Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

A PROVABLY GOOD MULTILAYER TOPOLOGICAL PLANAR
ROUTING ALGORITHM FOR MCM AND DENSE PCB DESIGNS

Jason Cong April 1991
CSD-910014






A Provably Good Multilayer Topological Planar Routing Algorithm
For MCM and Dense PCB Designs
Jason Cong

Department of Computer Science
University of California at Los Angeles
Los Angeles, CA 90024, U. S. A.

Abstract

Given a number of routing layers, the multilayer topological planar routing problem is to
choose a maximum (weighted) set of nets so that each net in the set can be topologically routed
entirely in one of the given layers without crossing other nets. This problem has important
application in the layout design of VLSI circuits, multichip modules (MCMs) and high-density
printed circuit boards (PCBs). In this paper, we present a provably-good approximation algorithm
for the multilayer topological planar routing problem. OQur algorithm, called the iterative-peeling

algorithm, can always find a solution whose weight is at least 1 — % = 63.2% of the weight of an

optimal solution. The algorithm works for multi-terminal nets and arbitrary number of routing
layers. When the number of routing layers is fixed, we have even tighter performance bounds. In
particular, the performance-ratio of the iterative-peeling algorithm is at least 75% if there are two
routing layers and is at least 70.4% if there are three routing layers. Experimental results confirm
that our algorithm can always route majority of the nets without using vias even when the number

of routing layers is fairly small.



1. Introduction

Advances in VLSI fabrication technology have made it possible to use more than two
routing layers for interconnections. Many VLSI chips have been designed using three or four
metal layers for routing. Multichip modules (MCMs) and high density printed circuit boards
(PCBs) may use even more layers for interconnections. For example, the multi-chip module
developed for the IBM 3081 mainframe has 33 layers of molybdenum conductors (including 1
bonding layer, 5 distribution layers, 16 interconnection layers, 8 voltage reference layers, and 3
power distribution layers [BIBa82, B183]). Fujitsu’s latest supercomputer, the VP-2000, uses
ceramic PCBs with over 50 interconnection layers [HaYY90]. These recent developments in
VLSI fabrication and packaging technology raise many interesting and important multilayer

interconnection problems.

In this paper, we shall study the multilayer topological planar routing problem. The
objective is to choose a maximum (weighted) set of nets so that each net in the set can be
topologically routed entirely in one of the given layers without crossing other nets. Our research
on the multilayer topological planar routing problem is motivated by a number of applications:

(1) In the design of VLSI circuits, we usually want to route each of the critical nets (such as
the power and ground nets and the clock nets) in one of the 'preferred’ layers (i.e. metal
layers);

(2) In the design of MCMs and dense PCBs, the large number of interconnection layers offers
an excellent opportunity for planar routing. Thus, we want to route most nets each in a
single layer without using vias. For high-performance MCMs or PCBs, vias not only
increase the manufacture cost but also degrade the system performance since they form
inductive and capacitive discontinuities and cause reflections when the wires have to be
modeled as transmission lines [Ba%0];

(3) If we can topologically route all (or most) of the nets each in a single layer, the detailed
routing problem is greatly simplified. We can carry out planar routing for each layer
independently and several effective methods (such as rubber-band routing [LeMa8s,
DaKJ90]) have been developed for the planar routing problem.

All these applications require efficient solutions to the multilayer topological planar routing
problem. Unfortunately, solving the multilayer topological planar routing problem is
computational difficult. Cong and Liu showed that the multilayer topological planar routing
problem is NP-complete [CoLi90]. The problem remains NP-complete even when the routing
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region is restricted to a two-layer switchbox [Sale89]. Polynomial time optimal solutions to the
multilayer topological planar routing problem were developed for a special type of channels,
called crossing channels. The unweighted case for crossing channels were solved by Rim,
Kashiwabara and Nakajima [RiKN89]. The general weighted case for crossing channels were
solved by Cong and Liu [CoLi90] and by Sarrafzadeh and Lou [SaLo90} independently.
However, there is no effective solution to the multilayer topological planar routing problem for
general routing regions.

In this paper, we present a provably-good approximation algorithm for the multilayer
topological planar routing problem which is applicable to switchboxes (or arbitrary rectilinear
polygons), channels (including L-shaped and staircase channels), and general routing regions.
Qur algorithm, called the iterative-peeling algorithm, can always find a solution whose weight is

at least 1 — % = 63.2% of the weight of an optimal solution. The result holds for multi-terminal

nets and arbitrary number of routing layers. When the number of routing layers is fixed, we have
even tighter performance bounds. In particular, the performance-ratio of the iterative-peeling
algorithm is at least 75% if there are two routing layers and is at least 70.4% if there are threc
routing layers. According to Lemma 1 in [Ma84], these results also lead to provably good
solutions to the multilayer topological via minimization problem. We tested our algorithm on a
number of switchbox and channel routing benchmark examples, our algorithm can always route

most nets without using vias even when the number of routing layers is small.

The remainder of the paper is organized as follows: In Section 2, we present the problem
formulation; In Section 3, we present an overview of our algorithm and analysis its performance;
In Section 4, we describe the details of the algorithm for switchboxes, channels, and general
routing regions and analysis the time complexity of the algorithm in each case. Experimental

results are presented in Section 5. Section 6 discusses the future extensions of our work.

2. Formulation of the Problem

A routing problem consists of a set of nets N and a routing region. A routing region is a
layered routing area enclosed by an external boundary with (possibly) a number of blocks
(obstacles) insides of the boundary. (See Fig. 1.) Terminals are located either on the extemal
boundary or on the boundaries of the blocks. Routing over the blocks is prohibited. A net is a set
of terminals to be connected. Each net a € N is assigned a positive weight w(a) which is a
measure of the priority of the net. The weight of a subset of nets X ¢ N is defined to be
w(X) =a§xw(a )- A planar subset is a set of nets which are topologically routable in a single



layer without crossing each other'. A k-planar subset is a set of nets which can be partitioned
into the union of at most k planar subset. Clearly, given a k-layer routing region, we can always
route a k -planar subset without using vias (except the stacked vias bringing the terminals to their
proper layers, which are indispensable). The k-layer topological planar routing problem (k-
TPR) is that of choosing a & -planar set with the maximum weight. (Usually, assignment of the

nets to the layers is also determined when the & -planar set is chosen.)

A switchbox is a rectangular routing region without any block inside. A channel is a
switchbox with terminals onty on the upper and lower edge of the routing region. A channel may
have exits at both the left and right side of the channel. A net in a channel is called a crossing net
if it has terminals on both the upper edge and the lower edge of the channel. If every net in a
channel is a crossing net, we call the channel a crossing channel. It was shown in [RIKIN89,
CoLi90, SaLo90] that the k-TPR problem for crossing channels can be solved optimally in
polynomial time.

For any heuristic algorithm H, for the k-TPR problem, we define the performance ratio of

w(Sk)
w(Se)'

w(Sg) is the weight of the k-planar set computed by the optimal k-TPR algorithm. In the next

Hg to be where w (S, ) is the weight of the k -planar set selected by the algorithm H, and

two sections, we shall present an approximation algorithm for the k-TPR problem for general
routing regions with performance ratio at least 63.2%.

Ba
B, —external boundary
B, block
——fouting region

Fig. 1 A routing region.

! Note that we ignore the capacity constraints at this step. A set of nets are topotogically routable in a single layer if their rout-
ing paths do not cross each other. However, they may not be physically routable due to capacity constraints. See Section 6 for a more
detailed discussion.



3. Overview of Our Algorithm

Our algorithm for the £ -TPR routing is conceptually simple. Let N be the set of nets to be
routed. First, we choose a maximum weighted planar subset Ny from N and assign N to layer 1.
Then, we choose a maximum weighted planar subset N, from the remaining nets N — N; and
assign N to layer 2, and so on. We repeat this process k times. Clearly, at the end
Ni N2y - (N, forms a k-planar subset. Since at each iteration we ’'peel’ off a
maximum weighted planar subset from the remaining nets, we call this algorithm the iterative-
peeling algorithm. Clearly, the iterative-peeling approach reduce the problem of computing a
maximum weighted k-planar subset to a series computations of maximum weighted (1-)planar
subsets. Therefore, we can apply several existing results on computing maximum weighted
planar subsets (such as the ones in [Su87, CoLi%0b, LiLS90]). Usually, choosing a maximum
weighted planar subset is much easier than choosing a maximum weighted k-planar subset. For
example, choosing a maximum weighed planar subset for a switchbox takes O (n?) time while
choosing a maximum weighted & -planar subset for a switchbox is NP-hard (k > 2) [CoLi90]. We
shall discuss the details and the complexity of the algorithms for computing a maximum
weighted planar subset for various types of routing regions in the next section. Assuming that we
have a procedure max_planar_subset(N) to compute a maximum weighted planar subset from a
set of nets N, we can describe the iterative-peeling algorithm formally as follows:

Algorithm: Iterative-pecling;
1. N"==N;
2. fori =1tk do
N; '=max_planar_subset(N’),
N =N'-N;;
3. output Ny \ N2 -\ N
end.

Fig. 2 The iterative-peeling algorithm,

Although the iterative-peeling algorithm is greedy in nature, we are able to show that it has
a good performance ratio. In fact, for any number of routing layers, the iterative-peeling
algorithm has a performance ratio at least 63.2%. This lower bound is established based on the

following results:

Lemma 1 Let W, be the weight of the optimal solution 1o the k-TPR problem. Let w; be
the weight of the subset N; {1 <i <k) chosen by the iterative-peeling algorithm at the i-th



iteration. Then we have

Wi - W
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Proof Let N be the entire set of nets in the problem. Let M =M My - (UM
be an optimal solution to the £-TPR problem, where each M; is a planar subset and M;'s arc
pairwise disjoint. At the end of (i—1)-th iteration of the iterative-peeling algorithm, the set of
un-routed nets is

N'=N—(N1UN2u UN,'-])
Note that
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=M ~N(N-(N N2 - N
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By Pigeonhole’s Principle, there exist at least a j (1 < j < k&) such that

Wi ~(wi+ - +wip)

IM; ~N’| 2 -

Since M; (N’ is a planar subset of N and ¥; is a maximum weighted planar subset of N
according to the iterative-peeling algorithm, we have

We—(wi+ - +wisy) O

wi= N2 M AN’ 2 :



Lemma 2 Let Wy =w,;+wy+ - -+ +w, where w; is the weight of the subset N; produced
by the iterative-peeling algorithm. Then, we have

Wi 2[1- (1 - LW}

Proof Let
Wy
1= 7
Wy -x
X3= kk 1
Wi — (x1+x2)
_WE—(i+ o +xen)
Xi = 2

Then, it is easy to show that

- -2 — 131 — -1 W,

Therefore, we have
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Now we show by induction that
i
w; 2 ; X; (3.D

holds for every 1</ <k. When ! =1, inequality (3.1) holds since w;=x;. Assume that
inequality (3.1) holds for /. Then, for ! + 1, we have
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Therefore, we have

We =§w.-zl);x,-=[1—(1—%)*1wi o

From these two lemmas, we can conclude the following:

Theorem 1 Let 3, be the performance ratio of the iterative-peeling algorithm for the k-
TPR problem. Then,

Be21-(1- 1. 0

It is easy to show that the function f (x)=1-(1- %)’ is a decreasing function. Moreover,

. lyw_q_1
m1--gy=1-g

where e =2.718. Therefore, we have

Corollary For any integer k, the performance ratio of the iterative-peeling algorithm for
the k-TPR problem is as least

[3,,21-%=63.2%

When the number of routing layers is known, we can use the formula in Lemma 2 to obtain
a more precise performance ratio for the iterative-peeling algorithm. In particular, the
performance ratio of the iterative-peeling algorithm is at least 75% for the 2-TPR problem and
70.4% for the 3-TPR problem. Table 1 shows the performance ratio of the iterative-peeling
algorithm for the £-TPR problem for some small values of k.



#of layers | performance ratio
k Brz1-(1- Ly
2 = =75%
3 %?r =70.4%
4 542 = 68.4%
5 2101 - 6739,
o0 1- 1 =632%

Table 1 Performance ratio of the iterative-peeling algorithm for different numbers of routing layers.

4. Computing Maximum Weighted Planar Subsets

In this section, we shall present efficient algorithms for computing a maximum weighted
planar subset for various routing regions including switchboxes, regular channels and L-shaped
channels, and general routing regions. These algorithms are used for implementing the procedure
max_planar_subset (N ) in the iterative-peeling algorithm presented in the preceding section.

4.1, Computing Maximum Weighted Planar Subsets for Switchboxes

Although the problem of computing a maximum weighted k-planar subset is NP-hard
(CoLi90], we can compute a maximum weighted planar subset in O (mn) time based on the
results in [CoLi90b, LiLS90], where m is the number of terminals and n is the number of nets,
Given a switchbox, we can 'cut’ the switchbox at one point and 'stretch’ the boundary of the

e edb
b
d =
\ /C
ianc a b ¢ ¢ b b de e da
cut here

Fig. 3 Stretching the boundary of a switchbox into a straight line.
A planar subset inside the switchbox is equivalent to a planar subset on one side of the straight line.
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switchbox into a straight line. It is not difficult to show that a planar routing inside the switchbox
corresponds to a planar routing at one side of the straight line (see Fig. 3). line using the dynamic
programming technique. Let xy, X, ..., X, denote the terminals on the straight line. Let $(i,/)
denote a maximum weighted planar subset between terminals x; and x; and M [i,/] be its weight.
(Clearly, we want to compute S(1,n).) S(i,j) can be computed as follows: Suppose that x;
belongs to net a.

Case 1. If net a has some terminal outside of interval {i,j ], net @ cannot be routed entirely
within interval [i,j]. Therefore,

SU.j)=8@i+1,j) and M(i,j)=M(i+1,j) 4.1)

Case 2: Suppose that net g is in the interval [i,j]. Let x;, x;,, ..., x; be the terminals in net
-]
a with x; =x;. If §(i,j) contains net a, M(i,j)= ;Z‘i M +lx, —D)+M@x+1,/)+w(a)
otherwise, M (i ,j) =M (i+1,f). M(i,j)is given by the greater of the two values. Therefore

SG+L). if :)'fl M+, —1) + M +1j) +w(@) > M(i+L1,))

S@.j)=1 4.2)

-1
:k__{ S (x+1x;, =D S +1,/) U {a), otherwise

.

M. j= rnax{:g] M +1x;, ~D+Mx;+1,j) +w(a), M(i+1,)))

Based on recursive relations (4.1) and (4.2), we can apply the dynamic programming
method to compute S(1,n) in O(mn) time (for details, see [CoLi90b, LiLS90]). Since the
iterative-peeling algorithm computes a maximum weighted planar subset £ times, we have

Theorem 2 The k-TPR problem for switchboxes can be solved in O (kmn) time by the
iterative-pecling algorithm with performance ratio 1 -(1 ——Ilc—)"‘. where k is the number of

routing layers, m is the number of terminals and n is the number of nets.

Clearly, the same result holds for any routing regions which are topologically equivalent to
switchboxes, including arbitrary rectilinear polygons without holes (see Fig. 4).

4.2, Computing Maximum Weighted Planar Subsets for Channels

The main difference between a switchbox and a channel (as far as topological routing is
concerned) is that the ordering of the exits at the left side and the right side of the channel is not



-10-

0

ii,
LT

Fig. 4 Rectangular routing region which is equivalent to a switchbox.
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fixed. After we choose particular orderings for the left and right exits, the channel becomes a
switchbox and we can use the algorithm presented in the preceding section to compute a
maximum weighted planar subset. An ordering of the (left and right) exits is optimal if the
maximum weight of & -planar subsets of the resulting switchbox is larger than or equal to the
maximum weight of &-planar subsets of the switchbox induced by any other ordering of the (left
and right) exits. The main problem in this section is to find the optimal ordering of the exits of a
given channel,

Given a channel, we can classify the nets in the channel as follows. A net is a lower net if
all its terminals are on the lower edge of the channel; a net is a upper net if all its terminals are
on the upper edge of the channel; a net is a crossing net if it has terminals on both the upper and
the lower edge of the channel; and a net is a through net if it has no terminals (in this case, it must
have both left and right exits). Given a net a, we use min(a) and max(a) to respectively denote
the leftmost and rightmost positions of the terminals in net a. Our algorithm computes an optimal
ordering of the left and right exits as follows: We assign the ordering of the left exits and the right
exits separately from bottom to top at each side of the channel. For the left exits, we first sort all
the left exits of the lower nets in increasing order of their min(a)'s since such an ordering
minimizes the intersections of the lower nets. Then, we order all the left exits of the crossing nets

~
e

crossing nets and through nets

lower nets ﬁ
L. ‘\

Fig. 5 Ordering of the left exits determined according to the OEO algorithm.
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and through nets arbitrarily since these nets always intersect. Finally, we sort all the left exits of
the upper nets in decreasing order of their min(a)’s since such an ordering minimize the
intersections of the upper nets. The right exits can be sorted in a similar way, with the restriction
that the right exits of the through nets are ordered the same as their left exits. Fig. 5 illustrates the
arrangement of the exit ordering according to our algorithm. Our optimal exit ordering algorithm
(OEOQ algorithm) can be summarized as follows:

Algorithm: Optimal _Exit_Ordering (OEO algorithm);

** Order left exits **
1. L, = sorted list of the left exits of the lower nets in increasing order of min (a)'s;
2. L, =list of the left exits of the crossing nets and through nets;
3. L;=sorted list of the left exits of the upper nets in decreasing order of min(a)’s;
4. L =L, concatenate L, concatenate L is the ordered list of left exits (upward);
** Order right exits **
5. R = sorted list of the right exits of the lower nets in decreasing order of max(a)'s;
6. R, = list of the right exits of the crossing nets and through nets,

where the right exits of the through nets have the same order as their left exits;
7. Rz =sorted list of the right exits of the upper nets in increasing order of max(a)’s;
8. R =R concatenate R, concatenate R is the ordered list of right exits (upward);

end.

Fig. 6 Algorithm for determining an optimal exit ordering in a channel.

It is not difficult to show that the OEO algorithm runs in (nlogn) time where n is the
number of nets since sorting the nets is the most time-consuming operation. The following result
shows that the OEO algorithm indeed produces the optimal ordering of the left and right exits of
a given channel.

Lemma 3 Given a channel C, let B be the switchbox induced by the exit ordering
produced by the OEO algorithm and B be the switchbox induced by any exit ordering. Then, any
k-planar subset in B is also a k-planar subset in B,

Proof Given a switchbox SB, we can define the intersection graph G(SB) of SB as
follows: Each node in G (SB) represents a net. An undirected edge connects nets a¢ and b in
G (SB) if and only if 2 and b cannot be topologically routed in the same layer (in this case, we
say that a intersects b). Clearly, the k-TPR problem for switchbox SB is equivalent to the
problem of finding a maximum weighted k-colorable subgraph of G (5B). We shall show that
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G (B) is a spanning subgraph of G (B ), which gives us a proof of the lemma.

According the construction of the OEQ algorithm, no two through nets intersect in B.
Moreover, a through net does not intersect a lower net or upper net in B . Furthermore, a lower net
does not intersect a upper net in B. Therefore, if two nets intersect in B, there are six
possibilities:

(1) Both nets are lower nets;

(2) Both nets are upper nets;

(3) Both nets are crossing nets;

(4) One net is a crossing net and the other is a lower net;
(5) One net is a crossing net and the other is a upper net;

(6) One net is a crossing net and the other is a through net;

It is straight forward to verify that for all six cases the two nets also intersect in B. In fact, we
need only to verify cases (1}, (3), and (4) since cases (1) and (2) are similar and cases (4) and (5)
are similar. Case (6) is obvious since a crossing net and a through net always intersect regardless
the ordering of the exits. We leave it to the reader to verify that for cases (1), (3) and (4) the two
nets indeed also intersectin B. [

Afier we have computed the optimal exit ordering, we may use the algorithm in the
preceding section to compute a maximum weighted planar subset for the corresponding
switchbox. Thus, the complexity of computing a maximum weighted planar subset of a channel
is O(nlogn) + O(mn)= O (mn}, and we have

Theorem 3 The k-TPR problem for channels can be solved in O (kmn) time by the

iterative-peeling algorithm with performance ratio 1 - (1 - —i—)". where k is the number of layers,

m is the number of terminals and n is the number nets.

Clearly, the algorithm presented in this section applies not only to rectangular channels but
also to other routing regions which are equivalent to rectangular channels, including L-shaped

channels and staircase channels (see Fig. 7).

4.3. Computing Maximum Weighted Planar Subsets for General Routing Regions

According to the results in [LiLS90], the problem of computing a maximum weighted
planar subset for general routing regions is NP-hard (based on a reduction from the problem of
finding a maximum planar subset of line segments in the plane). However, a maximum weighted
planar subset in a general routing region can be computed in polynomial time when the number



Fig. 7 L-shaped channels and staircase channels.

of blocks in the routing region is fixed. In particular, the algorithm runs in O (n®*!m) time, where
b is the number of blocks, n is the number of nets and m is the number of terminals. Such a
pseudo-polynomial time algorithm is based on the following key observation. Suppose we
decide to choose net a in the planar subset in the final solution. If net @ has pins on blocks
B, B, ..., By, we may merge blocks By, B, ..., B, into one block as connected by net @ since no
other net can cross net a in the final solution. For example, net @ connects blocks A, B, C in
Fig. 8(a). If we decide to choose net g in the final solution, we may merge blocks A, B, C into
one block as shown in Fig. 8(b). Based this observation, we may carry out a breadth-first search
to construct a maximum weighted planar subset. At each level, we try to add each net in the
current un-routed set to the planar subset being constructed. Thus, the branching of breadth-first
search at each node is O (n), where n is the total number of nets. Each time we include a net
connecting several blocks, we reduce the total number of blocks by at least one. Thus, the search
tree has height as most O (5) and at each leaf node of the search tree no net has pins on more than
one blocks. Clearly, at each leaf node we could compute a maximum weighted planar set of the

(a) (b)
Fig. 8 Merging several blocks into one block after choosing net a.
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remaining nets using the algorithm in Section 4.1 for each block. Therefore, the algorithm runs
in O (nt+m) time. For details, see {LiLS90}. Based on this discussion and the result of Section
3, we have the following result,

Theorem 4 The «£-TPR problem for general routing regions can be solved in O (kmn+)
time by the iterative-peeling algorithm with performance ratio 1 —-(1 - -}C-)", where b is the

number of blocks, & is the number of routing layers, m is the number of terminals and n is the
number of nets. []

When the number of blocks is large, the breadth-first search algorithm for constructing a
maximum weighted planar subset would be quite inefficient. In this case, we may group several
blocks into a hyperblock to reduce the total number of blocks in the design. Moreover, we shall
map the terminals on the original blocks to the boundaries of the hyperblocks in a planar fashion
so that a topological planar routing for the hyperblocks will also yield a topological planar
routing for the original design as well. As an example, Fig. 9(a) shows one way of grouping 7
blocks in a design into 3 hyperblocks. Fig. 9(b) shows the planar mapping of the terminals on
blocks By, B, and B3 onto the boundary of the hyperblock H,. Clearly, a topological planar
routing for the hyperblocks H, Ha, and A3 will also lead a topological planar routing in the
original design. There are usually more than one way of carrying out the planar mapping of the
terminals from the original blocks to the hyperblocks. Although we can always find a maximum
weighted planar subset for the hyperblocks, some planar mappings of the terminal may lead to a
sub-optimal planar subset in the original design.

5. Experimental Results

We implemented the iterative-peeling algorithm in the C language on Sun SPARC
workstations and tested it on a number of switchbox and channel routing benchmark examples,
including Burstein’s difficult switchbox routing example [BuPe83) and Deutsch's difficult
channel routing example [De76). Table 2 reports the results of the iterative-peeling algorithm on
these examples. The first columnn shows the names of the test examples. The Burstein example is
labeled as 'burs’ and the Deutsch example is labeled as 'deut’. The remaining test cases are
channel routing examples from [YoKu82]. For all examples, we simply assign the weight of each
net to be one, i.e. we maximize the cardinality of the k-planar subset to be computed. The next
- five columns of Table 2 show the percentages of the nets completed using planar routing by the
iterative-peeling algorithm for one to five routing layers, (Note that these values are not the
performance ratio of the iterative-peeling algorithm; recall that the performance ratio of the
algorithm is proven to be at least 63.2%.) The last column shows the number of layers needed for
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Fig. 9 (a) Grouping blocks into hyperblocks;
(b) Planar mapping of the terminals from the blocks to a hyperblock.

the iterative-peeling algorithm to produce planar routings for all the nets. The computation time

for each example is less than 25 seconds.

From the resulis shown in Table 2, we have a few interesting observations:

(1) We can have a planar routing for the majority of nets even when the number of routing

layers is fairly small. For example, for all the test cases in Table 2, we can route more than 60%

of the nets in a planar fashion using at most of 5 routing layers. Although all the examples in

Table 2 are switchbox or channel routing examples, we expect that a similar resuit would also

hold for general routing regions since the majority of nets are usually local nets (which span over

Ex 1L 2L 3L 4L 5L Total layer

burs | 41% | 58% | 70% | 79% | 83% 9

exl 38% | 52% | 66% | 76% | 80% 9

ex3a | 45% | 59% | 68% | 75% | 79% 11
ex3b | 31% | 53% | 68% | 78% | 82% 10
ex3c | 37% | 55% | 62% | 710% | 75% 13
ex4b | 40% | 57% | 68% | 75% | 81% 13
ex5 31% | 48% | 59% | 70% | 78% 9

ex5b | 31% | 48% | 60% | 1% | 719% 11
deut | 23% | 38% | 50% | 58% | 63% 18

Table 2 Percentage of nets completed by planar routing using the iterative-peeling
algorithm for different number of routing layers.
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only a couple of channels or switchboxes) and only a few nets are global nets (such as clock
nets), assuming that we have a reasonably good placement solution. Therefore, given a relatively
large number of routing layers (say, more than 4 layers) we can route most of the nets without
vias if we first use the itcrative-peeling algorithm for layer assignment of the nets and then carry
out planar routing in each layer. Existing approaches to MCM or dense PCB routing problems
either carry out three dimensional maze routing [HaYY90] or divide the routing layers into a
number of x-y layer pairs then assign the nets to x-y layer pairs and carry out two-layer routing in
each x-y layer pair (x-layers run horizontal wires and y-layers run vertical wires) [HoSV90).
Very likely, these approaches will use a large number of vias for interconnections. However, if
we use the unreserved layer model (i.e. each layer can run both horizontal wires and vertical
wires) and assign nets to layers using the iterative-peeling algorithm, we could reduce the number
of vias significantly in MCM and PCB designs.

(2) Insisting on planar routing for all the net is very costly, i.e. it requires a large number of
routing layers. Although we can have planar routing for over 60% of the nets in the first 5 layers,
we need 4 to 13 layers to route the remaining 20% to 40% of the nets. Therefore, it is unrealistic
to insist on planar routing for all the nets. It would be more practical to construct planar routing
for most of the nets (especially critical nets) based on the iterative-peeling algorithm. Then, we
may route the remaining nets either by a three dimensional maze router or by assigning these

nets to several x-y layer pairs and carrying out two-layer routing for each layer pair.

6. Conclusiens and Future Extensions

In this paper, we have presented a provably good multilayer topological planar routing
algorithm based on the idea of iterative peeling. Our algorithm is easy to implement and it works
for multi-terminal nets and arbitrary number of routing layers with performance ratio at least

1- % = 63.2%. Experimental results show that our algorithm can generate planar topological

routing for most of the nets using a small number of routing layers. Such an algorithm is
important to the multilayer interconnection problems in the design of MCMs and dense PCBs. It
can also be used for generating planar routing sketches for rubber-band based routing algorithms
[LeMa85, DaKJ90] to construct detailed planar routing solutions.

One limitation of this work is that it did not take routing capacity constraints into
consideration. The planarity constraint usually restricts the number of nets we could route in
each layer so that the routing capacity constraints in most layers will not be violated. However,
in the first one or two layers we may have a large number of nets which are topologically routable
and they may exceed the physical routing capacity. We are in the process of developing a
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multilayer router which takes both topological and physical constraints into consideration,

The pseudo-polynomial time algorithm in [LiLS90] for computing a maximum weighted
planar subset in general routing regions could be inefficient when the number of blocks is large.
It would be interesting to design an efficient approximation algorithm for the maximum weighted
planar subset problem in general routing regions. Grouping blocks into hyperblocks suggests onc
way of reducing the complexity of the pseudo-polynomial time algorithm in [LiLS90]). Wc
would like to study this approach more carefully to determine the optimal way of grouping blocks
and the best planar mapping of the terminals from the original blocks to hyperblocks.
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