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ABSTRACT

Connectionist models can be broken into three major levels, ranging from the subsymbolic to the sym-
bolic. These are: (1) distributed connectionist networks, commonly referred to as subsymbolic mod-
els, which represent knowledge as distributed patterns of activation across simple numeric process-
ing elements, (2) structured connectionist networks, which also use simple numeric processing ele-
ments, but which are structured according to knowledge representations similar to symbolic models,
and (3) marker-passing networks, which are symbolic models that utilize the massive-parallelism
of connectionism. Because of their associated constraints and abilities, each level of connectionist
modelling offers advantages and disadvantages in constructing models for understanding the pro-
cesses of cognition.

While staying true to one connectionist approach has its appeal, the current limitations of each
level often restricts the tasks one is able to perform. For rescarchers interested in modelling a par-
ticular human capability, it is therefore sometimes necessary to build hybrid models that are built
of elements from more than one level of connectionist modelling. In this paper it is argued that
building such hybrid models supports the long-term goal of mapping high-level cognitive functions
into the neural level of the brain by allowing progress on levels that might otherwise be stymied
and by highlighting arcas that need more extensive research. To illustrate the benefits of this ap-
proach, this paper describes three models: (1) a hybrid network that is able to model an integra-
tion of cognitive functions not easily plausible in a single network level, (2) a structured connection-
ist network that illustrates that the abilities of hybrid models can often eventually be built into a
single network level, and (3) a distributed connectionist network that is a step towards removing
one of the hidden hybrid mechanisms found in most connectionist models.

1This paper will appear as a chapter in J. Dinsmore (ed.), Closing the Gap: Symbolic vs. Subsymbolic
Processing. Hillsdale, NJ: Lawrence Erlbaum Associates.

*This research has been supported in part by grants from the W.M. Keck and ITA Foundations. I would
like to thank John Dinsmore and Michael Dyer for their helpful comments and for the opportunity to pre-
sent the arguments and models in this paper. I would also like to acknowledge the contributions of Keith
Holyoak, Eric Melz, Charles Wharton, and Colin Allen to the development of the models described here
and for their valuable suggestions on earlier drafts of this chapter.



1. INTRODUCTION AND MOTIVATION

Connectionist networks, often known as neural networks or spreading-activation networks, have recently
been the subject of a tremendous rebirth of interest, as researchers have begun to explore their advantages
for cognitive models ranging from low-level sensory abilities to high-level reasoning. Connectionist models
employ massively parallel networks of relatively simple processing elements that draw their inspiration
from neurons and neurobiology, as opposed to traditional symbolic artificial intelligence (AT) models,
which are generally based on serial Von Neumann architectures. Within the connectionist paradigm there
are three major levels: distributed connectionist networks and localist connectionist networks, and marker-
passing networks, each having different types of cognitive models that they are best suited forl.

Distributed connectionist networks, sometimes known as Parallel Distributed Processing or subsymbolic
models, are networks which represent knowledge as disiributed patterns of activation across their units
(see [Dinsmore, this volume}). Most distributed network models have learning rules (such as backpropaga-
tion [Rumelhart, Hinton, & McClelland, 1986)), to frain their connections’ weights to generate desired in-
put/output behavior. With such training rules, distributed networks are able to perform statistical cate-
gory generalization, perform noise-resistant associative retrieval, and exhibit robustness to damage. They
have been successfully employed for low-level tasks such as visual pattern recognition [Fukushima,
Miyake, & Ito, 1983], speech consonant recognition [Waibel, 1989], and assigning roles to constituents of sen-
tences [McClelland & Kawamoto, 1986]. On the other hand, distributed networks have had difficulty with
both dynamic variable bindings and the representation of structure needed to handle complex conceptual re-
lationships, and so are not currently well-suited for high-level cognitive tasks such as natural language un-
derstanding and planning.

Localist connectionist networks, sometimes known as structured or spreading-activation networks, also use
units with simple numeric activation and output functions (see [Dinsmore, this volume)), but instead repre-
sent knowledge using semantic networks in which concepts are represented by individual units and their la-
belled interconnections. Unlike distributed networks, localist networks are parallel at the knowledge level
and have structural relationships between concepts built into the connectivity of the network. Because of
this, localist networks are especially well-suited for cognitive tasks such as word-sense disambiguation
[Waltz & Pollack, 1985}, limited inference [Shastri, 1988], and language generation {Gasser, 1988]. Unfortu-
nately, localist networks lack the powerful learning and generalization capabilities of distributed net-
works and also have had difficulty with dynamic variable bindings and other capabilities of symbolic
models.

Marker-passing networks are unlike distributed networks and localist networks in that their units do not
use numeric activation functions, but instead use built-in symbolic capabilities. Like localist networks, they
also represent knowledge in semantic networks and retain parallelism at the knowledge level. However,
instead of spreading numeric activation values, marker-passing networks propagate symbolic markers, and
so support the variable binding necessary for rule application while retaining the power of symbolic sys-
tems. Because of this, they have been able to approach high-level areas such as planning [Hendler, 19881
and natural language understanding [Charniak, 1986]. On the downside, marker-passing networks’ units are

IThere is some disagreement as to whether marker-passing models should be classified as connectionist
models, given their explicit use of symbolic processing. In this chapter, we will consider marker-passing
models to be connectionist (in a broad sense) to emphasize their shared processing philosophies of mas-
sively-parallel and relatively simple (compared to traditional symbolic models) processing elements.



more complex than those of distributed networks and localist networks, they do not possess the learning ca-
pabilities of distributed networks, and they do not exhibit the constraint-satisfaction capabilities of local-
ist networks.

Most connectionist researchers have explored and built models within a single connectionist level. How-
ever, while staying true to one connectionist approach has its appeal, the current limitations of each level
often restricts the tasks one is able to perform. For researchers interested in modelling a particular human
capability, it is therefore sometimes necessary to build hybrid models that are built of elements from more
than one level of connectionist modellingZ. In this paper it is argued that building such hybrid models
supports the long-term goal of mapping high-level cognitive functions into the neural level of the brain by
allowing progress on levels that might otherwise be stymied and by highlighting areas that need more ex-
tensive research.

To illustrate the benefits of this approach, this paper describes three models: (1) a localist connectionist
network that illustrates that the abilities of hybrid models can often eventually be built into a single net-
work level, (2) a hybrid network that is able to model an integration of cognitive functions not easily plau-
sible in a single network level, and (3) a distributed connectionist network that is a step towards removing
one of the hidden hybrid mechanisms found in most connectionist models.

1.1. Connectionist and Symbollc Models

To understand the need to build hybrid models, it is important to know the abilities and limitations of each
connectionist level. While it is possible that a single type of connectionist model (such as distributed con-
nectionist networks) will eventually be able to model all levels of human cognition, this is certainly far
from the case now. However, models from all levels of connectionist networks taken together currently span
a wide range of human abilities (if only to a limited depth), ranging from low-level perceptual tasks to
high-level reasoning,.

One area that has been approached by all types of connectionist and symbolic models is that of semantic
natural language understanding. Natural language understanding is a good area to illustrate the benefits
and drawbacks of each connectionist level, since it requires a whole range of abilities ranging from low-
level pattern matching (such as retrieval of word meanings and simple case-role filling), to high-level ma-
nipulation of complex symbolic representations (such as for comprehending intricate stories or editorials),
to working with noisy and incomplete data (requiring disambiguation and reinterpretation), to learning and
generalization.

1.1.1. Symbolic Rule-Based Modeis

Symbolic artificial intelligence (A systems have so far been the types of models best able to perform
high-level reasoning and natural language understanding. A good example is BORIS {Dyer, 1983], a natural
language understanding program for modelling in-depth understanding of relatively long and complex sto-

2The term “hybrid model” is sometimes used to refer to networks that attempt to explicitly duplicate
symbolic processing abilities. Marker-passing models are often called hybrid or symbolic models because
of their explicit propagation of symbolic markers. The term is also occasionally used to refer to normal lo-
calist networks, since their units have symbolic labels (though the labels generally do not affect network
processing). In this chapter, however, the term “hybrid model” is used only to describe models that com-
bine elements from more than one level (distributed, localist, marker-passing) of connectionist processing.



ries. BORIS had a hand-coded symbolic knowledge base containing knowledge structures representing vari-
ous actions, plans, goals, emotional affects, and methods for avoiding planning failures. When reading ina
story, BORIS would fire rules from its knowledge base to perform inferencing and form an internal represen-
tation of the story, about which it could then answer questions. Other models that have successfully ap-
proached complex parts of the language understanding process have all had similar types of knowledge
representation and rule-firing capabilities.

Connectionist networks, however, have significant potential advantages over traditional symbolic ap-
proaches to the interpretation process. Their conceptual knowledge is stored entirely in an interconnected
network of units whose states are computed in parallel, calculated solely by local update functions that are
based on their previous state and that of the units to which they are connected. As a result, a major portion
of the understanding process could potentially be controlled by a relatively simple and local spreading-ac-
tivation mechanism, instead of by large collections of brittle and sometimes ad-hoc rules.

1.1.2. Distributed Connectlonist Networks

Distributed connectionist models have had a great deal of success modelling low-level natural language un-
derstanding tasks, especially those requiring similarity-based learning. A number of researchers have ar-
gued that this new subsymbolic paradigm will completely subsume the symbolic paradigm, as the explicit
rules used in symbolic models are replaced by the more robust interactions of distributed representations and
connection weights learned from experience [Rumelhart & McClelland, 1986]. Although some of the sever-
est criticisms of this stand ([Fodor & Pylyshyn, 1988], [Pinker & Prince, 1988]) have been partially rebutted
by recent models showing that distributed models can represent some limited variable bindings and con-
stituent structure (e.g. [Touretzky & Hinton, 1988], {Pollack, in press)), current distributed models are still
quite limited in comparison to symbolic models in their abilities to perform high-level processing such as
natural language understanding.

A good example of how distributed connectionist models have been used to approach language understand-
ing is provided by the case-role assignment model of McClelland & Kawamoto [1986]. The main task of
their model is to learn to assign the proper semantic case roles for sentences. For example, given the syntac-
tic surface form of the sentence The boy broke the window, their network is trained to place the semantic
microfeature representation of the subject Boy into the units representing the Agent role on the output layer,
whereas given The rock broke the window, it is trained to place the representation of the subject Rock into
the Instrument role. Their network is also trained to perform lexical disambiguation, €.g. mapping the pat-
tern for the word bat to a Baseball-Bat for sentences such as The boy hit the ball with the bat, and to a Fly-
ing-Bat for sentences such as The bat flew. Once the input/output pairs have been learned, the network ex-
hibits a certain amount of generalization by mapping the case roles and performing lexical disambiguation
for novel inputs similar to the training sentences.

One of the main limitations of McClelland & Kawamato’s model for language understanding is that its out-
put can only handle direct, one-step mappings from the input to the output. This limits it to processing iso-
lated sentences, and only those that can be understood and disambiguated based upon the surface semantics
of the input alone. Two distributed connectionist models that get around this limitation are the models of
Miikkulainen & Dyer [1989] and St. John [1990]. Both models use recurrent networks with a hidden layer of
units whose activation pattern essentially stores the state (or “gestalt”) of the stories being understood.
This allows them to learn to process more complex language based on scripts (such as going to a restaurant)
and other script-like stories [Schank & Abelson, 1977]. Both models have the lexical disambiguation abil-
ities of McClelland & Kawamoto’s model, but, more importantly, are able to infer unmentioned story events
and role-fillers from the script that has been recognized by the hidden layer.



Unfortunately, there may be significant problems in scaling such pattern-transformation distributed connec-
tionist models to handle more complex language. Both Miikkulainen & Dyer and St. John's models work by
resolving constraints from input context to recognize one of their trained scripts and instantiate it with the
bindings of the particular input story. However, much of language understanding involves the inference of
causal relationships between events for completely novel stories in which no script or previously-trained
input/output pair can be recognized. This requires dynamic inferencing — a process of constructing chains of
inferences over simple known rules, with each inference resulting in a potentially novel intermediate state
[Touretzky, 1990]. It remains to be seen whether a single blended activation pattern on the bank of hidden
units in recurrent networks can simultaneously hold and make dynamic inferences from multiple, never-be-
fore encountered interpretation chains.

Other distributed models explicitly encode variables and rules, such as the models of Touretzky & Hinton
[1988] and Dolan & Smolensky [1989). Because of this, such rule-implementing distributed models are able
to perform some of the dynamic inferencing necessary for language understanding. Unfortunately, however,
the types of rules they can currently encode are generally limited. More importantly, they are serial at the
knowledge level because they can fire only one rule at a time. This is a serious drawback for natural lan-
guage understanding, particularly for ambiguous text, in which the often large number of multiple alterna-
tive interpretations often requires that the inference paths be explored in parallel [Lange, in pressl.

1.1.3. Localist Connectionist Networks

Localist connectionist models represent knowledge in semantic networks in which concepts are represented
by individual units and relations between concepts are encoded by weighted connections between those units.
The numeric activation level on each conceptual unit generally represents the amount of evidence available
for its concept in a given context. Because knowledge is spread across the network (as opposed to the concen-
tration of knowledge in the weights between the single input and output layer of most distributed models),
localist models have the potential to pursue multiple candidate interpretations of a story in parallel as
each interpretation is represented by activation in different local areas of the network. This makes them
ideally suited to the disambiguation portion of the language understanding process, because it is achieved
automatically as related concepts under consideration provide graded activation evidence and feedback to
one another in a form of analog constraint relaxation.

As an example of how localist connectionist models process language and perform disambiguation, consider
the sentence:

The astronomer married the star. (Star-Marriage)

The word star could be easily disambiguated to Movie-Star by a symbolic rule-based system having selec-
tional restrictions (even astronomers cannot marry celestial bodies, except perhaps metaphorically). How-
ever, many readers report this and similar sentences as “cognitive doubletakes” because astronomer ini-
tially primes the Celestial-Body interpretation. Figure 1 shows an extended version of the semantic portion
of the localist network Waltz & Pollack [1985] built to process Star-Marriage and illustrate this effect.
After the input units for Star-Marriage are clamped to a high level of activation, the Celestial-Body inter-
pretation of star initially acquires more activation than the Movie-Star interpretation because of priming
from Astronomer through Astronomy (Figure 2). However, Movie-Star eventually wins out because activa-
tion feedback over the semantic connections from the Marry unit to Movie-Star outweighs that spreading from
the Astronomer unit to Celestial-Body.
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Figure 1. Localist spreading-activation network based on [Waltz & Pollack, 1985]. Lines with
arrows are excitatory connections; lines with open circles are inhibitory.

Unfortunately, the applicability of localist connectionist models to natural language understanding has
been severely hampered because of their difficulties representing dynamic role-bindings and performing in-
ferencing3. Their lack of variable binding abilities leaves them prone to crosstalk even for simple sen-
tences. For example, the network of Figure 1 has no way to distinguish between the sentences The as-
tronomer saw the star and The star saw the astronomer, despite the crucial difference that the role-bind-
ings make in their interpretation. More importantly, without a mechanism to represent such dynamic bind-
ings, they cannot propagate them to make the chains of inferences necessary for understanding more complex
language. This has so far stopped them from going beyond simple language processing that can be resolved
based solely on the surface semantics of the input.

1.1.4. Marker-Passing Networks

Marker-passing models operate by spreading symbolic markers in parallel across labelled semantic net-
works similar to those of localist connectionist networks. Interpretation of the input is achieved when
propagation of markers finds a path of units connecting words and concepts from the input text. Because of
the symbolic information held in their markers and networks, they are able to represent dynamic role-bind-
ings, and so have been able to perform high-level inferencing for natural language understanding (cf.
[Charniak, 1986], [Riesbeck & Martin, 1986), [Granger, Eiselt, & Holbrook, 1986}, [Eiselt, 1987], and [Norvig,
1989)).

3Ajjanagadde & Shastri [1989], Barnden [1990], and Holldobler [1990] describe structured models that
can perform some variable-binding and inferencing, but which do not have the disambiguation abilities of
normal structured spreading-activation models.
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Figure 2. Activations of meaning of word star after astronomer married star is clamped for net-
work in Figure 1.

As an example of how marker-passing networks process language and perform disambiguation, consider the
following text (from [Eiselt, 1987])

Fred asked Wilma to marry him. Wilma began to cry. (Marriage)

Interpretating this text requires that a causal relationship be inferred between Fred’s proposal and
Wilma’s crying. One possible reason for her crying was that she was happy about his proposal and crying
“tears of joy”. To understand this sentence and resolve the ambiguity, ATLAST [Eiselt, 19871 uses the net-
work shown in Figure 3 by passing markers starting from the units for Cry-Tears and Propose-Marriage. This
propagation of markers finds the path Cry-Tears <> Happy-State > Happy-Event <> Propose-Marriage,
returning the “tears of joy” interpretation. Besides finding the inference path representing the inter-
pretation of the story, the symbolic pointers held in the markers also keep track of the role-bindings, so
that the model can clearly resolve that it was Fred who did the Propose-Marriage and Wilma who did the
Cry-Tears, and not the other way around.

Much text, of course, is ambiguous and has multiple possible interpretations, and the Marriage example is
no exception. Another possible reason that Mary began to cry was that she was saddened or upset by Fred’s
proposal. The same propagation of markers that found the above “tears of joy” path will therefore find a
second path, Cry-Tears < Sad-State «&» Sad-Event «> Propose-Marriage. To resolve such ambiguities,
marker-passing systems generally use a serial heuristic path evaluator separate from the marker-passing
process to select the most relevant path from the many paths generated. Such path evaluators usually in-
clude rules that select shorter paths over longer ones, reject paths that do not include as much of the input as
competing ones, and so forth. For example, to disambiguate between the “tears of joy” and “saddened”
paths, ATLAST applies an evaluation metric between two competing paths of equal length that selects the
oldest path. The Happy-State path was discovered first (arbitrarily, in this example), and thus remains as
the interpretation of the input.

As their use of heuristic path-evaluators indicate, marker-passing systems generally permit themselves
the luxury of using traditional symbolic buffers and programs to complement the spreading-activation pro-
cess of the network. This allows them to build up complex symbolic representations of stories outside the
network (as done by Norvig,[1989]) or hold rejected inference paths to allow reinterpretation if a path is
rediscovered (as done by ATLAST when Marriage is followed by Wilma was saddened by the proposal.).
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Figure 3. Marker-passing network from [Eiselt, 1987].

The best feature of marker-passing systems is that their parallel instantiation of inference paths makes
them extremely efficient at generating different possible interpretations of the input. Unfortunately, the
bottleneck for marker-passing systems is the separate path evaluation mechanisms used to select between
generated interpretations (the heart of the disambiguation problem). The main problem is the extremely
large number of spurious (i.e. non-important or logically-impossible) paths that the marker-passing process
generates which the path evaluators must separately weed out. For even very small networks, these spuri-
ous paths often represent over 90 percent of the paths generated [Charniak, 1986]. More importantly, as the
size of the networks increase to represent more world knowledge, there is a corresponding explosion in the
number of paths generated. Because these paths must be evaluated serially by a path evaluator, it negates
marker-passing systems’ main efficiency advantage.

1.2. Abilities and Limitations of Each Connectionist Level

As can be seen in the above overview of how each connectionist level has been used for semantic language
understanding, each level has a set of abilities and limitations that partially overlaps with the others.
This is also true, of course, for their use in areas other than language understanding. A summary is pre-
sented in Table 1, which shows many of the processes necessary for cognitive modelling and how well each
level of connectionist model performs them?.

(1) Self-Organization and Learning — Distributed networks usually use learning algorithms such as back-
propagation [Rumelhart et al., 1986 to train their weights to map inputs to desired outputs. Similarity-
based generalization and categorization are natural side-effects of the learning process. No such learning
algorithms exist to organize localist networks, which must have their knowledge hand-coded, though
adding to an existing network by recruitment of new units has been demonstrated [Diederich, 1990]. The
knowledge in marker-passing networks and symbolic models must generally be hand-coded also, though
many symbolic models learn through one-shot explanation-based learning (e.g. [Pazzani, Dyer, & Flowers,
1987]) or case-based reasoning (e.g. [Schank & Leake, 198%}).

(2) Robustness to Noise and Damage — Since knowledge in distributed networks is distributed over a large
set of units, destruction or introduction of noise to a random subset of units, weights, or inputs has relatively
little effect on input/output behavior (the models degrade gracefully). In contrast to this, destruction of

4A more detailed comparison between subsymbolic distributed network models and traditional symbolic
models can be found in {Dyer, 1990].



|r Marker-Pass-
Capability Distributed Localist ing Networks |  Symbolic
Networks Networks Models
Self-Organization and Learning + (-) (-) (+) |
Robustness to Noise and Damage + - - -
Memory Blending and Interference + (-) {-) {(-) <H
[t Associative Retrieval + + = - "
|| Simple Processing Elements + + - - J
|| Smoothly-Varying Commitment + + - -
Priming and Decay Effects - + - -
Complex Conceptual Relationships (=) + + +
Variable Bindings (=) (+) + +
Dynamic Constituent, Recursive Structure - () + +
Dynamic Inferencing (=) (+) + +
Knowledge-Level Parallelism (=) + + -
Meta-Reasoning - - + +

Table 1. Relative processing abilities of distributed connectionist networks, localist connection-
ist networks, marker-passing networks, and traditional symbolic models. + indicates something
the class of models does relatively well. = indicates something the class of models does only with
great difficulty, if at all. (+) and (=) indicate an ability demonstrated only recently or in a
subset of the models.

random units or symbols in localist networks, marker-passing networks, and symbolic models causes perma-
nent and localized damage to a specific piece of knowledge.

(3) Memory Blending and Interference — Human memory is far from perfect, with similar memories often
blending or interfering with each other. Such blending occurs naturally in distributed networks, since simi-
lar memories share similar weight interconnection values and output activation patterns. On the other
hand, although some symbolic models are able to partially explain confusions by assuming that different
knowledge structures point to shared substructures, it is generally difficult to explain memory blending in
localist networks, marker-passing networks, or symbolic models, since individual units or symbols perfectly
represent a given memory.

(4) Associative Retrieval — Retrieving information in distributed networks and localist networks is gen-
erally done by clamping one or more of the network’s inputs and allowing the network to settle into a state
satisfying the largest number of constraints. Networks are often able to complete the pattern even when in-
complete or noisy patterns are given as input, since the overall activation constraints from the partial pat-
tern will likely be closest to those of the corresponding complete pattern. Retrieval in marker-passing net-
works is comparatively more brittle, because connections between units are generally all-or-none. Simi-
larty, symbolic models generally retrieve only those items that match a set of explicit indices, so that any
missing indices from partial input may rule-out retrieval. In general, it is more difficult for the binary na-
ture of marker-passing networks and symbolic models to model the influence of contextual priming and
varying influence of experience on retrieval.



(5) Simple Processing Elements — Distributed networks and localist networks are made up entirely of rel-
atively simple numeric processing units whose activations based on their previous activations and the acti-
vations of their neighboring units [Feldman & Ballard, 1982]. Marker-passing networks, on the other hand,
use more complex units that can hold the symbolic backpointers and structured information of markers, and
often use labelled connections that perform different actions depending on the type or contents of those
markers. Marker-passing networks, however, are still simpler than most traditional symbolic models,
which generally use spedialized rules and procedures to operate on and between knowledge structures.

(6) Smoothly-Varying Commitment — The graded activation levels and weights in distributed networks
and localist networks allow them to have smoothly-varying levels of commitment to individual solutions,
which can easily change given new biasing input. Marker-passing networks and symbolic models, on the
other hand, generally use binary connections and rules so that a solution path can only be either active or
inactive. Disambiguation and reinterpretation are thus more natural in distributed networks and localist
networks, since each interpretation can have graded levels of activation, as opposed to marker-passing
networks and symbolic models, in which disambiguation must be performed by separate (possibly conflict-
ing) disambiguation heuristics.

(7) Priming and Decay Effects — Because activation on units in localist networks generally represents the
amount of evidence available for concepts in a given context, their spreading-activation networks have
been able to model many human priming effects, such as how people respond more quickly when presented
with inputs similar to what they’ve just seen. Such priming effects are impossible in standard feed-for-
ward distributed networks, because they have no record of their immediately-previous states. Since recur-
rent distributed networks do provide some record of their previous states, they do exhibit a form of priming,
in that previous inputs influence future interpretations, but have no obvious way to model effects of priming
on human reaction-times. Marker-passing networks and symbolic models are very awkward at modelling
priming effects because of their general difficulties with smoothly-varying commitments.

(8) Complex Conceptual Relationships — Complex relationships between concepts (such as planning rela-
tionships) can readily be represented in localist networks and marker-passing networks by structured con-
nections between units in the network. Such relationship rules are similarly direct to represent with point-
ers and rules in symbolic models. This is not the case in distributed networks, which have until recently
had difficulty representing complex structured relationships, one of their primary limitations [Fodor &
Pylyshyn, 1988]. These criticisms have been partially answered by recent rule-implementing distributed
network models (cf. [Touretzky & Hinton, 1988]), and distributed models using recurrent networks and re-
duced descriptions (cf. [Pollack, in press]), but are still a problem.

(9) Variable Bindings — Marker-passing networks and symbolic models use their built-in abilities to al-
low variables to be dynamically bound to symbols for any type of structure, and new symbols (or markers)
can be created during program execution. Localist networks, having only numeric activation levels, have
only recently become able to hold variable bindings (cf. [Lange & Dyer, 1989], [Ajjanagadde & Shastri,
1989]), and are still limited with respect to symbolic models. Variable bindings have been even more prob-
lematic in distributed networks, but have also been shown to a limited degree in rule-implementing dis-
tributed networks. More traditional pattern-transformation distributed networks can also be trained to act
as if they have variable bindings, but have the problem that bindings are often overridden by crosstalk
from bindings that occurred often in the training set [St. John, 1990].

(10) Dynamic Constituent, Recursive Structure — Marker-passing networks and symbolic models can form
an unlimited number of bindings without crosstalk, so can easily represent constituency and recursive struc-
tures, such as John told Bill that Fred told Mary that... Because recent localist network binding techniques

10



are limited in their binding capacity, it is difficult for them to represent such dynamic recursive structures,
though Barnden [1990] and Holldobler [1990] have shown that it can be done, at least in untraditional lo-
calist networks. Recurrent distributed networks can be trained to learn static recursive structures (e.g.
[Pollack, in press]), but have not yet been able to represent dynamic recursive structures that they have not
been trained on.

(11) Dynamic Inferencing — Symbolic models have the ability to perform dynamic inferencing from an ini-
tial set of bindings by applying their rules to infer novel intermediate states having new bindings. Further
inferences can then follow repeatedly from the new intermediate states until the desired state is reached.
This ability is crucial when a system cannot reach the desired state in a single step [Touretzky, 1990]. Be-
cause marker-passing networks and recent localist networks can hold variable bindings and propagate them
in turn for inferencing, they can also perform dynamic inferencing, though their inference rules are generally
limited in complexity relative to symbolic models. Traditional pattern-transformation distributed net-
works cannot perform dynamic inferencing, since they transform the input (or set of inputs) to the outputin a
single step. Rule-implementing distributed networks, on the other hand, are able to perform a limited
amount of dynamic inferencing.

(12) Knowledge-Level Parallelism — Marker-passing networks and localist networks are able to explore
multiple solutions in parallel because alternative interpretations are represented by markers or activation
patterns across different local areas of the network. This is crucial because with dynamic inferencing there
are often a very large number of alternative solution paths, especially in language understanding and plan-
ning. In contrast, although distributed networks update their units in parallel, they are serial at the
knowledge level because they represent all dynamic knowledge in a single set of units on the output or ina
hidden layer, and so cannot make dynamic inferences from more than one potential solution at a time. Pat-
tern transformation distributed networks can sometimes hold ambiguous solutions in a single blended acti-
vation pattern on their bank of hidden units, but it remains to be seen how far such blended activation pat-
terns can be extended to simultaneously hold and make dynamic inferences from multiple, never-before en-
countered solution paths.

(13) Meta-Reasoning — Symbolic models can reason and operate on knowledge from many different sub-
structures of their program, so long as that knowledge is represented by globally-interpretable symbolic
structures. Marker-passing networks can do this also, since they often employ a separate high-level sym-
bolic program to interpret and work with the results from the network’s marker-passing process. Pure dis-
tributed networks and localist networks, however, attempt to complete their tasks entirely within the
network, and so cannot perform meta-reasoning by resorting to symbolic code’. In addition, the knowledge
encoded in the weights of the network (especially in distributed networks) is generally meant to perform
the network’s given task, and is therefore not as readily interpretable by external mechanisms. It is theo-
retically possible for distributed or localist network models to perform meta-reasoning within the network
or with other subnetworks, but this is an area of connectionist research that has remained relatively unex-
plored.

5For practical purposes, results of the network are almost always analyzed by symbolic code or the
human modeler. However, this analysis is rarely considered an integral part of the model.
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2. THE CASE FOR HYBRID MODELS

All other things being equal, it is always desirable to build models out of as simple and homogeneous build-
ing-blocks as possible. This is one of the attractions of connectionist models in general, and distributed and
localist connectionist models in particular, since their entire knowledge and processing mechanisms are
built up of simple numeric processing elements and their local connections. It is also a reason against build-
ing hybrid models, since by definition hybrid models are made up of heterogeneous building-blocks from
different connectionist levels that may or may not integrate naturally.

However, as the previous section illustrated, it is often not possible to build a successful model of a given
cognitive task with elements from a single connectionist level given their current limitations. One is then
confronted with a choice: abandon or scale back the task, attempt to extend the abilities of the connection-
ist level to handle the task, or utilize elements from another connectionist level to handle the task in a hy-
brid model. Obviously abandoning or scaling back the task is not always a desirable solution. Extending
the abilities of the connectionist level to handle the task is perhaps ideally the best solution, and cer-
tainly a valuable long-term goal, but often requires theoretical breakthroughs that are not possible in a
reasonable amount of time. Thus, if one is interested in building a model of human performance of a given
task, then often the only possible approach is to build a hybrid model that combines elements and capabili-
ties from multiple connectionist levels.

A number of researchers have recently argued that it is often desirable to build hybrid connectionist models
(cf. [Dyer, 1990], [Hendler, 1989a), [Holyoak, in press], [Rose, 1990]). One argument is from ar engineering
perspective — if one’s goal is to build a certain application or model without regards to the solutions’ sim-
plicity or elegance, then building a hybrid system is often the simplest (if not only) solution. This is true for
real-world applications that require both low-level pattern-matching abilities and high-level symbolic
abilities, such as automated manufacturing or testing applications which need both low-level visual per-
ception and expert reasoning [Hendler, 1989a). This is also true for researchers interested in modelling hu-
man performance, where matching psychological data is often more important than having a homogeneous
model [Holyoak, in press].

Another reason for developing hybrid connectionist models is that they often turn out to be the most appro-
priate or useful level of description for complex systems. As Dinsmore [this volume] points out, high-level
symbolic models are often the best description of processes that may actually happen on a lower (i.e. con-
nectionist) level. The high-level abstractions of symbolic models allow predictions of cognitive behavior
that would otherwise be too complex to understand. On the other hand, some processes do not lend them-
selves to higher-level abstractions, and are best described at a lower connectionist level. For large cogni-
tive models that combine multiple such types of processing, the best model for descriptive and predictive
processes is therefore often a hybrid in which each component is described and processed at its most useful
level of description.

Even when using a single connectionist level is a major consideration, and a theoretical breakthrough seems
possible to extend its abilities to handle a certain task, there are often good reasons to build a hybrid model
first. If it appears necessary to have a certain ability, and that ability is present in another kind of net-
work, then building a hybrid model of the two networks can serve as a useful prototype to validate the ap-
proach. If the hybrid model solves the problem or comes close to solving it, then it verifies that finding a
way to embed the missing ability within the original network level will indeed be a fruitful solution.
However, if the hybrid model having the ability in question is not able to solve the problem, then it serves
as strong evidence that either a different approach is needed or that there are more facets to the problem
than originally expected, and that the desired ability is not enough. Depending on the answer to this ques-
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tion, the hybrid model can therefore either save substantial effort trying to give the original network an
unnecessary ability, or can shed light on other abilities that are needed to model the task.

2.1. Previous Hybrid Connectionist Models

Most connectionist research in cognitive modelling has involved building models out of a single connectionist
level. Only recently have researchers begun to explore hybrid connectionist models as the advantages and
disadvantages of each level have begun to become more clear.

Most work on hybrid connectionist models has been on networks that integrate marker-passing and localist
connectionist techniques. A good example of the development of such models is the transformation of
Hendler’s [1988] marker-passing planning model to a mode} that uses both marker-passing and localist con-
nectionist techniques (Hendler {1989b]). In Hendler’s original marker-passing planning system, a symbolic
problem-solving program would assert known facts and desired goals by placing markers into its semantic
network memory. The marker-passing system then propagated those markers in parallel throughout the
network, with intersections between markers reported back to the symbolic problem-solving program. The
program would then evaluate the paths of concepts meeting at those intersections with a set of path-eval-
uating heuristics to determine whether they proposed a solution to an existing problem, caused a conflict, or
otherwise provided useful information to the planner.

One of the main problems for Hendler’s original marker-passing system was the rigidity of the underlying
symbolic representation scheme that it (and all marker-passing systems) depend on. As in all marker-pass-
ing systems, there must be a link between two concepts for the connection between them to be found and used
— for example, a link classifying a knife as a weapon. However, in many cases a connection between two
concepts needs to be found, but would not normally exist as an explicit connection — for example, an ornate
Egyptian letter opener would not normally be classified as a weapon, but could be considered one in certain
contexts (since it is pointed, metallic, and sharp, like a knife). To more generally handle these kinds of
cases, it is necessary to break the representation of concepts into the individual semantic features that de-
scribe them, something that causes problems in pure marker-passing systems because of the all-or-none na-
ture of marker-passing paths. Hendler therefore expanded his networks to contain units representing
needed semantic microfeatures and to include numeric zorch and threshold terms similar to the activation
of localist connectionist networks (Hendler [1989b]). In the newer system, markers still propagate to find
path intersections, but also hold numeric zorch terms representing their strength. Most importantly, these
zorch amounts add up as activation on the individual units they reach, so that a unit that shares many fea-
tures with another marked unit will receive a lot of activation and become part of the marker paths (e.g. a
knife from a letter opener, since they are connected between the feature units for pointed, metallic, and
sharp), but units that share only minimal features will not receive enough activation to support further
marker propagation (e.g. a spoon from a letter opener, since it only shares the metallic feature). By includ-
ing the analog evidence combination abilities of localist networks in his marker-passing system, Hendler
was therefore able to solve a number of the representational problems of marker-passing systems and to ap-
proach a problem that neither level of modelling could perform well separately.

Kitano, Tomabechi, & Levin [1989] describe a model for natural language parsing and disambiguation that
integrates marker-passing and localist connectionist techniques for much the same reason. In their system,
marker-passing with three different kinds of markers is used to generate inferences and different hypothe-
ses of a text’s interpretation. One of the types of markers in their system serves as an “activation marker”
that holds a numeric “cost” of the interpretation that it is a part of. The activation markers’ costs increase
whenever they mark previously inactive (unprimed) concepts or do not satisfy constraints imposed on their
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interpretation path. The activation markers over the path of units whose interpretation best matches the
context of the story therefore tend to have the lowest costs, and are selected to represent the winning inter-
pretation. This numeric summation of costs allows their system to integrate priming information and con-
straints to perform disambiguation better than purely-symbolic marker-passing systems. Like Hendler’s
[1989b] hybrid planning system, the integration of localist connectionist techniques with marker-passing
into a hybrid model therefore enables processing that would be difficult in a purely marker-passing system.

Another hybrid marker-passing and localist connectionist network approach is to build localist networks
that control their spread of activation using some of the symbolic techniques of marker-passing systems.
Rose [1990] uses this approach in SCALIR, a model that performs conceptual retrieval of legal documents
from a large semantic network. SCALIR uses a localist network whose units and interconnections represent
concepts and documents in the legal domain, but whose units hold hybrid vectors of activation rather than a
single activation value. Like connections between units in marker-passing networks, SCALIR’s connections
have symbolic labels that have different effects on the spread of activation depending upon their type.
Connections with certain labels allow all components of the activity vector to be propagated through to the
next unit after being multiplied by its weight, while connections with other labels let only a single speci-
fied component of the vector through. These different symbolic labels on SCALIR’s connections allow the
spreading-activation search process to be controlled symbolically, as in marker-passing systems, while re-
taining the associative retrieval and learning abilities of localist connectionist networks.

There have been fewer hybrid models that integrate localist connectionist and distributed connectionist
networks. Sumida & Dyer [1989] have proposed a potential solution to the problem of distributed connec-
tionist networks’ being serial at the knowledge-level by integrating subnetworks of distributed ensembles
into a large network that globally resembles a localist semantic network. Because each general concept is
represented by a distributed ensemble of units, rather than the single unit they would be represented with
in localist networks, they can be trained to store actual long-term memory instances of those concepts using
distributed learning techniques, giving them an advantage over pure localist networks. On the other hand,
the fact that the network is structured globally like a localist network (with ensembles for related concepts
being connected to each other) gives their networks the potential to retain knowledge-level parallelism, an
advantage over pure distributed networks.

2.2 Hybrid Connectlionist and Symbolic Models

The largest class of hybrid models are models that combine connectionist networks with traditional sym-
bolic processing. Such hybrid symbolic/connectionist models allow exploration of cognitive abilities that
could not otherwise be handled in purely connectionist or symbolic systems, while being guides to best
courses of future research. Most such models are distributed connectionist models that utilize symbolic abil-
ities to handle portions of the task that the distributed networks cannot yet handle, such as the use of sym-
bolic buffers in Kwasny & Faisal’s {this volume] hybrid syntactic parser to store and manipulate the parse
trees that their distributed networks are trained to operate on and build.

Hybrid symbolic/connectionist systems are especially valuable for functional approaches to model design,
where a system is designed as a set of interconnected functional models that are first implemented symboli-
cally but which are gradually replaced with connectionist modules. An example of this approach is
DYNASTY [Lee, Flowers, & Dyer, 1990], a script-based story understander that uses multiple modules of re-
current distributed networks that access a symbolic dictionary. In their model, each distributed network is
trained to serve as a module performing a separate processing subtask, such as parsing sequential input text
into individual event representations, recognizing that a sequence of events fits into a particular script (e.g.
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going to a restaurant), and paraphrasing the recognized script. Many of these distributed modules were ini-
tially implemented symbolically to allow testing of the overall model’s concept, and were replaced one-by-
one as time and opportunity presented it. The remaining symbolic component of DYNASTY is a symbolic
hash table used as a “global dictionary” to store the representations of concepts and events it has learned
and the symbols that represent them. Different distributed network modules access and store values in this
symbolic global dictionary when needed.

An example of a hybrid symbolic/connectionist model that uses localist networks is Kintsch’s [1988] con-
struction-integration model of the psychological time course of language comprehension. Kintsch’s model
uses a symbolic production system to build symbolic representations of the alternative interpretations of a
text and to construct a localist network in which the different interpretations compete. The spreading-ac-
tivation process of the constructed localist network then serves to integrate the constraints from context (in
the form of the excitatory and inhibitory connections constructed by the production system) to disambiguate
and choose the correct interpretation. The use of the symbolic production system allows Kintsch’s model to
perform the rule-firing and inferencing that is difficult for purely localist models, while the constraint sat-
isfaction of the constructed localist network allows modelling of the time-course of disambiguation that is
difficult for purely symbotic models.

Finally, hybrid connectionist/symbolic models occasionally make use of multiple levels of connectionist
processing in addition to their symbolic components. An example of this is Wermter & Lehnert’s [1989] hy-
brid localist, distributed, and symbolic model for interpreting noun phrases such as Note on the cause of ion-
ization in the F-region. Their model uses a symbolic syntactic parser to construct a localist network that
represents the different possible combinations of nouns and prepositions for the input noun phrase. The lo-
calist network thereby constructed integrates the semantic and syntactic constraints to disambiguate the
noun phrase and compute a preferred structural interpretation. The distributed connectionist networks are
trained on the relative plausibility of semantic relationships between nouns, and are used initialize the ac-
tivations of the localist network that does the actual disambiguation. By combining distributed networks,
localist networks, and symbolic processing, their hybrid model allows for a combination of learning, inte-
gration of competing constraints, and symbolic extraction of concepts difficult for models that use only one of
the three types of processing.

3. GOING FROM HYBRIDS TO A SINGLE LEVEL

If hybrid connectionist models are to be of value to researchers ultimately interested in building models on a
single connectionist level, then it must eventually be possible to at least roughly re-create the hybrid capa-
bilities in that level. Even a successful hybrid model can turn out to be little more than an engineering exer-
cise for a researcher interested in pure connectionist models if it turns out to be impossible to implement the
hybrid in the desired level. For example, a hybrid symbolic/connectionist model for playing chess that
uses symbolic routines to perform brute-force search of the game tree and a distributed network as a pattern-
matcher to evaluate the board positions might be a perfectly reasonable engineering approach to building a
competitive chess-playing program. However, it would probably fail as a significant stepping-stone to a
purely-connectionist model of human chess playing, since it seems unlikely that any connectionist mecha-
nism will be able to perform the millions of individual search and evaluation steps needed to implement
the hybrid’s brute-force search with human response times.

On the other hand, if the elements and mechanisms borrowed from a foreign connectionist level in a hybrid
model have things in common with the desired connectionist level, then it is more likely that the model
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will eventually be implementable in that level. If it is indeed implementable, then the hybrid model will
have fulfilled its mission of confirming that those mechanisms will be useful to the task. When a mecha-
nism is actually developed to allow the hybrid model to be implemented in a single level, it will likely
have advantages over the hybrid model (besides its homogeneity), since the new mechanism within the
level will likely integrate more smoothly with the rest of the level than the sometimes artificial inter-
face between elements of different levels in hybrid models (such as between numeric activation and sym-
bolic markers).

For example, suppose a researcher has built a hybrid localist connectionist and marker-passing model to
test how well a localist connectionist network would work for language understanding if it had a marker-
passing network’s ability to hold variable bindings and perform inferencing. If the hybrid model works
well, then it would confirm that it would be valuable to have a marker-passing network’s variable binding
abilities in localist connectionist networks. However, to complete the drcle and make the whole effort
worthwhile for a researcher mainly interested in localist connectionist networks, it must turn out to indeed
be possible to implement the marker-passer’s variable binding abilities within a purely localist connec-
tionist network.

3.1. ROBIN: A Locallst Connectlonist Network With Hybrid Abllitles

As described in Section 1.1, semantic language understanding is such a large and difficult task that no level
of connectionist or symbolic processing can perform many aspects of it particularly well. Localist connection-
ist networks seem best-suited to handling the ambiguity rife in language, but have had no way to represent
the variable bindings and perform the inferencing necessary for comprehension. Marker-passing networks
are well-suited for performing inferencing, but are awkward when it comes to resolving ambiguities.

An obvious solution to this dilemma is to build a hybrid marker-passing and localist connectionist network
that propagates markers to generate alternative inference paths and uses the constraint-satisfaction of the
localist network’s activation to disambiguate between those inference paths. Such a hybrid model is rela-
tively straightforward to build because of the similarity of the unit structure in marker-passing and local-
ist networks. The two types of propagation can in fact proceed in parallel across a single set of hybrid units
that can hold both activation and markers. Lange, Hodges, Fuenmayor, & Belyeav. [1989] briefly describe
a simple such hybrid model that performs both inferencing and disambiguation within the network. Ki-
tano ef al. [1989] also describe a hybrid marker-passing and localist connectionist model that performs pars-
ing and disambiguation.

Given that a hybrid marker-passing and localist connectionist model has many potential advantages for
semantic language understanding, it would be desirable to build a purely-localist connectionist model that
has the variable binding and inferencing abilities of marker-passing networks while retaining its disam-
biguation abilities.

ROBIN (ROle Binding and Inferencing Network) [Lange & Dyer, 1989] is a purely-localist, non-hybrid con-
nectionist model that has many of the variable binding inferencing abilities of marker-passing networks.
Because ROBIN also retains the disambiguation abilities of normal localist networks, it is able to perform
high-level inferencing that requires lexical and pragmatic disambiguation. As an example of the kinds of
input ROBIN is able to understand, consider the phrase:

P1: John put the pot inside the dishwasher
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I1: If the police see John’s marijuana, then they will know that he possesses an illegal
object (since marijuana is an illegal substance).

12: If the police know that John is in possession of an illegal object, then they will arrest
him, since possessing an illegal object is a crime.

I3: John does not want to get arrested.

I14: John has the goal of stopping the police from seeing his marijuana.

I5: The police coming results in them being in the proximity of John and his marijuana.

16: The police being in the proximity of John’s marijuana enables them to see it.

17: John’s putting the marijuana inside the dishwasher results in the marijuana being in-
side the dishwasher.

I18: The marijuana is inside an opaque object (the dishwasher).

19: Since the marijuana is inside an opaque object, the police cannot see it, thus satisfy-
ing John’s goal.

Table 2. Inferences ROBIN makes to understand the sentence John put the pot inside the dish-
washer because the police were coming. (Hiding Pot)

To understand P1, ROBIN disambiguates the word pot to mean a Cooking-Pot, and infers that the most
likely reason for John putting it inside the dishwasher was to get it clean. However, later context often
shows the original inferences to be wrong, forcing reinterpretation of the input. This is the case if P1 is fol-
lowed by:

P2: because the police were coming.

Suddenly, the best interpretation for pot in P1 changes to Marijuana, and John’s Transfer-Inside action seems
to be a plan for hiding the Marijuana from the police to avoid his arrest. This reinterpretation can only be
made after generating a chain of inferences to find the causal relationship between the two phrases
(collectively referred to as Hiding Pot). Table 2 shows the inferences ROBIN makes to dynamically create
this interpretation.

3.1.1. Structure of RoBIN

ROBIN's networks consist entirely of connectionist units [Feldman & Ballard, 1982] that perform simple nu-
meric computations on their inputs: summation, summation with thresholding and decay, or maximization.
Connections between units are weighted, and either excitatory or inhibitory. These networks encode seman-
tic networks of frames representing world knowledge. Each frame has one or more roles, with each role
having expectations and selectional restrictions on its fillers. Every frame is related to one or more other
frames, with pathways between corresponding roles (representing general knowledge rules) for inferencing.
This section gives a short overview of ROBIN and how it performs inferencing, but [Lange & Dyer, 19891
provides a detailed description.

As in most localist connectionist models, there is a single unit in the network for each frame or role concept
in the knowledge base, with relations between concepts being represented by weighted connections between
the units. Activation on a conceptual unit is evidential, corresponding to the amount of evidence available
for the concept (either a frame or role) and the likelihood that it is selected in the current context.

As described before, representing the amount of evidence available for a concept, however, is not sufficient
for complex inferencing tasks. A solution to the variable binding problem requires that some means exist for
identifying a concept that is being dynamically bound to a role, as marker-passing networks do with the
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Figure 4. Several concepts (ovals on lower plan) and their uniquely-identifying signature pat-
terns, along with the Actor and Location roles of the Transfer-Inside frame. Here each signature is a
bank of six units, with increasing levels of activation represented by increasing darkness of shading
(ranging from white = 0 to black = 1). The Actor role has a virtual binding to John because its
binding units hold the same activation pattern as John’s signature. The Location role shown here is
currently unbound (binding banks have no activation).

symbolic backpointers on their markers. Furthermore, the network’s structure must allow these role-bind-
ings to propagate across unit pathways that encode the knowledge base’s rules (as do markers), thus dy-
namically instantiating inference paths representing the input.

3.1.2. Varlable Binding With Signatures in Localist Connectionist Networks

Representing variables and role-bindings is handled in ROBIN by network structure holding signatures —
activation patterns which uniquely identify the concept bound to a role (introduced in [Lange & Dyer,
1988)). Every concept in the network has a set of signafure units that output its signature, a constant activa-
tion pattern different from all other signatures. A dynamic binding exists when a role or variable’s binding
units have an activation pattern matching the activation pattern of the bound concept’s signature. For ex-
ample, in Figure 4, the virtual binding of the Actor role of action Transfer-Inside (representing somebody
putting an object inside another, as in P1) to John is represented by the fact that its binding units have the
same activation pattern as John’s signature. The same binding units could, at another time, hold a differ-
ent virtual binding, simply by having the activation pattern of another concept’s signature. The complete
Transfer-Inside frame is represented in the network by the group of units that include the conceptual unit
Transfer-Inside, a conceptual unit for each of its roles (the Object role not shown), and the binding units for
each of its roles.

In general, signatures can be uniquely-identifying activation patterns of any size. Ideally, signatures are
distributed activation patterns (e.g. made up of semantic microfeatures) that are themselves partial repre-
sentations of the concept they stand for. This allows the signatures themselves to be used as inputs for dis-
tributed learning mechanisms after they have been propagated for inferencing. For simplicity, however,
ROBIN's simulations are usually run with the signature patterns simply being arbitrarily-generated scalar
values that uniquely identify their concept.
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3.1.3. Propagation of Signatures for Inferencing

The most important feature of signatures is that they can be propagated without change across long paths
of binding units to dynamically instantiate candidate inference paths. Connections between binding units of
frames’ roles encode rules such as:

Rl: [Actor X Transfer-Inside Object Y Location Z]
== results—-in ==> [Object Y Inside-Of Location Z]
(When an object is transferred inside of a location, then it is inside of that location)

Figures 5a and 5b illustrate how the network’s structure automatically propagates signatures to fire rules
such as R1. For simplicity, the signatures in the figure are uniquely-identifying scalar values. Evidential
activation for disambiguation is spread through the paths between conceptual units on the bottom plane
(i.e. Transfer-Inside and its Object role), while signature activation for dynamic role-bindings is spread
across the parallel paths of corresponding binding units (solid black circles) on the top plane. Units and
connections for the Actor, Planner, and Location roles are not shown. As shown in the figure, there are actu-
ally multiple binding units per role to allow simultaneous propagation of ambiguous bindings. In general,
this requires that there be as many binding units per role as there are possible meanings of the most ambigu-
ous word in the network.

Initially there is no activation on any of the conceptual or binding units in the network. When input for
John put the pot inside the dishwasher (P1) is presented, the lexical concept units for each of the words in
the phrase are clamped to a high level of evidential activation, directly providing activation for concepts
John, Transfer-Inside, Cocking-Pot, Marijuana, and Dishwasher. To represent the role-bindings given by
phrase P1, the binding units of cach of Transfer-Inside’s roles are clamped to the signatures of the concepts
bound to them®. For example, the binding units of Transfer-Inside’s Object are clamped to the activations
(6.8 and 9.2) of the signatures for objects Marijuana and Cooking-Pot, representing the candidate bindings
from the word pot (Figure 5a)7.

The activation of the network’s conceptual units is equal to the weighted sum of their inputs plus their pre-
vious activation times a decay rate, similar to the activation function of previous localist networks. The
activation of the binding units, however, is equal to the maximum of their unit-weighted inputs, allowing
signatures to be propagated without alteration. Binding units calculate their activation as the maximum of
their inputs because this preserves their signature input value even when the signature can be inferred from
more than one direction. The actual relative signature activation values do not matter, since gated connec-
tions (not shown) ensure that two different signatures do not reach the same binding node [Lange & Dyer,
1989].

6ROBIN does not currently address the problem of deciding upon the original syntactic bindings, i.e.
that “pot” is bound to the Object role of phrase P1. Rather, ROBIN's networks are given these initial
bindings and use them for high-level inferencing.

7 An alternative input, such as “George put the cake inside the oven”, would be done simply by clamping
the signatures of its bindings (i.e. George, Cake, and Oven) instead. A completely different set of infer-
ences would then ensue.
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Figure 5b. Activation after quiescence has been reached in processing for P1.

Figure 5. Simplified ROBIN network segment at two different cycles during processing of P1 (John
put the pot inside the dishwasher). Each figure shows the parallel paths over which evidential
activation (bottom plane) and signature activation (top plane) are spread for inferencing. Signa-
ture nodes (outlined rectangles) and binding nodes (solid black circles) are in the top plane. Thick-
ness of conceptual node boundaries (ovals) represents their levels of evidential activation. (Node
names do not affect the spread of activation in any way. They are simply used to initially set up
the network’s structure and to aid in analysis.)
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As activation starts to spread after the initial clamped activation values in Figure 5a, Inside-Ot receives
evidential activation from Transfer-Inside, representing the strong evidence that something is now inside of
something else. Concurrently, the signature activations on the binding units of Transfer-Inside’s Object prop-
agate to the corresponding binding units of Inside-Of s Object (Figure 5b), since each of the binding units cal-
culates its activation as the maximum of its inputs. For example, Inside-Of's left Object binding unit has
only one input connection, that from the corresponding left Object binding unit of Transfer-Inside. Since the
connection has a unit weight and the left Object binding unit of Transfer-Inside has an activation of 6.8, In-
side-Of's left Object binding unit also becomes 6.8 (Marijuana’s signature), because 6.8 is its maximum {and in
this case only) input. The potential binding of Cooking-Pot (signature 9.2) to Inside-Of's right Object bind-
ing unit propagates at the same time, as do the bindings of Inside-Of's Planner role to the signature of John
and its Location role to the signature of Dishwasher.

The network has thus made the crucial inference of exactly which thing is inside of the other, by propagat-
ing signatures across binding paths encoding rule R1. Similarly, as time goes on, Inside-Of-Dishwasher
(representing a kitchen utensil being inside of a dishwasher, a precondition for cleaning) and Inside-Of-
Opaque (representing an object being inside of an opaque object, which blocks it from sight) receive eviden-
tial activation, with inferencing continuing by the propagation of signature activation to their correspond-
ing binding units (Figure 5b)8.

Inferencing continues by propagation of signature and evidential activation. Figure 6 shows an overview of
the signature bindings in a portion of the network after input for the rest of Hiding Pot (because the police
were coming) is presented and the network eventually settles. The network has made inferences 11-19 of
Table 2, with most being shown in the figure. For example, I8 (the inference that the Marijuana is inside of
an opaque object) is represented by the instantiation of state Inside-Of-Opaque. The role-bindings of the
frames shown were instantiated dynamically with signature activation.

3.1.4. Disamblguation and Resinterpretation

As can be seen in figures 5 and 6, propagation of signature activations dynamically instantiates candidate
inference paths in parallel in much the same way that marker-passing systems do. If this were a marker-
passing system, then an external symbolic path evaluator would have to be used to select between the
dishwasher cleaning path and the longer hiding path connecting John’s Transfer-Inside to the Police’s
Transfer-Self. The evaluation heuristics would also have to somehow recognize that at the end of process-
ing Marijuana should be selected over the Cooking-Pot and Planting-Pot bindings throughout the network.

However, in ROBIN, such disambiguation is performed entirely within the network, without the need to re-
sort to a separate path-evaluation program. Deciding between the competing inference paths instantiated
by signature activation is the function of the evidential portion of ROBIN’s networks (such as the concep-

8inside-Of-Dishwasher and Inside-Of-Opaque are concept refinements (or specializations) of Inside-Of.
Refinement frames here represent the reason for a particular action or state, and are useful because they
allow more specific inferences to be made when role-bindings are known. For example, if the network has
inferred that a dish is inside of a dishwasher (Inside-Of-Dishwasher), then it could infer that it is going
to be cleaned. If the network has inferred that any object is inside of an opaque object (Inside-Of-Opague),
then the network could infer that what is important is that the object is blocked from sight. When more
than one refinement of a frame can be inferred (as in Hiding Pot), one of them must be selected as the win-
ning reason in the given context {e.g. is the object being cleaned or hidden?).

21



hrase <8 "were coming™>
Subdject: "palice"

Subject:
Direct Cbiect: *pot*
Indirect Object: "dishwasher™

1

action Transfer-Inside

Actor: John

Object: Cocking-Pot
Marijuana, eor

action Transfer-Self

Actor: Police

Locatien: Cooking-Pot,
Marijuana, or
Planting-Pot

Planting-Pot
Location: Dishwasher

Planner: Police

Location: Cooking-Rot,
Marijuana, or
Planting-Pot

: = Bosuli
state Inside-Of - . .
Planner: Jochh state Block-See : state Proxumty—Of

Object: Cooking-Pot
Marijuana, or
Planting-Pot

Location; Dishwasher

Planner: John

Object: Cooking-Pot,
Marijuana, or
Planting-FPot

o Refinemeni -1
tate Inside-Of-Opaque

state Inside-Qf-Stove f state Inside-Of-Dishwasher Plapner: John action Sw'Owat
: Planner: i Planner: John Obiect: Cooking-Pot Actor: Pelice
Chiect: EH Object: Cooking-Pot Marijuana, or Obiect: Ceoking-Pot
Location: I Location: Dishwasher Planting-Pot

Location: Dishwasher

: - Precondition:

Gcript $Stove-Cooking fgoal Avoid-Detection action Police-See-Illegal
Aotor: I Actor: John i gi‘“““? Jobn Actor: Police
Food: i Object: Cooking-Pot [ Ject: Cooking-Pat, [ Evidence: Marijuana i
Container: : Location: Dishwasher Marijuana, or

_\ __Lo_cal:icm:

Planting-Pot

" PlaaFor

A Plag

oal Clean
Planner: John
Cbhject: Cocking-Pot

goal Police-Capture

Actor: Police

Criminal: John

Evidence: Hnrijuunj
—

 {goal Prepared
1 Gelewt

Figure 6. Overview of a small portion of a ROBIN semantic network (actually embedded in net-
work structure such as in Figures 5a and 5b) showing inferences dynamically made after clamping of
the inputs for phrases P1 and P2 of Hiding Pot. Thickness of frame boundaries shows the amount of
evidential activation on the frames’ conceptual nodes. Role fillers shown are the ones dynamically
instantiated by propagation of signature activation over the role’s binding nodes. Darkly shaded
area indicates the most highly-activated path of frames representing the most probable plan/goal
analysis of the input. Dashed area shows the discarded dishwasher-cleaning interpretation.
Frames outside of both areas show a very small portion of the rest of the network. These frames re-
ceived no evidential or signature activation from either phrase.
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Figure 7. Time-course of evidential activations of meanings of word pet and competing refine-
ments of Inside-Of after presentation of input for John put the pot inside the dishwasher (P1) at cy-
cles 1 through 31 and presentation of input for the police were coming (P2) is presented at cycles 51
through 61.

tual units on the bottom layer of Figures 5a and 5b). The activations of the conceptual frame units are al-
ways approximately proportional to the amount of evidence available for them from their bindings and
their related frames. The inference path selected as the interpretation in any given context is therefore
simply the most highly-activated path of frame units and their bindings®. Similarly, when there are
multiple possible bindings for each role, the binding chosen at any given time is the one whose concept has
the highest level of evidential activation.

ROBIN has been implemented in the DESCARTES connectionist simulator [Lange et al., 1989]. Figures 7a and
7b show the evidential activations of the ambiguous meanings of the word poi and the competing refine-
ments of Inside-Of as activation spreads through the network. Initially there is more evidence for the in-
terpretation that John was trying to clean a cooking pot. This is shown by the fact that Cooking-Pot be-
comes more highly-activated than Marijuana or Planting-Pot after Inside-Of-Dishwasher becomes activated
(about cycle 60). However, after input for P2 is presented at cycles 51 through 61, the inferences about the
police propagate through Transfer-Self, Proximity-Of, See-Object, and Block-See, until they reach Inside-
Of-Opaque (about cycle 95), as in Figure 6. Reinforcement from this hiding and police capture path eventu-
ally causes Inside-Of-Opaque to become more highly-activated than Inside-Of-Dishwasher and Marijuana to
become more highly-activated than Cooking-Pot (by cycle 160), so that the network’s interpretation of the
input changes to the hiding marijuana interpretation of the darkly-shaded area in Figure 6. Notice,

9The network’s “decision” or “selection” is actually simply the interpretation that the human modeler
gives to the levels of activation present in it, as in all connectionist models.
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however, that evidential activation remains on the units of the alternative paths, allowing another possi-
ble reinterpretation if the next sentence is they were coming over for dinner in half an hour.

3.1.5. Elimination of Crosstalk: Interaction of Signature and Evidential Activation

So far, signature and evidential activation have been described as propagating in parallel but along sepa-
rate paths of units and connections. However, as described in [Lange, in press], the problem of crosstalk
makes it crucial for the two paths of activation interact so that the dynamic variable bindings in the net-
work affect the spread of activation.

One way ROBIN controls crosstalk is by having units embedded within it that compute and enforce selec-
tional restrictions on role-fillers to control the spread of activation when roles’ binding constraints are vio-
lated. For example, the selectional restrictions on the Object role of Inside-Of-Dishwasher expect it to be
filled only by objects that are cooking or eating utensils, and not objects like Marijuana. To enforce these se-
lectional restrictions, each connection from one binding unit to another is actually a multiplicative connec-
tion (as in the sigma-pi units described in [Rumelhart et al., 1986]) that is gated by another unit calculating
whether the signature is a tegal one. For example, the left gated link from the binding unit of Inside-Of's
Object to Inside-Of-Dishwasher’s Object in Figure 5b is closed, since the network recognizes that Marijuana
(6.8) violates its selectional restrictions. Only the signature of Cooking-Pot (9.2) matches and is propa-
gated to be considered as the Object of Inside-Of-Dishwasher.

In other cases, the role-filler's constraints on a frame are completely violated (e.g. inside-Of-Stove and in-
side-Of-Restaurant are impossible interpretations for P1). In these cases, the activations of the signature
bindings interact with the activation on the evidential layer through gated connections that stop the vio-
lated frames from receiving activation, as can be seen in Figure 6. These selection restrictions (or logical
binding constraints) dramatically reduce the number of spurious inference paths generated by the propaga-
tion of signatures and thus eliminate a large potential source of crosstalk. The network structure imposing
selectional restrictions is not important for the purposes of this paper, but is described in [Lange & Dyer,
1989].

Another way in which the activation of the signature role-bindings and the activation of the evidential
layer interact is by structure that assures that evidential activation is spread only between frames and
their actual role-fillers. This is to solve localist connectionist networks’ basic problem of not being able to
distinguish between sentences such as The astronomer saw the star and The star saw the astronomer (section
1.1.3). Signatures partially solve this problem by allowing the network to differentially represent the
bindings of the two different instances. However, if these bindings do not have an effect on the spread of
evidential activation, then they might as well not be there in terms of disambiguating between the mean-
ings of star. ROBIN solves this problem by gated connections that feed evidential activation back from a
frame to those concepts, and only those concepts, that are bound to its roles with signature activation. In
the case of The star saw the astronomer, only the signature of Movie-Star reaches the Actor role of See
{since Celestial-Body violates its selectional restrictions). Movie-Star therefore receives evidential activa-
tion that Celestial-Body does not, so that it becomes more highly-activated and is chosen as the interpreta-
tion of star. This control of activation based on signature bindings is also done by structures of units and
gated connections within the network; how crudial it is to the disambiguation process by controlling
crosstalk is explained more thoroughly in [Lange, in press].
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3.2, Comparison of ROBIN and Hybrld Models

Signatures allow ROBIN to hold and propagate variable bindings much like symbolic markers allow
marker-passing networks to. Because they are simply activation patterns that spread across normal nu-
meric connectionist units and connections, they allow purely-localist connectionist networks to have much of
the functionality of hybrid localist and marker-passing networks. Equally important is that ROBIN re-
tains the normal disambiguation abilities of localist networks, unlike other localist models that have
demonstrated the ability to handle variable bindings (such as [Ajjanagadde & Shastri, 1989], [Barnden,
1990], and [Holldobler, 1990]). ROBIN thus completes the circle; hybrid networks such as those of Lange et
al. [1989] and Kitano et al., [1989] demonstrate that localist networks having marker-passing abilities are
useful for language understanding, and ROBIN demonstrates that the abilities of these kinds of hybrid
models can actually be embedded within a purely-localist network .

As is generally the case when a mechanism is developed to give a specific connectionist level the capabili-
ties of hybrid model, the signature mechanism for variable bindings in localist networks has both advan-
tages and disadvantages in comparison to that of marker-passing in hybrid networks. One weakness of sig-
natures is that each binding unit can hold only one signature activation at a given time, while each marker-
passing unit can hold as many markers as its symbolic stack can hold. This is why each role of ROBIN’s
frames has multiple binding units to hold ambiguous bindings (such as of the word pof). Another difference
between signatures and markers is that signature activation patterns only represent the concept being bound,
while markers can also hold complex symbolic information such as the type of the marker, the path it has
followed, the time the marker arrived, and so on.

On the other hand, a purely-localist connectionist model such as ROBIN has the advantage that its build-
ing-block elements are all relatively simple, numeric connectionist elements. This is in contrast to hybrid
localist and marker-passing networks, whose elements must not only support normal connectionist activa-
tion functions, but must also be capable of holding lists of symbolic markers and acting on the sometimes
complex symbolic information on those markers. The more important advantage of ROBIN’s purely-localist
networks, however, lies in how naturally signature activation variable bindings interact with evidential
activation as opposed to the variable bindings held in symbolic markers. For example, a signature matches
a selectional restriction if its concept has been inferred to be an instance of the type of that restriction (e.g.
if the Dishwasher in the phrase has been inferred to be an Instance of type Opaque-Object). This is calcu-
lated in the network by comparing the signature activation on the candidate binding unit to the signature
activation on each of the binding units of the restriction type’s Instance role (by units having opposite-
signed weights from each and a low firing threshold). If any match, then the signature is of the right type,
the restrictions are met, and the corresponding binding constraint unit becomes active. A multiplicative
connection from this binding constraint unit to the connection on the evidential layer from one frame to the
other is then all that is needed to gate the flow of evidential activation open and closed when necessary.
The symbolic information held in the activations of the signature bindings thereby controls the disam-
biguating activations of the evidential layer by the normal spreading-activation process.

In a hybrid marker-passing/localist connectionist model, on the other hand, there is nothing akin to multi-
plicative connections to cleanly interface between the symbolic information on markers and the numeric in-
formation of evidential activation. Thus, to enforce selectional restrictions within the network, the
weighted activation connections between frames would have to somehow query or be controlled by the sym-
bolic marker-passing units (which would have to symbolically calculate whether the restrictions have
been met). This is certainly possible in a hybrid model, but having such awkward communication between
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different processing paradigms makes the network more complex and violates the normal numerically-
based activation functions of connectionist units [Feldman & Ballard, 1982].

A more fundamental potential advantage to using activation-based signatures in a localist network as op-
posed to using a hybrid with marker-passing comes into play if signatures are uniquely-identifying dis-
tributed patterns of activation (as shown in Figure 4) rather than the arbitrary scalar values shown propa-
gated in Figures 5a and 5b. In this case, the distributed representations of similar concepts would have sim-
ilar signature patterns and thereby carry a degree of semantic information that could be used locally in the
network. Such a move towards a hybrid localist and distributed connectionist model would allow signature
inferencing to automatically drive distributed learning of selectional restrictions and long-term instances
(as proposed in [Lange & Dyer, 1989]), something not possible with the symbolic backpointers of markers.
By finding a mechanism that allows localist networks to handle the variable-binding and inferencing of
hybrid marker-passing and localist connectionist models, we have thereby moved closer to being able to
naturally take advantage of the features of the third level — distributed connectionist networks.

4. HYBRID COGNITIVE MODELS

Most connectionist and artificial intelligence systems attempt to model one subtask of a single cognitive
ability, such as of natural language understanding, planning, memory retrieval, or visual processing. Given
the current relatively primitive understanding of how to model cognitive functions, this is generally the
best way to explore an area in any depth. In people, however, processing of different cognitive functions are
rarely completely separate, and the interaction of two or more cognitive functions can have dramatic effects
on each other. What people see or read affects what they think, what plans they make, what they say,
and what they remember. Because different types of cognitive functions tend to range in the amounts of
symbolic and perceptual {subsymbolic) processing they require, models that attempt to explore two or more
cognitive functions and how they interact with each other are especially likely to benefit from a hybrid
connectionist modelling approach.

For example, natural language understanding and memory retrieval are two tightly-intertwined cognitive
functions. When a person understands a text, he is using his natural language understanding abilities to
build a conscious interpretation of the text’s meaning. This interpretation will often trigger a reminding of
a similar or analogous episode from memory, which may in turn be used to aid in his understanding of the
text, bolster an argument, or simply sidetrack the person to think of something more interesting. The lan-
guage understanding process therefore affects the memory (or analogical) retrieval process, which, in turn,
affects language understanding by changing the context in which the next pieces of text or speech will be
disambiguated and understood.

Although there have been a number of symbolic and connectionist models of language understanding and
analogical retrieval, few have dealt with how the two processes are integrated and affect each other.
This section gives an overview of SAARCS (Spreading-Activation Analog Retrieval by Constraint Satisfac-
tion) [Lange, Melz, Wharton, & Holyoak, 1990}, a hybrid localist connectionist and marker-passing net-
work that performs both language understanding and analogical retrieval in order to model the effects of
inferencing and disambiguation on the memory retrieval process. The fact that SAARCS is a hybrid model
that combines elements from both localist and marker-passing networks allows it to explore aspects of this
problem that would currently be difficult to explore in a pure model from either level, since it ranges from
handling low-level priming and disambiguation (difficult to model in marker-passing networks) to large-
scale comparisons of symbolic structure (difficult for localist networks).
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(targeti) {target2)
The sailboat followed the dolphin. The porpoise followed the ferry.

N

The boat followed the whale.

Figure 8. Cue that shares similar concepts with two targets, but maps consistently to one only
(heavy arrows).

4.1. Analogical Retrieval

Human memory retrieval involves more than just matching text against items in memory. Comprehension
processes, such as disambiguation and inferencing, will alter the effective retrieval cue. Thus a realistic
model of episodic reminding must integrate the process by which the retrieval cue is understood with the
process by which it is used to recall information from memory.

Considerable evidence indicates that a primary influence on reminding is the degree of direct semantic sim-
ilarity between the cue and objects in memory [Holyoak & Koh, 1987] [Ross, 1989). Though the evidence is
not as compelling as for semantic similarity, some recent work has shown that structural consistency (i.e.,
analogy) also influences the retrieval process. Structural consistency requires that if two frames are placed
in correspondence, then their roles and fillers should also correspond [Holyoak & Thagard, 1989]. Figure 8
illustrates a simple example of variation in structural consistency. Suppose a person has studied the sen-
tences The sailboat followed the dolphin and The porpoise followed the ferry, and is then cued with The
boat followed the whale. If the cue is viewed as being mapped to potential targets (or episodes) in mem-
ory, then the former target yields a consistent mapping in which similar objects fill the corresponding agent
and object roles, whereas the latter target generates an inconsistent cross mapping in which similar objects
play dissimilar roles. Ross [1989] found that cross mapping impaired retrieval of formulas to solve story
problems when the analogs involved similar objects.

We believe, however, that the effect of analogy on reminding will be influenced by several other factors.
First, cue/target semantic similarity is a necessary condition for structural consistency to affect reminding.
If two situations are dissimilar, then the retrieval cue will likely fail to make contact with {activate) a
stored representation of the individual concepts, in which case configural properties will be irrelevant.
Second, there is considerable evidence that human memory is sensitive to retrieval interference effects (e.g.
[Nickerson, 1984]). Because of retrieval competition, a stored potential analog that maps inconsistently to
the retrieval cue may be less likely to be recalled if a rival analog with a consistent mapping to the cue is
also stored in memory (see Figure 8).

Finally, the impact of structural consistency and retrieval competition influences and is influenced by the
comprehension processes involved in lexical disambiguation. The reversal of case role fillers, which can
alter the structural consistency of a mapping, can also alter preferred interpretations of individual lexical
items. For example, the fish in The surfer ate the fish is small, dead, and cut up, whereas the fish in The
fish ate the surfer is very large, alive, and whole. In such cases, a role reversal can effect the interpreta-
tion of lexical items, which in turn can alter the similarity of individual concepts in the cue to the concepts
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in a stored potential analog, as well as altering configural resemblance. The inferences needed for the com-
prehension process are also crucial to retrieval — without a minimal understanding of how the concepts and
actions of a cue are related, it is unlikely that a reasoner will retrieve a proper analogy to a given cue. This
is especially true if the potential memories are indexed in ways that can only be inferred indirectly from
the cue.

4.2. SAARCS: A Hybrid Connectionist Model of Understanding and Retrieval

SAARCS is a hybrid localist connectionist and marker-passing model that integrates language comprehen-
sion and analogical retrieval. Given the syntactic representation of an input sentence as a cue, SAARCS’
network first disambiguates and infers an interpretation of the cue, and then retrieves and returns the sen-
tence or episode from long-term memory that is analogically closest to that interpretation. The system com-
bines the ROBIN localist connectionist model for disambiguation and inferencing [Lange & Dyer, 1989] with
aspects of ARCS, a hybrid symbolic/localist connectionist model of analog retrieval [Thagard, Holyoak,
Nelson, & Gochfeld, in press]. Because we are interested in modelling the processes of disambiguation and
inferencing and their effects on analogical retrieval, SAARCS combines marker-passing with a localist
spreading-activation network in a single integrated model.

SAARCS consists of a localist connectionist network that encodes a knowledge base of concepts (e.g., objects,
actions, plans, and goals) and general knowledge rules for inferencing between concepts, as in ROBIN (e.g.
Figure 6). Also indexed into this semantic network are units representing long-term memory episodes that
are potential targets for retrieval. Using this network, the understanding and analog retrieval process con-
sists of four major stages:

(1) Activation is spread through the semantic network to disambiguate and infer an interpretation of
the cue, as in ROBIN.

(2) Symbolic markers are propagated from the units of the winning inference path to find the targets
that are semantically similar in the current context to the cue’s interpretation.

(3) A network of units is dynamically built to represent the possible competing mappings between the
cue’s interpretation and the semantically similar targets found by the spread of markers. The ex-
citatory and inhibitory connections between units of this new mapping network enforce semantic
and structural consistency with the cue.

(4) The new mapping network is settled by a constraint-satisfaction process similar to ARCS’ that
performs competitive retrieval; the mapping units active after settling constitute the most co-
herent match to the cue.

Because the units in the mapping network formed by the spreading-activation and marker-passing process
feed back into the corresponding units in the semantic network, the activation of the target most semanti-
cally and structurally similar to the cue increases. The target episode in the semantic network with the
highest activation is retrieved.

4.2.1. Cue Disamblguation and Understanding

As previously mentioned, SAARCS is built upon the purely-localist connectionist network of ROBIN
(described in Section 3.1). This allows SAARCS to perform lexical and pragmatic disambiguation and rein-
terpretation, while also being able to represent the variable bindings and perform some of the general
knowledge rules necessary for high-level inferencing and understanding.
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Figure 9. Simplified SAARCS network segment showing some of the conceptual nodes on the evi-
dential layer of the network. The network is similar to that of ROBIN’s (e.g. Figures 5a and 5b), ex-
cept that long-term memory episodes, such as Carnivore-Ingest-Human.1 and Human-ingest-Food.2,
are connected to the network. Shown are the activation of the evidential layer’s nodes after
presentation of input for The shark devoured the diver. The labels next to roles (i.e. D-Shark, C-
Shark, and Diver) show the concepts inferred over the binding nodes by propagation of signatures.

In addition to ROBIN’s normal network structure encoding frames and rules for inferencing between them
with signatures and evidential activation, SAARCS has conceptual units representing the episodes in its
long-term memory. Each of the elements of these episodes is an instance of a frame in the semantic network,
and so is connected (without signature binding paths) to the evidential units of those frames. The strength
of those weights is relative to how “well” the episodes have been remembered: particularly salient
episodes will have high connection weights, and “fading” memories will have low connection weights.

Figure 9 shows an example of how a simple episode is connected to the network. This network shows a sim-
plified view of a portion of the evidential units in the network. Shown are the frame for phrase P-De-
voured (as in The shark devoured the diver), for action Ingest-Food, and two of Ingest-Food’s alternative
concept refinements, Carnivore-Ingest-Human and Human-Ingest-Food. In Figure 9, the episode The
crocodile ate the swimmer is represented by the instance Carnivore-Ingest-Human.1, whose Actor is con-
nected to C-Crocodile.1 and whose Object is connected to Swimmer.1 (not shown). The sailor consumed the
fish is represented by Human-Ingest-Food.2.

To start off the understanding and retrieval process, the input for a cue is presented to the network. Figure 9
shows the results of the spread of activation for the cue The shark ate the diver. In this network, the word
shark has two alternative meaning senses, C-Shark (a large, carnivorous shark) and D-Shark (a cut-up din-
ner shark). The labels next to the role units in the figure {e.g. C-Shark) represent the bindings inferred by
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propagation of signatures along paths of binding units like those of Figure 5. The result in Figure 9 shows
that the network has disambiguated the word shark to the large, carnivorous kind, and inferred that there
has been a case of Carnivore-Ingest-Human where a C-Shark Actor has eaten a Diver Object.

4.2.2. Finding Similar Targets

The spread of activation used to understand the input has the side-effect of activating targets that are se-
mantically similar to the interpretation of the cue. For example, in Figure 9, the target Carnivore-Ingest-
Human.1 has become strongly activated due to activation from Carnivore-Ingest-Human, as a result of pro-
cessing input for the sentence The shark ate the diver (Killer Shark).

To start memory retrieval, symbolic markers are spread from the frame and role units of the cue’s winning
interpretation. These markers hold both a symbolic backpointer to their originating unit and a strength
equal to the numeric product of the connection weights they have propagated over. The frame and role
markers only propagate over connections between corresponding frames and roles, respectively, and only
over active portions of the network.

This propagation of markers finds, in parallel, all of the instances in memory that are semantically simi-
lar to the cue in the current context. Equally important is that the markers’ backpointers tell exactly which
part of the cue they are similar to. For instance, in Figure 9, one marker will reach Carnivore-Ingest-Hu-
man.1 from the inferred Carnivore-Ingest-Human, and another marker will reach C-Crocodile.1 from C-
Shark10.

This marker-passing naturally constrains the search for similar targets because of two features of the net-
work: (1) instances not semantically similar to the cue in the current context will have little or no activa-
tion, and so will not be reached (e.g., Herbivore), and (2) instances that are active, but which are semanti-
cally distant from a cue concept (such as C-Crocodile.1 from Diver) will not be reached because of their sepa-
ration in the network.

4.2.3. Bullding the Mapping Network

The marker-passing process finds large numbers of partially-active long-term instances that are semanti-
cally similar to part of the cue. Each of these correspondences is a potential analog. However, to retrieve a
single coherent episode most analogous to the cue, these isolated correspondences must compete against each
other. This competition is driven by parallel satisfaction of the two main types of constraints, semantic
similarity and structural consistency, that are believed to operate in both analogical retrieval [Thagard et
al., in press} and analogical mapping [Holyoak & Thagard, 1989].

To perform this competition, a mapping network is dynamically formed whose units represent the possible
mappings between each pair of semantically similar concepts, as in the ARCS model of analogical retrieval
[Thagard ef al., in press]. In SAARCS, these are the pairs found by propagation of the markers. For exam-
ple, in Killer Shark, markers hitting units for the target The crocodile ate the swimmer would cause map-

10Markers are used here rather than signatures since each instance in the targets may be semantically
similar to multiple concepts in larger cue stories, and thus need to hold several markers at once. Since sig-
natures are activation patterns, binding units can hold only one signature binding at a time. Though
markers could also be used in place of signatures for the language understanding portion of the network,
signatures are used because of the smoother integration of signature activation and selectional restrictions
with the activations of the evidential portion of the network (see section 3.2). Future extensions of signa-
tures may make it possible to eventually use them in place of markers throughout SAARCS.
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Figure 10. Some of the mapping units (rectangles) created by passing of markers in Killer Shark.
All links shown are excitatory. Unidirectional dashed lines have weights proportional to the to-
tal weight distance between that particular concept and the target being mapped.

ping units to be created for the hypotheses that C-Shark=C-Crocodile.1, Diver=Swimmer.1, and Carnivore-In-
gest-Human=Carnivore-Ingest-Human.1. Target roles that receive markers also create units representing
the possible mappings between those roles and the markers’ originating roles. This in itself enforces par-
tial structural consistency, since only corresponding roles that can be reached over signature inferencing
paths (dashed lines in Figure 9) will receive markers. The units created for the potential mappings be-
tween Killer Shark and The crocodile ate the swimmer are shown in Figure 10.

As in ARCS, structural consistency is enforced by excitatory connections between corresponding mapping
units. As shown in Figure 10, excitatory connections are created between units mapping two roles (e.g.,
C-I-H*Actor=C-I-H.1*Actor) and the units mapping their frames (e.g., Carnivore-Ingest-Human=Carnivore-
Ingest-Human.1). Units mapping two concepts that serve as the fillers of two mapped roles also have exdi-
tatory connections (e.g., between C-Shark=C-Crocodile.1 and C-I-H*Actor=C-I-H.1*Actor).

All of the above types of connections between structurally consistent mapping units have a small positive
value (0.05). Excitatory weights are also constructed to mapping units from the units in the semantic net-
work that they map, with the connection weights being proportional to the total path weight product be-
tween the concepts (0.05 * strength of the marker that caused the mapping unit to be built). These weights
thus give importance to both (a) semantic similarity, since the weights to mapping units for two very simi-
lar concepts will be higher than those for two less similar concepts, and (b) pragmatic relevance, since im-
portant and relevant goals will have more basic activation in the semantic network, thus biasing retrieval
towards units mapping those goals.

Competition between potential mappings is facilitated by inhibitory connections between all rival map-
pings (-0.20 in the simulation). For instance, there will be an inhibitory connection between
Diver=Swimmer.1 and the unit created for Diver=Sailor.2 (from the target The sailor consumed the fish).
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4.2.4. Competition and Retrieval

During and after creation of the units representing candidate analogical mappings, the new mapping net-
work is settled using a constraint-satisfaction algorithm. The mapping units that are most active after the
network has settled will be those that constitute the most coherent match to the cue [Thagard ef al., in
press].

Because mapping units are created with bi-directional connections from their target units in the semantic
network (e.g., from C-Shark=C-Crocodile.1 to C-Crocodile in Figure 10), activation from the winning map-
pings feeds back into the targets. This boosts the evidential activation of targets most analogous to the cue,
so that they tend to become highly activated. The target retrieved is the episode with the highest eviden-
tial activation.

4.2.5. Simulation Results

SAARCS has been implemented in the DESCARTES connectionist simulator [Lange et al., 1989). The model
has been tested on three different types of competitive and non-competitive retrieval: examples in which
the targets can be retrieved solely on the basis of semantic similarity after interpretation, examples in
which analogical similarity plays a crucial role, and examples in which plan/goal analyses of the cue
must be made before retrieval is possible.

The first class simulated are retrievals in which a single target is clearly the most semantically similar to
the cue after interpretation. In such examples, the interpretation process activates the similar target much
more highly than any others. This is the case when The crocodile ate the swimmer and The sailor con-
sumed the fish are the closest potential targets for The shark afe the diver. The carnivorous crocodile
episode is so similar to Killer Shark that it becomes highly active just from the inferencing process, espe-
cially in relation to The sailor consumed the fish (see Figure 9). Structural similarity pressures from the
mapping network only marginally helps retrieval in these kind of cases.

In other cases, however, multiple targets can have approximately the same semantic similarity to the cue,
so structural consistency plays a larger part in retrieval. An example of this is that the target The sailboat
followed the dolphin (Ptrans-Follow.1) is a better analogy for The boai followed the whale than is The
porpoise followed the ferry (Ptrans-Follow.2). In this kind of case, the pressures due to structural consis-
tency allow the better analogy to be retrieved first.

Figure 11a shows the activations of these target episodes during retrieval in SAARCS. Activation reaches
the two targets after presentation of the cue at cycle 16, and the semantic network settles by about cycle 39.
Although activations of the cue (not shown) clearly indicate that a Boat was Ptrans-Following a Whale, the
activations of the two targets are about the same, essentially because they both involve sea mammals and
boats following each other. At this point, markers propagate from the cue’s interpretation, so that at cycle
41 the competing mapping units for Ptrans-Follow=Ptrans-Follow.1 and Ptrans-Follow=Ptrans-Follow.2 are
formed (Figure 11b). Because of the excitatory connections enforcing structural similarity between them and
the other newly created mapping units, Ptrans-Follow=Ptrans-Follow.1 soon begins to win, dominating by
about cycle 80. This activation feeds back into the semantic network, driving Ptrans-Foliow.1 to saturation
and allowing Ptrans-Follow.2 to decay. The sailboat followed the dolphin is thus retrieved as the best
analogy for the cue,

The final set of simulations have tested SAARCS’ ability to perform retrievals which require a plan/goal
analysis of the cue. For instance, to understand John put the pot inside the dishwasher because the police
were coming, the ROBIN portion of the network must first make multiple inferences to decide that John was
most likely trying to hide his marijuana from the police inside the dishwasher, because he didn’t want to
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get arrested. These inferences combined with ROBIN’s spread of activation allow the network to disam-
biguate and form an interpretation of the cue (see Section 3.1).

Once a reinterpretation has been made to Hiding Marijuana due to confluences of evidential activation from
the inferred plan/goal analysis, SAARCS uses that inferred interpretation to retrieve the analogous
episodes Bill hid the cocaine in the stove so that he wouldn’t be arrested, as opposed to the previously most
analogous episode Mary put the cooking pot in the dishwasher to clean it.

4.3, Comparing SAARCS to Non-Hybrid Models

By integrating a localist connectionist network with marker-passing that allows the dynamic creation of a
mapping network, SAARCS is able to combine parts of the language understanding and analogical retrieval
processes in a network without an external supervisor (other than the one that created the network in the
first place). It is thus a first pass at a model explaining the influence of the language understanding on
memory retrieval and vice versa. Unlike models that concentrate primarily on memory retrieval, such as
symbolic case-based reasoning models (cf. [Schank & Leake, 1989]) and connectionist retrieval models
[Thagard et al., in press] [Barnden & Srinivas, in press], SAARCS can potentially account for many psycho-
logical phenomena involving priming and language effects in human memory retrieval. These phenomena
include increased retrieval due to repetition, recency, and prior semantic priming, all of which can be mod-
elled by variations in evidential activation levels prior to presentation of the cue.

It will be desirable in the future to simplify SAARCS by removing the hybrid portions of the model. For ex-
ample, it would be desirable to replace the marker-passing that SAARCS uses to find correspondences be-
tween semantically similar concepts with a purely spreading-activation approach, such as an extension to
sighatures. The dynamic creation of mapping units is also quite expensive computationally, so we are look-
ing into ways to instead temporarily recruit pre-existing mapping units. As we found when finding a way to
handle some of the variable binding and inferencing abilities of hybrid marker-passing networks in ROBIN,
we suspect that finding purely-localist or distributed connectionist techniques to handle the hybrid por-
tions of SAARCS will also proffer a number of advantages, such as learning and more natural integration of
understanding and retrieval. For now, however, the hybrid connectionist modelling approach allows us to
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explore the effect of integration of cognitive functions that have not yet proven amenable to single-level so-
lutions.

5. REMOVING UNREDUCED HYBRID MECHANISMS

Something that often goes unmentioned is that most connectionist models, even those on a single level, are
actually hybrid models that rely on human or symbolic intervention to succeed. The simplest example is
that the researcher or a program must usually provide networks’ inputs and examine the their final outputs
to see if they have completed their tasks as desired. This is generally quite reasonable, since connectionist
(and artificial intelligence) research is at far too early a stage to build cognitive robots that interact with
their environments autonomously.

Somewhat more troublesome is that the human researcher must always specify the structure of the net-
works in advance. For distributed connectionist networks, this means specifying the numbers of units, their
connectivity, the form of the input and output, and various network parameters. For localist and marker-
passing networks it is even more difficult, since the researcher must specify the knowledge representation to
be encoded by units in the network, how those units are connected, and what the connection weights between
units are. However, although specifying the network structure in advance is often tedious, it is also ar-
guably reasonable to work with such networks, on the assumption that some learning or even evolutionary
mechanism could be postulated to have come up with that structure in the first place.

Potentially the most problematic human and symbolic interventions in connectionist network processing are
those which must often be used during network processing. Many models have such hybrid unreduced mech-
anisms that are crucial during network processing but which are not handled by the units and connections of
the network. One example is that learning techniques for distributed networks, for the most part, require
that all patterns to be learned are known in advance and continually presented to the network as training
progresses incrementally. This requires that all of the patterns be stored outside of the network while
learning occurs, generally in a symbolic buffer without which learning would fail. Other examples of unre-
duced mechanisms in connectionist networks are described by Lachter & Bever, {1988] and Aizawa, [this
volume].

If connectionist models are to be posited as comprehensive models of cognitive function, it will therefore be
necessary to eventually find connectionist implementations of all such hybrid unreduced mechanisms, in
much the same way as it is necessary to eventually implement hybrid models on a single connectionist level.

5.1. Short-Term Sequential Memory

One cognitive function that has not yet been implemented in connectionist networks is that of shori-term se-
quential memory. Short-term sequential memory is what people use to store short sequences of semantically
unrelated items for a period of a few seconds or minutes. Examples of short-term sequential memory are re-
membering a phone number between the time a telephone operator says it until the time it is dialed, re-
membering the combination of a lock long enough to copy it down on paper, and so on. People in general are
able to remember such ordering information for 2 maximum of around seven “chunks” of previously estab-
lished concepts [Miller, 1956].

There have been a few models that implicitly learn and store sequential information in long-term memory,
such as the recurrent backpropagation model of [Pollack, in press]. These models, however, store their se-



quential information by employing time-intensive methods for modifying connection weights, and so are
models of long term, rather than short-term sequential memory.

Besides being an important cognitive function in itself to model, short-term sequential memory is one of the
unreduced hybrid mechanisms of distributed connectionist networks that deal with time. In order to learn
an ordered sequence, a model must be able to store it temporarily. For example, several models have been
able to handle and interpret sequential input by using recurrent networks, such as models that take sequen-
tial text as input (e.g. [Miikkulainen & Dyer, 1989] , [St. John, 1990], and [Pollack, in press]). The basic
training procedure of such models is often to present each element of the sequence in turn as input to the net-
work while training each input (even the first element) to produce the desired output of the entire sequence.
Of course, if the models are ever to work without supervision, they will have to have some means to com-
pute the desired training output. Doing this will generally require seeing the complete sequence before
training can begin — which means that the actual sequence itself will have to be stored temporarily. Cur-
rently that short-term sequential memory can only be done with the hidden hybrid mechanism of a sym-
bolic buffer,

5.2, A Model of Short-Term Sequential Memory

To model short-term sequential memory and potentially eliminate one of the unreduced mechanisms of dis-
tributed connectionist networks dealing with time, we have been working on a connectionist model of short-
term sequential memory that uses only activation changes to temporarily store and recall the exact order of
a single, novel short sequence of previously defined concepts [Lange & Allen, 1991].

The basic model consists of a network for Semantic Memory and a network of Responder Groups (Figure 12).
The Semantic Memory holds all of the previously known concepts, and would in theory hold the model’s se-
mantic knowledge and rules for use in short-term semantic reasoning. For simplicity, however, the semantic
memory is simply a localist winner-take-all network, with a separate unit for each concept. The responder
groups serve to temporarily store ordering information of the sequences presented. Each concept in the se-
mantic memory is randomly connected to a subset of the responder groups, which each have a random output
threshold.

5.2.1. Storing the Sequence

An ordered sequence is presented to the model for storage by activating, in turn, each of the units in semantic
memory representing that element in the sequence. When a given element in the sequence is activated, acti-
vation will propagate from it to its responder groups. This new activation will cause a subset of its respon-
der groups to go over threshold and be temporarily recruited to represent that element and its position in
the sequence. The numbers of responders recruited for each element holds the ordering information.

Figure 12 shows a limited network with ten responder groups and four semantic units (A, B, C, and D). Each
of the semantic units is randomly connected to half of the responder groups. The thresholds of the respon-
ders have been randomly chosen between 0 and 2, For simplicity, all excitatory connections are of unit
weight. We will now present this network with the sequence D - A - C.

To start the sequence, semantic memory unit D is clamped to an activation of 1 (Figure 13a), with all other
semantic units having activation 0. Activation spreads from D to each of its potential responders through
the responders’ input units (bottom layer of the responder groups). Responder 1’s activation is now 1, but its
threshold is 1.4, so it does not fire. The same is true with Responder 5, whose threshold is 1.5. Responders
4, 8, and 10, however, have thresholds under 1, and so do fire. These responders have been “recruited” to
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Figure 12. Random interconnections between units in Semantic Memory and Responder Groups.
The thresholds on the top line are the thresholds of the top node of each responder group. The
links with dark triangles are inhibitory, while the links with white triangles or no triangles are
excitatory.

represent the fact that D was the first element in the sequence, with the inhibitory connection to their input
units shutting them off from further input.

Unit D is then shut off, and the second unit in the sequence, A, is clamped to an activation of 1 and its acti-
vation propagated to its responder groups (Figure 13b). Responder 1, which had an activation of 1 before
(from D), now gets enough activation (2 overall) to fire, and is recruited by A. Responder 3 is likewise re-
cruited by A, with Responder 7 gaining activation but not firing. A has no effect on Responders 4 and 10,
however, since they have shut themselves off from further input after having been recruited by D. Finally,
the third unit in the sequence, C, is clamped, and activation spread (Figure 13c). C is only able to recruit one
responder group, Responder 9.

A total of six of the responder groups in Figure 13¢ were recruited during presentation of sequence D - A - C.
The order of the elements in the sequence is implicitly represented by the activation of the responder
groups, since three of the responders were recruited by D, two were recruited by A, and one was recruited by
C. This ordering information of the network will also occur with other sequences that are presented. For
example, if the sequence presented had instead been A - C - D, there would have been (a different) three re-
sponders recruited for A (3, 4, and 10), two for C (8 and 9), and one for D (1). As long as the thresholds of the
responder groups are randomly set within a certain range, the number of recruited responders for each ele-
ment will generally vary with its position in the sequence — the first element in the sequence will nearly
always recruit the most responder groups, the second element the next most, and so on, as the pool of eligible
responder groups becomes smaller for each element in the sequence. This ordering becomes increasingly
likely with larger responder group networks.

5.2.2. Retrleving the Sequence

Once a sequence has been presented to the network and each of its elements recruited a decreasing number of
responder groups, the sequence can be recalled by feeding activation back from the responder groups to the



Figure 13. (a) Activation of responder groups after D is activated as the first element of the se-
quence. The bottom half of the responder nodes shows their level of activation (grey = 1.0), and the
top half shows their cutput (1 if activation greater than threshold, 0 otherwise). Responder groups
within the rectangles labeled D have been caused to fire and therefore be “recruited” by the first
element in the sequence, D. (b} Activation of responder groups after A has been activated as the sec-

ond element of the sequence. {c) Activation of responder groups after C has been activated as the
third element of the sequence.

units in semantic memory. The first element in the sequence will generally win the competition, because it
has connections from all of its recruited responder groups (the largest group of recruited responders).

Unfortunately, such a simple scheme will all too often fail, especially on sequences with repeated ele-
ments. If the sequence F - G - G is presented, for example, and F recruits 30 responders, the first G recruits 20,
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Figure 14. Simplified version of sequence clusters formed in a winner-take-all network and ran-
domly connected to responder groups. Here, Sequence Cluster 3 has inputs from more of the responder
groups recruited by D (2) than the other sequence clusters, and so will win the winner-take-all com-
petition and serve to cluster those responders. Sequence Cluster 3 will therefore control their feed-
back to semantic memory on retrieval.

and the second G recruits 15, then the total number of responders feeding back into G will be 35, causing it to
be recalled first.

To handle these kind of retrieval problems, the model has a network of Sequence Clusters, each of which is
randomly connected to a subset of the responder groups (Figure 14). The newly fired responder groups re-
cruited by the presentation of a given element in the sequence will drive a winner-take-all competition be-
tween the sequence clusters. The cluster that best represents the space of newly recruited responder groups
(because it happens to have connections to more of the responder groups than any other cluster) will win the
competition and cluster those responders — into a group separate from the responders recruited by previous
and future elements in the sequence.

At the end of the presentation of the sequence, there will be one sequence cluster active for each element in
the sequence. Because there were more newly-recruited responder groups for the first element than for any
of the later elements, the cluster representing the first will have input from the largest number of active re-
sponders. Similarly, the second cluster will have more active inputs than the third, and so on. An example
run, implemented in the DESCARTES connectionist simulator [Lange et al., 1989), is shown in Table 3.

On recall, the active clusters will compete, and the cluster for the first element will win because of its
greater number of responder groups (22 in Table 3). This cluster will then feed its activation back to its re-
sponder groups and through them down to the semantic memory — causing the first element in the sequence
(R) to get the most activation and be recalled. The first cluster then removes itself from the competition
(through gating not shown), allowing the cluster representing the second element in the sequence to win and
recall the second element. The rest of the sequence is recalled in the same way. The complete sequence can

38



Element Presented | Responders Recruited | Sequence Cluster # | Responders Clustered
R 36 4 22
B 28 33 18
G 10 29 9
D 8 25 8
) 6 1 5

Table 3. Responder Groups and Sequence Clusters activated when the sequence R - B - G- D - Swas
presented to a network where each semantic element was randomly connected to 50 of the 100 total
responder groups. The network had 50 sequence clusters, each of which had random connections to 50
of the responder groups. The first column shows the element presented, the second column shows the
number of responder groups recruited by that element, the third column shows which sequence
cluster won to represent that element, and the fourth column shows how many of the responders
that cluster actually represents.

be recalled repeatedly, until 2 new sequence is stored or all of the activation in the responder groups decays
away.

5.3. On Removing Hidden Hybrld Mechanisms

The model we have just described is in the early stages of testing. As a model of human short-term sequen-
tial memory, it currently has several shortcomings. For example, because there are fewer and fewer respon-
der groups available as elements are presented, it tends to remember the first elements of a sequence the
best, and remember the last elements the worst. People, however, are worst at repeating elements in the
middle of a sequence, and not the end [Miller, 1956]. We plan to experiment with various changes in decay
rates and the basic architecture to see if we can more closely match such psychological data.

On the other hand, this model seems successful as a first pass at modelling short-term sequential memory in
a distributed connectionist network, and therefore as a first step towards removing the hybrid symbolic
buffer mechanism from long-term memory distributed models that operate on sequential data.

6. CONCLUSIONS

The distributed connectionist, localist connectionist, and marker-passing levels of connectionist processing
each have a different set of strengths and weakness. There is a large gap between the low-level areas that
subsymbolic (distributed connectionist) models are well-suited to modelling and the high-level areas that
symbolic (marker-passing and traditional Al) models are. Because of this, it is often impossible to build a
model of a given cognitive task solely from elements of a single connectionist level. The only possible solu-
tion in these cases is often to build hybrid models that combine elements and capabilities from multiple
connectionist levels.

Besides allowing progress in problems that cannot be handled otherwise, hybrid connectionist models serve
as useful guides to potentially valuable areas of future research in single connectionist levels. If a hybrid
model is successful, then it serves as strong evidence that an attempt to map the abilities of the hybrid
model onto a single level might be a good way to solve the problem. On the other hand, if the hybrid
model is unsuccessful, then the attempt shows that either a different approach is needed or that there are
more facets to the problem than originally expected.
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Of course, if hybrid connectionist models are to be of value to researchers ultimately interested in building
models on a single connectionist level, then it must eventually be possible to at least roughly map the hy-
brid capabilities into that level. It is therefore preferable to use mechanisms that are as similar to each
other as possible in building hybrid models to increase their chance of being implemented in a single level.
When a hybrid model is actually mapped to a single connectionist level, it will likely have advantages
over the hybrid because of better integration with the rest of the level than the sometimes awkward inte-
gration between elements in hybrid models. It is also important to note that most connectionist models are
actually hybrids; even single-level models often use symbolic mechanisms (such as temporary storage
buffers) to allow processing or training to succeed. These unreduced hybrid mechanisms must also be eventu-
ally mapped to units and connections in the connectionist level.

Our research has resulted in three models that illustrate the value of the hybrid connectionist modelling
approach:

(1) SAARCS, a hybrid localist connectionist/marker-passing model that is able to integrate aspects of the
language understanding process with the analogical retrieval process. Because of the hybrid capabilities
it uses, it is able to model the influence of comprehension on retrieval in a way that single-level connection-
ist or symbolic models have not yet been able to, including potentially being able to account for many psy-
chological phenomena involving priming on human memory retrieval.

(2) ROBIN, a purely-localist connectionist network that has many of the variable binding and inferencing
abilities of hybrid marker-passing/localist connectionist models. ROBIN illustrates that the abilities of
hybrid models can sometimes be mapped onto a single connectionist level, with the resuiting model gaining
advantages in both simplicity and processing abilities.

(3) A purely-distributed connectionist model of short-term sequential memory that is a start towards
mapping one of the unreduced hybrid mechanisms necessary for training of sequential distributed connec-
tionist networks.
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