as a
whole. The execution frequency of an implication is equal to the number
of times the implication succeeds and fails. Using the recurrence relation
of Equations 5.12 through 5.14, these profile values are computed from the
success counters of each implication and the default failures of the program.

The call frequency of foreign programs is determined next. The execu-
tion frequency of a foreign program is computed by summing the execution
frequency of each composition that calls that program. These compositions
are found by following the reverse links in the call graph from the foreign
prograrm.

To obtain execution time from the frequency data, the performance mod-
els, counter values and architectural parameters must be combined. Recall
that the success and failure model for a program is a vector of weights. The
number of times each instruction class executes in a program is determined by
scaling the success model by the contents of the success counter and adding
to this, the failure model scaled by the contents of the failure counter. Exe-
cution time is obtained from this sum by taking the inner product with the
cost parameter values obtained from the parameter database.

The final step in this process is to compute the execution time of the
foreign programs. Recall that the timers for a forcign program are associated
at the call site in the call foreign instruction. For each program that calls
a foreign program, the contents of the timer in the appropriate call foreign
instruction are added to the total time spent in the foreign program.
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7.2 Presentation of Parallel Execution Pro-

file

Once an execution profile is derived from raw performance data, Gauge
presents the profile to the user. Because of the inherent complexity of paral-
lel performance data, the method used to convey the data to the user takes
on special significance. Regardless of how much information is available in
a profile, it is useless unless the user can understand and draw conclusions
from it.

In a sequential profile, performance data is often presented in a table
showing each procedure along with the percent of the total execution time
spent in it. This tabular approach quickly breaks down with parallel profile
data. The reasons for this are:

¢ In addition to execution time and frequency data, we must also contend
with communications and idle time. Understanding the interaction be-
tween all of these indexes is important. Recognizing the interrelation-
ships from a table is difficult.

o With one data set for each processor, either the number of tables or
size of each table will grow to an unmanageable size.

For the above reasons, we find that tabular representation is not generally
used for parallel performance data. Rather, most parallel performance mea-
surement systems, including Gauge, present performance data to the user
graphically. This technique, called performance visualization, takes advan-
tage of the fact that the human visual system is capable of processing large
quantities of information at one time [DBMR89].

Gauge further aids in data interpretation by incorporating mechanisms
for interactive data analysis, or dynamic graphics [BCW8T] as it is sometimes
called. With dynamic graphics, the user interacts with the data, examining
data values, constructing new views of the data and relating data points
between views. These techniques enable a clearer understanding of the data.
than is possible with a static display [Hub83].
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7.3 Visualizing Parallel Profile Data

The goal of performance visualization is to provide a clear concise visual rep-
resentation of the performance data. The user should be able to comprehend
relations between the data and easily identify anomalous behaviors. The
use of performance visualization is a recent occurrence and many different
graphical representations have been proposed. Some systems offer only one
type of display while others provide a range of different display types.

7.3.1 Related work in performance visualization

Because performance visualization of systems other than Gauge are geared
toward data in the form of event traces, displaying the data with respect
to time is usually the focus of these systems. While some of the systems
use animation to show the relationship of the data to time [Cou88, WH0,
GHPWY90], the bulk of the performance visualization systems being devel-
oped focus on a static display of data.

The most obvious type of display is a graph which plots the value of a
performance index on the vertical axis and time on the horizontal axis. In
[PS-2 [MCH*90], the user can combine several data sets into a single graph,
even if the units being measured are different; different data sets are plotted
with different line styles. Clearly, analysis of performance data from more
that a few processors is difficult with this type of display.

More data can be displayed at once by using a different timeline for each
processor and positioning the timelines one next to another. Both Gist [BBN]
and PIE [GS85] use this approach. Rather than showing the value of a
performance index, these tools display how the program state changes with
time on a processor. Fach different state is represented on the time line
by a different color. The number of processors that can be displayed using
this technique is far greater than possible with the graphs of the preceding
paragraph. However, because each program state must have a nonzero width,
there is a limit to how much time can be displayed on the horizontal axis. To
overcome this problem, both Gist and PIE display a subset of the timeline,
and provide the ability to scroll over the data.
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7.3.2 Performance displays in Gauge
Gauge can display seven types of profile data:
¢ The execution time on a per program, per node basis.
¢ The idle time on a per program, per node basis.
¢ The number of invocations on a per program, per node basis.
e The number of communications on a per node basis.
e The time spent in communication on a per node basis.
e The volume of communication on a per node basis.
e The time spent in garbage collection on a per node basis.

Parallel profile data is essentially three-dimensional, a profile value being
associated with every pairing of a program and a processor. By imposing an
ordering on the programs in a profile, parallel profile data can be displayed
as a surface in three-dimensional space. While this approach displays the
performance data in a form that many users are familiar with, it has disad-
vantages. The primary drawback is that in order to fully comprehend the
data, the user must look at it from all angles; a single view is not sufficient.
Another problem is that surfaces represent a continuum of values although
profile data is discrete in two dimensions: the processor and the program.
A three dimensional dimension surface contains more information than we
require.

In Gauge, parallel profile data is displayed in a form based on histograms
or bar charts. The basic Gauge display, which we call a 3D-histogram, is a
rectangular grid. BEach row of the grid represents a different program and
each column of the grid represents a different processor. Based on the profile
data and the mapping of the processors and programs onto the grid, each
grid cell is be assigned a value. The value of the cell is represented by coloring
it, with each different color denoting a range of data values.

An example of a 3D-histogram showing execution time can be found in
Figure 7.1. The histogram is displayed in a window consisting of three panes.
The top two panes are used in interactive data exploration, the subject of
the next section. The histogram itself is located in the center of the bottom
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pane. The names of the programs being shown are on the left side of the
histogramn and the processor numbers are indicated along the top of the
histogram. The values of the profile data are represented by different shades
of gray; the darker the gray, the larger the value. The mapping of the gray
scale into value is shown on the right side of the histogram. The rectangular
regions located to the immediate right and below the histogram are scroll
bars which are used to move other parts of the data set into the window of
observed values.

In practice, we have found the 3D-histogram to be an effective means
of display. Data from more than 64 processors and 30 programs can be
displayed at one time on a typically sized workstation display. In general,
the view of the data is less cluttered and more comprehensive that which we
would get from a three dimensional surface. Additionally, a 3D-histogram is
quickly rendered on a color workstation without requiring special graphics
hardware.

The color scale for the 3D-histogram must be carefully chosen. In addi-
tion to grayscale, we have experimented with other color scales, with mixed
results. With the exception of shades of gray and red, there is no intuitive
sense of order implied by a color scale [Tuf83]. Although visually less striking
than other color scales, gray scale seems to be the best choice from the point
of view of transferring information to the user.

Displays similar to 3D-histograms can be found in other performance
visualization tools. The matrix display in Hypertool [MAA*89] represents
values by coloring cells on a grid, although the values mapped are between
two processors rather than between a processor and program. Similar to the
matrix display is the performance cell plot described in [RPW&89).

Some of the data collected by Gauge, such as interprocessor communica-
tion, is not three dimensional. For this data, Gauge displays standard two
dimensional histograms with either node numbers or program names plotted
on the independent axis. In addition to communications data, garbage collec-
tion time is displayed on a standard histogram. Two dimensional histograms
are also used in Gauge to display the result of projecting three dimensional
performance data onto the processor or program axis. The use of projections
is discussed further in Section 7.4.3.

Data from two or more standard histograms can be combined into a single
stacked histogram. An example of a stacked histogram which shows the
amount of idle time and execution time for the processors in a computation
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is shown in Figure 7.3. Stacked histograms with programs on the independent
axis are also available.
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Figure 7.3: A stacked histogram showing the idle time and execution time

The final display type available in Gauge is a binned histogram. The
independent axis of the histogram is a range of values which cover all the
values present in a profile. The length of each bar is equal to the number of
times a value in the range occurs in the profile. For example, if an execution
time profile with values ranging from zero to 100 seconds is displayed in a 10
bin histogram, the length of the first bar is equal to the number of programs
whose execution time is between zero and five seconds.

7.4 Interactive Data Analysis

A unique aspect of Gauge is its incorporation of interactive data analysis
techniques. Interactive data analysis is a means with which the user can
gain a better understanding of complex data sets. In Gauge, it allows the
user to understand which elements of the profile data are of interest and to
focus on those elements without being distracted by other data. It also aids

141



in understanding the relationship between different elements of the execution
profile.

7.4.1 Related work in interactive data analysis

In trace oriented performance measurement systems, refining the data set
is often a function of data collection. Specifically, each sensor has a filter
component that determines if an event is to be recorded or not. The user
must decide on the filter criteria before the program executes. Filters can be
implemented and specified in a number of different ways. In IIE [SS5+83], a
relational query language is defined and the data to be collected is specified in
terms of a query in that language. The query compiler inserted sensors with
the appropriate filter functions. A simpler approach is found in PIE {LSV*89]
where sensors are enabled by the programmer specifying nodes of interest in
a graphical representation of the program. Another option is to define a filter
specification language and associate filter function written in this language
with a sensor as in [Lin90]. The limitation of these techniques is that they
all depend on @ priori determination of which data will be of interest.

Some tools offer limited interactive control of the data display during
visualization. Two commonly used techniques are zooming and scrolling.
Rather than displaying all of the performance data at once, the data is viewed
as through a window. Scrolling moves the window around and zooming
adjusts the amount of data that can be seen through the window at one
time. These techniques allow the user to interactively specify how much
data is to be displayed; but they offer limited control over which data is to
be displayed.

More general techniques are required if one wishes to display arbitrary
subsets of the data, a capability that is important for performance visual-
ization if we are to assume no a priori knowledge of the performance data.
For example, one might first want to examine the execution time of every
program on every node. A follow up question would be to ask how many
times the top five time consuming programs were called. General interactive
techniques that support on the fly construction of displays are needed.

The Seeplex [Cou88] performance visualization tool facilitates interactive
analysts with a technique called projection pursuit in which views of the
data are refined by defining a series of projections. Examples of projections
include sorting, joining data sets, threshold filtering and a range of visual
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presentations. A graphical editor is provided to specify the projections to
be used and how data flows between them. Because Seeplex gives the user
a great deal of control over which data is to be used and how it 1s to be
presented, using the tool for simple tasks can be difficult [Cou].

7.4.2 Interactive data analysis in Gauge

Interactive data analysis in Gauge is based on the two functions.

¢ The ability to dynamically construct new views of performance data
from an existing display

o The ability to interactively query the data and perform on the fly sta-
tistical analysis.

Essential to both of these functions is the concept of a selection sef. A
selection set specifies the input to a display or query operation.

A selection set 1s a subset of all possible processor/program pairs. The
method used by Gauge to build a selection set 1s called selection, an inter-
active technique which uses a pointing device such as a mouse. An element
of a histogram display is selected by positioning the mouse cursor over the
object on the display, then clicking (pressing and releasing) a mouse button.
The user is shown that the selection has been made by highlighting. For ex-
ample, in Figure 7.1, the program rh_chart:get_side on processor six has been
selected. If the selection is made from a 31)-histogram, then the selected
program/processor pair is added to the selection set. If the selection is made
from any of the other displays, all the processors or programs represented
by the selected bar are added to the selection set. For example, assume the
current display is two dimensional view of idle time per node. If the bar for
node one is selected, then for each program p; in the computation, the pairs
< p;i, 1 > are added to the selection set.

If the mouse is moved while the mouse button pressed, each element in
the display the mouse cursor passes over is selected. If the mouse is over a
selected point when the mouse button is pressed, then the operation becomes
unselect and, until the button is released, the points passed over by the mouse
are removed from the selection set.

There are three shortcuts for frequently used selections. All the programs
on a processor can be selected by positioning the mouse cursor over the pro-

143



cessor number on the horizontal axis and clicking the mouse button. Like-
wise, a program can be selected on every node by clicking the mouse button
when the mouse is positioned over the program name. The third shortcut,
which unselects all current selections, is provided by the clear button in the
top panel of the display.

The selection mechanism used in Gauge has much in common with a tech-
nique from interactive statistical analysis called brushing [BCW87]. With
brushing, a variable sized box, or “brush”, is swept over scatterplot matrices
to select points of interest. The two methods differ in that with brushing,
the size of region selected at one time can be changed; in Gauge the selection
is always one element at a time. Using a long skinuy brush, the data can be
conditioned on a specific variable. In Gauge the same effect is achieved by
selecting on a program name or processor number. While a variable sized
brush can make certain section operations easier, the simpler approach used
in Gauge is sufficient for the vast majority of selection sets needed for pro-
filing.

7.4.3 Creating alternative views of performance data

(GGauge provides the user with three mechanisms for constructing a new dis-
play of profile data from an existing display: subsetting, pivoting and sorting.
The input to each of these operations is the selection set defined by the items
currently selected in the display. If no items are selected, a default selection
set containing all the points in the current display is used.

Subsetting 1s the simplest of the three operations. Subsetting creates a
new histogram containing only the data in the selection set. By subsetting
the data set, the user reduces the volume of data that must be examined,
eliminating points that are not of interest. A second benefit of subsetting
is that the mapping of the color scale onto the values being displayed is
rescaled to fit the new range of data values. This is helpful when the original
display 1s dominated by one or two extreme values. This is often the case
with execution time displays of multilingual programs; the execution time
of the foreign programs is much larger then that of PCN programs. By
eliminating the large programs and their large execution times, the scale can
be expanded, making detail that was previously obscured visible. Subsetting
is initiated by pressing the subset button in the top pane of a histogram
window.
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Pivoting is a mechanism which projects three dimensional histogram data
into a two dimensional histogram. Two pivots are possible. A pivot toward
the node axis produces a two dimensional histogram displaying node number
and profile data. Likewise, a pivot toward the program axis produces a two
dimensional histogram displaving program names on one axis and profile
data on the other. Each pair in the selection set defines two possible slices
through the profile data: one parallel to the processor axis and one parallel
to the program axis. When a pivot is made, the value displayed is the sum
of all of the slices parallel to pivot axis.

Sorting is the third mechanism in Gauge used to alter the way data is
displayed. Either axis can be sorted in order of decreasing value of the
currently displayed profile data. In addition, the node axis can be unsorted
back to node number order and the program axis can be unsorted back to the
order in which programs are defined in their modules. In a 3D display, the
sort i1s applied to the program axis. The value used for the sort is determined
by summing the currently displayed data over the nodes in the selection set.
In a 2D display the sort takes place on the axis displayed.

A sort is initiated by pressing the sort button in the middle panel of the
histogram display. When a view of the data changes, the order in which the
data is presented is preserved from view to view. To show how sorting is used,
we present an example. A view of the execution time of all the programs in
a computation presented in order of the amount of idle time on processor six
is constructed by following these steps:

1. Display the idle time on a 3D histogram.
2. Select processor six.

3. Press the sort button. The program axis will be sorted so that the data
on processor six is in decreasing order.

4. Switch to the execution time display.

The above example shows how specialized displays of performance data
can be constructed. By combining all three viewing mechanisms: subsetting,
pivoting and sorting, the user has a range of different methods to examine a
performance experiment.
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7.4.4 Querying values in a histogram

In addition to graphical displays, Gauge offers three ways to directly observe
profile data: program usage, program calls and a statistical summary. We
call these query operations, for their effect is to directly query the profile data.
Query operations are used to obtain detailed information about specific data.
points in a profile.

A query is initiated by pressing the appropriate button in the top pane
of a histogram window. The results of a query are displayed textually in a
window separate from the histogram, as shown in Figure 7.4. This figure
shows that any number of query results can be displayed simultaneously.
This is convenient for making comparisons between different queries.
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Figure 7.4: A direct query of profile data from a histogram

The input to a query operation is a selection set. The selection set for
the usage and calls query is restricted in that only one program can be in
the set. Any selection set is valid input to the statistics query.

The usage query presents summary information about a program on the
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selected nodes. If the program is a foreign, then the total number of pro-
gram uses and the mean execution time per use is displayed. If the program
is written in PCN, the program type and total number of uses is displayed.
Additionally, the number of times each implication guard in a choice compo-
sition succeeds and fails is shown.

The calls command identifies the callers of a program. Unlike tools such
as gprol, we make no attempt to propagate profile information through the
call graph. Statistical assumptions generally used to assign execution time
to a caller are considered to be unreliable [PF88]. However, by selecting
a single composition, a new window is created which contains a list of the
compositions that call the selected program and the frequency of calls.

The last facility in Gauge displays first and second order statistics of
selected data points. For example, knowing the variance of execution time
for a specific program executing on all processors is important when evalu-
ating how well balanced the computation is. This information is obtained
by selecting the program and then requesting statistics using the comnmand
button in the upper pane of the histogram window.

7.5 Summary

Visualization tools are becoming the accepted approach to presenting perfor-
mance data from parallel programs. In this chapter, we described Gauge, a
tool for visualizing parallel execution profiles. Gauge is unique in its simple
but effective means of presentation and its focus on interactive methods for
exploring performance data.

In designing Gauge, we strove to make it simple to use. In combination
with PCN, Gauge forms an environment for developing efficient parallel pro-
grams. When performance measurement tools are easy to use and tightly in-
tegrated, performance measurement and performance improvement become
part of the normal program development cycle, enabling programmers to
produce better parallel programs.
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Chapter 8

Profiling to Improve Program
Performance: A Case Study

In this chapter, we demonstrate how the performance visualization tools and
techniques developed in this dissertation are used in practice. To this end, we
study the performance of a nontrivial parallel application. We show how the
profile data is interpreted and used to ultimately improve the performance of
the application. As part the discussion, we highlight the advantages of pro-
filing in general and our approach to performance visualization in particular.
We will also point out where profiling limits our analysis.

8.1 The Application

The program whose performance we will study 1s a computational fluid dy-
namics program called FLOW [Lin], which computes wavy Taylor vortices.
Taylor vortices are a particular type of fluld movement that occurs in an
incompressible viscous fluid trapped between two concentric cylinders; one
rotating with respect to the other. In FLOW, Taylor vortices are computed
by numerically solving a system of three dimensional Navier-Stokes equa-
tions. The only input to the program is the problem size: the number of grid
points in each dimension on which the solution is calculated.

The solution method used by FLOW is a Gauss-Seidel relaxation algo-
rithm. The body of the program consists of a double nested loop with the
Gauss-Seidel iterations being the inner loop. The algorithm is controlled
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by two convergence criteria: one to terminate the inner loop and one to
terminate the outer loop.

For a given grid spacing, the number of iterations needed by the relaxation
algorithm to converge depends on the convergence criteria for relaxation and
the size of the problem being solved. The number of iterations required in
the outer loop depends on the amount of error acceptable in the solution and
the problem size. Because the relative amount of time spent in the two loops
of FLOW changes with problem size, performance measurements should be
made during the execution of a realistic problem size and cover the entire
duration of the program’s execution. This is precisely the situation where
profiling is superior to event tracing.

8.1.1 Parallel implementation

In FLOW, parallel execution is obtained by decomposing the grid space in
two dimensions [FJL*88]. With a problem size of I x J x K grid points, the
domain decomposition produces lines of length I parallel to the ¢ axis at each
point (j, £). Operations in the ¢ dimension are done sequentially; operations
in each (7, k) take place in parallel.

About 3300 lines of Fortran code implement sequential operations in
FLOW. These operations include the Gauss-Seidel iteration over a line,
computation of boundary points and calculating the residual error in the
solution.

The parallel component of FLOW consists of about 700 lines of PON
code. The PCN code is organized as a master and a number of workers, all of
which execute concurrently. The computation starts with the master, which
starts a worker on each of the remaining processors. After the workers have
started, the master distributes the lines in the grid to the workers and, using
shared definitional variables, interconnects the lines in the communications
pattern shown in Figure 8.1. The master also serves as the collection point
for the global values used to determine convergence: maximum residual for
each relaxation step and average pressure for the outer loop.

Each worker is responsible for calculating the solution for a set of lines.
All the lines are computed in parallel. The computation for a line is a double
nested loop. At the end of each inner loop iteration the residual value on
a worker is sent to the master. The master computes the global maximum
residual value and broadcasts it back to all of the workers. This value is com-
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Figure 8.1: The communications pattern between lines in FLOW

pared to the convergence criteria to determine if another inner loop iteration
is needed. A similar process takes place with the outer loop and the average
pressure value.

8.1.2 Execution environment

In this study, FLOW was run on a Symult S2010 parallel computer [Sym89].
Each processing node on the 52010 consists of a Motorola 68020 microproces-
sor with a 68881 floating point coprocessor, memory and a routing chip which
implements message passing between processors. Fach router is connected
to its four nearest neighbors, forming a rectangular mesh interconnection
topology.

The 52010 used has a total of 192 nodes -~ 64 of the nodes have 4 Mbytes
of memory and the remaining nodes have 3 Mbytes. When FLOW runs,
all the data structures for the grid points computed on a node must fit
into the available node memory — the size of the largest problem which
can be solved is therefore limited by the amount of memory available on a
node after the FLOW code has been loaded. This situation makes efficient
storage of performance data very important. If tracing were used, the buffer
space required to store the event log will force us to run a smaller problem
size. From the discussion of Section 8.1, we know that changing the problem
size will alter the characteristics of the program, placing the validity of the
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performance data in question.

FLOW executes under the standard PCN system. As discussed in Chap-
ter 6, profiling support is integrated into PCN and thus no special prepara-
tion of FLOW was required to conduct this performance improvement study.
The measurement overhead for profiling FLOW is shown in Table 8.1. These
measurements differ from those in Chapter 5 in that the cost of the Fortran
code 1s included in determining the total program size and execution time.
The statistics of Table 8.1 show that in actual use, the costs of profiling
FLOW are an order of magnitude below the design goals for the profiler.

Measurement Overhead
Type |  Overhead

Storage 2.6 %

Run time 0.18 %

Table 8.1: The measurement overhead for FLOW {including Fortran proce-
dures)

8.2 Performance Improvement of FLOW

In this section, we demonstrate how to use Gauge to: 1) understand the
behavior of FLOW, 2) determine if there are aspects of the behavior that
degrade the program’s performance; and 3) guide the process of identifying
and correcting the cause of a performance problem. Performance evaluation
with Geauge is a dynamic, interactive process. Unfortunately, describing the
users interaction with Gauge is difficult. In this chapter, we show the path
taken to improve the performance of FLOW. What we cannot show is the
high degree of interaction with Gauge that enables us to find that path.

Performance improvement is an iterative process which repeats until the
programmer is satisfied with the resulting performance of the program. With
(Gauge, the steps to improve performance are:

1. Conduct a performance experiment.
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Examine the profile data from the experiment, looking for aspects of
the profile that indicate a performance problem. Continue on to the
next step if a significant problem is found.

Formulate a model of the program’s actions which accounts for the
performance bottleneck. Alternaiive views of the profile and interactive
statistical queries are useful in this step.

Based on the model of program activity, propose an alteration to the
program to correct the performance problem.

. Conduct a performance experiment with the altered program.

Examine the new profile, comparing it with the original. Of interest is:
1) how the behavior of the program has changed, 2) how that change
affects the performance bottleneck and 3) the performance of the pro-
gram overall. If the alteration is successful, the performance botile-
neck is eliminated and the program performance improves. Program
improvement continues with Step 2. A failure to improve program
performance can be caused by incorrectly identifying a performance
bottleneck, having an erroneous understanding ol what the program
1s doing or altering the program in a manner that does not actually
fix a correctly identified performance problem. A detailed examina-
tion of profiles from the original and altered program can ofien reveal
which of these situations is true. Again, interactive statistical analysis
and constructing different views of the data are important parts of the
examination. We refurn to Step 3 and try again.

8.2.1 Preliminary analysis

FLOW was executed on 160 nodes with a problem size of 32 x 32 x 32.
Figure 8.2 is an execution time profile for the execution of FLOW. The hor-
izontal axis 1s labeled with processor numbers from 0 to 159 and the vertical
axis is labeled with the names of the different programs in the computation.
The programs have been sorted in order of decreasing total execution time.
The scale of the profile is in seconds.

The summary data at the bottom of the profile shows that the program

completed in 88 minutes and 38 seconds. Over twenty million PCN programs
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Figure 8.2: The execution time profile of FLOW
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were executed. If an execution trace were to be used to record just these
events, over 100 Mbytes of data would be recorded. The Gauge profile for
the entire computation, including the performance models, is less than 1
Mbyte long.

The profile itself shows that FLOW spends more time in a Fortran pro-
cedure called gaussl than in any other procedure in the program. In gaussl,
a Gauss-Seidel sweep on a line is performed. The first PCN program to
appear in the profile is linel, which collects the values from neighboring lines
and calls gaussl. These programs comprise the inner loop of FLOW and
their position in the profile is not surprising,.

The master is executed on node 120. The fact that node 120 is do-
ing something different from the other nodes in the computation is clearly
shown in the profile. Another area of interest is found in the programs low;j,
highj, lowk and highk. These programs implement the boundary conditions
on the solution. We can see that although a pattern is present, the bound-
aries are not mapped evenly onto the processing nodes. However, their total
computation is in the one second range and as we shall see shortly, this is
mconsequential.

8.2.2 Improving the load balance in FLOW

The first question to be answered by Gauge is: how well does FLOW per-
form? Without a performance measurement system, the an answer to this
questions 1s obtained by executing the complete program several times and
computing speedup. From speedup the efficiency of the computation can be
obtained and used to determine if a performance bottleneck exists. With
Gauge, we look to utilization rather than efficiency. Processor utilization
for FLOW is determined from the execution time breakdown shown in Fig-
ure 8.3. In this view of the profile, processors are on the vertical axis and the
horizontal axis shows time in seconds. The light gray part of each bar is the
amount of time a processor spends idle; the dark gray area is the amount of
time a processor spends computing. The distance between the end of a bar
in Figure 8.3 and the total execution time of the FLOW is the amount of
time a processor spends in communication and garbage collection.

The peak idle time is on node 120, the master, as would be expected.
However, almost 2000 seconds of idle time can be seen on processors perform-
ing the relaxation computation. Using the interactive statistical capability
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of Gauge, the average idle time and average execution time are determined.
From these numbers we can determine how much time FLOW spends exe-
cuting code, communicating and idle. This breakdown in shown in Table 8.2.
The processor utilization in FLOW is about 60% and we investigate further
into the behavior of the program to try to improve this.

Execution Time Breakdown
Activity |  Percent
Computing 61

Idle 27
Communicating 12

Table 8.2: Breakdown of program activity during the execution of FLOW

Tirae Breakdorm
3000 3500 4000 450 5000

Tatal Bxecution Time (mins:sees:msecs): 88:38:740
Taotal Reductions: 20572681
Tetal Suspensions: 21135688

Figure 8.3: Breakdown of time spent in FLOW

A peculiar aspect of Figure 8.3 is that, excluding the master, idle time
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on a processor has tree distinct values. If we pivot the display of Figure 8.2
into the processor axis, shown in Figure 8.4, we see that the variation in
idle time 1s caused by a variation in computation on a node. There are
two possibilities: different numbers of tasks are mapped to the nodes or the
amount of computation varies from task to task. Given the presence of three
discreet execution times, we suspect a problem with the function that maps
lines onto processors.

Execution Time
1500 2080 2500 3000 ‘

Total Execution Tirme {minssecsimsees): 85:38:740
Tokal Reductions: 20572881
Total Suspensions: 21139668

Iligure 8.4: Load balance for FLOW

This conjecture can be confirmed by looking at the execution frequency
profile of linel or gaussl, programs which execute once per task per iteration.
Selecting gaussl in Figure 8.2, pivoting into the node axis and displaying
execution frequency, we obtain Figure 8.5. From this display we see that
the variation in execution time can be explained by different numbers of
lines being mapped to a processor, not by variation in the time required to
compute a line.
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Execution Frequency
1000 2000 3000 4000 5000 60ODD 7000 8000 9000 10000 11000 12000 13000 14000 15006 16000

Total Execution Time {mins:secsimsecs): 88:38:740
Total Reductions: 20572881
Total Suspensions: 21139688

Figure 8.5: Per processor execution frequency for gaussl in FLOW
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FLOW maps a line defined by the point (7, k) onto a processor n by:
n(z, k) = (j* (K +1)+ &) mod N

where A is the total number of processors and K is the problem size in the
k dimension. This mapping was chosen by FLOW’s author because of it’s
simplicity. Given the caveat against optimizing too early in the design of a
program [KP78], this choice is justified. However, the profile clearly shows
that this mapping causes an extra 10% in idle time due to load imbalance.

FLOWI is a version of FLOW in which the original mapping function
is replaced by:

L = |[(J*K)/N|
E = (J*K)mod N

| itk K k< Ex(L+41)
n(j, k) = { (.’1‘%“-};'1""'“}_1_5‘9*@-"1)) + E otherwise 5

Equation 8.1 ensures that the first £ processors will execute L 4+ 1 and
the remaining processor will execute L lines. For our 33 x 33 problem, there
are 1089 lines. The new mapping function assigns the 7 lines to the first
130 processors and 6 lines to the remaining processors. Another advantage
of the mapping function of Equation 8.1 is that it assigns consecutive values
of £ to the same processor, reducing the amount of communication needed.
While the mapping is more complex, it is a one time cost that is incurred
only during program startup.

To sec how well the new mapping works, the same data from Figure 8.5
is shown for FLOWI in Figure 8.6. As we see, there are only two execution
frequencies for gaussl. The new mapping works as expected.

The amount of execution time spent in gaussl on each processor is shown
in Figure 8.7. Node 35 presents a puzzle: although it executes gaussl the
same number of times as nodes 0 though 135, its execution time is 500
seconds less. This is probably caused by an interaction between the location
of boundaries in the grid, the number of processors used and the mapping
function.

The execution time of FLOWTI is 15% less than that for FLOW. The
source of the improvement can be seen in the executlion time breakdown for
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BExecution Fraguency

3000 4000  SOOO G000 7000 3000 9000 10000 11000 12000 13000 14000

0 1000 2000

Total Execution Tirme (mins:secsimsecs): 75:19:980
Total Reductions: 20575330
Total Suspensions: 14392738

Figure 8.6: Execution frequency of gaussl in FLOWI1
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Execution Tirne
1 10 100 1000

Total Execution Time {minsisecs:msees): 75: 19980
Total Reductions: 20575330
Total Suspensions: 14392733

Figure 8.7: Execution time for gaussl in FLOW]1
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FLOWI1 shown in Figure 8.8. The breakdown of execution time in FLOW1
1s shown in Table 8.3. Although the computation time is the same in FLOW
and FLOWI, we have increased the utilization to 73% by decreasing the idle
time by 41% and the communications time by 35%.

Execution Time Breakdown
Activity | Percent
Computing 73

Idle 18
Communicating 9

Table 8.3: Breakdown of execution time for FLOW1

Time Breakdown
1500 2000 2500 3500 ‘

Total BExecution Time {mins:secsimsens): 75:13:980
Total Reductions: 20575330
Total Suspensions: 14392738

Figure 8.8: Breakdown of execution times in FLOWI1

Figure 8.9 shows the idle time for FLOW1 on a per node basis. Subset-
ting has been used to remove the master node from this figure. The effect of
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processing one more line on nodes 0 through 135 than on 136 though 159 is
apparent in the difference of 500 seconds between the idle times on the two
sets of nodes. In addition to the idle time caused by the unequal mapping of
nodes to processors, there is an additional 800 seconds of idle time at each
node. We focus on this idle time next.

Idle Time
2000 2500 3000 3500 4060

Tots] Bxecution Time {rains:secs:msecs): 75:19:980
Total Redustions: 20575330
Total Suspensions: 14392738

Figure 8.9: The per node idle times for FLOW1

8.3 Decreasing the Cost of Global Synchro-
nization

In Figure 8.10, the idle time of each program and node is shown. Two
programs are responsible for 90% of the idle time on a node: wait_int and
linel. Because of their prominence in the profile, we focus only on these two
routines.

The PCN code for linel is shown in Figure 8.11. There is one invocation
of linel for each line in the computation. For each execution, the variable
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Sweep is checked. Ifit is greater than zero, the current value of lines (j — 1, k),
(J+L,k), (7,k+1), (4, k= 1), (j,k+2) and (j, k — 2) are obtained from the
variables Jp, Jm, Kp, Km, Kpp and Kmm and the line (7, %) is updated by
calling gaussl. The assignment of DQQJK to the head of the hst ME makes
the current value of the line available to other invocations of linel. Finally,
linel is called recursively to perform the next update of the line. If Sweep is
zero, the current value for the four adjacent grid points is obtained and the
residual for the line is calculated. The assignment to RSin sends the residual
to a process which computes the maximum residual value over all lines. Then
the program wait_int is called to perform the convergence test.

The variables Jp, Jm, Kp, Km, Kpp and Kmm are streams on which the
current value of adjacent lines are communicated to linel. If a neighboring
line is computed on a different processor and the value has not been sent, then
linel must wait for the value to be communicated. If no other compositions
are on the active queue, this wait shows up as idle time. Since all the other
variables in linel are mutable or locally produced, all the idle tiine of linel is
due to waiting for one or more of the above variables.

The convergence check at the end of a relaxation iteration is performed
by wait_tnt, whose PCN code is found in Figure 8.12. The convergence test
requires the maximum line residual, which is broadcast to all instances of
wait_int in the variable RESIN. If the calculation has converged, wait_int in-
forms the process responsible for starting another outer loop iteration. If
relaxation has not converged then a new linel computation is started. There
are two possible causes of idle time in wait_int: obtaining the value of RESIN
in both implications and obtaining the value of Kpp and Kmm in the first
implication.

Since the idle time of wart_int is the larger of the two, we start here. Qur
initial hypothesis is that the bulk of the idle time is caused by waiting for
RESIN. Our reasoning for suspecting RESIN over Jp, Jm, Kp, Km, Kpp or
Kmm is:

¢ The calculation of RESIN requires global communication

o The profile shows that the second implication of wait_int executes 16
times as often as the first. The second implication does not need the
value of any neighboring points.

e The second implication of linel, from which wait.int is called, uses all
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linel(j k,PC,LC,Sweep,IMAS, JMAS, KMAS, Jm,Km,Jp,Kp,ME Kmm Kpp,DQQJK,
RSFRE,GHSFRE,G,Wk1,5tr, RESIN,RESIN1,RSin,RSin1)
double G[],DQQJKI[],RSFRE[},GHSFRE[] resin;
int IR,JR, KR,MR;

{? /¥ Get values from neighboring grid cells */
0 < Sweep, Jm?=[X2|X2s], Km?=[X3|X3s],
Jp?=[X5|Xbs], Kp?=[X6|X6s],Kmm?=[_|X1s], Kpp?=[_{X4s] —>
{; /* relax the line */
gaussl (PC,LC,DQQJK,X2,X5,X3,X6,RSFRE,IMAS, JMAS, KMAS 4,G),
R1=DQQJK, ME=[R1|Rs],
linel(j,k,PC,1—LC,Sweep—LC,IMAS,JMAS KMAS X2s,X3s X5s X6s,Rs,
X1s,X4s,DQQJK, RSFRE,GHSFRE,G Wk1,5tr,RESIN,RESIN1,RSin,RSin1)
%
[ * Last sweep through the data? */
Sweep==0,Jm?=[Xjm| ], Km?=[Xkm|],Jp?=[Xjp|] Kp?=[Xkp|] —>
{; /* Calculate residual */
dihs (GHSFRE,DQQIK Xjp,Xjm Xkp, Xkm,IMAS,JMAS KMAS,G),
residl1_(j.k, GHSFRE,RSFRE,IMAS,JMAS , KMAS,IR,JR, KR, MR, resin),
/¥ Send the residual to master */ 20
RSin=[resin|RSin2],
/¥ Wait for marimum residual value from master */
wait_int(RESIN,RESIN1,RSin2,RSin1, Wk1,IMAS,JMAS, KMAS,
Jm,Km,Jp,Kp,Kmm,Kpp,ME, DQQJK,RSFRE,GHSFRE,G,5tr,PC j k)

Figure 8.11: PCN code for linel
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wait_int(RESIN,RESIN1,RSin2,R5inl, Wk1,IMAS, JMAS KMAS,
Jm,Km, Jp,Kp,Kmm,Kpp,
ME,DQQJK,RSFRE,GHSFRE,G,5tr,PC j k)
double DQQJK]],RSFRE[],GHSFRE[],G[];
{?
/* Inner loop value has converged.
Get values of neighboring grid cells */

RESIN 7= [H|T], H<=0.005,
Jm?=[_|A], Km?=[_|B], Jp?=[_|C], Kp?=[_|D], Kmm?=[_|E], Kpp?=[.|F] <o
{Il /* Prepare for the next iteration of the outer loop */
Wk1={5tr,A,B,C,D,ME E F}, RESIN1=T,RSin2=RSinl },

/* Inner loop value has not yet converged */

RESIN ?= [H|T], H>0.005 —>
[ * Start ¢ new reduction step */
linel(j,k,PC,0,3,IMAS,JMAS ,KMAS,Jm,Km,Jp,Kp, ME,Kmm Kpp,DQQIK,
RSFRE,GHSFRE,G,Wk1,5tr, T,RESIN1,RSin2,RSinl)

Figure 8.12: PCN code for wait_int

167



neighboring points except Kpp and Kmm. Thus idle time can occur
only while waiting for these two variables. However, since consecutive
k points are mapped to the same processor, we would expect 83% of
the Kpp and Kmm values needed to be generated locally.

Limitations in the amount of detail available in a profile force us to infer
what is going on in FLOWI. In situations such as this, an event trace can
be useful. By defining trace events to capture when wait_int is waiting for
RESIN and when it is waiting for Kmm or Kpp, we can find out exactly what
the cause of the idle time is. Guided by the profile, we can limit the number
of trace events generated on a node to about 100,000.

If RESIN is the cause of the idle time in wait_int, increasing the speed
at which the value of RESIN is sent to each processor should reduce the
idle time. In FLOWI, the value of RESIN is not needed until wait_int is
executed. Since RESIN is produced on the master, this means that wait_int
must wait until the request for the value of RESIN has been sent to the master,
processed and sent back before execution can continue. Because wait_int is
called when the iteration terminates, there is no other work available to mask
this communications latency and idle time results.

A solution to this problem is to start a computation executing in parallel
with linel which requests the next value of RESIN as soon as the current
one arrives. This allows the latency of the request to be masked by the
computation linel. Because RESIN values are generated one per iteration, no

flow control is needed in the process that performs the prefeich. This version
of FLOW is called FLOW?2.

The idle time profile for FLOW2 is shown in Figure 8.10. This figure
shows the result of an interactive statistical query of the idle time in wait_int
on the first nine processors. The results are disappointing; there is virtnally

no change in the idle time of wait.int and the execution time of FLOW? is
within a few seconds of FLOWI.

At this point, we must revise our interpretation of what is holding up the
execution of wait_int. If global communication are not the problem, then the
values of Kmm and Kpp must be the source. The idle time in wait_int and
linel turn out to be caused by the same problem.
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8.4 Decreasing the Cost of Relaxation Step

We now look at reducing the idle time associated with linel. Our hope is that
in reducing this time, the idle time of wait_int will decrease as well. Every
execution of linel will require at least two values from another processor:
Jp and Jm. Given that there are at least 6 lines per processor, we would
expect that there would be enough computation to mask the latency of most
communications of neighbors. Thus the prefetch technique that we applied
in the previous section will probably fail here as well.

Something must be preventing the values of neighboring points from being
communicated in a timely fashion. We suspect the problem is caused by a
peculiarity of the PCN implementation. While a Fortran computation is
taking place, the PCM is in the reduction component and therefore cannot
process any communications. We see from the execution profile that if a
PCM is executing gaussl, a processor waiting for a value can end up waiting
up to .19 seconds before the PCM will respond. If we assume that only
the first linel execution of an iteration on a node will have to wait, the per
invocation waiting time for linel is around .14 seconds. The data supports
the hypothesis that linel is being forced to wait for a gaussl cail on another
processor to complete.

The solution to this problem is simple. The single Fortran procedure
gaussl is teplaced by three procedures: 1) init_gauss, which starts a Gauss-
Seidel iteration, 2} gauss_loop, which updates a subset of the points in a line
and 3) end_gauss, which finishes the update on a line. Thus gaussl becomes:
{; init_gauss,

gauss_loop, ... gauss_loop
end_gauss
}
The number of gauss_loop calls used are specified by an argument to init_gauss.

When composed sequentially, these smaller routines perform the same
function as gaussl while allowing communication with other PCM to occur
more frequently. We will call this version of the program FLOW3. In
Figure 8.14, we can sec the idle time resulting from splitting gaussl into four
pieces. Instead of processing one 33 point line al once, the line is processed
in eight point chunks.

As we expected, the idle time of both wait_int and linel have decreased.
The overall performance achieved is shown by the profile in Figure 8.15. The
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Figure 8.14: The idle time in FLOW3
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breakdown of execution times for FLOW3 is shown in Table 8.4. We see that
the processor utilization is now up to 79% and the performance of FLOW3
is 4.4% better than FLOW1 and 18.8% better than FLOW.

Execution Time Breakdown
Activity |  Percent
Computing 79

Idle 12
Communicating 9

Table 8.4: The breakdown of execution time for FLOW?3

Tirme Breakdown

200 1500 2000 2500 3000 3500 4000

Mo~ @m o kWM e

10
1
1
13
1
15
i
17
bH
1%
20

Total Execution Tirne {mins:secs:rzecsy: 71:57:50
Tatal Reductions: 42184753
Total Suspensions: 19658434

Figure 8.15: Breakdown of idle times in FLOW3

It is of interest to know what the cost of splitting up gaussl is in terms
of execution time. The execution time profile for FLOWS3 is shown in Fig-
ure 8.16. In this figure, we show the usage statistics for each of the elements
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in the split version of gaussl: initialization, the main loop, and post loop cal-
culations. The time spent in init_gauss and end_gauss fell below the minimum
value that can be recorded on the Symult. The loop itself took .048 seconds
per chunk, or .192 seconds per line, within 1% of the time it takes to process
a line all at once. The execution time of linel, which calls gauss, increases
by 26%. This increase is due to the overhead of the additional sequential
composition.

There is still room for improvement in FLOW. Further analysis proceeds
as we have shown and we conclude the case study here,

8.5 Summary

In this chapter, we have shown how the PCN profiler and Gauge are used
to improve the performance of a parallel application. In the process, we out-
lined a general procedure that can be used as the basis for any performance
improvement study.

The analysis presented here relied heavily on facilities that are unique
to Gauge. Dynamic statistical analysis, subsetting, and pivoting were all
extensively used.

A final note on the virtues of profiling: at no point during this study did
we concern ourselves with the mechanics of generating performance data. No
matter what modifications were made to the program, the profile was alway
generated and available. Since we did not have to worry about measurement,
we were able to concentrate on the program.
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Chapter 9

Summary and Conclusions

We started this dissertation with the thesis that execution profiling is an
important means to understanding and improving the behavior of parallel
programs. In Chapter 8, we demonstrated this to be true by improving the
performance of a large parallel program executing on 160 processors.

In addition to introducing profiling as an important tool, our research
makes the following contributions.

e We have developed novel, low overhead measurement techniques to
obtain execution profiles from parallel programs. Only simple counters
and a microsecond timer are required. These techniques can be used
on any commercially available parallel computer.

e Our measurement techniques were demonstrated by integrating them
into the PCN parallel programming system.

e We have developed a new approach for visualizing performance data
obtained from parallel programs. This approach is demonstrated in
Gauge, a performance visualization tool we designed and built.

o We have developed a methodology for performance understanding and
improvement based on parallel execution profiling. This methodology
is demonstrated on a large parallel program.

The tools and techniques we have developed are an integral part of the
PCN system. In total, about four man-years of effort have gone into the
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development of PCN. Of this, developing the facilities for performance mea-
surement account for about one quarter of this effort.

9.1 Future Work

As they stand, the methods developed in this dissertation have been used to
implement a practical profiler for parallel programs. Every day, PCN and
GGauge are used to develop parallel programs that solve difficult computing
problems [TF]. However, there are a number of directions that this work can
be taken.

9.1.1 Alternative uses of performance data

In Chapter 7, we showed how performance visualization is used to present the
performance data to a user. However, performance data can also be used by
other components of the parallel processing system, for example the compiler
and runtime system.

Of particular interest is the use of profile data to partition, map and
schedule tasks with a program. Some work in this area has already been
done [GT88, SH86, Cyt84]. Because of the continuously monitored nature
of programs developed under our system, the entire execution history of a
program can be kept and used as a basis for compile time resource allocation.

The profile data for a program is kept on the processing node as the pro-
gram executes. An interesting question is: can this data be putl to use as the
program executes? It is possible that by examining the profile data collected
up to a point in the computation, the future behavior of a program can be
predicted. This prediction can be used to for load balancing, repartitioning
the computation, etc.

9.1.2 Snapshots and profiling

Profiles do not contain any temporal information. However, during program
execution, it is possible to capture a snapshot of the profile data that has been
collected up to that point. By looking at the difference between successive
snapshots, a sequence of profiles can be obtained. Taken to the limit, this
sequence is equivalent to a statement level program trace. A technique similar
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to this is applied in [KCHCR&9| in which snapshots of summary statistics are
kept by the operating system on a processing node and periodically dumped
over a network to another machine for display.

Snapshotting poses difficulties due to the problem of determining the
global state of a distributed computation. Chandy and Lamport [CL85]
have developed methods for doing this. A more practical approach would be
to forego the idea of a global snapshot and assume that profile sequences are
only valid within a node.

Snapshots would most likely be of use in computations that have several
phases. A different profile would be collected for each phase. Phase based
display of profile data has been explored in the context of trace based mea-
surement systems in [MCH*90]. For extremely long computations, animation
of profile data is also a possibility. However, the overhead of snapshotting
will limit the frequency at which data can be collected.

9.1.3 Gauge and performance visualization

Gauge can display performance data from about 100 processors at once on
a typical color display. However, there is an immediate need for an order of
magnitude increase in this number. Some method of compressing the data
in the processor axis is needed.

One method of data compression which we are considering is to use a
classification algorithm to group together data from sets of processors that
perform similar activities. For example, in figure 8.2, the activities of pro-
cessor three and four are much alike and could have been combined into a
single processor group.

9.1.4 Application level performance measurement

As defined, PCN has three basic composition operators. However, a goal
in designing PCN is to be able to provide high level composition operators
specialized to specific application domains [FFS90]. For example, the FLOW
code discussed in Chapter 8 could have been expressed in terms of a Gauss-
Siedel composition operator.

As new operators are introduced, new measurement methods will be
needed. These methods can be integrated into the domain specific com-
position operators much as we have integrated measure into the basic PCN
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compositions. The result would be the ability to express performance at in
terms of an application domain rather than in terms of the programming lan-
guage. This will simplify understanding the performance of an application.

9.2 Final Thoughts

Parallel processing is a reality: commercially available parallel computers
are being used daily to solve problems in application areas from physics to
banking. The {uture success of parallel computing lies in the ability for
nonspecialists to take advantage of the technology: this has been one of the
goals of PCN from the start. By integrating performance measurement into
PCN | hopefully we have put the ability to write efficient parallel programs
within the reach of any individual who cares to try.
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Appendix A

A Summary of Notation

A The architecture parameter of a performance experiment
C A choice composition
fglg) The probability density function of random variable g
go(li) The number of guard tests in implication { of composition C
1k A PCM instruction
i) The number of implications in choice composition ('
7z The input data for a performance experiment
i An implication
n(C') Total number of nodes in a decision tree
ni(C) Number of internal nodes in a decision tree
T, The number of times instruction i; execute
N, ‘The amount of data copied by during an assignment
N The number of processors used for a computation
P The performance of a system
pi A performance index of a system
P The program executed during a performance experiment
Plz|y} The probability of z given y
Qp The bag of programs in the active queue when the
PCM exits the idle state

Sp(N) The speedup of program P when executing on A processors
Spon Size of the PCN components of a program

foreign Size of the foreign components of a program
Spom Size of the PCN abstract machine
Smeasurement Amount of storage required for measurements
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Storage overhead for decision tree measurements

Storage overhead for linear search measurements

The execution time of a program

The sequential execution time of a program

The per data element cost of copying data during an assignment
The cost of executing instruction z;

The idle time for a PCN program p

An integer valued random variable representing which test

in an implication guard fails

The amount of time a computation spends executing

PCN programs

The amount of time a computation spends executing

foreign programs

The amount of time a computation spends communicating

The amount of time a computation spends idle

The amount of time a computation spends

making and recording measurements

Execution time overhead for decision tree measurements
Execution time overhead for linear search measurements
Difference in the amount of storage required for

measurements S; and S,

The number of tests left at the leaf of a decision tree for implication 7,
The number of times the &th implication of choice composition ¢
executes successfully

The number of times the kth

implication of choice composition € fails
The number of times the jth guard test in [, fails

A program state, o member of the set &

Component ¢ of a program is executing user code

Component ¢ of a program is waiting (idle)

Component ¢ of a program is communicating

The set of states representing activities of program execution

The amount of time required to make a single measurement

The storage space required for a single measurement
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Appendix B

A Summary of the Program
Composition Machine

This appendix is a summary of the PCN abstract machine. The information
presented here is abstracted from [FT90]. Some of the more esoteric details
of the PCM have been omitted in this discussion.

B.1 Machine Registers

The PCM has 256 general purpose registers and six special purpose registers.
A summary of the registers follows.

The program counter (PC). Points to the next PCM instruction to be exe-
cuted. The contents of PC are incremented by the PCM after each instruc-
tion executes.

The failure label (FL). Holds the address to load into the program counter
if a test instructions fails. FL is loaded by the try instruction.

The current process (CP). Contains a pointer to the current process record.
A process record is a data structure on the heap. The contents of CP are set
by halt and recurse instructions as well as by the communications component

of the PCM.

The argument registers (Al — A256). The PCM has 256 general purpose
registers that can serve as an argument to an instruction.

The structure pointer (SP). This register is used to point to the next element
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to be filled when building a structure on the heap. SP is initialized by the
fork and build_static instructions.

The heap pointer (HP). Points to the first available cell on the heap. HP
is incremented as part of the build and put instructions and reset by the
garbage collector.

The foreign pointer (FP) points a set of foreign argument registers. FP
18 reinitialized to point to the first argument register on the return from a
foreign program call.

B.2 Instruction Summary

The following is a summary of the instruction set for the PCM.

fork{Procedure,A) creates new process record with A arguments and pushes
it onto the run queue. The program field of the process record is initialized
to point to the PCN program P.

recurse( Procedure,A,Counter ) starts execution of program Procedure with A
arguments if the fimeslice register is nonzero. If the contents of the timeslice
register is zero, a new process record is created and initialized as in the fork
instruction. In either case, the contents of the timeslice is decremented and
the counter is incremented.

halt(counter} removes the current process record from run queue and pre-
pares the PCM to execute the next process on the queue. The contents of
the counter are incremented.

default(A,Counter) suspends the current process if any test instruction in
the current process have suspended. Otherwise execution continues. The
contents of Counter are incremented only if the process suspends.

try(Label} stores Label in the failure register.

build_static{Reg,Byte, Type,Size) builds a data structure of type Type and
size Size on the heap. The header of the data structure is set to Byte. A
pointer to the data structure is stored in Reg. If the data type is a tuple,
the structure pointer is set to point to its first element.

build_dynamic(Type,Regl,Reg2) is similar to build_static except the size of
the structure to be build is specified in Regl and a reference to the structure
is put into Reg2.
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build_def(Reg} creates a definition on the heap and puts a reference to it in
Reg.
put_data(Reg,Byte,Size,Value) builds a constant on the heap and put a ref-

erence to 1n into Reg. The Byte, Size and Value arguments indicate the
constant to be used.

put_value{Reg) copies the contents of Reg to the storage location pointed to
by SP. SP is incremented.

copy{Regl,Reg2) copies the contents of Regl to Reg2.

get_tuple(Regl,A,Reg2) tests Regl to see if it points to a tuple. If the con-
tents of Reg! are not defined, then the instruction suspends.

equal(Regl,Reg?) tests to see if the data structures referenced by Regl and
Reg? are equal. If the contents of either register are not defined the instruc-
tton suspends.

neq(Regl,Reg?) tests to see if the data structures referenced by Regl and
Reg2 are defined to constants that are not equal. If the contents of either
register are not defined the instruction suspends.

type(Reg,Tag) tests to see if the contents of Reg has the type specified by
Tag. If Reg is not defined, the instruction suspends.

le(Regl,Reg2) tests to see if the contents of Regl is less than the contents
of Reg2. The appropriate type conversion is performed. If the contents of
either register 1s not defined, the instruction suspends.

It(Regl,Reg?2) tests to see if the contents of Regl is less than or equal to
the contents of Reg2. The appropriate type conversion is performed. If the
contents of either register is not defined, the instruction suspends.

data(Reg) tests to see if the contents of Reg is defined. The test fails other-
wise.

define(Regl,Reg2) defines Regl to be the contents of Reg2. It is an error for
Refl to be anything other than a definitional variable or a remote reference.

get_element(Regl,Reg2,Reg3) copies an element from the array referenced
by Reg2 into the data structure referenced by Reg3. The index into Reg? is
referenced by Regl.

put.clement{Regl,Reg2, Reg3) performs the inverse of get_element.
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sizeof(Regl,Reg2) places into Reg2 a reference to the size of the term refer-
enced by Regl.

copy_mutable(Regl,Reg2,Counter) copies the value of the data structure ref-
erenced by Regl into the structure referenced by Reg2. The counter pointed
to by Counter is incremented by the number of heap cells copied.

put_foreign(Reg) puts a pointer to the data structure referenced by Reg into
the foreign argument register pointed to by FP. FP is incremented.

call foreign(Address, Timer} calls the foreign program at specified by Address.
Upon return from the foreign program, FP is reinitialized and the contents
of Timer are incremented by the length of time spent in the foreign program.

add(Regl,Reg2,Reg3) places into Reg3 a reference to the sum of the val-
ues referenced by Regl and Reg2. The appropriate type conversions are
performed.

sub(Regl,Reg2,Reg3) places into Reg3 a reference to the result of subtract-
ing the value referenced by Reg2 from the value referenced by Reg2. The
appropriate type conversions are performed.

mul(Regl,Reg2,Reg3) places into Reg3 a reference to the result of multi-
plying the value referenced by Reg2 by the value referenced by Reg2. The
appropriate type conversions are performed.

div(Regl,Reg2,Reg3) places into Reg3 a reference to the result of dividing the
value referenced by RegZ by the value referenced by Reg2. The appropriate
type conversions are performed.

mod(Regl,Reg2 Reg3) places into Regd a reference to the result of the value
referenced by Reg2 modulo the value referenced by Reg2.
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Appendix C

Failure Probabilities of Guard
Test Instructions

The application of the Equation 5.18 requires that the conditional failure
probability of each guard test be known. Given that a guard has failed, the
conditional failure probability is the probability that a specific test instruc-
tion is responsible for the failure.

The probability values are determined experimently by comparing the
number of times a test instruction causes a guard failure to the total number
of times a test instruction appears in a failing guard. Both of these numbers
are obtained by executing the test programs from Table 5.1 in parallel on
an instrumented PCM. The instrumentation is described in Section 5.5.9.
The results of this measurement are summarized in Table C.1. Note that
because the default test always appears alone in a guard, its conditional
failure probability is one.
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Conditional Failure Probabilities
Test J Probability

get_tuple || .415465

equal 656528

neq 176910

type 0.001060

le 558756

It .609249

data 337033

default 1.0

Table C.1: Failure probabilities of guard tests
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