Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

DISTRIBUTED SEMANTIC REPRESENTATIONS FOR GOAL/PLAN
ANALYSIS OF NARRATIVES IN A CONNECTIONIST ARCHITECTURE

Geunbae Lee March 1991
CSD-910009

UNIVERSITY OF CALIFORNIA

Los Angeles

Distributed Semantic Representations for
Goal/Plan Analysis
of Narratives in a Connectionist

Architecture

A dissertation
submitted in partial satisfaction
of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Geunbae Lee

1991

Copyright © 199. 'y Geunbae Lee

All Rights Reserved

[]

Distributed Semantic Representations for
Goal/Plan Analysis of Narratives
in a Connectionist Architecture
Geunbae Lee

March 1991

Technical Report UCLA-AI-91-03

To my wife,
Yunsuk Lee
and my daughter,
Hae-In Lee

iii

The dissertation of Geunbae Lee is approved.

Morton Friedman

e

Keith Holyoak

> _Z=,
/m{ahng

! /a,m\() @

Walter Karplus

Michael G. Dyer, Committee Chair

University of California, Los Angeles

1991

ii

Table of Contents

I OVERVIEW

1 Introduction

1.1 Task: Narrative comprehension

1.1.1 Formation of word representations

1.1.2 Script processing

1.1.3 Goal/plan analysis

1.2 Background and motivation oL L

1.2.1 Developing distributed representations for symbol processing

1.2.2 Evaluating connectionist technology

1.2.3 Overcoming limitations of symbolic systems

1.2.4 Improving current connectionist systems

1.3 Symbolic approaches for natural language understanding

1.3.1 Word/phrase representations

1.3.2 Script application »

1.3.3 Goal/plan application

1.4 Distributed connectionist approaches

1.4.1 Symbolic vs. connectionist computation

1.4.2 Localist vs. distributed connectionism

1.4.3 Backpropagationnetwork

1.4.4 Connectionist network architectures

1.4.5 The appeal of connectionism

1.5 Methodology i

16 Aguidetothereader
Distributed semantic representations

2.1 Introduction e e e e

2.2 Criteria for forming distributed representations

2.3 DSR: A new technique for forming distributed representations

2.4 Representing propositions and wgrd-concepts

v

(B

[R¥]

(o8

o 00 0o X

10
10
11
12
16
16
18
19
21
21
22
23

2.5
2.6
2.7
2.8
2.9

..........

II Architecture and Processing

3 DYNASTY architecture

3.1
3.2
3.3

3.4

3.5

4.1
4.2
4.3

4.4
4.5

Introduction
Training-data specification
Representation subsystem
3.3.1 DSR-Learper
3.3.2 Global dictionary network . .
3.3.3 Triple-Encoder
Goal/plan analysis subsystem
3.4.1 GP-Associator.
3.4.2 Plan-Selector
3.4.3 Action-Generator
Linguistic subsystem
3.5.1 Sentence to triple parser . . .

3.5.2 Triple to sentence generator .

Goal/plan processing in DYNASTY

Introduction

ooooooooooo

Surface processing
Goal/plan analysis
4.3.1
4.3.2 Expanding the goal/plan tree

..........

Plan selecting process

4.3.3 Action-generating process

4.3.4 Goal/plan structure matching

Surface generation

Variable binding during goal/plan analysis

4.5.1

4.5.2 Binding during gp-tree expansion

v

Binding during plan-selection and action-generation

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

...................

....................

4.6 Script processing 33

IIT Evaluation 87

5 DYNASTY learning and performance analysis 88

5.1 Learnminganalysis 88

5.1.1 DSRs in goal/plan processing 38

5.1.2 DSRs in script processing 90

5.1.3 DSRs in combined script/goal/plan processing 92

5.2 Performance analysis 96

5.2.1 Goal/plan-based story processing 96

5.2.2 Script-based story processing 105

5.2.3 Role-bindingerrors 107

5.3 Generalizations in DYNASTY 110
5.3.1 Statistically-biased generalizations: encoding experience-based goal/plan

preferences/defaults 110

5.3.2 Generalization experiments without IDs 114

5.4 Damageresistance 116

5.4.1 Lesioningunits 116

542 Lesioningweights, 117

5.5 Discussion 117

Related research 119

6.1 Symbolicsystemns 119

6.1.1 Script processing systems 119

6.1.2 Goal/plan analysissystem 121

6.1.3 Other symbolic natural language systems 122

6.2 Distributed representations L L. 123

6.2.1 Microfeature-based representations 123

6.2.2 Coarse-codings, 124

6.2.3 Learning internal representationsby BP 124

6.24 Pollack's RAAM 123

6.2.5 Miikkulainen'sFGREP 126

6.3 Distributed connectionist systems 127

6.3.1 DISPAR e e e 127

6.3.2
6.3.3
6.3.4
6.3.5

DISCERN
DCPS
CRAM
DUCS

...................................

...................................

7 Current status, limitations and future work

7.1 Current status
7.2 Limitations and their resolution

7.3 Future research directions

7.3.1
7.3.2
7.3.3
7.3.4

81 Summary

...................................

............................

Incorporating sensory information in the proposition space

Connectionist episodic memory model

Modeling question-answering in DYNASTY

DSR-based machine translation

Summary and conclusions

.....................................

8.2 Conclusion v v e e e e e e e e e e e e e e

DYNASTY proposition space

A.1 Variables and instances e e e e

- A.2 Proposition-tripleso

A.3 Concept-triples e

DYNASTY I/O story skeletons

B.1 Goal/plan story skeletons oo

B.2 Script story skeletonso oo

DYNASTY goal/plan knowledge

C.1 Goals and plans in DYNASTY oo
C.2 Goal/plan relations
C.3 DYNASTY script knowledge

Statistically-biased generalizations

D.1 Statistically-biased goal/plan relations
D.2 Statistically-biased I/O oo

DYNASTY training code and data

133
133
133
137
137
138
138
139

159
139
161

163
163
164
166

168
168
170

172

E.1 DSR-Learner
E.2 Triple-Encoder
E.3 Global-Dictionary
E.4 Plan-Selector

E.5 GP-Associator
E.6 Action-Generator
E.7 ST-Parser e e
E.8 TS-Generator

...................................

.................................
...................................
...................................

.................................

DYNASTY performance code and data
F.1 DYNASTY datafile :
F.2 The DYNASTY program

DYNASTY analysis code
G.1 Performance statisticso
G.2 Weight damage resistance

G.3 Unit damage resistance

viii

1.1
1.2
1.3
1.4

2.1
2.2
2.3
24
2.3
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4
4.5

List of Figures

Symbolic lexicon ., .. .

....................

Goal/plan graph example .. . =

...................

Connectionist computationalunit ..

Backpropagation petwork .

Class of connectionist architecture. ...

DSR learning architecture ..

Caserole representation

Learned DSRs for case-role assignments.

DYNASTY training configuration
GIobal—dictionary architecture
Global-dictionary training data examples
[riple encoder architecture

Shungergptree ...

DYNASTY performance architecture
Pirst gp-tree expansion ...

Forward and backward binding propagation

ix

3.1
5.2
5.3
5.4
5.9
5.6

6.1
6.2
6.3
6.4
6.5

=1

DSRs for goal/plan stories 89

Clustering DSRs for the goal/plan stories 91
DSRs for script storles L L 92
Clustering DSRs for script stories 93
DSRs for the combined stories 94
Clustering DSRs for the combined stories 93
Microfeatures formalk o 0oL 124
Receptive field table for coarse-coding 125
RAAM architecture L Lo 126
FGREP architecture [127
DCPS top-level architecture 130
Question answering o oL e 139
DSR-based machine translation 140

1.1

2.1
2.2
2.3
2.4

3.1

3.1
5.2
3.3
5.4
3.3
5.6
5.7

List of Tables

Major goal taxonomy 13
Example proposition space 27
Semanticcaseroles 29
Proposition generators 37
Concept categories and fillers, . | 37
Vocabularies in DYNASTY 53
Performance table for goal/plan stories 104
Performance table for script stories 108
Performance table for the combined stories 108
Generalizations for the full script stories _ . . 115
Generalizations for the partial script stories 115
Unit damage resistance L L. 116
Weight damage resistance, . e 117

ACKNOWLEDGMENTS

Special thanks should go to my advisor, professor Michael Dyer, for continuous support,
many enthusiastic discussions and excellent suggestions on earlier papers and drafts of this
dissertation. He has also tirelessly corrected my writing style, English grammar and orga-
nization. I would also like to acknowledge committee members professor Walter Karplus
and Andrew Kahng for constructive criticism on the plausibility of the research, claims and
methodology, professor Keith Holyoak and Morton Friedman for providing psychological
pointers and criticism for the research. The UCLA AI Lab formed a stimulating environ-
ment for research. Thanks also go to Margot Flowers who supplied advice on earlier stages
of this project. Special thanks go to John Reeves, Trent Lange, and Risto Miikkulainen
(now at UT Austin) for reading earlier drafts and for fighting my bad English. Other Al lab
members especially Alan Wang, Ron Sumida, Alex Quilici (now at Univ. Hawaii), Charles
Dolan (now at Hughes Research Lab.) were very kind and helpful during my stay. Professor
John Merriam in the biology department also supported the research, and Joy Jonsen cor-
rected my English in an earlier version of the draft. I would like to thank my wife, Yunsuk
Lee, for her continuous support and encouragement during 5 years of my study, and also all
of my family members in Korea for their concerns and support.

This research was supported in part by the JTF Project of the DoD {monitored by
JPL), by a grant from the ITA Foundation, and by a Korean Government Scholarship. The
simulations were carried out on Hewlett-Packard equipment donated to the UCLA Al Lab.

xii

Mar. 20, 1961

1984

1984-1986

1986

1987-1989

1989-1991

Geunbae Lee, Margot Flowers, and Michael G. Dyer. Learning distributed representations
of conceptual knowledge and their application to script-based story processing. Connec-
tion Science - Journal of Neural Computing, Artificial Intelligence and Cognitive Research.
2(4):313-345, 1990

Geunbae Lee and Michael G. Dyer. The authors respond: “Portability and bindings with

VITA

Born, Chongna, Korea

B.A., Computer engineering
Seoul National University, Seoul, Korea

System programmer and manager
University Computing Center
Seoul National University, Seoul, Korea

M.S., Distributed systems and computer network
Seoul National University, Seoul, Korea

Research assistant

Al Lab.

Computer Science Department
University of California, Los Angeles

Research assistant
Biology Department
University of California, Los Angeles

PUBLICATIONS

DSRs”. Neural-Network Review, 4(2):73-74, 1990

John Merriam, Susan Adams, Geunbae Lee and David Krieger. Cloned genes of Drosophila
Melanogaster and Literature guide. In S. J. O'Brien editor, Genetic Maps, Vol. 5. Cold

Spring Harbor Press, N. Y., 1990

Geunbae Lee and Risto Miikkulainen. Distributed connectionist knowledge representations

xiii

in script/goal-based story understanding. Proceedings of the Seoul International Conference
on Natural Language Processing, Seoul, Korea, 1990

Geunbae Lee, Margot Flowers and Michael G. Dyer. A Symbolic/Connectionist Script Ap-
plier Mechanism. Proceedings of the 11th annual conference of the cognitive science society.
Ann Arbor, MI., 1989

Geunbae Lee, Margot Flowers and Michael G. Dyer. Learning Distributed Representations
of Conceptual Knowledge. Technical Report, UCLA-AI-89-13, Artificial Intelligence Lab..
CS Dept., UCLA, 1989. (Abstract in the Proceedings of the 3rd international joint conference
on the neural networks, Washington D.C., 1989)

Geunbae Lee and ChongSang Kim. Design of Ex- nded Procedural Language in Hetero-
geneous Network Environment. Proceedings of Korean Information Science Society (KISS)

Conference, Seoul, Korea, 1985

ABSTRACT OF THE DISSERTATION

Distributed Semantic Representations for
Goal/Plan Analysis
of Narratives in a Connectionist
Architecture
by

Geunbae Lee
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1991
Professor Michael G. Dyer, Chair

Recently there has been much research on natural language understanding using connection-
ist computations, but the knowledge representation schemes used in these models are at best
ad-hoc and cannot support high-level cognitive tasks very well. This thesis presents a new
method for developing distributed connectionist representations called distributed semantic
representations (DSRs). The DSR scheme has been developed in order to serve as an ade-
quate foundation for constructing and manipulating conceptual knowledge in connectionist
natural language understanding systems.

DYNASTY is a distributed connectionist script/goal/plan analysis system that can read
short narratives and produce goal/plan-based inference chains. DYNASTY can: (1) learn
similarity-based word concept representations using the DSR technique; (2) automatically
form high-level distributed representations for events, goals, plans, and scripts; (3) select
relevant goals/plans and scripts with correct bindings from fragmentary input events:; and
(4) generate plausible inferences from the selected goals/plans and scripts. We believe that
DSRs can serve as building blocks for constructing high-level connectionist natural language
understanding systems since a DSR has both symbolic and distributed representational fea-
tures. DYNASTY provides many desirable features of connectionist implementation, which
are not possible in pure symbolic systems, such as automatic and statistically-biased gen-
eralizations, automatic knowledge encodings through training, fault tolerance and graceful
performance degradation.

Part 1

OVERVIEW

Chapter 1

Introduction

1.1 Task: Narrative comprehension

DYNASTY is an Artificial Intelligence (AI) model of a large-scale distributed connec-
tionist system which can read script and goal/plan-based stories and produce appropriate
inferences. DYNASTY's tasks at top level can be divided into 3 major components: {1} for-
mation of word representations, (2) script processing, and (3) goal/plan analysis for narrative
comprehension.

1.1.1 Formation of word representations

DYNASTY’s first task is to form distributed word representations to support story com-
prehension and inferencing. DYNASTY's word-learning module (DSR-learner; chapter 2)
reads a set of propositions and extracts word representations according to how each word is
used in those propositions. As a result, a word representation in DYNASTY reflects all the
usages of the word in a limited domain.

For example, from the following two propositions about coffee, we can see how the word
coffee is semantically related to other words in the propositions and therefore can form a
representation {concept) of coffee.

o pl: The man drinks coffee.

o p2: Coffee is hot.

According to these example usages of “coffee”, the representations of coffee should reflect
the idea of some physical object that humans can drink and that is hot. Of course, from
these two propositions, the representation of coffee cannot be unique since the word “tea”
can have exactly the same relations here. When we add the third proposition “p3: America
imports coffee from Columbia”, the representation of “coffee” can become different from
that of “tea”. DYNASTY reads several propositions and develops representations for each
word (e.g. coffee as above) in a fixed-width vector representation. The propositions used in
DYNASTY actually come from collected story comprehension training data, so DYNASTY
develops representations for all the words used in the story.

1.1.2 Script processing

Script-based stories describe stereotypic event sequences in a given environment. These
kinds of event sequences contain mundane knowledge about routine procedures which is

2

shared by the members of a given linguistic community. For example, we all know what
events occur in a restaurant, so when we read a short story (story 1) about a restaurant.
such as:

(story 1) John entered the Chart-House. John ate the steak. John left
a tip.

we can immediately produce numerous inferences which are not explicitly mentioned in the
story [Schank and Abelson, 1977]. After reading the above story, we can easily fill in the
missing events and generate a completed paraphrase, with all the script-based events fully
expanded, such as:

John entered the Chart-House. The waiter seated John.

The waiter brought the menu. John read the menu. John ordered steak.
John ate the steak. John paid the bill. John left a tip. John left
the Chart-House for home.

As we can see in the above paraphrase, we can infer that John ordered the steak even though
the “ordering” event was not explicitly mentioned in the input story (story 1) since everyone
orders before eating in the restaurant.

DYNASTY reads script-based stories and can produce a complete paraphrase (such as
story 1 and its paraphrase) once it is trained on the script data. Just as human beings obtain
their knowledge about restaurants from their experiences of going to restaurants, DYNASTY
builds its restaurant script knowledge by extracting statistical regularities from the training
data.

1.1.3 Goal/plan analysis

DYNASTY’s other task is a goal/plan analysis of stories that are not stereotypical. Not
all the stories are stereotypic and routine. For example, consider the following story (story
2):

(story 2) John was hungry. John asked his friend about MacDonald’s
locations. John drove to the MacDonald’s. John had no money. John
wanted to call up his friend. John borrovwed a coin from the waiter.

A reader of the story will infer that John asked about MacDonald’s locations because he
wanted to eat there and one must be near food in order to eat it. Also the reader can infer
that John wanted to call up his friend in order to borrow some money and John borrowed a
coin because he needed it to phone his friend. If a system is only script-based, then it would
need a script that essentially corresponds to the story. In other words, the system would
need a script for every conceivable situation it might hear about when people are hungry
(something like hungry-no-money-script). This is almost impossible since there are so many
possible actions that people can take when they are hungry. They can go to a restaurant.

3

cook for themselves, order pizza by phone, buy some food, etc. People can understand the
above story not only because they have all kinds of scripts, but also because they have more
general goal/plan knowledge [Schank and Abelson, 1977; Wilensky, 1978).

DYNASTY reads non-stereotypical stories and produces goal/plan-based inferences to
comprehend them. Actually, DYNASTY understands script-based stories as a special type
of goal/plan-based story that uses only a single plan, so the same architecture can handle
both script and goal/plan-based stories.

Goal/plan-based stories describe how the planner fulfills several preconditions to execute
a plan for a current goal. The unsatisfied preconditions become the next current goals, and
the planner pursues several chains of plans to satisfy these new current goals. There are two
cases of goal/plan-based reasoning: (1) horizontal reasoning and (2) vertical reasoning. In
horizontal reasoning, the planner tries to fulfill several preconditions to execute a single plan.
In vertical reasoning, the planner tries to pursue a single precondition until it is satisfied.
Goal/plan-based stories are usually combinations of these two extreme cases. Below we
describe how DYNASTY can handle these two extreme cases, and therefore can handle any
combination of horizontal and vertical reasoning.

(1) Horizontal reasoning: DYNASTY can understand how people accomplish various
preconditions in order to execute a plan. Each action in the input story can match one
of the several preconditions for a single plan. This type of reasoning is called horizontal
reasoning because DYNASTY constructs goal/plan inference chains by traversing goal/plan
trees in horizontal directions (traversing the sibling nodes rather than the child nodes).
Suppose DYNASTY reads the following story (story 3):

(story 3) John was hungry. John read the restaurant guide. John borrowed
money from his friend. Jchn got into a car

DYNASTY can understand that all three actions in the story (i.e reading, borrowing,
and getting into a car) are designed to meet the preconditions of eating at the restaurant.
DYNASTY produces a goal/plan inference chain for each action to connect it to the previous
context in the story. What follows are inference chains that DYNASTY produces for this
story. The O designates an input sentence, and an inference chain appears immediately after
each input sentence. Each inference chain is the output of a single sentence or sentence frag-
ment. The G stands for the top-level goal. The P and PC respectively stand for an executed
plan and a satisfied precondition (instrumental goal) to execute the plan. All DYNASTY's
output are past forms because what DYNASTY actually produced are states or actions that
are related to the goals and plans (see chapter 5 for the output traces). For example, for
the top-level goal G and precondition (instrumental goal) PC, DYNASTY produces a state
of the planner when the goal was already accomplished. For the plan P, DYNASTY pro-
duces an action (or action sequence) which was already ezecuted by the planner for the plan.
DYNASTY does not deal with any plan or goal failure which usually needs more high-level
abstract knowledge than goals/plans themselves [Dyer, 1983; Dolan, 1989]. DYNASTY ex-
pects that the input story will explicitly mention the necessary preconditions to execute the
plaa for the top-level goal. When a certain precondition is not mentioned in the input story.
DYNASTY assumes that the precondition is already satisfied.

4

0 Jobn was hungry
G: John was not hungry

Q John read the restaurant guide

PC: John was not hungry

P: John ate food at restaurant
PC: John knew restaurant location
P: John read restaurant guide

0 John borrowed money from his friend
P: John ate food at restaurant

PC: John had money

P: John borrowed money from friend

O John got into a car

P: John ate food at restaurant
PC: John was inside restaurant
P: John drove to restaurant
PC: John was inside car

DYNASTY understands the first sentence as describing the planner’s top-level goal. DY-
NASTY explains the second, third and fourth sentences in terms of John's goals and plans.
and constructs the causal connections (goal/plan chains) using the inferred goals and plans.
For example, DYNASTYs output inference chain for the second sentence can be interpreted
in plain English as follows:

John selected the eating-at-restaurant plan to achieve not-hungry state, and
knowing the restaurant location is a precondition to execute the plan, and read-
ing the restaurant-guide is a plan for knowing the restaurant location. So John
read the restaurant-guide, and knew the restaurant location, and executed the
eating-at-restaurant plan. John was not hungry anymore.

This interpretation is an explanation for why John read a restaurant-guide in the story. The
other inference chains are also explanations for why John did the second and third actions
mn the input story,

(2) Vertical reasoning: DYNASTY can understand how a planner might fulfill the chain
of preconditions to execute a series of plans. A planner pursues a single precondition until
it is finally satisfied. Each action in the input sentence can match the intermedijate plans
to satisfy the current unsatisfied preconditions. This type of reasoning is called vertical
reasoning because DYNASTY constructs the goal/plan inference chains by traversing the
goal/plan trees in vertical directions (traversing the child nodes rather than the sihling
nodes). Consider the following story (story 4):

(story 4) John was hungry. John wanted to get a Michelin-guide. John
vanted to know the book-store location. John wanted to call up his
friend. John walked to the pay-phone.

DYNASTY understands that the series of events in this story are related to the precon-
ditions for getting a restaurant guide, and it performs the vertical reasoning to generate a
single inference chain for the whole story. DYNASTY's outputs for this story are as follows:

G John was hungry
G:John was not hungry

QO John wanted to get a Michelin-guide
PC: John was not hungry

P:John ate food at restaurant
PC:John knew restaurant location
P:John read Michelin-guide
PC:John had Michelin-guide

C Tohn wanted to know the book-store location

P John had Michelin-guide

P.John bought Michelin-guide at book-store
PC:John knew book-store location

O John wanted to call up his friend

PC:John knew book-store location

P:John asked friend about book-store location
PC:John had communication-link to friend
P:John called up friend

O John walked to the pay phone
P.John called up friend
PC:John was near pay-phone
P:John wvalked to pay-phone

Each inference chain starts with the point left behind from the previous sentence, and all
the inference chains are step-by-step explanations for John’s plans of getting the Michelin-
guide.

Goal/plan-based stories usually consist of random combinations of these two types of
reasoning (horizontal and vertical). Story 2 is an example of this combination: up to the
event “John had no money”, the story tells about how a planner (John) fulfills the several
preconditions of eating-at-the-restaurant plan (horizontal reasoning). After the “no money”
event, the story switches to how series of preconditions for the getting-money goal are ful-
filled (vertical reasoning). DYNASTY can process any combination of these two types of
goal/plan-based reasoning (see section 5.2.1 for the 1/O traces of story 2).

6

1.2 Background and motivation

Story understanding, which is a core task of knowledge-based natural language under-
standing (NLU) research, has long adhered to ope paradigm in cognitive science: symbolic
computation. The symbolic approach has its origins in the celebrated physical symbol system
hypothesis (PSSH) [Newell, 1980], in which cogaition is modeled by syntactic operations over
abstract symbols and symbolic structures. Within the symbolic approach, there have heen
many theories concerning the underlying knowledge representations necessary to generate the
inferences for understanding stories. Conceptual dependency (CD) theory [Schank. 1973,
script/goal/plan/theme theory [Schank and Abelson, 1977}, MOPs/TOPs/TAUs (Schank,
1982; Dyer, 1983] and frames/schemata [Minsky, 1981; Rumelhart, 1975] are all knowl-

hension within the symbolic paradigm. Employing these knowledge representation th ries.
there have been many implementations of symbolic story understanding systems. MA..GIE
[Schank, 1975] was the first system which paraphrases stories using CD representatons,
SAM [Cullingford, 1978], Ms. Malaprop [Charniak, 1978}, and FRUMP [DeJong, 1979} were
implemented based on script /frame theory, and PAM [Wilensky, 1978] was implemented
based on goal/plan theory. BORIS [Dyer, 1983] applied structures involving themes and
affects. Moreover, memory structures which can be changed by reading stories have been
developed and used in the story understanding programs [Lebowitz, 1380; Kolodner, 1980).

Then why bother to re-implement another script/goal/plan-based story understanding
system like DYNASTY? The answer comes from a recent apparent paradigm shift [Kuhn.
1970] in the cognitive science field. Recently, an approach which seems to be incompatible
with the PHHS has been introduced for cognitive modeling. This new paradigm results
partially from a resurrection of the old perceptron-style neural network research on brain
modeling which was popular around 1960 [Rosenblatt, 1962; Minsky and Papert, 1988]. Even
though there are many names for this new approach, we will use the term connectionism. '
In connectionism, cognitive processing is modeled by networks of connected simple units,
Signals are propagated along connections of different strengths and the signals arriving at a
unit are summed and thresholded to fire the unit. This theory is still somewhat detached
from complete neural realism, but it is obviously more neurally inspired thagn the symbolic
paradigm.

Why do we want to implement a connectionist story understanding system? There are
four major motivations underlying the development of DYNASTY as a distributed connec-
tionist story understanding system. These are described in the following sections.

'This new approach of brain-style computation has several names widely used in the research community:
“connectionism” [Feldman and Ballard, 1982), “parallel distributed processing” (PDP) [Rumeihart et al.,
1986¢], “artificial neural systems” (Groasberg, 1988], “subsymbolic” paradigm [Smolensky, 1988] and “neuro-
computing” [Anderson and Rosenfeld, 1988]. We choose connectionism because it is moet generally used in
the natural language research community.

1.2.1 Developing distributed representations for symbol processing

We would like to develop a distributed knowledge representation scheme that main-
tains both symbolic and distributed features. Connectionism needs knowledge representation
schemes which can support high-level symbolic tasks such as natural language processing.
Previous connectionist representations (see section 6.2) lack the features that are necessary
to perform these tasks since they are usually developed internally [Hinton, 1986; Pollack.
1988] or by hand (manual encoding) {McClelland and Kawamoto, 1986: Touretzky and Hin-
ton, 1988]. For connectionism to be an alternate method for designing natural language
understanding systems, we need a distributed representation that can support both sym-
bolic and connectionist operations. On the one hand, this representation should be globally
accessible and should encode the structure of symbolic representations; on the other hand.
it should be automatically learned and similarity-based such as distributed representations
(see section 2.2 for detailed criteria).

1.2.2 Evaluating connectionist technology

It is 1mportant to evaluate the power of distributed connectionism to perform high-level
symbolic cognitive tasks. Several claims have been recently made which make it worth-
while to attempt high-level cognitive tasks, such as story understanding, using connectionist
networks. The claims are either positive or negative: (1) connectionism is the only com-
putational mechanism needed for cognitive models [Rumelhart et al., 1986c; Hinton and
Anderson, 1981}, or (2) there are symbolic phenomena in cognition which cannot be mod-
eled by connectionism alone, such as the infinitive generative capacity [Pinker and Prince,
1988} and the systematic compositional nature of cognition [Fodor and Pylyshyn, 1988].
To support or refute these claims, we need several working Al models in the connectionist
paradigm which can perform high-level symbolic tasks, and story understanding is a per-
fect symbolic cognitive task for this purpose. Story understanding requires many symbol
structure manipulations, and these tasks are composed of many sub-tasks such as parsing,
memory retrieval, memory updating, generation, etc. DYNASTY is an Al model which
brings current up-to-date connectionist theories together. Also in DYNASTY, new repre-
sentation theories have been developed to implement a story understanding system. Our
motivation 18 to provide a working model so that the research community can evaluate the
powers and limitations of connectionism for modeling high-level symbolic cognitive tasks.

1.2.3 Overcoming limitations of symbolic systems

Previous symbolic script/goal/plan-based story understanding systems have many defi-
ciencies, due to the nature of symbolic computation. We hope to eliminate these deficiencies
by encoding symbolic knowledge in distributed forms. We choose scripts and goals/plans
as basic knowledge structures for our connectionist modeling of story understanding be-
cause these two knowledge structures are fundamental and well-developed, but play very
different roles in story understanding [Wilensky, 1978]. Besides, their symbolic implemen-
tations are by no means complete and natural. There are several limitations to symbolic

implementations of script processing (e.g SAM [Cullingford, 1978}) which can be overcome
by connectionist implementations, including: (1) symbolic scripts are too rigidly defined,
so symbolic implementations cannot handle script deviations properly, (2) it is difficult to
invoke the right script for the input story fragments using symbolic script headers [Culling-
ford, 1978; Schank and Abelson, 1977; Dyer et al., 1987], and (3) there is no explanation
about how the original script might be automatically acquired in symbolic implementations.
so there remain difficult knowledge engineering problems in script formation: e.g. what
event should be included in the script and what event should not be? These limitations
can be overcome by the flexibility/generalization capabilities, similarity-based associative
retrieval, and trainability of connectionist implementations. Moreover, the idea that human
beings form their scripts through statistical generalizations from experience conforms well
to connectionist rather than to symbolic implementations.

Symbolic goal/plan-based story processing systems such as PAM (Plan Applier Mech-
anism) [Wilensky, 1978) have suffered from the same scale-up problems as other symbolic
rule-based systems, because goal/plan analysis was actually performed by fragile and com-
plex rule manipulations. Those complex rules cannot be learned but must be pre-encoded
by knowledge engineers. Connectionist implementations do not use pre-encoded rules to an-
alyze goal/plan structures, but the rules are statistically generalized from the training data
in order to recognize goals/plans and to generate goal/plan inference chains.

1.2.4 Improving current connectionist systems

Finally, current distributed connectionist script/goal/plan-based story understanding
models are incomplete and restricted, so they need continuous improvements. For exam-
ple, a number of connectionist script-processing models have been proposed in the past to
overcome weaknesses in the symbolic models [Golden, 1986; Chun and Mimo, 1987; Sharkey
et al., 1986], but while they have nodes for their objects and events, none of them has the
semantics needed for representing constituency of concepts and events in their node rep-
resentations. They use random bit strings [Golden, 1986] or localist node representations
{Chun and Mimo, 1987; Sharkey et al., 1986] as a connectionist representation scheme. Dolan
and Dyer [1987] are the first to consider micro-feature based distributed representations in
connectionist script processing to build their representations with similarity properties; i.e.
similar concepts have similar representations. But as noted in [Dyer et al., 1988; Miikku-
lainen and Dyer, 1988] micro-features are arbitrary, lack recursive/hierarchical structures
and create a knowledge engineering bottleneck.

In the goal/plan analysis field, many kinds of network-based systems have been proposed
to overcome symbolic implementation problems, including the use of marker-passing schemes
[Norvig, 1986; Hendler, 1988; Sumida et al., 1988} and localist-level connectionist networks
[Lange and Dyer, 1989]. But no one has yet implemented a goal/plan analysis system
using distributed connectionist networks. One of the main reasons is the lack of appropriate
distributed knowledge representation schemes. These limitations of current connectionist
implementations supply us with another good motivation for developing a new distributed
connectionist representation theory and architectural techniques. These new techniques have
been tested in DYNASTY and are presented here.

9

word /phrase representations

John (HUMAN name (John)
gender (male))

ate (INGEST actor x [HUMAN]
object y [FOOD))

app'le (FOOD type (apple))

x [human] “ate" y [food] (INGEST actor x [HUMAN]
object y (FOOD])

Figure 1.1: Symbolic lexicon example. The representations usually consist of slot-fillers
with proper header names. The concept headers (e.g. HUMAN, INGEST, FOOD) restrict
the possible bindings as designated in brackets. For each filler, a procedure can be attached
to find the proper filler values and bind the variables [Dyer, 1983].

1.3 Symbolic approaches for natural language understanding

Knowledge-based natural language understanding (NLU) [Lehnert, 1988] emphasizes the
need for implicit inference generation for comprehension of written text. To generate the in-
ferences implicit in the text, this type of research focuses on representing and applying world
knowledge referred to by the sentences, rather than focusing on low level syntactic struc-
tures. Hence knowledge-based NLU has a different research focus than either syntax-based
computational linguistics or natural language interface (NLI) research. Story understanding
is a core task in knowledge-based NLU research. Much knowledge-based NLU research has
focused on story understanding: from [Charniak, 1972; Winograd, 1972] to [Dyer, 1983]. In
story understanding, scripts and goals/plans are important and constitute basic knowledge
structures for modeling the world knowledge needed to understand stories. Below, we will
briefly describe the word representations in a lexicon for symbolic natural language under-
standing systems and script and goal/plan theory as a background to understanding the
DYNASTY task/domain.

1.3.1 Word/phrase representations

Word/phrase representations in symbolic NLU systems are organized using symbolic
structures. Word or phrase representations are kept in the lexicon along with other informa-
tion about how the word or phrase should be interpreted in different situations. In general,
a symbolic lexicon is a list of word symbols or phrasal patterns with pointers to conceptual
memory. The memory contains syntactic and semantic knowledge about the lexicon entry
in the form of declarations or procedures [Dyer, 1983; Zernik, 1987; Arens, 1986]. Figure 1.1
shows a symbolic lexicon for parsing the sentence: John ate an apple.

10

Symbolic systems parse the sentence and build the conceptual structures by hooking up
each word/phrase representation from the lexicon. However, each symbol in these lexical
representations is only meaningful to the humans in a certain linguistic society. The same
symbols are meaningless ASCII strings to the computers. The word symbol itself does not
have any semantics, so even though the word “John” and “Bill” are conceptually similar to
each other, their ASCII codes are very different. Consequently, these word/phrase repre-
sentations have to encode every possible relation for the word ezplicitly in their structures.
Otherwise, the system becomes fragile and could break down if conceptually similar inputs
are given.

1.3.2 Script application

A script [Schank and Abelson, 1977; Dyer et al., 1987] is a knowledge structure that
describes appropriate sequences of events in stereotypical situations. According to psycho-
logical experiments [Bower et al., 1979], people use scripts to understand and remember
narrative texts. A full construction of a script is made up of two parts: (1) slots desig-
nating script roles, props, entry conditions and results with restrictions about what can fill
those slots, and (2) event sequences based on various tracks in a script. For example, roles
and props in a restaurant script include diner, waiter, food and tips; tracks include fancy
and fast-food restaurants. Script roles usually specify animate entities which play essential
roles in performing the script, while script props are inanimate things that are used in the
script (e.g. menu). Entry conditions are preconditions that must be met before applying
the script, and results is the outcome of script application. Once a script is instantiated,
the slots are filled with appropriate fillers which satisfy the specified restrictions. So in that
sense, scripts are similar to more general slot-filler knowledge representation schemes such
as frames [Minsky, 1981] and schemata [Rumelhart, 1975].

In this dissertation, we use a simplified script format which focuses on the script roles
and standard event sequences, but without deviations. The standard event sequence consists
of backbone events in the script. Once the script and track is defined, the backbone event
sequence is applied, and all deviations from the normal execution of script backbone events
are simply filtered out. Qur script roles cover the roles and props in the above definition, but
entry conditions and results are 1ignored. For example, to understand the restaurant story:

John entered the Chart-House. John ordered the steak. John paid the
bill.

the restaurant script should have the following form. Here uppercase designates script roles.

Restaurant-Script
Roles: CUSTOMER, RESTAURANT-NAME, FOOD

Event sequence:
CUSTOMER enters RESTAURANT-NAME .
waiter seats CUSTOMER

11

vaiter brings menu

CUSTOMER reads menu

CUSTOMER orders FOOD

CUSTUMER eats FOOD

CUSTOMER pays bill

CUSTOMER leaves a tip

CUSTOMER leaves RESTAURANT-NAME for home

Here the event sequence forms the backbone of the restaurant script. When the system is
given a restaurant story, it produces these backbone events as a paraphrase through a script
application process. The symbolic script application process has three major steps: script
selection, script instantiation (role-binding), and inference generation. When a (symbolic)
script application system reads the above story, it searches the script memory first to select
an appropriate script, using some parts of the input story as the script selection header.
For example, the first sentence mentions somebody entering some restaurant. This event
corresponds to the locale header? and matches the first event of the restaurant script. Once
the proper script is selected, the system instantiates it by replacing each script role with the
proper instance. So CUSTOMER and RESTAURANT-NAME are replaced by John and
Chart-House, and the role-bindings are kept in a binding list to be used throughout story
processing. Once the appropriate script is selected, the standard event sequence (backbone
events) is used to fill-in the unmentioned events in the story during inference generation.
Script application is a very powerful mechanism because it reduces the number of superfluous
inference paths to be analyzed if the story conforms to the script. If the script knowledge
does not guide the inference generation, then we will run into the problem of a combinatorial
explosion of inference paths because each event in the story can produce many inferences
and inference chains grow exponentially [Rieger, 1975].

1.3.3 Goal/plan application

For every story that conforms to a single script, script application is the most efficient
mechanism for story understanding. But it is unlikely that every story comsists of only
stereotypical situations. Humans can understand situations which are not stereotypical in
nature. People can deal with novel situations because they have access to a more general
planning mechanism underlying the script. Goal/plan theory [Schank and Abelson, 1977;
Wilensky, 1978] was developed to account for this kind of capability. A goal/plan structure
is intended to contain general information that will connect events in the story that cannot
be connected by use of an available script.

A plan is a knowledge structure which is made up of action sequences serving a specific
goal. So a script can be one form of a standard plan structure [Wilensky, 1978]. A goal
is a desirable state for the planner which can be realized by using a specific plan. People
have many goals in their lives, and have individual priorities about those goals. According

2Schank and Abelson described different kinds of script selection headers: precondition, instrument, locale
and direct headers. See [Schank and Abelson, 1977] for details.

12

goal category example goals

crisis goal c-health, c-fire, c-storm
satisfy goal s-hunger, s-sex, s-sleep

preservation goal | p-health, p-position

achieve goal a-power-position, a-possessions, a-good-job
enjoy goal e-travel, e-entertainment, e-exercise
delta goal d-know, d-control, d-prox(imity)

Table 1.1: Major goal taxonomy. High priority goals appear first, but the precedence is
not a total ordering. Often the precedence depends on the situation.

to Schank and Abelson [1977], the major goal taxonomy looks like table 1.1.

Delta goals designate state-change goals and function to organize knowledge about how to
achieve other higher-level goals. For example, a “d-control (food)” goal should be performed
to achieve an “s-hunger” goal. Delta goals usually have standard plans (often being scripts).
As an example, consider the d-prox goal, which is a goal to change one’s physical proximity.
The “pb-bus” script can be used as a standard plan to satisfy this goal.

How are these goals/plans utilized to understand stories which describe nonstereotypical
or novel situations? Suppose the story reads:

John was hungry. John picked up the restaurant guide. John got into
a car.

This story is not stereotypical (at least for this author). People do not pick up restaurant
guides whenever they are hungry. There are many possible actions that people can take
when they are hungry, including cooking, going to a restaurant, ordering food, etc. So we
cannot expect a script that completely conforms to this story. Moreover, when we apply
straightforward inference rules such as found in [Rieger, 1975], we get the wrong conclusion,
i.e. that John will eat the restaurant guide. To understand this story, we need a explanation
of why John picked up the restaurant guide and why John got into a car. To construct
an explanation for John’s actions, we need to interpret John's actions in terms of goal/plan
knowledge. Figure 1.2 shows the goal/plan knowledge needed to understand the above story.
Goal/plan knowledge can be organized using a goal/plan graph. Each node designates the
goal or plan structures with variables which are to be bound to instances in the input
structures (the variables have a leading 7 mark). The graph has two different types of arcs
that denote two different relations: plan-for and sub-goal [Wilensky, 1981]. The plan-for
relation designates that the goal has a certain plan or that the plan realizes a certain goal.
This relation is a OR relation since any plan under the relation can satisfy the goal. The

13

9-posess{7x,7quide-book)

N

p-take p-torrow
(7x.7guide~-book) (7x,7guide-book}

4

pick-up (Jonn,rest-guide)

g-know(?x,7rest-loc} g-enjoy(7x)

p-r[aa(7%, 7Quide-p00k)

g-possess(?x,7guide-book)

~prox(7x,7rest)

g-not-hunger{?x)

p-walk(?x,7rest) p-driye(?x,?rest)

p-cook
(7%, 7?food) R-restaurant

{?x,7f004d,7rest

Q‘DOSA

(7x,7money) g-prox(?x,?rest)

g-know(7x,?rest-ioc) g-prox(7x,7car)

plan=for

—_ sub-goal

Figure 1.2: Goal/plan graph to describe the goal/plan relations. The thin lines
designate plan-for relations while the thick lines designate sub-goal relations. Circles in the
node junction designate that the sub-goal relations are AND relations. Each variable has a
leading ? mark and restricts the class of instances that it can be bound to. The arrows show
the built-up inference chain to explain the “pick-up” event by hooking up several goal/plan
relation graphs.

sub-goal relation designates that the plan has a certain subgoal. This relation is an AND
relation since all of the subgoals must be satisfied to execute the plan. So the goal/plan
graph is a AND/OR graph that has goal/plan structures with their relations to one another.
Goal/plan analysis consists of 3 steps: (1) search the goal/plan graph, (2) instantiate the
goal/plan structures with variable binding and (3) dynamically link the goal/plan nodes to
build up an inference chain. In the figure 1.2, the goal/plan inference chain constructed
for the second sentence (picking-up event) in the above story is depicted with arrows. The
variables ?x and ?guide-book are bound to John and rest-guide respectively, and the bindings
are propagated to the other goal/plan structures to instantiate them. The variable types
(e.g. 7guide-book) restrict the classes of instances (e.g. rest-guide) which can be bound to
the variables. DYNASTY's goal/plan graph consists of AND/OR graphs, and DYNASTY
can handle both AND and OR relations using horizontal and vertical reasoning. DYNASTY
knows that a certain plan has several preconditions that must be satisfied together (horizontal
reasoning) and a certain preconditions must be satisfied sequentially (vertical reasoning) (see
section 4.3.2 for the processing model).

14

The entire goal/plan chain constructed for the above story can be translated as follows:

John is hungry. John picked up the restaurant guide to read it because he wants
to know the restaurant location. John wants to know the restaurant location
because he wants to go there to eat the food. John walked to the car to drive to
the restaurant.

Goal/plan-based story understanding systems generate explanations of a planner’s ac-
tions, and the explanations consist of relating actions to goals by means of plans. Symbolic
systems such as PAM [Wilensky, 1978} represent goal/plan graphs using “request” struc-
tures, a special form of if-then rules. The system uses four different types of “request” rules
[Wilensky, 1981}: (1) the instantiation rules that relate events to the plans they may be part
of, (2) the planfor rules that relate plans to the goals to which they may be applicable, (3)
the subgoal rules that relate goals to the plans to which they may be instrumental, and (4)
the initiate rules that relate themes to the goals they may give rise to. The following four
different types of rules show examples of the rules used to process the second sentence in the
story above. The numbers in the parentheses designate rule types.

(1) if a person picked-up something, the person is using a take-plan.

(2) if a person wants to possess something, then one of the plans is a take-plan.
(3) if a person wants to execute a read-plan, then the person should possess a
book.

(4) if a person is hungry, then the person has a not-to-be hungry goal.

Using these four different types of rule structures with an explanation-finding algorithm.
plan application systems build goal/plan inference chains by dynamically connecting the
paths in the goal/plan graphs. Symbolic plan application theory defines the basic story
understanding cycle as follows (modified from [Wilensky, 1978]):

Ezplanation-finding algorithm for one action:

1. Is the action part of a known plan? If yes, the plan is an explanation. If no, go to
next.

2. Can a plan be inferred from the action? If yes, go to next. If no, stop.

3. Can the inferred plan be a plan for known goal? If yes, the plan is an explanation. If
no, go to next.

4. Can a goal be inferred from the plan? If yes, go to next. If no, stop.

5. Can the inferred goal be instrumental to a known plan? If yes, then the plan-goal
chain is an explanation. If no, go to next.

6. Can the inferred goal have a known theme (e.g. default recurring human goal such as
s-hunger)? If yes, the plan-goal-theme chain is an explanation. If no, go to next.

15

7. Can a plan be inferred to which the inferred goal is instrumental? If yes, go to step 3.
If no, stop.

We will follow this algorithm with the above sample story. First, the initial rule connects
the hungry event to the hungry theme, which is now automatically explained. Next, the
second event is converted to the take-plan through the instantiation rule (step 2). Since the
take-plan is not known yet, the possess-goal is inferred through planfor rule (step 4). This
goal is still unknown, so the read-plan is inferred through subgoal rule (step 7) and the cycle
repeats until the system infers the known goal or plan. The search can be in a depth-first
fashion or breadth-first fashion [Wilensky, 1978]. For instance, the read-plan has two goals
associated with it: know-goal and enjoy-goal (see figure 1.2). The depth-first approach tries
one of them and continues to expand the node. If there is no rule applicable, the system
backtracks to the original point, and tries another rule. The breadth-first approach tries two
of them in turn, and expands the nodes from both goals. One of the paths will be cut off
later if the node has no applicable rules any more.

Sometimes we need to deal with goal interactions to understand the stories which involve
several planners at the same time. Goal interaction theory deals with several interesting
cases, such as goal-subsumption, goal-conflict, goal-concord, and goal-competition [Wilensky,
1978]. DYNASTY currently does not deal with goal interactions or theme analysis [Dyer,
1983] but focuses only on a single planner case with a single top-level goal.

1.4 Distributed connectionist approaches

1.4.1 Symbolic vs. connectionist computation

Symbolic computation has its theoretical basis in the Physical Symbol System Hypothesis
(PSSH) [Newell, 1980]. In the PSSH, cognition is modeled by syntactic operations on abstract
symbols and symbolic structures {expressions), where the operations are those which can be
efficiently carried out in a traditional von Neumann computer. Symbolic computation has
long been a major computational paradigm in the cognitive sciences, and uses the metaphor
of a von Neumann computer as the brain and software as the mind. Formally, symbolic
computations must consist of the following six elements [vanGelder, 1989]:

¢ A basic vocabulary consisting of a finite set of disjoint symbol classes (types); each
class has an unbounded number of symbol tokens

o A finite set of syntactic rules
e A concatenative mode of combination

e A set of expression classes (types), such that each class contains an unbounded num-
ber of expression tokens, and where expression tokens are generated from symbols by
concatenation according to the syntactic rules

Primitive semantic assignment to symbols

16

¢ Principles for making semantic assignment to every expression based on the semantics
of the symbols (compositional semantics) and the syntactic structure of the expression

These elements define an extremely large class of computational disciplines used in lin-
guistics, computer science and Al For the past twenty years, from SHRDLU [Winograd.
1972] to OpEd [Alvarado et al., 1990], knowledge-based NLU systems have been imple-
mented based on this symbolic computational paradigm. Recently, an approach which seems
to be incompatible with the PSSH has been introduced, called Parallel Distributed Process-
ing (PDP) [Rumelhart et al., 1986¢] or Connectionism [Feldman and Ballard, 1982]. In this
approach, cognition is modeled by networks of highly connected simple processing units. Sig-
nals are propagated along connections of different strengths, and are excitatory or inhibitory.
The signals arriving at a given unit are summed and the unit fires if the signal exceeds a

threshold. Formally, connectionist computing consists of the following eight major elements
[Rumelhart et al., 1986a): '

o A set of simple processing units: usually three types (input, hidden, output) of units.

A state of unit activation: discrete or continuous activation values of units.

o Output of the units: output function maps the current activation state to an output
signal.

¢ The pattern of connectivity: represented by a weight matrix in which the entry w,;
represents the strength (positive or negative) of the connection from unit u; to u,.

o Propagation rule: calculating net input to a unit as the weighted sum of the outputs
of connected units.

¢ Activation rule: a net input is combined with the previous activation to produce the
new activation of the unit.

o Training rule: modifying the pattern of connectivity as a function of training data
(experiences).

e Representalion of the environment in which the network operates.

Figure 1.3 shows the operation of a connectionist unit. The net-input to a unit is calcu-
lated as some function (usually a weighted sum of the outputs of the neighboring units). This
net input is converted to an activation value through some activation function F. Finally
the activation value is converted to the output of the unit through some output function £
(usually a sigmoidal function), and propagated to other neighboring units. In this model, the
knowledge resides in the connectivity pattern {of weights) hence the name “connectionism™.
Each unit is very simple and restricted in its operations, such as summing and thresholding.

17

W(lj)
O 1) wo o)
—
wi NET(l) = SUM[W*O]

A(l) = F (A{l),NET(l})
O = t{A(l))

O Olk

Figure 1.3: Connectionist computational unit. Computation in each node consists of 3
different calculation steps: net-input, activation, and output calculations (see text).

1.4.2 Localist vs. distributed connectionism

There are two different, but not incompatible representational approaches in the connec-
tionist research: (1) localist representation approaches [Feldman and Ballard, 1982] use one
unit to represent each conceptual level entity, and (2) distributed representation approaches
[Rumelhart et al., 1986¢] use an ensemble of units to represent a conceptual level entity.
where one unit contributes to representing many different entities at the same time, so no
single unit is critical in representing entities. Connectionist research that utilizes distributed
representation approaches is called distributed connectionism [Touretzky and Hinton, 1988].

There has been an ongoing debate over whether distributed or localist representations
should be used to represent high-level knowledge in connectionist cognitive systems. Feld-
man [1986] has given arguments against both extreme localist and extreme distributed rep-
resentations. PDP (Parallel Distributed Processing) researchers, such as Rumelhart et. al.
[1986¢], have listed numerous advantages that distributed representations have over local-
ist representations. At the same time, a number of techniques have been developed for
forming distributed representations. Such representation-forming techniques include back-
propagation [Rumelhart et al., 1986b), extended backpropagation [Miikkulainen and Dyer.
1988], conjunctive- and coarse-codings [Hinton et al., 1986], microfeature-based represen-
tations [Waltz and Pollack, 1985; McClelland and Kawamoto, 1986], and tensor product
representations [Dolan and Smolensky, 1989; Smolensky, 1987a].

Localist connectionism is inherently limited in coping with systematicity and composi-
tionality, which are essential in high-level cognitive systems [Fodor and Pylyshyn, 1988].
Distributed connectionism has more potential than localist connectionism in this respect.
There are a couple of reasons we are interested in distributed connectionism (DC) rather
than localist connectionism (LC): (1) In DC, the representation can be automatically learned

L 4

18

input layer
hidden layer

output layer

forward propagation —_—

backward propagation e

Figure 1.4: Backpropagation network. The algorithm consists of two stages: forward
propagation to calculate the activation of each node, and backward propagation to adjust
the weights between each layer. Each layer is fully connected to the next layer. The adjusted
weight values are shown by the thickness of the weight lines. Not all the connections are
shown. Only the connections to the first unit in each layer are shown here.

from the training data [Hinton et al., 1986; Miikkulainen and Dyer, 1988; Lee et al., 1990]. In
LC, the representation still requires complex and careful knowledge engineering e.g.[Shastri.
1987]. (2) In DC, there are well defined training algorithms to define network connectivity
[Rumelhart et al., 1986b; Ackley et al., 1985]. In LC, the network connectivity must still be
defined by hand [Lange and Dyer, 1989; Cottrell and Small, 1983; Waltz and Pollack, 1985].
However, the LC scheme can exploit knowledge-level parallelism [Sumida and Dyer, 1989],
but DC systems, e.g. [Touretzky and Hinton, 1988] are sequential at the knowledge-level
[Feldman, 1986].

1.4.3 Backpropagation network

Backpropagation (BP) [Rumelhart et al., 1986b] is a learning algorithm for a multi-
layer perceptron network [Minsky and Papert, 1988]. The algorithm repeatedly adjusts the
weights in the network so as to minimize a global difference (error) between actual outputs
and desired outputs. Figure 1.4 shows a backpropagation-based network architecture. The
network consists of three layers: input, output, and a hidden layer.

During performance (forward propagation from input to output layer), the algorithm
computes the activation values of the units in each layer. The total input to unit 7, z;, 1s
a linear function of all the outputs from units 7 that are connected to j, and of the weight,
w;ji, on these connections:

zj = 3 yiwji (1.1)
]

A unit j has a real-valued output y; that is a non-linear differentiable function of its total
input. The commonly used non-linear differentiable function is the so-called sigmoid squash-
ing function since it limits activity values of a unit in a certain range (usually 0 to 1). Here

19

8; designates a bias of the sigmoid (its displacement from the origin) at unit y;. Now the
output for unit j looks like:
1

Vi = {1 o8 (1.2)
During training (backward propagation from the output to input layer), the algorithm

adjusts the weights between the layers according the following equation.
Awji = ndy; (1.3)

where 7 is a learning rate, §; is a difference between desired output and actual output of
unit 7, and y, is the output of the unit . The §; can be rewritten as follows according to the
layers when the sigmoid function is used.

(1) when unit j is at the output layer:
b; = (d; — y;)y;(1 - y;) (1.4)
(2) when unit j is at the arbitrary hidden layers:

6= y;(1 —y;) D buws;j (1.5)
k

where d; is a desired output of unit j, wi; is the weight between unit ¥ and unit j (unit &
is a next layer of unit j in forward direction). The term y; (1 - y;) is a differentiation result
of the sigmoid function.

The major problem with BP is its slow convergence rate. To get around the speed
problem, one can use an acceleration method in which the current gradient is used to modify
the velocity of the points in weight space {Rumelhart et al., 1986b]. The weight adjustment
equation now reads:

Awji(t) = n6y; + aAw;(t — 1) (1.6)

where ¢ 1s increased by one for each epoch through the whole set of input and output pairs,
and « is an exponential decay factor {called momentum) between 0 and 1 that determines
the relative contribution of the current and past gradient to the weight change.

The BP learning algorithm is entirely deterministic, so if two units within a layer start
off with the same connectivity and weight, there is nothing to make them differ from each
other. This symmetry can be broken by starting with small random initial weights. Another
problem with steepest gradient descent procedures such as BP is that they cannot guarantee
finding the global minimum in the error space. If the error space is complex and contains
many ravines (local minima), the BP algorithm can get trapped in a local minimum. The
local minimum problem can become more severe in large scale applications. Fortunately,
there are not many cases in which BP has gotten stuck in local minima in real applications
[Rumelhart et al., 1986b]. BP has been successfully applied to many problems, including
conversion of English text to speech {Sejnowski and Rosenberg, 1986] and past tense learning
[Rumelhart and McClelland, 1987].

20

CN architecture

FeedForward

AuUutoAssociative HeterocAssociative AUtoAssociative HeteroAssociative
{e.g encoder) (e.g Nettalk) (e.g RAAM] (e.g. 3RN)

Figure 1.5: Classification of connectionist network architectures.

1.4.4 Connectionist network architectures

Connectionist architectures can be classified using two different architectures: feed-
forward vs recurrent and auto-associative vs hetero-associative (see figure 1.5).

A feed-forward architecture has only feed-forward connections, but a recurrent architec-
ture has backward connections from the hidden (or output) layer to the input layer. A auto-
associative architecture has the same input and output patterns, and the network’s objective
is to make compressed patterns in the hidden layer. A hetero-associative architecture has
different input and output patterns and associates the input and output patterns. The com-
bination of two different architectures can give four different kinds of connectionist network
architectures: (1) auto-associative feed-forward (AF), (2) hetero-associative feed-forward
(HF), (3) auto-associative recurrent (AR), and (4) hetero-associative recurrent (HR) net-
work architectures. For example, the encoder-network [Rumelhart et al., 1986c] that builds
compressed hidden layer representations is an example of AF architecture. The nettalk [Se-
jnowski and Rosenberg, 1986] has an HF architecture. RAAM (recursive auto-associative
memory) [Pollack, 1988] is an example of an AR architecture. SRN (simple recurrent net-
work) [Elman, 1988; Jordan, 1986] is an example of an HR architecture. DYNASTY uses
several modules of different types, such as AR, HR and HF architectures (see chapter 3).

1.4.5 The appeal of connectionism

Why has this simple-unit-complex-connectivity computational model gained popularity
as a cognitive system modeling? Compared to symbolic computation, connectionist compu-
tation has many advantages [Dyer, 1990b; Dyer, 1990a) as a cognition modeling theory and
those advantages are listed below.

e Automatic learning: A connectionist network can be automatically trained by using
several kinds of training algorithms [Hinton, 1987].
[}

21

¢ Automatic generalization: The trained network can perform similar tasks withous
further training, so generalization is automatic.

¢ Fault tolerance: A connectionist system can tolerate noise/faults arising from either
input or intermediate component failures.

¢ Graceful degradation: In the face of unit/weight failures, performance degrades grace-
fully according to the portion of failures.

e Natural mapping to brain's architecture: A connectionist unit is a mathematical sim-
plification of neurons in the human brain.

® Massive parallelism: Each connectionist unit can sum its input and compute its output
at the same time as the other units.

¢ Natural soft constraint satisfaction: A connectionist network can naturally express
varying degrees of constraint with continuously varying values for weights and activa-
tions.

¢ Real-time application: Once trained, the network can be used in real-time applications.
since its execution is very fast and hardware implementation is natural.

1.5 Methodology

Our methodology is based on what we call a connectionist/symbol processing approach
to story understanding, that is, knowledge and design constraints come from the symbolic
system theory and the system is implemented using connectionist components [Dyer, 1990b)].
Then why not base our design on pure symbolic systems or on pure connectionist systems?
The reasons are two-fold. First, connectionism provides many fascinating properties in Al
applications compared with the pure symbolic systems. However, natural language under-
standing still needs symbols or symbolic properties such as structure encodings, recursive-
ness, pointers, and variables [Dyer, 1990b; Dyer, 1990a]. So we need to simulate symbolic
behaviors using connectionist components.

In developing a connectionist story understanding system, we follow the classical proce-
dures developed by Schank and his colleagues [Schank and Riesbeck, 1981; Wilensky, 1978;
Dyer, 1983; Lehnert, 1978; Alvarado, 1990), that is, first develop basic knowledge represen-
tation formalisms such as conceptual dependency, scripts, goals/plans [Schank, 1973; Schank
and Abelson, 1977] and then implement story understanding systems which employ those
knowledge representation formalisms. We first develop a distributed connectionist knowledge
representation scherne called distributed semantic representations (DSRs) for the basic word
level and event/state/goal/plan level, and then build modular connectionist architectures
using this representation scheme to process script/goal/plan-based stories.

This thesis presents a new method for developing distributed connectionist representa-
tions of symbolic structures in order to serve as an adequate foundation for constructing
and manipulating conceptual knowledge, along with modular connectionist architectures

22

to process script/goal-based stories, In our approach, distributed representations for word
symbols (and symbolic structures) are formed from a group of propositions which describe
DYNASTY’s domain knowledge. Technically, the representations are formed by recirculat-
ing [Lee et al., 1990] the hidden layer in two auto-associative recurrent (AR) networks. One
of the networks encodes the symbols with respect to the propositions in which the symbols
are involved. The other network encodes the propositions themselves which describe the
symbols. For example, the meaning of the symbol “coffee” can be partially represented via
the two propositions: (pl) “John drinks coffee” and (p2) “Coffee is hot” as long as we have
the representations of Pl and p2 ready to be accessed. The accuracy of the representations
correlates with the number of provided propositions. For example, when we add the third
proposition (p3} “America imports coffee from Columbia”, then the representation of “cof-
fee” can now be distinguished from the representation of “tea” which was not possible when
we only use the above two propositions. We call these developed distributed representations
in the propositional context distributed semantic representations (DSRs),

are utilized as building blocks in symbolic Al systems, we want to use DSRs as building
blocks in connectionist or connectionist/symbolic hybrid models [Dyer, 1990b; Dyer, 1990a)
which are able to support such tasks as story understanding. On top of the word-level] of
DSRs, we build high-level (e.g. event, state, goal, plan) representations, and the architecture
is designed to make the best use of those high-level representations. In the architecture, our
approach is function oriented and similar to Dolan’s vertical integration approach [Dolan,
1989] and Dyer’s symbolic heuroengineering approach [Dyer, 1990b). We define each sym-
bolic sub-task (function) first and then modularize the architecture according to the defined
symbolic sub-tasks. The functional constraints of the system come from the symbolic text-
understanding theory [Schank and Riesbeck, 1981]. Next, we implement each sub-task mod-
ule in the distributed connectionist framework (except working memory). DYNASTY has
been built using this function-oriented approach. At the top (task) level, DYNASTY works
like symbolic systems do, but at each module level, its operation is far different from that
of symbolic components, with each conforming to the connectionist paradigm. However the
control of each module is still symbolic and the episodic memory parts (working memory)
are implemented using symbolic pointers,

1.6 A guide to the reader

Chapter 2 deals with our main contributions to the theory of distributed connectionist
representations. We provide the theoretical foundation of the DSR scheme and discuss de-
sirable criteria for distributed representations in general, and the formation of DSRs from

23

the domain knowledge (provided as a set of propositions). Also in chapter 2, we discuss the
implementation of DSRs within the connectionist framework. This chapter deals with the
XRAAM (extended recursive auto-associative memories) architecture, encoding and decod-
ing algorithms, and experiments and analysis of example DSRs from a group of user-supplied
propositions.

Part II concerns modular connectionist architectures and processing for story understand-
ing and script/goal/plan analysis. We discuss here the architecture and implementation of
the several subsystems of DYNASTY. Chapter 3 presents DYNASTY architecture, includ-
ing its linguistic front-ends, such as the parser, the generator, and the global dictionary.
Chapter 3 also presents several goal/plan processing modules, including the Triple-Encoder.
the Plan-Selector, the Goal/Plan-Associator and the Action-Generator, and shows how these
modules are trained to perform the necessary pattern transformations for goal /plan analysis.

Chapter { discusses processing in DYNASTY. We discuss here how the various network
modules are combined for script/goal/plan processing. The structure matching and variable
binding mechanisms are also discussed.

Part I1I brings the technology discussed in Part I and Part II together to evaluate the
entire DYNASTY system, which is then compared to related research. In chapter 5, we
evaluate DSRs and present performance analysis of DYNASTY. We discuss here how DSRs
are learned and altered depending on the training set. In chapter 5, we also discuss the
performance of DYNASTY with example output traces. Generalization and fault tolerance
abilities are analyzed with separate experiments.

Chapter 6 discusses previous research which influenced the design of DYNASTY. We
discuss prior connectionist representations, connectionist systems and symbolic systems and
compare them against DYNASTY.

Chapter 7 contains the current status, limitations and possible extensions to DYNASTY'.
Proposals for future work which can make use of DSRs and modular connectionist architec-
tures are discussed, such as machine translation and question/answering tasks.

Chapter 8 contains a summary of the dissertation, along with major conclusions.

The appendices contain DYNASTY training data and training, execution and analysis
code.

24

Chapter 2

Distributed semantic representations

2.1 Introduction

DSR (Distributed Semantic Representation) is a distributed connectionist knowledge
representation scheme that can serve high-level symbolic cognitive tasks, such as natural
language understanding. In this chapter, we discuss the background and theoretical foun-
dation for DSRs. We also describe how DSRs are actually learned by using distributed
connectionist networks.

Below are some notations which will be used throughout the thesis. The semantic content
of a sentence, for example, “The man drinks milk with a straw”, can be represented as a
proposition, which is a set of [proposition-label, role-name, filler| triples, such as:

[pl ACT drink]

[pl AGENT man]
(pl OBJECT milk]
[pl INSTRU straw|

where each word-concept (e.g. drink) has its own DSR representation. The following
notation will be used for all triples. First, all triples will be in square brackets, e.g. [milk
OBJECT pl]. All propositions (or events) will be labeled pl, p2 (or evl, ev2...), etc. All
goals (or plans) will be labeled g1, g2 (or pl, p2..), etc. All semantic case-role names
[Fillmore, 1968; Schank, 1973] will be in capital letters (e.g. AGENT, ACT, OBJECT). All

word-concepts (abbreviated as w-concept) will be in bold (e.g. milk, straw).

2.2 Criteria for forming distributed representations

Developing distributed representations, which are able to support higher-level reasoning
and represent conceptual knowledge, is a non-trivial task. Whereas symbolic representations
start with a random bit string (like ASCII code) and build structural relationships between
meaningless symbols to represent conceptual knowledge, distributed (or so-called “subsym-
bolic” [Smolensky, 1988]) representations must encode both structures and semantics below
the symbolic level, namely, as a pattern in an ensemble of neuron-like elements (i.e. creating
a “connectionist symbol”). Our goal is to develop schemes of distributed representations
which can serve as an adequate foundation to construct and manipulate conceptual knowl-
edge, which is essential in high-level cognitive tasks. Such a goal calls for a distributed
representation scheme which exhibits the advantages of symbolic representations (i.e. porta-
bility of representations across modules, structure encodings, variables and propagation of
bindings}), while at the same time retaining the benefits of distributed representations (i.e.

25

automatic formation of representations through learning, generalizations ba.ed on similarity-
based representations, fault-tolerance, and graceful degradation).

To develop such a scheme, we need guidelines to tell us which properties are desirable
for distributed representations in high-level cognitive applications. Below we describe four
such criteria and analyze previous schemes according to those criteria.

1. Automaticity - The representation must be acquired through some automatic learning
procedure, rather than encoded by hand. Otherwise one is faced with a knowledge-encoding
bottleneck — a problem which has plagued symbolic Al systems and also many PDP systems.
For instance, the microfeature-based representations used in PDP systems, e.g. [McClelland
and Kawamoto, 1986|, does not have an automatic learning procedure. Therefore, connec-
tionists must act as “knowledge engineers” by defining each microfeature in advance and by
hand-coding each input representational vector.

2. Portability — The representation should be global rather than locally confined to a
given training environment. That is, the representation learned in one training environment
must be able to be ported to another task environment, so that the same knowledge can be
applied to different tasks. For example, the representation in Hinton’s family tree example
[Hinton et al., 1986] can be said to meet the automaticity criterion, since it is automatically
learned by the back-propagation (BP) algorithm. However, these internal representations
are local to that task only; they cannot be used in any other task.

3. Structure Encoding — Feldman [1986] has argued that any conceptual representation
must support answering questions about structural aspects of that concept. For example.
part of the meaning of “irresponsible” is that there was an obligation established to perform
an action and that obligation was later violated. To answer a question about the meaning
of “irresponsible” requires accessing these constituent structures [Dyer, 1990b]. Any concep-
tual representation must have structural information in the representation itself about the
constituent elements of the concept. This structure-encoding criterion implies systematicity.
compositionality, and inferential coherence — the three properties that Fodor and Pylyshyn
[1988] mention when criticizing connectionism. RAAM [Pollack, 1988] is a good example
of distributed representations which encode the entire structure into a fixed length vector
representation. For example, from the RAAM representation of syntactical structures. we
can decode out constituents of the structures to answer structural questions.

4. Similarity-based representations — Distributed representations gain much of their power
by encoding statistical correlations inherent in the training set, which are used to characterize
the task environment. These statistical correlations give connectionist models the ability to
generalize. To support generalization, distributed representations should exhibit semantic
content at the micro level, i.e., similar concepts should end up (by some metric) with similar
distributed representations. This criterion provided the original impetus for microfeature-
based encodings, since similar concepts are similar because they share similar microfeature
values. Unlike microfeatures, however, DSRs are formed automatically from training data.

26

customer entered restaurant-name
John entered Chart-House

Jack entered Chart-House
waiter seated customer

vaiter seated John

vailter seated Jack

waiter brought menu

customer read menu

John read menu

Jack read menu

customer ordered food

John ordered steak

Jack ordered chicken

customer ate food

John ate steak

Jack ate chicken

customer paid bill

John paid bill

Jack paid bill

customer left tip

John left ti

customer left restaurant-name for home
John left Chart-House for home
Jack left Chart-House for home

Table 2.1: Example proposition space in a script-based story processing domain.
The w-concept which behaves similarly in this proposition space (e.g. customer, John,
Jack) develops similar DSRs. Note that the number of propositions in the proposition space
is not enough to semantically distinguish all the words, so the usage of some of the word-
concepts {e.g. {bill tip), (ordered ate), (paid left), etc.) cannot be clearly distinguished in
this particular proposition space.

2.3 DSR: A new technique for forming distributed representations

DSR [Lee et al., 1989a; 1989b; 1990] is a new technique for automatically forming dis-
tributed representations designed to meet the above four criteria. DSRs are formed auto-
matically from the domain knowledge of application systems, where the domain knowledge is
represented as a set of propositions. We call such a set of propositions the proposition space
of the DSRs developed in that application. So if the application domain is script-based
story understanding, then all the propositions converted from the script-based sentences
(which are to be processed) form a proposition space of the DSRs. The DSRs are automat-
ically formed from a proposition space by using two connectionist networks, which provide
necessary similarity-based semantics for the application. In other words, DSRs of two word-
concepts are similar if those two words are used similarly in a proposition space from which
the DSRs are formed. The union of two proposition spaces form one proposition space for
the combined applications. For example, if the application domains are script-based and
goal/plan-based story understanding, the propositions converted from both script-based and
goal/plan-based sentences form one proposition space. DSRs for these two applications can
be formed from this combined proposition space. As a result, knowledge acquired for one
task domain can be applied to other task domains. Table 2.1 shows a proposition space
for a script-based story understanding domain. From this proposition space, DSRs of the
word-concepts in the given propositions can be formed and each word concept has limited
semantics in the proposition space.

27

2.4 Representing propositions and word-concepts

In this section we show how propositions and word-concept are represented in order to
be accessed by the connectionist learning architecture. Traditionally, there are two alternate
views on the semantic content of words: (1} The structural view defines a word meaning only
in terms of its relationships to other meanings. (2) The componential view defines meaning
as a vector of properties {e.g. microfeatures). We take an intermediate position - that word
meaning can be defined in terms of a distributed representation of structural relationships,
where each relationship 13 encoded as a proposition.

The intuition behind DSRs is based on our observation that people often learn the mean-
ings of words through examples of their relationships to other words. For example, after
readinz the four propositions below, the reader begins to form a hypothesis of the meaning
of the vord foo.

e pl: The man drinks foo with a straw.
¢ p2: The company delivers foo in a carton.
¢ p3: Humans get foo from cows.

e p4: The man eats bread with foo.

The meaning of foo should be something like that of milk. The interesting fact is that
the semantics of foo is not fixed; rather it is gradually refined as one experiences more
propositions in varying environments. In other words, the semantics of foo is based on the
usage of the word foo. The four propositions form a proposition space from which a concept
of milk can be formed properly. To form reasonable DSRs for the other word-concepts such
as man, drink, straw, company etc., we need more propositions in this proposition space.

To develop DSRs based on a set of propositions, we have to define the structural re-
lationships between concepts with respect to those propositions. For this purpose, we use
thematic case-roles, originally developed in [Fillmore, 1968], and extended in several natural
language processing systems, e.g. [Schank, 1973; Schank and Riesbeck, 1981]. Nobody has
completely listed the necessary case-roles for natural language semantics yet. Each system
tends to have its own case-roles [Bruce, 1975]. Table 2.2 lists the basic case-roles used in DY-
NASTY for action-oriented propositions. These case-roles for action-oriented propositions
can be extended when DYNASTY needs to process the mental states arising from goals and
plans as well as actions.

Suppose the previous four propositions form a proposition space for a word-concept milk
(replace foo with milk in ~ach proposition). Each proposition is defined as the composition
of the constituent thematic -zse components (case-role plus w-concept) that are themselves
combinations of structural relationships with their corresponding meaning representations
of other words. For example, the first proposition (p1) can be defined as follows:

pl = F (G(AGENT, man), G(ACT, drink), G(OBJECT, milk), G(INSTRUMENT,
straw))

28

Case-roles Descriptions

ACT an action described by a verb

AGENT an actor intentionally causing the action

OBJECT a thing that was affected by the action

OBJ-ATTR a description of the attributes of the object
CO-OBJECT a secondary object which often modifies the first object

INSTRUMENT a force or tool used in causing the action
FROM (SOURCE) | the original value in a state change caused by an action

TO (GOAL) the final value in a state change caused by an action
LOCATION the spatial region where the action occurred
TIME the temporal duration in which the action occurred

Table 2.2: Semantic case-roles used in DYNASTY.

where the bold typeface is the meaning representation of the word; F is some integration
function over all case-roles in pl and G is some combination function of structural relation-
ships with respect to the corresponding word concepts. In this formula, pl is a proposition
which has man as its AGENT role, drink as its ACT role, milk as its OBJECT role, and
straw as its INSTRUMENT role. All other propositions can be represented in the same
fashion.

The DSR of milk is now defined as the composition of structural relationships, e.g. with
respect to the four propositions above. These are then combined as follows:

milk = F (G(OBJECT, p1), G(OBJECT, p2), G(OBJECT, p3), G(CO-OBJECT,
p4))

where milk is the meaning representation of the milk; F is some integration function over
all the propositions involving milk; and G is some combination function of structural rela-
tionships with respect to the corresponding propositions. For the above two formulas, the
arguments of the function G are represented as patterns of activation in two banks of a layer
of a recurrent connectionist network. The function G operates by compressing its arguments
into the hidden layer of the connectionist network. The function F operates by recycling
each compressed pattern (in the hidden layer) back into the input layer. The architecture
that implements these operations will be described in full in the next section.

29

2.5 DSR learning architecture

DSRs are learned using two BP-based recurrent connectionist networks. We use XRAAMs
(extended recursive autoassociative memories) [Lee et al., 1990] for automatically learning
DSRs. XRAAMs are based on RAAMs, originally developed in [Pollack, 1988]. Pollack
showed that RAAMs could be used to encode recursive data structures, such as trees and lists.
by feeding the compressed representations in the hidden layer back into the input/output
layers. RAAMs, however, lack an external storage for each representation formed. In con-
trast, XRAAMs make use of a global dictionary (GD) to store and retrieve these compressed
representations. The GD is a distributed lexicon network which contains the concept name
along with its DSR pattern. The basic idea of XRAAM is to recirculate [Dyer et al., in press]
the developing internal representation (hidden layer of the network) back out to the envi-
ronment (input and output layers of the network) using a global symbol memory. Figure 2.1
shows two modules of our architecture, where each one 1s an XRAAM.

Each XRAAM contains a symbolic/connectionist memory (global-dictionary or propo-
sition -buffer) and a 3-layer AR (autoassociative recurrent) network (section 1.4.4) . The
input and output layers of each network have 3 banks of units: bankl, bank2, bank3. These
banks represent either a proposition [proposition-label,case-role,w-concept] or a word con-
cept [w-concept, case-role, proposition-label] as triples. After each of the 3 banks is properly
loaded with the elements of a proposition, the DSR emerges in bankl by an unsupervised
auto-associative BP {Rumelbart et al., 1986b].!

The DSR learning procedure consists of two alternating cycles: Concept Encoding and
Proposition Encoding. Below we describe each cycle. In each, all concept and proposition
representations start with a don’t know pattern (i.e. 0.5 in all units), with the activation
value range of each unit in the network being 0.0 to 1.0. The case-role representation
(for AGENT, OBJECT, CO-OBJECT, etc.) is fixed, using orthogonal bit patterns for

minimizing interference (Figure 2.2).

Figure 2.3 shows the information flow during the concept-encoding cycle. Each number
in parenthesis in figure 2.3 corresponds to a numbered step in the following concept encoding
cycle.

Concept Encoding Cycle:

1. Pick one concept to be represented, say CON1.

2. Select all relevant triples for CON1. In the milk example, they should be triples
like {milk, OBJECT, pl], [milk, OBJECT, p2], [milk OBJECT p3], and [milk, CO-
OBJECT, p4|. For the first triple, load the initial representation for CON1 into bank!.

3. Load the case-role into bank?2, and load its corresponding filler (i.e. proposition) into
bank3. In the milk example, for the first triple [bankl, bank2, bank3] is loaded with
bit patterns for milk, OBJECT, and pl.

!When input patterns are used as teaching patt®rns, BP can be considered to be an unsupervised learning
algorithm, since we do not need a separate teaching pattern for each input.

30

banki bank2 bank3
| input
DSR DSR
copy > name

milk
. mEE Bdas
B ZAN EEEE: teaching

global-dictionary (GD)

concept-encoding net

name p-reép

p1 |

proposition-buffer

proposition-encoding net

Figure 2.1: Two XRAAM architectures for learning DSRs. In each network, there are
input, hidden, output, and teaching layers. Once a concept (or proposition) in triple form
has been auto-associated, the pattern of activation in the hidden layer units is stored in the
corresponding global dictionary (or proposition buffer) as the representation of the concept
(or proposition). The concept-encoding network forms a distributed representation of a
symbol by encoding all propositions involving that symbol, while the proposition-enceding
network forms a representation of a proposition by encoding all the symbols involved in that
proposition. Thus, distributed symbols in the global dictionary are fed to the input/output
layers of each XRAAM. Each bank is drawn to have only 5 units in this figure due to space
limitations. In the actual network, each bank has 10 units.

31

ACT (N O N O -

—
-
e

AGENT CENC T T T T 1T 7171
osecr (1T T T T 7T 17
coogy LI T M T T T 71 1
OBJATTR 1T T T W T T T 11
INSTRU CIT I T 1T T T 11
FROM CI T T T T W T 711
© CI T T T T T . 171
Locaton 1T T T T W]
TIME CI T 1T 1T 1T 1T "1 '

Figure 2.2: Case-role representations. An orthogonal encoding scheme is used to mini-
mize interference between case-roles. The fixed case-role representations provide the neces-
sary structural variation for learning each DSR.

4. Run the auto-associative BP algorithm, where the input and output layers have the
same bit patterns.

5. Recirculate the developed (hidden layer) representation into bankl of both input and
output layers, and perform step3 to step5 for another triple until all triples are encoded.

6. Store the developed DSR into the global dictionary and select another word concept
to be represented.

Proposition Encoding Cycle: Basically this cycle undergoes the same steps as the Concept
Encoding Cycle except that, this time, we load bankl, bank2, and bank3 with (respectively)
the proposition to be represented, the appropriate case-role, and its corresponding concept
representation (DSR). The result of the encoding is stored in the proposition-buffer. Fig-
ure 2.4 shows the information flow in the proposition-encoding cycle.

Notice, to encode a proposition (e.g. pl), the DSRs for all w-concepts (e.g. milk, straw)
appearing in that proposition must be accessed from the GD and used in the proposition
encoding process. Likewise, to form the DSR of a w-concept, the distributed representations
of all propositions containing that w-concept must all be accessed from the proposition buffer.
So concept encoding relies on proposition encoding and vice versa. Consequently, the overall
DSR learning process is:

1. Perform the entire concept encoding cycle.

2. Perform the entire proposition encoding cycle.

32

(3

v

Dankl Dank2 bank3

L -y [TN [§ L RE

name JOSR

MK

(5)
copy

global-gictionary (GD)
concepl-encoding net

S

case-triple
[W‘COﬂCeDI.Case‘rU!e.DrODOSIthn]
eg. fmik , oBuECT ,pl]

nam p-rep

R DAL T
p | (N

copy

proposttion-burrer

propasition-encoding net

Fig (@)

mik

/\

milk" C0-08J pd

Encode Decode

/

EE . o0

7

mik o2

7§

LI ik osu pl

Fig (b)

Figure 2.3: Concept encoding cycle in the DSR learning architecture. Each number
in parentheses designates a corresponding procedure number in the text. The primes on each
“milk” in (b) indicate that DSRs are constantly changing to reflect the new propositional
relations. The black lines in (a) show information flow in the concept-encoding cycle, while
the grey lines show the information flow in the proposition-encoding cycle, which will be
described in Figure 2.4. Due to space limitations, each bank is drawn with only 5 units, as

before.

33

name PSR

copy - Tl e | SO

© S EE HE R
global-diciionary (GD)

case-triple
[proposition case-role, w-concapt]
eg. [pl, ACT, drink |

(5 |
copy

{3}

Fig ()

Figure 2.4: Proposition encoding cycle in the DSR learning architecture. Each
proposition is encoded using the same algorithm as in the concept encoding cycle, except
that the [proposition, case-role, w-concept| triples are used instead of [w-concept, case-role.
proposition] triples.

34

3. Repeat stepl and step2 until we get stable DSR patterns for all the word concepts to
be encoded.

In this process, the composition function F (see section 2.4.) is embodied in the dynamics of
the RAAM stacking operation [Pollack, 1988; Pollack, 1990] and the combination function
G is embodied by compressing the concatenation of representations in the three banks. So
the XRAAM architecture forms a DSR representation by compressing propositions about
a concept into the hidden layer, and then uses those compressions in the specification of
propositions that define other concepts. Then it recycles the compression formed for this
concept back into the representation of the original concept (doing this over and over until
all DSRs stabilize). Thus each DSR has in it the propositional structure that relates it
to other concepts, where each of those concepts are also DSRs. The proposition-encoding
network provides the necessary propositional representations for w-concept encoding, and
the proposition-buffer is a temporary storage for these proposition representations. This
symbol recirculation method [Dyer et al., in press; Dyer, 1990b; Dyer, 1990a] produces what
can be viewed as generalizations of Hinton's “reduced descriptions” [Hinton, 1988].

2.6 Decoding DSRs into the constituents

The decoding process? is the reverse process of encoding: We load the concept repre-
sentations (DSRs) into the hidden layer of the concept-encoding network and perform value
propagations from the hidden layer to the output layer until we get the desired case-role
relationships in bank2 and propositions in bank3 of the output layer. Next, we load the re-
sulting proposition representations into the hidden layer of the proposition-encoding network
and get back the constituent case-role relationships and concept representations. Figure 2.5
shows the decoding architecture.

For example, if the DSR for milk is loaded into the hidden layer of the concept-encoding
network, then a [milk’, CO-OBJECT, p4] triple will appear in the output layer after forward
propagation. In the same way, if we copy this interimm w-concept representation to the
hidden layer, then a [milk”, OBJECT, p3| will appear in the output layer (see figure 2.3).
Similarly, if we load the p4 representation from the bank3 in the concept-encoding network
into the hidden layer of the proposition-encoding network, the {p4’, CO-OBJECT, milk]
triple will appear in the output layer after forward propagation. In this way, all concept and
propositional information originally encoded can be extracted by recycling the remaining
partial representations (in bank 1) into the hidden layers of each network. Since we can
think of each DSR as a stack of (case-role, proposition) pairs, the decoding operation is like
a stack-popping operation. We get constituent pairs in a Last-In-First-Out {(LIFO) fashion.
Once the DSR is completely stabilized during learning, the decoding performance does not
degrade when the popping position varies from stack top to bottom.

?An advantage of the XRAAM network lies in that we can decode constituent structures from represen-
tations by using the same XRAAM network.

35

e.g. milk
copy
o case-role down-load
interim
e.g. milk’
proposition-encoding net
B ——
proposition
copy 4 eg.p4
interim case-role w-concept
p-rep , e.g.Co-0B) eg.milk
eg.pd

Figure 2.5: Decoding architecture for DSRs. The example is according to the tree in
Figure 2.3b. The decoding sequence is from the tree root to the leaves (the reverse sequence
of encoding).

36

P numb. P Generator Case Structures
pl humanTate AGENT-ATT
p2 human ate food AGENT-ACT-0BJECT
p3 human ate food with food AGENT-ACT-0BJECT-COOBJ
p4 human ate food with utensil AGENT-ACT-0BJECT-INST
pS animal ate AGENT-ACT
p6é human broke fragile-object AGENT-ACT-0BJECT
p7 human broke fragile-object with breaker AGENT-ACT-OBJECT-INST
p8 breaker broke fragile-object INST-ACT-0BJECT
p9 animal broke fragile-object AGENT-ACT-0BJECT
pl0 fragile-object broke OBJECT-ACT
pll human hit thing AGENT-ACT-0BJECT
p12 human hit human with possession AGENT-ACT-0BJECT-CO0BJ
p13 human hit thing with hitter AGENT-ACT-OBJECT-INST
pl4 hitter hit thing INST-ACT-0BJECT
pl5 human moved AGENT-ACT
plé human moved object AGENT-ACT-0BJECT
pl7 animal moved AGENT-ACT
pl8 object moved OBJECT-ACT

Table 2.3: Proposition generators used in the experiment. The proposition generators
are presented with their proposition numbers and case structures. Each category slot (e.g
human) can be filled with any of the concepts in table 2.4 (e.g. man). The OBJECT
role in the Case Structures is different from the category name “object” in the Proposition
Generators.

Categories tller Concepts
human man, woman
animal dog, wolf
object ball, desk
thing human, animal
food cheese, spaghetti
utensil fork, spoon
fragile-object plate, window
hitter all, hammer
breaker hammer, rock
possession ball, ciog

Table 2.4: Categories and their filler concepts used in the experiment.

2.7 Experiments in forming DSRs

We conducted a number of experiments to see how well XRAAM networks learn DSRs
for nouns and verbs. We used proposition generators similar to the ones used in [McClelland
and Kawamoto, 1986] and made up over 60 propositions, replacing each category by proper
fillers in the proposition generators. (Program and data format for the DSR-learner is listed
in appendix E.1.) These propositions provide the necessary proposition space for the word
concepts to be encoded.* We analyzed each proposition’s case structure in order to load
them into our network architecture. Table 2.3 shows proposition generators with their case
structures and table 2.4 shows concept categories with their fillers.

In this simulation, both the concept-encoding network and proposition-encoding network
have a 30 unit input layer (each bank has 10 units), 2 10 unit hidden layer, and a 30 unit

3The proposition generator themselves are included in the proposition space to develop the DSR repre-

sentations for the category concepts.
[]

37

output layer. So the DSR and proposition representation sizes are 10 units. Figure 2.6 shows
DSRs learned for a number of nouns and verbs. These are snapshots of 120 epochs, where
one epoch i1s 200 cycles of autoassociative BP for each concept and proposition. Notice that
the learned representations are similarity-based according to the concept categories, that
is, words in the same semantic category have similar representations because they behave
similarly in the given proposition space. Interestingly, words with multiple categories (e.g.
dog) develop less similar representations compared with those words with a single category
(e.g. wolf). This is because words with multiple categories can be considered to have
multiple usages. For example, the word dog is used as both the AGENT and CO-OBJECT
in the proposition generators.

In order to see this similarity structure more clearly, we have run a merge clustering
algorithm [Hartigan, 1975] on the learned DSRs. Tke clustering program is adapted from
[Miikkulainen, 1990a] and thus is not listed in the appendix. Figure 2.7 shows the clustering
analysis results. We can see that the DSRs in the same category start to merge together.

Even if the two DSRs are in the same category, the clustering steps are different depend-
ing on the homogeneity of their usages. For example, cheese and spaghetti are clustered
at early time steps since they are mainly used as OBJECT, but dog and possession are
clustered at later time steps because dog is also used as an AGENT (in the animal category)
as well as a CO-OBJECT (in the possession category). The somewhat non-intuitive cluster-
ing of human with food can be explained in the same way. The human category also has
multiple usages, that is, human is used as both AGENT and OBJECT (note that human
is also a concept filler for the thing category). But since human and food are not in the
same category, they are clustered at a later step (step 13). As we can see in this experiment,
DSRs exactly reflect the usages of each word in the given proposition space. The usages of
a word are defined in terms of the semantic roles (e.g. AGENT, OBJECT, etc) the word
played in the given sentences. Since each semantic case-role has distinct representations (fig-
ure 2.2), each DSR ends up with unique representations unless the two words have exactly the
same usages in the given proposition space. Interestingly enough, the representation of each
proposition also exhibits similarity structures [Lee et al., 1990], i.e. propositions involving
similar case-roles and fillers have similar representations. These proposition representations
can also be regarded as higher-level representations for event structures. We postulate that
this kind of event representation could be used in connectionist schema processing systems
such as [Dolan and Dyer, 1987; Sharkey et al., 1986; Chun and Mimo, 1987].

DSRs show many similar characteristics to those reported in [Miikkulainen and Dyer,
1988; Miikkulainen and Dyer, 1989], but unlike FGREP representations, DSRs appear to be
more portable because they are directly encoding propositional content. Each DSR can also
reconstruct its constituent information through the decoding process. Moreover, DSRs are
learned independent of any particular processing task, so the representations should be useful
in any task requiring access to the propositional content of word meanings. DSRs also show
many similar prop-rties to the Recursive Distributed Representations (RDR) di:cussed in
[Pollack, 1988; Pollack, 1990] with respect to recursiveness and structure encoding; decoding.
But unlike RDRs, DSRs incorporate word-level semantics so that they can be utilized not
only in syntactic-level applications [Chalmers, 1990}, but also in conceptual-level applications
such as script and goal/plan-based story processing.

38

FRAGILE-QBJECT

E-3 1 F § § 1. .1

human I T B fragile-go;
| — ——— o - Y I T BT 1 window
o o o a0 Pt B I 5 S R
ANIMAL HITTER
CI = T T ., TT EX T T 17,
CI T T 1T ST T wolf 1 T T vall
CTTa Ty -] "arre
L L ey breacer
[T T T 1T T val hammer
s i i O s s o rock
POSSESSION
Led thing S | D0S5e55i0N
1 numan pall
™1 animal T dog
i oo = ate
T cheese LT 1 T 1T 11 moved
[) R [T T 1] seagetu g I T T T ;:'toke
UTENSIL
1] tensn
T T sooon
—— fork

Cho) oo Edgos Elpgo, T W, N,

Figure 2.6: Learned DSRs of concepts with their categories. The experiment was
performed using momentum accelerated backpropagation [Rumelhart et al., 1986b, page
330]. The learning rate varied from 0.07 to 0.02; the momentum factor varied from 0.5 to
0.9. There were 120 epochs used for learning each concept and proposition; one epoch is 200
cycles of auto-associative backpropagation. The value range is 0.0-1.0 continuous, which is
shown by the degree of box shading.

39

hammer ___LB)
\

rock

breaker —_— (10)

hitter (2)

plate e————ey 21

utensil {18) 19) (2

fork

spoon]\5)

ate | ——

moved (12) (26)
broke

hit l(15) (16)

animal

wolf L) (25)
mapn T k20)

woman ‘6)

ag . —1{11) (24) (27)
POSSESSION

fragile-obj =7

window (4)

ball 9 (17)

dask -

thing — f22) —
object 7)

cheese 2%
cpagneri ——) 2
food

human I(13) (14)

Figure 2.7: Merge clustering the learned DSRs. The numbers designate the time step.
At each step, the clusters with the shortest average Euclidean distance were merged.

40

2.8 Properties of DSRs

DSRs have several desirable properties for the high-level connectionist symbol process-
ing systems when compared with previous distributed representations. These properties
basically come from the efforts to meet the four criteria describe in section 2.2.

(1) Automaticity - DSRs are learned automatically using XRAAMs, rather than built
by hand using explicit nodes and links (as in the systems of Schank and his colleagues,
e.g. [Schank and Riesbeck, 1981]). In addition, DSRs are better than the hand-coded
microfeature-based representations [McClelland and Kawamoto, 1986] in which a PDP knowl-
edge engineer must define each microfeature in advance and hand-code each representational
vector.

(2) Portability - DSRs are learned without dependence on any particular task, so their en-
coded propositional contents can be ported to any application environment. In other words.
DSRs are global rather than confined to local training environment, and DSRs learned in one
task environment can be applied in another task environment. To demonstrate this kind of
portability more clearly, we have developed a distributed connectionist story understanding
system which can process scripts and goals/plans using the same DSR scheme.

In contrast, the internal representations developed in Hinton's family tree example [Hin-
ton, 1986} are not global and cannot be used in another task environment, even though they
are automatically learned.

(3) Structure Encoding - DSRs encode propositional structures with constituencies. Since
DSRs are learned by stacking case-role and proposition pairs, we can extract the used case-
role patterns and proposition patterns from each DSR. These propositions can be decoded
again to return the constituent case-roles and concepts. Therefore DSRs support answering
structural questions about concepts and events [Feldman, 1986]. Because of these structure-
encoding capabilities, DSRs are compositional, that is, the semantics of a DSR representation
is a function of its constituent case-roles and propositions. Therefore DSRs can be considered
to be a counter example to Fodor and Pylyshyn’s criticism concerning connectionism’s lack of
structure [Fodor and Pylyshyn, 1988]. DSRs can be utilized in structure-sensitive symbolic
tasks such as natural language processing, which require propositional semantics for word
meanings.

(4) Similarity-Based Representations - DSRs are similarity-based, i.e. similar concepts
end up with similar representations in the DSR learning process. This is because similar
concepts function with similar case-roles for similar propositions. This similarity-based fea-
ture supports generalizations, i.e., novel but related inputs will be processed in similar ways.
For example, the concept of milk functions as a case-role similar to the concept of juice in
drink type propositions. Thus milk and juice will end up acquiring more similar DSRs.
A DSR’s similarity structure can be controlled by adding or deleting propositions in the
corresponding proposition space, so a DSR has variable similarity structures based on the
given propositions in its proposition space.

The eventual objective of DSR theory is to develop distributed knowledge representation
schemes that can be utilized in high-level reasoning systems. Just as the von Neumann
symbolic representation is utilized as a building block in symbolic Al systems, we want

41

to use DSRs as a building block in connectionist or connectionist/symbolic hybrid models
[Dyer, 1990b] which are able to support such tasks as natural language processing. Previ-
ous distributed representation schemes such as micro-features [McClelland and Kawamoto.
1986}, coarse-codings [Touretzky and Hinton, 1988] and learning internal representations by
BP [Hinton, 1986} have limited utility in high-level connectionist cognitive applications such
as connectionist natural language understanding. To be useful in performing connection-
ist natural language understanding tasks, the distributed representations should have both
symbolic and distributed features [Dyer, 1990b]. DSR is a new technique to automatically
form distributed representations which satisfy some valuable criteria (section 2.2). DSRs
have both symbolic and distributed features in the representation, so they can be used in
implementing high-level connectionist cognitive systems which can access the propositional
contents of word semantics.

2.9 Cloning instances with ID units

The DSR scheme is based on the philosophy that the meaning of a word is determined by
its usage. In this scheme, the usage is manifested in the semantic case-roles of the word as
used in propositions. No two words can be used exactly the same way in the real world, so
in principle, the DSR scheme can develop different representations for all words. However,
an Al system can only be exposed to a limited world, and thus separating representations
of similarly-used words is a problem {Miikkulainen, 1990a]. For example, in the figure 2.6,
the words in the same category have almost identical DSRs {e.g. man vs. woman) unless
they have multiple usages (e.g. wolf vs. dog). One method to separate their representations
is to attach small random identification {ID) units to each representation, which was first
developed in {Miikkulainen and Dyer, 1989; Miikkulainen and Dyer, in press].

The ID+content technique [Miikkulainen and Dyer, 1989; Mijkkulainen and Dyer, in
press] designates a subset of representation components to maintain distinct identities for
each word. Under this technique, the word representation consists of two parts: the content
part, which encodes the meaning of the word, and the ID part, which is unique for each
instance of the same concept category. This ID+content technique makes it possible to deal
with a large and open-ended set of semantically equivalent words without confusing them.
During training, the units within the ID parts of the words are set up randomly for each input
presentation, and the network is required to produce the same ID pattern at its output. In
effect, the network is trained to process any ID pattern in a word representation by passing ID
parts unchanged from input to output. Under the ID+4content technique, backpropagation
network has to learn the identity function as far as the ID part processing is concerned. This
identity function turns out to be essential to the variable binding propagation in natural
language understanding systems. Once a unique instance (word with specific ID part) is
bound to a variable, the binding must be propagated to other structures without confusion,
and passing ID parts unchanged throughout the network makes it possible to safely propagate
the bindings. The ID+content technique can handle an exponential number of sentences
with polynomial costs [Miikkulainen and Dyer, in press] because the number of sentences
that can be processed increase exponentially while the number of instances that must be
trained increase only polynomially.

42

We have borrowed this ID+content technique for use in DYNASTY. As a result, word
representations are composed of 2 units of IDs plus 10 units of DSR representations (fig-
ure 2.8). The word representations in figure 2.8 are obtained using the same proposition
generators and concept-fillers listed in table 2.3 and table 2.4. The two XRAAM networks
in figure 2.1 (DSR-Learner) developed 10-unit DSR representations for each concept as be-
fore, and random 2-unit ID patterns were attached to these DSR representations. The
concept category has null (00) ID patterns, and the instances in the same category are as-
signed with orthogonal random ID patterns. The word representations (ID+DSR) formed
are now entered into the global-dictionary, which can serve as common vocabularies for the
other DYNASTY modules (chapter 3).

ID units can be viewed as representing unique sensory information and DSRs as providing
categorical information for a word concept [Harnad, 1989]. In the DYNASTY system, the ID
units help keep role-bindings straight, while DSRs support similarity-based generalizations.
For example, the similar DSRs in the representations of John and Mary support the gener-
alized (predicted) behaviors for the person category, and the ID units separate John from
Mary whenever specific bindings need to be propagated (see section 4.5). During training of
DYNASTY using the word representations (ID+DSR) in the global-dictionary, the ID parts
are set up randomly between 0 and 1, and DYNASTY is trained to process identity function
for the ID parts. In other words, DYNASTY is only trained with concept categories with
random ID (which is not necessarily specific instances), and tested with specific instances
with particular ID patterns for the generalizations (see chapter 3 for details of each module
training with IDs).

43

HUMAN FRAGILE-QBUECT

CI =T T 1 1°¢ LT oman CI BT 11 Lwﬁrrague-ooj
T T T T T T M1 T] man e T T T T ST U] window
CEE T I T 7T w1 7 *~om (.5 s N O - e o S
ANIMAL HITTER

CIT I T T T 1) i, CIET 7 T T T,
| O N o S et e s R B TEECT T van
CE T T » T 1T m] CC TENCYT JCT T hemmer
QBJECT BRE2:ER

[W— S S S S W N W CTTECT BT T ey,
[= I T T =11 _T_ 1 cai TN T T B 1T 1 1) hammer
CE T T T T I T T % CEN N T T T 7 13 "
THING POSSESSION

—— SN S S S S - r: R possession
E-L T T 1T 1T nhuman batl
CE T T 1T -y 1) " s

FOOD
TERETESY T T T 173 ..
[T FoX T T T T 1 cheese BT T T T moved

broke

saghest! o v i

T
UTENSIL
CTT B T T T T T T .0 L | 1
W T BT 1T 1T T°7T T 1] spoon IID ! psa !
Cm o T 1T ok
| | |
| | 1
[»] DSR

Clo O Tpo3 Elhygs By, W, E,, I,

Figure 2.8: Final representations composed of IDs plus DSRs. Each 10 unit DSR rep-
resentation in figure 2.6 is now expanded to a 12 unit distributed word representation. These
final word representations are stored into the global-dictionary to give common vocabularies

to DYNASTY.

Part 11

Architecture and Processing

45

Chapter 3

DYNASTY architecture

3.1 Introduction

DYNASTY is a large-scale connectionist system that reads in natural language stories
as input, and paraphrases them according to their script/goal/plan knowledge. DYNASTY
consists of multiple connectionist modules including AR (auto-associative recurrent), HR
(hetero-associative recurrent), and HF (hetero-associative feed-forward) architectures in one
system (see section 1.4.4). These modules are not based on entirely new architectures. For
example, [Pollack, 1988} used an AR architecture, called a RAAM, to generate recursive
distributed representations of stacks and parse trees. HR architectures have been used by
many researchers for several applications: natural language question-answering [Allen, 1988],
parsing [Hanson and Kegl, 1987], and sentence comprehension [St. John and McClelland.
1989]. Here, our HR architecture is most similar to the one used in {Elman, 1988]. What is
new is that DYNASTY uses these different connectionist sub-architectures as modular com-
ponents, communicating via a Global-Dictionary (GD) of DSRs to achieve a high-level task,
namely, story understanding. Besides being modular, DYNASTY also employs a functional
decomposition approach, i.e. each module is classified according to its function/task in the
system.

DYNASTY will be described in two different phases in the thesis: a training phase
(this chapter) and a performance phase (chapter 4). In the training phase description.
each modular component is fully described, including their general functions and training
algorithms. In the performance phase description, we describe how several modules are
connected to perform one coherent task.

In DYNASTY, several modules are separately trained to perform the following 3 major
subtasks for script/goal/plan analysis during story processing: (1) Parsing and generation
between natural language and event-triple forms (linguistic subsystem), (2) Encoding high-
level event and script/goal/plan representations using the word-level representations pro-
vided in the GD network (representation subsystem), and (3) Generating knowledge-based
inferences from the input events using script/goal/plan knowledge (goal/plan analysis sub-
system). Figure 3.1 shows DYNASTY’s top-level configuration during the training phase.

DYNASTY, during training, consists of 8 modules; organized in 3 subsystems according
to the 3 major subtasks. Each module is briefly described below.

The linguistic subsystem has syntactic and semantic knowledge, such as word order and
semantic case-role structures, which is needed to do the conceptual analysis and generation
of the sentences. The linguistic subsystem contains the following two modules.

Linguistic subsystem:

46

dsr-learner

Selector

Figure 3.1: Top level configuration during the training phase. The arrows designate
data flow during training. Each module accesses its own training database. The thick black
circles designate the modules in the representation subsystem, and the thick shaded circles
designate the modules in the goal/plan analysis subsystem. The thin black circles are for
the linguistic subsystem.

47

o ST-Parser: ST-Parser consists of one HR module. The inputs are word representations
in the sentence and the outputs are case-role assignments of the sentence. The general
function is to parse input natural language sentences into event-triple forms.

¢ TS-Generator: TS-Generator also consists of one HR module. The inputs are case-role
assignment forms and the outputs are word representations. The general function is
to perform the reverse process of the ST-Parser, that is, to convert event-triples back
into natural language output.

The representation subsystem has the knowledge necessary to form the semantic repre-
sentations of word and high-level event, goal, plan structures. It also has the lexical/semantic
associative knowledge to do the translation between symbols and distributed representations.
The representation subsystem has the following 3 modules.

Representation subsystem:

¢ DSR-Learner: The DSR-Learner (described in chapter 2) consists of two AR networks
(XRAAMs). The inputs are set of propositions and the outputs are DSR represen-
tations for each word in the propositions. The general function is to automatically
develop distributed representations for each word used in DYNASTY.

¢ Global-Dictionary (GD): The GD consists of two HF modules. The inputs are ASCII
representations and the outputs are distributed representations (ID+DSR) for each
word. The general function is to select a distributed word representation when given
an ASCII symbol string for a word and vice versa.

o Triple-Encoder: The Triple-Encoder consists of an AR module. The inputs are triples
for events and goals/plans and the outputs are 12-unit distributed representations
for the triples. The gemeral function is to encode event and goal/plan triples into
compressed representations.

Goal/plan analysis subsystem has the knowledge necessary to do the script and plan
application. It knows that a certain sequence of events (states and actions) can be organized
into a script or plan, and that the goal/plan relations can be organized into recursive tree
structures. The goal/plan analysis subsystem has the following 3 modules.

Goal/plan analysis subsystem:

o Plan-Selector: The Plan-Selector consists of an HR module. The inputs are sequence
of event representations and the outputs are goal/plan representations. The general
functions is to select appropriate goals and plans to be associated with the given event
or event sequence.

o G(oal)P(lan)-Associator: The GP-Associator consists of an HF module. The inputs
are goal/plan representations and the outputs are related goal/plan representations.

The general function is to encode goal/plan relations (plan-for and sub-goal relations
described in section 1.3.3) in DYNASTY goal/plan trees.

48

¢ Action-Generator: The Action-Generator consists of an HR module. The inputs are
goal/plan representations and the outputs are sequence of event representations. The
general function is to generate an event {or event sequences) which are results of the
given goal/plan applications.

The training phase enables DYNASTY to extract the statistical regularities underlying
the training data to process the input stories and to generalize to new stories. According
to data dependencies in DYNASTY, there are four hierarchical training steps: (1) training
to learn DSRs, (2) training Global-Dictionary to store the word representations (DSRs plus
IDs), (3) using the vocabularies of the GD to train the Triple-Encoder module to develop
high-level distributed representations for events/goals/plans, and (4) training the remaining
processing modules which utilize the Triple-Encoder and the vocabularies of the GD. Each
module has its own training data, and is trained in parallel within the data-dependency range.
This chapter describes DYNASTY’s training phase. The performance phase description will
be followed in the next chapter.

3.2 Training-data specification

The training data for each module is maintained in the training database that is related to
a given module. The training data is specified in a DYNASTY data-specification language.
Each module’s control program parses the training data and loads the training patterns
into a network architecture. The data-specification language provides a unified view of the
training data for each different module, and makes it easier to maintain and modify the
training data. The data-specification language has a simple phrase structure grammar with
4 major key words: IF, AND, FOLLOWS and THEN.

Below is listed a phrasal structure grammar for DYNASTY’s training data specification
language. The italics designate non-terminal symbols, and the capitals designate key-words.
The * is a Kleene-star which means repetitive applications including zero application. The
inteachlayer specification is for auto-associative networks and has a slightly different seman-
tics {see Triple-Encoder in section 3.3.3).

tdata — inputlayer teachlayer | inteachlayer

inputlayer — IF singlelayer (FOLLOWS singlelayer)

teachlayer — THEN singlelayer (FOLLOWS singlelayer)«

singlelayer — terminal (AND terminal)«

terminal — triple (triple)x | yes | no | digst | nil

inteachlayer — triple (triple)«

triple — triplenumber caserole word

triplenumber — evdigit | pdigit | gdigit

caserole — STATE | ACT | AGENT | OBJECT | OBJ-ATTR | INSTRUMENT
| COOBJ | FROM | TO | LOCATION | TIME | MODE | GOAL | PLAN
word — vocabularies in the GD

digit — any digit between 1 to 100.

The semantics of each key word is as follows:

49

IF: input pattern start

AND: bank delimiter

FOLLOWS: hidden pattern recirculation to the input layer
THEN: teaching pattern start

Using this specification language, the training data format can also define the network
module’s architecture. For example, consider the following training data t1 and t2 for the
GP-Associator (section 3.4.1) and the Plan-Selector (section 3.4.2) module respectively.

(t1)

IF 0

AND (gl GOAL s-hunger], [gl AGENT ?person]

THEN [p1 PLAN pb-restaurant], [p1 AGENT ?person], {pl OBJECT ?food], [pl
LOCATION 7?restaurant]

(t2)

IF [evll ACT entered] [evll AGENT ?person] [evll LOCATION kitchen)]
FOLLOWS [ev12 ACT turned-on] [ev12 AGENT ?person] [ev12 OBJECT gas-
stove]

FOLLOWS [evl3 ACT cooked] [evi3 AGENT ?person] [evl3 OBJECT ’raw-
food)

THEN [p2 PLAN pb-cook}, [p2 AGENT ?person), [p2 OBJECT ?raw-food], [p2
LOCATION kitchen]

AND yes

In the training data, each triple group with the same triple numbers is converted into
the 12-unit distributed representations by the Triple-Encoder module. The words with 7-
mark are variables which have randomly-varying IDs during training. All other words have
null (00) IDs during training. Training data t1 defines a HF architecture; the input layer
has two banks, with the number 0 and gl representation loaded, and the output layer has
one bank with pl representation loaded. The HF architecture that can be defined by t1 is
depicted in figure 3.6. Similarly, training data t2 defines an HR architecture; the input layer
has two banks: context bank and another bank with evll, evl2 and ev13 representations
being sequentially loaded. The output layer has two banks with p2 representation and “yes”
(actually binary 1) flag being loaded. The hidden layer pattern will be copied to the context
bank while evll, evl2 and ev13 representations are sequentially processed. The p2 repre-
sentation and “yes” flag are maintained the same until evll, evl2 and evl3 representations
are processed in the data t2. The HR architecture that can be defined by t2 is depicted in
figure 3.7.

3.3 Representation subsystem

3.3.1 DSR-Learner

DSR-Learner automatically develops the DSR representations for all the words used
in DYNASTY (see section 3.3.2 for entire DYNASTY vocabularies) except the function

50

words (e.g. at, to, etc.). The function words have random representations since there
is currently no way to define these function words using case-role semantics. The DSR-
Learner architecture consists of two XRAAMs and was described in chapter 2. The DSR
representations for all DYNASTY vocabularies are developed using the propositions which
are collected from all the DYNASTY training data (for all modules), As a result, the union of
all the propositions in the training data (for all DYNASTY modules) form a proposition space
to develop DSRs. These propositions are case analyzed to be loaded into the two XRAAM
modules (concept-encoding network and proposition-encoding network). The two different
forms of case triples are constructed from these propositions as described in chapter 2.
All the propositions involved in learning DSRs for DYNASTY vocabularies are listed in
appendix A in two different forms of case triples which can be directly loaded inio the
two XRAAM modules. The variables :a the propositions are randomly replaced - . their
instances in each presentation during DSR learning. In other words, the DSR-Lea:. 1 uses
randomly instantieted forms of propositions as training data. By this random insta:r:ation.
DSR-Learner can develop almost identical DSRs for all the instances in the same conceptual
category (variable). After the DSR-Learner develops all the DSR representations, each word
representation is attached with 2-unit ID patterns. The variables are assigned null (00) ID
patterns, and all the instances in the same conceptual category are assigned orthogonal ID
patterns (to each other). Throughout the thesis, the distributed representations for words
designate these ID-plus-DSR representations.

3.3.2 Global dictionary network

The Global-Dictionary (GD) performs the two-way translation from a symbol string
to its corresponding distributed representation (ID+DSR), and vice versa. The GD con-
sists of two HF (Hetero-associative Feed-forward) modules: an ASCII-to-DSR module and
a DSR-to-ASCII module. The ASCII-to-DSR module selects a corresponding distributed
representation for a symbol in the form of a numeric representation of an ASCII string. The
DSR-to-ASCII module performs the opposite mapping, that is, from a distributed represen-
tation into the numeric representation of an ASCII symbol string. Figure 3.2 shows the GD
architecture. These two HF networks in the GD are trained after the correct DSRs have
been formed for all words via the recirculation of propositions described in chapter 2. The

GD depicted as a box in figures 2.1, 2.3, 2.4 in section 2.5 is actually implemented as two
HF modules in DYNASTY after all the DSRs are learned.

Figure 3.3 shows parts of GD training data which consists of ASCII/distributed represen-
tation pairs. The ASCII part is a 10 unit continuous representation. Each unit comes from
a normalized ASCII code of a single character. For example, the ASCII representation for a
word “John” is obtained by normalizing ASCII code for each character J, o, h, n and 6 blank
characters into 0 to 1 range, so that “John” is really represented by the vector, e.g. (0.4,
0.6,0.3,0.5,0,0,0,0, 0, 0). The distributed representation part consists of a 2 unit ID part
plus a 10 unit DSR part (see section 2.9). The DSR part is obtained from the DSR-learning
technique. The ID parts are orthogonal to each other and are chosen arbitrarily for each
instance word for the same concept.

In the ASCII-to-DSR module, the input layer is assigned a character string in ASCII

31

ASCH rep

Distributed rep (ID+«DSR)
John

"J" " "hT 'n”

20

Distributed rep(iD+DSR) ASCIli rep

John “JU e "hT nt
ASCil-to~DSR Network DSR-t0-ASCI| Network

Figure 3.2: Global-dictionary network architecture. The architecture employs two HF
networks. An ASCII representation is 10 units, representing at maximum a 10 character
word, while a distributed representation is 12 units {2 unit ID plus 10 unit DSR).

I (o] 1 DSR |
ASCIli symbol Distributed rep {ID + DSR)

?parson
John
Mary
?restaurant
Sizzier
MacDonald's

Figure 3.3: GD training data examples. Each ASCII and distributed representation
(ID+DSR) pair is used to train the Global-Dictionary network.

52

7person ?7cook-utensil 7raw-food 7gulde-book T7restaurant
?food 7market ?class ?professor ?doctor
?hespital
John Harg gan micro-vavea Ifish
chicken Michelin-guide Yellow-page Sizzler Macdonald’s
steak lobster Vons Lucky computer
blology Smith Alan Dr-Kim Dr-Park
UCLA-hospital USC-hospital
asked ate bank bill borrowed
bought brought called-up car cart
cashier checked checked-in coin comm-link
cooked d-cont d-know d-link d-prox
drove entered examined exam-room friend
gasollne EOt got-into had home
ospital un§ry inside kitchen knew
left left-for line listened location
menu money near needed not
notebook nurse ordered p-health paid
pay-phone pb-ask pb~borrow pb-coock pb-doctor
pb-drive pb-eat pb-grasp pb-lecture pb-letter
pb-phone pb-read pb-restaurant pb-shopping pb-steal
pb-walk pb-withdraw phone-number picked-up read
receptionist s-hunger sat-down seat seated
sick stole stopped tested time
ti took-note took-out vaited vaiter
walked wanted went vithdrew was
from at to book-store no
for on with

Table 3.1: Vocabularies in DYNASTY The three groups of words are respectively vari-
ables, instances and non-variables. Every word which starts with “d-" is a goal name, and
every word which starts with “pb-" is a plan (or script) name.

representation, while the teaching layer is assigned its corresponding distributed representa-
tion. During training, at each step, each word is fed to the network with a corresponding
distributed representation and BP training is performed until every association is learned.
The DSR-to-ASCII module is trained to learn the inverse association, namely, from a dis-
tributed representation to its ASCII string. The program and data format for the GD is
listed in appendix E.3.

Table 3.1 shows all the vocabularies used in DYNASTY in 3 groups: variables, instances,
and non-variable words. The words with ?-mark are variables. All the words in table 3.1
have 12 unit ID + DSR representations, except the function words which have random 12
unit representations. The DSR representations for the goal/plan names are learned using
the goal/plan triple structures in the same manner as the DSR representations for other
action/state words are learned using the event triple structures {all the event/goal/plan
triple structures to learn DSRs are listed in appendix A). In the GD training, variables
are treated equally with their instances. However, for other modules (all the 6 modules in
DYNASTY except GD and DSR-Learner), the variables have randomly varying IDs (between
0 and 1) during training. The instances are not used during training but only used during
performance phase for the generalizations. All the non-variable words have fixed IDs during
training.

53

3.3.3 Triple-Encoder

Even though the GD provides distributed representations at the word-level, DYNASTY
still needs distributed representations for high-level structures (such as event, script and
goal/plan knowledge) for each connectionist network module to learn the relations between
these high-level structures. The Triple-Encoder module converts event, script, goal and plan
triples into distributed vector representations, producing similarity-based representations
for each high-level structure from word representations and case-triples. The Triple-Encoder
module supports the high-level pattern transformation modules such as Plan-Selector, GP-
Associator, and Action-Generator, and parsing and generation modules (see next section for
these modules). The Triple-Encoder can encode 4 different kinds of high-level representa-
tions: event, script, goal, and plan representations. The encoding knowledge is stored in the
weights, but the representations themselves are not pre-stored. Instead, each representation
is formed on the fly during the performance phase. During the training of the goal/plan
analysis subsystem, the Triple-Encoder is also used to encode the triples to produce the
12-unit representations for event, script, and goals/plans. These 12-unit representations are
loaded into each module in the goal/plan analysis subsystem (see section 3.4). An event
triple consists of a set of [event-number case-role concept-filler] triples. The event-number
is an arbitrary unique number provided in the training data and used to group different
triples into one event representation. The concept-filler can be a word concept or another
event-number when the triple is embedded within another triple.

Below are shown both simple and embedded event-triple examples. The variables (with
?-mark; e.g. 7person) have randomly varying IDs during training, while the non-variahles
{e.g. read) have fixed IDs. No instances (e.g. John) are used during training. The specific
instances are only used during the performance phase. In other words, during training, the
Triple-Encoder learns to encode triples with variables (e.g. ?person) with any ID value within
a range 0 to 1. During the performance phase, the triples with specific instances (e.g. John)
can be encoded since the ID values of specific instances are within the range 0 to 1 and the
network knows how to process the specific ID approximately. This procedure of training with
random IDs and testing with specific IDs is applied to all the other modules of DYNASTY.
As a result, DYNASTY is never trained with specific stories, but only trained with story
skeletons with random IDs. Later in the performance phase, DYNASTY can generalize the
trained knowledge to the specific stories.

simple event triple: ?person read a ?guide-book.
[ev20 ACT read], [ev20 AGENT ?person], {ev20 OBJECT ?guide-book]

embedded event triple: 7person wanted to read a ?guide-book.
[ev19 STATE wanted|, [evl0 AGENT ?person], {ev19 OBJECT ev34}
[ev34 ACT read], [ev34 AGENT ?person|, [ev34 OBJECT ?guide-book]

A goal triple consists of a set of [goal-number case-role concept-filler| triples. Likewise, the
plan triples consists of {[plan-number case-role concept-filler] triples. The goal/plan number
is arbitrary and the case-role is extended to contain special case-roles such as GOAL and
PLAN in the goal/plan triples.

54

goal triple: ?person has the goal of taking control of the ?7guide-book.
[£23 GOAL d-cont}, [g23 AGENT ?person], [g23 OBJECT ?guide-book]

plan triple: ?person has the plan of stealing the 7guide-book from a friend.
[p33 PLAN pb-steal], [p33 AGENT ?person}, [p33 OBJECT ?guide-book], [p33
FROM friend]

Script triples are included in the plan triples because a script is a special type of plan.

script triple: ?person has the plan of shopping a ?guide-book at the ?book-store.
[p55 PLAN pb-shopping], [p55 AGENT ?person], [p55 OBJECT 7guide-book],
[p55 LOCATION ?book-store]

These kinds of triples provide the training data for the Triple-Encoder module. The
Triple-Encoder converts these triples into 12-unit vector representations using an AR {Auto-
associative Recurrent) architecture. Figure 3.4 shows the Triple-Encoder module. Some
of the event, script, and goal/plan triple examples are listed in the appendix E.2 with the
Triple-Encoder program. All the event/goal/plan triples are listed in the appendix A since
these triples are the same ones used to learn DSRs in chapter 2, except that the Triple-
Encoder does not use instances in the training data. In other words, the Triple-Encoder
uses uninstantiated forms of triples, while DSR-Learner uses instantiated forms of triples as
training data.

Basically, this module functions in the same way as the proposition-encoding network in
the DSR-Learner module and the training procedure is identical to the one previously de-
scribed (see the proposition-encoding cycle in section 2.5). But we cannot use the proposition-
encoding network in the DSR-learner directly for this purpose, because the representations
for the propositions keep getting affected by continuously changing DSRs in the DSR-learner.
Here we need to build the triple representations using the stabilized DSRs (for every vocab-
ularies in the GD after DSR learning is finished) so that we can decode the triple represen-
tations back into the constituent distributed representations® for words and case-role repre-
sentations. One can think that the Triple-Encoder is the same as the proposition-encoding
network in section 2.5 using the stabilized ID+DSR representations in the GD, instead of
using the continuously evolving DSR representations. Below is the Triple-Encoder training
algorithm which is formally described here for clarity. The simple triples that don’t have
any embedded events as case-fillers are first encoded, and the same procedure is applied
to the embedded triples, using previously encoded triple representations as a constituent
component {as in figure 3.4). Here the algorithm is described for event triples, but the same
algorithm is applied for the script and goal/plan triples.

Triple-encoder training procedure:

1. Load “don’t-know” pattern (all 0.5) into bankl.

2. Select the first event triple to be represented, say ev20 {(as listed above).

INote that what we mean by distributed representation for word is ID+DSR representation.

55

EGP case-triple

[event, case-rola,w-concapt] or
[o/p, casa-role, w-concept]

{6)

eg. evi9

Decode
evi4’' OBJECT ?guide-book
ev34" AGENT “7person I
(ev19™) STATE wanted Encode

av34” ACT read

Figure 3.4: Triple-encoder module. This example shows the encoding of an embedded
event: “?person wanted to read the ?guide-book”. The ev34 representation is used as an
OBJECT role in evl9. The primes in each triple number (in ev19) indicate that triple
representations keep changing until stabilized to reflect the accumulation of encoded case
structures. Each bank is drawn to have only 5 units due to the space limitation while it has
12 units (2 unit ID and 10 unit DSR) in the actual experiment.

56

3. Choose the first triple for the event, ev20, such as [ev20 ACT read].

4. Load bank2 and bank3 with the activation pattern of the case-role (e.g. ACT) and.
the DSR for the w-concept (e.g. read), respectively.

5. Do auto-associative BP, where the input and output layers have the same bit patterns.
6. Recirculate the hidden layer pattern to bankl.

7. Pick up the next triple for ev20 such as [ev20 AGENT ?person] and repeat step 4 to
7 for all the related triples for this event.

At every epoch? during training, the ID values of each variable are set up as random
fractions between 0 and 1. These random ID numbers are newly generated for each epoch,
but are maintained the same within the epoch so that each variable has consistent ID values.
By random, we mean that all the variables have different arbitrary, but consistent IDs during
the training. Once the encoder is trained, the encoding and decoding is performed by keeping
the weights frozen during the performance phase. The triple decoding algorithm is used to
decode the constituent triples from the event/script/goal/plan representations. For example,
from the ev20 representation, the decoding procedure extracts the constituent triples [ev20,
OBJECT, 7guide-book], [ev20, AGENT, ?person| and [ev20, ACT, read)] in the reverse
order of encoding. Below is the triple-decoding algorithm formally described.

Triple-decoding procedure (no training):

1. Load the event representation to the hidden layer: e.g. ev20.

2. Do value propagation (without weight change) from the hidden layer to the output
layer.

3. Get the case-role representation from bank2 (e.g. OBJECT) and the DSR for the
concept (e.g. ?guide-book) from bank3.

4. Copy the intermediate representation for the event (e.g. ev20’) in bankl (in the output
layer) to the hidden layer.

5. Repeat steps 2 to 4 until we have extracted all the originally encoded triples.

The tree in the figure 3.4 shows the encoding/decoding sequence which consists of stack
pushing/popping operations. Encoding is performed bottom-up from the tree leaves to the
root, but decoding is performed top-down from the tree top to the leaves.

20One epoch is a period for presenting every training data.

57

s-hunger

pb-rest pb-cook pb-eat
(?7food,7rest) (7raw-food) (7fpod)
d-know d-cont d-prox d-cont
{7rest) (money) (7rest
4) (?food)
d-cont d-cont g-
(7cook-utensil) (?raw-food) prox
(kitchen)

Figure 3.5: Single s-hunger goal/plan tree. Words starting with ?-mark indicate vari-
ables. The circle designates an AND node in which every child node must be satisfied to
satisfy the node. Each goal/plan structure is defined in appendix C.1. In this figure, the
AGENT role ?person (planner) is omitted for every goal/plan structure.

3.4 Goal/plan analysis subsystem

3.4.1 GP-Associator

DYNASTY’s goal/plan knowledge is represented using a set of gp(goal/plan)-trees. A
single gp-tree is an OR/AND tree where an OR node represents a goal and an AND node
represents a plan including script. Figure 3.5 shows part of DYNASTY goal/plan-trees. The
whole DYNASTY gp-trees are depicted in appendix C.2.

The link from the goal node to the plan node represents the “plan-for” relation. For
example, “s-hunger”® goal has a plan “restaurant script” OR “cooking plan” OR “direct
eating plan”. The link from a plan node to a goal node represents the “sub-goal” relation.
So the “restaurant script” has a precondition “d-know (restaurant location)” AND “d-cont
(money)” AND “d-prox (restaurant)”. These preconditions are instrumental goals that
should be satisfied before the plan can be executed. The goal node is an OR node because if
we execute just one plan among the many possible plans then the goal is satisfied. However,
the plan node is an AND node because we need to satisfy all of the precondition goals in order
to execute the plan. Each single gp-tree consists of this depth-two OR-AND tree. DYNASTY
represents goal/plan knowledge using a set of these OR-AND trees, so DYNASTY s goal /plan

3The goal/plan names follow the conventions in the symbolic goal/plan theory [Schank and Abelson,
1977]. All the goal/plan names used in DYNASTY are defined in appendix C.1.

58

space consists of forests of OR-AND trees (see appendix C.2 for the full DYNASTY gp-trees).

The GP({goal/plan}-associator’s function is to encode the gp-tree structures, thereby en-
coding all of the goal/plan relations. When a goal is given, the GP-Associator can produce
all of the possible alternate plans for the goal. Similarly, when a plan is given, the GP-
Associator can produce all of the necessary preconditions to execute the plan. All of these
preconditions are instrumental goals to the plan and connected to other gp-trees.

Figure 3.6 shows the GP-Associator architecture, which is a HF module with a self
increasing counter bank. The input layer has two banks: a 2-unit counter bank and a 12-
unit gp-bank. The counter bank is used to distinguish the several child nodes in the gp-tree.
When the counter is n, the goal node is associated with the n-th plan available for the goal,
and the plan node is associated with the n-th precondition. The 2-unit counter bank can
represent maximum 4 different plans or preconditions. Gp-bank holds the 12-unit goal/plan
representations obtained from the Triple-Encoder. The output layer has one gp-bank which
holds the associated goal/plan representations (with the goal/plan in the input layer). For
example, consider encodings of the gp-tree in figure 3.5. First the plan-for relation between
s-hunger (OR node) and several possible plans (pb-restaurant, pb-cook, pb-eat) is to be
encoded (see figure 3.6 for specific data loading into the bank). When the counter 0 (binary
00) is loaded in the bankl, and the s-hunger goal representation is loaded in the bank?2, the
training output pb-restaurant plan representation is loaded in the bank3 to be associated as
a first plan for s-hunger goal. When the counter is increased to 1 (binary 01), the pb-cook
plan representation is loaded in the bank3 as a second plan, and so forth while the bank2
has the same s-hunger representation. Next, the sub-goal relation between pb-restaurant
plan (AND node) and several preconditions (d-know, d-cont, d-prox) is to be encoded. The
same procedure is repeated. When the pb-restaurant representation is loaded in the bank2
and counter is 0, the d-know representation is loaded in the bank3 as a first precondition.
With the counter 1, the d-cont representation is loaded as a second precondition, and so on
(figure 3.6).

The training data are specified in DYNASTY specification language in section 3.2. The
triples in the training data are converted into the 12 unit goal/plan representation using the
Triple-Encoder. In other words, during GP-Associator training, the Triple-Encoder module
is called to do the necessary triple to representation encoding on the fly. Below is the training
procedure of GP-Associator.

Training procedure:

1. Pick a gp-tree to be encoded.

Load the root node (goal representation) (e.g. s-hunger) to the bank2.

Initialize bankl with the initial counter value (00).

Load its first child node (plan or goal representation} (e.g. pb-restaurant) into bank3.

Do hetero-associative BP.

I

Increase the counter value by one and load the next child node (plan or goal represen-
tation) (e.g. pb-cook)} into bank 3.

59

self-increasing
modulo counter

inpuy iraining-antput |

|_hankl hank2 hank3

a0 S-hunger ph-restaiirant

01 s-hunger 1 oh-cook

10 s:-hunger ph-eat

on ph-restaurant d-know

o1 ph-restaurant d-cant

11 pb-restaurant d-prox

Figure 3.6: Goal/Plan-Associator module. Bankl acts as a self-increasing modulo
counter, which is initially loaded with the binary representation of 0. Each g/p repre-
sentation in bank?2 and bank3 is obtained from the Triple-Encoder during training. See text
for loading each representation into the bank.

60

7. Repeat steps 5 and 6 until all the children nodes are associated.

8. Load the first child node (plan representation) (e.g. pb-restaurant) into the bank?2 and
repeat steps 3 to steps 7 until all of its children nodes are associated.

9. Pick another gp-tree to be encoded and repeat the whole procedure.

For example, to encode the gp-tree in figure 3.5, the goal representation of s-hunger:
(g1 GOAL s-hunger], [g]l AGENT ?person]

is first associated with the first plan available (pb-restaurant) when the counter is 0, such
as:

[p1 PLAN pb-restaurant], [pI AGENT ?person], [pl OBJECT ?food], [pl1 LO-
CATION ?restaurant]

When the counter increased to 1, the same goal representation is associated with the second
plan in the tree such as:

[p2 PLAN pb-cook], [p2 AGENT ?person], [p2 OBJECT ?raw-food|, [p2 LOCA-
TION kitchen)]

This training continues until all possible solution plans are associated with the s-hunger goal.
So each goal is associated with all the different possible plans according to the gp-tree with
different counter values. Similarly, each plan is associated with all the different preconditions
(instrumental goals) with different counter values. In the training, the IDs of each variable
(?-marked word) are set up as random across all the training data, but are maintained
same within an epoch so that consistent IDs can be propagated through the same instance
word?. These random settings of IDs are performed only when the same variables appear
both in the input layer and in the output layer to be propagated (see example below).
The variables in DYNASTY are different from the content-less variables (such as 7x, 7y)
in symbolic systems. In DYNASTY, variables have the function of restricting the possible
bindings, so they are more similar to conceptual categories than pure variables. All variables
in DYNASTY have semantic representations using DSRs. Content-less variables cannot have
meaningful distributed representations in a connectionist system [Dolan, 1989].

The GP-Associator program and data format is listed in appendix E.5. The above train-
ing example can be represented using DYNASTY’s data-specification language as follows:

IF 0

AND [gl GOAL s-hunger], [gl AGENT ?person]

THEN [pl PLAN pb-restaurant], [p1 AGENT ?person|, {p1 OBJECT ?food], [pl
LOCATION T?restaurant]

4Note the 3 groups of vocabularies in the DYNASTY’s GD, that is, variables, instances and non-variables
(section 3.3.2).

61

IF 1

AND (gl GOAL s-hunger], [g1 AGENT ?person]

THEN [p2 PLAN pb-cook], [p2 AGENT ?person], [p2 OBJECT ?food], {p2 LO-
CATION kitchen)]

In this training data, the ID for the variable ?person is set up randomly during training.
but the IDs for the variables ?food and ?restaurant are fixed (as 00). When the variables in
the output layer (THEN part) do not have the same variables in the input layer (IF part).
there is no need to propagate the correct IDs for variable binding. Random setting of these
particular variables would be a waste of computational resources. When the IDs for the
variables which only appear in the output layer are setup as random, BP algorithm cannot
converge since it is computing one-to-many mappings in these particular cases. The same
input pattern must be mapped to randomly varying output patterns.

3.4.2 Plan-Selector

The Plan-Selector’s function is to select a single goal or plan from specific events or
event sequences. This module performs mapping functions from the event (state and action)
space into the goal/plan space. These mappings vary from simple association to recurrent
mappings according to the plan structures. The semantics of this mapping is that when
DYNASTY sees certain actions or states, DYNASTY infers that the planner has a certain
goal or that the planner is trying to use a certain plan.

Figure 3.7 shows the Plan-Selector architecture. The network has 2 banks in the input
layer and 2 banks in the output layer. The first bank in the input layer consists of contexts
copied from the hidden layer. The second bank will be loaded with an event representation.
The first bank in the output layer will hold the goal or plan representation selected, and the
second bank holds the flag telling whether the goal or plan has been accomplished or not.
This flag guides the search process in the goal/plan trees (see section 4.3.2).

In the training phase, the inputs are event representations, and the teaching inputs arc
the selected goal/plan representations. The training algorithm follows the steps of a HR
architecture training.

Training algorithm:
1. Load bankl with initial “don’t-know” pattern.

2. Choose one event (sequence) to be a goal or plan and load bank2 with the first event
representation.

3. Load bank3 with the goal or plan representation to be selected for the chosen event
(sequence).

4. Load bank4 with the indicator that the goal or plan is a success or not.

5. Do hetero-associative BP.

62

context event representation

(6

copy

teaching input

4
(3/ bank3 bankN

g/p representation

YESNO

Figure 3.7: Plan-selector module.The event and goal/plan representations come from
the Triple-Encoder. The yes/no bank contains a single unit flag designating whether the
goal/plan has been accomplished or not. Value 1 is YES, and value 0 is NO flag.

6. Recirculate the hidden layer pattern to bankl.
7. Load bank2 with the next event representation in the sequence.

8. Repeat steps 5 to 7 for all of the events in the chosen sequence.

The loaded training patterns are event and goal/plan representations obtained using the
Triple-Encoder module. The training data represents the associations between the events
(or event sequences) and goals/plans (in the DYNASTY gp-tree). The IDs of variables are
set up randomly during training. All possible events that can be associated with the goal or
plan in the gp-tree can be listed in the training data. For example, for the “s-hunger goal”
in the tree {figure 3.5), the following training data consists of event to goal/plan mapping.

IF [ev30 STATE hungry], [ev30 AGENT ?person]
THEN [gl GOAL s-hunger|, [g] AGENT ?person]
AND [NO]

The event and goal/plan numbers are just for reference and do not affect the processing.
From the training data, the Triple-Encoder produces the event and goal /plan representations
and feeds them to the Plan-Selector network. The [NO] flag means this s-hunger goal is not
yet accomplished given the input hungry event. The above training data can be interpreted
as follows (in plain English):

63

IF person i1s hungry
THEN person has a goal not to be hungry
AND the goal is not yet satisfied

The whole purpose of plan selection is to find the most feasible goals and plans of the
planner when DYNASTY sees a given event (action/state) or event sequence. Those goals
and plans should reside in the goal/plan trees that DYNASTY is trained on (see appendix C.2
for the goal/plan trees in DYNASTY). The most feasible goal/plan designates the one that
does not need further goal/plan inferencing. For example, the event “John borrowed a pan
from a friend” can be mapped into the two different levels of plans: (1) John is using the
borrowing-plan to take control of a pan, or (2) John is using the cooking-plan. The Plan-
Selector will choose (1) for this event since the given event directly mentions this plan, so it
is the first one to successfully match. Inferring (2) from this event depends upon the context
and should be done by dynamically searching the goal/plan trees. This search is done by
the GP-Associator module (section 3.4.1). When the event does not directly mention the
plan used, the Plan-Selector chooses a goal behind the event. For example, the event “John
entered a kitchen” is mapped into the goal “John has a goal of getting inside kitchen” since
DYNASTY does not know the plan of entering a kitchen (e.g walking-plan or running-plan)
yet. When the event mentions the state of a planner (and not an action), then the Plan-
Selector maps the event into a goal (such as s-hunger goal described in the above training
data example). Plan selection in DYNASTY is different from the general plan-recognition
process [Schmidt et al., 1978] in that DYNASTY infers only the most feasible goal (or plan)
and leaves the top-level goal recognition problem to the GP-Associator module.

The above training data are examples of simple association in which the context bank do
not play a role. If the plan structure is large and contains several steps of events such as a
“pb-restaurant” plan®, then the mapping needs a context bank. For example, if the plan is
a complex script such as restaurant-going, the training data can be read as follows (in plain

English):

IF person entered restaurant

FOLLOWS waiter seated person

FOLLOWS waiter brought menu
FOLLOWS person read menu

FOLLOWS person ordered food

FOLLOWS person ate food

FOLLOWS person paid bill

FOLLOWS person left a tip

FOLLOWS person left a restaurant for home
THEN person had a plan of executing restaurant script
AND the plan is accomplished

In the above training data, each event representation is fed to the network and the
restaurant plan representation is gradually formed when the network recirculates the hidden

5This kind of long complex plan is an example of a script.

64

context ap representation

(M / @
\

(5) input

copy

teaching input

bank3 {3)

event reprasentation

Figure 3.8: Action-Generator module.

layer representation to the context layer [Lee et al., 1990; Miikkulainen and Dyer, 1989].
During the performance phase, any combination of input events can select a restaurant plan
representation. For example, from the partial input event sequence such as “John entered
the Chart-House. John ate steak. John left a tip”, the Plan-Selector produces the restaurant
plan representation with the correct bindings during the performance phase (see section +4.6).
The program and data format for the Plan-Selector is listed in appendix E.4.

3.4.3 Action-Generator

The Action-Generator’s function is to produce the event (action or state) representations
when a goal/plan representation is given as an input. The output event designates the event
or event sequences when the goal or plan has been already accomplished. For example,
when the s-hunger goal is accomplished, the Action-Generator can produce the state that
the planner is not hungry anymore. The module performs the mappings from goal/plan
space to event space which is the reverse of the Plan-Selector’s mappings. The semantics of
this mapping is that when the planner has a certain goal or plan and if the goal or plan has
already accomplished, then the planner should be in a certain state or the planner should
have done a certain sequence of actions. The network has to find the regularities between
event and goal/plan representations in order to retrieve the state or action representations
from the goal or plan representations.

Figure 3.8 shows the architecture, which uses the same HR (Hetero-associative Recurrent)
architecture as used in the Plan-Selector module, but with different inputs and outputs. The
input layer has two banks. The first bank holds the context representation that is copied
from the hidden layer and the second bank holds the goal/plan representations. The output
layer has one bank that holds the event representations generated.

65

In the training data, the inputs are goal/plan representations and the training outputs
are the associated event or event sequences. The training procedure is similar to the Plan-
Selector module which is a HR module training.

Training procedure:

1. Load bankl with the “don’t-know” pattern.

2. Pick-up a goal/plan representation and load it into bank2.

3. Load bank3 with the first event representation for the chosen goal/plan.
4. Do hetero-associative BP.

5. Recirculate the hidden layer pattern to bankl.

6. Load bank3 with the next event representation in the goal/plan.

7. Repeat steps 4 to 6 for all the events associated in the chosen goal/plan.

For example, the following verbatim training data consists of goal/plan to event mapping
examples. The IDs of each variable varies randomly during training.

(td1)
IF [gl GOAL s-hunger], [g1 AGENT ?person]
THEN [ev101 STATE hungry], {ev101 AGENT 7person], [ev101 MODE not|

(td2)

IF {[p2 PLAN pb-cook], [p2 AGENT ?person], [p2 OBJECT ?raw-food], [p2 LO-
CATION kitchen]

THEN [ev110 ACT cooked], [ev110 AGENT ?person), [evl10 OBJECT ?raw-
food], [ev110 LOCATION kitchen]

These training data can be interpreted in plain English as follows:

(td1)

IF person accomplishes a goal of not to be hungry
THEN person is not hungry anymore

(td2)

IF person executed a cocking plan

THEN person cooked a raw-food in the kitchen

The triples are converted into 12 unit event/goal/plan representations to be loaded into
the banks of Action-Generator. The IDs for variables are set up randomly within a epoch.
The non-variable words have fixed IDs during training.

When the plan is a complicated script such as a pb-restaurant, then the event sequence
associated with the script is produced {Lee et al., 1990]. For example, the following inter-
pretation of training data explains script generation using the Action-Generator.

66

IF person executed a plan of restaurant script
THEN person entered restaurant

FOLLOWS waiter seated person

FOLLOWS waiter brought menu

FOLLOWS person read menu

FOLLOWS person ordered food

FOLLOWS person ate food

FOLLOWS person paid bill

FOLLOWS person left tip

FOLLOWS person left restaurant for home

From the pb-restaurant representation, the Action-Generator produces this full event se-
quence during the performance phase (section 4.6). The program and data format for the
Action-Generator is listed in appendix E.6.

3.5 Linguistic subsystem

3.5.1 Sentence to triple parser

The Sentence-to-Triple (ST) parser converts input natural language sentences into event
triples. DYNASTY ST-Parser was modeled after case-role assignment networks in [Mc-
Clelland and Kawamoto, 1986]. The sequential inputting of words was modeled after the
DISCERN sentence-parser [Miikkulainen, 1990a). Figure 3.9 shows the architecture, which
is a HR network.

The input to the network is a distributed representation of each word in the sentence,
word by word. The training output is a case-role assignment representations of the input
sentence. The teaching input has 12 banks that correspond to each case-role in DYNASTY.
The hidden layer representation is recirculated into the context bank in the input layer,
Below we describe a training algorithm for the ST-Parser.

Training ST-Parser

1. Pick up one input sentence, and load the first word’s distributed representation into
the bank2 (input).

2. Load don’t know pattern (all 0.5s) into bankl (context).

3. Load the sentences’ case-role assignment into the teaching input banks. If there is no
word for a specific case-role, load an all-zero pattern for that case-role.

4. Do hetero-associative BP.
5. Recirculate the hidden layer into bank!.
6. Load the next word’s distributed representation (in the input sentence) into the bank?.

7. Repeat steps 4 to 6 for all the words in the sentence.
67

context input word
"?person”
STATE” ACT AGENT OBJ ... TO FROM ™\ _LOC

"entered” "?restaurant”

Figure 3.9: ST-Parser network architecture. The input layer has two banks; bankl
for context and bank2 for each word representation. The output layer has 12 banks for
each case-role assignment used in DYNASTY: STATE, ACT, AGENT, OBJECT, CO-OBl,
OBJ-ATTR, INSTRU, FROM, TO, LOC, TIME, MODE. Each word in one sentence is
sequentially fed to the input word bank. Blank banks in the output layer designate that the
null pattern (all zeros) are assigned for those banks. The number of units in each bank is
arbitrarily drawn in this figure due to space limitations. In the actual network, the context
bank has 144 units and the other banks have 12 units.

68

For example, during training, for the input sentence “?person entered ?restaurant”, the
teaching input has the representation for word 7person in the AGENT role, entered in the
ACT, and ?restaurant in the TO case-role bank. For the input layer, the representation
for ?person, entered, ?restaurant are fed to the bank 2 sequentially, one word at a time.
The parser generates arbitrary event numbers to form event triples.

ST-Parser can handle embedded sentences and produce an event triple for each embedded
event. For example, consider the following sentence: “7person wanted to know the ?market
location”. Via pre-processing, the sentence is slightly modified into: ?person wanted (?person
knew ?market location) to feed to the ST-Parser. The sentence inside parenthesis is processed
first. The training data for this embedded sentence is as follows:

IF ?person

FOLLOWS knew

FOLLOWS ?market

FOLLOWS location

THEN knew AND - AND ?person AND location AND - AND ?market AND -
AND - AND - AND - AND - AND -

IF ?person

FOLLOWS wanted

FOLLOWS ev30

THEN wanted AND - AND ?person AND ev30 AND - AND - AND - AND -
AND - AND - AND - AND -

The output layer after THEN has 12 banks for the case-role STATE, ACT, AGENT, OB-
JECT, CO-OBJECT, OBJ-ATTR, INSTRU, FROM, TO, LOCATION, TIME, MODE in
this sequence. The “-” designates that the null (all zero) pattern is to be loaded. The ev30
designates the representation of the inner event: ?person knew ?market location. After the
inner event is parsed, the resulting event triples are converted into 12 unit event represen-
tations using the Triple-Encoder. The converted event representation (ev30, here) is fed to
the outer event parsing data. The parsing output is as follows:

[ev31 STATE wanted] [ev3l] AGENT ?person] {ev31 OBJECT ev30]
[ev30 STATE knew] [ev30 AGENT ?person] [ev30 OBJECT location] {ev30 OBJ-
ATTR ?market)]

The program and training data for the ST-Parser are listed in appendix E.7.

3.5.2 Triple to sentence generator

The TS-Generator converts event triple forms into an output sentence, which is a reverse
process of ST-Parsing. The architecture (shown in Figure 3.10) is similar to the ST-Parser's
except that, this time, the 12 case-role banks form the input layer and there is one output
bank for the generated word.

69

context STATE ACT AGENT OBJ TO oM LoC

(Al &

"entered” .
?person

"?person”

Figure 3.10: TS-Generator network architecture. Again, the number of units in each
bank is arbitrarily drawn here. The actual number of units are 144 (12 x 12) units for the
context bank, and 12 units for the other banks.

The training algorithm is similar to that of ST-Parser. The input layer has 13 banks (one
for the context, and others for the 12 case-roles), and the teaching input layer has one bank
for the output word representations. For example, the event triples ([evl ACT entered].
levl AGENT ?person], [evl TO ?restaurant]) are assigned to the input layer such as:
entered goes to the ACT, ?person goes to the AGENT, and ?restaurant goes to the TO
case-role bank (using symbolic pattern copy operations). The output representation for the
word ?person, entered, and ?restaurant are produced sequentially, word by word, in the
output layer. During generation (performance phase), the network produces some canned
words to help the user interpret output inference chains. For example, from the event: {ev30
STATE hungry], [ev30 AGENT John)®, the TS-Generator produces the sentence “John was
bungry”, not “John hungry”. Some of the functional words such as “at”, “to”, etc are also
produced. In other words, some of the functional words are also part of the training data.
The code for TS-Generator and training data are listed in appendix E.8.

The GD (Global-Dictionary), ST-Parser and TS-Generator provide linguistic front-ends
for the DYNASTY system and are the only language-dependent parts in the system. The
GD connects the symbolic world to the connectionist world by providing a means for access-
ing connectionist representations from symbolic ASCII strings and vice versa. By means of
the GD, symbolic input can be processed in the connectionist network, and connectionist
output can be shown as symbolic forms to the users. The ST-Parser and TS-Generator
map sentences to/from event triples, on which DYNASTY’s reasoning subsystems for the

éDuring performance phase, specific instances (e.g. John) are used instead of variables (e.g. ?person) to
make up specific story instances.

70

script/goal/plan analysis operate. The ST-Parser and T'S-Generator are not a tull-fledged
natural language parser and generator, but just translate between natural language in-
puts/outputs and event triples. They do not deal with any complicated syntax and are
designed only to handle simple word orderings. Nor do they deal with any kind of discourse
analysis in natural language generation either.

71

Chapter 4

Goal/plan processing in DYNASTY

4.1 Introduction

This chapter describes how DYNASTY integrates several modules to process script and
goal/ plan-based stories. DYNASTY uses symbolic algorithmic controls to connect each
connectionist module sequentially in order to generate inferences behind the narratives.

Figure 4.1 shows DYNASTY’s top-level performance configuration. The DYNASTY per-
formance program and data format is listed in appendix F.

The following steps show how DYNASTY processes script/goal/plan-based stories. In
the performance phase, DYNASTY uses a symbolic working memory to store the goal/plan
representations previously inferred by the system during the story processing. DYNASTY
stores a top-level goal into this memory as a default goal so that the system can assume that
this goal is already inferred. This top-level goal gives the necessary bootstrap to the system.
as in [Wilensky, 1978].

Script/goal/plan-based story processing step (for each sentence):

1. Access distributed representation (ID+DSR) for each symbol in the input sentence
using the Global-Dictionary.

2. Get event-triples using ST-Parser for the input sentence.

3. Build event representations using the Triple-Encoder.

4. Select a proper goal/plan for the input event using the Plan-Selector.
5. Store selected goals/plans into the working memory.

6. Expand gp-tree in a breadth-first way using the GP-Associator to generate candidate
goals or plans until the selected goal or plan is generated.

7. Build up a goal/plan inference chain by following in reverse the expanded gp-tree in
the working memory.

8. Generate actions or states from the goal/plan in the chain using the Action-Generator.

9. Decode the generated action/state representations into their triples using the Triple-
Encoder.

10. Generate output paraphrase from the triples using the TS-Generator.

72

word symbol

Working
Global Memory
Dictionary t
word rep
ST Parce; goauplan(IG/P-Associator) Y
ep (TS-Generator)
pvent-triple (Plan-SeIector)
op
event .
ible- chain
N (Triple Enooder) T rep event
triple
input story output
] Y inferences
decoding

(Action-Gen)

Figure 4.1: Top-level architecture in performance phase. The entire processing ar-
chitecture is divided into 3 parts: surface processing (ST-Parser, Global-Dictionary, Triple-
Encoder), goal/plan analysis (Plan-Selector, GP-Associator, Action-Generator) and surface
generation (TS-Generator, Triple-Encoder, Global-Dictionary). The Triple-Encoder during
surface input processing is used in encoding mode, while the Triple-Encoder during surface
generation is used in decoding mode. The arrows designate data flow between each module.

73

11. Look-up in the Global-Dictionary and change the distributed representations for each
word into its corresponding symbolic form.

Goal/plan processing consists of three big steps: surface processing, inferencing through
goal/plan analysis, and surface generation. At the top level, the entire goal/plan processing
resembles that of symbolic systems [Wilensky, 1978]. The processing starts with the story
parsing into the internal representations that can be used by the connectionist modules (sur-
face processing). Plan-recognition, goal/plan searching, and inference generation processes
follow in order to generate the inference chains (goal/plan analysis). Finally, the inter-
nal representations of the inference chains are realized into surface language forms (surface
generation).

4.2 Surface processing

Surface processing consists of step 1 to step 3 in the top-level algorithm. Suppose the
input sentence reads:

John wanted (John called-up friend).

The articles, pronouns and other syntactic elements are ignored in the actual natural lan-
guage input. The most important syntactic component considered in ST-parsing is the word
order. According to the word order, the ST-Parser network assigns proper case-roles for each
word, and builds up the case-role triples. When the sentences have embedded structure such
as the example here, we group the inside constituents using parentheses. The ST-Parser
scans the story and first processes the sentence inside the parentheses. Before parsing, the
ST-Parser fetches the distributed representations (ID+DSR) for each symbolic word in the
sentence from the GD and feeds those representations into the ST-Parser network sequen-
tially, word by word. Then the ST-Parser builds the event triples for each sentence. For
example, for the above sentence, ST-Parser builds up the following event triples:

[ev30 ACT called-up] [ev30 AGENT John] [ev30 TO friend]
[ev31 STATE wanted] [ev3l AGENT John] [ev3l OBJECT ev30)]

The event numbers are arbitrarily assigned from DYNASTY’s internal number counter.
Other non-embedded events are parsed in the same manner.

The final step in surface processing is performed by the Triple-Encoder. The Triple-
Encoder fetches each triple and encodes the triple structures into 12-unit distributed repre-
sentations for each event. The final 12 unit representation (e.g. for the ev31) is passed to
the goal/plan analysis process as the internal representation of the sentence in the story.

4.3 Goal/plan analysis

Goal/plan analysis corresponds to step 4 to step 8 in the top-level algorithm. The
goal/plan analysis processes are performed by chains of 3 network components: Plan-
Selector, GP-Associator, and Action-Generator. From the input event representations, the

74

Plan-Selector selects a goal or plan on the gp-tree and GP-Associator starts expanding the
gp-tree to create the goal/plan inference chain. The Action-Generator produces events (or
event sequences) from the goals/plans in the inference chain.

Suppose the input story reads (story 5):

(story 5) John was hungry. John read Michelin-guide. John borrowed money
from friend.

The surface-processing steps produce the following event representations from this input
story. Actually, each event triple was already encoded into 12 unit vector representations
using the Triple-Encoder at this point. The original triples are listed here for reference:

[ev31 STATE hungry] [ev3l AGENT John]

[ev33 ACT read| [ev33 AGENT John] [ev33 OBJECT michelin-guide)]

[ev39 ACT borrowed] [ev39 AGENT John] [ev39 OBJECT money]| [ev39 FROM
friend]

4.3.1 Plan selecting process

The Plan-Selector searches the goals or plans for these events in the gp-tree and changes
the event representations into the goal/plan representations with accomplishment flags (YES/NO).
The selected goals/plans for the input events are as follows:

{£32 GOAL s-hunger] [g32 AGENT John] [NO]

[p34 PLAN pb-read] [p34 AGENT John] [p34 OBJECT michelin-guide] [YES]
(p40 PLAN pb-borrow] [p40 AGENT John] [p40 OBJECT money] [p40 FROM
friend] [YES]

The accomplishment flags designate whether the goal/plan was accomplished or not, and
are used later for searching the gp-tree.

4.3.2 Expanding the goal/plan tree

From the goal/plan representations with accomplishment flags, the GP-Associator ex-
pands the gp-tree in a breadth-first manner and builds up the inference chain. Figure 4.2
shows the expanded gp-tree from the s-hunger (g32) goal to pb-read (p34) plan.

From the starting node (g32), the GP-Associator generates every possible plan for the
s-hunger goal, and for each plan, it generates every precondition, until it matches the target
node (p34). Once the GP-Associator matches the target node, it builds-up the goal/plan
inference chain by following the reverse pointer (thick black lines in figure 4.2) in the symbolic
working memory. In other words, the working memory consists of symbolic linked lists in
which each node has a pointer to the parent node. Traversing through the parent pointer
produces a single chain since each node has only one parent in the gp-tree. (The matching
process will be discussed in section 4.3.4.)

75

-hunger

pb-restaurant

N\
d-know d cont d-prox [3 d-cont d-cont d-prox [d-cont

pb- ask pb-read

Figure 4.2: First gp-tree expansion. Breadth-first expansion of goal/plan tree from s-
hunger goal to pb-read plan. This expansion is represented by thin lines. The thick lines
show the built-up inference chain that links pb-read to s-hunger. The boxes represent null
pattern (all 0’s) as an expansion terminator.

Even though both DYNASTY and PAM [Wilensky, 1978] use breadth-first search for the
goal/plan-based inferencing, there is a essential difference in the search direction. PAM uses
backward search from the input event to the stored goal/plan knowledge. PAM matches the
input event to one of the rules, and continues to activate the applicable rules until one of the
stored goal/plan knowledge structures is produced. Once the inference chain from the input
event to the stored knowledge is acquired, PAM assumes that the input event is explained.
and stops the rule application. DYNASTY uses forward search from the previously stored
knowledge to the input event (new facts) which is a reverse direction of PAM’s. From the
proper stored knowledge (start-node), DYNASTY expands the goal/plan trees until the node
which can be matched to the input event (target-node) is produced.

Two nodes must be defined for the GP-Associator to expand the gp-tree for building
up an inference chain: the start-node and the target-node. The start-node defines where
the search begins in the gp-tree, and the target-node defines where the search ends. In
PAM’s case, the target-node is previous goal/plan knowledge that PAM has in its episodic
memory, and the start-node is a new fact stated in the input sentence [Wilensky, 1978].
However, since DYNASTY uses forward search, the role of start-node and target-node is
reversed. The target-node always comes from the goal/plan representations that are selected
from the current event in the story, that is, a new fact. The start-node has two different
cases according to the accomplishment flag produced from the Plan-Selector, and these two
cases correspond to the vertical and horizontal reasoning respectively (see section 1.1.3):
(1) when the target-node is an unaccomplished goal or plan (the accomplishment flag is
NO), then the target-node becomes the next start-node in the next inference cycle (vertical

76

pb-restaurant

d-know -C

-borrow

pb-ask pb-read pb-withdraw

Figure 4.3: Second gp-tree expansion. Expansion from pb-restaurant plan to pb-borrow
plan. The target-node (pb-borrow) is obtained from the input event, and the start-node (pb-
restaurant) is determined using the start-node selection heuristic (see text for explanation).

reasoning), (2) when the target-node is an already accomplished goal or plan, then the
first unaccomplished plan node in the inference chain becomes the next start-node in the
next cycle (horizontal reasoning). The intuition behind this start-node selection heuristic
is to focus the search process on the most relevant node in the gp-tree. When the current
goal/plan is not accomplished, the planner should try to accomplish the current goal/plan
(vertical reasoning), so the story continues to describe how the planner accomplishes the
current goal/plan. When the current goal/plan is already accomplished, the planner should
try to accomplish the first unsuccessful plan to which the current goal/plan is instrumental
(horizontal reasoning), so the story continues to describe how the planner accomplishes
another precondition for the pending goal/plan. These two cases define the two different
types of goal/plan-based stories described in section 1.1.3.

For the above example (example story in section 4.3), when the current event (John read
michelin-guide) selects pb-read (p34) as a plan, the next start-node will be pb-restaurant
node since pb-read plan (p34) is already accomplished (flag YES) and pb-restaurant is the
first unaccomplished plan in the output chain. The next target-node will be pb-borrow {p40)
which is converted from the next sentence “John borrowed money from friend”. Figure 4.3
shows the working memory after gp-tree expansion from pb-restaurant to the pbh-borrow
(p40) in the next inference cycle.

These expanded goals/plans are candidates for the inference chains. The symbolic work-
ing memory holds these goals/plans expanded, and the reverse pointers are followed to build
up goal/plan inference chains. The reverse pointer of each node points to the parent node,
and enables DYNASTY to form a single chain from the target-node to the start-node. The
reason DYNASTY has these reverse pointers is that it implements the working memory using

77

symbolic linked lists. DYNASTY does not have connectionist episodic memory model yet,
and constructing it is one direction of the future research (see section 7.3.2). The resulting
goal/plan inference chain for the first inference cycle is as follows:

[g35 GOAL s-hunger| [g35 AGENT John)

[p36 PLAN pb-restaurant] [p36 AGENT John} [p36 OBJECT ?food] [p36 LO-
CATION 7?restaurant|

(837 GOAL d-know]| [g37 AGENT John] [g37 OBJECT location] [g37 OBJ-ATTR
Trestaurant]

[p38 PLAN pb-read] [p38 AGENT John] [p38 OBJECT michelin-guide]

The resulting goal/plan inference chain for the second inference cycle is as follows:

[p41 PLAN pb-restaurant] {[p41 AGENT John] {p41 OBJECT ?food] [p4l LO-
CATION 7restaurant]

[g42 GOAL d-cont] [g42 AGENT John| [g42 OBJECT money]

[p43 PLAN pb-borrow] [p43 AGENT John| [p43 OBJECT money] [p43 FROM
friend]

4.3.3 Action-generating process

From the goal/plan inference chain, the Action-Generator produces actions/states when
the goals/plans have been accomplished. For the first goal/plan chain in the above section.
the result of the action-generating process is as follows:

[ev10 STATE hungry] [ev10 AGENT John] [ev10 MODE not]

[evll ACT ate] [evll AGENT John] [evll OBJECT ?ood] [evll LOCATION
?restaurant)

[ev12 STATE knew] [ev12 AGENT John] [evl12 OBJECT location] [evl2 OBJ-
ATTR 7restaurant]

[ev13 ACT read] [ev13 AGENT John| [ev13 OBJECT michelin-guide]

Note that some of the variables are instantiated (e.g. John, Michelin-guide) and some of
them are not (e.g. ?food, ?restaurant). Since the instances like John and Michelin-guide are
provided in the input sentence (story 5 in section 4.3}, they can be propagated to instantiate
the variables ?person and ?guide-book. The mechanism of this binding propagation lies in
propagation of the specific ID value without alteration (see section 4.5). However, in the in-
put sentence, there is no knowledge to instantiate the variables 7food and ?restaurant. More
specifically, the variables ?food and ?restaurant were introduced by the GP-Associator mod-
ule during the gp-tree expansion from the s-hunger goal to the pb-restaurant plan (for this
particular input story). Since there were no instances for ?food and ?restaurant during the
gp-tree expansion, these variables were not instantiated. This variable binding mechanism is
similar to that of symbolic systems. The bindings are exact, and there are no guesses in the

78

bindings. When the input sentences do not provide the instances, the particular variables
cannot be instantiated. This is becanse DYNASTY is trained with only variables which vary
randomly during training, and is not trained with the specific instances for statistically biased
guesses during bindings. However, DYNASTY can be trained with the specific instances to
do the approximate bindings. For example, during the GP-Associator training, we can set
up the training data with specific instances for ?food (e.g. steak), then DYNASTY can
instantiate the ?food with “steak” when no particular instance is given in the input story.
These statistically-biased generalizations are discussed in section 5.3.1.

4.3.4 Goal/plan structure matching

Goal/plan structure matching in the gp-tree searches (for GP-Associator module) is per-
formed by decoding each goal/plan representation into triples and accessing GDs for symbolic
comparison. Since the GP-Associator module produces the structure with both variables and
instances, the goal/plan structure matching needs unifying variables with the instances. The
matching is two step process: (1) matching the goal/plan name and (2) matching the rest
of the case-roles.

Goal/plan matching algorithm:

IF target-node (gpl) and generated-node (gp2) has the same gp-name
AND all case-role fillers are unifiable

THEN both goal/plan nodes are same and stop

ELSE continue gp-expanding

The unifiability of each filler is defined as follows:
filler1 (generated-node) and filler2 (target-node) are unifiable if and only if

o fillerl and filler2 are variables and have the same representations (e.g. 7person ==
?person)
e filler]l and filler2 are instances and have the same representations (e.g. John == John)

o fillerl is a variable and filler2 is an instance and both have the same DSR parts (versus
ID parts) in the representations (e.g. ?person == John)

For example, suppose the target-node is pb-read {p34) and the newly generated node for
one expansion {see figure 4.2) is pb-read (p44) as follows:

target-node

[p34 PLAN pb-read| [p34 AGENT John] [p34 OBJECT michelin-guide]
generated-node

[p44 PLAN pb-read] [p44 AGENT John| [p44 OBJECT ?guide-book]

First the goal/plan name is matched (control of matching process is done symbolically) and
since they are same (accessing the same symbol pb-read in the GD), the rest of the case-role

79

fillers can be matched according to the algorithm above. The michelin-guide and ?guide-book
are unified according to the unification criteria above. The word-level matching is performed
by accessing the GD; two word-level representations are the same if they access the same
symbol. In the above example, the two goal/plan nodes p34 and p44 are considered to be
the same and the goal/plan expansion stops at this point.

4.4 Surface generation

The surface generation process corresponds to steps 9 to 11 (see section 4.1). It first
decodes the output action sequence into triples, and feeds those triples to the TS-Generator
network. The TS-Generator produces word sequences according to the triples, and converts
the word representations into the corresponding symbols. Suppose the Action-Generator's
decoded output is as follows:

[ev10 STATE hungry] [evi0 AGENT John] [ev10 MODE not]

[evll ACT ate] [evil AGENT John| [evll OBJECT ?food] [evlil LOCATION
Trestaurant]

[ev12 STATE knew] [ev12 AGENT John] [evi2 OBJECT location] [ev12 OBJ-
ATTR 7restaurant]

[ev13 ACT read] [evl3 AGENT John] [evi3 OBJECT michelin-guide]

The TS-Generator produces output paraphrases and replaces each representation for a
word with its symbolic form. PC designates the pre-condition (the instrumental goal) and
P designates the plan (see section 1.1 for the use of P and PC).

PC: John was not hungry.

P: John ate food at restaurant.
PC: John knew restaurant location.
P: John read michelin-guide.

The TS-Generator produces the necessary functional words such as “was” and “at” to
help readability. The network is trained with the necessary functional words using the
random representations in the GD in order to produce the correct English sentences.

4.5 Variable binding during goal/plan analysis

Variable binding is a difficult problem in connectionist models [Dyer, 1990b] since bind-
ings must be done statistically, rather than symbolically. If DYNASTY handles only scripts
such as DISPAR [Miikkulainen and Dyer, in press] or DISCERN [Miikkulainen, 1990a] which
maps all the sentences in the particular input story to only one structure {particular script),
then DYNASTY can use only statistical binding propagations using IDs. However, DY-
NASTY’s input sentences (in one story) should be mapped to several goal/plan structures,
and some of the variables are only instantiated later when DYNASTY reads in more sen-
tences. So DYNASTY needs to backward propagate the bindings from the current sentence

80

to the previously read sentences. This is why DYNASTY’s binding propagation must be
performed using the ID value propagation [Miikkulainen, 1990a] for the forward-binding
propagation and symbolic operations for the backward-binding propagation.

4.5.1 Binding during plan-selection and action-generation

Variable binding during plan-selection and action-generation needs only forward propa-
gation because the event structures and goal/plan structures have the same set of variables.
and the two modules perform the mappings between events and goals/plans. As a result,
variable binding during plan-selection and action-generation is performed through ID value
propagation. The ID values in the input structure are passed without alteration to the output
structures. Since the ID parts are set up randomly during training for all the variables, any
kind of instance can be propagated without alteration during the performance phase. Here
the BP-based networks perform the an identity function as far as the ID part is concerned.
Consider the following training data for the Plan-Selector.

IF [ev20 ACT asked] [ev20 AGENT ?person] [ev20 OBJECT location] [ev20 OBJ-
ATTR 7restaurant]

THEN [p30 PLAN pb-ask] [p30 AGENT ?person| [p30 OBJECT location] [p30
OBJ-ATTR 7?restaurant]

AND [YES]

For this training data, DYNASTY was trained to correctly pass the random IDs for
?person and ?restaurant variables from the “asked” event structure to the “pb-ask™ plan
structure. Suppose DYNASTY reads in the following input sentence:

John asked about Sizzler location

The ST-Parser produces the following event structures:

[ev20 ACT asked] [ev20 AGENT John] [ev20 OBJECT location] [ev20 OBJ-
ATTR Sizzler]

Now this event structure should be an input to the Plan-Selector to select the ph-ask
plan structure with John bound to ?person, and Sizzler bound to ?restaurant. The rep-
resentation of John is specific ID plus DSR, where the DSR part is almost identical with
that of ?person. Since the Plan-Selector was trained to pass random IDs of ?person without
alteration, it can pass the specific ID for John also without alteration (approximately). So
the instance John can be safely bound to ?person in the pb-ask plan structure. Similarly,
when the Action-Generator generates the asking event (ev20) from the pb-ask plan (p30),
the correct ID values can be propagated from the plan to the event structure.

81

ST-Parser Plan-Selector

John was hungry =¥ ov11STATE hungry - 912 GOAL s-nunger
evl AGENT John g12 AGENT John

* GP-Agsociator

p13 PLAN pb-rest
P13 AGENT John
P13 0BJECT ?rood
P13 LOCATION 7rest

* GP-Assoctator

14 GOAL d-know
g14 AGENT John

914 OBJECT location
g140BJ-ATTR 7rest

' GP-Associator

p15 PLAN pb-ask
015 AGENT John

P15 OBJECT location
p15 0BJ-ATTR 7rest

symbolic
matching
ev20 ACT asked p21 PLAN pb-ask
~John asked about ev20 AGENT John ——= 21 AGENT John
Sizzler location == .50 OBJECT location p21 OBJECT location
ev20 OBJ-ATTR Sizzler p21 OBJ-ATTR Sizzler

3T-Parser
Plan-Selector

Figure 4.4: Input to binding data flow. The figure shows the mappings of two input
sentences to the binding process. The first, second, and third column shows the input
sentence, output of ST-Parser and output of Plan-Selector respectively. The down arrows in
the third column shows the constructed inference chain by the GP-Associator.

82

4.5.2 Binding during gp-tree expansion

The goal/plan structures that should be associated by the GP-Associator usually do not
have the same variable sets. Figure 4.4 shows the input story with 2 sentences, and the
structure mappings from input to the binding process by each module in the DYNASTY.

The ST-Parser converts input sentences into the event structures, which are again con-
verted into the goal/plan structures by the Plan-Selector. The variable ?restaurant cannot
be instantiated until the second sentence provides the necessary instance Sizzler. If the two
sentences can be mapped into one goal/plan structure (script), then the 7restaurant variable
can be instantiated with the forward ID propagation.

Figure 4.5 shows variable binding propagation during gp-tree expansion with the start-
node being s-hunger goal and the target-node being pb-ask plan. During the gp-tree ex-
pansion, the ID propagation is not enough to process all the bindings. For example, when
the GP-Associator generates pb-restaurant from s-hunger, the instance John can be ID-
propagated since both structure share 7person variable, but the instance for the variable
?restaurant cannot be determined until the next event is read. This is reasonable since
there is no way of knowing at which restaurant John ate until we have a clue such as the
second sentence “John asked about Sizzler location”.! When the target-node matches the
generated-node with variables, the instance in the target-node (e.g. Sizzler) should be back-
ward propagated to replace the variable (e.g. 7restaurant) in the inference chain because
this instance is a new valuable information that must be added to the inference chain. When
John asked about Sizzler location, we can safely infer that John ate at the Sizzler, but we
still don’t know what John ate {for ?food). Hence, the gp-tree expansion has two different
kinds of binding processes; forward and backward binding propagation.

Binding propagation during gp-tree expansion

¢ forward propagation : from start-node to target-node through ID value propagation
(e.g. John).

o backward propagation: from target-node to start-node using symbolic copy opera-
tions. When the generated-node has uninstantiated variables and the target-node has
their instances, replace every variable in the inference chain with the instances after
unification matching (e.g. Sizzler).

4.6 Script processing

Script processing in DYNASTY [Lee et al., 1989; Lee et al., 1990] does not need a separate
architecture since DYNASTY considers a script as a special type of plan. Suppose the input
story is script-based as follows:

John was hungry. John entered Chart-House. John ate steak. John left a tip

!However, when DYNASTY is trained with the specific instances for statistically biased generalizations
(section 5.3.1), DYNASTY can produce plausible, but sometimes incorrect guesses for the Trestaurant vari-
able before the second sentence is read.

83

start-node

s-hunger
(john)

john

Pb-rest pb-cook z.g;;af,food)
(john,?rest, ?food) {jobn,?raw-food) "

d-
- cont UJ::’X'""S” ?j;or:;oook-uten) 80':::;(
(john,money) gﬁr:;raw-food)
john
sizzler ‘ ?j;or:gfood)
Y
e | T (Bl | e e

symbolic

generated-node match target-node

Figure 4.5: Forward and backward binding propagation during gp-tree expansion.
The ?-mark shows that the word is a variable in the goal/plan structure. The instance word
in the start-node (e.g. John) is forward propagated using ID value propagation while the
instance word in the target-node (e.g. Sizzler) is backward propagated by a symbolic pattern
copy. The node in the oval forms the resulting goal/plan inference chain.

84

Surface processing produces the event representations for each sentence:

[ev1l STATE hungry] [evll AGENT John]

[ev12 ACT entered) [ev12 AGENT John] [ev12 LOCATION Chart-House]
[ev13 ACT ate| [evl3 AGENT John] [ev13 OBJECT steak]

[ev14 ACT left] (evl4¢ AGENT John] [evl4 OBJECT tip]

All the script-related actions are grouped in one block to be recognized as single script
by the user. DYNASTY currently cannot decide on its own when to group certain event
sequences into a single script. For example, in the above events, after evll is processed. the
event group ev12, evl3 and evl4 are fed to the Plan-Selector to select an appropriate script
as a plan with the correct role-bindings. Script role-binding is a special case of variable
binding and performed using only ID value propagation (forward propagation). In the above
example, the ID value of John, Chart-house, and steak is propagated to the restaurant script
representation. The Plan-Selector selects the s-hunger goal for the first event, and selects
the pb-restaurant plan with customer bound to John, restaurant bound to Chart-House
and food bound to steak for the group of events — evl2, evl3, and evl4. Since the script
representation has all the necessary instances, no backward binding propagation is needed.
The Plan-Selector’s output is as follows:

[30 GOAL s-hunger] [g30 AGENT John] [NO]
[p40 PLAN pb-restaurant] [p40 AGENT John] [p40 OBJECT steak] [p40 LO-
CATION Chart-House][YES]

The GP-Associator simply expands the gp-tree with start-node being g30 and target-node
being p40, and produces a single inference chain that John has a plan of executing the restau-
rant script to satisfy his hunger. The produced inference chain goes to the Action-Generator
to produce the state/actions. From the script representation, the Action-Generator expands
all the events for the script, filling-in the omitted events. The output of Action-Generator
15 as follows:

[ev20 STATE hungry] [ev20 AGENT John] [ev20 MODE not]

[evll ACT entered] [evll AGENT John] [evil LOCATION Chart-House]
[ev12 ACT seated] {ev12 AGENT waiter] [evi2 OBJECT John]

[ev13 ACT brought] [ev13 AGENT waiter] [evl3 OBJECT menu]

{evl4 ACT read] [evl4 AGENT John| {ev14 OBJECT menu]

[ev15 ACT ordered] [ev15 AGENT John] [evl5 OBJECT steak]

[ev16 ACT ate] [evl6 AGENT John| [evl6 OBJECT steak]

[ev17 ACT paid] [ev17 AGENT John] [ev17 OBJECT bill]

[ev18 ACT left] [evi8 AGENT John) {ev18 OBJECT tip]

[ev19 ACT left-for] {ev19 AGENT John| [ev19 FROM Chart-House] [ev19 TO
home}

These event representations are decoded using the Triple-Encoder, producing event triples
and these event triples go to the TS-Generator to produce the script-based paraphrase. G
means top-level goal, and P means selected plan in the paraphrase.

85

G: John was not hungry

P: John entered Chart-house
Waiter seated John

Waiter brought menu

John read menu

John ordered steak

John ate steak

John paid bill

John left tip

John left chart-house for home

Currently, DYNASTY can process 4 different types of script knowledge: going to restau-
rant, attending a lecture, going shopping and visiting a doctor, all taken from psychological
experiments [Bower et al., 1979]. DYNASTY’s script knowledge is defined in appendix C.3.

86

Part ITT

Evaluation

87

Chapter 5

DYNASTY learning and performance analysis

In the previous chapters, the training and process models of each component in DY-
NASTY have been presented. In this chapter, the DSRs that DYNASTY has learned from
actual script/goal/plan-based stories are analyzed and compared to each other. The DY-
NASTY output traces for script/goal/plan-based stories are presented with high-level ex-
planations along with each component’s performance statistics. DYNASTYs generalization
and fault-tolerance performances are also evaluated, with various story data.

5.1 Learning analysis

In this section, the DSRs learned from different proposition spaces are analyzed and
compared. A proposition space designates a set of propositions which are drawn from the
different sets of stories (see section 2.3). Our hypothesis is that the DSRs learned from a
rich proposition space show more clear similarity properties compared to the DSRs from a
poor proposition space. When we say that a proposition space A is richer than a proposition
space B, we mean that the same words are associated with more propositions in space A
than in space B. For example, the proposition space which is drawn from the whole stories
(script/goal/plan-based) is richer than the one drawn from only goal/plan-based stories
or only script-based stories. In this analysis, we excluded ID-units so each representation
consists of 10 units. We use the same DSR-Learner program which was used in section 2.7,
The program and data format is listed in appendix E.1.

5.1.1 DSRs in goal/plan processing

We have selected 6 goal/plan-based story skeletons to analyze the DSRs learned (see
appendix B.1 for selected story skeletons). Each variable in the story skeletons is randomly
replaced with their instances to produce actual propositions during learning. Figure 5.1
shows the DSR representations for the selected word-concepts. To compare the DSRs that
are learned from the different proposition spaces (in the next two sections), we grouped all the
word representations into 6 instance-words (instances for the variables), 9 act/state-words,
and 4 general concept-words including physical-object, locations etc. This configuration was
used for all of the next studies.

The figure shows that the words which have similar usages (similar semantics) in the
given propositions develop similar representations. The similar usages designate what kind
of semantic case-roles the words played in the given sentence. The instance-words (e.g. John,
Mary) for the same variables (e.g. person) developed almost identical representations. Ac-
tually, these instance words played the same semantic case-roles in each proposition since we

88

John asked
Mary ate
RESTAURANT borrowed

called-up
Sizzler

cooked
MacDonald's

drove
steak
hamburger

had
bank i ¥l hungry
friend SR I T G SR L L B3] knew
coin
letter

Cho Ty Chaos Ehaos Edsor; By, ENR, EN,

Figure 5.1: Learned DSRs of concepts for the selected goal/plan-based stories.
Learning rate = 0.07 to 0.02; momentum factor = 0.5 to 0.9; 150 epochs for each concept and
propositions; one epoch = 300 cycles of auto-associative backprop. The learning parameters
are the same through out all of the DSR learning experiments to get consistent results.

89

replaced each variable with the instance word randomly for each epoch during training. All
the act (or state) words (e.g. asked, ate) developed similar representations since they played
ACT (or STATE) case-roles in every proposition. However since each word is associated
with different propositions, their representations are not identical. The state-word group
1s more similar because their case structures are more uniform than the act-word group.
(Most of the state-word group has only AGENT and OBJECT in the case structures.) The
general concept-word group (under MISC in the figure 5.1} shows variations according to
their semantic usage. Coin and letter have almost identical DSRs since they are mainly
used in OBJECT roles. Bank and friend are mainly used in LOCATION or TO/FROM
roles respectively, so their representations are not similar. The reason that Sizzler and
MacDonald’s are similar to bank is clear, because they are used mainly in LOCATION
roles. John and Mary are not similar to any other word representations since they are the
only words which are used in AGENT roles. Figure 5.2 shows hierarchical clustering analysis
results for the developed DSRs, using the same program as in section 2.7.

The figure shows the global similarity structures for the developed DSRs. The instance-
words are merged first (step 1, 2, 3) since they have the most similar representations. The act-
word groups and state-word groups are merged next, and the general concept-word groups
are merged with instance-word groups according to their case-roles. Globally, there are
3 merging groups: AGENT-words (step 9), OBJECT-words (step 14), LOCATION-words
(step 5), ACT-words (step 13) and STATE-words (step 12). There are some anomalies
shown in the figure 5.2. For example, asked should not be merged to Mary, and there is no
reason that borrowed should be merged with bank. MacDonald’s and friend are other
anomalous examples. However, their merge step is not small, which means they are not
that similar in actual representations (see figure 5.1) and it is not difficult for DYNASTY
to distinguish them as different words. Conceptually, these anomalous examples can be a
signal that the proposition space is not rich enough for the specific words in the experiment.
Most of the anomalous merge cases disappeared when we ran the DSR learning experiments
with script and goal/plan-based stories combined (see section 5.1.3).

5.1.2 DSRs in script processing

We selected 4 script-based story skeletons (appendix B.2) to analyze learned DSRs. Each
variable (script-role) is replaced with their instances randomly during training. The 4 scripts
are knowledge of going to a restaurant, attending a lecture, grocery shopping, and wisiting a
doctor taken from [Bower et al., 1979] (see appendix C.3 for the script knowledge used in
DYNASTY). Figure 5.3 shows some of the learned DSRs for selected words to compare with
the figure 5.1. The same group of words was selected: 6 instance-words, 9 act-words, and
4 general concept-words. Since script-based stories do not have state-words, we selected 9
act-words instead.

In figure 5.3, we can see the same kind of similarities as in the previous section, even
though the representations themselves are different for the same word in the two experi-
ments (for example, compare Sizzler in figure 5.1 and figure 5.3}). The instance-words (e.g.
John, Mary) for the same script role (e.g. person) still develop the most similar represen-
tations. The 9 act-word group has more similar representations than the goal/plan-based

a0

John :I 1

Mary 9

asked

steak 3) — an
hamburger ®

coin _ _ (149 ____

letter

Sizzler — @] (10
MacDonald's (5

fiend =~ ———— (18)
bank — 10

borrowed ~— 13)

called-up — 4 __

drove am T

ate — o —

cooked - (15)

had — ®)

hungry ' (12)

knew

Figure 5.2: Merge clustering results for DSRs in the goal/plan-based stories The
number in the parenthesis shows each merge step.

91

John ordered
| Mary ale
d scated
left
Sizzler
brought
Leon's
read
entered
steak
paid
lobster
left-for
home

menu

bill

tip

Cho Ty Chaos Elaos oo, B, K, N,

Figure 5.3: Learned DSRs of concepts for script-based stories. Experiments are run
under the same conditions as in figure 5.1.

experiments, because script-based stories are more uniform than the goal/plan-based stories.
In the script-based stories, each action is always carried out in the same sequence, which
forces more regularities in the act-word group. In the general concept-word group, the 3
words menu, bill and tip are more similar than home, as expected. The words in the food
group, which are mainly used in the OBJECT role, also develop similar representations, as
the 3 general concept-words stated above.

Figure 5.4 shows the similarity structures by using the same merge clustering technique as
before. This figure shows 3 major categories of words: (1) instance-words in the script roles
(e.g. John, Mary , etc), (2) script actions (e.g. entered, paid, etc), and (3) the remaining
concepts used in the script (e.g. menu, bill, etc). In each category, the most similar words
(e.g. Sizzler and Leon’s) in the script context started to merge together. The reason non-
intuitive clustering occurs, such as left-for and home, is that they are under-defined in
the proposition space. In this case, the two words are merged at step 11, so the anomalous
clustering does not affect the system’s performance. The words steak and lobster are also
unintuitively merged with the word home (at step 14), for the same reason. In general,
the clusters in the script experiment are more natural than the goal/plan-based experiments
since script-based stories force each word to be used stereotypically.

5.1.3 DSRs in combined script/goal/plan processing

We have run the same experiments with a proposition space which 1s drawn from both
script-based and goal/plan-based story skeletons. In this experiment, the stories in appen-

92

John

Jo
Mary
Sizzler j 1)

Leon's

menu

5)
bill :I ©) (6) —_—
tip
left-for (15) e

11

home :l (n

steak (14) ‘
e

entered

oo
paid] 12) — _
brought

&)
read :I

ordered

2

I

seated ® -
:l N

left

(18)

lobster

a7

(13)

Figure 5.4: Merge clustering of the learned DSRs for the script stories.

93

John asked

71 Mary ate
ok borrowed
Eosgo ESip-o] 1 entered
d Sizzler
prsd R L kad R]] brought
MacDonald's e
A SRR Soonns 1 1 seatad
steak
hamburger
STATE
bank had
menu hungry
coin knew

up

Cho Chi Thoos haos o, H, R, HE,

Figure 5.5: Learned DSRs for the combined proposition space.

dix B.1 and appendix B.2 are combined to learn DSRs. Our objective is to show that this
proposition space is richer than the previous two experiments, so the anomalous clusterings
will hopefully disappear and DSRs will show more clear similarity structures. Figure 5.5
shows the resulting DSRs. We selected the same instance-word group, such as person,
restaurant and food group as in the previous two experiments. Half of the words in the
act, state, and general concept-word group are from the goal/plan-based experiment (fig-
ure 5.1) and half of them are from the script-based experiment (figure 5.3) to clearly compare
themn.

The results are positive. The act-word groups show more similar representations than the
previous two experiments, and so do the 3 words menu, coin, and tip in the general concept-
word group (under the MISC in the figure). In the clustering analysis result (figure 5.6), the
anomalous merging of Mary to asked, and bank to borrowed have disappeared. In this
figure, the merge of MacDonald’s and bank makes sense since both words are mainly used
as LOCATION:-roles in the propositions.

Our conclusion is that combined stories give richer proposition spaces than solely script-
based or goal/plan-based stories, since they have more propositions associated with each
single word during DSR learning. Script-based stories seem to have richer proposition spaces
than do goal/plan-based stories because the same word is repeatedly associated with the same
sequence of actions.

94

John

(1

Mary —_—

Sizzler — 2 (16)

MacDonald's (4)

bank (17)

steak 3

hamburger = (7)

coin (10)

menu — (5)

t.
P (18)
asked B— (11)

entered

ate I) (14

borrowed (13)

seated 6 | (15)
brought

had Q) —_
hungry (12)

knew

Figure 5.6: Merge clustering of DSRs for the script/goal/plan combined stories.

95

5.2 Performance analysis

In the last section, we analyzed DSRs learned from script/goal/plan-based stories. DY-
NASTY’s word representation consists of DSRs and IDs (see section 2.9). DSRs give
similarity-based generalization and fault-tolerant abilities to the system since similar words
have similar representations. IDs [Miikkulainen and Dyer, in press] enable the system to
keep the variable bindings straight. In this section, we show DYNASTY's output traces
with edited explanations (using the program and data format listed in appendix F). Output
traces are shown for both goal/plan-based stories and script-based stories. At the end of
each trace, we show performance statistics in table form. The performance statistics for
processing whole stories are also shown. In the example traces, the system’s output is in
type-font, and in lower case. The events, goals, and plans are arbitrarily numbered when
they are decoded, and the purpose of numbering is to group the relevant triples into one
event (or goal/plan). At each pattern transformation step, DYNASTY decodes the output
pattern into triple structures and translates them into the corresponding symbols for the
users.

5.2.1 Goal/plan-based story processing

This section shows an example of goal/plan-based story processing traces and perfor-
mance statistics. DYNASTY reads the following input story:

DYNASTY> give me a story

John was hungry. John asked friend about Sizzler location. John drove to Sizzler.
John had no money. John wanted (John call-up to friend). John borrowed coin
from waiter.

DYNASTY accesses the GD to convert each word symbol into its vector representation,
and feeds them to the ST-Parser, word by word, producing event triples. If the word is
not listed in the GD, DYNASTY simply ignores the word (e.g. some functional words such
as about are not in the GD). When the sentence has parentheses, DYNASTY reads the
sentence inside the parentheses first and uses the representations for this inner sentence as
a constituent component for the outer sentence. At this point, the ST-Parser is interacting
with the Triple-Encoder to get the inner event representations. The event numbers are
arbitrarily assigned by the DYNASTY main program. Now here is the trace of st-parsing
for the first sentence in the story:

input event: john was hungry
st-parser:

st-parsing...

[evi STATE hungry), [evl AGENT john]

The Triple-Encoder builds-up an event representation for this event. The Plan-Selector
chooses a goal/plan for this event with the correct bindings (e.g John as an AGENT). The

96

binding information is propagated through the ID units. In this example, since John is
the AGENT in evl, the same ID for John is propagated to the goal/plan representation,
selecting g2 with John as an AGENT (planner). The selected goal/plan representations
are from the goals/plans which are in the DYNASTY gp-tree (see appendix C.2 for entire
DYNASTY gp-tree). The YES/NO flag designates the success status of the goal/plan at
the current point. Now follows the trace for goal/plan selection for the first input sentence:

triple-encoder:

event representations formed for hungry
plan-selector:

selecting g/p and decoding....

[g2 GOAL s-hunger] [g2 AGENT john] [NO]

For the first goal (top-level goal), the GP-Associator simply passes it to the Action-
Generator and marks it as a start-node for the next gp-tree expansion cycle. The Action-

Generator produces corresponding event for this goal. The decoded event goes to the TS-
generator and output sentence is produced as follows:

gp-associator:
first start-node s-hunger
(g2 GOAL s-hunger] [g2 AGENT john]

action-generator:
generating actions and decoding .

[ev3 STATE hungry] [ev3 AGENT john] [ev3 MODE not]
ts-generator:

ts-generating...
john was not hungry

DYNASTY continues to process the second sentence. First, DYNASTY st-parses the
sentence, builds up the event representations, and selects a proper goal/plan for this event
with correct bindings. In this example, the ID-units in the AGENT John and OBJ-ATTR
Sizzler are propagated to the goal/plan representations to select p3.

input event: john asked friend about sizzler location

st-parser:

st-parsing...

[ev4 ACT asked] [ev4 AGENT john] [ev4 TO friend] [ev4 OBJECT location]
[ev4 OBJ-ATTR sizzler]

triple-encoder:

event representation formed for asked

plan-selector:

selecting gp and decoding...

[p5 PLAN pb-ask] [pS AGENT john] [p5 TO friend] [p5 OBJECT location]
[p5 OBJ-ATTR sizzler] [YES]

97

Taking this goal/plan as a target-node, DYNASTY starts to expand the encoded gp-tree
using the GP-Associator. The start-node was defined as gl (s-hunger) in the previous cycle
since “s-hunger” was unaccomplished in the previous cycle. The gp-tree expansion continues
until DYNASTY generates the target-node (“pb-ask” for this cycle). After the gp-tree is
expanded, DYNASTY builds up the inference chain by following the reverse pointers in
the working memory (symbolic link traversing). When a variable-instance match occurs,
DYNASTY copies the ID part of the instance (in the target-node) to the variable (in the
matched generated node). This copied ID is propagated backward to the start-node for
binding variables which cannot be forward propagated from the start-node (see section 4.5).

gp-associator:
expanding gp-tree
start-node: s-hunger
target-node : pb-ask
expanding ...

s-hunger pb-restaurant pb-cook pb-eat d-know d-cont d-prox d-cont d-cont
d-prox d-cont pb-ask

building inference chain and backward binding propagation...

(g6 GOAL s-hunger] {g6 AGENT john]

[p7 PLAN pb-restaurant] [p7 AGENT john] [p7 OBJECT ?food] [p7 LOCATION
sizzler]

{g8 GOAL d-know] {g8 AGENT john] [g8 OBJECT location] [g8 OBJ-ATTR sizzler]

(p9 PLAN pb-ask] [p9 AGENT john] [p9 TO friend] [p9 OBJECT location]
[p9 OBJ-ATTR sizzler]

DYNASTY selects the start-node for the next inference cycle at this point. Since the
pb-ask plan is successful (flag is YES), so is the d-know goal. The first unaccomplished plan
node is pb-restaurant, so according to the start-node selection heuristics (in section 4.3.2),
it becomes the next start-node. Next, DYNASTY generates events for the goals and plans
in the inference chain and feeds them to the TS-Generator. The TS-Generator produces the

explanation of John's action in the story as a goal/plan chain (some of the functional words
are added for the readability):

action-generator:

generating actions and decoding...

[ev1i0 STATE hungry] [evi0 AGENT john] [ev10 MODE not]

[evil ACT ate] [evil AGENT john] [evil OBJECT ?food] (evii LOCATION
sizzler]

[ev1i2 STATE knew] [ev12 AGENT john] [ev12 DBJIECT location] [ev12 OBJ-ATTR
sizzler]

[evi3 ACT asked] [ev13 AGENT john] [evi3 TO friend] [evi3 OBJECT location]

[ev13 OBJ-ATTR sizzler]

98

ts-generator:
ts~generating. ..

john was not hungry

john ate ?food at sizzler
john knew sizzler location
John asked friend about sizzler location

The remaining sentences are processed in the same manner, and the trace is listed below,
The third sentence is st-parsed, and “pb-drive” is selected as a relevant plan.

input event: john drove to sizzler
st-parser;

st-parsing...
[evi4 ACT drove] [evi4 AGENT john] [ev14 TD sizzler]
triple-encoder:
event representation formed for drove
plan-selector: |
selecting gp and decoding...
[p15 PLAN pb-drive] [p15 AGENT john] [p15 TO sizzlerl [YES]

Since “pb-restaurant” was determined as a start-node in the previous cycle, DYNASTY
expands gp-tree from “pb-restaurant” to “pb-drive”. Since “pb-restaurant” already instan-
tiated all the variables, the forward ID propagation does all the necessary binding. And no
backward binding propagation occurs for this goal/plan chain. We cannot know what food
John ate, so the variable ?food is not instantiated. The start-node for the next inference
cycle is determined as the same “pb-restaurant” because this plan is not yet satisfied.

gp-associator:

expanding gp-tree
start-node: pb-restaurant
target-node : pb~drive
expanding ...

pb-restaurant d-know d-cont d-prox pb-ask pb-read pb-withdraw pb-steal
pb-borrow pb-walk pb-drive

building inference chain and backward binding propagation...

[p16 PLAN pb-restaurant] [pi6 AGENT john] [p16 OBJECT ?focd] [p16 LOCATION
sizzler]

[g17 GOAL d-prox] [g17 AGENT john] [g17 TO sizzler]

[p18 PLAN pb-drive] [pi8 AGENT john] (p18 TO sizzler]

action-generator:
generating actions and decoding...
fevi9 ACT ate] [ev19 AGENT john] [ev19 OBJECT ?food] [ev19 LOCATION

89

sizzler]
(ev20 STATE inside] [ev20 AGENT john] [ev20 LOCATION sizzler]
[ev21 ACT drove] [ev21 AGENT john] [ev2i TO sizzler]

ts-generator:
ts-generating...

john ate ?food at sizzler
john was inside sizzler
john drove to sizzler

The fourth sentence is turned into a “d-cont (money)” goal, and the goal/plan chain is
constructed from the “pb-restaurant” plan to “d-cont (money)” goal. The start-node for next
inference cycle is determined as “d-cont (money)” goal because the goal is not accomplished

vet (NO flag).

input event: john had no money

st-parser:

st-parsing. ..

[ev22 STATE had] [ev22 AGENT john] [ev22 OBJECT money] [ev22 MODE not]

triple-encoder:

event representation formed for had

plan-selector:

selecting gp and decoding...

[g23 GOAL d-cont] [g23 AGENT john] [g23 OBJECT money] [NO]

gp-associator:

expanding gp-tree
start-node: pb-restaurant
target-node : d-cont
expanding ...

pb-restaurant d-know d-cont d-prox pb-ask pb-read d-cont

building inference chain and backward binding propagation...

[p24 PLAN pb-restaurant] [p24 AGENT john] [p24 OBJECT ?food] (p24 LOCATION
sizzler]

[g25 GOAL d-cont] [g25 AGENT john] [g25 OBJECT money]

action-generator:

generating actions and decoding...

[ev26 ACT ate] [ev26 AGENT john] [ev26 OBJECT 7food] [ev26 LOCATION
sizzler]

[ev27 STATE had] [ev27 AGENT john] [ev27 OBJECT money]

100

ts-generator:
ts-generating...

john ate ?food at sizzler
john had money

Until the fourth sentence, the story is about how John fulfills the various preconditions
to the “pb-restaurant” plan (horizontal reasoning). From the fifth sentence on, the story
is about how John fulfills the series of preconditions for the unaccomplished goal “d-cont
(money)” (vertical reasoning). The fifth and sixth sentence explain how John can have
money to dine at the restaurant by meeting a series of preconditions. The fifth sentence is
an embedded sentence. DYNASTY st-parses the inner sentence first, and uses the represen-
tation to fill the OBJECT role for the outer sentence. DYNASTY selects the pb-phone plan
for this sentence, and makes this plan the start-node for the next cycle since this plan is not
accomplished yet. The output inference chain explains that the reason for the pb-phone plan
is to borrow money from a friend, and the pb-borrow plan is for d-cont (money) in order to
dine at the restaurant.

input event: john wanted (john called-up friend)
st-parser:

st-parsing...

(ev28 ACT called-up] [ev2B8 AGENT john] [ev28 TO friend]
[ev29 STATE wanted] [ev29 AGENT john] [ev29 OBJECT ev28]
triple-enceder:

event representation formed for wanted

plan-selector:

selecting gp and decoding...

[p30 PLAN pb-phone] [p30 AGENT john] [p30 TO friend] [NO]

gp-associator:

expanding gp-tree

start-node: d-cont

target-node : pb-phone

expanding ...

d-cont pb-withdraw pb-steal pb-borrow d-prox d-link pb-walk pb-drive
pb-phone

building inference chain and backward binding propagation...

(g31 GOAL d-cont] [g31 AGENT john] [g31 OBJECT money]
[p32 PLAN pb-borrowl [p32 AGENT john] {p32 OBJECT money] [p7 FROM friend]

[g33 GDAL d-link] [g33 AGENT john] [g33 TO friend]
[p34 PLAN pb-phone] [p34 AGENT john] [p34 TO friend}

action-generator:
generating actions and decoding...

101

[ev35 STATE had] [ev35 AGENT john] [ev35 OBJECT money]

[ev36 ACT borrowed] [ev36 AGENT john] [ev36 OBJECT meney] [ev36 FROM
friend]

[ev37 STATE had] [ev37 AGENT john] [ev37 OBJECT comm-link] [ev38 TO
friend]

(ev38 ACT called-up] [ev38 AGENT john] [ev38 TO friend]

ts-generator:

ts-generating...

john had money

john borrowed money from friend
john had comm-link to friend
john called-up friend

For the sixth sentence, the output inference chain explains that the reason for the pb-
borrow (coin) plan is to get a coin for the pb-phone plan.

input event: john borrowed coin from waiter

st-parser:

st-parsing...

[ev39 ACT borrowed] [ev39 AGENT john] [ev3S OBJECT coin] [ev39 FROM
friend]

triple-encoder:

event representation formed for borrowed

plan-selector:

selecting gp and decoding...

[p40 PLAN pb-borrow] [p40 AGENT john] [p40 OBJECT coin] (p40 FROM friend]
[YES]

gp-associator:

expanding gp-tree

start-node: pb-phone

target-node : pb-borrow

expanding ...

pb-phone d-know d-cont d-prox pb-ask pb-read pb-borrow
building inference chain and backward binding propagation. ..
(p41 PLAN pb-phone] [p41 AGENT john] [p41 TO friend]

[g42 GDAL d-cont] [g42 AGENT john] [g42 OBJECT coin]
[p43 PLAN pb-borrow] [p43 AGENT john] [p43 OBJECT coin] (p43 FROM waiter]

action-generator:
generating actions and decoding...
lev44 ACT called-up] [ev44 AGENT john] [ev44 TO friend]

102

[ev45 STATE had] [ev45 AGENT john] [ev45 OBJECT coin]
fev46 ACT borrowed] [ev46 AGENT john] [ev46 OBJECT coin] [ev46 FROM
wvaiter]

ts-generator:

ts-generating...

john called-up friend

john had coin

john borrowed coin from waiter

processing completed.
DYNASTY> give me a story

Now we can return to the unaccomplished top-level goal, and make it successful at this
point. Since the pb-borrow (coin) plan is successful, the pb-phone plan is also accomplished.
This pb-phone makes d-cont (money) and pb-restaurant successful, which results in the
accomplished s-hunger goal. The entire I/O for this story is listed below. Each sentence
with a O mark is an input sentence, and output inferences follow each input sentence.

O john was hungry
john was not hungry

O john asked friend about sizzler location
john was not hungry

john ate ?food at sizzler

john knew sizzler location

john asked friend about sizzler location

O john drove to sizzler
john ate ?food at sizzler
john was inside sizzler
john drove to sizzler

O john had no money
john ate 7food at sizzler
john had money

O john wanted (john called-up friend)
john had money

john borrowed money from friend
john had comm-link to friend

john called-up friend

O john borrowed coin from waiter
john called-up friend

john had coin

john borrowed coin from waiter

103

Modules Correctness | E,,,

ASCII-to-DSR-GD | 89 0.037
st-parser 84 0.027
triple-encoder 81 0.026
plan-selector 93 0.054
gp-associator 82 0.060
action-generator 100 0.031
ts-generator 85 0.034
DSR-to-ASCII GD | 76 0.036

Table 5.1: Goal/plan analysis performance statistics for the connected modules.
The “Correctness” designates the percentage of the correct outputs compared with the de-
sired outputs. Correct output means that each and every unit 1n a output vector is within
0.15 of the unit value in the desired output vector. The value range is 0.0 to 1.0. E,,, des-
ignates an average Euclidean distance between the actual outputs and the desired outputs
over all the units,

Note the variable ?food is not still instantiated in this inference chain since there is no
way of knowing what John ate at Sizzler from the input story. During training, DYNASTY
experiences all kinds of ?food that John ate at Sizzler because the ID for the 7food variable
is set up as random in the training data. In other words, DYNASTY training with ID was
not statistically biased for certain instances. So in the output inference chain, the ID pattern
for ?food is simply a blending of all kinds of possible foods. However, statistically biased
generalization is possible in DYNASTY (see section 5.3.1). If we train DYNASTY with
John always eating steak at the restaurant by setting IDs for ?person and ?food together,
then we can get a default steak for ?food in the above story (as in section 5.3.1).

Other DYNASTY I/0O examples can be obtained from the story skeletons in appendix B.1
by replacing variables with suitable instance words. Table 5.1 shows the performance data
for each module when they are connected to process the 12 goal/plan-based stories randomly
produced from the story skeletons in the appendix B.1. To get the performance data, each
skeleton in the appendix B.1 is instantiated as two different stories by replacing different
instance words for the same variables. Table 5.1 shows over 76% correctness for all modules,
which is good for the chains of 8 modules connected to do the complex tasks. The average
Euclidean distance errors are less than 0.06 for all of the modules. The performance statistics
programs are listed in appendix G.1.

104

5.2.2 Script-based story processing

This section shows output traces for the script-based stories. DYNASTY processes the
script-based stories in the same manner as the goal/plan-based stories. The full expansion of
the script-based stories, including unmentioned events in the input sentence, are produced
as an output. DYNASTY reads the following shopping story:

DYNASTY> give me a story.
Mary needed milk. Mary entered Vons. Mary picked-up milk. Mary paid the
cashier.

The first event is processed to set up the top level goal as in the previous section.

input event: mary needed milk

st-parser:

st-parsing..

[evl STATE needed] [evl AGENT mary] [evl OBJECT milk]

triple-encoder:

event representations formed for needed

plan-selector:

selecting g/p and decoding...

(g2 GOAL d-cont] [g2 AGENT mary] [ev2 OBJECT milk] [NO]

action-generator:

generating actions and decoding...

[ev3 STATE had] [ev3 AGENT mary] [ev3 OBJECT milk]
ts-generator:

ts-generating...

mary had milk

DYNASTY processes the second block of events. DYNASTY processes a group of events
to select one plan (script). The grouping of events into a block is designated in the input
story by the user. DYNASTY knows in advance whether the stories are script-based or
goal/plan-based. If more than one sentence are grouped into one processing block, then
the story is script-based. This is because DYNASTY assumes that a non-scriptal plan has
only one act associated with it in the current implementation. For this block of events,

DYNASTY selects “pb-shopping” plan.

input event: mary entered vons. mary picked-up milk. mary paid to
cashier.

st-parser:

st-parsing...

[ev4 ACT entered], [ev4d AGENT mary], [ev4 TO vons]

105

[evS ACT picked-up], [ev§ AGENT mary], [evS OBJECT milk]
lev6 ACT paid], [ev6 AGENT mary], [ev6é OBJECT moneyl, [evé TO cashier]

triple-encoder:

event representation formed for entered, picked-up, paid
plan-selector:

selecting gp and decoding...

[p7 plan pb-shopping] [p7 AGENT mary] [p7 OBJECT milk] [p7 LOCATION
vons] [YES]

From the top-level goal, DYNASTY expands gp-tree to find the “pb-shopping” plan.
This search is simple because script-based stories are centered around a single plan.

gp-associator:

expanding gp-tree
start-node: d-cont
target-node: pb-shopping

expanding ...
d-cont pb-shopping

building inference chain and backward binding propagation...
(g8 GOAL d-cont] [g8 AGENT mary] [g8 OBJECT milk) [p9 PLAN pb-shopping]
[p9 AGENT mary] [p9 OBJECT milk] [p9 LOCATION vons]

From the selected plan, DYNASTY expands the full sequence of events for this plan,
filling-in unmentioned events in the input story.

action-generator:

generating actions and decoding...

[ev10 STATE had] [eviO AGENT mary] [ev10 OBJECT milk]

[evil ACT entered] [evil AGENT mary] [evil LOCATION vons]

[ev12 ACT got] [ev12 AGENT mary] [ev12 OBJECT cart]

[ev13 ACT picked-up] [ev13 AGENT mary] [ev13 ODBJECT milk]

[evi4 ACT waited] [evi4 AGENT mary] [evi4 LOCATION line]

[ev15 ACT paid] [evi5 AGENT mary] [eviS OBJECT money] [evi4 TO cashier]

[ev16 ACT left-for] [ev16 AGENT mary] [evié FROM vons] [evid TO home]

ts-generator:
ts-generating...

mary had milk

mary entered vons

mary got cart

mary picked-up milk
mary waited in line
mary paid to cashier
mary left vons for home

106

processing completed.
DYNASTY> give me a story

The entire 1/O for this story is listed below. The input sentences start with the O mark
as before. The script-based paraphrases follow the second sentence block.

O mary needed milk
mary had milk

0 mary entered vons

O mary picked-up milk
O mary paid to cashier
mary had milk

mary entered vons
mary got cart

mary picked-up milk
mary waited in line
mary paid to cashier
mary left vons for home

The other script-based I/O examples can be obtained from the story skeletons in ap-
pendix B.2 by replacing variables with the suitable instance words. Table 5.2 shows the
performance data for each module when they are connected to process the 12 script-based
stories generated from these story skeletons. To get the performance data, each skeleton in
the appendix B.2 produced 3 different script-based stories by replacing variables with differ-
ent instance-words. Table 5.2 shows slightly better performance than the goal/plan based
story performance. All of the modules have over 77% correctness and under 0.035 average
Euclidean distance error.

Table 5.3 shows the performance data when DYNASTY processes the 12 goal/plan-based
stories and 12 script-based stories together (generated from the skeletons in appendix B.1
and appendix B.2).

5.2.3 Role-binding errors

DYNASTY’s role-binding errors occur when word concepts are confused with similar
concepts, or word instances are confused with different instances in the same conceptual
category. Consider the following example (role-binding errors are surrounded with asterisks,
with correct outputs in the parentheses):

input event: john read michelin-guide

st-parser:

stparsing...

[ev1i4 ACT read] [evi4 AGENT john] [evi4 OBJECT michelin-guide]
triple-encoder:

event representation formed for read

107

Modules Correctness | E,,,

ASCII-to-DSR-GD | 90 0.026
ST-parser 86 0.027
triple-encoder 82 0.028
plan-selector 93 0.030
gp-assoctator 100 0.021
action-gen 89 0.035
TS-gen 87 0.034
DSR-to-ASCII-GD | 77 0.029

Table 5.2: Script processing performance for the connected modules. The definition
of Correctness and Eqvg 1s the same as in the table 5.1.

Modules Correctness | E,,,

ASCII-to-DSR-GD | 85 0.038
ST-parser 82 0.031
triple-encoder 80 0.027
plan-selector 91 0.044
gp-associator 82 0.061
action-gen 99 0.032
TS-gen 84 0.035
DSR-to-ASCII-GD | 75 0.032

108

Table 5.3: Script/goal/plan combined processing performance.

plan-selector:

selecting gp and decoding...

[p15 PLAN pb-read] [p15 AGENT john] [p15 OBJECT *yellow-page* (michelin-guide)]
[YES]

gp-associator:
expanding gp-tree
start-node: s-hunger
target-node : pb-read
expanding ...

s-hunger pb-restaurant pb-cook pb-eat d-know d-cont d-prox d-cont d-cont
d-prox d-cont pb-ask pb-read

building inference chain and backward binding propagation...

[g15 GOAL s-hunger] [gl5 AGENT john]

[p16 PLAN pb-restaurant] [p16 AGENT john] {p16 OBJECT 7food] [p16 LOCATICN
?restaurant]

(g17 GOAL d-know] [g17 AGENT john] [g17 OBJECT location] [g17 OBJ-ATTR
7market (7restaurant)]

[p18 PLAN pb-read] [p18 AGENT john] [pi8 OBJECT *yellow-page* (michelin-guide)]}

action-generator:

generating actions and decoding...

[ev19 STATE hungry] {evi9 AGENT john] [ev19 MODE not]

[ev20 ACT ate] [ev20 AGENT john] [ev20 OBJECT 7food] [ev20 LOCATION
?restaurant]

[ev21 STATE knew] [ev21 AGENT john] [ev21 OBJECT location] [ev21 0BJ-ATTR
7restaurant

(ev22 ACT read] [ev22 AGENT john] [ev22 OBJECT *yellow-page* (michelin-guide)]

ts-generator:

ts-generating...

john was not hungry

john ate 7?food at ?restaurant

john knew 7restaurant location

john read *yellow-page* (michelin-guide)

In this example, DYNASTY introduced a role-binding error at the plan-selection process,

and produced wrong instance (yellow-page) instead of correct instance {michelin-guide) for
the variable (7guide-book). This type of instance confusion occurs because DYNASTY some-
times confuses ID patterns of different instances in the same conceptual category. When ID
patterns are confused, they are not corrected through out the whole process which conforms
to the previous results using ID schemes [Miikkulainen, 1990a; Miikkulainen and Dyer, in
press|. However, when concept categories are confused, they can be corrected at the next
module. In the above example, the misproduced ?market concept by the GP-Associator

109

was corrected later by the Action-Generator. The instances are sometimes confused but the
concept categories themselves are rarely confused because DYNASTY experiences all kinds
of different instances for the same concept category during training.

5.3 Generalizations in DYNASTY

One of the advantages of DYNASTY, compared to symbolic systems, Is its automatic
generalization abilities. Based on the training data, DYNASTY can generalize previous ex-
periences to new cases, which is one form of similarity-based learning. DYNASTY s general-
izations are supported at three levels: (1) The DSRs support generalization at the represen-
tation level since similarly used words already have similar representations. The experiment
for DSR-based generalizations are described in section 5.3.2. (2) The ID unit supports gen-
eralizations at the processing level. The IDs are set up as random during training. Every
story is new to DYNASTY during processing because DYNASTY is trained using only story
skeletons with random IDs. For example, DYNASTY never saw the specific story instances
in the test data (used in sections 5.2.1 and 5.2.2 for the performance statistics) during the
training stage. However since DYNASTY learns the identity function to propagate any ID
pattern without alteration, it can propagate the specific ID pattern for the specific instance-
word by interpolation. So the performance tables in section 5.2.1 and 3.2.2 are the result of
generalizations to new stories. (3) Based on the statistical biases in the training data, DY-
NASTY can generalize the previous experiences to specific situations, and guess the default
instances when the input stories do not provide necessary specific knowledge. This kind of
generalization is called statistically-biased generalization (next section).

5.3.1 Statistically-biased generalizations: encoding experience-based goal/plan
preferences/defaults

In general, it is very difficult to encode statistically-biased knowledge using symbolic rule-
based systems, because symbolic rule-based knowledge must be uniformly applied to all the
relevant situations. However, humans can process statistically-biased knowledge easily, such
as personal preferences acquired through past experience. DYNASTY can process statistical
knowledge by biasing the training data. The following statistical knowledge was embedded
into the DYNASTY s goal/plan trees to test statistically-biased generalizations.

John always eats steak, while Mary always eats shrimp at the restaurant.

John always cooks fish, while Mary always cooks chicken when he/she is hungry.
John always asks a friend to know the restaurant location.

Mary always reads the Michelin-guide to know the restaurant location.

John always shops at Vons, while Mary shops at Lucky’s.

John always withdraws money from BOA, while Mary from Security-Pac.

John always drives when he goes to the restaurant.

Mary always walks when she goes to the restaurant.

110

Note that this knowledge is purely based on statistics from past experience. There are no
natural rules behind John's eating steak and Mary’s eating shrimp. They are just personal
preferences, and this statistical knowledge is difficult to be encoded in symbolic system’s rule-
bases, such as PAM [Wilensky, 1978]. Symbolic systems would require a lot of knowledge
engineering with very ad-hoc rules to encode such statistical knowledge, such as:

IF John is a diner
THEN John eats steak at the restaurant

IF John is a diner and John goes to the restaurant
THEN John drives to the restaurant

However, when the rules are too specific, those rules become very ad-hoc, i.e. they cannot
be applied to several different situations through instantiation and bindings. Connectionist
systems can handle these statistical data in natural way, since connectionist systems’ rule-
following behaviors emerge by extracting statistical regularities underlying the training data.

Appendix D.1 shows the statically-biased goal/plan trees which encode the personal
preferences about plan selection and default role fillers as described above. What happens
when DYNASTY is trained with these statistical biases? Consider the following two stories
(story 6 and 7).

(story 6) John was hungry. John wanted to know the Sizzler location. John
called up a friend.
(story 7) Mary was hungry. Mary wanted to know the Sizzler location. Mary
called up a friend.

When DYNASTY is trained with the goal/plan trees in appendix D.1, DYNASTY builds
up different goal/plan inference chains even though the two stories are different instantia-
tions of the same story skeleton. This is because DYNASTY has different default roles and
planning preferences for John and Mary.

The following is an output trace for the second sentence in story 6. Note that DYNASTY
infers that the food John might eat at Sizzler is steak because John always eats steak af
that restaurant.

input event: john wanted (john knew sizzler location)

st-parser:

st-parsing...

[ev38 STATE knew] [ev38 AGENT john] [ev38 OBJECT location] [ev38 OBJ-ATR
sizzler]

(ev39 STATE wanted] [ev39 AGENT john] [ev39 OBJECT ev38]
triple-encecder:

event representation formed for wanted

plan-selector:

selecting gp and decoding...

[g40 GOAL d-know] [g40 AGENT john] [g40 OBJECT location] [g40 OBJ-ATTR
sizzler] [NO]

111

gp-associator:
expanding gp-tree
start-node: s-hunger
target-node : d-know
expanding ...

s-hunger pb-restaurant pb-cook pb-eat d-know

building inference chain and backward binding propagation...

[g41 GOAL s-hunger] [g41 AGENT john] [p42 PLAN pb-restaurant] [p42 AGENT
john] [p42 OBJECT steak] [p42 LOCATION sizzler] [g43 GOAL d-know] [g43
AGENT john] [g43 OBJECT location] (g43 OBJ-ATTR sizzler]

action-generator:

generating actions and decoding...

[ev44 STATE hungry] [ev44 AGENT john] [ev44 MODE not]

[ev45 ACT ate] [ev45 AGENT john] [ev45 OBJECT steak] [ev45 LOCATION
sizzler

(ev46 STATE knew] [evd46 AGENT john] [ev46 OBJECT location] [ev46 OBJ-ATTR
sizzler]

ts-generator:
ts-generating. ..

john was not hungry

john ate steak at sizzler
john knew sizzler location

The following is trace for the third sentence in the same story (story 6). DYNASTY
infers “pb-ask”™ plan for John because that is John’s preference for the d-know goal.

input event: john called up friend

st-parser:

st-parsing...

[ev49 ACT called-up] [ev49 AGENT john] [ev49 TO friend]
triple-encoder:

event representation formed for called-up

plan-selector:

selecting gp and decoding...

(g50 PLAN pb-phone] [g50 AGENT john]) (g50 TO friend] [YES]

gp-associator:
expanding gp-tree
start-node: d-know
target-node : pb-phone
expanding ...

112

d-know pb-ask d-link pb-phone building inference chain and backward
binding propagation...

[g51 GOAL d-know] [g61 AGENT john] [g51 OBJECT location] [g51 OBJ-ATTR
sizzler]

[p52 PLAN pb-ask] (p52 AGENT john] [p52 OBJECT location] (p52 OBJ-ATTR
sizzler] [p52 TO friend]

(g53 GOAL d-link] [g53 AGENT john] [g53 TO friend]

[p54 PLAN pb-phone] [p54 AGENT john] [p54 TO friend]

action-generator:

generating actions and decoding...

[ev55 STATE knew] [ev55 AGENT john] [ev55 OBJECT location] [ev55 OBJ-ATTR
sizzler]

[ev56 ACT asked] [ev56 AGENT john] [evS6 OBJECT location] [ev56 OBJ-ATTR
sizzler] [ev56 TO friend]

[ev57 STATE had] [ev57 AGENT john] [ev57 OBJECT comm-link] [ev57 TO
friend]

(ev68 ACT called-up] [ev58 AGENT john] [evS58 TO friend]

ts-generator:

ts-generating...

john knew sizzler location

john asked friend about sizzler location
john had comm-link to friend

john called-up friend

For the story 7, DYNASTY infers a different kind of food and plan for Mary accord-
ing to the given statistical biases. The following traces are for the second sentence in the
Mary’s story (story 7). Only the traces of GP-Associator are shown here. We can see that
DYNASTY infers shrimp for the food that Mary ate at the Sizzler.

gp-associator:
expanding gp-tree
start-node: s-hunger
target-node : d-know
expanding ...

s-hunger pb-restaurant pb-cook pb-eat d-know

building inference chain and backward binding propagation...

(g41 GOAL s-hunger] [g41 AGENT mary] [p42 PLAN pb-restaurant] [p42 AGENT
mary] [p42 OBJECT shrimp] [p42 LOCATION sizzler] [g43 GOAL d-know] [g43
AGENT mary] [g43 OBJECT location] [g43 OBJ-ATTR sizzler]

The following traces are for the third sentence in story 7. The traces show that DY-
NASTY infers pb-read plan for d-know goal, instead of pb-ask plan. So the reason that

113

Mary called up a friend is different from that of story 6. For story 6, DYNASTY infers that
John called up friend because he wanted to ask the Sizzler location. However, for story 7,
DYNASTY infers that Mary called up friend to borrow the Michelin-guide to read it. Even
though this inference chain is longer than the one for story 6, this inference is reasonable

becanse DYNASTY knows that Mary always reads Michelin-guide to know the restaurant
location.

gp-associator:
expanding gp-tree
start-node: d-know
target-node : pb-phone
expanding ..

d-know pb-read d-cont pb-shopping pb-borrow pb-grasp d-prox d-cont d-know
d-link pb-walk pb-withdraw pb-steal pb-borrow pb-read pb-phone

building inference chain and backward binding propagation...

[g51 GOAL d-know] [g51 AGENT mary] [g51 OBJECT location] [g51 OBJ-ATTR
sizzler]

[p52 PLAN pb-read] [p52 AGENT mary] [p52 OBJECT michelin-guide]

[g53 GOAL d-cont] (g53 AGENT mary] [g53 OBJECT michelin-guide]

[p54 PLAN pb-borrow] (p54 AGENT mary] [p54 OBJECT michelin-guide] (p54
FROM friend]

[g55 GOAL d-1ink] [g55 AGENT mary] [g55 TO friend]

(p56 PLAN pb-phone] [p56 AGENT mary] [p56 TO friend]

Complete I/O’s for the story 6 and 7 with two more example stories are listed in ap-
pendix D.2. These examples show that DYNASTY can incorporate statistical knowledge
by biasing the training data. In other words, DYNASTY can produce different conclusions
for the same input with different past ezperiences. These abilities are very difficult for pure
symbolic systems, such as SAM [Cullingford, 1978] and PAM [Wilensky, 1978], and such
“subjective understanding” requires that the knowledge be pre-encoded by hand, as in the
POLITICS system [Carbonell, 1979].

5.3.2 Generalization experiments without IDs

When we do not use IDs in the word representations, DYNASTYs generalization abilities
can be measured by standard experiments [Lee et al., 1990]. Without IDs, generalizations
occur solely based on the similarity properties in the event, goal, and representations, which
are originated from the word level similarity properties in the DSRs. We tested DYNASTY s
generalization abilities without ID-units by training DYNASTY on some portion of the sto-
ries and by testing it with the remaining portion of the stories. In the following experiment,
we changed the ratio between trained and tested script-based stories. We used 2 different
script-based story skeletons (restaurant and shopping script-based story skeletons in appen-
dix B.2) and generated 16 script-based stories (8 for each script). Among these 16 stories,

114

Trained | Tested | E, Scr | Correct Scr | E; Ev | Correct Ev
12 4 0.003 100 0.021 99
8 8 0.004 100 0.022 99
4 12 0.007 100 0.023 99
2 14 0.012 100 0.044 98

Table 5.4: Generalization performance for the full story input. Trained (tested)
designates the number of trained (tested) script-based stories. E, Scr (E, Ev) designates
the average Euclidean distance over all the units for the plan-selector (action-generator)
module. Correct Scr (Correct Ev) designates the percentage of correctly recognized scripts
(events), where “correct” means that each and every unit in a script (event) representation
is within 0.1 of the correct unit value (0.0 to 1.0 range). There are 10 units in the script and
event representations in this experiments. No ID units are included.

Trained | Tested | E, Scr | Correct Scr | E, Ev | Correct Ev
12 4 0.005 100 0.021 99
8 8 0.008 100 0.021 99
4 12 0.012 100 0.023 99
2 14 0.023 100 0.067 98

Table 5.5: Generalization performance for the partial script story input.

we used from 2 up to 12 stories for training, and 14 down to 4 stories for testing the gener-
alization abilities. In table 5.4, the sum of the number of stories under the first two columns
are always 16, the total number of stories. The first row designates the results of having 12
stories for training, and 4 stories for testing out of total 16 stories. The last row designates
the results of having 2 stories for training and 14 stories for testing. Table 5.4 shows DY-
NASTY’s generalization ability with the full story inputs, where all the events in the script
knowledge (see appendix C.3) are shown in the input stories.

Table 5.4 shows excellent generalization performance. The percentage of correctly rec-
ognized scripts and correctly produced events are not reduced when the number of trained
instances decrease (the number of testing instances increase). Table 5.5 shows DYNASTY's
generalization ability for partial story input, where only the events star-marked among the
entire script events in the appendix C.3 appeared in the input story.

115

modules | 1 unit { 2 unit | 3 unit 4 unit | 5 unit

TE 74 69 65 61 34

(0.031) | (0.037) | (0.043) | (0.048) | (0.054)

PS 87 82 76 71 62
(0.059) | (0.064) | (0.069) | (0.072) | (0.080)

GP 75 69 64 57 49
(0.067) | (0.073) | (0.077) | (0.084) | (0.094)

AG 92 86 82 75 66
(0.037) | (0.044) | (0.049) | (0.057) | (0.067)

Table 5.6: Unit damage resistance for each module. The table shows the result of
1 to 5 unit damaged among 10 units in the DSR representations. Each number designates
the correctness measure: percentage of correct outputs over all the outputs for each module.
The correct output means that each unit in the output is within 0.15 value from the desired
output (value range 0 to 1). The numbers in the parentheses designate the average Euclidean
distance over all the units. (TE: Triple-Encoder, PS: Plan-Selector, GP: GP-Associator, AG:
Action-Generator)

The generalization performance is almost the same as the full story case, since the plan-
selector robustly recognizes the correct script when only partial input stories are given.

5.4 Damage resistance

5.4.1 Lesioning units

The robustness of DSR representations against damage was tested by eliminating the
last n units from each word representation in the GD while DYNASTY is processing the
stories. These damaged units were fixed at 0.5, which are the “don’t know” values. Ta-
ble 5.6 shows performance declines for each module when more and more units are damaged.
The performance decline is approximately linear to the number of unit damaged. The per-
formance decline is about 4 to 9 percent drop at each step when each of the last units
is damaged. The average Euclidean distance errors increase 0.004 to 0.009 range for each
unit’s damage. This table is the result of processing the same 12 goal/plan-based stories as
used in section 5.2.1. These stories were produced from the story skeletons in appendix B.1
by randomly instantiating the variables. The unit damage analysis programs are listed in
appendix G.3.

116

modules | 1% 2% 5% 10%

TE 80 75 62 40

(0.027) | (0.029) | (0.045) | (0.129)

PS 92 83 66 42
(0.058) | (0.060) | (0.079) | (0.105)

GP 82 77 65 49

(0.061) | (0.074) | (0.094) | (0.118)

AG 100 91 76 52

(0.040) | (0.058) | (0.089) | (0.110)

Table 5.7: Weight damage resistance for each module. The table shows from 1
to 10 percent of random weight damage resistances. The numbers designate the correctness
measure, and the numbers in the parentheses designate the average Euclidean distance errors
as before. The module name abbreviations are the same as in the table 5.6.

5.4.2 Lesioning weights

We have tested DYNASTY’s robustness against weight damage by randomly killing some
amount of the network’s weights while DYNASTY is processing the stories. These weights
were randomly fixed at 0, the middle value of the entire weight value range. Table 5.7
shows the performance decline as more and more weights are damaged for each module. The
random array position of weight matrices were fixed at 0 according to the damage percentage.
For example, when damage percentage is 1%, then 1 percent of weights are damaged at
several positions in the weight matrices (by random number generation). Table 5.7 shows
almost linear decrease in performance, and linear increase of Euclidean distance errors as
more and more percentage of weights are damaged. This table is a result of processing the
same 12 goal/plan-based stories as in the unit damage experiment. Weight damage analysis
programs are listed in appendix G.2.

5.5 Discussion

Compared to pure symbolic systems, such as SAM [Cullingford, 1978; DelJong, 1979
and PAM [Wilensky, 1978], DYNASTY demonstrates many desirable features of distributed
connectionist systems, i.e. automatic knowledge encodings by training, automatic general-
1zation with similarity-based representations and ID units, statistically-biased generalization,
fault-tolerance, and graceful performance degradation. DYNASTY is able to encode the sta-
tistical knowledge (such as personal preferences), which are very difficult to be encoded using

117

symbolic rules, but are easy for humans to process. This is because DYNASTY s knowledge
1s formed gradually by extracting statistical regularities from the past experience which is
represented by training data. Unlike symbolic systems, DYNASTY is also suitable for the
massively parallel hardware implementations using VLSI technology [Mead, 1987).

A modular connectionist architecture with recursive, compositional distributed represen-
tations (the DSRs in DYNASTY) opens a new way to building practical symbolic/ connec-
tionist systems that can perform fairly high-level inferencing tasks. This type of neurally
inspired cognitive architecture can bridge the gap between logical /symbolic Al and the more
numerical /statistical neural network field. Usually symbolic Al systems lack expandability
since they are brittle and break easily with larger practical data, and symbolic systems can-
not encode statistical knowledge well without manually encoding very ad-hoc rules. But in
the DYNASTY case, when the system needs to process larger practical data, all it needs
is to increase amount of training data. Connectionist implementation gives DYNASTY the
abilities to encode fuzzy statistical knowledge as well as rule-based knowledge.

118

Chapter 6

Related research

Three areas of previous research influenced the DYNASTY project: symbolic systems,
(2} distributed representations, and (3) distributed connectionist systems. In the symbolic
systems section, we discuss pure symbolic systems which utilize important knowledge struc-
tures such as scripts, plans and goals for story understanding. In the distributed representa-
tion section, we discuss connectionist (distributed) knowledge representation schemes used
to build high-level cognitive systems. In the distributed connectionist system section, we
discuss connectionist implementations of high-level cognitive systems which were similar to

DYNASTY at the task level.

6.1 Symbolic systems

6.1.1 Script processing systems

SAM (Script Applier Mechanism) [Cullingford, 1978; Schank and Riesbeck, 1981] is a
symbolic system which can read stereotypical stories, such as:

John went to a restaurant. He ordered a hot dog. The waiter said they didn’t
have any. He asked for a hamburger. When the hamburger came, it was burnt.
He left the restaurant.

SAM processes stories using a knowledge structure for stereotypic action sequences called
a script [Schank and Abelson, 1977; Dyer et al., 1987]. The above story shows SAM’s
deviation haundling ability. SAM can infer why John left the restaurant without eating
the burnt hamburger. It is difficult for DYNASTY to handle this kind of deviation since
DYNASTY’s restaurant plan has only the normal event sequences that occur in a restaurant.

To demonstrate its performance, SAM can do question-answering and summarization (in
English and in Spanish) according to the story it read, such as:

Q1: Did John sit down in the restaurant?
Al: Probably.

SAM’s scripts are organized as hierarchical trees. For example, the Museum-script is
embedded in a more general Trip-script, and the Museum-script has a Bathroom-script and
Restaurant-script as its sub-scripts. The knowledge of a Trip-script can be inherited to the
Museum-script while SAM is processing the story. Currently DYNASTY does not have a
script hierarchy for characteristic inheritance in SAM’s sense, but can handle multiple scripts
in one story easily because a script is a special complex plan to DYNASTY. DYNASTY s

119

script (plan) knowledge is not organized in a strict hierarchy, but organized into plan-for/sub-
goal relations with goal knowledge (see section 3.4.1).

SAM consists of several symbolic modules including a parser, a memory instantiator
and a script applier. The parser (ELI) and memory system (PP-Memory) were adopted
from the previous system MARGIE [Schank, 1975]. ELI (English Language Interpreter)
[Riesbeck, 1975] was one of the first parser modules to convert English input to the language-
independent representations called Conceptual Dependency (CD) [Schank, 1973]. PP-Memory
is the tokenizer module [Rieger, 1975] which finds the PPs (Picture Producers: objects, e.g.
human) in the CD representation and assigns tokens (instances, e.g. John) to them. The
SAM’s Script-Applier is the module which fetches the script data structure from the memory
and make inferences to build story representations. It does this by use of symbolic pattern
matching.

Script selection in SAM is performed using script-header patterns. A script-header is a
collection of patterns for those events which will invoke or initiate a script. SAM defines
4 types of script-headers and they are applied according to priority rules. But sometimes,
it is difficult to recognize a correct script by using just the predefined script headers, so
SAM must do the backtracking to correct the mistake in recognizing scripts. For example,
consider the following story:

John went to the restaurant. He mopped the floor. He cleaned the table. He
emptied out the trash can.

This story was not actually discussed in the original SAM system. However, for this story,
SAM would recognize the restaurant script since the first event is a perfect locale header
[Cullingford, 1978] of the restaurant script. When SAM reads the second event, it now must
backtrack to select the cleaning script. DYNASTY however is trained with all the events in
the input stories, not just with a few headers, to select a single script without backtracking.

Consider how DYNASTY reads the above story. When DYNASTY reads the first event,
it appears to select the restaurant script like SAM does, but DYNASTY gradually changes
the selected pattern to the cleaning script when it reads the next several events (see sec-
tion 3.4.2 for the description of the plan-selector). In other words, DYNASTY’s plan selection
is not performed by a partial pattern matching like SAM, but by a holistic approach. Since
DYNASTY's Plan-Selector is trained with all the events that would form a single script
using a recurrent network, all the input events cooperate to gradually select one script.

FRUMP {[DeJong, 1979] addressed additional problems in script recognition by using
discrimination networks (D-Net) [Feigenbaum, 1963]. FRUMP is a script processing system
that can read news stories taken directly off of the UPI news wire. Using sketchy scripts
and solely top-down processing, FRUMP can skim newspaper stories faster than SAM. But
FRUMP’s D-Net-based script recognition system was keyed off the first sentence of the
stories, and cannot handle the above mopping story either.

SAM and FRUMP have many problems as story understanding systems, and the most
serious one is the problem of generality. Since symbolic scripts are rigidly defined according
to stereotypic event sequences, SAM and FRUMP are not able to process non-stereotypical,
but still understandable stories. But DYNASTY's main inference engine is goal/plan anal-

120

ysis module like PAM [Wilensky, 1978] so DYNASTY can handle non-stereotypical stories.
Moreover, since SAM and FRUMP have been implemented as pure symbolic systems, they
have many unresolved problems such as (1) smooth script recognition without backtracking
and (2) difficult knowledge engineering problems in script design (e.g. what the main-
conceptualization is and how many tracks the given script needs, etc.). The connectionist
approach does not immediately solve all the knowledge engineering problems since the train-
ing data still must be devised manually. However connectionist approach can reduce the
difficult knowledge engineering problem by designing system by training, not by program-
ming. Since scripts are trained, not hand-crafted in DYNASTY, DYNASTY can reduce
difficult knowledge engineering problems.

6.1.2 Goal/plan analysis system

PAM (Plan Applier Mechanism}[Wilensky, 1978] is a symbolic explanation-based story
understander which can read non-stereotypical stories such as:

John wanted money. He got a gun and walked into a liquor store. He told the
owner he wanted some money. The owner gave John the money and John left.

PAM can perform question-answering based on the story contents and also can paraphrase
the story from a specific character’s point of view, using goal/plan analysis (e.g. story
paraphrase from John’s point of view) such as:

I needed to get some dough. So I got myself this gun, and I walked down to the
liquor store. I told the shopkeeper that if he didn’t let me have the money then
I would shoot him. So he handed it over. Then I left. [Wilensky, 1978, page 5

Wilensky’s claim is that we cannot have all the necessary scripts for all the possible stories.
We need more dynamic structures to understand those non-stereotypical, but understandable
stories. Besides the original goal/plan knowledge developed by Schank and his colleagues
[Schank and Abelson, 1977], PAM has goal/plan interaction knowledge such as goal-conflicts
and goal-subsumption for a single agent level, and goal-concord and goal-competition at the
multi-agent level [Wilensky, 1978]. So PAM can handle the stories in which several agents’
goals and plans are interrelated, such as:

John wanted to watch the football game, but Mary said she was going to watch
the Bolshoi ballet. John punched Mary in the mouth and put on the ball game.

In the above story, John and Mary have a goal competition. PAM can understand why John
punched Mary in the mouth by using goal-competition knowledge. DYNASTY is a connec-
tionist implementation of a subset of PAM, including script handling abilities. DYNASTY
i1s restricted to the single planner oriented goal/plan inferencing and does not deal with the
goal/plan interactions between single and multi-agents. To process goal/plan interactions,
DYNASTY needs to be equipped with the theory of goal interactions and understanding
of the story situations that the goal interactions give rise to. The goal interaction theory

121

produces meta-level rules [Wilensky, 1983] which need another level of knowledge encodings
in DYNASTY.

PAM uses both bottom-up and top-down ‘processing in story understanding. Since PAM
does not have predefined scripts, but dynamically connects the goal/plan structure to build
goal/plan inference chains on the fly, PAM can handle non-stereotypical stories, which are
impossible for SAM. At the implementation level, PAM uses complex, sometimes ad-hoc rules
in the processing, and has difficult knowledge engineering problems such as devising efficient
rules for all the knowledge that is necessary for goal/plan processing. So PAM has a scale-up
problem which is common to every rule-based symbolic system. When PAM needs to process
more stories, even if the stories are similar to the ones that PAM already processed, PAM still
needs to be angmented with new rules for these similar stories. So it is difficult to scale up
PAM’s capability to process new but similar stories unless more rules are devised and added
to PAM’s rule-base. On the other hand, DYNASTY’s goal/plan knowledge is not hand-
crafted using ad-hoc rules, but are statistically learned from the goal/plan processing data.
The training data itself are hand coded and the rule-based behaviors statistically emerge
from these training data. As a result, when DYNASTY needs to process similar but new
stories, DYNASTY can automatically generalize the old experiences to these similar stories.
Moreover, DYNASTY can perform statistically-biased generalizations which are difficult
to encode in PAM’s rule-base. It would be too ad-hoc if PAM’s rule-base would include
statistical data such as personal preferences for the plan selection or for the specific roles (e.g.
John always eats steak at Sizzler). However PAM can process a wider range of stories than
the current implementation of DYNASTY can do, including goal/plan interactions between
several agents. DYNASTY needs to be trained with the goal/plan interaction knowledge to
process PAM’s input stories, and it is not clear how it can be trained with such a knowledge
with the current connectionist theory.

6.1.3 Other symbolic natural language systems

Symbolic natural language understanding models currently go far beyond simple script
and plan applications. BORIS [Dyer, 1983] can handle stories based on affects and themes.
In BORIS, thematic knowledge is organized around knowledge structures called TAUs (The-
matic Abstraction Units) which model planning failures. OpEd [Alvarado et al., 1990
and CM (Correction Machine) [Quilici, 1991] can handle texts involving belief and argu-
ments. OpEd uses AUs (Argumentation Units) to process economic editorial texts, which
are complex knowledge structures such as scripts, but involving belief representations. CM
does not apply argument umnits, but dynamically constructs argumentation chains using be-
lief/goal/plan analysis. CM uses a plan-based approach to handle belief and argumentation,
and recognizes/responds to user’s plan oriented misconceptions. OCCAM [Pazzani, 1988;
Pazzani and Dyer, 1989] can do EBL (Explanation-Based Learning) while it 1s reading texts.
That is, OCCAM postulates casual relationships based on causal patterns, and can learn
the new facts without requiring a large number of examples. Pure SBL (Similarity-Based
Learning) systems, such as IPP [Lebowitz, 1980], need large number of examples to learn
new facts by generalizations.

Current DC (distributed connectionist) systems do not yet attempt story understand-

122

ing at this level, i.e. handling affects, belief, argumentation and EBL. Before current DC
systems can get to this level, many processing and architectural issues must be resolved, in-
cluding connectionist episodic memory and connectionist control implementations. Current
connectionist systems, including DYNASTY, can only do SBL, and cannot do EBL, as can
symbolic systems such as OCCAM.

6.2 Distributed representations

Even though nobody has presented a precise definition of what a distributed represen-
tation really is, there have been several techniques for forming distributed representations
based on the following general description:

Each entity is represented by a pattern of activity distributed over many com-
puting elements, and each computing element is involved in representing many
different entities (Hinton et al., 1986, page7).

van Gelder gives an interesting philosophical discussion regarding distributed representations
in [vanGelder, 1989]. After thoroughly reviewing several schemes for forming distributed
representations, he argues that the essence of a distributed representation turns out to be
semantic superposition, i.e., multiple contents represented over the same space whether the
space is over patterns of activation (e.g. coarse codings) or on the pattern of connectivity
(e.g. tensor representations). Below, DYNASTY's DSR approach 1s compared with such
previous research on forming distributed representations.

6.2.1 Microfeature-based representations

In the microfeature-based representation scheme, a connectionist knowledge engineer
defines several microfeatures in a certain domain to represent an entity in a fixed vector
format. Each bit corresponds to one micro-feature (or conjunction of two micro-features
[McClelland and Kawamoto, 1986]), and the entity to be represented has “on” values in
the bits which correspond to the microfeatures that the entity possess. Figure 6.1 shows a
micro-feature based representation of the concept milk.

A micro-feature based representation is global, so that one representation can be used
in many applications. It is a similarity-based representation, so that similar concepts have
similar micro-features, thus supporting generalizations. However, there are some disadvan-
tages to the micro-feature based technique: (1) it is difficult to determine the necessary
micro-features in advance to cover every entities in the domain, and (2) there is no auto-
matic way to learn the micro-features for an entity, so the representation must be manually
encoded. For example, we cannot assign POINTEDNESS or BREAKABILITY features to
milk in the above example. Therefore, representations are very sparse and most of the
bits become “off”. But DSRs are automatically learned using a set of propositions and are
similarity-based without predefined microfeatures.

123

MILK:

naute
ferndle r 3-D as inanimate
2-D ligyid .
ma'e animate
| -4 gol 1
|
sma foc:Li
human 1o
nbnHurrfan medum r un y
0 ldrge fragi +]
unbreakable
hard utensil
furniture

Figure 6.1: Micro-feature based representation of concept milk. Each micro-feature
name is after (McClelland and Kawamoto, 1986).

6.2.2 Coarse-codings

In the coarse-coding scheme, each unit has a carefully designed “receptive field” and
every unit which has a corresponding value in the receptive field is turned on to represent an
entity [Touretzky and Hinton, 1988]. For example, to represent the triple [F A B], each and
every unit which has F, A, B in the first, second, third position in its receptive field should
be turned on (Figure 6.2).

Carefully designed receptive fields can be used globally for several applications, and rep-
resentations are coarsely similarity-based. But coarse-coding schemes have the following
disadvantages: (1) much human effort is needed to design receptive fields, and the represen-
tations are not automatically learned, and (2) coarse-coded memory represents many entities
in the same representation space at the same time. To access an entity in a coarse-coded
system, a complex access mechanism is needed such as a pullout network [Mozer, 1984}
or clause-space [Touretzky and Hinton, 1988] which uses basically a winner-take-all scheme
[Feldman and Ballard, 1982] to single out an entity. In contrast, accessing DSRs needs only
simple architectures such as AR (Auto-associative Recurrent) networks. However, accessing
DSRs 1s a stack popping operation and therefore is very sequential.

6.2.3 Learning internal representations by BP

This scheme automatically learns the internal representations of an entity/relation in the
hidden layer of the network by use of backpropagation (BP) [Rumelhart et al., 1986b; Hinton,
1986]. However these internal representations are locally confined to the network, so they

124

coarse-coding receptive field
for single unit

S|L|O[Z|M]O
<|H|x{|m|[>»
D v|Z|~|O|m

F1 F2

Tn

3

Figure 6.2: Randomly generated receptive field table for a working memory. A
receptive field of an unit is defined as the cross-product of the symbols in the three columns.
The unit should be turned on to represent [F A B], [M H J] etc, but not turned on to
represent, say, [F B BJ.

cannot be used in other applications. For example, in Hinton's family tree example [Hinton,
1986], the network develops two different representations for the same entity, one for the input
and the other for the output layer. The developed internal representations guide the network
to correctly retrieve family relationships. However, these internal representations cannot be
utilized in other networks. Every network would develop its own internal representations
in the hidden layer. Besides feed-forward networks, recurrent networks can also be used to
develop internal representations using BP [Pollack, 1988; Elman, 1988; Jordan, 1986]. A key
feature of DSRs is that the representations formed in the hidden layer are saved in a global
memory called GD, so that they can be used in other applications.

6.2.4 DPollack’s RAAM

Our XRAAM architectures are based on Pollack’s RAAMs (recursive auto-associative
mermory) [Pollack, 1988] that is an implementation of Hinton’s reduced description idea [Hin-
ton, 1988]. RAAM is a PDP architecture which can devise compositional, similarity-based,
and recursive PDP representations. The resulting RDR (Recursive Distributed Representa-
tions)[Pollack, 1990] can encode the variable-sized recursive and sequential data structures,
such as trees and stacks in fixed resource systems. It has been argued in [Pollack, 1989] that
RDRs can form a bridge between the data structures necessary for high-level cognitive tasks
and the associative, pattern recognition machinery provided by neural networks, since they
combine aspects of features, pointers and structures. F igure 6.3 shows the RAAM architec-
ture used to encode stacks, which is actually a combination of two single layer feed-forward
networks.

125

output

- stack top
Training feedback _
environment [stack hidden
= stack top
input

Figure 6.3: Recursive auto-associative memory The memory develops compositional
distributed representations as the outputs of the hidden layer. These representations are part
of the training environment, which therefore evolves with the weights in the network. The
lower part of the networks learns to encode these representations while the upper part learns
to decode them. The encoder and decoder will ultimately be used as separate mechanisms.

A RAAM can be used to encode parse trees so that it can be applied for syntactic-level
processing [Chalmers, 1990]. RAAMs, however, lack an external storage for each representa-
tion formed, and thus the resulting RDRs are not global. Pollack’s RAAM architecture also
lacks semantics at the word level in its representations. Current RAAM’s applications have
been restricted to syntax processing; there are no conceptual level applications of RAAMs,
But DSRs are learned using propositions in XRAAM, so they have word-level semantics and
can be applied to conceptual information processing as has been done in DYNASTY. What
1s needed for RDRs is another level of RAAM style architecture to develop semantic level
representations which have all the strong features of RDRs. This approach was taken in the
DSR learning architecture.

6.2.5 Miikkulainen’s FGREP

FGREP (Forming Global Representations using Extended backPropagation) [Miikku-
lainen and Dyer, 1988] is a mechanism to develop global distributed representations using
the same kinds of symbol recirculation ideas used in the XRAAM architecture. FGREP’s
representations are optimal for their processing tasks because the system learns the repre-
sentations at the same time it is trained to perform those tasks. The basic idea of FGREP
is to extend the BP error signal to an additional input layer during the backpropagation
learning to modify the input representations as if they were weights (Figure 6.4).

The advantage of FGREP representations are that they are optimal for the given tasks
and have similarity properties, i.e., the representations which are used similarly in the tasks

126

new representations

input layer:

modify representation
B, hidden layer

8 output layer:
form error signal
'

, ¢ input pattern

LEXICON

teaching pattern

Figure 6.4: Basic FGREP architecture. The system consists of a three-layer BP network
and an external global lexicon containing the input/output representations. At the end of
each BP cycle, the current input representations, as an extra layer of weights, feed into
the input layer, and are modified according to the BP extended error signal. These new
representations are loaded back into the lexicon, replacing the old representations of the
words used.

end up being similar to each other. However, FGREP representations are developed during
specific task processing, so performance becomes poor when FGREP is applied to unrelated
tasks. When we combine the architectures for different tasks, the single resulting FGREP
representations can be developed during the combined processing tasks, so it can provide
optimal performances for several different tasks [Miikkulainen and Dyer, 1989; Miikkulainen
and Dyer, in press]. DSRs are, however, learned independent from any particular processing
task, so the representations should be useful in any task requiring access to the propositional
content of word meanings.

6.3 Distributed connectionist systems

This section compares DYNASTY with previous distributed connectionist systems that
perform high-level reasoning, such as story understanding.

6.3.1 DISPAR

DISPAR (DIStributed PARaphraser) {Miikkulainen and Dyer, 1989: Miikkulainen and
Dyer, in press] is 2 PDP level system which reads partial script-based stories and paraphrases
them as causally complete output stories using FGREP representations [Miikkulainen and
Dyer, 1988]. DISPAR’s domain is restricted to script processing while DYNASTY concen-

127

trates on goal/plan analysis (including script processing). After paraphrasing the stories,
DISPAR ends up developing new representations which are optimal for the paraphrasing
tasks. DISPAR’s representations are developed on-line while it 1s processing some specific
applications. This is different from DYNASTY’s DSRs because DSRs are developed off-line
independent of any specific application. DISPAR uses a global lexicon which is the same
as our global-dictionary, but DISPAR’s global lexicon contains not only word concepts but
also script and role representations [Miikkulainen and Dyer, 1989; Miikkulainen and Dyer,
n press].

DISPAR consists of 4 different modules of HR (Hetero-associative Recurrent) networks:
sentence-parser, story-parser, story-generator and sentence-generator. Each module per-
forms simple pattern transformations. The sentence-parser analyzes the sentences into the
case-role assignment forms [McClelland and Kawamoto, 1986]. The story-parser builds up
script representations from the case-role assignment forms. The other two modules do the
exact reverse transformations: from script representations to the case-role assignment forms,
and finally to the output sentences. The main architectural difference between DISPAR
and DYNASTY is that DYNASTY uses recursively encoded fixed length representations for
events and scripts while DISPAR uses flat representations which have separate banks for
tl.r case-roles in the representations. Therefore all the event/script representations in DY-
NASTY have the same number of units as the word representations. However DISPAR has
at least 6 times more units in the event representations and 7 times more units in the script
representations than the word representations [Miikkulainen and Dyer, 1989; Miikkulainen
and Dyer, in press]. This fixed length encoding of high-level event/script representations
enable DYNASTY to handle embedded sentences (see section 3.3.3) which cannot be pro-
cessed in DISPAR since DISPAR’s high-level representations cannot be compressed into a
fixed length.

The FGREP representations developed in DISPAR. are too similar to each other when
two words are used similarly in the tasks because there is no way to control the similarity
of two words except through the usages in the tasks. DYNASTY also suffers from the
same kind of too-similarity problem. Theoretically, DYNASTY’s DSRs can be varied by
adding/deleting more propositions in the proposition space (see result in section 5.1), but
in practice it is very difficult to find the correct set of propositions for the applications. To
solve this too-similarity problem, Miikkulainen and Dyer introduced in DISPAR a cloning
mechanism to develop instance representations (e.g. John) from the generic concepts (e.g.
human) by attaching random, fixed identification (ID) bits to the FGREP representations,
and DYNASTY adopts this ID technique (see section 2.9). But the bad thing is that it turns
out that 90% of the time is actually used to learn the ID parts of the representations since BP
is very inefficient in learning to copy the static patterns to different places [Miikkulainen and
Dyer, 1989]. However, Miikkulainen and Dyer [in press] have shown that an exponentially
increasing number of ID patterns can be learned by DISPAR with only a polynomial amount
of effort. This result is important, because both DISPAR and DYNASTY use IDs to handle
the variable binding problem in distributed connectionist systems. While the distributed,
similarity-based part of a word representation allows each system to generalize, the ID part
gets passed on unaltered and thus allows unique bindings to be propagated.

Since DISPAR’s domain is only script-based story processing, DISPAR does not need

128

backward binding propagation like DYNASTY. This is because the selected script structure
has the same variable sets as input stories. By the same reason, DISPAR does not need
unification matching process either. When input stories do not provide instances for a
certain variable, DISPAR guesses plausible bindings using statistically-biases generalizations.
DISPAR can automatically learn the representations of function words such as articles,
prepositions and conjunctives, even for punctuation, because FGREP is operating on-line
while processing the stories. Every function word has its own role in the story processing,
even the period. That is why DISPAR can form representations for function words. However,
DYNASTY uses off-line DSR-Learner to automatically learn the representations of words
using semantic case-role structures. Since the function words do not have necessary semantic
case-role structures, DYNASTY cannot automatically learn the representations of function
words. As a result, DYNASTY ignores the function words during parsing, while DISPAR
does not. However, DSRs for the word semantics has many desirable properties for symbol
processing as described in section 2.2.

6.3.2 DISCERN

DISCERN (DIstributed SCript processing and Episodic memoRy Network) [Miikku-
lainen, 1990a] is an extension to DISPAR. The domain remains the same (script-based
story processing), but DISCERN includes episodic and semantic memory components. DIS-
CERN'’s episodic memory utilizes Kohonen’s feature maps [Kohonen, 1984] which have been
modified to store hierarchical script representations. DISCERN’s semantic memory (global
lexicon) also consists of double feature maps which are formed and connected by Hebbian
associative training. DISCERN also has a question-answering subsystem which is a slight
modification of the original DISPAR networks. Miikkulainen’s main concern in extending
the DISPAR system is to explore the role of self-organizing memory using Kohonen's fea-
ture maps while DYNASTY concentrates on the extension of application domains to cover
dynamic goal/plan analysis as well as static script processing.

6.3.3 DCPS

DCPS (Distributed Connectionist Production System) [Touretzky and Hinton, 1988] is a
connectionist rule interpreter for a restricted class of production rules based on coarse-coded
distributed representations and the Boltzmann machine learning algorithm. In DCPS, the
authors implemented pattern matching and variable-binding problems in a connectionist
framework. The condition part of each production rule consists of two triples of terms,
which are either grounded such as [A B C] or of the form [x A B] where x is a variable and
A, B, C are constants. Only two triples are allowed in the condition part of each rule, and
only one variable is allowed in each rule. Moreover the variable position is restricted to the
first position of each triple. For example, DCPS can interpret rule such as:

if (x AA) (xBB)
then add(G A B), delete(x A A), delete (x B B)

Figure 6.5 shows DCPS’s top-level architecture. The working memory of DCPS is a set of
129

rule
space

c1 2
clause
clause 4—@
space
space

=\
\

Figure 6.5: DCPS top-level architecture

coarse-coded binary state units which represent a set of triples. To find out which condition
part of a production rule matches the working memory, a special set of units called the
clause-space are introduced: one for the first and one for the second triple in the condition
part of a production rule. For the variable binding, another set of coarse-coded units called
the bind-space is used. In the bind-space, a binding unit representing the constant, say “A”,
is connected to all units in the clause-space which represent triples whose first element is
“A”. In other words, all the possible bindings must already be statically represented in the
memory, which is a different approach from DYNASTY or DISCERN, where the bindings
are propagated through the network using ID units.

DCPS is successful for an extremely limited form of rules, and it is not obvious how the
technique can be applied if the position of the variables in the rule are changed and/or if
the working memory also contains variables. Moreover, their coarse-coded representations
require a large amount of human effort, and complex access mechanisms such as clause-
spaces. In contrast, DSRs in DYNASTY are automatically learned from a set of propositions
and need relatively simple access mechanisms, such as XRAAMs and the GD.

6.3.4 CRAM

CRAM [Dolan, 1989] is a distributed connectionist system which is able to read single
paragraph, fable-like stories, and either give a thematically relevant summary or generate
planning advice for a character in the story. CRAM is implemented using special connec-
tionist networks called tensor manipulation networks, where the operation of the network
is interpreted as manipulations of high rank tensors (generalized vector outer products)

130

[Dolan and Smolensky, 1989; Smolensky, 1987b]. The operations on tensors are interpreted
as operations on symbol structures in the same spirit of DYNASTY in which the associative
operations on the triples are interpreted as operations on symbol structures. CRAM and DY-
NASTY both exploit functional design approaches, called symbolic neuro-engineering [Dyer,
1990b] in which we define functional modules first, and then replace them with connectionist
architectures,

CRAM’s role-binding architecture uses conjunctive-coding which stores several composi-
tions of [schema role filler| triples in one 3-D cube, later allowing the system to retrieve fillers
when the schemata and roles are given. For example, when the long-term memory stores the
[restaurant DINER ?person| triple in a rank-3 tensor representation in a 3-D cube, the input
triple [restaurant DINER John] in the short-term memory can be matched to the long-term
memory triple. The binding of John to ?person can be propagated to the other triples such
as [restaurant PAYER John] since the DINER should be the PAYER in the restaurant. All
these processes are implemented via a complex architecture between short-term mernory and
long-term memory using rank-4 exploded bindings [Dolan, 1989,

CRAM uses carefully designed, almost orthogonal micro-features to obtain reasonable
performance in the tensor binding/ unbinding process [Smolensky, 1987b]. Since tensor ma-
nipulation networks cannot handle non-orthogonal similarity-based representations without
running into cross-talk, CRAM actually has to have additional circuits to reduce cross-talk
for satisfactory performance, even with the micro-feature representations. Actually CRAM
could adopt DYNASTY’s DSRs as a filler representations in the [schema role filler] triples
and make tensor manipulation network work as long as the schema and role representations
are kept orthogonal to each other in the triples.

6.3.5 DUCS

DUCS [Touretzky and Geva, 1988] is a distributed connectionist schema processing sys-
temn which emphasizes a concept and role inheritance mechanism in a connectionist frame-
work. Unlike other distributed connectionist schema processing systems (such as CRAM),
DUCS uses a micro-feature-based distributed representations for both slot names and slot
fillers. DUCS can encode fine semantic distinctions as subtle variations on the canonical
pattern for a slot. For example, in the bird schema listed below, if we ask about the NOSE
of the bird instead of the BEAK, DUCS can still answer the question even though the bird
does not have NOSE because the slot representation of BEAK is similar to that of NOSE.

(bird NAME tweety)
(bird CLASS robin)
(bird BEAK red)
(bird CAN-FLY yes)

DUCS’s schema is mainly focused on the Minsky style frames [Minsky, 1981] which is different
from DYNASTY’s schema since DYNASTY uses semantic case-role based schema. Minsky
style frames can have more general slot names since it was developed to mainly describe
visual objects. For example, in the above bird schema, the slot itself is a concept which can

131

be encoded as similarity-based representations. However, DYNASTYs slot (case-role) must

be orthogonally represented to provide the necessary structural difference to the learned
DSRs (see figure 2.2 in section 2.5).

132

Chapter 7

Current status, limitations and future work

7.1 Current status

The code for DYNASTY’s training/performance and the various analysis routines were
developed on a HP9000/350 workstation with 16M memory, using standard C. The amount
of C code for the full DYNASTY system, including various training and analysis programs, is
about 3000 lines (excluding duplicate codes). Currently DYNASTY has been trained on the
4 script-based story skeletons (appendix B.1) and on the 6 goal/plan-based story skeletons
{(appendix B.2). The training of DSR-Learner took about 9 days with 150 epochs, 300 cycles
of BP per one epoch. The Triple-Encoder took about 5 days with same epochs and cycles.
The other modules took from 1 to 4 days with 9000 epochs, 1 cycle of BP per one epoch.
The epoch designates the period for training the whole data set, while a cycle designates the
period for training one input/teaching-input pair. The above time is actual computing time
including data loading and snapshot backup, not CPU time.

The ID units for each variable are set up as random between 0 and 1. There are 2 ID
units, thus allowing maximum of 4 unique instances for each variable (only using binary
values for ID). However only 2 instances for each variable are actually used in performance.
As a result, DYNASTY can process up to a maximum of 32 script-based stories because the
average number of variables in one story skeleton is 3 (i.e. 2% x 4). For the same reason,
DYNASTY can process up to a maximum of 24 goal/plan-based stories because the average
number of variables in one story skeleton is 2 (i.e. 22 x 6).

7.2 Limitations and their resolution

DYNASTY has several limitations for the complete story understanding system. Part
of the limitations come from the limitation of current connectionist technology, and part
of them are due to DYNASTY’s main research goal, that is, to explore connectionism as
a new paradigm for the script/goal/plan analysis and story understanding. DYNASTY is
not designed to process many distinct sources of knowledge, such as BORIS (Dyer, 1983].
Below we describe some limitations of DSRs and the current DYNASTY implementation,
and discuss how these limitations can be fixed in the future. For some of these limitations,
the long term future research directions will be discussed in the next section.

(1) The sequentiality of DSR encoding/decoding: The DSR learning process is highly
sequential at the knowledge level [Sumida and Dyer, 1989]. In the concept and proposition
encoding cycle, the triples are fed to the network sequentially, one at a time, and the order
of the sequence is fixed with the order of propositions provided as the training data (i.e.
the order must always be same). Hence the decoding is also sequential in the reverse order

133

of encoding. The fixed proposition sequence is essential for the correct decoding process,
and is a characteristic of RAAM [Pollack, 1990] style networks. The sequentially of DSR
encoding/decoding is due to its stack-like properties at the symbol level. For example, in
a symbolic stack, each element is entered into the stack sequentially, and popped out of
the stack in the reverse order (Last-In-First-Out order). So in the stack, all the elements
before A should be accessed when we access the element A. So sequentiality is an inherent
property of stack structures for correct data accessing. This sequentiality is also ubiquitous
in symbolic Al applications, such as when traversing LISP P-lists.

(2) Instance similarity vs binding performance: The DSR encoding process forms the rep-
resentations of words according to their usage in the restricted proposition space. Therefore,
if two instances of the same script roles or variables are used exactly same in the proposition
space, the two representations become identical. There is no way to distinguish the two in-
stances from their usage. Clearly we need sensory-level information to distinguish the same
categorical concepts, and attaching random IDs is a first approach to this sensory ground-
ing [Harnad, 1989; Miikkulainen, 1990a]. Without IDs, the binding cannot be propagated
throngh the network, since the network cannot distinguish different instances of the same
categories.

The alternate way of solving the instance similarity problem without IDs is by adding/
deleting more propositions in the training data to distinguish the various instances for the
same concept category. But in practice, it is not easy to find the correct number of propo-
sitions to make John and Jack similar for generalization as a person concept but still
distinct enough for good binding propagation performance. Adjusting the proposition space
for distinct instance representations was examined in our previous model {Lee et al., 1990}

(3) BP-based global-dictionary implementation: Currently DYNASTY’s GD is imple-
mented with two BP-based HF (Hetero-associative Feed-forward) networks. This implemen-
tation, while it is simple, has one major limitation as a connectionist lexicon network, which
1s that BP-based networks cannot handle many-to-many or one-to-many mappings. Since
BP basically implements functions from one domain to another domain, the single element
in the input domain cannot be mapped to more than one element in the output domain.
Why 1s this a problem in a connectionist lexicon model? The basic problem is that this kind
of network cannot handle the case of multiple meanings (ambiguous words). For example,
the word “bat” has two meanings such as “baseball-bat” or “live-bat”. When the BP-based
ASCII-to-DSR network is fed the input “bat”, it can only produce a blending of two DSRs
for “baseball-bat” and “live-bat”, but humans can always retrieve one or the other concept
according to the context. While sometimes this kind of blending is necessary as a composite
representation, we need to single out one concept representation in a lexicon model. In the
multiple lexical realization case, the problem is equally severe when two almost identical
DSRs need to be translated into different lexical forms. For example, the DSR-to-ASCII
network only produces a mixed blending ASCII code of “John” and “Jack™ when the two
DSRs are almost the same. Kohonen's topological feature map appears to be a good candi-
date as a self-organizing network that can do many-to-many mappings [Kohonen, 1984], and
such a distributed lexicon model, based on the Kohonen’s network, has been implemented

in DISCERN [Miikkulainen, 1990b)].

134

(4) Symbolic working memory: DYNASTY’s working memory is currently implemented
as a symbolic hash-table for searching expanded goal/plan trees using linked list and pointer
following, and DYNASTY currently has no connectionist episodic memory model. Although
all high-level representations including events, scripts and goals/plans are automatically
formed using the Triple-Encoder, there is no episodic memory mechanism to store these
representations by single trial learning and to retrieve the representations later to do the
high-level processing such as question-answering.

(5) Symbolic copy operation during backward binding propagation: DYNASTY s forward
binding propagation is performed in a connectionist way using ID propagation. However,
the backward binding propagation cannot use ID propagation because the GP-Associator
module is trained in the forward search direction from the stored goals/plans to the current
mput. Connectionist backward binding propagations could be obtained if we were to employ
bigger knowledge structures which contain every role that might appear in a single input
story. However, this is impossible in goal/plan analysis since the several goals/plans need
to be dynamically connected to process a single story. A more plausible way of resolving
this is to train the GP-Associator in both forward and backward search directions using
independent set of weights or to find a single set of weights which can do the bidirectional
associations [Kosko, 1987].

(6) Symbolic controls for interfacing modules: DYNASTY's performance is achieved by
connecting each module via passing one module’s output to another’s input. Currently, DY-
NASTY performs all kinds of data passing and conversions (for interfacing) using symbolic
controls. In other words, DYNASTY is a simulated connectionist machine using a von Neu-
mann computer with algorithmic control. To build the real machine using neural hardware,
these symbolic controls must be replaced by neurally plausible signal passing and conversion
through neural pathways. Nothing very complicated is involved in this control except the for-
mat conversion between event-triples and case-role assignment forms (for the ST-Parser and
TS-Generator). Most of the controls for data passing between modules can be implemented
by training other networks which can open the gateways using multiplicative connections
(Rumelhart et al., 1986a; Pollack, 1987]. However, some of the high-level monitoring process
such as random ID generation still needs symbolic controls, and neural implementation of
this high-level monitoring process is an open issue in current connectionist theory.

(7) Limitations on natural language parsing and generation: DYNASTY’s ST-Parser and
TS-Generator is by no means a complete natural language parser and generator. ST-Parser
cannot handle any complex syntactic structure such as relative clauses without preprocessing.
The relative clauses (embedded propositions) in natural language input must currently be
marked in DYNASTY by using parentheses, so that ST-Parser knows whatever propositions
inside parentheses must be processed first. Building a complete parser that can handle
complex syntax using neural networks is a separate research issue by itself [Fanty, 1986]. ST-
Parser ignores function words such as conjunctives, prepositions, articles, etc. The phrases
(idioms) are considered to be a single word. However, function words can be processed
during ST-parsing by assigning some distributed representations to them, and incorporating
their representations in the ST-Parser training data. By this method, the TS-Generator
generates some of the function words to make the output inference chains readable. But
since DSRs cannot be formed for the function words in the current DYNASTY, a random

135

distributed representation must be assigned to each function word, which is useless during
parsing. The TS-Generator also has many limitations. The TS-Generator just translates
from the triples to natural language by placing each word in its proper position and adding
some function words. The TS-Generator lacks numerous forms of knowledge for natural
language generation, such as knowledge for proper word selection, proper morphological
form selection, and discourse analysis for topic focusing [McKeown, 1985].

(8) Limitations on script/goal/plan processing: DYNASTY has several limitations in its
script/goal/plan processing capabilities. For example, DYNASTY cannot handle embedded
scripts, multiple scripts and script deviations using solely a script application mechanism.
Instead, DYNASTY switches to a plan application mechanism to handle these kinds of special
script application problems. However, DYNASTY must be told which story is script-based
or goal/plan-based by the user. DYNASTY cannot yet decide on its own whether to use a
script or plan application mechanism solely based on the input story. Symbolic systems such
as BORIS [Dyer, 1983] can do this. However, building a connectionist story understanding
system as powerful as BORIS is a long term research goal. DYNASTY’s plan understanding
abilities are also restricted compared to other symbolic systems, such as PAM [Wilensky,
1978]. For example, DYNASTY can handle only stories that have a single planning agent,
and cannot handle goal/plan interactions between several planners. Understanding goal/plan
interactions requires meta-level rules [Wilensky, 1983] about planning, and DYNASTY does
not achieve this level yet.

(9) Random representations for function words: The DSR scheme is good at representing
word semantics in terms of propositions. In the DSR scheme, a word representation is formed
based on the semantic case-role structures of the word. However, function words such as
articles (e.g. “the”) and prepositions (e.g. “at”) do not have semantic case-role structures.
As a result, the DSR scheme is not useful for automatically forming representations for these
function words. Currently, DYNASTY employs random distributed representations for the
function words. Another related problem for the DSR scheme is its inability to handle
phrases (idioms) such as “look at” vs. “look to”. DYNASTY considers these phrases to be
a single word.

There is a method that could be employed to form function word representations using
DSR scheme, that is, using syntactic categories instead of semantic case-roles as slot names
(in the triples). For example, consider forming representations of an preposition “at” using
the following propositions:

pl: John ate steak at the Sizzler.
p2: John threw a stone at Mary.
p3: John died at the church.

The proposition-triples are formed in order to be loaded into the proposition-encoding net-
work, such as:

[pl AGENT Johnj [pl ACT ate] [pl OBJECT apple} [pl LOCATION Sizzler]
[p2 AGENT John| [p2 ACT threw] [p2 OBJECT stone] [p2 TO Mary]
[p3 AGENT John] [p3 ACT died] [p3 LOCATION church)]

136

Now we can form the concept-triples for the preposition “at” which are loaded into the
concept-encoding network by using these 3 propositions.

[at LOC-PREP p1] [at DIR-PREP p2] [at LOC-PREP p3]

where LOC-PREP (location preposition) and DIR-PREP (direction preposition) are new
case-role names which designate syntactic/semantic categories of the preposition. The real
problem is to devise these proper case-roles which can categorize every function word into
appropriate syntactic/semantic groups. Neither the original thematic case-role theory [Fill-
more, 1968] nor the several extended semantic case-role theories [Schank, 1973; Bruce, 1975]
attempted to incorporate function words into the case-role structures. Once the function
word representations are formed, each word in phrases can be processed separately, thus
giving DYNASTY the ability to handle phrases in the input story.

7.3 Future research directions

All of the current limitations of DYNASTY supply directions for the future work and
some of them were discussed in the previous section. In this section, we will discuss long
term future research needed to overcome the current limitations and to give more potential
to the DYNASTY approach for story understanding. DYNASTY inspires several types of
future research directions, concerning (1) incorporating sensory information in the DSRs,
(2) developing a connectionist episodic memory model, (3) modeling a question-answering
process, and (4) developing DSR-based machine translator.

7.3.1 Incorporating sensory information in the proposition space

DSRs in DYNASTY have limited semantics from the provided proposition space. When
two words behave (i.e. are used) exactly the same in the proposition space, then the DSRs
developed for these word concepts become exactly identical. While this semantic interpre-
tation is valuable on the grounds that language semantics comes from usage and similarity
supports generalizations, this semantics has limitations in that it cannot support binding
propagation which is essential for high-level reasoning systems. DYNASTY’s solution for
binding performance is to attach random ID units to the DSRs, modeled after [Miikkulainen
and Dyer, 1989; Miikkulainen, 1990a). However, it is better for DSRs to learn SENsory in-
formation as well as conceptual information from the proposition space itself, rather than
to attach external random bits to the learned DSRs. We believe that word semantics for
objects consists of at least two components: a categorical part and a sensory part [Harnad,
1989]. The categorical part holds the general conceptual information of the words; the sen-
sory part contains a sensory level identifying information. So the representation of John
should have categorical information such as person, as well as sensory information, such as
visual appearance, voices, etc. DYNASTY is provided with the proposition space that is
extracted from the sentences in the script/goal/plan-based story understanding domain. So
the developed DSRs cannot encode the sensory information since each representation comes
from the propositional encodings of the words. While this proposition space is reasonable

137

for DYNASTY's current task, the DSRs only reflect the usages of the words in the sentences
(propositions) based on semantic case-role theory {Fillmore, 1968; Schank, 1973]. In the
future, the DSRs should have sensory information in the representations so that two words
can have different representations even if they are in the exactly same categories. The visual
micro-world representation in [Allen, 1988] is the first rudimentary step in this direction.

7.3.2 Connectionist episodic memory model

DYNASTY currently has no connectionist episodic long-term memory model for storing,
indexing and retrieving the developed script/goal/plan representations. An episodic mem-
ory would provide pattern completion and associative retrieval functions to DYNASTY, re-
trieving complete script/goal/plan representations from partial representations. DYNASTY
finesses connectionist episodic memory issues by employing a symbolic hash-table to store
the inferred goal/plan representations.

BP-based networks have inherent limitations as episodic memories since BP-based net-
works are plagued from unlearning properties [Hinton et al., 1984]. To learn a new pattern
association, a BP-based network must be trained again on the entire training data, including
the old training set, lest the network forget previously learned pattern associations [Dyer,
1990b]. But this deficiency is not an inherent limitation of connectionist networks, but a
limitations of the BP learning algorithm. Recently, a slightly modified BP has been used to
model connectionist episodic memory that can reduce the retroactive interferences [Kortge,
1990], and also a hierarchical Kohonen feature map has been used to model script-based
episodic memory [Miikkulainen, 1990c]. But more research must be devoted to developing
connectionist episodic memories that are comparable to symbolic episodic memory models,
such as that described in [Kolodner, 1983].

7.3.3 Modeling question-answering in DYNASTY

Building a question-answering architecture as part of DYNASTY is not difficult for the
single plan (script) processing case because there is no need to find the relevant plans for
the input questions. Figure 7.1 shows a possible question-answering architecture for single
plan processing in DYNASTY.

This architecture can be used in script-based question answering tasks such as:

Q:Who entered the Chart-House?
A: John entered the Chart-House
Q: What did John order?

A: John ordered steak

The question is parsed in the same manner as input stories except that the don’t know
patterns are used for the unspecified case-roles.

[ev30 ACT went], [ev30 AGENT 7], [ev30 TO chart-house]
[ev31 ACT order], [ev31 AGENT John], [ev31 OBJECT 7]

138

Question

(plan-selector)
q-triple
—(_triple-encoder)
script
l q-event representation

(QA-module)‘_

answer
avant

decode
Y

(TS~generator j
l answer

Figure 7.1: Question-answering architecture for script processing.

while the ? designates the don’t know patterns (all 0.5). The Triple-Encoder constructs the
question-event representations, and the Plan-Selector provides the necessary plan {script)
representations to the QA-network. The QA-network is a plain 3 layer BP network which
associates the input question-event plus script representations with the output answer-event
representations. These answer-event representations are decoded using the Triple-Encoder,
and fed to the TS-Generator to produce answers. Goal/plan-based question-answering is
more difficult since DYNASTY does not have an associative memory model to select the rel-
evant goals/plans for the input questions. The selected goals/plans are supposed to provide
the necessary contexts to the QA-network.

7.3.4 DSR-based machine translation

We claim that DSRs can serve as building blocks for connectionist language understand-
ing/processing systems that need to access the propositional contents of word meanings.
One example of another task domain is machine translation. Although [Allen, 1987] tried
to do English/Spanish translation using a BP network, his system just transforms each En-
glish/Spanish sentence as one whole pattern, and does not provide any solutions based on
the distributed representations.

Below is a possible architecture for a DSR-based English/Korean translation system. The
global dictionary is bilingual; it has three entries: English-word, Korean-word, and DSRs.

139

Korean
i-li | sentence
English bi-lingual GD

sentence | I korean *
eng. word
word TS-generator
T- - DSR
= T

| case-structure

Figure 7.2: DSR-based machine translation architecture.

Suppose the system was to translate this sentence into Korean:
John went to the Chart-House.

Each word in an English sentence is changed into its DSR, and fed to the English-parser
word by word. The output case-role representations are independent of any language, and
are a meaning representation of the sentence [Schank, 1973]. These case-role representations
are fed to the Korean-generator to produce the DSR for each word, thus forming a Korean
language word sequence, and the DSRs are converted to Korean words using the bilingnal
global dictionary. The output shows the Korean word order for this input sentence:

John Chart-House E Gan-da
(John Chart-House to went).

The above scheme is modeled after symbolic dictionary-based translation approaches. How-
ever we do not deal with “meaningless” symbol-to-symbol translation here, but deal with
meaningful representations (DSRs) of the words. The network can extract translation regu-
larities from the word representations. For example, ACT words (e.g. went) will always be
at the end of the Korean translations.

140

Chapter 8

Summary and conclusions

8.1 Summary

DYNASTY is a natural language understanding model built from modular distributed
connectionist architectures with symbolic controls. DYNASTY’s tasks are (1) formation
of word representations, and (2) script/goal/plan-based story understanding. DYNASTY
adopts a symbolic neuro-engineering approach; that is, the global system architecture is
modeled after symbolic systems while each component is implemented using various connec-
tionist architectures.

DYNASTY’s word representations are stored in a global dictionary, and the modules com-
municate using these representations. The word representations are automatically learned
from the domain knowledge which is presented to the system in the form of propositions.
The semantic part of the word representations are called distributed semantic representa.-
tions (DSRs) and have many desirable properties to support high-level symbolic reason-
ing in a connectionist framework: automaticity, portability, structure-encoding ability, and
similarity-based representations. The DSRs are learned using two XRAAM architectures.
Each word meaning is encoded using the related propositions and each proposition is encoded
using the involved words. The words and propositions gradually form their own represen-
tations while influencing each other through the network. DYNASTY’s vocabulary in the
global-dictionary can be extended by cloning new instances of the items, i.e. generating a
number of items with the same properties but with distinct identities by attaching a unique
ID-representation {Miikkulainen and Dyer, 1989; Miikkulainen and Dyer, in press| to the
DSRs.

DYNASTY’s script/goal/plan analysis architecture is modular, and consists of differ-
ent connectionist architectures, namely, auto-associative recurrent {AR), hetero-associative
recurrent (HR), and hetero-associative feed-forward (HF) architectures. Each module in
DYNASTY is trained separately and in parallel within the data dependencies. The training
data for each module is specified using the DYNASTY data-specification language. The DY-
NASTY architecture supports both goal/plan analysis and script processing since a script is a
special type of plan in DYNASTY. The DYNASTY architecture is divided into 3 big models
according to the 3 major subtasks for the script/goal/plan-based story understanding. The
3 models are (1) the representation subsystem, (2) the goal/plan analysis subsystem, and
(3) the linguistic subsystem. The representation subsystem consists of a global-dictionary
and triple-encoder and provides word and high-level distributed representations for the re-
maining modules. The goal/plan analysis subsystem consists of a plan-selector, a goal/plan
relation associator and an action generator. This subsystem constructs a goal/plan inference
chain from the event sequence. The linguistic subsystem consists of a parser and a generator
which converts the natural language sentence to the case-role triples, and vice versa.

141

DYNASTY's processing model is modeled after symbolic script and goal/plan processing
systems. At the task level, DYNASTY operates like a symbolic system, but each component
actually operates with backpropagation-based networks. DYNASTY’s goal/plan knowledge
is encoded in OR/AND trees, which specify the relations between goals and plans. DY-
NASTY searches the goal/plan space by expanding goal/plan trees until it finds connections
from the existing knowledge to the new input knowledge. Role-bindings and binding prop-
agations are performed automatically when the ID units in the word representations are
propagated through the network. During the goal/plan tree expanding process, bindings are
also propagated backward using pattern-copy operations through the goal/plan inference
chain to handle the bindings that cannot be performed using forward binding propagation
alone. DYNASTY uses a symbolic working memory to store the developed goal/plan infer-
ence chains.

DSRs show similarity properties according to the provided proposition space. When
the proposition space gets richer, the clusters of similar words become more natural. DY-
NASTY'’s generalization performance shows an average of 84.7% correctness for new stories.
DYNASTY shows fault tolerance and graceful degradation performance when some of the
weights and units are removed. DYNASTY also can process statistically-biased stories.
and produce different inference chains according to a specific planner and situation. These
statistically-biased generalizations are very difficult for pure symbolic systems, such as SAM
[Cullingford, 1978] and PAM [Wilensky, 1978].

8.2 Conclusion

There are two major goals of the DYNASTY project: (1) to develop distributed con-
nectionist representations to support high-level symbol processing, and (2) to implement a
script/goal/plan-based natural language understanding system in a connectionist framework.

For the first goal, we have presented distributed semantic representations (DSRs) which
serve as an adequate foundation for constructing and manipulating conceptual knowledge
in a connectionist architecture. We have presented an architecture, based on XRAAMs,
to automatically learn DSRs using the domain knowledge. Our experiments indicate that
DSRs show many desirable properties that can be used in high-level cognitive systems in
a symbolic application domain. We have shown that DSRs can serve as building blocks in
constructing connectionist cognitive architectures by developing the DYNASTY system.

For the second goal, we have developed DYNASTY, a modular connectionist system for
the high-level inferencing which can (1) automatically form distributed representations of
words, events and scripts/goals/plans from input sentences in the domain of script/goal-
based story understanding, (2) generate complete script event sequences from fragmentary
inputs, and (3) generate goal/plan inference chains from input actions. Moreover, the high-
level representations (DSRs of concepts, events, scripts, and goals/plans) formed contain
constituent structure that can be decoded and extracted, making the semantic content avail-
able for multiple tasks.

DYNASTY provides many desirable features of connectionist implementation, which are
not possible in pure symbolic systems, such as automatic and statistically-biased gener-

142

alizations, automatic knowledge encodings through training, fault tolerance and graceful
performance degradation. From DYNASTY, we have learned that a single gigantic BP net-
work has obvious limitations in modeling complex natural language understanding tasks,
but modular network architectures with suitable distributed representations and symbolic
AT constraints can perform the desired tasks.

143

Bibliography
Ackley, D. H., Hinton, G. E., and Sejnowski, T J. (1985). A learning algorithm for Boltzmann
machines. Cognitive Science, (9):147-169.

Allen, R. B. (1987). Several studies on natural language and back-propagation. In Proceedings
of the IEEE First Annual International Conference on Neural Networks. IEEE.

Allen, R. B. (1988). Sequential connectionist networks for answering simple questions about
a microworld. In Proceedings of the Tenth Annual Cognitive Science Society Conference,
pages 489-495, Hillsdale, NJ. Lawrence Erlbaum Associates.

Alvarado, S. J. (1990). Understanding editorial text: a computer model of argument compre-
hension. Kluwer Academic Publishers.

Alvarado, S. J., Dyer, M. G., and Flowers, M. (1990). Argument representations for editorial
text. Knowledge-based systems, 3(2):87-107.

Anderson, J. A. and Rosenfeld, E., editors (1988). Neurocomputing: Foundations of Re-
search. MIT Press, Cambridge, MA.

Arens, Y. (1986). Cluster: An approach to contertual language understanding. PhD thesis,
UC Berkeley. Report No. UCB/CSD 86/293.

Bower, G. H., Black, J. B., and Turner, T. J. (1979). Scripts in memory for text. Cognitive
Psychology, (11):177-220.

Bruce, B. (1975). Case systems for natural language. Artificial Intelligence, 6:327-360.

Carbonell, J. G. (1979). Subjective understanding: computer models of belief systems. PhD
thesis, Computer Science Department, Yale University. Research Report No. 150.

Chalmers, D. J. (1990). Syntatic transformations on distributed representations. Connection
Science, 2(1;2).

Charniak, E. (1972). Toward a model of children’s story comprehension. Technical Report
AI-TR-266, MIT AI lab.

Charniak, E. (1978). On the use of framed knowledge in language comprehension. Artificial
Intelligence, 11(3).

Chun, H. W. and Mimo, A. (1987). A model of schema selection using marker passing and
connectionist spreading activation. In Proceedings of the Ninth Annual Cognitive Science
Society Conference, pages 887-896, Hillsdale, NJ. Lawrence Erlbaum Associates.

144

Cottrell, G. W. and Small, S. L. {1983). A connectionist scheme for modelling word sense
disambiguation. Cognition and Brain Theory, 6(1):89-120.

Cullingford, R. E. (1978). Script Application: Computer Understanding of Newspaper Sto-
ries. PhD thesis, Department of Computer Science, Yale University. Technical Report
116.

DeJong, G. F. (1979). Skimming Stories in Real Time: An Ezperiment in Integrated Un-

derstanding. PhD thesis, Department of Computer Science, Yale University. Research
Report 158.

Dolan, C. P. (1989). Tensor Manipulation Networks: Connectionist and Symbolic Approaches

to Comprehension, Learning and Planning. PhD thesis, Computer Science Department,
UCLA.

Dolan, C. P. and Dyer, M. G. (1987). Symbolic schemata, role binding, and the evolu-
tion of structure in connectionist memories. In Proceedings of the IEEE First Annual
International Conference on Neural Networks, pages Vol. 2, 287-298. IEEE.

Dolan, C. P. and Smolensky, P. (1989). Implementing a connectionist production system
using tensor products. In Touretzky, D. S., Hinton, G. E., and Sejnowski, T. J., editors,
Proceedings of the 1988 Connectionist Models Summer School, pages 265272, Los Altos,
CA. Morgan Kaufmann Publishers, Inc.

Dyer, M. G. (1983). In-Depth Understanding: A Computer Model of Integrated Processing
for Narrative Comprehension. MIT Press, Cambridge, MA.

Dyer, M. G. (1990a). Distributed symbol formation and processing in connectionist networks.
Journal of experimental and theoretical artificial intelligence, 2(4):313-345.

Dyer, M. G. (1990b). Symbolic NeuroEngineering for natural language processing: A mul-
tilevel research approach. In Barnden, J. and Pollack, J., editors, Advances in Connec-
tionist and Neural Computation Theory. Ablex Publ. (in press).

Dyer, M. G., Cullingford, R. E., and Alvarado, S. (1987). Scripts. In Shapiro, S. C., editor,
Encyclopedia of Artificial Intelligence, pages 980-994. John Wiley and Sons, New York.

Dyer, M. G., Flowers, M., and Wang, A. (1988). Weight matrix = pattern of activation: en-
coding semantic networks as distributed representations in DUAL, a PDP architecture.
Technical Report UCLA-AI-88-5, Artificial Intelligence Laboratory, Computer Science
Department, University of California, Los Angeles.

Dyer, M. G., Flowers, M., and Wang, A. (in press). Distributed symbol discovery through
symbol recirculation: Toward natural language processing in distributed connectionist
networks. In Reilly, R. and Sharkey, N., editors, Connectionist approaches to natural
language understanding. Lawrence Erlbaum Associates, Hillsdale, NJ.

Elman, J. L. (1988). Finding structure in time. Technical Report 8801, Center for Research
in Language, University of California, San Diego.

145

Fanty, M. (1986). Context-free parsing with connectionist networks. In Denker, J., edi-
tor, AIP conference proceedings 151: neural Networks for computing, pages 140-145.
American Institute of Physics, New York.

Feigenbaum, E. A. (1963). The simulation of verbal learning behavior. In Feigenbaum, E. A.
and Feldman, J. A., editors, Computers and Thought. McGraw-Hill, New York.

Feldman, J. A. (1986). Neural representation of conceptual knowledge. Technical Report
TR 189, Department of Computer Science, Univ. of Rochester, N.Y.

Feldman, J. A. and Ballard, D. H. (1982). Connectionist models and their properties. Cog-
nitive Science, (6):205-254.

Fillmore, C. J. (1968). The case for case. In Bach, E. and Harms, R. T., editors, Untversals
in Linguistic Theory, pages 1-90. Holt, Rinehart and Winston, New York.

Fodor, J. and Pylyshyn, Z. (1988). Connectionism and cognitive architecture: A critical
analysis. Cognition, (28):3-71.

Golden, R. M. (1986). Representing causal schemata in connectionist systems. In Proceedings
of the Eighth Annual Cognitive Science Society Conference, pages 13-22, Hillsdale, NJ.
Lawrence Erlbaum Associates.

Grossberg, S., editor (1988). Neural Networks and Natural Intelligence. MIT Press, Cam-
bridge, MA.

Hanson, S. J. and Kegl, J. (1987). Parsnip: A connectionist network that learns natural
language grammar from exposure to natural language sentences. In Proceedings of
the Ninth Annual Cognitive Science Society Conference, pages 106-119, Hillsdale, NJ.
Lawrence Erlbaum Associates.

Harnad, S. (1989). The symbol grounding problem. In CNLS Conference on Emergent
Computation.

Hartigan, J. A. (1975). Clustering Algorithms. John Wiley and Sons, N.Y.

Hendler, J. (1988). Integrating marker-passing and problem solving: A spreading activation
approach to improved choice in planning. Lawrence Erlbaum Associates, Hillsdale, NJ.

Hinton, G. E. (1986). Learning distributed representations of concepts. In Proceedings
of the Eighth Annual Cognitive Science Society Conference, pages 2-12, Hillsdale, NJ.
Lawrence Erlbaum Associates.

Hinton, G. E. (1987). Connectionist learning procedures. Technical Report CMU-CS-87-115,
Computer Science Department, Carnegie-Mellon University.

Hinton, G. E. (1988). Representing part-whole hierarchies in connectionist networks. In
Proceedings of the Tenth Annual Cognitive Science Society Conference, pages 48-54,
Hillsdale, NJ. Lawrence Erlbaum Associates.

146

Hinton, G. E. and Anderson, J. A., editors (1981). Parallel Models of Associative Memory.
Lawrence Erlbaum Associates, Hillsdale, NJ.

Hinton, G. E., McClelland, J. L., and Rumelhart, D. E. (1986). Distributed representations.
In Rumelhart, D. E. and McClelland, J. L., editors, Parailel Distributed Processing:

Fzplorations in the Microstructure of Cognition. Volume I: Foundations, pages 77-109.
MIT Press, Cambridge, MA.

Hinton, G. E., Sejnowski, T. J., and Ackley, D. H. (1984). Boltzmann machines: Constraint
satisfaction networks that learn. Technical Report CMU-CS-84-119, Computer Science
Department, Carnegie-Mellon University.

Jordan, M. I. (1986). Serial order: A parallel, distributed processing approach. Technical
Report 8604, Institute for Cognitive Science, University of California, San Diego.

Kohonen, T. (1984). Self-Organization and Associative Memory, chapter 9. Springer-Verlag,
Berlin; New York.

Kolodner, J. L. (1980). Retrieval and orgamizational strategies in conceptual memory: a
computer model. Technical Report TR187, Yale University, Department of Computer
Science. Ph D Thesis.

Kolodner, J. L. (1983). Reconstructive memory: A computer model. Cognitive Science,

(7):281-328.

Kortge, C. A. (1990). Episodic memory in connectinist networks. In Proceedings of the
Twelfth Annual Cognitive Science Society Conference, Hillsdale, NJ. Lawrence Erlbaum
Associates.

Kosko, B. (1987). Competitive adaptive bidirectional associative memories. In Proceedings
of the IEEE First Annual International Conference on Neural Networks. IEEE.

Kuhn, T. S. (1970). The Structure of Scientific Revolutions. International Encyclopedia of
Unified Science, Vol. 2, No. 2. 2, The University of Chicago Press, Chicago, second,
enlarged edition.

Lange, T. E. and Dyer, M. G. (1989). High-level inferencing in a connectionist network.
Connection Science, 1(2).

Lebowitz, M. (1980). Generalization and memory in an integrated understanding system.
Technical Report TR186, Yale University, Department of Computer Science. Ph. D
Thesis.

Lee, G., Flowers, M., and Dyer, M. G. (1989). A symbolic /connectionist script applier
mechanism. In Proceedings of the Eleventh Annual Cognitive Science Society Conference,
pages 714-721, Hillsdale, NJ. Cognitive Science Society, Lawrence Erlbaum Associates.

147

Lee, G., Flowers, M., and Dyer, M. G. (1990). Learning distributed representations of
conceptual knowledge and their application to script-based story processing. Connection

Science: Journal of Neural Computing, Artificial Intelligence and Cognitive Research,
2(4):313-346.

Lehnert, W. G. (1978). The Process of Question Answering. Lawrence Erlbaum Associates,
Hillsdale, N1J.

Lehnert, W. G. (1988). Knowledge-based natural language understanding. In Shorbe, H. E.,
editor, Ezploring artificial intelligence. Morgan Kaufmann Publishing, Inc.

McClelland, J. L. and Kawamoto, A. H. (1986). Mechanisms of sentence processing: Assign-
ing roles to constituents. In McClelland, J. L. and Rumelhart, D. E., editors, Parallel
Distributed Processing: Ezplorations in the Microstructure of Cognition. Volume [I:
Psychological and Biological Models, pages 272-326. MIT Press, Cambridge, MA.

McKeown, K. (1985). Tezt generation: using discourse strategies and focus constraints to
generate natural language text. Cambridge University Press.

Mead, C. (1987). Silicon models of neural computation. In Proceedings of the IEEE First
Annual International Conference on Neural Networks. IEEE.

Miikkulainen, R. (1990a). DISCERN: A distributed artificial neural network model of script
processing and memory. PhD thesis, UCLA, Computer Science.

Miikkulainen, R. (1990b). A distributed feature map model of the lexicon. In Proceedings
of the Twelfth Annual Cognitive Science Society Conference, Hillsdale, NJ. Lawrence
Erlbaum Associates.

Mitkkulainen. R. (1990c). Script recognition with hierarchical feature maps. Connection
Science. (in press).

Miikkulainen, R. and Dyer, M. G. (1988). Forming global representations with extended
backpropagation. In Proceedings of the IEEE Second Annual International Conference
on Neural Networks, pages Vol. 1, 285-292. IEEE.

Miikkulainen, R. and Dyer, M. G. (1989). A modular neural network architecture for se-
quential paraphrasing of script-based stories. In Proceedings of the International Joint
Conference on Neural Networks. IEEE.

Miikkulainen, R. and Dyer, M. G. (in press). Natural language processing with modular
PDP networks and distributed lexicon. Cognitive Science.

Minsky, M. (1981). A framework for representing knowledge. In Haugeland, J., editor, Mind
Design: Philosophy, Psychology, Artificial Intelligence. MIT Press, Cambridge, MA.

Minsky, M. and Papert, S. (1988). Perceptrons: An Introduction to Computational Geometry.
MIT Press, Cambridge, MA, expanded edition.

148

Mozer, M. C. (1984). The perception of multiple objects: a parallel, distributed processing
approach. unpublished thesis proposal, Institute for cognitive science, UCSD.

Newell, A. (1980). Physical symbol systems. cognitive science, 4:135-183.

Norvig, P. (1986). A unified theory of inference for text understanding. PhD thesis, Computer
Science Division, University of California, Berkeley.

Pazzani, M. J. (1988). Learning causal relationships: an integration of empirical and
ezplanation-based learning methods. PhD thesis, Computer Science Department, Uni-
versity of California, Los Angeles.

Pazzani, M. J. and Dyer, M. G. (1989). Memory organization and explanation-based learning.
International journal of expert systems: research and applications, 2(3):331-358.

Pinker, S. and Prince, A. (1988). On language and connectionism: Analysis of a parallel
distributed processing model of language acquisition. Cognition, 28.

Pollack, J. B. {1987). Cascaded back-propagation on dynamic connectionist networks. In
Proceedings of the Ninth Annual Cognitive Science Society Conference, Hillsdale, NJ.
Cognitive Science Society, Lawrence Erlbaum Associates.

Pollack, J. B. {1988). Recursive auto-associative memory: Devising compositional distributed
representations. Technical Report MCCS-88-124, Computing Research Laboratory, New
Mexico State University.

Pollack, J. B. (1989). Implications of recursive distributed representations. In Touretzky,
D. S., editor, Advances in Neural Information Processing Systems I. Morgan Kaufmann

Publishers, Inc., Los Altos, CA.
Pollack, J. B. (1990). Recursive distributed representations. Artificial Intelligence. (in press).

Quilici, A. E. (1991). The correction machine: a computer model of recognizing and process-
ing belief justification in argumentative dialogs. PhD thesis, Computer Science Depart-
ment, University of California, Los Angeles.

Rieger, C. (1975). Conceptual memory. In Schank, R., editor, Conceptual information
processing. North-Holland, Amsterdam.

Riesbeck, C. (1975). Conceptual analysis. In Schank, R., editor, Conceptual information
processing. North-Holland, Amsterdam.

Rosenblatt, F. (1962). Principles of Neurodynamics: Perceptrons and the Theory of Brain
Mechanisms. Spartan Books, Washington.

Rumelhart, D. E. (1975). Notes on a schema for stories. In Bobrow, D. and Collins, A.,
editors, Representation and understanding, pages 211-236. NewYork: Academic press.

149

Rumelhart, D. E., Hinton, G. E., and McClelland, J. L. (1986a). A general framework
for parallel distributed processing. In Rumelhart, D. E. and McClelland, J. L., editors,
Parallel Distributed Processing: Ezplorations in the Microstructure of Cognition. Volume
I: Foundations. MIT Press, Cambridge, MA.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986b). Learning internal repre-
sentations by error propagation. In Rumelhart, D. E. and McClelland, J. L., editors,
Parallel Distributed Processing: Ezplorations in the Microstructure of Cognition. Vol-
ume [I: Foundations, pages 318-362. MIT Press, Cambridge, MA.

Rumelhart, D. E. and McClelland, J. L. (1987). Learning the past tenses of English verbs:
Implicit rules or parallel distributed processing. In MacWhinney, B., editor, Mechanisms
of Language Acquisition. Erlbaum, Hillsdale, NJ.

Rumelhart, D. E., McClelland, J. L., and the PDP Research Group (1986¢). Parallel Dis-
tributed Processing: Erplorations in the Microstructure of Cognition. MIT Press, Cam-
bridge, MA.

Schank, R. (1975). Concetual information processing. North Holland, Amsterdam.

Schank, R. (1982). Dynamic memory: A theory of reminding and learning in computers and
people. Cambridge university press.

Schank, R. and Abelson, R. (1977). Scripts, Plans, Goals, and Understanding - An Inquiry
into Human Knowledge Structures. The Artificial Intelligence Series. Lawrence Erlbaum
Associates, Hillsdale, NJ.

Schank, R. and Riesbeck, C. K., editors (1981). Inside Computer Understanding. Lawrence
Erlbaum Associates, Hillsdale, NJ.

Schank, R. C. (1973). Identification of conceptualization underlying natural language. In
Schank, R. and Colby, R., editors, Computer models of thought and language, pages
187-248. W. H. Freeman and Company.

Schmidt, C. F., Sridharan, N. S., and Goodson, J. L. (1978). The plan recognition problem:
An intersection of psychology and artificial intelligence. Artificial Intelligence. special
issue on applications in the sciences and medicine.

Sejnowski, T. J. and Rosenberg, C. R. (1986). Nettalk: A parallel network that learns to
read aloud. Technical Report JHU/EECS-86/01, Electrical Engineering and Computer
Science, Johns Hopkins University.

Sharkey, N. E., Sutcliffe, R., and Wobcke, W. (1986). Mixing binary and continuous schemes
for knowledge access. In Proceedings of the Sizth National Conference on Artificial
Intelligence, Los Altos, CA. Morgan Kaufmann Publishers, Inc.

Shastri, L. (1987). A connectionist encoding of semantic networks. In Proceedings of the
Ninth Annual Cognitive Science Society Conference, Hillsdale, NJ. Cognitive Science
Society, Lawrence Erlbaum Associates.

150

Smolensky, P. (1987a). A method for connectionist variable binding. Technical Report

CU-CS-356-87, Department of Computer Science and Institute of Cognitive Science,
University of Colorado, Boulder.

Smolensky, P. (1987b). On variable binding and the representation of symbolic structures
in connectionist systems. Technical Report CU-CS-355-87, Department of Computer
Science and Institute of Cognitive Science, University of Colorado, Boulder.

Smolensky, P. (1988). On the proper treatment of connectionism. The Behavioral and Brain
Sciences, 11(1):1-74.

St. John, M. F. and McClelland, J. L. {1989). Applying contextual constraints in sentence
comprehension. In Touretzky, D. S., Hinton, G. E., and Sejnowski, T. J., editors,
Proceedings of the 1988 Connectionist Models Summer School, pages 338-346, Los Altos,
CA. Morgan Kaufmann Publishers, Inc.

Sumida, R. A. and Dyer, M. G. (1989). Storing and generalizing multiple instances while
maintaining knowledge-level parallelism. In Proceedings of the 11th International Joint
Conference on Artificial Intelligence, Los Altos, CA. Morgan Kaufmann Publishers, Inc.

Sumida, R. A., Dyer, M. G., and Flowers, M. {1988). Integrating marker passing and
connectionism for handling conceptual and structural ambiguities. In Proceedings of the
Tenth Annual Cognitive Science Society Conference, Hillsdale, NJ. Lawrence Erlbaum
Associates.

Touretzky, D. S. and Geva, S. A. (1988). A distributed connectionist representation for
concept structures. In Proceedings of the Tenth Annual Cognitive Science Soctety Con-
ference, pages 155-163, Hillsdale, NJ. Lawrence Erlbaum Associates.

Touretzky, D. S. and Hinton, G. E. (1988). A distributed connectionist production system.
Cognitive Science, 12(3):423-436.

vanGelder, T. (1989). Distributed representation. PhD thesis, Graduate faculty of art and
science, University of Pittsburgh.

Waltz, D. L. and Pollack, J. B. (1985). Massively parallel parsing: A strongly interactive
model of natural language interpretation. Cognitive Science, (9):51-74.

Wilensky, R. (1978). Understanding goal-based stories. PhD thesis, Computer science de-
partment, Yale university.

Wilensky, R. (1981). Micro pam. In Schank, R. and Riesbeck, C., editors, Inside computer
understanding, pages 180-196. Hillsdale, NJ.

Wilensky, R. (1983). Planning and understanding: a computational approach to human
reasoning. Addison-Wesley.

Winograd, T. (1972). Understanding natural language. Academic Press, New York.

151

Zernik, U. (1987). Strategies of Language Acquisition: Learning Phrases from Ezamples

in Context. PhD thesis, Computer Science Department, University of California, Los
Angeles, Technical Report UCLA-AI-87-1.

152

APPENDIX A

DYNASTY proposition space

This chapter lists DYNASTY's proposition space which is used to develop DSRs for
whole vocabularies listed in section 3.3.2. The propositions are listed in two different triple
forms (concept-triples and event-triples) which are machine readable. Concept-triples are the
training data for the concept-encoding network and event-triples are the training data for the
proposition-encoding network in the DSR-Learner module (both described in section 2.5).
The propositions listed here are the proposition generators. The variables (with ?-mark) in
those proposition generators are replaced with the instances (listed in section A.1) during
DSR learning. The variables are randomly replaced with one of the two instances at every
epoch, and are maintained the same during one epoch.

A.1 Variables and instances

?person: John, Mary

Tcook-utensil: pan, micro-wave
?raw-food: fish, chicken

7guide~book: michelin-guide, yellow-page
?Prestaurant: sizzler, mamasion

7food: steak, lobster

market: vons, lucky

?restaurant: sizzler, mamasion

7class: computer, biology

?professor: simth, alan

?doctor: dr-kim, dr-park

?hospital: ucla-hospital, usc-hospital

A.2 Proposition-triples

Proposition-triples for proposition-encoding network

evl state hungry; evl agent ?person

ev? act borrowed; ev2 agent ?person; ev2 object ?cook-utensil; ev2 from friend
ov3 act entered; ev3 agent 7person; ev3 location kitchen

evd act picked—ug; evd a§ent ?person; ev4 object ?raw-food

ev5 act read; evh agent ?person; ev5S object ?guide-book

ev6 act borrowed; ev§ agent ?person; evé object money; evé from friend
ev’ act got-into; ev7 agent 7person; ev7 location car

ev8 act walked; ev8 agent ?person; evB to 7reataurant

ev9 act stole; ev9 agent 7person; ev9 object money; ev9 from waiter
evi(act got; eviO agent ?person; evi0 cbject ?food

evil state wanted; evil agent ?person; evli object evil

avl12 act asked; evi2 agent ?person; evl2 object location;

evl2 obj-attr 7market; ev12 to friend

evl3 act went; evi3 agent ?person; evi3 to bank

evi4d act went; evid agent Tperson; evi4 to ?restaurant

evl5 state wanted; ev%S agent ?person; evlh object evis

evi6 act stopped; ev16 agent ?person; evi6 location ?gas-station

evi7 state knew; evi7 agent 7person; evi7 ocbject locatien;

ev17 obj-attr ?restaurant

153

evis
avid
ev20
av2l
av2?2
av23
av24
ev25
ev26
eva7
ev2B
av29
ev30
ev3l
ev32
ev33
avi3
ev34
ev35
ev3s
av37
ev3s
evr39
av40
evil
av4?
ev43
evi4
ev4h
ev4f
evd7
ev48
ev49
ev50
av51
evb2
evh3
ev54
evhb
evhg
evy57
evb8
evy59
ev60
evB1l
evB62
av63
evb4
evBs
ovE6
eve7
ev68
evB9
evT0
evT1
avy2
av73
ev7d
ev7h
av76
av77
evig
av79
av80
ev81
ev82
evB82
ev83
evB4
evB5
ev86
avg?

state wanted; evl8 agent ?gerson; evl8 object evis

act picked-ug; ov19 agent 7person; evi9 object 7guide-book

act got; ev20 agent 7person; ev20 object 7guide-book

state wanted; ev2l agent ?person; ev2l object ev21i

state knev; ev22 agent 7?person; ev22 object location; ev22 obj-attr ?market
state wanted; ev23 agent ?person; ev23 object ev23

act called-up; ev24 agent 7?person; ev24 to friend

state wanted; ev2i agent ?person; ev2b object ev25

act walked; ev26 agent ?person; ev26 to pay-phone

state had; ev27 agent ?person; ev27 cbject money; ev27 mode not

act went; ev2B agent 7?person; ev28 to bank

state wanted; ev29 agent ?person; ev2d object ev29

act wvalked; ev30 agent ?person; ev30 to 7Tmarket

act got; ev3l agent ?person; ev31l object ?raw-food

state wanted; ev32 agent ?person; ev32 object ev32

act asked; ev33 agent ?person; ev33 object locationm;

obj—attr ?restaurant; ev33 to friend

act drove; ev34 agent ?person; ev34 to 7restaurant

act borrowed; ev3b agent ?person; ev35 object coin; ev35 from waiter
act bought; ev36 agent 7person; ev36 object ?raw-food; ev38 location 7market
act got; ev37 agent ?person; ev37 object ?cock-utensil

state wanted; ev38 agent ?person; ev38 object ev38

act drove; ev39 agent 7person; ev38 to Tmarket

act entered; ev40 agent ?person; ev40 location 7restaurant

act seatad; ev4l agent waliter; ev4l object ?perscn

act brought; ev42 agent waiter; ev42 object menu

act read; ev43 agent 7person; ev43 object menu

act ordered; ev4§ agent ?person; ev44 object 7?fcod

act ate; ev4b agent ?person; ev45 object 7food

act paid; ev46 agent ?person; ev46 object bill

act left; ev47 agent 7person; ev47 object tip

act left-for; ev48 agent ?7person; ev48 from ?restaurant; ev48 to home
state needed; ev49 agent 7person; ev49 object 7food

act entered; evS0 agent 7person; evb0 location 7market

act got; evbl agent ?person; ev51 object cart -

act picked-up; ev52 agent ?person; ev52 object 7food

act waited; evhE3 agent 7person; ev53 location line

act paid; evS4 agent ?person; ev54 to cashier

act left~for; evbb agent ?person; ev55 from ?market; ev55 to home
state knew; evb6 agent ?person; evES object ?class

state wanted; ev57 agent 7person; ev57 ob;ect ev57

act entered; ev58 agent 7person; ev58 to ?class

act sat-down; ev58 agent 7person; ev59 location seat

act took-out; ev60 agent ?person; ev60 object notebook

act listened; evfl agent ?person; ev6l from 7?professor

act took-note; ev62 agent 7person

act checked; ev63 agent 7person; ev63 object time

act left-for; ev64 agent 7Tperson; ev64 from ?class; ev64 to home
state sick; ev85 agent ?person

act went; ev66 agent ?person; ev66 to hospital

act checked-in; evB87 agent ?person; ev67 to receptionist

act sat-down,; ev68 agent 7Tperson; evéB location seat

act read; ev69 agent 7person; ev69 object ?magazine

act entered; ev70 agent ?person; ev70 location exam-rcom

act tested; ev71l agent nurse; ev7l object ?person

act examined; ev72 agent 7doctor; ev72 object 7person

act left-for; ev73 agent 7person; ev73 from hospital; ev73 to home
state hungry; av74 agent ?person; ev’4 mcde not]
act cooked; ev7h agent 7person; ev/5 object 7raw-food; ev7E location kitchen
state had; ev76 agent ?person; evi6 object 7cook-utensil

act borrowed; ev7/ agent 7person; ev77 object ?cook-utensil; ev77 from friend
state inside; ev78 agent 7person; ev78 location kitchen

state had; ev79 agent 7person; evi9 object ?raw-tfood

act picked-up; ev80 agent 7person; ev80 object 7raw-food

act ate; ev8l agent ?person; ev81 object 7food; ev8l location 7restaurant
state knew; evag agent ?person; ev82 object location;

obj-attr 7restaurant

act read; evB3 agent ?person; evB3 object ?guide-book

state had; evB4 agent 7person; ev84 object money .
act borrowed; evB85 agent ?person; ev85 object money; evB85 from friend
state inside; ev86 agent 7person; ev86 location ?restaurant

act drove; evB7 agent 7person; evB7 to 7restaurant

154

ev88 state inside; evss agent 7person; evB88 location car

evBY act walked; ev89 agent 7person; evB9 to Traestaurant

evB0 act stole; av90 agent 7person; evS0 object money; ev90 from waiter
ev9l state had; ev91 agent ?person; ev91 object ?food

ev92 act bought; ev92 agent ?person; ev92 object ?food; ev92 location 7market
evd3 state knew; ev93 agent Tperson; ev93 object location; ev93 obj-attr ?market
ev0d act asked; evd4 agent ?person; ev94 object location;

ev94 obj-attr 7market; ev94 to friend

ev95 act withdrew; ev95 agent ?person; ev95 object money; ev85 from bank
ev96 state inside; ev96 agent 7person; ev96 location bank

ev97 state had; ev97 agent ?person; ev97 object gasoline

ev98 act bought; ev9s agent Tpersom; ev98 object gasoline;

ev98 location 7gas-station

ev9d state inside; ev99 agent ?person; ev89 location ?7gas-station

ev100 state had; evi00 agent ?person; eviO0 object ?7guide-book

e¢v101 act picked-up; evi01 agent 7person; eviOl object ?guide-book

eviC2 act bought; evi02 agent 7person; ev102 object ?guide-book;

eviC2 location ?market

ev103 state had; ev103 agent Tperson; ev103 object comm-link; ev103 to friend
ev104 act called-up; eviO4 agent 7person; aviDi to friend

ev105 state near; evi(5 agent 7person; eviO5 location pay-phone

ev106 act walked; evi06 agent ?person; eviO8 to pay-phone

evi07 act drove; evi07 agent ?person; evi07 to bank

ev108 act ate; ev108 agent ?person; evi08 object ?food

ev109 state inside; eviQ9 agent ?person; ev109 location ?market

evi10 act walked; ev110 agent ?person; evii0 to 7?market

evill act bought; eviil agent ?person; evill object ?raw-food;

evlill location ?market

ev11l2 act asked; evii2 agent 7?person; evil2 object location;

evll2 obj-attr 7restaurant; evi12 to friend

evil3 state had; ev113 agent ?person; evil3 object coin

evi14 act borrowed; evii4 agent ?person; evil4d object coin; evil4 from waiter
ev1lE act borrowed; eviis agent 7?person; evil5 object money; eviils from friend
ev1l6 act drove; evii6 agent 7person; evii6 to 7market

ev11l7 state knew; evil7 agent 7person; evii? object ?class

evil18 state sick; evi1is agent 7person; evil18 mode not

€119 goal s-hunger; g119 agent ?person

p120 plan pb-restaurant; pi20 agent 7person; p120 object ?food;

P120 location 7restaurant :

pl21 plan pb-cook; p121 agent ?person; pi121 object ?raw-food

p122 plan pb-eat; p122 agent ?person; p122 cbject ?food

§123 goal d-know; g123 agent ?person; gl23 object location; g123 obj-attr 7market
g124 goal d-know; gi24 agent ?person; g124 object location;

g124 obj-attr ?restaurant

g125 goal d-know; g125 agent ?person; g125 object phone-number;

g125 obj-attr friend

g126 goal d-know; gl26 agent ?person; gi26 object 7class

P127 plan pb-ask; p127 agent ?person; pi27 object location;

Pi27 obj-attr ?market; pi27 to friend

Pi28 plan pb-ask; p128 agent 7person; p128 object location;

P128 obj-attr 7restaurant; p128 to friend

P129 plan pb-ask; pl29 agent ?person; p129 object phone-number;

P129 obj-attr friend

pi30 plan pb-read; p130 agent ?perscn; pl30 object ?guide-book

p131 plan pb-lecture; p13] agent ?person; p131 object ?class; pl3l from ?professor
g132 goal d-cont; gi32 agent 7person; gl132 object coin

g133 goal d-cont; g133 agent ?person; g133 object ?guide-book

g134 goal d-comt; gi34 agent ?person; g134 object gasoline

g135 goal d-cont; g135 agent ?person; g135 object 7food

g136 goal d-cont; gi36 agent ?person; g136 object ?raw-food

g137 goal d-cont; g137 a%ent ?person; gl37 object ?cook-ut9n511

P138 plan pb-shopping; pi38 agent ?person; p138 object ?guide-book;

p138 location 7?market] .

p139 plan pb-shopping; p139 agent ?person; p139 object gasoline;

P139 location 7gas-station]

pl140 Elan pb-shopping; p14¢ agent ?person; p140 object 7food;

P140 location 7market

pl41 plan pb-shopping; pi41 agent ?person; p141 object ?raw-food;

P14l location 7market))

p142 plan pb-shopping; pi142 agent 7person; pi42 object 7cook-utensil;

pl42 location ?market . . .
P143 plan pb-borrow; p143 agent 7person; p143 object coin; pl43 from waiter

135

pi44 plan pb-borrow; pil44 agent ?person; pld44 object ?guide-book; pl44 from friend
pl4% plan pb-borrow; pi46 agent ?person; pil45 object ?cook-utensil;

pl4s from friend

pl46 plan pb-grasp; pl146 agent ?person; pl46 object coin

P147 plan pb-grasp; pl147 agent ?person; pl47 object ?guide-book

P148 plan pb—grasp; pi48 agent 7person; p148 object 7fcod

pl49 plan pb-grasp; pi49 agent ?person; pi49 object ?raw-food

p150 plan pb-grasp; giso agent 7peraon; pl50 object Tcook-utensil

g151 goal d-cont; g1l

1 agent ?person; gibl object money

pi52 plan pb-withdraw; pl52 agent ?person; pi52 object money; pi52 from bank
p1563 plan pb-steal; pi53 agent ?person; plh3 object money; pi53 from waiter
pl54 plan pb-borrow; plb4 agent ?person; pi54 object money; pl54 from friend
g155 goal d-prox; g155 agent ?person; glE6 object pay-phene

g156 goal d-prox; g156 agent 7person; gi56 location 7restaurant

g157 goal d-prox; g157 agent ?person; gil57 location bank

g158 goal d-prox; gl58 agent ?person; gl158 location 7market

g159 goal d-prox; g159 agent 7person; glb9 location car

pi160 plan pb-walk; pl60 agent 7person; pi60 to pay-phone

pl161 plan pb-walk; pl161 agent ?person; pl6l to ?restaurant

p162 plan pb-walk; pl62 agent ?person; pl162 to bank

pl63 plan pb-walk; pl163 agent ?person; pl63 to Tmarket

pi64 plan pb-walk; pi64 agent ?person; pl64 to car

p165 plan pb-drive; p165 agent 7person; pi65 to ?restaurant

pl6é6 plan pb-drive; pl66 agent ?person; pi66 to bank

pl67 plan pb-drive; pl167 agent 7person; pl67 to 7market

g168 goal d-link; gl68 agent ?person; g168 to friend

p169 plan pb-phone; pi69 agent ?person; pl69 to friend

P170 plan pb-letter; pi70 agent ?person; pl70 to friend

gi71 goal p-health; gi71 agent 7person

P172 plan pb-dector; pl72 agent 7person; pl72 to ?doctor

A.3 Concept-triples

Concept-triples for concept-encoding network

?class from ev64; ?class object evil7; 7class object ev5s;

?class object gi26; ?class object p131; ?class to ev58

?cook-utensil object ev2; ?cook-utensil object ev37; 7cook-utensil object evT7§;
?cook~utensil object ev77; ?cook-utensil object g137; ?cook-utensil object pi42;
?Tcook-utensil object pl45; 7?cook-utensil object pi50

?doctor

agent ev/2; 7?doctor to pi72

?food object eviQ; ?food object evi08; ?food object ev44; 7food object evd5;
?food object evd9; 7food object ev52; 7food object evB81; 7food object ev9i;
?focd object ev92; ?food object gi35; 7food object p120; 7food object pl22;
7food object p140; 7food object pi4s

?gas-station location evi8; ?7gas-station location ev98;

7gas-station location ev99; 7gas-station location p139

7guide-book object ev100; ?guide-book object evi01; ?guide-book object evi02;
?guide-book object evid; 7guide-book object ev20; ?guide-book object ev5;
7guide~book object ev83; ?guide-book object g133; ?guide-book object pi30;
?guide-book object p13B; 7guide-book object pl44; 7guide-book object pld7
?magazine object ev69

Tmarket
?market
7market
?market
’market
Tmarket
"market
Tmarket
?person
?person
?person
?person
?person
7person
Tperson
?person

from evbb; ?market location evi02; 7"market location evi09;
location evill; 7market location ev38; ?market location ev50;
location ev92; ?market location gi58; ?market location p138;
location p140; ?7market location pi41l; ?market location p142;
obj-attr evl2; 7market obj-attr ev22; ?market obj-attr evd3;
obj-attr ev94; ?market cbj-attr gi23; ?market obj-attr pl27;
to ev110; 7market to evil6; ?market to ev30;

to ev39; "market to pl63; "market to pl87;

agent evl; 7person agent evi00; ?person agent evi(l;

agent ev102; ?person agent ev103; ?person agent eviO4;
agent ev105; 7?person agent evi06; 7person agent eviO7;
agent ev108; 7person agent gli9; 7person agent gi23;

agent gl24; 7Tperson agent gl25; 7person agent gl26;

agent gl32; 7person agent gi33; 7person agent gli4;

agent gi71; 7person agent pl120; ?person agent pl21;

agent pl122; ?person agent pl127; 7person agent pl28;

156

?person agent p129; ?person agent p130; 7person agent p131;
?person agent pi38; 7person object evdi: ?person object ev7i;
?person object av72
7professor from ev6l; ?professor from pi3t
?raw-food object evill; ?raw-food object ev3i; ?raw-food object ev36;
’rawv-food object ev4; ?raw-food object ev75; 7raw-food object ev79;
?raw-food object ev80; 7raw-food object gi136; ?raw-food object pl121;
’raw-food object pi41; 7raw-food object pi49
?restaurant from ev48; ?restaurant location ev40; ?restaurant location ev81;
?Prestaurant location ev86; 7restaurant location g1586; ?restaurant location p120;
7restaurant obj-attr evil2; ?restaurant obj-attr evi7;
‘restaurant obj-attr ev33; ?restaurant obj-attr ev82;
’restaurant obj-attr gi24; ?restaurant obj-attr pil28;
?restaurant to evi4; 7restaurant to ev34; 7restaurant to evs;
?restaurant to ev87; 7restaurant to ev88; 7restaurant to pi61;
?restaurant to pl65s
asked act ev112; asked act evi2; asked act ev33; asked act ev94
ate act eviO8; ate act ev45; ate act evS8l
bank from ev95; bank from pi52; bank location ev98; bank location 187;
bank to ev107; bank to ev13; bank to ev28; bank to pl62; bank to plés;
bill object ev4s
borrowed act evii4; borrowed act ev11i5; borrowed act ev2; borrowed act ev3§;
borrowed act ev6; borrowed act ev77; borrowed act ev85
bought act ev102; bought act evill; bought act ev3s; bought act ev92;
bought act ev98; brought act ev42;
called-up act ev104; called-up act ev24
car location ev7; car location evB8; car location g169; car to plé4
cart object ev5i
cashier to evb4
checked act ev63
checked-in act evE7
coin object evii3; coin object evii4; coin object ev35; coin object g132;
coin object pl43; coin ocbject pl4s;
comm-link object evi(03
cooked act ev7h
d-cont goal g132; d-cont goal g133; d-cont goal gi134; d-cont goal g135;
d-cont goal g136; d-cont goal g137; d-cont goal giS5i
d-know goal g123; d-know goal g124; d-know goal g125; d-know goal g126
d-link goal g168;
d-prox goal g155; d-prox goal gi56; d-prox goal gi57; d-prox goal £158;
d-prox goal %159
drove act evi07; drove act ev1i§; drove act ev34; drove act ev39;
drove act ev87
entered act ev3; entered act ev40; entered act ev50; entered act evS8:
entered act ev70
exam-room location ev70
examined act ev72
friend from ev115; friend from; ev2 friend from ev6; friend from avTT;
friend from ev85; friend from pl44; friend from pl145; friend from pi54;
friend obj-attr g125; friend obj-attr P129; friend to ev103; friend to evi04;
friend to ev112; friend to evi2; friend to ev24; friend to ev33;
triend to ev34; friend to g168; friend to p127; friemd to pl2s; friemnd to pl169;
friend to pi7cC
gasoline object evd7; gasoline object ev98; gasoline object gi34;
gasoline object p138
got act ev10; got act ev20; got act ev3l; got act &v37; got act ev5l
ot-into act evT
ad state ev10Q0; had state evi03; had state evi13; had state av27:
had state ev76; had state ev?9; had state ev84; had state ev9l: had state evs7
home to ev48; home to ev55; home to ev64: home to ev7?3
hospital from ev73; hospital to ev66
hungry state evl; hungry state ev7T4
inside state ev109; inside state ev78; inside state ev86; inside state ev33;
inside state ev968; inside state ev99
kitchen location ev3; kitchen location ev75; kitchen location ev78
knew state evil7; knew state evi7; knew state ev22; knew state evi6;
knew state ev82; knew state ev93
left act ev47
lett-for act evd8; left-for act evb5; left-for act ev64; left-for act ev73;
line location evb3
listened act evsl .
location object ev112; location object evl2; location object evi7;

157

location object ev22; location object ov33; location object ev82;

location object ev93; location object ev94; location object g123;

location object g124; location object pi27; location object p128;

menu objsct ev42; menu object ev43

money object evllE; money object ev27; money object evS; money object ev84;
money object ev85; money object evd; money object ev90; money object ev9s;
money object gibl; money object pl52; money object pi53; money object pisé
near state evi05

needed state ev4d

not mode ev1i8; not mode ev27; not mode ev74

notebook object evs0

nurse agent ev7l

ordered act ev44

p-health goal gi71

Paid act ev46; paid act evb4

pay-phone location evi05; pay-phone object gibB6; pay-phone to evi0§;
pay-phone to ev26; pay-phone to pl60

pb-ask plan p127; pb-ask plan p128; pb-ask plan p129

pb-borrow plan pl43; pb-borrow plan pi144; pb-borrow plan pl45; pb-borrow plan pi54
pb-cook plan pi121

pb-doctor glan pl72

pb-drive plan pi85; pb-drive plan p166; pb-drive plan pl67

pb-eat plan p122

pb-grasp plan pl46; pb-grasp plan pl47; pb-grasp plan p148; pb-grasp plan pi49;
pb-grasp plan pi50

pb-lecture glan pl3l

pb-letter g an pl70

pb-phone plan p16%

pb-read plan p130

pb-restaurant plan p120

pb-shoppirg plan pi138; pb-shopping plan p139; pb-shopping plan p140;
pb~shopping plan pi41; pb-shopping plan pl42

pb-steal plan p153

pb-walk plan pi60; pb-walk plan pi61; pb-walk plan pi162; pb-walk plan pl63;
pb-walk plan pi64

pb-withdraw plan p152

phone-number object gi25; phone-number object p129

picked-up act eviQl; picked-up act ev1®; picked-up act ev4; picked-up act ev5E2;
picked-up act evB0

read act ev43; read act ev5S; read act ev69; read act ev83

receptionist to evé7

s-hunger goal g119

sat-down act ev59; sat-down act eves

seat location ev59; seat location evés

seated act evdl

sick state ev118; sick state ev65

stole act ev9; stole act evd0

stopped act evié

tested act evTl

time object evE3

tip object ev47

tock-note act eve2

took-out act evBO

vaited act ev53; waiter agent ev4l; waiter agent ev42; waiter from evii4;
vaiter from ev35; waiter from ev9; waiter from ev90; waiter from pi43;
waiter from pl53

walked act ev106; walked act evii0; walked act ev26; walked act ev30;
walked act ev8; walked act av89

wanted state evil; wanted state evibH; wanted state evi8; wanted atate ev2i;
wanted state ev23; wanted state ev25; wanted state ev29; wanted state ev32;
wanted state ev38; wanted state ev57

went act evi3; went act evi4d; went act ev28; went act av6s

withdrew act ev95

158

APPENDIX B

DYNASTY [/O story skeletons

DYNASTY’s input stories and output inference chains are listed below in skeleton forms
with the variables and their instances. The actual stories and inference chains are formed
from these skeletons by specifying the ID parts for each variable that appears in the skeleton.
The skeletons are used to analyze DSRs and DYNASTY performance in several experiments
described in chapter 5.

B.1 Goal/plan story skeletons

Goal/plan story skeletons are listed under the 3 different types: (1) typel - stories about
how several preconditions of a plan should be fulfilled (horizontal reasoning), (2) type 2 —
stories about how series of preconditions are fulfilled sequentially (vertical reasoning), and
(3) type 3 — stories that combine type 1 and type 2. Each sentence beginning with a —
is an input sentence, and output inference chains follow each input sentence skeleton. The
goal/plan knowledge to produce the inference chains are listed in the appendix C.1 and
appendix C.2.

Variables and instances:

?person: John, Mary

?cook-utensil: pan, micro-wave
7raw-food: fish, chicken

7guide-book: michelin-guide, yellow-page
7restaurant: sizzler, mamasion

?food: steak, lobster

Tmarket: vons, lucky

typel
skeleton 1
—--> person was hungry.
?person was not hungry.
~=> ?perscn borrowed ?cook-utensil from friend.
?person was not hungry. ?person cooked ?raw-food.

fperson had ?cook-utensil. 7person borrowed ?cook-utensil from friend.

--> 7person entered kitchen. .
?person cooked ?raw-food. ?person was inside kitchen.

-=> ?person picked-up Traw-food.
?person cooked ?raw-food., ?person had ?raw-food. ?person picked-up ?raw-food.

skeleton 2

159

-—> 7person was hungry.
?person was not hungry.

—-=> 7?person read 7guide-book.

?person was not hungry.
?person knew 7restaurant locatiom.

?person ate ?food at ?restaurant.
?person read ?guide-book.

—-=> ?person borrowed money from friend.

7person ate

?7food at 7restaurant. 7person had money.

?person borrowed money from friend.

-=> ?person
?person ate

got-inte car.

7food at ?restaurant. ?person was inside ?restaurant.

?person drove to 7?restaurant. ?7person was inside car.

type2

skeleton

==> 7person
7person was

-=-> 7person
7person was

1
was hungry.
not hungry.

wanted (7person knew ?restaurant location).
not hungry. “7person ate 7food at ?restaurant.

?person knew ?restaurant location.

-=> 7person

picked-up 7guide-book.

?person knew ?restaurant location. ?Eerson read ?guide-book.
@

?person had

skeleton

-=> 7person
?person was

=~> 7person
?person was

7person knew 7restaurant location.

?person had

-=> 7person
7person had

?guide-book. 7?person picked-up ?guide-book.

2

was hungry.
net hungry.

wanted {7?person got ?guide-book).

not hungry. 7?parson ate 7food at 7restaurant.
?person read 7guide-book.
7guide-book.

wanted {?person knew book-store location}.
?7guide-book.

7person knew book-store location.

-=> 7?person

wanted (?person called-up friend).

?person knew book-store location.
?person asked friend about book-store location.

?person had

-—-> ?person

?person called-up friend.

communication—-link to friend.

walked to pay-phone.
?person was near pay-phone.

?person walked to pay-phone.

type3

skeleton

=-=> 7person
?person was

--> 7person
?person was

1
was hungry.
not hungry.

asked friend about ?restaurant location.
not hungry. ?person ate 7food at ?restaurant.

7person knew ?restaurant location.
?person asked friend about ?restaurant location.

160

?person bought ?guide-book at book-stors.

?person called-up friend.

—=> ?person drove to 7restaurant.
’person ate ?food at ?restaurant. ?person was inside ?restaurant.
?person drove to ?restaurant.

—=> ?person had no money
7person ate 7food at ?restaurant. ?person had money.

~-> 7person wanted (?person called-up friend).
?person had money. 7?person borrowed money from friend.
?person had comm-link to friend. 7person called-up friend.

—=> 7person borrowed coin from waiter.
?person called-up friend. ?parson had coin.
Tperson borrowed coin from waiter.

skeleton 2

——> ?7person was hungry.
?person was not hungry.

—-> 7person bought ?raw-food at 7market.
?person was not hungry. ?person cooked ?raw-food in kitchen.
?person had ?raw-fcod. ?person bought ?raw-food at 7market.

—-—> 7person wanted (?person got ?cock-utensil).
?person cooked ?raw-food in kitchen. ?person had ?7cook-utensil.

—=> ?7person borrowed ?cook-utensil from friend.
?person had ?cock-utensil. ?person borrowed 7cook-utensil from friend.

B.2 Script story skeletons

Script story skeletons are listed below with the output paraphrases. The variables serve

as script roles. The script knowledge used to produce the paraphrases is listed in the appen-
dix C.3.

Variables (script roles) and instances:

?person: John, Mary

?restaurant: sizzler, mamasion

?food: steak, lobster

?rawv-food: fish, chicken

’market: vons, lucky

?class: computer, biology

?professor: simth, alan

?doctor: dr-~kim, dr-park

7hospital: ucla~hospital, usc-hospital

skeleton 1

—-=> 7person was hungry.
?person was not hungry.

-~> ?person entered ?restaurant. ?person ate 7food. 7person left tip.
7person was not hungry. 7?person entered ?restaurant.

waiter seated ?person. waiter brought menu.

7person read menu. 7?person ordered ?focd.

7person ate ?food. ?persocn paid bill.

?person left tip. 7person left ?restaurant for home.

skeleton 2
161

—-=> 7person needed 7raw-food.
?person had ?raw-food.

-—-> 7person entered 7market. 7person picked-up ?raw-food. ?person paid to cashier.
?person had ?raw-food. 7person entered Zmarket.

?person got cart. 7?person picked-up ?raw-food.

7person waited in line. 7person paid to cashier.

?person left 7market for home.

skeleton 3

--> 7person wanted (?person learned ?class).
?person learned ?class.

—-—> ?person entered classroom. ?person listened to ?professor.
--> ?person left classroom for home.

?person learned 7class. 7person entered classroom.

7person sat-down on seat., 7?person tock-out notebook.

?person listened to ?professor. 7person took-note.

?person chacked time. ?person left ?classroom for home.

p P

skeleton 4

-—> ?person was sick.
?person was not sick.

—-=> ?person went to Thospital. 7?person read magazine. ?doctor examined ?person.
?person was not sick. 7person went to Thospital.

?person checked—in with receptionist. 7person sat-down on seat.

?person read magazine. 7person entered exam-room.

nurse tested 7person. ?doctor examined ?person.

?person left ?hospital for home.

162

APPENDIX C

DYNASTY goal/plan knowledge

C.1 Goals and plans in DYNASTY

Below are listed the specific goals and plans used in the DYNASTY. The goals and
plans are represented using case-role triples. Appendix E shows some of the goal/plan
representation examples in the training data. Plans are diverse in their complexity, from
the ones which can be mapped to single action to the ones which should be mapped to the

specific sequence of actions (script). The general treatment of these goals and plans can be
found in [Schank and Abelson, 1977].

Goals

¢ s-hunger (?person) : ?person wants not to be hungry

¢ d-know (?person, ?information) : ?person wants to know the ?information
e d-cont (?person, 7phy-obj) : ?person wants to have ?phy-obj

e d-prox (?person, 7place) : ?person wants to be inside/near ?place

d-link (?person, ?person2) : 7person wants to have communication link to ?person2

¢ p-health (?person) : ?person wants to preserve his health

Plans

¢ pb-restaurant (?person, 7food, Trestaurant) : ?person executes restaurant script to eat
?food at the specific ?restaurant

¢ ph-cook (?person, Traw-food) : 7person cooks ?raw-food in the kitchen

® pb-eat (?person, Mood) : ?person eats ?food

¢ pb-ask (?person, ?information, ?person2) : ?person asks ?information to ?person2
e pb-read (?person, Tbook) : ?person reads 7book

o pb-lecture (7person, ?class, ?professor) : ?person executes take-lecture script to learn
about ?class from 7professor

e pb-shopping (?person, 7phy-obj, 7market) : ?person executes shopping script to buy
7phy-obj at the 7market

163

¢ pb-borrow (?person, ?phy-obj, ?person2) : ?person borrows ?phy-obj from ?person?
e ph-grasp (?person, 7phy-obj) : Tperson picks-up 7phy-obj

o ph-walk (?person, 7place) : ?person walks to the 7place

¢ pb-drive (?person, ?place) : ?person drives a car to the ?place

¢ ph-phone (7person, 7person2) : ?person calls up to 7person2

e ph-letter (?person, 7person2) : 7person writes a letter to 7person2

e pb-visit-doc (?person, ?doctor, Thospital) : ?person executes a visit-doctor script to be
examined by 7doctor at the Thospital

C.2 Goal/plan relations

DYNASTY'’s goal/plan trees are shown below. These goal/plan trees designate all of
the goal/plan relations used in the DYNASTY. Ovals indicate AND nodes, where several
preconditions must be met in order to execute a plan. All of the AGENT role fillers (?person)
are omitted for simplicity.

s-hunger
pb-rest . pb-cook pb-eat
{?food, ?rest) (?raw-food) (Mqod}
d-know d-cont d-prox
(7rest) {money) (?rest) d-cont
(Mood)
d-cont d-cont d-prox
? - i 2raw-)
{?cook-utensil) {?raw-food) (Kitchen)
d-know{?infc)
pb-ask ph-read pb-lecture
(?1nfe,?person2) (7guide-book) (?pref,?class)

d-link d-cont
(7?person2) (?guide-book)

164

d-cont

(7phy-obj)
pb-grasp
. 7phy-obj
pb-shopping pb-borrow (¥phy-00)
{?phy-obj,?market) {?phy-obj,?person2)
d-link
d-prox ?person2
(”?narket) d-cont d-know *p)
' {money) {?market)
d-cont
{meney)
Db—withdrm ph-borrow
(?bank) (money) {money,?persenz)
¢-prox _ a-link
(?bank) (7perscn2)
d-prox
(?place)
pb-walk pb-drive
(?place) (?place)
d-cont
d-pfox {gasoline)

(car)

165

d-link

(7person2)
/\ p-health
pb-phone pb-letter
(?person2) (?persoenz)
ph-doctor-visit
(?doctor,7Thospital)
d-know d-cont d-prox
(?person2,phone-num) {(coin) {phone)

C.3 DYNASTY script knowledge

This appendix shows DYNASTY script knowledge with script roles and instances. DY-
NASTY is trained with complete input (shown below), but during performance, DYNASTY
1s tested to see if, given only a partially instantiated input, whether DYNASTY can recognize
complete script events with all the correct bindings filled in. Therefore, during performance,
DYNASTY was given instantiated versions of only the starred sections (see below), which
represent fragments of complete scripts. All of the scripts roles are in capital letters.

Restaurant-Script
Roles: PERSON, RESTAURANT, FOOD
Instances: John, Mary, Sizzler, Macdonald, steak, hamburger

PERSON entered RESTAURANT=*
walter seated PERSON

walter brought menu

PERSON read menu

PERSON ordered FQOD

PERSON ate FOOD*

PERSON paid bill

PERSON left a tip*

PERSON left RESTAURANT for home

Attending-Lecture-Script
Roles: PERSON, CLASS, PROFESSOR
Instances: John, Mary, Bio-class, CS-class, Dr-Minsky, Dr-Turing

PERSON entered CLASS*

PERSON sat down on the seatx
PERSON took cut a notebook
PERSON listened to the PROFESSOR
PERSON took-notes*

PERSON checked the time

166

PERSON left the CLASS for homex

Shopping-Script
Roles: PERSON, STORE, ITEM
Instances: John, Mary, Lucky, Vons, meat, milk

PERSON went to STORE=*
PERSON get cart

PERSON picked out ITEM*
PERSON waited in line
PERSON paid to cashier=
PERSON left STORE for home

Visiting-Doctor-Script
Roles: PERSON, DOCTOR, HOSPITAL
Instances: John, Mary, Dr-Kim, Dr-Johnson, ucla-hos, usc-hos

PERSON went to HOSPITAL=*

PERSON checked in with receptionistx*
PERSON sat down on the seat

PERSON read magazinex

PERSON entered exam-room

nurse tested PERSON

DOCTOR examined PERSON=*

PERSON left HOSPITAL for home

167

APPENDIX D

Statistically-biased generalizations

This chapter shows statistically-biased training data and example I/O’s for the sec-
tion 5.3.1.

D.1 Statistically-biased goal/plan relations

This section lists DYNASTY gp-trees which are statistically-biased. In this experiment.
DYNASTY is trained with statistically-biased plan-selection preferences and default role
fillers for various actors. For example, John always asks to know, but Mary always reads
guide-books. The two different case-role fillers in the parentheses designate the default roles
for different actors. Ovals indicate AND nodes as before.

s-hunger{John) (Mary}

pb-cook

ﬁ-;estt « orest) {John,fish)
ohn,steak,?res (Mary,chicken)

(Mary,shrimp, 7rest)

pb-eat
(hamburger)

d~know d-cont d-prox d-cont
? n ?
(7rest) (money) (7rest} (hamburger)
g-cont d-caont d-prox
(?7cock-utensil) (John,fish) pro
(kitchen)

(Mary,chicken)

d-know (John,LocXMary,Loc)

pb-ask pb-read

{(John,Loc,friend) (Mary Michelitn-q)
d-tink d-cont
(Jehn,friend) {Mary,Michelin-q)

168

d-cont
{John, ?phy-abj) (Mary,?phy-obj)

pb-grasp

pb-shopping (?phy-ob)

(John,7phy-obj,vons) pb-borrow
(Mary,?phy-obj,Lucky) (7phy-obj,friend)

d-link
g-prox (friend)
(John,Vons) d-cont d-know

{money) (John,Vons)
(Mary,Lucky) g
4 4 {Mary,Lucky)

d-cont
(John,mcney)

(Mary noney)
pb-withdraw pb-steal pb-borrow

(John,BOA) (money} (money,friend)
(Mary,Security-Pac) /

/ d-link

(friend)
d-prox

{(John,BOA)
(Mary,Security-Pac)

d-prox
(John,LocXMary,Loc)

N

po-walk pb-drive
(Mary,Loc) (John,Loc¢)

d-cont
d-know (John,gasoline)

(Mary,Loc) d-prox

(John,car) d-know

(John,Log)

169

d-tink

(friend)
pb—ohone/\ pb-letter
(friend (friend)

d-know d-cont d-prox
(friend,phone-num? (coin) (phone)

D.2 Statistically-biased I/0

This section lists the examples of statistically-biased input /outputs which were discussed
in section 5.3.1. To produce these I/Q’s, DYNASTY was trained with the statistically-biased
gp-trees in the previous section. The convention of listing is same as in section B.1.

example 1

—-=> John was hungry.
John was not hungry.

--> John wanted (John knew Sizzler location).
John was not hungry. John ate steak at Sizzler. John knew Sizzler location.

--> John called up friend.
John knew Sizzler location. John asked friend about Sizzler location.
John had comm-link to friend. John called up friend.

example 2

--> Mary was hungry.
Mary was not hungry.

-—> Mary wanted (Mary knew Sizzler location).
Mary was not hungry. Mary ate shrimp at Sizzler. Mary knew Sizzler locatiom.

--> Mary called up friend.

Mary knew Sizzler location. Mary read Michelin-guide.

Mary had Michelin-guide. Mary borrowed Michelin-guide from friend.
Mary had comm~link to friend. Mary called up friend.

example 3

—--> John was hungry.
John was not hungry.

--> John wanted (John went to Sizzler).)
John was not hungry. John ate steak at Sizzler. John was inside Sizzler.

~--> John asked about Sizzler location.

John was inside Sizzler. John drove to Sizzler.
John knew Sizzler location. John asked about Sizzler locatiom.

170

example 4
—=> Mary was hungry.
Mary was not hungry.

-=> Mary wanted (Mary went to Sizzler).
Mary was not hungry. Mary ate shrimp at Sizzler. Mary was inside Sizzler.

——> Mary read Michelin-guide.

Mary was inside Sizzler. MKary walked to Sizzler.
Mary knew Sizzler location. Mary read Michelin-guide.

171

APPENDIX E

DYNASTY training code and data

This chapter lists DYNASTY's modules with their training data format. The purpose
is to show concrete implementation of the training mechanisms, not to provide complete
programs that could be downloaded and run. Most of the duplicate and low-level hook-
keeping routines are omitted. Only parts of the training data which are enough to show the
correct input file format are listed.

E.1 DSR-Learner

This section lists codes and data format of the DSR-Learner which was described in
chapter 2 and section 5.1.

The following two programs are used to generate training data for the DSR-Learner. The
first program generates unique number for each proposition. The second program produces
the concept-triples (appendix A.3) from the proposition-triples (appendix A.2) in order to
be loaded into the concept-encoding network. The proposition-triples are generated from
the propositions using the ST-Parser program (listed in appendix E.7).

/* event number generation for tdata-dsr-sv file
input file: tdata-te
output file: tdata-dsr-ev */

#include <stdio.h>
#include <math.h>

#define nsize 20 /* maxi name size »/

#define ifile "tdata-te" /* input file - training data for Triple-Encoder ¢/
#define ofile "tdata-dsr-ev" /* output tdata-dsr-ev file */

#defins evnumb 1000 /+ max number of triples */

/* event triple holder =/
struct eventd {

char bankil[nsize];

char bank2[nsize];

char bank3[nsize];

} eventdl[evnumb), *evptr;

int startn = 0; /+ default starting event number */
char prebanki[nsize];
FILE »fopen(),*ifp,*ofp;

main{)}
int i;

/* print interface message */
printf{“\nevent start number?"};
scanf ("¥%d",kstartn);
printf("\nstartn is %d\n",startn);

172

/* read tdata-te */
ifp = fopen(ifile,"r"):
evptr = eventdl;

while(fscanf(ifp,"¥s",evptr->bankl) != EOF)
if (evptr->banki[0] '= *;*) {

fscanf(ifp,"%s %s",evptr->bank2,evptr->bank3):
evpir++;

}

evptr—-;
printf("%s %s %s\n",evptr->bank1,evptr->bank2, evptr->bank3);

fclose(ifp);

/* assign number =/
ofp = fopen(ofile,"w"};

evptr = eventdl;

while{evptr->bank1[0] '= "\0') {
strcpy(prebankl, evptr->bankl);
while(stremp(evptr->bankl,prebankl) == 0 && evptr->banki1[0] !'= ’\0’) {
if (evptr->bank1[0] == 'e’)
fprintf(ofp,"eviid %s %s\n",startn,evptr->bank2,evptr->bank3};

else if (evptr->banki[0] == 'p?)
fprintf(ofp,"pid %s %s\n",startn,evptr->bank2, evptr->bank3);
else if (evptr->bank1{0] == ’g’)

fprintf(ofp,”ghd %s %s\n",startn, evptr->bank2, evptr->bank3);

strcpy(prebank1, evptr->banki);
evptr++;
} /% inner while #*/
startn++;
fprintf{ofp,"\n");
}

fclose{ofp);

/* datagenerator for tdata-dsr-obj from tdata-dsr-ev
inputfile: tdata-dsr-ev
outputfile: tdata-dsr-obj */

#include <stdic.h>
#include <math.h>

#define nsize 20 /+* max name size */
#define ifile "tdata-dsr-ev"
#define ofile "tdata-dsr-obj" /* output tdata-dsr-obj file */
#define evnumb 1000

struct eventd {

char banki[nsize];

char bank2[nsize];

¢har bank3[nsize]:

} eventdl[evnumbj, *evptr, %evptr2;
char curbank3[nsize];
FILE *fopen(),*ifp,*ofp;
main()

int i:

/* input to memory */

173

ifp = fopen(ifile,"r");
evptr = eventdl;

while(tscanf(ifp,"%s",evptr-)bankl) '= EOF) {
fscant (ifp,"%s %a",evptr->bank2,evptr->bank3);
evptr++;

}

evptr-—;
printz{"%s %s ¥s\n",evptr->bank1,evptr->bank2, evptr->bank3);

fclose(ifp);
/* print triple with bank3 contiguously #*/

ofp = fopen(ofile,"w");
evptr = eventdl;

while(evptr->bankifo] 1= ’\0’) {

evptr2 = evptr;

vhile{evptr2->banki[0] != '\0’) {

if (evptr2->banki[0] != ’z’' &k strcmp(evptr->bank3,evptr2->bank3) == Q) {

fprintf{ofp,"is %s %s\n",evptr2->bank3, avptr2->bank2, evptr2->banki);
evptr2->banki[0] = *z’;

}

evptr2++;

}

evptr++;

fclose(ofp);

The following shows training data format for the DSR-Learner. The first group shows the
proposition-triples to be loaded into the proposition-encoding network, and the second group
shows the concept-triples to be loaded into the concept-encoding network. The complete
triples to learn the DSRs for whole vocabularies are listed in appendix A.

;event—-triples

evl state hungry; evl agent 7person

ev2 act called-up; ev2 agent 7person; ev2 to friend

ev3 state wanted; ev3 agent 7person; ev3 object ev2

ev4 state had; ev4 agent ?persocn; ev4 object money; evd mode not
evb act asked; evb agent 7person; evh object location;

evb obj-attir ?restaurant; evb to friend

;concept-triples

?class subject p38;

?food tood-tygo P21; 7food object ev24; 7food object evd
7guide-book object ev34

7person ageat evl; 7person agent evi(; 7person agent evii;
?person agent evi2; 7person agent evi3; 7person agent evi4;
?person agent evlS5; ?person agent evl1B; ?person agent evi7;
?person agent eviB8; 7person agent evid;

The following program learns DSR representations from the given proposition sets. The
propositions are loaded in two different forms: concept-triples and event-triples.

/% dsr-learner network module

174

input file: tdata-dsr-obj, tdata-dsr-ev into memory

input symbol dictionary: conbol-object, conbol-event, conbol-case
output symbol dictionary: conbol-cbject, conbol-event

output weight file: weight-object, weight-event

usage: learn-dsr < sim.para > dsr-lo

input parameter: cycle, epoch, loadweight_flag

dump

weight and conbol at every snapshot interval

weights frozen at every snapshot interval to verify encoding */

#include <stdioc.h>
#include <math.h>

#define

#define
#define
#define
#define

snapshot 10 /# snapshot epoch ; dump weight and conbol */

nsize 20 /* number of characters in name */

rsize 10 /* representation size */

lsize 12 /# case-role size =/

iosize lsize+2*rsize /+* input/output size in XRAAM */

/* max data size */

#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define

nums_ev 200 /* number of event symbol in the buffer =*/
nums_obj 150 /* number of object symbol in the dictionary */
nums_c 30 /* number of case-role */

nums_td_ev 1000 /* number of triples in tdata-dsr-ev */
nums_td_obj 1000 /+ number of triples in tdata-dsr-obj */

dfile "tdata-dsr-obj" /* input concept-triple file */

dfile2 "tdata-dsr-ev" /* input event-triple file */

sfile "conbol-object" /# DSR representation table for object #*/
sfile2 "conbol-event'" /* DSR representation table for event, buffer */
1file "conbol-case" /* case-role representation table %/

wfile "weight-object' /# concept-encoder weight matrix */

wfile2 "weight-event'" /* proposition-encoder weight matrix */

/* symbol store for objact */
struct objstore {

char

name[nsize];

float creplrsize]; /* current rep */
} objstorel[nums_obj],*symp_obj;

/* symbol store for event */
struct evstore {

char

name[nsize];

float crep[rsize];
} evstorell{nums_ev],*symp_ev;

/* symbol store for case-role #*/
struct casestore {

char

name{nsizel;

float rep(lsize];
} casestorel[nums_c],*casep;

/* training data store ; each entry is an array number pointing to the
object in the conbol-object tile */
struct tdata_dsr_ev {

int evnum;

int case_role;

int object;

} tdata_dsr_evl([nums_td_ev],*tdpl;

struct tdata_dsr_obj {
int object;
int case_role;
int evnum;
} tdata_dsr_objllnums_td_obj]l,*tdp2;

/* XRAAM network current representation holder */
char repn[nsizel,linkn[nsize] ,noden[nsizel; /* input name holder */
float rep[rsizel,link{1size] ,node{rsize]; /* input rep holder =/

175

/* object encoder/decoder network */

float in_objlicsizel,out_objlicsize] ,hidden_objlrsize],teach_objliosize];
float wih_objliosize] [rsize] ,vho_objirsize][iosize];

float hbias_objlrsizel,obias_objliosize];

/* event encoder/decoder network */

float in_ev[icsize],out_ev[iosize] ,hidden_ev(rsize],teach_ev[iosize];
float wih_ev[iosizej[rsize],who_evtrsize][iosize];

float hbias_ev(irsize],obias_ev[iosize];

/* global file pointer =/
FILE »fopen(),#*dfp,*dfp2,*sfp,*sip2,*1fp,*wlp, *wip2;

/* simulation set up */
char mcycle[4],epochs[3],l0ad_flagl2];

/* default BP paramater */
float etha = 0.07; /+ learining rate =/
float alpha = 0.5; /* momentum factor */

JEREEERRRERE main driver skrxxsskiErrss/
main()

int max,total,mtotal; /* max cycles, epochs */
int i;

sim_setup(); /* set-up simulation parameters */

max = atoi(mcycle); /* max cycles in BP #/
mtotal = atoi(epochs); /* max epochs in training */

read_to_stora(); /* read from initial conbol to internal data structure
it (load_flag[Oj == 'n’) rassign(); /% random assign of weight */
else load_weight(); /* load previous weight for continuous training */

/* print sim environment */

printf{"\n max cycles Yd",max);

printf{("\n max epochs %d",mtotal);

print2("\n load_flag %s",load_flag);

printf{"\n initial BP parameter %f %f",etha,alpha);

/* print initial weight to verify =/
print_weight();

/* read training data into memory #*/
read_td_obj();
read_td_ev();

/* repeat cycle for each epoch; one epoch is for entire training data =/
for (total=0;total<mtotal+l;total++) { /# for max epoch */

printf{"\n epoch number %d object encoding \n",total);
it (total % snapshot == 0) printf("\n re-encodig training verification\n"};

/* object encoding */
tdp2 = tdata_dsr_objl;

while(tdp2->object != §999) {

strcpy(repn,objstorel [tdp2->object] .name);
strcpy(linkn,casestorel[tdp2->case_role] .name);
strepy(noden, avstorel [tdp2->evnum] .name);

for (i=0;i<rsize;it++)

rep[il = objstorel[tdp2->object].creplil;
for (i=0;i<lsize;i++)

link[i] = casestorel[tdp2->case_role].repl[il;
for (i=0;i<rsize;i++)

176

node(i] = evstorel[tdp2->evnum].creplil;

if (total % snapshot == 0) prop_obj(total);
else back_prop_obj(max,total);

for (i=0;i<rsize;i++)
objstorel[tdp2->cbject] .crep[i] = hidden_obj[i];

it (total == 0)
printf(“\nrestored into %s\n",objstorel[tdp2->object].name);

tdp2++;
} /* while */

printf(“\n epoch number %d event encoding \n",total);

/* event emncoding */
tdpl = tdata_dsr_evl;
while(tdpi->evnum != 9998) {

strcpy(repn,evstorel[tdpl->evnum] .name);
strcpy(linkn, casestorel[tdpi->case_role] .name);

if (tdpl->object >= nums_obj) /* event */
strcpy(noden, evstorel [(tdpi->object)-nums_obj] .name);
else

strcpy(noden,objstorel[tdpl->object] . name);

for (i=0;i<rsize;i++)
rep[i] = evstorel[tdpi->evnum].creplil;
for (i=0;i<lsize;i++)
link([i] = casestorel[tdpi->case_role].repfil;
for (i=0;i<rsize;i++)
it (tdpl->object >= nums_obj) /* recursive event */
node{i}l= evatorel[(tdpi->object)-nums_objl.creplil;
aelse
nede[i] = objstorelltdpi->object].creplil;

if (total % snapshot == 0) prop_ev(total);
else back_prop_ev(max,total);

for (i=0;i<rsize;i++)
evstorelltdpl->evnum].crep[i] = hidden_ev[i];

if (total == 0)
printf("\nrestored into ¥%s\n",evstorel[tdpl->evnum].name);

tdpl++;
} /* while *»/

/* dump snapshot for each snapshot point */
it (total % snapshot == 0) {
print_sym();
dump_weight();
makea_dict();

} /* out for =/

/* post processing */
dump_weight();
make_dict();

} /% end of main =/

S¥ekwxkknnkx gimulation bookkeeping *skstxsnsssnsnss/
/* set up simulation parameters from terminal input */
sim_setup()

printf("\n how many cycles ir BP? (max 999)");
scanf("%s",mcycle);

177

printf{"\n how many epochs in simulation?(max 99)");
scanf ("%s",epochs);

printf{"\n load previous weight? (y/n)");

scanf ("%s",load_flag);
}

/* print initial veight matrices to verify correct loading */
print_weight()
{

int 1i,3;

}

printf{("wih_obj\n");
for (i=0;i<iosize;i++) {
ftor (j=0;j<rsize;j++) printf ("%t ",wih_obj[il[j]); printf("\n");
}

printf{"who_obj\n"};
for(i=0;i<rsize;i++) {
for(j=0;j<iosize;j++) printf("%t ",who_obj[i][j]); printf{"\n");
}

/* bias dump */
printf("hbias_obj\n");
for (i=0;i<rsize;i++)
printf{"%f ",hbias_obj[il); printt("\n");

printf{"obias_obj\n");
for (i=0;i<iosize;i++)
printf ("if ",obias_objli]); printf("\n"};

printt("wih_ev\n");
for (i=0;i<iosize;i++) {
for (j=0;j<raize;j++) printf("%f ",wih_ev[il[j1); printf("\n");
}

printf{"who_evin");

for(i=0;i<rsize;i++) {
for(j=0;j<iosize;j++) printf("%f ",who_ev[il[jl); printf("\n");
}

printf{"hbias_ev\n");
for (i=0;i<rsize;i++) printf("%f ", hbias_ev(il); printf("\n");

printf{"obias_evin");
for (i=0;i<iosize;i++) printf ("%t ",obias_ev[il); printf("\n");

/* read tables into memory */
read_to_store()

int 1i;

/* read to objstore */

sfp = fopen{afile,"r"); /+* open conbol-object =/
symp_obj = objstorel;
while(fscanf(sfp,"%s",symp_obj->name) != EOF) {

for{i=0;i<rsize;i++)
Iscanf(sfp,"%t" , k(symp_obj->creplil));

symp_obj++;
fclose(stp);
/* read to evstore */

sfp2 = fopen(sfile2,"r"); /# open conbol-event x/
symp_ev = evstorel;

178

while(fscanf(sfp2,"s",symp_ev->name) '= EOF) {

for(i=0;i<raize;i++)
fscant(sfp2,"%f" X (symp_ev->crep[i]));

Symp_ev++;
fclose(sfp2);

/* read to case store %/
1fp = fopen(lfile,"r"); /* open conbol-case %/
casep = casestorel;

while(fscanf({1lfp,"%s",casep->name) != EOF) {
if (cazep->name[0] != *;’) {
for(i=0;i<1size;it+)
fscanf(1fp,"%2" ,&(casep->repl[il));
cagep++;

}
}
fclose(1fp);

/* test probe =/
printt("\nobjstorel\n");

printf("\n%s ",objstorel[3].name);
for(i=0;i<rsize;i++)

printf("%.1f ", cbjstorel[3].creplil);

printf("\ncasestorel\n”);

printf{"%s ",casestorel[3].name);
for(i=0;i<lsize;i++)

printf("%.1f ", casestorel[3].replil);
/* test end */

)]

/* read concept-triple training data file into memory for speed up */
read_td_obj()
{

int i;
dfp = fopen(dfile,"r"); /* open tdata-dsr-obj */
tdp2 = tdata_dsr_objl;

while(tscanf(dfp,"¥s",repn) != EOF) {
fscanf (dfp,"%s",linkn);
tscant{dfp,"¥%s",noden);

/* object representation =/

i=0;
while((strcmp(repn,objstorel[i]l.name) != 0) && (objstorell[i].name[0] != ’\0’)) i++;
if (objstorel(i].name[0] == ’\0’) printf("\nerror no %s",repn);

else tdp2->object = i;
/* load event rep */

i=0;)
wvhile({strcmp(noden,evstorel[i].name) != 0) && (evstorel[il.name[0] !'= ’\0’)) i++;
it (evatorel[i].name[0] == '\0’) printf(“\nerror: no %s",noden);:

else tdp2->evnum = i;

/* load case rep */

1=0; .
while((strcmp(linkn,casestorel[i].name) != 0) && (casestorel[i].name[0] != ’\0’)) i++;
if (casestorell[i] .name[0] == '\0') printf("\n error: no %s",linkn);

else tdp2->case_rcle = i;

tdp2++;
} /¥ while =/

179

tdp2->object = 9999; /# end ot data file */
tclose(dfp);

printt("\n tdata_dsr_objl");
for {i=0;i<40;i++)
printf("\n %d %d %d",tdata_dsr_objl[il.object,tdata_dsr_objl[i].case_role,
tdata_dsr_objl[i].evnum);
}

/* read event-triple training data file into memory for speed up */
Eead_td_ev()

int 1i;
dfp2 = fopen(dfile2,"r"); /* open tdata-dsr-ev */
tdpl = tdata_dsr_evl;

while(fscant(dfp2,"¥%s",repn) != EOF) {
tscanf(dfp2,"%s",linkn);
tscanf (dfp2,"¥%s" ,noden);

/* load event representation */

i=0;

while((strcmp(repn,evstorel[il .name) !'= 0} && (evstorel[i].name[0] '= '\0?)) i++;
if (evstorel[il].name(0] == ’\0’) printf{("\nerror: no %s\n",repn);

else tdpl->evnum = i;

/* load object rep */

i=0;
while((strcmp(noden,objstorel{i] .name) '= 0) && (objstorell[i].name[0] '= ’\0’)) i++;
if (objstorelli].name[0] '= '\0’) tdpil->object = i;
else {
i=0;
while((strcmp(noden,evatorel[i] .name) != 0) &k (evatorell[il.name[0] != *\0’)) i++;
it (evstorel{i].name[0] == '\0’) printf("\nerror: no %s\n",noden);

else tdpi->object = i + nums_obj; /* it is event */

/* load case rep */

1=0;

while{(strcmp(linkn,casestorel[i].name) != 0) && (casestorell[i].namel[0] '= 7\0')) i++;
if (casestorel[i].name[0] == '\0’) printf("\n error: no %s",linkn);

else tdpl->case_role = i;

tdpl++; /* next store =/

} /* while #/

tdpl->evnum = 9999; /+ end of data */
fclose(dfp2);

printf{"\n tdata_dsr_ev");

for(i=0;1i<40;i++)

printf{"\n %d ¥%d ¥%d",tdata_dsr_evl[i].evnum,tdata_dsr_evl[i].case_role,
tdata_dsr_evl[i].object);

}

/erereaxxasnssxses backpropagation and forward propagation #sx*x*/
/* perform backprop for concept-encoder network */
back_prop_obj{max,total)

int max,total;

/* define BP parameters; internal matrix */
float eout[iosize],ehid[rsize],dwho(rsize] [icsize],
dwih[iosize] {rsize],
mwho [rsizel [iosize] ,mwih[icsize][rsize] ,net, pesig,
mhbias[rsizel ,mobias[icsize] ,dhbias[rsize] ,dobias[iosize];
float sigmoid(};
int i,j,pos,cycle,flag;

180

/* clear momentum weight matrices */
for(i=0;i<iosize;i++)
for(j=0;j<raize;j++) { mwih[i1[j] = 0; mwho[jI[i] = 0; }
for (i=0;i<rsize;i++} mhbias[i] = Q;
for (i=0;i<iosize;i++) mobias[i] = 0;

/* load data for cycles #/
/* input layer s/

pos = 0;

for(i=0;i<rsize;i++) in_obj[pos++] = repli];
for(i=0;i<lsize;i++) in_objlpes++] = link[i];
for(i=0;i<rsize;i++) in_objlpos++] = node[i];

/* teach layer : auto-associative network */
for(i=0;i<iosize;i++) teach_obj[i] = in_objl[i];

/* back_prop procedure - do until we get desirable
accuracy (two threshold used) or until max cycles */

for(cycle = 0;cycle<max;cycle++) {

/* forward prop */
/+ from input to hidden forward */

for(i=0;i<rsize;i++) {
net = 0.0;
for(j=0; j<iosize; j++)
net = net + wih_obj[jl[il*in_obj[j]l;

net = net + hbias_obj[il;
hidden_obj[i] = sigmoid(net);
}

/* from hidden to output */

for(i=0;i<iosize;i++) {
net = 0.0Q;
for(j=0;j<rsize;j++)
net = net + who_obj[jl{il*hidden_obj[il;

net = net + obias_obj[i];
out_objli] = sigmoid(net);
}

/* accuracy test -- threshold is v= 0.1 t= 0.2 according to J. Pollack */
flag = 0;
for(i=0;i<rsize;i++)

it (abs(teach_obj[i] - out_objl[il) > 0.1) flag = 1;
for{i=rasize;i<iosize;i++)
it (abs(teach_obj[i] - out_objlil) > 0.2) flag = 1;

it (flag == 0) {
printf("\n epoch %d up to %d cycles\n", total,cycle);
break; /* go to printnet */ }

/* backward prop */
/* calculate error signal for output */
for(i=0;i<iosize;i++)
eout{i] = (teach_obj[i]l - out_objlil)*out_obj[i)*{1-ocut_objl[i]);

/* modify weight for eout */

for(i=0;i<rsize;i++)

for(j=0; j<iosize; j++) {
dwho[i][j] = ethaxeout([j]*hidden_obj[il+alpha*mwho[i]l[j];
who_obj[i] [j] = who_obj[i][j] + dwho([i][jJ;
mwho[i] [j] = dwho[i][i];

181

}

/* adjust out bias */

for (i=0;i<iocsize;i++) {
dobias[i] = ethaveount[i]«1 + alpha*mobias[i];
obias_obj[i] = obias_objl[i) + dobias[il;
mobias[i] = dobias[i];

/* calculate error signal for hidden #*/
for(i=0;i<rsize;i++) {
pesig = 0.0;
for(j=0;j<iosize; j++)
pesig = pesig + eout[j]l*who_obj[il(3j];

ehid[i] = hidden_objlil*{(i-hidden_obj[il)*pesig;
¥

/* modify weight for ehid +/
for(i=0;i<iosize;i++)
for(j=0; j<rsize;j++) {
dwih{il[j] = etha*ehid[jl*in_obj[i] + alpha*mwih([i] [j];
wih_obj[i]1 (3] = wih_obj[i](j] + dwih(il[j];
mwih[i]1[j] = dwih[iJ[3];
}

/* adjust hid bias */

for (i=0;i<rsize;i++} {
dhbias{i] = etha*ehid[i]*1 + alpha*mhbias[i];
hbias_objli] = hbias_obj[i] + dhbias[il;
?hbias[i] = dhbias[il;

} /* tor cycle */
} /* end of back_prop_obj */

/* perform backprop for proposition-encoding network */
back_prop_ev(max,total)
int max,total;

/* network parameters */
float eout[iosize] ,ehidirsize],dwholrsize] [iosize],
dwih{iosize] [rsize],
mwho [rsize] [iosize] ,muih[iosize] [raize] ,net,pesig,
mhbias [rsize] ,mobias[iosize] ,dhbias[rsize] ,dobias{iosize]l;
float sigmeoid();
int i,j,pos,cycle,flag;

/* clear momentum */
for(i=0;i<iosize;i++)
for(j=0;j<rsize;j++) { mwih(il[j] = 0; mwho[jI[(i] = ©; }
for {i=0;i<rsize;i++) mhbias[i] = 0;
for (i=0;i<iosize;i++) mobias{i] = 0;

/* load data for cycles */
/* input layer */

pos = 0;

for{i=0;i<rsize;i++) in_ev[pos++] = replil;
for(i=0;i<lsize;i++) in_ev[pos++] = 1link[i];
tor{i=0;i<rsize;i++) in_ev[pos++] = nede[i];

/* teach layer : autc-associative network */
for{i=0;i<iosize;i++) teach_ev[i] = in_ev[i];

/* back_prop procedure - do until we get desirable
accuracy (two threshold used) or until max cycles */

182

for(cycle = 0;cycle<max;cycle++) o

/* forward prop */
/* from input to hidden forward */

for(i=0;i<raize;i++) {
net = 0.0;
tor(j=0; j<iosize;j++)
net = net + wih_ev([jl[il+in_ev[j];

net = net + hbias_av[i];
hidden_ev[i] = sigmoid{(net);
}

/* from hidden to output */

for(i=0;i<iosize;i++) {
net = 0.0;
for(j=0; j<rsize;j++)
net = net + who_ev{j][il*hidden_av[j];

net = net + obias_ev[i];
out_ev[i] = sigmoid(net);

)

/* accuracy test -- threshold is v= 0.1 t= 0.2 */
flag = 0;
for{i=0;i<rsize;i++)

if (abs(teach_ev[il - out_ev[il) > 0.1) flag = 1;
for{i=rsize;i<iosize;i++)
if (abs(teach_sv[i] - out_ev[il) > 0.2) flag = 1;

if (flag == 0) {
printf(“\n epoch %d up to %d cycles\n",total,cycla);
break; }

/* backward prop */
/* calculate error signal for output */
for(i=0;i<iosize;i++)
eout[i] = (teach_ev[il - out_ev[i])*cut_ev[il*{1-cut_ev[i]);

/* modify weight for eout */
for(i=0;i<rsize;i++)
for(j=0;j<iosize;j++) {
dwho{il[j] = etha*eout[jl*hidden_ev[il+alpha*mwho[i]l[j];
who_ev{i] [j] = who_ev[i][j] + dwho[i](j];
mwho{i] {j] = dwho[il[j];
}

/* adjust out bias */

for (i=0;i<iosize;i++) {
dobias[i] = etha*eout[il*1 + alpha*mobias[i];
cbias_ev[i] = obias_ev([i] + dobias[i];
mobias[i] = dobias[i];

/* calculate error signal for hidden */
for(i=0;i<rsize;i++) %
pesig = 0.0;
for(j=0; j<iosize;j++)
pesig = pesig + eout[j]*who_ev[il[j];

ehid[i] = hidden_ev[il*(1-hidden_ev[i])}*pesig;
1

/* modify weight for ehid */
for(i=0;i<iosize;it++)
for(j=0;j<rsize;j++) {
dwih([i][j] = etha®ehid[jl*in_ev(i] + alpha*mwih[il[j];

183

wih_ev[i] [j]

wih_ev[il[j] + dwih{il[j];
mwih il (5]
}

dwih[11[]}

/* adjust hid bias */

for (i=0;i<rsize;i++) {
dhbiasi] = etha*ehid[il*1 + alpha*mhbias[il;
hbias_ev[i] = hbias_ev[i] + dhbias[i];
?hbias[i] = dhbias[i];

} /% for cycle /
} /% end of back_prop_ev */

/* calculate sigmoid function */
float sigmoid(x)

float x;

{

double exp();
return{ 1.0 / (1.0 + exp(~-x)));

/* do forward prop for concept-encoding network for encode testing */
Erop_obj()

float sigmoid(),net;
int i,j,pos,flag;

/* load data */
pos = 0;

for(i=0;i<rsize;i++} in_obj[pos++] = replil;
for(i=0;i<lsize;i++) in_obj(pos++] = link[i];
for(i=Q;i<rsize;i++)} in_obj(pos++] = nodeli];

/* teach layer */
for(i=0;i<iosize;i++) teach_objli] = in_obj[i];

/* from input te hidden forward */

for(i=0;i<rsize;i++) {
net = 0.0;
for(j=0; j<iosize; j++)
net = net + wih_obj[jI[il#*in_obj{j];

net = net + hbias_objlil;
hidden_objli] = sigmoid(net};
}

/* from hidden to output */

for(i=0;i<iosize;i++) {
net = 0.0;
for(j=0;j<rsize;j++)
net = net + who_obj[j]l[(il*hidden_obj(j];

net = net + obias_objlil;
out_objl[i]l = sigmeid(net);
}

/* print net for verify =/

printf("%s %s %s\n",repn,linkn,ncden);

printf{"hidden\n");

for(i=0;i<rsize;i++) printf("%.1f ",hidden_obj[il); printf("\n");
printf("output-teach pair\n");

tor(i=0;i<iosize;i++) printf("%.1f * out_objlil); printf("\n");
for(i=0;i<iosize;i++} printf("%.1f ", teach_objlil); printf("\n");

184

} /% prop_obj */

/* perform forvard prop for proposition-encoding network */
prop_ev{)
{

float sigmoid(),net;
int i,j,pos,flag;

/* load data */
pos = O;

for(i=0;i<rsize;i++) in_ev[pos++] = replil;
for(i=0;i<1lsize;i++) in_av([pos++] = link[i];
for(i=0;i<reize;i++) in_ev[pos++] = node[il;

/* teach layer */
for (i=0;i<iosize;i++) teach_ev[i] = in_ev[i]l;

/* from input to hidden forward */

for(i=0;i<rsize;it++) {
net = 0.0;
for(j=0;j<iosize;j++)
net = net + wih_ev[jl[il*in_ev{j];

net = net + hbias_ev[i];
hidden_ev[i] = sigmoid(net);
}

/* from hidden to output */

for{i=0;i<iosize;i++) {
net = ¢.0;
for(j=0; j<rsize; j++)
net = net + who_ev[jl[ilvhidden_ev[j];

net = net + obias_ev[i];
out_ev{i] = sigmoid(net);

}

/* print net */

printf("%s %s %s\n",repn,linkn,noden);

printf("hidden\n");

for(i=0;i<rsize;i++) printf("¥%.1f " hidden_ev[il); printf("\n");

printf("output-teach pair\n");

tor(i=0;i<iosize;i++) printf("¥%.1f ", out_ev[il); printf("\n");

for(i=0;i<iosize;i++) printf("¥%.1f ",teach_wv[il); printf("\n");
} /* prop_ev */

/* print symbolic dictionary */
print_sym()

int i,j,k;
float dist[10][10];

/* print out combol-object +/
printf("\n symbolic store snapshot \n");
symp_obj = objstoral;
while{symp_obj->name{0] != *\0’) {

printf("\n¥s", symp_obj->name};
printf(" ");

for(i=0;i<raize;i++)

printt(" %.1f",symp_obj->creplil);

symp_obj++;
}

/* print out conbol-event buffer */

185

printf{"\n symbolic store snapshot\n");
symp_ev = evstorel;
while(symp_ev->name{0] != °\0’) {
printf("\a¥s",symp_ev->name);
printf{(" "),

for{i=0;i<rsize;i++)

print2(" %.1f",symp_ev->creplil);

symp_ev++;

/+ print first 10 object E-distance in conbol-ocbject */

for (i=0;i<10;i++)
for(j=0;j<10;j++) {
dist[i]1[j] = 0;
for(k=0;k<rsize;k++)
dist[ij[j] = diat[i][j] + (objstorelli].crep(k]l - objstorel[j].crep(k])
+ (objstorel[il.crep(k] - objstorell(j]l.creplx]);
}

printf(*\n E-dist square between first 10 conbol-object\n");
for (i=0;i<10;i++)
printf("%s ",objatorel[i].name);
print?("\n");
for (i=0;i<10;i++) {
for(j=0;j<10;j++)

printf{("%.1f ", dist[i1{j]);

printf{"\n");

}

}

/* make global-dictionary training data; see section E.3 */
?ake_dict()

int i;

/* print out conbol-object */
sfp = fopen(sfile,"w");
symp_ocbj = objstorel;

while(symp_obj->name[0] !'= *\0’) {
tprintf(sfp,”\n%s",symp_obj->name);
fprintf(stp," ");

for{i=0;i<rsize;i++)
tprintf(sfp,”" %.11",symp_obj->creplil);

symp_obj++;
}

fclose(sfp);

/* print out conbol-svent */
sfp2 = fopen(sfile2,"w");

symp_ev = evstorel;
while(symp_ev->name[0] != '\0?) {
fprintf(sfp2,"\n¥s" ,symp_ev->name};
fprintf{sfp2," ");
for(i=0;ic<raize;i++)
fprintf (sfp2," %.11",symp_ev->creplil);

Symp_ev++;

fclose(sfp2);

186

}

/* random number assign for initial weights; between -1 and 1 */
rassign()

int i,j;

for(i=0;i<iosize;i++)

for(j=0;j<rsize;j++) {
wih_obj[i]{j] = -1.0 + 2.0%(rand()/32767.0); /* -1 to 1 */
who_obj[j1{i) = -1.0 + 2.0#(rand()/32767.0);
}

for(i=0;i<iosize;i++)

for(j=0;j<rsize;j++) {
wih_ev[il[j] = -1.0 + 2.0*(rand()/32767.0); /* -1 to 1 */
;ho_ev[j][i] ~1.0 + 2.0+(rand(}/32767.0);

/* initial random bias =/

for (i=0;i<rsize;i++) {
hbias_objl[i] = -1.0 + 2.0%(rand()/32767.0); /% -1 to | =/
?bias_ev[i] = -1.0 + 2.0=(rand()/32767.0); /* -1 to 1 &/

for (i=0;i<iosize;i++) {
obias_cbjlil = -1.0 + 2.0+{rand()/32767.0); /* -1 to 1 */
;bias_av[i] = -1.0 + 2.0«(rand()/32767.0); /% -1 to 1 */

}

[**xxskress output bookkeeping sassssssrsas/
/* dump weight matrices for snapshot */
dump_weight ()

{

int i,j;

/* dump weight for object encoder/decoder net */
wip = fopen{wfile, "w");

for (i=0;i<iosize;it++) {
for (j=0;j<rsize;j++)
tprintf(wip,”%? ",wih_obj{il[j]1);
tprintt(wfp,"\n");
}
for(i=0;i<raize;i++) {
for(j=0; j<iomize;j++)
fprintf(wtp,"%f ",who_objlil[j1);
tprintf(wfp,"\n");
}

/% bias dump =/
for (i=0;i<rsize;i++)
tprintf(wfp,"%f *, hbias_objlil);
fprintf{wfp,"\n");
for (i=0;i<iosize;i++)
fprintf(wip,"%f ", obias_obj[il);
fprintt (wfp,"\n");
fclose(wfp);
/* dump weight for event encoder/decoder net +/

wip2 = fopen(wfile2,"w");

187

for (i=0;i<iomize;i++) {
for (j=0;j<rsize;j++)
fprintf(wip2,"4f ", wih_ev[il[j]1);

fprintf (¥fp2,"\n");
}

for(i=0;i<rsize;i++) {
tor(j=0;j<iosize;j++)
fprint?(wip2,"%f ",who_ev[i] [j]);

fprintf(wip2,"\n");

/* bias dump */

for (i=0;i<rsize;it++)
fprintf(wfp2,"%f ", hbias_ev[i]);

fprintf(wfp2,"\n");

for (i=0;i<iosize;i++)
fprintf(wfp2,"%t ", obias_ev[il);

fprintf(wfp2,"\n");

fclose(wfp2);
}

/* load previous weight matrices for continuous simulation */
load_weight()
{

int i,j;

/* load weight for object encoder/decoder net %/
vip = fopen{wfiles,"r");

printf{"\n\n load weight \n\n");
for (i=0;i<icsize;i++)

for (j=0;j<rsize;j++)
facanf (wfp,"¥1" ,kwih_obj[il1[}j]1);

for(i=0;i<rsize;i++)
tor(j=0; j<icaize; j++)
facanf(wfp,"%1",&who_obj il [j]1);
/* bias load =/
for (i=0;i<rsize;i++)
fscant (wfp,"%f ",&khbias_objlil);

for (i=0;i<iosize;it++)
fscanf (wfp,"%f " ,&obias_obj[i]);

fclose(wtp);

/% load weight for event encoder/decoder net =*/
wip2 = fopen(wfile2,"r");
for (i=0;i<iosize;i++)

for (j=0;j<rsize;j++)
fscanf (wfp2,"Yt" ,&kvih_ev[il[j]};

for(i=0;i<rasize;i++)
for(j=0; j<iosize;j++)
fscanf (w1p2,"%t" ,ewho_ev[il[j1);

/* bias load %/

188

for (i=0;i<rsize;i++)
facanf(wtp2,"%t ", ,khbias_ev[i]);

for (i=0;i<iosize;i++)
tscanf (wip2,"%f " ,&kobias_ev[i]);

fclose(wfp2);

E.2 Triple-Encoder

This section lists codes and data format of the Triple-Encoder which was descriled in
section 3.3.3.

Training data format for the Triple-Encoder is listed here. This training data is the same
format with the proposition-triples for the DSR-Learner, except that we can use arbitrary
event numbers here.

evl state hungry; evl agent 7person

ev6l act called-up; ev6l agent ?person; ev6l to friend
ov60 state wanted; ev60 agent ?person; ev60 object evél
ev67 state had; ev67 agent ?person; ev67 object money;
ev67 mode not

ev81 act asked; ev81 agent ?person; ev8l1 cbject location;
evBl obj-attr ?restauzrant; ev81 to friemd

evB4 act drove; evB84 agent ?person; sv84 to 7restaurant
ev87 act borrowed; evsg agent 7person; ev87 object coinm;
ev87 from waiter

The Triple-Encoder training program is listed here. Note that some of the routines are
omitted in the listing. These omitted codes are duplicates (with slightly different variable
names) of the routines with the same function names in the DSR-Learner program.

/* triple~encoder network module
input data file: tdata-te into memory
input symbol dictionary: global-dict (rsize-idsize), conbol-case
output weight file: weight-te
usage: triple-encode < sim.para > te-log */

#include <stdio.h>
#include <math.h>

¥define snapshot 50 /* snapshot at every 50 epocha */

#define nsize 20 /* number of characters in name #*/
#define rsize 12 /+ representation size */

#define lsize 12 /* case-role size =*/
#define icsize lsize+2*rsize /* XRAAM input/output size */
#define idsize 2 /* id unit aize »/

/* max data size */
#define nums_obj 100 /# number of object symbol in the dictionary #*/

#define nums_c 30 /* number of case-role */
#define nums_td_te 400 /¢ number of triples in tdata-ts */

#define dfile “tdata-te" /* input training data file */
#define sfile "global-dict" /+ global-dictionary file; result of DSR-learner */

#define 1file “conbol-case" /+ case-role file */
¥define wfile "weight-te" /+ weight matrix file s/

189

/* global dicticnary =*/

struct objstore {
char name[nsize];
float creplrsizel; /+ current rep =/
} objstorel[nums_objl,*symp_obj;

/* case-role store */
struct casestore {
char namelnsize];
float repllsize];
} casestorel[nums_c],*casep;

/* training data store ; each entry is an array number pointing to the object
representations in the global-dictionary */
struct tdata_te {

char evnum{nsize];

int case_rcle;

int object;

char object2(nsize]; /* for embedded event */

} tdata_te_l[nums_td_te],*tdpl;

/* previous event rep holder »*/
char preev[nsize];
float preevr[rsize];

/+* XRAAM network accessory */
char repn[nsizel,linkn[nsize] ,noden{nsize]; /* input name holder */
float rep[rsize],link[lsize] ,node[rsize]; /* input rep holder =*/

/* event encoder/decoder network */

float in_ev[iosize] ,out_ev[iosize] ,hidden_sv[rsize],teach_ev[iosize];
float wih,ev[iosizej[rsize],who_ovtrsize][iosiza];

float hbias_ev[rsize] ,obias_ev[iosize];

/* global file pointer */
FILE *fopen(),*dfp,*sfp,*1fp,*wip;

/* simulation set up =/
char mcycle[4],epochs[3],l0ad_flag[2];

/* default BP parameter */
float atha = 0.1; /% learining rate #/
float alpha = 0.5; /* momentum factor */

/* global convergence flag */
int gdone;

Jenknkks main driver **ssxdidktbpspinnrnrrsiin/
main()

/* max cycles, epochs */
int max,total,mtotal;
int i;
char tempev[nsize];
float ran; /+* random number output */

/* simulation parameter setup from terminal */
sim_setup(); /* not listed */

max = atoi(mcycle); /» max cycles in BP */
mtotal = atoi{epochs); /# max epochs in training */

read_to_store(}; /+# read from initial gd and case to internal data

atructure; not listed =/
if (load_flag[0] == ’'n’) rassign(); /* random assign of weight; not listed #/
else load weight(); /* load previous weight for continuous training; not listed

/* print sim environment */

190

*/

printf("\n max cycles %d",max);

printf{"\n max epochs %d" ,mtotal);
printf(*\n load_flag %s",load_flag};
printf{"\n BP parameter %f %f",etha,alpha);

/* print initial weight to the log file */
print_weight(); /* not listed */

/* read traning data into memory; object hold -1 if embedded */
read_td_te();

/* perform training for entire epoch */
for (total=0;total<mtotal+i;total++) { /+ for max epoch */

printf("\n epoch number %d\n",total):;

/* adjust bp parameter; decrease halfway at some interval #*/
for (i=1;i<B;it+)
if (total == i*2#snapshot) {

etha = etha / 2;

printf('"\n BP parameter set up %f %f",etha,alpha);

?reak;

if (total) smapshot == 0)
printf(“\n re-encoding weight freezed training verify ");

/* random id assign for object; gd is sorted so that eavery variable
is at front side */
symp_obj = objstorel;
while(symp_obj->name[0] == *?’) {
for {(i=0;i<idsize;i++) {
ran = rand()/32767.0; /* generate random number between 0 and 1;
machine dependent code */
symp_obj->crep[i] = ran;

aymp_obj++;
}

/* triple encoding through all data; one epoch */
gdone = 1; /# initial convergence flag +/

strcpy(tempev,"xxx");
tdpl = tdata_te_l;

/* for all training data */
while(tdpl->evnum{0] !'= ’\0’) {

strcpy(repn,tdpi->evnun);
strcpy(linkn,casestorel{tdpl->case_rcle] .name);

it (tdpi->object >= 0) /# object not embedded */
strcpy{noden,objstorel{tdpi->object] .name);

else

strcpy{noden,tdpi->object2); /* event; embedded */

/* if new event */

it (strcap(tempev,repn) != 0) {
strcpy(preev,tempav); /+ for embedding */
for (i=0;i<rsize;i++)

preevr[i]l = replil;
for (i=0;i<rsize;i++)

repli] = 0.5; /* init ev rep */

tfor (i=0;i<lsize;i++)
link[i] = casestorel[tdpi->case_role].replil;

it (tdpi->object >= 0) /* no recursive svent *x/

191

for (i=0;i<reize;i++)
node[i] = objatorel[tdpi->object].creplil;
else if (strcmp(tdpi->object2,preev) == 0)
for (i=0;i<rsize;i++)
node[i] = preevr[i];
else printf("\error no %s\n",noden);

if (total % snapshot == 0) prop_ev{total); /+ not listed */
else back_prop_sv{max,total); /+* not listed */

for (i=0;i<rsize;it++)
repl[i]l = hidden_ev{i];

strcpy(tempev,repn); /# for event group checking */
tdpi++;
} /+ while */

if (total ¥ snapshot == 0) dump_weight();

if (gdone == 1 &k total % snapshot != 0) {
printf("\n all data converged at epoch %d\n",total);
?reak;

} /* out for */

/* post processing */
dump_weight(); /* not listed */

} /* main */

faksxksusnenesrssssx training data and environment s&ssssssxssxs/
/* read training data file into memory */
and_td_to()

int 1i;

dfp = fopen(dfile,"r"); /* open tdata-te */
tdpl = tdata_te_l;

while(fscanf{dfp,"¥%s" ,repn) != EOF) {
tacanf{dfp,"¥s" ,linkn};
fecanf{dfp,"%s" ,noden};

/* load event name #*/
strcpy (tdpl->evnum,repn);

/* load object pointer */
i=0;

whiie((strcmp(noden,objstorel[i].nane) 1= 0) &k (objstorel{i] .name[0] != ’\07)) i++;
it (objstorel{i].name[0] '= *\0’) tdpl->object = i;
else {

tdpi->object = -1; /* event not object */
strcpy{tdpi->object2,noden);

/* load case rep */

(=0,
;hile((strcnp(linkn,casestorol[i].nane) 1= 0) &k (casestorel[i].name[0] '= ’\0'}) i++;
if (casestorel[i].name[0] == '\0’) printf("\n error: no %s",linknm);

else tdpl->case_role = i;
tdpl++; /* next store */

} /* shile =/
fclose(dLp);

192

E.3 Global-Dictionary

This section lists training data format and codes for the Global-Dictionary whiclh was

described in section 3.3.2.

Training data for the Global-Dictionary. Left side are listed symbolic names which will

be converted into 10-unit ASCII representations.

representations for each word.

Right side are listed 12-unit ID + DSR

T YOO OB RO COOOOVDVO NN AN OO0 DO COMDONANHNOMNA—AONHOOOO N AMHOO NG
000000000000 C00000000000000000080000000000000-HHHO00000G00—
HA A OO A AN A e ODDBWOWMMM - OO OO MDD ~ O (I LI P 0 D0 P 05 00 00D O N DN~
©O0COCCO0CO0O000C0O00
CRDORORBDPNRDODOBDOODPRBRR D ONOOOINNDOMNM DI~ ODM0MMODRDD DL D0ODR
0CCOCO00000CO0CO000000000C000000000000000000000000HNG00000000000
S S A i i i A A B D i A A A AU A A A dde ol R e i A b Lol D e L e Ly

OOCO0OCOCO0O0OO0000000C000OO00000CO0O00000000O00RN0N0O00C000000OOO0O0
TN NNOODO RN OOV DONNNMULNDORANOILNMNMOON IO DO DDNONOPLL DO

...

...

...

...

...

...

OO0 OO HN OO0 OO OONOOO OO OO OO0 000D00000000000000000C000CCO
CONOO-O OV OHOOOTOOHNOHOOHOOHOOO OO0 000O000000000000O000000CCO

helin-guide

7cook-utensil

pan

?guide-book

computer
’g
mic

?class
biclogy
?doctor
dr-kim
?7food
Tmarket
vons

steak

Yollow-page
?raw~food
chicken
fish
?restaurant

?professor
sizzler
called-up
checked-in
coin
comm-link
cooked
d-cont
d~know
d-link
d-prox
drove
aXam-room
friend

gsimth

micro-wave
alan

borrowed
bought
brought
examined
got-into

gasoline
had

dr-park
lobster
lucky
Tperson
john
mary
mamagsion
asked
ate
bank
bill
cashier
checked
entered
got

car
cart

193

CWOONOHNANYINA-"OOOOONOMA NN A AN A A A A ADOHEHNOM AN P OOT OV~ ON

..

..

CO00000000000000O00A0QOO0O000000CO0O000DOC0000OO0OCOOO0000000000000
ST ONIVOOFROBAMBOOONNNNOF DD AN OMMAONUODODOUNFDOA DR AN-ON~M

..

0000000000000 HOO000U0OOOOOOC000O0000000000OOCO000DO0OOOOOOC0O0O-00
PO NNOAMN -0~ 0O~~~ OO0~ O DO MWD OODROWUNO N~

..

0000000000 COCOOROCO0O000O000000000000000000C0000000000OC00000C0C0
WOV OUOAP VDD NARDYI NP =MV NOOMODMMOWVUNV~DURREMNMATMNPO DD FNODENITROO~D

..

0000000000000 0O00000000C000OLOOROROLO00ROO000000Q0000000C000
RO RO AN ATREOWN RN NONNA TN A AONNAWDE AN NAN - OMIDIMOAWLNNNMNL AN~

..

000000000000 COOOOC000000000000C0O0OO0O0C0O0O00000CO00000000000000
DUWOoOSWoOOAUNOHMNMUCNCOCHRAORIDHNEARARNRARNOOR-~"RAIOODDROR VOFEMOIOFRO O

..

OQ0QOOOQOO0O0O0O00C0O-OCO00O0O0O0O000000OCOO0OODOOOOOO0O0O0O0OO0OOVOO0DO000000
NN~ NNNODNNDOF AL UOMOUMMALONTHLINMNMONTIMYODREONDMNMNMOLP~DPNIEMmMnm

..

0000000000000 000000000000000000000V0BB0A0B00V0CG00000000000
MADNONO OO FORMOB-OHNDFOONNFODUENNAHNOOONO N HIBOD A e v (10 © W0
0000000000000 00000M0000000000000000000000RN000HO000000000000
N P OOV DAL DNPUOROREPROVNNUFDH A DUFDUALOENODH DD DO NN O 0w D00
CCO0CO00000000BO0OHNOO0000000000000000R00000000C0000000000000000
0000000000000 000000RC0C00000000000000R00000000000000000Q0000

[~JeReNaloBeReRolafoafaRafe ofoalofoJaafoafoRolaaofolaoafalafafeRaofafaafeBofaloNojfoRalofoRaaofoRofeJo o a e ol oholal

frasp
ecture
pb-restaurant
{ing
pb-withdraw
phone-number

picked-up

listened
location
menu

noney

near

read
receptionist
s~hunger
sat—down
seat

notebook

nurse
p-health

paid
pay-phone

hospital
hungry
inside
kitchen
left-for
line
ordered
pb-ask
pb-borrow
pb-cook
pb-doctor
pb-drive
pb-eat
pb-letter
Pb-phone
pb-read
took-note
toock-out
waited
waiter
valked
withdrew

knew

needed
not
Pb-shop
pb-stea
pb—walk
stopped
tested

home
left
pb-
pb-
seated
sick
stole
time
tip
wanted
vent

The Global-Dictionary training code consists of two programs: ASCII-to-DSR and DSR-

to-ASCII mapping programs. Some of the duplicate routines are not listed.

ASCII-to-DSR mapping code is listed here.

al-dict network module; ascii-to-dsr
global-dict into memory
weight-a2d

t training data file:

output weight file:

/* glob
inpu

194

usage: gd-a2d < sim.para > a2d-log */

#include <stdio.h>
#include <math.h>

#define snapshot 200 /+ snapshot at svery 200 epoch */

#define nsize 20 /* number of characters in name */
#define rsize 12 /* representation size */

#define isize_a2d nsize /+ input layer size %/
#define hsize_a2d 16 /* hidden layer size #/
#define osize_a2d rsize /* output layer size »/

/* max data size %/
¥#define nums_obj 150 /* number of object symbol in the dictionary */

#define sfile “global-dict” /* input training data file */
#define wfile "weight-a2d" /+ output weight file */

/* global dictionary -- training data «/
struct objstore {
char name[nsize];
float creplrsizel]; /+ current rep s/
} objstorel[nums_objl,*symp_obj;

/* main network =/

/* current network holder =/

char bankni_a2d[nsize];

float bankl_a2d[nsize],bank2_a2d[rsize]; /+ input rep holder #*/

/* gd main network =/

float in_a2d[isize_a2d],out_a2dlosize_a2d],hidden_a2d[hsize_a2d],
teach_a2d[osize_a2d];

float wih_a2d[isize_a2d][hsize_a2d],who_a2d[hsize_a2d] [osize_a2d];
float hbias_a2d[(haize_a2d] ,obias_a2d[osize_a2d];

/* global file pointer =/
FILE *fopen(),*sfp,*wfp;

/* simulation set up =/
char epochs[3],load_flag[2];

/* default BP parameter =/
float etha = 0.07; /* learining rate #*/
float alpha = 0.5; /% momentum factor */

/* global done */
int gdone;

/* main driver »/
main()

int total,mtotal;

int i,j;

float ran;

sim_setup(); /¢ set up simulation parameters »/

mtotal = atoi{epochs); /+ max epochs in training =/
read_td(); /* read from initial gd as training data s/

it (load_flaglC] == ’n’) rassign(); /+* random assign of weight; not listed #/
else load weight(); /* load previous weight for continuous training; not listed

/* print sim environment &/

printf("\n max epochs %d",mtotal);
printf{"\n load_flag %s", load_flag);
printf({"\n BP parameter %f %f",etha,alpha);

/* print initial weight to the log */

185

print_weight(); /* not listed */

/* for entire epoch */
tor (total=0;total<atotal+];total++) { /+ FOR MAX EFOCH */

if (total % snapshot == 0} printf("\n epoch number ¥d\a", total);

/* adjust bp parameter; decrease halfway =/

for (i=1;i<B;i++)

it (total == i%snapshot) {
etha = etha / 2;
grintf("\n BP parameter set up %f %f",etha,alpha);
}reak;

/* for every training pair in the global-dict */

gdone = 1;

symp_obj = objstorel;

while (symp_obj->name[0] != ’\0’) { /+ for all the words */

strcpy(bankni_a2d,symp_obj->name) ;

/* normalize ascii for a(97) -- z(122) into 0 —— 1
if less than 0; then ? or - or space »/

for (i=0;i<nsize;i++)
banki_a2d[i] = (float) (symp_obj->name[i] - 98) / 28.0;

for(i=0;i<raize;i++)
bank?2_a2d[i] = symp_obj->creplil;

if (total % snapshot == 0) {
prop(total); /* verify -- weight freezed */
}

else back_prop(total);
it (total % snapshot == 0) dump_weight();

symp_obj++;
} /% while %/

if (gdone == 1 &k total % snapshot != 0) {
Erintf("\n all data converge at epoch %d\n",total);
}reak;

} /% FOR MAX EPOCH »/

/* post processing =*/
dump_weight(); /* not listed */

} /* main »/

/* simulation setup */
sim_setup()

{
print2("\n how many sepochs (max §9)");

scanf ("%s" ,epochs);
printf("\n load previous weight (y/n)");
scanf("%s",load_flag);

}

/* read training data file; symbolic global-dictionary is actual
training data file which is listed in this section */
iand_td()

int 1i;

196

/* read to objstore */
sfp = fopen(sfile,"r"); /+ open global-dict =/
symp_obj = objstorel;

while{fscanf(sfp,"¥s",symp_obj->name) !'= EQF) {

/* read rep */
for(i=0;i<rsize;it++)
fscanf (sfp,"%I",&(symp_obj->creplil));

symp_obj++;
fclose(sfp);

/* test probe =/
printf("\nobjstorel\n");

printf("\n%s ",objestorel[3].name);
for{i=0;i<rsize;i++)

printf("%.1f ",objstorel[3].crep(il};

}

/* perform backprop */
bnck_prog(total)
int total;

float eout[osize_a2d],ehid[heize_a2d] ,dwho[hsize_a2d] [osize_a2d],
dwih[isize_a2d] [hsize_a2d],
mwho [hsize_a2d] [osize_a2d] ,mwih[isize_a2d] [haize_a2d] ,net,pesig,
mhbias[hsize_a2d] ,mobias[osize_a2d] ,dhbias[hsize_a2d] ,dobias[osize_a2d];

float sigmoid();

int i,j,pos,cycle,flag;

for(i=0;i<isize_a2d;i++)
for(j=0; j<hsize_a2d;j++)
mwih{il[j] = o;

for{i=0;i<hsize_a2d;i++)
for(j=0; j<osiza_a2d;j++)
mwho[i] [j] = 0;

for (i=0;i<hsize_a2d;i++) mhbias[i]
for (i=0;i<osize_a2d;i++) mobias[i]

nn
(=]

/* load data */
/* input layer */

for(i=0;i<nsize;i++)
in_a2d[i] = banki_a2d[il;

/* teach layer : hetero-associative network =/
for(i=0;i<rsize;i++)

teach_a2d[i] = bank2_a2d[i];
/* back_prop procedure */

/% forward prop */
/* from input to hidden forward »/
for(i=0;i<hsize_a2d;i++) {
net = 0.0;
tor(j=0;j<isize_a2d;j++)
net = net + wih_a2d[j]1{il*in_a2d[j];

net = net + hbias_a2d[i];
hidden_a2d[i] = sigmoid(net);
}

/* from hidden to output */

197

for(i=0;i<osize_a2d;i++) {
net = 0.0;
for(j=0; j<hsize_a2d;j++)
net = net + who_a2d{j]l[il+hidden_a2d[j];

net = net + obias_a2d[i];
out_a2d[i] = sigmoid(net);
}

/% convergence check */

for (i=0;i<csize_a2d;i++)

if (abs(teach_a2d[il - out_a2d[i]) > 0.22) gdone = 0;

if (gdone == i) printf("\n data ¥%s converge at epoch ¥%d\n",
bankni_a2d,total);

/* backward prop */
/* calculate error signal for output */
for(i=0;i<osize_a2d;i++)
eout Eij = (teach_a2d[i] - out_a2d[i])*out_a2d[il*(1-out_a2d[il);

/* modify weight for eout */

for(i=0;i<hsize_a2d;i++)

for(j=0;j<osize_a2d;j++) {
dwho[i][j] = etha*eout[jl*hidden_a2d[i]+alphasmwho[i] [j1;
who_a2d[i][j] = who_a2d[il[j] + dwho{il[j]1;

}nwho[i][j] = dwho[i] [j);

/* adjust out bias */

for (i=0;i<osize_a2d;i++) {
dobias[i] = etha*ecut{il+*1 + alpha*mobias[il;
obias_a2d[i) = obias_a2d[i] + dobias[i];
mobias[i] = dobias[i];

/* calculate error signal for hidden #/
for(i=0;i<hsize_a2d;i++) {
pesig = 0.0;
for{j=0; j<osize_a2d; j++)
pesig = pesig + eout([jl*who_a2d[il[j];

ehid{i] = hidden_a2d[i]+(1-hidden_a2d[i])+*pesig;
}

/* modify weight for ehid */

for(i=0;i<inize_a2d;i++)

for(j=0;j<hsize_a2d;j++) {
dwih{i]l [j] = ethatehid[jl*in_a2d[i] + alpha+mwih[i](j];
wih_a2d[i][j] = wih_a2d(il[j] + dwin[il(j];
l;wih[i] [3]1 = awinlil(j];

/% adjust hid bias »/

for (i=0;i<hsize_a2d;i++) {
dhbias[i] = etha*ehid[ilsi + alpha*ahbias[i];
bbias_a2d[i] = hbias_a2d[i] + dnbias[i];
:;hbiu (il = dhbias[i];

} /+ back_prop =/
/* perform forward prop for verity */
prop(total)
%nt total;
float net,pesig;
float lignoid(g;

198

int i,j,pos,cycle,flag;

/* load data */
/* input layer */

for{i=0;i<nsize;i++)
in_a2d{i] = bank1_a2d[i];

/* teach layer : hetero-associative network =/
for(i=0;i<rsize;i++)
teach_a2d[i] = bank2_a2d[i];

/* forward prop */
/*% from input to hidden forward =/

for(i=0;i<hsize_a2d;i++) {
net = 0.0;
for(j=0; j<isize_a2d;j++)
net = net + wih_a2d[j][il#in_a2d[j];

net = net + hbias_a2d[il;
hidden_a2d[i] = sigmoid(net);
}

/% from hidden to output */

for(i=0;i<osize_a2d;i++) {
net = 0.0;
for(j=0;j<hsize_a2d;j++)
net = net + who_a2d[j][i]l*hidden_a2d[j];

net = net + obias_a2d[i];
out_a2d[i] = sigmoid(net);
}

/* print network status to the log file */
printf("\n %d %s \n",total,bankni_a2d);
printf(“input layer\n");
for (i=0;i<isize_a2d;i++)

printf("%.1¢2 ", in_a2d[i]);
printf("\nhidden layer\n");
for (i=0;i<hsize_a2d;i++)
printf("%.11 * hidden_a2d[il);
printf ("\noutput-teach pair\a");
for(i=0;i<osize_a2d;i++)
printf(*%.1f ", out_a2d4[il);
printf("\n");
for(i=0;i<osize_a2d;i++)
printf{"%.1f " ,teach_a2d[il);
printf(*\a");

}

/* sigmoid function */
float aigmoid(x)
float x;

double exp();
return{ 1.0 / (1.0 + exp(-x)));

DSR-to-ASCII mapping code is listed here.

/* global-dict network module; dsr-to-ascii
input training data: global-dict into memory
output weight file: weight-d2a
usage: gd-d2a < sim.para > d2a-log */

199

#include <stdic.h>
#include <math.bh>

#define snapshot 200 /+ snapshot at every 200 epoch +/
#define nsize 20 /* number of characters in name %/
#define rsize 12 /* representation size */

#define isize_d2a rsize /+ input layer size */
#define hsize_d2a 15 /* hidden layer size */
#define osize_d2a nsize /* output layer size */

/* max data size */

#define nums_obj 160 /* number of object symbol in the dictionary */

#define sfile "global-dict" /#+ input training data into memory #*/
#define wfile "weight-d2a" /+ output weight file */

/* global dicticnary -- training data =*/
struct objstore {
char name[nsize];
float creplrsizel]; /e« current rep */
} objstorell[nums_objl,*symp_obj;

/* main network =/
/* current network holder =/
char bankn?_d2alnsize];

float bankl_d2?a[rsize],bank2_d2a[nsize]; /+ input rep holder

/* gd main network =/

float in_d2alisize_d2a],out_d2alosize_d2a],hidden_d2alhsize_d2a],

teach_d2afosize_d2al;

float wih_d2al[isize_d2a][hsize_d2a],who_d2a[hsize_d2a] [osize_d2al;
flcat hbias_d2alhsize_d2a],obias_d2alosize_d2a];

/% global file pointer =/
FILE =fopen(),*sfp,sufp;

/* simulation set up %/
char epochs[3],load_flag[2];

/* defanlt BP parameter */
float etha = 0.07; /* learining rate */
float alpha = 0.5; /* momentum factor */

/* global done #*/
int gdome;

/% main driver =/
main()

int total,mtotal;
int i,j;
float ran;

sim_setup(); /* not listed */

mtotal = atoi(epochs); /* max epochs in training #*/
read_td(); /+ read from initial gd as training data; not listedi; see

ASCII-to-DSR module listing *»/

if (load_flag(0] == 'n’) rassign(); /+ random assign of weight; not listed
else load_weight(); /+ load previous weight for continuous training; not listed

/* print sim environment */
printf("\n max epochs %d",mtotal);
printf("\n load_flag %s",load_flag);

printf("\n BP parameter %f }f',etha,alpha);

/* print initial weight to the log */

200

*/

*/

*/

print_weight(); /* not listed =/

/* for entire epoch */
for {total=0;total<mtotal+i;total++) { /+ FOR MAX EPOCH ¢/

it (total ¥ snapshot == 0) print?("\n epoch number %d\n", total};

/* adjust bp parameter #*/

for (i=1;i<B;i++)

if (total == i*anapshot) {
etha = etha / 2;
rintf("\n BP parameter sat up %f %f",etha,alpha);
}reak;

/* for every training pair in the global-dict */
gdone = 1;
symp_obj = objstorel;
wvhile {(symp_obj->name[0] != ’\0’) { /#* for all the words */
strcpy(bankn2_dZ2a,symp_obj->nama);
/* normalize ascii for a(97) -- z(122) into 0 -- 1
if less than O; then 7 or - or space */
for (i=0;i<nsize;i++)
bank2_d2ali] = (float) (symp_obj->name[i] - 96) / 26.0;
tor(i=0;i<rasize;i++)
bankl_d2ali] = symp_obj->creplil;

it (total % snapshot == 0) {
prop(total); /+ verify -- weight frozen; not listed =/
else back_prop(total); /+ not listed */
it (total ¥ snapshot == 0) dump_weight();

symp_obj++;
} /* while %/

if (gdone == 1 k& total ¥ smapshot != 0) {
printf{"\n all data converge at epoch %d\n",total);
break;
}
} /+ FOR MAX EPOCH */

/* post processing */
dump_weight(); /% not listed s/

} /+ main */

E.4 Plan-Selector

This section lists the Plan-Selector code and its training data which were described in
section 3.4.2.

Training data format for the Plan-Selector. This training data is for the story of tvpe 3.
skeleton 1 in appendix B.1.

;8torytype3
;storyl
IF evl state hungry; evl agent 7Tperson

201

THEN g2
AND no

IF evB1

goal s-hunger; g2 agent 7persocn

act called-up; ev6l agent 7Tperson; ev8l to friend

ov80 atate wanted; ev60 agent 7person; ev680 cbject av8i
THEN p62 plan pb-phone; p62 agent 7?person; p62 to friend

AND no
IF ev87

state had; ev67 agent Tperson; ev87 object money;

avE87 mode not
THEN g68 goal d-cont; g88 agent 7person; gB8 object money

AND no

IF ev8t
evBl ob
THEN ga
pB2 o

AND yes

IF evE4

THEN p85 plan pb-drive;

AND yes
IF ev8T

act asked; evBl agent 7?person; ev81 object location;

%—attr 7restaurant; ev81 to friend

Plan pb-ask; p82 agent ?person; pB2 object location;

j-attr ?restaurant; p82 to friend

act drove; evB84 agent Tperson; ev84 to 7restaurant
pBb agent ?person; p85 to ?Trestaurant

act borrowed; evB7 agent ?person; ev87 object coin;

ev87 from waiter -
THEN p88 plan pb-borrow; p88 agent ?person; p88 object coin;
p88 from waiter

AND yes

The Plan-Selector training program is listed here.

/* plan-selector nstwork module
input data file: tdata-ps intoc memory
input symbol dictionary: global-dict, conbol-case
input weight file: weight-te; load Triple-Encoder weight file
output welght file: weight-ps
usage: plan-select < sim.para > ps-log
sim.para: load only epochs and loadweight_flag */

#include <stdio.h>
#include <math.h>

#define
#define
#define
#define
#define
#define
#define
#define
#define

snapshot 200 /% snapshot at every 200 epoch */

nsize 20 /+ number of characters in name */

rasize 12 /* representation size */

lsize 12 /* case-role size =/

csize 30 /* context size =/

isize csize+rsize /+ input layer size «/

osize rsize+l /+ output layer size %/

iosize rsize+lsizet+raize /* Triple-Encoder I0 layer size */
idsize 2 /% id bit size */

/* max data size »/

#define
#define
#define
#define

#define
#define
#define
#define
#define

nums_obj 160 /* number of object symbol in the dictionary */
nums_c 30 /+ nuamber of case-role #/

nums_td_ps 1000 /* number of triples in tdata-te +/
nums_td_in 400 /+ number of internal data =/

dfile "tdata-pa" /+ input training data file */

sfile "global-dict” /# global dictionary file */

1file "conbol-case” /* case-role representation file */
wtile "weight-te” /# Triple-Encoder weight file */
wfile2 "weight-ps" /# output weight file */

/* global dictionary #*/
struct objstore {

char

name[nsize];

float creplrsizel]; /* current rep =*/

202

} objstorel[nums_objl,*symp_obj;

/* case-role store */
struct casestore {
char name[nsize];
float rep[lsizel;
} casestorellnums_c],*casep;

/* training data store ; each entry is an array number in the dictionary */
atruct tdata_ps {

char evnum{nsize];

int case_role;

int object;

char object2[nsizel]; /* for embedded event */

} tdata_ps_l[nums_td_ps],*tdpi;

/* internal training data; converted from tdata_ps structure for internal use =/
struct tdata_internal {

char key_word[nsize];

char evnum[nsize];

float trep[rsize];

} tdata_internal_l[nums_td_in],*tdpi,*tdpi2;

/* triple encoder related network */

/* for triple encoder and intput name holder #*/
char repn[nsize],linkn[nsize],nodenlnsize];
float repl[resize],link[lsize] ,node[rsize];

/* avent encoder/decoder network */

float in_ev[iosize],out_ev[icsize] ,hidden_ev[rsize],teach_ev[iocsize];
float wih_ev[iosize] [rsizel,who_ev[rsizel[icsize];

float hbias_ev[rsize] ,obias_ev[iosize];

/* main network =/

/* current network holder */

char bankni[nsize],bankn2[nsize],bankn3[nsize],bankn4[nsize]l;

float banki[csize],bank2[rsize] ,bank3[rsize],bank4; /* input rep holder */
/* plan-selector main network */

float in[isize] ,out{csize] ,hidden(csize],teachlosize];

float wik[isize] [csize),who[csize] [osize];

float hbias[csizse],obias[osize];

/* global file pointer =*/
FILE *fopen(),*dfp,*sfp,*1lfp,*wip,*wip2;

/* simulation set up */
char epochs(3],load_flag[2];

/* default BP parameter */
1loat etha = 0.07; /# learining rate =*/
float alpha = 0.5; /* momentum factor */

/* global done %/
int gdone;

Jrkesnrbssrrisd main driver *hstdsksksstshnniren/
main()
/* network parameters for cycles, spochs #/
int total,mtotal;
int i,j;
float ran;

sim_setup(); /* simulation para setup */
load_weight_te(); /* triple encoder weight file */

mtotal = atoi(epochs); /* max epochs in training =/

read_to_store(); /* read from initial gd and case to internal data

203

structure */
it (load_flagl(0] == ’'n’) rassign(); /+* random assign of veight »/
else load_weight(); /+ load previous weight for continuous training */

/* print sim environment */

printf("\n max epochs %d",mtotal);
printf("\n load_flag %s",load_flag);
printf("\n BP parameter %f %f",etha,alpha);

/* print initial weight to the log */
print_weight();

/* read training data into memory; object hold -1 if embedded */
read_td_ps();

/* for entire epoch */
for (total=0;total<mtotal+l;total++) { /+* FOR MAX EPOCE #*/

it (total ¥ snapshot == 0) printf("\n epoch number %d\n",total);

/* adjust bp parameter */

for {i=1;i<E;i++)

if (total == i*snapshot) {
etha = etha / 2;
rig;t("\n BP parameter set up %f %f",etha,alpha);
reak;

/+* random id assign for object; gd is sorted sc every variable
is up front =/
symp_obj = objstorel;
vhile(symp_obj->name[0] == *?*) {
for (i=0;i<idsize;i++) {
ran = rand()/32767.0;
symp_obj->crep{i] = ran;

symp_obj++;
}

/* The training data consists of triples which should be converted into
12 unit vector representations using Triple-Encoder module */
triple_encode{total); /* internal data build up using Triple-Encoder module */

it (total ¥ snapshot == 0) printf("\n re-encoding veight freeze "};

/* for every training pair in the tdata_internal; do main training here */
gdone = 1;

tdpi = tdata_intermal_l;

while (tdpi—>key_word[0] != ’\0’) { /+ while 3 #/

tdpi2 = tdpi;
/% then part assign for bank3 and banké */
while(strcmp(tdpi2->key_word,"then") != 0) tdpi2++;
if (strcmp(tdpi2->key_word,"then") == 0) {
strcpy(bankn3, tdpi2->evnum) ;
ior (1=0;i<rsize;i++) bank3[i] = tdpi2->treplil;
else printf(“\n no then part"};
tdpi2++;
it (strcmp(tdpi2->key_word,"and") == 0) {
strcpy(bankn4, tdpi2->evnunm) ;
bank4 = tdpi2->trepl[0];

else printf("\n no then part");
/* if part for banki and bank2 */

while(strcmp(tdpi->key_word,"then")!= 0) { /% while 4 */
if (strcmp(tdpi->key_word,"if") == 0 ||

204

stremp(tdpi->key_word,"follows") == 0) {
strcpy(bankn2,tdpi->evoum);
for (i=0;i<rsize;i++) bank2[i] = tdpi->trep[i);

else printf{("\n no if part”)};

if (stremp(tdpi->key_word,"if") == 0)
for (i=0;i<csize;i++) banki[i] = 0;

if (total % snapshot == 0) {
grop(total); /* verify —- weight freezed s/

else back_prop(total);
for (i=0;i<csize;i++) banki[i] = hidden[i];

tdpit+;
} /* while 4 =/

while{strcmp(tdpi->key_word,"if") != 0 && tdpi->key_word[0] '= ’\0’) tdpi++;
} /* while 3 */

it (total ¥ snapshot == 0) dump_weight();

it (gdone == 1 && total % snapshot != 0) {
grintt("\n all data converge at epoch %d\n",total);
}reak;

} /+ FOR MAX EPOCE =*/

/* post processing */
dump_weight();

} /% main =/

FAITTITTIT I Y Triplg—Encoder interface sssrssknsrsxngsnsbbdrrdrhodrss/
/% call Triple-Encoder module to covert triples into 12 unit vectors #*/
triple_encode(total)

int total;

L ..

int i,j;

/* previcus event rep holder =*/

char preev[nsize];

float preevr[rsize];

char tempev[nsizel;

it (total == 0)
printf{"\n event-encodig verify for epoch 0\n");

/* clear tdata_internal »/
tdpi = tdata_internal_l;

vhile (tdpi->key_word[0] != '\0*) {
tdpi->key_word[0] = *\0’;
tdpi++;
}

/% get triple representation for this id; store into internal
data file; tdata_internal */

tdpl = tdata_ps_1;

tdpi = tdata_internal_l;

while(tdpi->evnum{0] != ’\0’) { /* while 1 s/

it (strcmp(tdpi->evnum,"and") == 0) {
strcpy(tdpi->key_word, tdpl->evnum);
tdpi++;
strepy(tdpi->evnum, tdpl->avnum);
if (strcap(tdpl->evnum,"yes") == 0) tdpi->trepl[0] = 1;

205

else tdpi->trep[0] = 0; /# no */
tdpi++;
tdpi++;

else { /* alse 1 =/
strcpy(tdpi->key_vword, tdpl->evnum);

tdpl++;
strcpy(tempev, "xxx");
while (strcmp(tdpl->evnum,"if") '= 0 &&
strcop(tdpl->evnum, "follows") != O &k
astrcmp(tdpi->evnum,"then") '= 0 &k&
strcmp(tdpi->evnum,"and") !'= 0) { /* while 2 #/

/+ event encoding until key word */
strepy(repn,tdpl->evnun);
strcpy(linkn,casestorel[tdpi->cage_role] .name);

if (tdpi->object >= 0) /* cbject not embedded */
s{rcpy(noden,objstorel[tdp1—>object].nnle);

slse

strcpy(noden,tdpi->object2); /+ avent; embedded */

/* if new event */

if (strcmp(tempev,repn) i= 0) {
strcpy{preev,tempev); /* for embedding */
for (i=0;i<rsize;i++)

preevr[i] = rep[il;
for (i=0;i<rsize;i++)

rep[i] = 0.5; /+ init ev rep */

for (i=0;i<lsize;i++)
link[i] = casestorel[tdpi->case_role].repl[il;

if (tdpl->object >= Q) /+* no recursive event */
for (i=0;i<rsize;i++)
nodeli] = objstorelltdpi->object].crep[il;
else if (strcmp(tdpl->object2,preev) ==
for (i=0;i<rasize;i++)
node[i] = preevr[i];
else printf("\error no %s\n",ncden);

prop_ev(total);

for (i=0;i<rsize;i++)
rep[ij = hidden_ev[i];

strcpy(tempev,repn); /* for event group checking */
tdpl++;
} /+ while 2 */

strcpy(tdpi->evoum,repn};
for (i=0;i<rsize;i++)
tdpi->trepli] = replil;
tdpit++;
} /% else 1 %/
} /+ while 1 »/

/* verify encoding intermal data */
if (total == 0) {
printf("\n tdata_internal");
tdpi = tdata_internal 1;
for (i=0;i<B0;i++) {
printf("\n%s %s ", tdpi->key_word,tdpi->evnum);
for (j=0;j<rsize;j++)
print2("%.1f “,tdpi->trep(jl};
tdpi++;

}
} /e it »/

206

} /+ end of triple_encode %/

/% sim parameter satup */
sim_setup()

printf("\n hov many epochs in simulation?(max 99)}"):
scanf (")s" ,epochs);

print£{"\n load prvious weight? (y/n)");

scanf("}s" ,load_flag);

[essusirnssrs gipulation setup bookkeeping *essksssss/
/* print initial weight for verification */
print_weight ()

{

int 1,3;

)

/* for triple encoder =/

printf(“wih_ev\n");
for (i=0;i<iosize;i++) {
for (j=0;j<rsize;j++) printf("%z ",vih_ev[il(jl); printf("\n");

printf(“who_ev\n"};

for(i=0;i<reize;i++) {
for(j=0;j<iosize;j++) printf("%f ",who_ev[il[j1); printf("\n");
}

printf{"hbias_sv\n");
for (i=0;i<rsize;i++) printf("¥%f ",hbias_ev[i]); printf("\n"};

printf(“obias_ev\n");
for (i=0;i<iosize;i++) printf("%f ",obias_ev[i]); printf("\n");

/* for plan-selector */

printf("wih\n");

for (i=0;i<isize;i++) {

tor (j=0;j<csize;j++) printf("%f ",wih([i]1[j1); printf("\n");
}

printf{"who\n");

for(i=0;i<caize;i++) {

for(j=0;j<osize; j++) printf("¥%f ",who[il[j1); printf("\n");
}

printf("hbias\n");
for (i=0;i<csize;i++) print2("%f ", hbias[i]); printf("\n")};

printf("obias\n")};
for (i=0;i<osize;i++) printf("%f ",obias[i]); printf("\n"};

/* read symbols into memory */
read_to_store()}

int i;

/* read to objatore =/

sfp = fopen{(sfile,"r"); /* open conbol-object %/

symp_obj = objstorel;

while(fscanf(sfp,"%s" ,symp_obj->name) '= EQF) {
/* read rep */

for(i=0;i<raize;i++)
facanf (sfp,"%2" ,&k(eymp_obj->creplil));

symp_obj++;
}

207

fclose(sfp);

/* read to case store */
1fp = fopen(lfile,"r"); /* open conbol-case */
casep = casestorel;

vhile(fscanf(1fp,"%s",casep->name} != EOF) {
if (casep->name(0] != *;’) {
for(i=0;i<laize;i++)
fscant (1fp,"%1t" ,&k{casep->repfi]));
casep++;

}
fclose(11p);

/% test probe #/
printf{"\nread_to_store probe\n"};
print?{"\nobjstoreli\n"};

printf{"\n¥%s ", ,objstorel[3].name);
for(i=0;i<rsize;i++)

print2{"%.1f ", ,objstorel[3].creplil);

printf("\ncasestorel\n");

printf("%s ",casestorel[3].name);
for(i=0;i<lsize;i++)

printf("%.1f ", casestorel[3].rep[il);
/* test end */

}

/* read training data into memory; transfered to internal data
using Triple-Encoder */

read_td_ps()

{

int i;

dfp = fopen(dfile,"r"); /+ open tdata-ps */
tdpl = tdata_ps_l;

whila(fscanf{dfp,"¥s",repn) !'= EOF) {
it (repn[0] == ';') continue; /% skip one word comment */
else if (strcmp{repn,"if") == 0 || /#* key word */
strcmp(repn,“follows") == 0 1|
strcmp(repn, " then”) == 0 ||

strcap(repn,"and") == 0 ||

stremp(repn,”yes") == 0 ||

strcmp(repn,"no") == 0) {
strcpy(tdpi->evnum,repn);

tdpl++;
continue;

}
else { /+ triple */
fscant (dfp,"%a",linkn);
fscanf(dfp,"¥%s" ,noden);

/* load event name =/
strcpy(tdpi->evnum,repn);

/* load object pointer +/

i=0;
:hilo((atrcmp(noden,objstorel[i].nano) 1= 0) &k {objstorel[i).namefl0] != ’\0O?)) i++;
if (objstorel[i).name[0] !'= *\0°) tdpl->object = i;

else {

tdpi->object = -1; /* event not object */
strcpy(tdpil->object2,noden);

208

/* load case rep */

i=0;

while((strcmp(linkn,casestorel[i].name) != 0) &k (casestorel[il.name{0] '= "\0’)}) i++;
if (casestorel[i].name(0] == ’\0’) printf("\n error: no %s",linkn);

elase tdpl->case_role = i;

tdpil++; /* next store %/
} /* outer else */

} /* while */
fclose(dfp);

/* verify read_td */
tdpl = tdata_ps_1;
for (i=0;i<100;i++) {
printf("\n %s %d %d %s",tdpi->evnum,tdpi->case_role,tdpl->object,
tdp1->object2);
tdpl++;
}
}

/es4skhnnssx backprop and forward Prop **ssssssssssuns/
/* perform backprop for plan-selector */
back_prop(total)

int total;

float eoutlosize],ehid[caize] ,dwho(csize] [csize],
dwih[isize] [cBize],
mwho[csize] [0size] ,mwih[isize] [ceize],net pesig,
mhbias[csize] ,mobias[osize] ,dhbias[csize] ,dobias[oaize];

float sigmoid(};

int i,j,pos,cycle,flag;

for(i=0;i<isize;i++)
tfor(j=0;j<caize;j++)
mwih[i]1[j] = 0;
for(i=0;i<csize;i++)
for(j=0;j<osize;j++)
mwho (il [j] = 0;

for (i=0;i<csize;i++) mhbias[i]
for (i=0;i<osize;i++) mobias[il

/* load data */
/* input layer =/

pos = 0;
for(i=0;i<csize;i++)
in{pos++] = banki[il;

for(i=0;i<raize;i++)
in[pos++] = bank2[i];

/* teach layer : hetero-asgsociative network #*/
pos = 0;

for(i=0;i<rsize;i++)

teach{pos++] = bank3[i];

teach[pos++] = bank4;
/* back_prop procedure %/

/* forward prop */
/* from input to hidden forward */

for(i=0;i<csize;i++} {
net = 0.0;
tor(j=0; j<isize; j++)
net = net + wih([jl[il+in[j]1;

209

net = net + hbias[i];
hidden[i] = sigmoid(net);
}

/* from hidden to output */

for(i=0;i<osize;i++) {
net = 0.0;
for(j=0;j<caize; j++)
net = net + wholj][i)*hidden[j];

net = net + obias[il;
out[i) = sigmoid(net);
}

/* convergence check */

for (i=0;i<osize;i++)

if (abs(teach[i] - out[il) > 0.22) gdone = 0;

it (gdone == 1) printf("\n data ¥s %s %s converge at epoch ¥d\n",
bankn2,bankn3,bankn4,total);

/* backward prop */
/* calculate error signal for output */
for(i=0;:i<osize;it++)
esout[i}l = (teach[i] - ocut[i])*out[il*(1-out[i]);

/* modify weight for eout */

for(i=0;i<csize;i++)

for(i=0; j<osize;j++) {
dwho[i][3] = etha*eout[jl*hidden[i]+alpha*mwho{i][j];
who[i] [j] = who[il[j] + dwho[il([j];

}nwho(i][j] = dwho[i]) [j];

/* adjust out bias */

for (i=0;i<osiza;i++) {
dobiasfi) = etha*eout(il*1 + alpha*mobias[il;
obias[i] = obias[i] + dobias[i];
mobias[i] = dobias(i];

/* calculate error signal for hidden */
for(i=0;i<csize;i++) {

pesig = 0.0;

for(j=0; j<osize; j++)

pesig = pesig + eout[jl*whol[il[jl;

ehid[i] = hidden[il*(1-hidden[i])*pesig;
}

/* modify weight for ehid */
for(i=0;i<isize;i++)
for(j=0;j<casize;j++) {
dwih[i][j] = ethasehid[jl#in[i] + alpha+mwih[i][j];
wih[i][ji = wih[il(j] + dwih(il[j];
awih(il{j] = dwih[i][j];
}

/* adjust hid bias »/

for (i=0:i<csize;i++) {
dhbiasfi] = etha*ehid[il#1 + alphasmhbias[il;
hbiaa[i] = hbias[i] + dhbias[i];
;hbiau[i] = dhbias[i];

} /* back_prop */

/# perform forward prop for verification »/

210

prop(total)
%nt total;

float net,pesig;
float sigmoid(};
int i,j,pos,cycle,flag;

/* load data */
/* input layer */

pos = 0;
for(i=0;i<csize;i++) inl[pos++] = banki[i];
for(i=0;i<rsize;i++) in[pos++] = bank2[i];

/* teach layer : hetesro-associative network =/
pos = 0;

for(i=0;i<rsize;i++) teach[poa++] = bank3[i];
teach[pos++] = bank4;

/* forward prop */
/* from input to hidden forward +*/

for(i=0;i<csize;i++} {
net = 0.0;
for(j=0; j<isize;j++)
net = net + wih[jl1[il+in[j];

net = net + hbias[i];
hidden[i] = sigmoid{net);
}

/* from hidden to output */

tor{(i=0;i<osize;i++) {
net = 0.0;
for(j=0; j<csize;j++)
net = net + who[jl[il*hidden(j];.

net = net + obias{i];
out[i] = sigmoid(net);

/* print net 3/

print2("\n %d %s %s %s\n",total,bankn?2,bankn3,bankn4);
printf("input layer\n");

for (i=0;i<isize;i++) print2("%.12 ",inf[il);
printf("\nhidden layer\n");

for (iz0;i<csize;i++) print2("¥%.1f " hidden{il};
printf("\noutput-teach pair\n");
for(i=0;i<osize;i++) printf{("%.1f ",out[il);
printf{"\n");

for(i=0;i<osize;i++) printf("%.1f ", teach[i]);
printf(*\n");

}

/* triple-encoder forward prop used for tdata_internal =/
prop_ev(total)
%nt total;

float net,pesig;
float sigmoid();
int i,j,pos,cycle,flag;

/% load data =/
/* input layer #*/

pos = 0;
for(i=0;i<rsize;i++) in_ev[pos++] = rep(il;

211

link[i];
node[i];

for(i=0;i<lsize;i++) in_ev[pos++]
for(i=0;i<rsize;i++) in_av[pos++]

/* teach layer : auto-associative network =/
for(i=0;i<iosize;i++) teach_ev[i] = in_ev[i];

/% prop procedure */
/* torward prop */
/* from input to hidden forward */

for(i=0;i<rsize;it++) {
net = 0.0;
for(j=0; j<iosize;j++)
net = net + wih_ev[j][il*in_ev[j];

net = net + hbias_ev[i];
hidden_ev[i] = sigmoid(net);
}

/* from hidden to output %/

for(i=0;i<iosize;i++) {
net = 0.0;
tor(j=0;j<rsize;j++)
net = net + who_ev[jl[il*hidden_ev[j];

net = net + obias_ev[i];
out_ev[i] = sigmoid(net);
}

/* print net for initial verifty =/

it (total == Q) {

print2{"\n¥s %s Ya\n",repn,linkn,ncden};
printf("hidden\n");

for (i=0;i<rsize;i++) printf("%.1f ", hidden_ev[i]);

printf{"\n");

printf ("output-teach pair\n");
for(i=0;i<iosize;i++) printf("%.1f ",out_ev[i]l);
printf{"\n");

for(i=0;i<iosize;i++) print#("%.1f ",teach_ev[il};
{rintt("\n");

} /% prop_ev »/

float sigmoid(x)
float x;

{
double exp();
}raturn(1.0 / (1.0 + exp(-x)));

/+ random assign for initial weights %/

rassign()
{

int i,j;

for(i=0;i<isize;i++)
for(j=0; j<csize;j++)
wih{iJ[3] = -1.0 + 2.0#(rand()/32767.0); /% -1 to 1 */

for(i=0;i<csize;it+)
for(j=0; j<osize; j++)
who{il[j] = -1.0 + 2.0«(rand()/32767.0)}; /* -1 to 1 #/

/* initia) random bias #*/

for (i=0;i<caize;i++)
hbias{i] = -1.0 + 2.0%(rand()/32767.0); /* -1 to 1 */

212

for {i=0;i<osize;i++)
obias[i] = -1.0 + 2.0%(rand()/32787.0); /* -1 to 1 */

¥

/esassesrs output bookkeaping **srksssesdhstss/
/* dump weight for snapshot */

dump_weight ()

{

int i,j;

/* dump weight for plan-selector nat #*/
wip2 = fopen(wfile2,"w");

for (i=0;i<isize;i++) {

tor (j=0;j<csize;j++) fprintf(wfp2,"¥%s ", wik(il[j1);
fprintf(wfp2,"\n"};
}

for(i=0;i<csize;i++) {
for(j=0; j<osize;j++) fprintf(wip2,"%s ",whofil[j1);
fprintf(wfp2,"\n");

/* bias dump */
for (i=0;i<csize;i++) fprintf(wfp2,"%f ",hbias[i]);
fprintf(vfp2,"“\n");

for (i=0;i<osize;i++) fprintf(wfp2,"%f *,obias{il);
fprintf(wfp2,"\n");

) fclose{wfp2);

/* load weight files for continous simulation #*/
load_weight{)
{

int 1i,j;
/* load weight for plan-selector net */
wip2 = fopen(wfile2,"r"};

for (i=0;i<isize;i++)
tfor (j=0;j<csize;j++) fscant(wfp2,"%f ",&wih[il[j1);

for(i=0;i<caize;i++)
for(j=0; j<osize; j++) fscan?(wfp2,"%f ", kwholil[jl);

/* bias load */

for (i=0;i<csize;i++) fscant(wfp2,"%t ".khbias[i]);

for (i=0;i<osize;i++) fscanf(wfp2,"%f ",&obias(i]);
fclose(wfp2);

/* load triple-encoder weight files for data conversion */
load_weight_te()
{

int i,j;

/* load weight for event encoder/decoder net #*/
wip = topen{wtile,"z");

for (i=0;i<iosize;i++)
for (j=0;j<rsize;j++) fscanf(wfp,"if" kwih_ev[il[j]1);

213

tor(i=0;i<raize;i++)
for(j=0;j<iosize; j++) fscant(vip,"if" ,kwho_ev[i][jl);

/* bias load */
for (i=0;i<rsize;i++) fscanf(wfp,"/if ",thbias_ev[i]);
for (i=0;i<iosize;i++) fscanf(wfp,"%t " ,kobias_ev[i]);

fclose(wfp);

E.5 GP-Associator

This section lists the GP-Associator code and its training data which were described in
section 3.4.1.

Training data format for the GP-Associator.

;8-hunger

IF 0

AND g1 anl s-hunger; gl agent 7person

THEEN p1b plan pb-restaurant; pi5 agent 7person; plb object 7food;
P15 location 7restaurant

IF 1
AKD g1 goal s~hunger; gl agent ?perscn
TEEN p% plan pb-cock; p4 agent ?person; p4 object ?raw-food

IF 2
AND gi goal s-hunger; gi agent 7person
THEN p6 plan pb-eat; p6 agent ?person; p8é object ?food

IF 3
AND g1 ionl s-hunger; gl agent 7person
THEN ni

;S-regtaurant

IF 0

AND pi15 plan gb—restaurant; pl5 agent 7Tperson; pilb object 7food;
P15 leocation 7restaurant

THEN g8 goal d-know; g8 agent 7person; gB object location;

g8 obj-attr ?restaurant

IF 1

AND p15 plap pb-restaurant; pi5 agent 7person; p15 object ?food;
P15 location 7restaurant

THEN g10 goal d-cont; gl0 agent ?person; gl0 object money

IF 2

AND pib plan pb-restaurant; pib agent ?person; plb object 7focd;
plb location Trestaurant

THEN gi1 goal d-prox; gli agent ?person; gll location ?restaurant

IF 3
AND pi15 plan pb-restaurant; pi5 agent ?person; plb object 7food;
16 location "restaurant

HEN nil

;d-knowrestaurant
IF 0
AND g8 goal d-know; g8 agent ?person; g8 object location;
8 cbj-attr 7restaurant
HEN Ezs plan pb-ask; p2b nsent 7person; p25 object location;
P25 obj-attr 7restaurant; p2b to friend

IF 1
AND g8 goal d-know; gB agent ?perscn; g8 object location;

214

8 obj-attr 7restaurant
HEN p20 plan pb-read; p29 agent ?person; p28 object ?guide-book

IF 2
AND g8 goal d-Xnow; g8 agent ?person; g8 object location;
8 obj-attr ?restaurant

HEN nil

;d-knowphonenumber

IF O

AND g23 goal d-know; g23 agent 7person; g23 object phone-number;
23 obj-attr friend

HEN nil

;Eb"askrestaurant
IF 0O

ARD p25 plan pb~ask; p25 agent 7person; p26 object location;
25 obg-attr ?restaurant; p25 to friend
HEN g28 goal d-link; g2b agent 7person; g26 to friend

IF 1

AND p25 plan pb-ask; p25 agent ?person; p2b object location;
p25 obj-attr 7restaurant; p26 to friend

THEN nil

;d-contcoin

IF ¢

AND g3b6 goal d-cont; g3b agent 7person; g35 object coin
THE¥ p37 plan pb-borrow; p37 agent ?person; p37 object coin;
p37 from waiter

IF 1
AND g35 goal d-cont; g35 a;ent ?person; g3b object coin
THEN p37 plan pb-grasp; p3/7 agent ?person; p37 object coin

IF 2
AND g35 goal d-cont; g35 agent 7person; g35 object coin
THEN nil

;d-contmoney

IF ©

ARD g10 goal d-cont; 5;0 agent 7perscn; gl0 object money

THEN p50 plan pb-withdraw; pb0 agent 7person; p50 object money;
p50 from bank

IF 1

AND g10 goal d-cont; gl0 agent Tperson; gl0 object money
THEN pb2 plan pb-steal; p52 agent 7peraon; p52 object money;
P52 from waiter

IF 2

AND g10 goal d-cont; gi0 agent ?person; gl0 object money
THEN pb4 plan pb-borrow; pb4 agent 7person; pb4 object money,
p54 from friend

IF 3
AND gl10 goal d-cont; gil0 agent ?person; glO object money
THEN nil

The GP-Associator program is listed here. For some of the omitted routines, see the
Plan-Selector code listing.

/* gp-associator network module
input training data file: tdata-gp into memory
input symbol dictionary: global-dict, conbol-case

215

input weight file: weight-te

output weilght file: weight-gp

usage: gp-assoc < sim.para > gp-log

sim.para: only load maxepoch, loadweight_flag */

#include <stdio.h>
#include <math.h>

#define snapshot 400 /+ snapshot at every 400 epoch */
#define nsize 20 /* number of characters in name #*/

#define rsize 12 /* representation size */

#define lsize 12 /¥ case-role size «/

#define hsize 10 /* hidden size &/

#define acsize 2 /* counter size %/

#define isize scsize+rsize /+ input layer size */

#define osize rsize /+* output layer size »/

#define icsize rsize+lsize+rsize /+ triple-encoder I/0 size */
#define idaize 2 /+ id bit size */

/* max data size */

#define nums_obj 160 /* number of object symbel in the dictionary */
#define nums_c 30 /* number of case-role %/

#define nums_td_gp 1000 /* number of triples in tdata-gp */
#define nums_td_in 3¢ /* number of internal data for ONE gp */

#define dfile "tdata-gp" /* input training data tile #/
#define sfile "global-dict" /* symbol file for object */
#define 1file "conbol-case" /* case-role file */

#define wfile "weight-te" /+ triple-encoder weight file */
#define wfile2 "weight-gp" /* output weight file */

/* global dictionary =/

struct objstore {
char name[nsize];
float creplrsize]; /* current rep =/
} objstorel[nums_objl,*symp_obj;

/% case-role store */
struct casestore {
char name[nsize];
float rep[lsize];
} casestorel[nums_c],*casep;

/* training data store ; each entry is an array number in the dictionary */
struct tdata_gp {

char evnum[nsize];

int case_role; /* hold counter value O to 3 tooc */

int object;

char object2[nsize]; /* for embedded event */

} tdata_gp_llnums_td_gpl,»tdpl,»tdp2;

/#* internal training data; converted using triple-encoder from tdata_gp */
struct tdata_intermal {

char key_word[nsize];

char evnum[nsize];

float trep(rsizel; /* first two array elts holds counter value */

} tdata_internal_l[nums_td_in],*tdpi,*tdpi2;

/* triple encoder related network =/

/* for triple encoder and intput name holder */
char repninsizel ,linkn(nsize] ,ncden{nsize];
float replrsize] ,link[1size],node[rsize];

/* event enceder/decoder network »/

float in_ev[iosize] ,out_ev[iosize] ,hidden_ev[rsizel,teach_ev[iosizae];
float wih_ev[iosizej[rsize].who_cvtrsize]tiosize];

float hbias_ev[rsize] ,obias_ev[iosize];

216

/* main network */

/% current network holder */

char bankn2[nsize] ,bankn3[nsize];

float bankl[scsize] ,bank2[rsize],bank3[rsize]; /+# input rep holder =/
/* gp-assoc main network */

float in{isizel ,out{osize] ,hidden[hsize], teach[osize];

float wih[isizej[hsize].iho[hsize]{osizej;

float hbias[hsize],obias[osize];

/* global file pointer =*+/
FILE s*fopen(),«dfp,*sfp,*1Ip,*wip,*wip2;

/* simulation set up */
char epochs[3],load_flagl[2];

/% default BP parameter */
float etha = 0.1; /+* learining rate =/
float alpha = 0.5; /* momentum factor */

/* global done */
int gdone;

/* driver =/
main()

int total,mtotal;
int i,j;
float ran;
/* previous event rep holder for triple-encoder 3/
char preev[nsize];
float preevr[reize];
char tempev[nsize];

sim_setup(); /* not listed */
load_weight_te(); /* triple encoder weight file; not listed */

mtotal = atoi(epochs); /* max epochs in training #*/

read_to_store(); /% read from initial gd and case to intermal data

structure; not listed =/
it (lcad_flag[0} == ’n’) rassign(); /* random assign of weight; not listed */
else load_weight(); /# load previous weight for continuous training; not listed */

/* print sim environment */

printf("\n max epochs %d",mtotal);
printf("\n load_flag %s",load_flag);
printf("\n BP parameter ¥f %f",etha,alpha);

/* print initial weight to the log */
print_weight(); /# not listed /

/* read training data into memory; object hold -1 if embedded */
read_td._gp{();

/+ for entire epochs #/
for (total=0;total<mtotal+l;total++) { /+ FOR MAX EPOCH =/

if (total % snapshot == 0) printf("\n epoch number ¥d\n",total);

/* adjust bp parameter »/

for (i=1;i<5;i++)

if (total == is2#*snapshot) {
etha = etha / 2;
printf{"\n BP parameter set up %I %f",etha,alpha);
?reak;

/* tor all data in tdata-gp */

217

tdpl = tdata_gp.1l;
gdone = 1; /+ assume done */

wvhile (tdpi->evnum[0] != ’\0’) { /# while 100 at the end of data */
tdpi++; /* skip coment #*/

/* random id assign for this gp association; assign to only var if id part
c¢lear in objstore; every var is up front in objstore */

/* clear previous assign */

symp_obj = objstorel;

while(symp_obj->name[0] == *?') {
for (i=0;i<idsize;i++} symp_obj->creplil = 0;
SymP_Obj++;
¥

tdp2 = tdpil;

tdp2++;

tdp2++;

while(atrcmp(tdp2->evnum,*then") '= 0) { /+* while 22 »/

if (tdp2->object i= -1 &k objstorel[tdp2->object].name{0] == ’77)

for (i=0;i<idsize;i++) {
ran = rand()/32767.0;
objstorel [tdp2->object].crepli] = ran;
}

tdp2++;
} /* while 22 */
/* start triple encode here */

i? (total == Q)
printf(*\n triple-encode verify for spoch O\n");

/* clear tdata_internal =/
tdpi = tdata_intermnal_ l;

while {(tdpi->key_word[0] !'= '\0’) {
tdpi->key_word[0] = *\0’;
tdpit+;
}

/* get triple representation for this id; store into intermal
data file; tdata_internal =/

tdpi = tdata_internal l;
while (tdpi->evnum[0] != ’;’ && tdpi->evnum[0] !'= ’\0’) { /+ while 101 #/
if (etremp(tdpi->evnum,"if") == 0} {
strcpy(tdpi->key_vord,tdpl->evnum);

if (tdpl->case_rols == 0) { tdpi->trep[0] = 0; tdpi->trep[il] = 0; }
else if (tdpi->case_role == 1) { tdpi->trep(0] = 0; tdpi->trep{1] =
else if (tdpl->case_role == 2) { tdpi->trepl0]) = 1; tdpi->trep[1] =
else if (tdpil->case_role == 3) { tdpi->trepl{0] = 1; tdpi->trep(1i] =

else printf("\n invalid counter ");
tdpi++; tdpl++;

else if (strcmp(tdpi->evnua,"and") == 0 ||
strcmp(tdpi->evnum,"then"} == 0) { /* else if 1 */
strcpy(tdpi->key_word,tdpl->evnua);
tdpl++;

it (strcmp(tdpl->evnum,"nil") == 0) {
strcpy(tdpi->evnum,tdpl->evnun);
tdpl++; tdpi++;

else { /* else 10 %/ /* triple encoding */

strcpy(tempev, "xxx");
while (strcmp(tdpi->evnum,"if") != 0 &k

218

—o R

et o !

strcap(tdpi->evaum, "then") != 0 &k
tdpi->evnum[0] '= ’;’ g&
tdpil->evnum[0) != ’\0*) { /+ while 2 =/

/* avent encoding until key word s/

strcpy{repn,tdpi->evanum);
strcpy(linkn,casestorel[tdpl->case_role] .name);

if (tdpi->object >= 0) /* object not embedded */
strcpy(noden,objstorel[tdpi->object] .name);

else

strepy(noden,tdpi->object2); /+ event; embedded */

/* if new event */

if (strcmp(tempev,repn) != 0) {
strcpy{preev,tempev); /* for embedding */
for (i=0;i<rsize;it++)

preevr[i] = repl[il;
for (i=0;i<rsize;i++)

repli] = 0.5; /% init ev rep */

for (i=0;i<lsize;i++)
1link[i] = casestorel[tdpi->case_role].repli];

it (tdpi->cbject >= Q) /* no recursive event */
for (i=0;i<rsize;it+)
node[i] = objstorel[tdpl->object].creplil;
else if (strcmp(tdpl->object2,preev) == 0)
for (i=0;i<rsize;i++)
node[i] = preevr[i];
else printf("\error no ¥%s\n",noden);

prop_ev(total); /+ not listed */

for (i=0;i<rsize;it++)
rep(i] = hidden_ev[il;

strcpy(tempev,repn); /* for event group checking */
tdpl++;
} /% while 2 »/

strepy(tdpi->evnum,repn);
for {(i=0;i<raize;i++)
tdpi->treplil = replil;
tdpi++;
} /% else 10 end triple */

} /* else if 1 =/
else printf{"\n input data error: no if and then format");
} /* while 101 */

/* verifty encoding internal data */
it (total == Q) {
printf("\n tdata_internal");
tdpi = tdata_internal_ l;
while (tdpi->key_word[0] !'= ’\0’) {
printf("\n¥%s ¥%s ",tdpi->key_word,tdpi->evnum);
tor (j=0;j<rsize;j++)
printf ("%.1f ", tdpi->trepljl);
tdpit++;
}
}

/* do gp-asscociation training */

if (total % snapshot == Q) printf("\n re-encoding weight freeze ");

219

/% for every tr;inigi gair in the tdata_internal »/
tdpi = tdata_internal_l;
while (tdpi->key_word[0] != ’\0’) { /* while 3 #/

/* if part for banki and bank2 #/

it (stremp(tdpi->key_word,"if") == 0) {
for(i=0;i<scsize;i++) bank1[i] = tdpi->trep[i]; /* first two bitas */
tdpit++;

else printf ("\n no if part ");

if (stremp(tdpi->key_word,”and") == 0) {
atrcpy(bankn2,tdpi->evnua);
for (i=0;i<rsize;i++) bank2[i] = tdpi->trep[il;
tdpi++;

else printf("\n nc if part");

/* then part for bank3 =/

it (strcmp(tdpi->key_word,"then") == 0) {
strcpy(banknl, tdpi->evnum);
it (strcmp(tdpi->evnum,"nil") == 0)
for (i=0;i<rsize;i++) bank3[i] = 0;
else for (i=0;i<rsize;i++) bank3[i) = tdpi->treplil;
tdpi++;
else printf(”"\n no then part");

it {total % snapshot == 0) {
prop(total); /* verify —- weight frozen; not listed */

else back_prop(total); /+ not listed */
} /+ while 3 =/

} /% while 100 for all data */
if (total ¥ snapshot == 0) dump_weight();

if (gdone == 1 k& total X snapshot != 0) {
printf(“\n all data converge at epoch %d\n",total);
break; /+ break for loop */
}

} /* FOR MAX EPOCH s/

/% post processing #/
dump_weight(); /* dump weight */

} /+ main =/
read_td_gp()
{

int i;

dfp = fopen(dfile,"r"); /+* open tdata-gp */
tdpl = tdata_gp_1;

while(fscanf(dfp,"%s",repn) t= EOF) {

if (repn[0] == *;’) { /* read in comment */
strcpy(tdpi->evnum,repn);
tdpl++;
continue;

else if (stromp(repn,"if") == 0) {
strcpy (tdpl->evnum,repn);

220

fscanf(dfp,"%d",&(tdpl->case_role)); /+ read counter */
tdpl++;
continue;

else if (strcmp(repn,"and") == 0 ||
strcmp(repn,"then") == ¢ ||
strcmp(repn,"nil") == Q) {
strcpy(tdpl->evnum,repn);
tdpl++;
continue;

>

else { /* triple %/
fscant (dfp,"%s",linkn);
fscanf{dfp,"%s" ,noden);

/* load event name */
strcpy(tdpi->evnum,repn);

/* load object pointer =/

i=0;

while((strcmp(noden,objstorel[il .name) !'= 0) && (objstorell[i].name[0] != '\G’)) i++;
it (objstorel[i] .name{0] != '\0’) tdpi->object = i;

else {

tdpi->object = -1; /# event not object */
strcpy(tdpl->object2,noden);

/* load case rep */

i=0;

while((strcmp(linkn,casestorel[i].name) != 0) &k (casestorell[i].name[0] != *\0O’)) i++;
if (casestorel[i] .name[0] == ’\0’) printf(“\n error: no %s",linkn);

else tdpi->case_role = i;

tdpl++; /% next store #*/
} /% outer else */

} /* while =/
fclose(dfp);

/* verify read_td =/
tdpl = tdata_gp_1;
for (i=0;i<100;i++) {
printf{"\n %8 %d %d ¥%s",tdpl->evnum,tdpl->case_role,tdpi->object,
tdpi->object2);
tdpi++;
}
}

E.8 Action-Generator

This section lists the Action-Generator code and its training data which were described
in section 3.4.3.

Action-Generator training data format for the story type3, skeleton 1 in the appendix B.1.

;storytype3

;8toryl

IF g1 goal s-hunger; gl agont Tperson

THEF ev2 state hungry; evZ agent ?person; evZ mode not

IF pi5 plan pb-restaurant; pi5 agent ?person; pi5 object ?food;
15 location ?restaurant

HEN ev16 act ate; evi6 agent ?person; evli6 object ?food;
ev18 location ?restaurant

221

IF gi7 goal d-know; gl7 agent ?person; gi7 object locationm;

¥17 obj-attr 7restaurant

HEN ev18 state knew; eviB agent ?person; evi8 object location;
avi8 obj-attr ?restaurant

IF g21 goal d-cont; g21 agent 7person; g21 object money
THEN ev22 state had; ev22 agent 7persom; ev22 object money

IF p23 plan pb-borrow; p23 agent ?person; p23 object money;

23 from friend

HEN ev24 act borrowed; ev24 agent ?person; ev24 object money;
ov24 from friend

IF gd goal d-prox; g9 agent ?person; g9 location ?restaurant
THEN eviO state inside; sv10 agent ?person; evi0 location 7restaurant

IF pi1 plan pb-drive; pll agent ?person; pll to ?restaurant
THEN ev12 act drove; ev1i2 agent 7person; evi2 to ?restaurant

IF g2B goal d-link; g25 agent 7person; g25 to friend
THEN ev28 state had; ev26 agent ?person; ev26 object comm-link;
ev26 to friend

IF p27 plan pb-phone; p27 agent 7person; p27 to friend
THEN evlE8 act called-up; evi8 agent 7person; ev28 to friend

IF p19 plan pb-ask; pl8 agent 7person; pl9® object location;
pl9 cbj-attr ?restaurant; pl9 to friend

THEN ev20 act asked; ev20 agent ?person; ev20 object location;
av20 obj-attr 7restaurant; ev20 to friend

IF g21 goal d-cont; g21 agent 7person; g21 object coin
THEN ev22 state had; ev22 agent ?person; ev22 object coin

IF p23 plan pb-borrow; p23 agent ?person; p23 object coin;

23 from waiter

HEN ev24 act borrowed; ev24 agent 7?person; ev24 object coin;
ev24 from waiter

The Action-Generator program is listed here.

/* action-generator network module
input training data: tdatn—ag into memery
input symbol dictionary: global-dict, conbol-case
input veight file: weight-te
output welght file: weight-ag
usage: act-gen < sim.para > ag-log
input para: epoch, loadweight =/

#include <stdio.h>
#include <math.h>

#define snapshot 200 /+ snapshot at every 200 spoch */
#define nsize 20 /+ number of characters in name */
#define rsize 12 /+ representation size */

#define lsize 12 /* case-role size =/

#define csize 30 /+ context size */

#define isize czize+rsize /* input layer size =/

#define osize rsize /+ output layer size */

#define iosize rsize+lsize+rsize /# triple-encoder size */
#detine idsize 2 /* id bit size #/

/* max data size %/
#define nums_obj 150 /* number of object symbol in the dictionary =/

#define nums_c 30 /# number of case-role */
#define nums_td_ag 1000 /* number of triples in tdata-te */
#dafine nums_td_in 400 /+ number of internal data =/

#define dfile "tdata-ag" /+ input training data file */

222

¥#define sfile "global-dict" /+ symbol file for object */
#define 1file "conbol-case" /% case-role file */
#define wfile "weight-te" /* triple-encoder weight file */

#define wfile2 "weight-ag" /* output weight file */

/* global dictionary =/

struct objstore {
char name[nsize];
float creplrsizel; /* current rep =/
} objstorel[nums_objl,+*symp_obj;

/* case-role store */
struct casestore {
char name[nsize];
float rep[lsize];
} casestorel[numa_c],*casep;

/* training data store ; each entry is array number in the dictiomary #*/
struct tdata_ag {

char evnum[nsize];

int case_role;

int object;

char object2[nsize]; /* for smbedded event */

} tdata_ag_1l[nums_td_agl,*tdpi;

/* internal training data */
struct tdata_internal {
char key_word[nsize];
char svnum[nsize];
float treplrsize];
} tdata_internal_l[nums_td_in],*tdpi,+tdpi2;

/* triple encoder related network */

/* for triple encoder and intput name holder */
char repn[neize] ,linkn[nsize],noden[nsize];
float rep[rsize],link(lsize],nodelrsize];

/% event encoder/decoder network */

float in_ev[iosizel ,out_ev[iosize] hidden_sv(rsize],teach_ev[iocsize];
float wih_ev[iosizaj[rsize],who_evtruize][iosize];

float hbias_ev[rasize] ,obias_ev[icsize];

/* main network */

/* current network holder */

char bankni[nsize],bankn2[nsize],bankn3[nsize];

float banki[casize] ,bank2[raize] ,bank3[rsize]); /* input rep holder =*/

/* action-gen main network */

float in[isize],cut[csize] ,hidden[csize],teachoaize];
float wih[isizej[caizo].who[csize][osizej;

float hbias[csize],obias{osize];

/+ global file pointer +/
FILE *fopen(),*dfp,*stp,*11p,*wip,*wip2;

/* simulation set up */
char epochs[3],load_flag(2l;

/* default BP parameter */
float etha = 1.0; /* learining rate #/
float alpha = 0.5; /* momantum factor =/

/* global done =/
int gdone;

/* driver =/
Eain()

int total,mtotal;

223

int i,j;
float ran;

sim_setup(); /* not listed =/
load_weight_te(); /* triple encoder weight file; not listed =*/

mtotal = atoi(epochs); /* max epochs in training #/

read_to_store(); /+ read from initial gd and case to internal data

structure; not listed */
it (load_flagl[0] == ’'n’) rassign(); /+ random assign of weight; not listed #/
else load_weight{); /* load previocus weight for continuous training; not listed */

/* print sim environment */

printf("\n max epochs %d",mtotal);
printf("\n load_flag %s",load_flag);
printf("\n BP parameter %f Yf",etha,alpha);

/% print initial weight to the log */
print_weight(); /* not listed */

/* read training data into memory; object hold -1 if embedded */
read_td_ag();

/* for entire epochs */
for (total=0;total<mtotal+l;total++) { /* FOR MAX EPOCH */

it (total ¥ anapshot == 0) printf("\n epoch number ¥d\n",total);

/* adjust bp parameter =/

for (i=1;i<b;i++)

it (total == i*snapshot) {
etha = etha / 2;
Erintt(“\n BP parameter set up %f %f",etha,alpha);
}reak;

/* random id assign for cbject; gd is sorted so every variable
is up fromt */
symp_obj = objstorel;
while(symp_obj->name[0] == '?*) {
for (i=0;i<idsize;i++) {
ran = rand{)/32767.0;
symp_obj->crepl(i] = ran;

Symp_obj++;
}

triple_sncode{total); /* internal data build up; not listed; see
Plan-Selector listing #/

it (total % snapshot == 0) printf(“\n re-encoding weight freeze ");

/* for every traiming pair in the tdata_internal */
gdone = 1;

tdpi = tdata_intermal_l;

vhile (tdpi->key_word[0] '= ’\0’) { /* while 3 %/

/% if part assign for bank2 #*/
it (strcmp(tdpi->key_word,"if") == 0) {
strcpy{bankn2,tdpi->evnum);
for (i=0;i<rsize;i++) bank2[{i] = tdpi->trep[il;
}
else printf("\n no if part");

tdpi++;

/* then part for bankl and bank2 */
vhile(strcmp(tdpi->key_word,"if")t= 0 &k tdpi->key_word[0] != ’\0’) { /* while & */

224

it (strcwp(tdpi->key_word,"then") == 0 ||
strcmp{tdpi->key_word,"follows") == 0) {
strcpy (bankn3, tdpi->evnua) ;
for (i=0;i<rsize;i++) bank3{i] = tdpi->treplil;

else printf("\n no then part");

0)
0;

it (stremp(tdpi->key_word,"then") =
for (i=0:;i<casize;i++) banki[i]

if (total % snapshot == Q) {
grop(total); /* verify —-- weight freezed; not listed =/

else back_prop(total); /+* not listed #/
for (i=0;i<csize;i++) banki[i] = hidden[i];

tdpi++;
} /* while 4 =/

} /% while 3 */
if (total ¥ snapshot == 0} dump_weight(); /* not listed */

if (gdone == 1 &k total % snapshot != 0) {
rintf("\n all data converge at epoch %d\n",total);
}reak;

} /= FOR MAXI EPOCH =/

/* post processing */
dump_weight(); /* not listed */

} /* main */
read_td_ag()
{

int i;

dfp = fopen(dfile,"r"); /* open tdata-ag */
tdpl = tdata_ag.l;

while(fscanf(dfp,"%s",repn) !'= EOF) {
if (repmnf0] == ’;?’) continue; /* skip one word comment */
else if (strcmp(repn,”if") == 0 || /* key word */
strcmp(repn,“follows") == 0 ||
strcmp(repn,"then”) == 0) {

strcpy(tdpl->evnum,repn);

tdpl++;

continue;

}
else { /* triple */
fscanf (dfp,"¥%s",linkn);
fscanf (dfp,"¥%s",noden);

/* load event name */
strepy(tdpl->evnum,repn);

/* load object pointer +/

i=0;

vhile((strcmp(noden,objastorel[i] .name) !'= 0) && (objstorel[i].name[0] != ’\0’)) i++;
it (objstorel{i] .name[0] != ’'\0’) tdpil->ocbject = i;

else {

tdpl->object = -1; /+ event not objact */
strcpy(tdpil->object2,noden};

/* load case rep */

225

i=0;

while({strcmp(linkn,casestorel[il.name} '= 0) &k (casestorell[i].name[0] != *\0’)) i++;
if (casestorel[i) .name[0] == ’\0’) printf("\n error: no %s",linkn);

else tdpl->case_role = i;

tdpl++; /* next store %/
} /* outer else */

} /% while %/
fclose(dtp);

/* verify read_td »/
tdpl = tdata_ag_1;
for (i=0;i<100;i++) {
printf("\n %s %d %d ¥%s",tdpi->evnum,tdpil->case_role,tdpl->object,
tdpl->object2);
tdpl++;
}
}

E.7 ST-Parser

This section lists the ST-Parser code and its training data which were described in sec-
tion 3.5.1.

Training data format for the ST-Parser.

ystory3l

IF ?person FOLLOWS hungry
THEN - AND hungry AND 7person AND — AND - AND - AND - AND - AND -
AND - AND - AND -

IF ?person FOLLOWS asked FOLLOWS friend FOLLOWS 7restaurant

FOLLOWS location

THEN asked AND - AND ?person AND location AND - AND ?restaurant AND -
AND ~ AND friend AND - AND ~ AND -

IF ?person FOLLOWS drove FOLLOWS ?restaurant
THEN drove AND ~ AND ?person AND — AND - AND - AND - AND - AND
?restaurant AND - AND - AND -

IF 7person FOLLOWS had FOLLOWS not FOLLOWS money
THEN - AND had AKD ?person AND mceny AND - AND -~ AND - AND - AND -
AND - AND - AND not

IF ?person FOLLOWS called-up FOLLOWS friend
THEN called-uB AND - ARD ?person AND - AND ~ AND - AND - AND -
AND friend AND ~ AED - AND -

IF ?person FOLLOVS wanted FOLLOWS ev?
THEN - AND wanted AND 7person AND ev? AND - AND - AND - AND -
AND - AND - AND - AND -

1IF 7person FOLLOWS borrowed FOLLOWS coin FOLLOWS waiter
THEN borrowed AND - AND 7person AND coin AND - AND - AED - AKD
waiter AND - ARD - AND - AND -

The ST-Parser program is listed here.

/* st-parser network module
input training data: tdata-stp into memory
input symbeol dictionary: global-dict, combol-case
input weight file: weight-te

226

output weight file: weight-stp
usage: stpar < sim.para > stp-log */

#includa <stdio.h>
#include <math.h>

#define snapshot 200 /* snapshot at every 200 epoch */

#define nsize 20 /* number of characters in name */

#defins rsize 12 /* representation size */

#define 1size 12 /+ case-role size */

#define csize 12%rsize /* context size */

#define isize csizetrsize /+* input layer size =/

#define osize 12#rsize /+* output layer size =/

#detine iosize rsize+lsize+rsize /* triple-encoder I1/0 size */
#define idsize 2 /x id bit size */

/* max data size »/

#define nums_obj 150 /¢« number of object symbol in the dictionary =/
#define nums_c 30 /* number of case-role =/

#define nums_td_stp 400 /¢ number of triples in tdata-stp */

#define dfile "tdata-stp" /#* input training data file */
#define sfile "global-dict" /* symbol table for object %/
#define 1file "conbol-case" /* case-role table */

#define wfile "weight-te" /* triple-ancoder weight; for embedded sentences */

#define wfile2 "weight-stp" /# output weight file */

/* global dictionary */

struct objstore {
char name[nsize];
float crep[rsizej; /% current rep */
} objstorel[nums_obj],*symp_obj;

/* case-role store */
struct casestore {
char name[nsize];
float rep(lsize];
} casestorel[nums_c],*casep;

/* training data store ; each entry is an array number in the dictionary */

struct tdata_stp {
char key_word{nsize];
int object;
char object2{nsizel]; /* hold symbol not in gd */
} tdata_stp_l[(nums_td_stp],*tdpil,+tdpi,*tdpi2;

/* triple encoder related network */

/* for triple encoder and intput name holder */
char repnlnsize],linkn[nsize] ,noden[nsize];
float replrsize],link[1size},node[rsize];

/* triple encoder/decoder network */

float in_ev[iosize],out_ev[iosize] hidden_ev[rsize], teach_ev[iosize];
float wih_av[iosizej[rsiza],who_evtrsize][ionize];

float hbias_ev{rsize],obias_ev{iosize];

/* main network »/

/* current network holder */

char bankn[14][nsize];

float bankO[csize] ,bank[14][rsize]; /+ input rep holder +/
/* stparser main network %/

float in([isize],out{osize] hidden[csize], teach[osize];
float Iih[isizej[csize],who[csize][osizoj;

float hbias[csize],obiasz[osize];

/* global file pointer =/
FILE *fopen(),*dfp,*sfp,*1fp,*ufp, *wip2;

227

/* simulation set up /
char epochs[3],load_flag[2];

/* default BP parameter */
float etha = 0.07; /+ learining rate =/
float alpha = 0.5; /* momentum factor */

/* global done */
int gdone;

/* driver »/
main()

int total,mtotal;
int i,3j;
float ran;

sim_setup(); /* not listed /
load_weight_te(); /* triple encoder veight file; not listed =/

mtotal = atoi(epochs); /% max epochs in training */

read_to_store(); /+ read from initial gd and case to internal data

structure; not listed */
it (load_flag[0] == ’'n’) rassign(); /+ random assign of weight; not listed */
alse load_weight(); /* load previous weight for continuous training; not listed =*/

/* print sim environment */

printf{"\n max epochs %d",mtotal);
printf("\n load_flag ¥s",load_flag);
printf{"\n BP parameter %f %f", etha,alpha);

/* print initial weight to the log */
print_weight(); /# not listed %/

/* read training data into memory; object hold -1 if embedded */
read_td_ps();

/* for entire epoch */
for (total=0;total<mtotal+l;total++) { /+ FOR MAX EPOCH */

if (total % snapshot == 0) printf("\n epoch number %d\n",total);

/* adjust bp parameter */

for (i=1;i<6;i++)

if (total == issnapshot) {
etha = etha / 2;
printf("\n BP parameter set up Af %f",etha,alpha);
?reak;

/* random id assign for object; gd is sorted so every variable
is up front =/
symp_obj = objstorel;
while(symp_obj->name[0] == 7} {
for (i=0;i<idsize;i++) {
ran = rand()/32767.0;
if (ran < 0.51) aymp_obj->crep[i] = ran;

}
symp_obj++;
}

/* for every training pair in the tdata_stp */
gdone = 1;

tdpi = tdata_stp_1;

while (tdpi->key_word[0] != ’'\0’) { /# while 3 #*/

/% then part assign for bank2 to banki3 +/
tdpi2 = tdpi,

228

while(strcmp(tdpi2->key_word,"then") '= 0) tdpil2++;
if (strcmp(tdpi2->key_word,"then") == 0)
for (j=2;j<14;j++) {

it (tdpi2->cbject >= 0) {
strcpy(bankn[j],cbjstoral [tdpi2->object] .name);
for (i=0;i<rsize;i++) bank[j][i] = objstorel[tdpi2->object].creplil;

}
elgse { /* elsel3 */
strcpy(bankn[j], tdpi2->object2);
for (i=0;i<raize;it++) bank[j1[i] = 0;
} /+ alsel3d =/
tdpi2++;
} /* tor ¥/
else printZ("\n no then part");

/* if part for bank0 and banki */
vwhile(stremp(tdpi->key_word,”"then") != 0) { /% while 4; recirculate loop */
it (strcmp(tdpi->key_word,"it") == 0 1|

stremp(tdpi->key_word,"followa") == 0) {

if (tdpi->object >= Q) {
strcpy(bankn[1),objstorel[tdpi->object] .name);
) for {i=0;i<rsize;i++) vank[1]{i] = objstorel[tdpi->object].creplil;
else { /+ elseld #+/
strcpy(bankn[1],tdpi->object?};
for (i=0;i<rsize;i++) bank[1][i] = 0;
} /+ else 14 */
elss printf{"\n no if part");

it (stremp(tdpi->key_word,"if") == 0)

for (i=0;i<csize;it+) bankO[i] 0;

if (total % snapshot == 0) {
prop{total); /* verify -~ weight freezed; not listed */
else back_prop(total); /* not listed */
for (i=0;i<csize;i++) bank0{i]l = hiddenl[i];

tdpi++;
} /% while 4 %/

while{atremp(tdpi->key_word,"if") != 0 &k tdpi->key_word[0] t= ’'\0') tdpi++;
} /* while 3 »/

it (total ¥ snapshot == 0) dump_weight(); /* not listed */
it (gdone == 1 &k total % snapshot '= 0) {
griz:t("\n all data converge at epoch ¥d\n",total);
reak;
}
} /+ FOR MAX EPOCH »/

/* post processing */
dump_wveight(};

} /#* main =/

read_td_ps()
{

int i;

dfp = fopen(dfile,"r"); /* open tdata-stp */

229

tdpl = tdata_stp_1;

/* use repn as temp holder =/
while(fscant(dfp,"%s" ,repn) != EOF) {
it (repn[0] == ’;’) continue; /# skip one word comment %/
else if (strcmp(repn,"if") == 0 || /#* key word */
strcmp(repn,“follows") == 0 ||
strcmp(repn,'then") == 0 ||
stremp(repn,'and”) == 0 ||
strcmp(repn,"yes") == 0 ||
strcmp(repn,"no") == 0) { /* else 2 =/
strepy(tdpi->key_word,repn);

nnan

fecant(dfp,"%s" ,noden);

/* load object pointer =/

i=0;

vhile((etrcmp{noden,objstorel[i].name) != 0) && (objstorellil.namel0] != *\0')) i++;
it (objstorel[il.name[0] != '\0’) tdpl-D>object = i;

alse {

tdpil->object = -1; /* event or bar not object */
strcpy(tdpl->object2,noden);

} /* else 2 x/

tdpl++; /* next store =/
} /% while */
fclose(dfp);

/* verify read_td */

tdpl = tdata_stp_l;

while(tdpl->key_word[0} t= ’\0’) {
printf("\n %s %d %s",tdpl->key_word,tdpi->object,tdpl->object2);
tdpl++;
}

}

E.8 TS-Generator

This section lists the TS-Generator code and its training data which were described in
section 3.5.2.

Training data format for the TS-Generator

;story3il

IF - AND hungry AND ?person AND - AND - AND - AND - AND - AND -~ AND -
AND - AND not

THEN ?person FOLLOVS was FOLLOWS not FOLLOWS hungry

IF ate AND — AND 7person AND 7food AND - AND - AND - AND - AND -
AND ?restaurant AND - AND -
THEN ?person FOLLOWS ate FOLLOWS ?food FOLLOWS at FOLLOWS ?restaurant

IF - AND knew AND ?person AND location AND - AND 7?restaurant AND - AND -

AND - ARD - AKD - AND -
THEN ?person FOLLOWS knew FOLLOWS 7?restaurant FOLLOWS location

IF asked AND - AND 7?person AND location AND - AND 7restaurant
AND - AND - AND friend AND - AND - AND -

THEN 7person FOLLOWS asked FOLLOWS friend FOLLOWS about
FOLLOWS 7restaurant FOLLOWS location

230

IF - AND inside AND ?person AND - AND - AND - AND - AND - AND -
AND ?restaurant AND - AND -
THEN ?person FUOLLOWS was FOLLOWS inside FOLLOWS ?restaurant

IF drove AND - AND 7person AND - AND - AND - AND - AED - AKD
?restaurant AND - AND - AND -
THEN 7person FOLLOWS drove FOLLOWS to FOLLOWS ?restaurant

IF — AND had AND ?person AND money AND — AND - AED - AND - AND - AND -
AND - AND -
THEN ?person FOLLOWS had FOLLOWS money

IF borrowed AND - AND ?person AND money AND -~ AND - AND - AND friend
AND - AND - ARD - AND -
THEN ?person FOLLOWS borrowed FOLLOWS money FOLLOWS from FOLLOWS friend

IF - AND had AND 7person AND comm-link AND - AND - AND - AND - AED
friend AND - AND - AND -

THEN ?person FOLLOWS had FOLLOWS comm-link FOLLOWS to

FOLLOWS friend

IF called-up AND - AND 7perscn AND -~ AND - AND - AND - AND -
AND friend AND -~ AND - AND -
THEN ?person FOLLOWS called-up FOLLOWS friend

IF - AND had AND ?person AND coin AND - AND - AND - AND - AND - AND -
AND - AND -
THEK 7person FOLLOWS had FOLLOWS coin

IF borrowed AKD — ARD ?person AND coin AND - AND - AND - AND waiter
AND - AND - AND - AKD -
THEN 7person FOLLOWS borrowed FOLLOWS coin FOLLOWS from FOLLOWS waiter

The T'S-Generator program is listed here.

/* ta-generator network modula
input training data: tdata-tsg into monor{
input symbol dictionary: global-dict, conbol-case
input weight file: weight-te
output welght file: welight-tsg
usage: tsgen < sim.para > tsg-log */

#include <stdio.h>
#include <math.h>

#define snapshot 200 /* snapshot at every 200 epoch */
#define nsize 20 /+ number of characters in name */

#define rsize 12 /+ representation size »/

#define 1size 12 /* case-role size =/

#define csize 12+rsize /+ context size */

#define isize csize+12+#rsize /* input layer size */

#define osize rsize /+ output layer size */

#define iosize rsize+lsize+rsize /+ triple—encoder I/0 size */
#define idsize 2 /#% id bit size */

/* max data size */
#define nums_obj 160 /* number of object symbol in the dictionary */

#define nums_c 30 /* number of case-role */
#define nums_td_tag 400 /* number of triples in tdata-stp =*/

#define dfile "tdata-tsg" /+* input training data file */
#define sfile "global-dict" /* symbol table for object #/
#define 1file "conbol-case" /+ case-role table */
#define wfile "weight-te" /+ triple-encoder weight */
#define wfile2 “weight-tsg" /# output weight =/

231

/* global dictionary =/

atruct cbjstore {
char name[nsize];
float creplrsizel; /e current rep */
} objstorel[nuas_objl,*symp_obj;

/% case-role store #*/
struct casestore {
char name(nsize];
float rep[lsize];
} casestorellnums_c],+*casep;

/* training data store ; each entry is array number in the dictionary #/
astruct tdata_tag {

char key_word[nsize];

int object;

char object2[nsize]; /# hold symbol not in gd */

} tdata_tsg_l[nums_td_tag],*tdpt,+tdpi,+tdpi2;

/* triple encoder related network =/

/* for triple encoder and intput name holder =/
char repnlnsize],linkn(nasize] ,noden{nsize];
float rep[rsize],link[leize] ,node[rsize];

/* triple encoder/decoder network */

float in_ev[iosize] ,out_ev{iosize] hidden_ev[rsize],teach_sv[iocsize];
float wih_av[ioaizei[rsize],who-evtrsize][iosize];

float hbias_ev{rsizel] ,obias_sev[iosize];

/* main network */

/* current network holder */

char bankn[14] [nsize];

float bankO[csize] ,bank[14](rsize]; /# input rep holder =/
/+* stparser main network */

float in[isize] ,out[osize] ,hidden[ceize],teach[osize];
float wih[iaizej[csize],who[csizo][oaize ;

float hbias[csize],obias[osize];

/* global file pointer =/
FILE sfopen(),*dfp,*sfp,*1fp,*ulp,*ufp2;

/* simulation set up */
char epochs([3],load_flag[2];

/* default BP parameter */
float etha = 0.07; /% learining rate =*/
float alpha = 0.5; /* momentum factor */

/* global dona */
int gdone;

/* driver »/
main()

int total,mtotal;
int i,j;
float ran;

sim_setup(); /* not listed */
load_weight_te{)}; /# triple encoder weight file; not listed =/

mtotal = atoi(epochs); /* max epochs in training =/

read_to_store(); /# read from initial gd and case to internal data

structure; not listed »/
if (load_flag{0] == ’n’) rassign(); /+ random assign of weight; not listed */
else load_weight(); /* load previous veight for continucus training; not listed

/* print sim environment */

232

printf("\n max eﬁochu %d" ,mtotal);
printf("\n load_flag %s", load_flag);
printf("\n BP parameter %f %f",etha,alpha);

/* print initial weight to the log =/
print_weight(}; /* not listed */

/* read training data into memory; object hold -1 if embedded */
read_td_ps();

/* for entire epoch »/
for (total=0;total<mtotal+i;total++) { /+ FOR MAX EPOCH */

if (total % snapshot == 0) printf("\n epoch number %d\n",total};

/* adjust bp parameter %/

for (i=1;i<B;i++)

if (total == issnapshot) {
etha = etha / 2;
printf("\n BP parameter set up %f %f",etha,alpha);
break;

/* random id assign for object; gd is sorted soc every variable
is up front =*/
symp_obj = objatorel;
while(symp_obj->name[0] == *7*) {
for (i=0;i<idaize;i++) {
ran = rand()/32767.0;
symp_obj~>crep[i] = ran;

symp_obj++;
}

/* for every training pair in the tdata_tsg =/
gdone = 1;

tdpi = tdata_tsg_1;

while (tdpi->key_word[0] !'= ’\0’) { /+ while 3 =/

/# if part for bankl to banki2 */
it (strcmp(tdpi->key_word,"if") == Q)
Tor (j=1;3<13;ji++) {

it (tdpi->object >= 0) {
strepy(bankn[j],objstorel [tdpi->object] .name);
for (i=0;i<rsize;i++) bank[jl[i] = objstorel[tdpi->object].creplil;

}
alse { /* elsell »/
strcpy(bankn[j], tdpi->object2);
for (i=0;i<rsize;i++) bank[jl[i] = 0;
} /+ elsel3 %/
tdpi++;
else printf("\n no if part \n");

/% then part for bankld #*/
while (strcmp(tdpi->key_word,"if") != 0 &k tdpi->key_word[0] != ’\0’) { /* while 4 +/

if (strcmp(tdpi->key_word,"then") == 0 ||
stremp(tdpi->key_word,"follows") == 0)

it (tdpi->object >= 0) {
strcpy(bankn{13] ,0bjstorel [tdpi->object] .name);

for (i=0;i<rsize;i++) bank[13][i] = objstorel[tdpi->object].creplil;

else { /* elseld */

strcpy({bankn[13],tdpi->object2);

233

for (i=0;i<rsize;i++) bank[13][i] = o;
} /* else 14 =/

else printf("\n no then part\n"};

0)
0;

it (strcap(tdpi->key_word,"then") =
for (i=0;i<csize;i++) bank0[i]

Hou

if (total % snapshot == 0)
prop(total); /* verify -- weight frozen; not listed #*/
slse back_prop(total); /+ not listed */

for (i=0;i<csize;i++) bank0f[i] = hidden[il;
tdpit++;
} /* while 4 »/
} /% while 3 */

if (total % snapshot == 0) dump_weight{); /* not listed */
if (gdone == 1 k& total ¥ snapshot !'= 0) {

grintt(“\n all data converge at epoch %d\n",total);
}reak;

} /+ FOR MAX EPOCH */

/* post processing */
dump_weight();

} /* main =/

read_td_ps()
{
int i;

dfp = fopen(dfile,"r"); /* open tdata-tsg */
tdpl = tdata_teg_l;

/% use repn as temp holder */

while(fscanf(dfp,"%s",repn) '= EOF) {

it (repn(0] == ’;’) continue; /+ skip one word comment */

elae it (strcap(repn,”if") == 0 || /* key word */
strcmp(repn,"follows") == 0 ||

strcmp(repn,"then") == 0 ||

strcmp(repn,"and") == t
strcap(repn,"yes") == I
strcmp(repn,"no") == 0) { /* elsa 2 #/
strcpy(tdpl->key_word,repn);

(=0 =}

fscant(dfp,"%s” ,noden);

/* load object pointer =/
(20"

1=0;

while((strcmp{noden,objstorel[i] .name} != 0) && (objstorel[i].name[0] != *\0’)) i++;
it (objstorelfi].name[0] != ’\0’) tdpi->object = i;

else {

tdpl->object = -1; /% event or bar not object =/
atrcpy(tdpl->object2,noden);

} /% else 2 +/
tdpi++; /# next store =/

} /* while */

234

fclose(dfp);

/* verify read_td */
tdpl = tdata_tsg l;

while(tdpil->key_word[0] !'= *\0’) {
printf{"\n %8s %d %s",tdpl->key_word,tdpi->object,tdpi->object2);
tdpl++;
}

}

235

APPENDIX F

DYNASTY performance code and data

This chapter lists DYNASTY performance code and data files which were described in
chapter 4 and in section 5.2

F.1 DYNASTY datafile

DYNASTY should be loaded with several files during performance phase including the
weight-files which were outputs of DYNSATY training modules. The necessary weight-file
names are listed in the source code.

The case-role representation file.

;event
gstate
act

oBect

obj-attr
instrument
co-obj
from

to
location
time

mode
igoal/plan
goal

plan

QOO0 O00OOO
PO QOOoOCO0O0O0COORO
[=R =) 0000 COQOROO
o0 o000 O0OOrOOC
oo COO0QQOQOOoOOROO00O
00 QOO0O0O0QORDODOOOO
o0 QOO0 ORLROOOOOO
Q0O O00O0OOROOOOOO0O0
00 OCO0OROOCOOOOO
OO0 OCOOoOFHOOOCOODOOO
CO QOHOOOOOOOOOO

OOOO0OO0OO0OOCOoOOoOoO0

Q-
(=3 =]

The input story file format is listed below. Every story consists of several processing
blocks.

gP ; say it is a goal/plan-based story
;Tor story 3t

block:
evl state hungry; evl agent john

block:
ev8l act asked; ev81 agent john; ev81 object location;
avB1 obj-attr sizzler; ev81 to friend

block:
ov84 act drove; ev84 agent john; evB84 to sizzler

block:
ev87 state had; ev67 agent john; ev87.object money;
ev67 mode not

block:

ov8l act called-up; ev6l agent john; ev81 to friend;
ev60 state wanted; ev680 agent john; ev60 object evéi

236

block:
ev87 act borrowed; evB7 agent john; ev87 object coinm;
ev87 from waiter

script ; script-based story
;story4l

block:
evl state hungry; evl agent mary

block:

ev80 act entered; evO9 agent mary; evd® location sizzler
FOLLOWS evi04 act ate; eviO4 agent mary; evi0O4 cbject steak
FOLLOWS ev106 act left; evi0O6 agent mary; evi06 object tip

F.2 The DYNASTY program

The DYNASTY performance program is listed here.

/* dynastyv2.c performance phase

input: block stream of event sequence (output of st-parser)
{(from inputfile)

output: goal/plan inference chain for each event (input to the ts-generator)
{produce dynastyv2-log)

loaded weights: weight-te, weight-ps, weight-ag, weight-gp, weight-a2d,
weight-d2a, weight-stp, weight-tag

input symbol file: global-dict (raize: 12 units), conbol-case
(global—dict contains variables and new (untrained) instances)

searchspace: wmemory array

algorithm:

. symbel to vector rep

. triple encoding

. goal/plan selecting

gp search (BFS) <-- gp triple decoding, start and target
matching and binding propagation while generating chains
action generation for each goal/plan in the chain

. avent triple deccding

. vector to symbol

~NPAN AW N O

usage: dynastv2 < inputfile > d-log

inputfile: script flag and triple group start with "block:" keyword
script blocks have "follows" keyword in them

*/

#include <stdio.h>
#include <math.h>

/+ general network size */

#define nsize 20 /¥ number of max characters in symbol #*/
#define rsize 12 /+* vector rep size */

#define lsize 12 /% case-role size */

#define idsize 2 /¢ id bit size */

#define csize 30 /* context bank size +/

#define scsize 2 /+* self-increasing counter bank size */

237

/* tripls-encoder */
#define icsize rsize+lsgize+rsize

/* plan-selector */

#define pssizei csize+rsize
#define pssizeh csize
#define pssizeo raize+i

/* gp-associator */

#define gpsizei scsize+rsize
#define gpsizeh 10

#define gpsizeo raize

/* action-generator */
#define agsizei csize+rsize
¥define agsizeh caize
#define agsizeo rsize

/* max data size */

#define nums_obj 200 /* number of object symbol; var + instance %/
#define nums_c 30 /% number of case role */

#define nums_td 100 /# number of triples in the input story «/

/* global dictionary */
struct objstore {

char name[nsize]:

float creplreize];

} objstorel[nums_objl,*symp_obj;

/* case-role store */

struct casestors {

char name[nsize];

float repllasize];

} casestorel[nums_c],*casep;

/* network structure */

/* triple encoder */

char repn[nsize},linkn[nsize],noden[nsize];

float replrsize],link[lsize],ncdelrsize];

float in_ev[iosizel,out_ev[iosize] ,hidden_ev[rsize];
float wih_uv[iosize][rsizo],who_avtrsize][ioaize];
float hbias_ev[rsize],obias_ev[iosize];

/* plan-selector */

char bankn2_ps[nsize] ,bankn3_ps[nsize];

float banki_ps{csize],bank2 _ps([rsize],bank3_ps[rsize],bank4_ps;
float in_ps(pesizei],out_ps[pssizeo] ,hidden_ps[pssizeh];

float wih_ps[pssizei] [pssizeh],who_ps(pssizeh] [pssizec];

float hbias_pe[pssizeh],obias_psipssizeo];

/* gp-associator «/

char bankn2_gp[nsize] ,bankn3_gp[nsize];

float banki_gp[scsize],bank2_gp(rsize],bank3_gp[rsize];
float in_ sizei] ,out_gplgpsizeo] ,hidden_gp(gpsizeh];
float vih_gplgpsizei] [gpsizeh],who_gplgpsizeh] [gpsizeoc];
float hbias_gplgpsizeh],obias_gplgpsizeo];

/* action-generator */

char bankn2_aglnsize] ,bankn3_ag[nsize);

float banki_aglcsize] ,bank2_aglrsize],bank3_ag[rsize];
float in_aglagsizei],out_aglagsizeo]l ,hidden_aglagsizeh];
float wih_ag[agsizei] (agsizeh ,who_ag[agsize;?[agsizoo];
float hbias_ag%agsizehJ,obiaa_ag[agsizao];

/% global file pointer */
FILE #fopen(),*sfp,*1tp,+vip;

/* input story structure %/

238

struct inputstory {
char evnum[nsize];
int case_xrole;
int object;
char object2[nsize]; /* for embedded event */
} inputstoryl[100],#*inp;

/* working memory structure; search node in the gp-tree =/
struct gpnode {

char noden{nsize];

float vecreplrsize];

int parent; /% parent node array nuaber =/

char evnum[10] [nsize]; /* max 10 triples for each vecrep */
char casen[10] [nsize];
}char objn[10] [nsize];

struct gpnode wmemory[128]; /* max search depth 7; 2#*7 = 128 */
struct gpnede gpchain[7]; /* output gp chain for single event */
struct gpnode startn, targetn; /* start and target node for gp search */
struct gpnode decodecut; /+ global temp holder for decode_ev */

int script; /+* script flag */
int wmin,wmout,gpout,count; /* global index #*/

FALTIEI T IS T dyna,sty pain driver *kk*xkserkdsssnkahkbhuin/
?ain()
int i;

/* previous event rep holder for event-encoding */
char preevinsize];

float preevr[rsize];

char tempev[nsize];

/% running setup */
load_weight(); /* load knowledge for triple-encoder, plan-selector
action-generator, gp-associator */
read_to_store(); /+ read global-dict and conbol-case */
print_weight(); /+ verify weight corractly loaded */
read_story(); /¥ read single story into inputstory structure */

/* process story */
/* clear startn s/
clear_gpnode{atartn};

inp = inputstoryl;

/#* for all the blocks in the story; processed block by block */
while (inp->evnum{0] != ’\0’) { /# WHILE 1; to the end of the story */

/* clear wmemory */
for (i=0;i<128;i++)
clear_gpnode(wmemory[il);

/% clear gpchain */
for (i=0;i<7;i++)
¢lear_gpnode(gpchain[il);

inp++; /# skip "block:" key word */

/* event-encoding: get event representation */
printf("\n event encoding start...\n");

strcpy(tempev,"xxx");

while(stremp(inp->evnum,"block:") != 0 &% inp->evnum[0] = *\0’) { /* while 2 */
strcpy(repn, inp->evaum) ;
strcpy(linkn,casestorel [inp->case_role] .name};

239

it (inp->object >= 0) /+ object not embedded */
s;rcpy(nodon,objutorel[inp->objoct].nane);

else

strcpy(noden,inp->object2); /+ event; embedded */

/* if new event =/

it (strcap(tempev,repn) !'= 0) {
strcpy(preev,tempev); /+ for embedding */
for (i=0;i<rsize;i++)

preevr[il = rep[il;
for (i=0;i<rsize;it++)

rep[i]l = 0.5; /* init ev rep */

for (i=0;i<lsize;i++)
link[i] = casestorel[inp->case_role].rep[il;

if (inp->object >= 0) /* no recursive event +/
for (i=0;i<rsize;it++)
node[i] = objstorel(inp->object].creplil;
else if (stremp(inp->object2,presv) == ()
for (i=0Q;i<rsize;i++)
node[i] = preevr[i];
else printf{"\error no %s\n",noden);

prop_ev();

for (i=0;i<rsize;i++)
repli] = hidden_ev[i];

strcpy(tempev,repn); /*# for event group checking */

inp++;
} /# while 2 »/

/* event-encoding output in repn and rep */
printf{"\n ¥s representation ",repn);
for (i=0;i<rsize;i++)
printf("%.1f ", replil);

/* do plan-selection */

printf("\n\n plan selecting start..\n");
for(i=0;i<csize;i++) banki_ps[i] = 0;
strcpy(bankn2_ps,repn);
for(i=0;i<rsize;i++) bank2_ps{i] = rep[i];

prop_ps();

/* output is in bank3_ps, bank4_ps */
for(i=0;i<rmize;i++) bank3_ps[i] = out_ps[il;
bank4_ps = out_ps[rsizel; /« 1=YES, O=No */

printf("\n deceding selected plan \n");
decode_ev(bank3 ps); /* deccde evV,.g,p Vector rep into decodeout
structure */

/* do gp-asscciation; gp tree expanding and search */
printf%g\n gp-tres expanding start....\n");

/% if first event */

if (startn.noden[0] == *\0’) { /* top-level goal */
/* just prepare startn and proceed to act-gen */
printf("\n top-level goal\n"};

/* c¢py structuras decodeout to starta */
strcpy(startn.noden,decodecut .noden);
for(i=0;i<rsize;i++) startn.vecrep[il = decodeout.vecrep[i];

240

startn.parent = decodeout.parent;

for (i=0;i<10;i++) {
strcpy(starta.evoum[i] ,decodeocut.evnum{il);
strcpy(startn.casen[i] ,decodecut.casen[i]);
strcpy(atartn.objn[i],decodsout.objnlil};

/* copy startn to gpchain[0] =/

strcpy(gpchain (0] .noden,startn.noden);

for(i=0;i<rsize;i++) gpchain{0].vecrep[i] = startn.vecrep[i];

gpchain[0] .parent = startn.parent;

for (i=0;i<10;i++) {
strcpy{gpchain[0] .evaum[i] ,startn.avnum(i));
strcpy(gpchain(0] .casen[i] ,startn.casen[il);
astrcpy(gpchain[0] .objn[i],startn.objn(il);
}

printgpnode(gpchainl0l);
}

else { /¥ else 1 ; gp-tree expanding */

/* prepare targetn */
strcpy{targetn.noden,decodeout.noden);
for(i=0;i<rsize;i++) targetn.vecrep[i] = decodeout.vecrep[il;
targetn.parent = decodeout.parent;
for (i=0;i<10;i++) {
strcpy(targetn.evnum[i],decodecut.evnum{i]l);
strcpy(targetn.casen[i] ,decodecut.casen[il);
strcpy(targetn.objn[i] ,decodeout.objnlil);

printf{"\n startn:\n");
printgpnode(startn);
printf("\n targetn: \n");
printgpnode(targetn);

wmout =
wain = 0;

/* expand gp tree until match to targetn */

/* ¢py startn to wmemory[0] +/
strcpy(wmemory (0] .noden,startn.noden);
for(i=0;i<rsize;i++) wmemory[0].vecrep[i] = startn.vecrep[i];
wmemory[0] .parent = startn.parent;
for (i=0;i<10;i++) {
strcpy{wmemory{0] .evnum{i),startn.evnum(il};
strcpy{wmemory[0].casen{i],startn.casen[il);
strcpy(wmemory[0] .obja(il ,startn.objn(il);

count = 0; /% self increasing counter */
for (i=0;i<127;i++) { /# intinit loop until match =*/

Tmint+;
gennode(count); /* call gp_prop, decode_ev and gpnodecopy */
count++;

if (unimatch()) break; /+* if targetn matches wmemory[wmin] =*/
it (allzero(wmemory[wmin].vecrep)) {

wmout++; /* expand next layer */

count = 0;

}
it (wmin == 128) {

241

printf(“"\n can not match targetn\n");
continue; /* continue to next block =/

makegpchain(); /* gpnodecopy from wmemory[wmin] to wmemory[0], result in
gpchain, binding backpropagation from targetn */

/* print gpchain #/

gpout = 0;

while(gpchain{gpout] .noden[0] != ’\0*’) {
Printgpnode gpchain%ﬁpont]);
gpout++;

/* prepare next startn %/
if (bank4_ps < 0.4) {
atrcpy(startn.noden,tlrgetn.noden);
Tor(i=0;i<rasize;i++) startn.vecrep[i] = targetn.vecrepl[i];
startn.parent = targetn.parent;
for (i=0;i<10;i++)
strcpy(startn.evnum[i],targetn.evnum[i]);
strcpy(startn.casen(i],targetn.casen[i]);
strcpy(startn.objn{il,targetn.objn[i]);
}

} /x it o/
else getnextstartn(); /+* search gpchain, find first *unsuccesful* plan */

} /* else 1 »/

/* do act-generation */
rintf("\n action-generating start\n");
P g ng

/* go to last gp %/
gpout = 0;
while(gpchain[gpout] .noden[0] != '\0*) gpout++;-

/* act gen in reverse order */
gpout-—;
while(gpout >= 0) {

for(i=0;i<csize;i++) banki_agli) = 0;
strcpy(bankn2_ag,gpchain[gpout] .noden);

for(i=0;i<rsize;i++) bank2_agli] = gpchain[gpout].vecrep[il;

prop_ag();

for(i=0;i<rsize;i++) bank3_ag[i]

decode_ev(bank3_ag);

gpout--;

}

out_ag[il;

} /%= WHILE 1 =/
} /+ end of main */

[Ekkbhnhessnesksr ginulation setup and data clear etc **#xxkasssxs/
/* clear search space #/

clear_gpnode(temp)

struct gpnede temp;

int i;

temp.noden[0] != '\o’;

for (i=0;i<10;i++) {
temp.evnum[i] [0] = ’\0O’;

temp.casen[i] [0] = ’\0’;
temp.objnl[il[0] = *\0’;

242

}

/* read symbols into memory */
read_to_store()

int i;
/* load dictionary; bypass gd-netvork; use symbolic table */
printf("\n loading global-dict, conbol-case\n");

/* read to objstore */
afp = fopen("p-global-dict","r"); /+ open conbol-object =*/
symp_obj = objstorel;

while{(fscanf(sfp,"¥s",symp_obj->name) !'= EOF) {

/* read rep */
for(iz0;i<raize;i++)
fecanf(sfp,"4if" ,&(symp_obj->creplil));

symp_obj++;
fclose(stp);

/* read to case store */
1tp = fopen("conbol-case","r"); /* open conbol-case */
casep = casestorel;

while(fscanf(1tp,"%s",casep~>name) != EOF) {
if (casep->namef0] != *;?) {
for(i=0;i<lsiza;i++)
fascanf(1fp," A" ,&k(casep->rep[il));
casept+;

}
}
fclose(lfp);

/* test probe =/
printf{"\nread_to_store probe");
printZ{"\nobjstorel”);

printf("\n¥%s ",objstorel[3].name);
for(i=0;i<rsize;i++)

printf{"%.1f ", objstorel[3].creplil};

printf("\ncasestorel\n");

printf("%s ", casestorell[3].name);
for(i=0;i<lsize;i++)

printf("%.1f ", caseatorel(3].rep[il);
/* test end */

}

/* load several weight files #/
load_weight ()
{

int i,j;
/* load weight for event encoder/deccder net */

printf("\n loading weight-te\n");
wIp = fopen("weight-te","r");

for (i=0;i<iosize:;it++)
for (j=0;j<rsize;j++) tscanf(wfp,"¥t" &kvih_ev[i]l(j]);

243

for(i=0;i<rsize;i++)

for(j=0;j<iosize;j++) fscanf(wfp,"%f", &kwho_ev[il [j1);
/* bias load *»/
for (i=0;i<rsize;i++) fscanf(wip,"%f ", khbias_ev([i]);
for (i=0;i<iosize;i++) fscanf(wfp,"¥f ", kobias_ev[i]);

fclose(wip);

/* load weight for plan-selector net #/

printf{"\n loading weight-ps\n");
wip = fopen("weight-ps","r");
for (i=0;i<pssizei;i++)
for (j=0;j<pssizeh;j++) fscanf(wfp,"¥t", &wih_ps[i][j]);

for(i=0;i<pssizeh;i++)

Tor(j=0; j<pssizeo;j++) fscanf(wfp,"¥%f" awho_ps[il[jl);
/% bias load =/
for (i=0;i<pssizeh;i++) fscanf(wip,"if ",khbias_ps[i]);
for (i=0;i<pssizeo;i++) fscant(wfp,"%f ", kobiae_psa[i));

fclose(wfp);

/* load weight for gp-associator #/

printf("\n loading weight-gp\n");
wip = fopen("weight-gp", "r");

for (i=0;i<gpsizei;i++)
for (j=0;j<gpsizeh;j++) fscanf(wfp,"¥%t" &wih_gp[i][j1);

for(i=0;i<gpsizeh;i++)
for(j=0; j<gpsizeo;j++) fscanf(wfp,"%t" awho_gp[il[j1);

/* bias load */
for (i=0;i<gpsizeh;i++) fscanf(wip,"%t ", &hbias_gplil);
for (i=0;i<gpsizec;i++) fscant(wfp,"%f ", kobias_gp[il);

fclose(wfp);
/* load weight for action-generator net =/

printf("\n loading weight-ag\n");
vip = fopen("weight-ag","r");

for (i=0;i<agsizei;i++)

for (j=0;j<agsizeh;j++) fscanf(wfp,"¥f" &wih_aglil[j1);
for(i=0;i<agsizeh;i++)

tor(j=0; j<agsizeo;j++) fscanf(wtp,"¥%f" twho_aglil[j1);
/* bias load */
for (i=0;i<agsizeh;i++) fscanf(wfp,"¥f ",&hbias_ag[il);
for (i=0;i<agsizeo;i++) fscanf(wfp,"%f ",&obias_ag[il);

fclose(wfp);

} /* load_weight */

/* print loaded weight for verification %/
print_weight{)
{

int i,j;
/* print weight for event encoder/decoder net +/

244

print?("\n wih_ev\n");
for (j=0;j<rsize;j++) printt("%f ", wih_ev[0][jl1);
printf{"\n");

printf("\n who_ev\n");
for(j=0;j<iosize;j++} printf("%f ",who_ev[0][j1);
printf("\n");

printf("\n hbias_evin");
for (1=0;i<rsize;i++) printf("%t ", hbias_ev[il);

printf("\n obias_ev\n");
for (i=0;i<icsize;it++)} printf("%f ", obias_ev[i]);

/* print weight for plan-selector net =/

priantf("\n wih_ps\n"};
for (j=0;j<pssizeh;j++) printt("%t",wih_ps[0]1[j1);
printf("\n");

printf("\n who_ps\n");
for(j=0; j<pssizeo;j++) printf("%f",who_ps([0] (j1);
printf("\n");

printf£("\n hbias_ps\n");
for (i=0;i<pssizeh;i++) printf("%f " hbias_ps[il);

printf{"\n obias_ps\r");
for (i=0;i<pssizec;i++) printf("%f ",obias_psl[il]);

/* print weight for gp-associater =*/

printf{"\n wih_gp\n");
for {j=0;j<gpsizeh;j++) printt("%z", wih_gp[0l[j1);
printf("\n");

printf("\n who_gp\n");
for(j=0; j<gpsizec;j++) printf("%t",vho_gpl[0]1{jl1);
printf("\n");

printf("\n hbias_gp\a");
for (i=0;i<gpsizeh;i++) printf("%f " hbias_gpl[il);
printf("\n obias_gp\n");
for (i=0;i<gpsizeo;i++) print?{"%f ", obias_gplil);

/+ print weight for action-generator net */

printf("\n wih_ag\n");
for (j=0;j<agsizeh;j++)} printf("¥%f",wih_agl0]1[j]);
printf("\n");

printf("\n who_ag\n");
for(j=0;j<agsizec;j++) printf("%f",who_ag[0l[jl1);
printf("\n:g:

printf("\n hbias_ag\n");

for (i=0;i<agsizeh;i++) printf("%f ", hbias_ag[il);

printf("\n obias_ag\n");

for (i=0;i<agsizec;i++) printf("%t ", obias_ag(il);
printf("\n");

} /* print_weight */

/+ read input story froa inputfile; batch mode */
read_story()
{

245

/* Tead single story into triple forms; bypass st-parser */
int 1i;
scanf("%s",repn); /* read script flag +/

if (strcmp(repn,"script") == 0) script = 1;
else script = 0;

inp = inputstoryl;
while(scanf("¥%s" repn) != EOF) {

it (repn[0] == *;’) continue; /% comment */

slse if (strcmp(repn,"block:") == 0) { /« if block designator */
strcpy(inp->evnum,repn);
inp++;
continue;

else { /* triple +/
scanf("}%s", linkn};
scanf("%s" ,noden);

/* load event name */
strcpy(inp->evnum,repn);

/* load object pointer =/
i=0;
while((strcmp(noden,objstorel[i].name) !'= 0) &k (objstorel[i].name[0] != ’\0’)) i++;
it (objstorel[i] .name[0] '= ’\0*) inp->object = i;
else {
inp->cbject = -1; /* event, not object */
strepy(inp->object2,noden);

/% load case rep */

i=0;
while((strcmp(linkn,casestorel[il.name) != 0) &k (casestorel[il.name[0] != ’\0’)) i++;
if (casestorell[i].name[0] == ’\0’) printf("\n error: no %s",linkn);

else inp->case_role = i;

inp++; /* next store s/
} /% else */

} /* while */

/* verity atory */

printf("\n input story\a");

inp = inputstoryl;
while(inp->evnum[0] 1= *\0’) {
printf("%s %d %d %s\n",inp->evnum,inp->case_role,inp->object,inp->object?2);
inp++;

}

ALl Il 2222 T Y propagations for each module **ssssskssrrksssns/
/* triple-encoder propagation #/

prop_ev()

{

float net,pesig;

float sigmoid();
int i,j,pos,cycle,flag;

/* load data */
/* input layer =/

pos = 0;
tor(i=0;i<rsize;i++) in_ev[pos++] = replil;
for(i=0;i<lsize;i++) in_ev[pos++] = link[i];

246

for(i=0;i<rsize;i++) in_ev{pos++] = node[i];
/* prop procedure %/

/* forward prop */
/* from input to hidden forward */

for{i=0;i<rsize;i++) {
net = 0.0;
foxr(j=0; j<iosize; j++)
net = net + wih_ev(jl[il*in_ev[j];

net = net + hbias_ev[i];
hidden_ev[il = sigmoid(net);
}

/* from hidden to output */

for{i=0;i<iogize;i++) {
net = 0.0;
for(j=0;j<rsize;j++)
net = net + who_ev[j][i]+hidden_ev[j];

net = net + obias_ev[il;
out_ev[i] = sigmoid(net);
}

/* print net =/

printf{"\n¥s ¥%s ¥s\n",repn,linkn,noden);

printf{"\n input\n");

for(i=0;i<iosize;i++) printf("%.1f ",in_ev[i]l); printt{"\n");
printf{"hidden\n");

for (i=0;i<rsize;i++) printf("%.1f ",hidden_ev[il); printf("\n");
printf ("output\n");

for(i=0;i<iosize;i++) printf("%.1f ",out_ev[il); printf("\n");

} /% prop_ev */

float sigmoid(x)
float x;

double exp();
}return(1.0 / (1.0 + exp(-x)));

/* plan-selector propagation */
ﬁrop_ps()

float net,pesig;
float sigmoid();
int i,j,pos,cycle,flag;

/* load data */
/* input layer */

pos = O;
for(i=0;i<csize;i++) in_palpos++] = banki_ps[i];
for(i=0;i<rsize;i++) in_ps[pos++] = bank2_ps[il;

/* prop procedure */
/* forward prop »/
/* from input to hidden forward */

net = ¢,
for(j=0; j<pssizei;j++)
net + wih_ps(jl[il*in_ps[j];

for(i=0;i<gasizoh;i++) {
H

net

net + hbias_psa[il;

nat

247

hidden_ps{i] = sigmoid(net):
}

/% from hidden to output */

for(i=0;i<pssizec;i++) {
net = 0.0;
for(j=0; j<pssizeh;j++)
net = net + who_ps(jl[i]+hidden_ps{j];

net = net + obias_ps[i];
out_psli) = sigmoid(net);
}

/* print net =/

printf{"\n¥a\n", bankn2_ps);

printf{"\n input\n");

for(i=0;i<pssizei;i++) printf("%.1f ", in_ps[i]); printf("\n");
printf("hidden\n");

for (i=0;i<pssizeh;i++} printf("%.1¢ " hidden_ps[i]); printf("\n"):
print? ("output\n");

for(i=0;i<pssizeo;i++) printf("%.1f ",out_pal[il); printf("\n");

} /% prop_ps =/

/* decode into triple; at the moment, it is story3i dependent code */
/* output is in decodeout +/

decode_ev(vector)

float vector[rsize];

/* it goal/plan/state/act then stop decoding
it state(wanted) then embedded decoding */

float embedrep[rsize]; /+ holds embedded representation */
float casereplrsizel],objreplraize];

int pos,i,depth;

int embed; /* 0: unembeded event, i: embedded svent */

int trpc,trpc2;

/* clear decodecut */
¢lear_gpnode(decodecut);

strcpy(decodeout . noden, "evgp");
tor(i=0;i<rsize;i++) decodeout.vecrep[i] = vector[i];

/* start decoding */
trpe = 0;

for(i=0;i<rsize;i++) hidden_ev(i] = vector(il;

print?(*\n decoding ")};
for(i=0;i<rsize;i++) printf("¥%.1f ", hidden_ev[i]);
printf{("\n");

depth = 0;
while (depth < §) { /+ infinite loop */

decode_prop();

/* copy and recirculate */

pos = rsize;

for(i=0;i<lsize;i++) casereplil = out_ev[pos++];
for(i=0;i<rsize;i++) objrepli] = out_evipos++];
for(i=0;i<rsize;i++) hidden_ev[i] = out_ev[i];

/% find symbol and store +/
strcpy(decodeocut . evnum[trpc], "evgp");
find_obj(objrep,trpc);

248

find_case(caserep,trpc); /* find symbol and store into decodeout */

if (trpc == 0) for(i=0;i<rsize;i++) embedrep[i] = objrepl[i]l;

if (atrcmp(decodecut.casen[trpcl,"goal™) == 0 ||
strcmp(decodecut.casen[trpc],"plan”) == 0 ||
strcup(decodecut.cassn[trpcl,"state") == 0 ||
strcmp(decodeout.casen[trpecl ,"act") == 0) break;

trpct++;
depth++

} /* while */

/* if embed is 1 then fln§ is 0 s/

if {(atrcmp(decodeout.casen[trpc
strcmp(decodeocut.objnltrpc] ,"vanted")

“state") == 0 &k
== Q) embed = 1;

it (embed == 1) { /* do embedded event decoding */

trpc++;

for(i=0;i<rsize;i++) hidden_ev[i] = embedrep[il;
depth = 0;
while (depth < §) { /* infinite loop */
decode_prop();

/* copy and recirculate */

pos = rsize;

for(i=0;i<lsize;i++) caserep[i) = out_ev[pos++];
for(i=0;i<rsize;i++) objrep[i] = out_ev[pos++];
for(i=0;i<raize;i++) hidden_ev[i] = out_av[i];

/* find symbol and store */
strcpy(decodeout.evnum[trpc], evgp");
find_obj{objrep,trpc);

find_case(caserep,trpc); /+* find symbol and store into decodeout */

it (atremp(decodeout.casen[trpc],"state") == 0 ||
stremp(decodeout. casen[trpe] ,"act") == 0) break;

trpctt;
depth++

} /* while */

strcpy(decodeout.objn[0] ,"evgp");
} /= it embeddaed */

/* verity decoding */
printf("\n decoded output \n");
printgpnode(decodeocut);

}

/* event decoder propagation; only from hidden layer to the output layer
decode_prop()
{

float net

.
¥

float sigmoid();
int i,j,pos,tlag;

/* from hidden to output */
for(i=0;i<iosize;i++) {

0.0;

for(j=0;j<rsize;j++)

net
net = net
net = net
out_ev{i]
}

+

+

who_ev[j]l[ilshidden_ev[jl;

obias_ev[i];
sigmoid(net);

249

*/

/% print net =/

printf("hidden\n");

for (i=0;i<rsize;i++) printf("Y%.1f ",hidden_ev[i]); printf("\n");
printf{"output\n");

for(i=0;ic<iosize;i++) printf("Y%.1¢ ",out_ev[il); printf(“\n");

} /* decode_prop */

Zind_obj(objrep,trpc)
float objrep[rsize];
int trpc;

{

int sympos,matchpos; /* matched symbol position */
float dista;

float prevdist = 12.0; /+ max distance */

int i;

/* binary thresholding */
for(i=0;i<raize;it++)
it (objrep[i]l <= 0.5) objrepli] = 0;
else objrep[i] = 1;

/+* ID+DSR search »/
sympos = 0;
while(objstorel [sympos] .name0] != '\0?) {

/* calculate euclidean distance */

dista = 0.0;

for (i=0;i<raize;i++)

dista = dista
+ (objstorel [sympos].crep[i] -~ objrep[i])
* (objstorel{sympos].crep[i] - objreplil);

/* printf{"\n distnace for Y%s --> %f\n",objstorel[sympos].name,dista); ¢/

/% compare */

if (dista < prevdist) {
matchpos = sympos;
prevdist = dista; }

Sympos++;

/* store »/
strcpy(decodeout.objn[trpcl,objstorel matchpos] .name);
printf("\n found symbol is %s in %f\n",decodecut.objnltrpc],prevdist);

}

/* tind closed symbols for the case-role patterns */
find_case(caserep,trpc)

float casereplrsize];

int trpc;

int sympos,matchpos; /+ matched symbol position */
1loat dista;
float prevdist = 12.0; /* max distance */

int i;
/* ID+DSR search */
sympos = 0;

while(casestorel[sympos] .name[0] != '\0') {
/* calculate euclidean distance */

dista = 0.0;
for (i=0;i<rsize;i++)

250

dista = dista
+ (casestorsl[sympos].rep[i] - caserep[i])
* (casestorel[sympos].rep[i] - cassrep[il);

/* printf{"\n distnace for %s --> %f\n",casestorel[sympos].name,dista); =/

/* compare */

if (dista < prevdist) {
matchpos = sympos;
prevdist = dista; }

sympos++;

/* store; data-dependent interpretation of goal/plan case =*/
if (decodecut.objnltrpc][0] == 's’ &k
decodeocut.objnltrpc] [1] == '-' &&

strcmp(casestorel(matchpos] .name,"state") == 0)
strcpy(decodeout.casen[trpe],"goal™);

else if (decodeout.objnitrpc][0] == 'd’ &&
decodeout.objnltrpc] [1] == '-’ &&
strcmp(casestorel{matchpos] .name,'"state") == 0)
strcpy(decodeout.casen[trpc]l,"goal"};

elss it (decodeout.objnitrpc][0] == 'p’ &&

decodeout.objnltrpe]l [1] == b’ &&
decodeout.objn[trpe][2] == -’ &&
strcmp(caeestorel{matchpoe] .name,"act") == 0)
strcpy(decodeout.casen[trpc]l,"plan®);

else strcpy(decodeout.casen([trpc],casastorel[matchpos].name);

print?f("\n found symbol is %s in ¥f\n",decodeout.casen[trpcl,prevdist);
}

/* print node structure in the gp-tree */
printgpnode(node)
struct gpnode node;

int 1i;

printf("\n %s\n",node.nocden);

for(i=0;i<rsize;it++)

printf("%.1f ",node.vecreplil);

pringt("\n");

i=0;

while(node.svaum{i] 0] !'= *\0?) {
pf}ntf(“%s %8 %s\n",node.evnum[i],node.casen[i],node.objn[i]);
1++;

}

/**ssssusass gp-tree expanding, matching, searching... skessssewss/
/* generate gpnode to expand; get node from wmout, gp_prop, decode_sv,
and store into wmin =/

gennode(count)

int count;

int i;

/% setup selfincreasing count */

if (count ==

banki_gpl0] = 0; banki_gp(1] = 0; }
else if (count == 1) {

banki_gpl0] = 0; banki_gp[1] = 1; }
else if {(count == 2) {

bankl_gpl(0] = 1; banki_gp[1]} = 0; }
else if {(count == 3) {

bank1_gpl0] = 1; banki_gp{1] = 1; }

251

else printf("\n wrong self increasing counter in gp-assoc.c \n");

/% cpy bank2 gp %/
for (i=0;i<rsize;i++) bank2_gp[i] = wmemory [wmout] .vecrap[il;
strcpy(bankn2_gp, vmemory [wmout] .noden);

prop_gp();

/* copy output gp */
for (i=0;i<rsize;i++) bank3_gp[i] = out_gplil;

decode_ev(bank3_gp);

/* copy decodout to wmemory[wmin] */
strcpy(wlonory[wnin].noden,decodeout.noden);
Tor(i=0;i<rsize;i++) wmemory[wmin].vecrep[i] = decodeout.vacrep(i];
wnemory {wmin] .parent = decodeout.parent;
for (i=0;i<10;i4+) {
strcpy(vmamory{wmin].evnun[i].decodeout.evnun[i]);
strcpy(wmemory [wmin] .casen[i] ,decodecut.casen[i]);
strcpy (vmemory [¥min] .objn[i),decodeout.objnfi]);
}

/* set up parent pointer */
wmemory [vmin] .parent = wmout;

}

/* unification matching routine; targetn vs wmemory[wmin] node;

use objstorel to match var and inst; build-up binding list for backward
binding propagation (non interesting symbol manipulation);

forward binding prop already dome by network (prop_gp) =/
unimatch()

int match = 1;
int trpc;

/% targetn has instantiated forms, wmemory[wmin] has uninstantiated
forms +/
trpc = 0;
while(wmemory[wmin]. evnum[trpc] [0] 1= *\0’) {
it (!sameco(trpc)) match = 0;
trpct++;

}

return({match);

/* compare caserole and obj pointed by trpc index;

vhen compare obj, use objstorel to do unification matching */
sameco(trpc)
int trpc;

if (strcnp(tlolory[wlinl.c;lon[trpc],targetn.caaon[trpc]) '= Q) return{(9);
else {

if (wmemory[wmin].objn{trpcl[0] != ’?') /# not variable */
it (strcup(wuenory[wnin].objn[trpc],targetn.objn[trpc]) 1= Q)
return{0);
else return(i);
else
it (varinst(wmemory[wainl.objn{trpc],targetn.objn[trpcl)) return(1);
else ieturn(o);

}

/* see the instance matches to the variable

252

code assumes that global-dict are vari,instil,insti12...var2 form */
varinst{var,inst)
char var[nsize],inst[nsize];

if (strecmp(var,inst) == Q) return(i);
symp_obj = objstorel;

vhile(strcmp(symp_cbj->name,var) != 0} aymp_obj++;
symp_obj++;

while(symp_obj->name[0] != '?’ k& symp_obj->name[0] != '\0’) {
it (strcmp(symp_obj~>name,inst) == 0) return(1);
symp.obj++;

return(0);

}

/* check nuill pattern */

allzero{vector)
float vector(rsize];

int i;
float sum;

sum = 0;
for(i=0;i<resize;i++)
sum = sum + vector(il;

if (sum < 1.0) return(i);
elsa Teturn(0);

3

/* make output goal/plan chain */
makegpchain()
{

int i,j,k;
i=0;

j = wmin;
while(j != 0) {

/* cpy wmemory([j] to gpchainl[i] */

strcpy(gpchain[il .noden,memory[j] .noden);

for(k=0;k<rsize;x++) gpchain[i].vecrep[k] = wmemory[j].vecrep[k];

gpchain[i] .parent = wmemory[jl.parent;

for (k=0;k<10;k++) {
atrcpy(gpchain[i] . evoum[k] ,vmemory[j].evoum[k]);
strcpy(gpchain[i].casen[k] ,mmemory[j].casen[k]);
strcpy(gpchain[i] .objn[k],wmemory[j].objn(k]);
}

j = wmemory[j].parent;
1++;
} /% while #/

/* cpy wmeory[0] to gpchian */

strcpy(gpchain[i] .noden,vmemory[j] .noden);

for{k=0;k<rsize;k++) gpchain{il.vecrep[k] = wmemory[j).vecreplk];

gpchain[i] .parent = wmemory[j].parent;

for (k=0;k<10;k++) {
strepy{gpchain[i) .evnunfk] ,wmemory[j].evnum[k]);
strcpy{gpchain[il).casen[X],mmemory[j].casen[k]);
strepy{gpchain[i].objn[x],mmexmory(jl.cbjnlk]);
}

253

/% simplified routine; get next unsuccessful plan */
getnextstartn()
{

int i,j;

3 = 1; /% skip target =/
while(!isplan(gpchain([jl))} j++;

strcpy(startn.noden,gpchain[j].noden);
for(i=0;i<rsize;i++) startn.vecrep[i] = gpchain{j].vecrep(i];
startn.parent = gpchain[j].parent;
for (i=0:i<10;i++) {
strcpy(startn. evoum(i],gpchain[3]. evoum[i]);
strcpy(startn. casen(il,gpchain[j].casen[i]);
strepy(startn.objnlil,gpchain{j].objn[i]);
}

}

/* is node a plan? */
isplan(node)
struct gpnode node;

int i;
i=0;
vhile{nocde,evoum[i] [0] t= *\0’) {

if (strcmp(node.casen[i],"plan") == 0) return(i):
i++;

return(0);

/#*++33%x% propagations for each module; action-generator, gp-assoc #sss+s/
/+ action-generator propagation +/
grop_ag()

float net,pesig;
float sigmoid();
int i,j,pos,cycle,flag;

/* load data »/
/* input layer =/

pos = 0;
Tor(i=0;i<csize;i++) in_ag(pos++] = banki_ag[il;
for(i=0;i<rsize;i++) in_ag[pos++] = bank2_agl[i];

/* prop procedure */
/* forward prop */
/* from input to hidden forward */

for(i=0;i<agsizeh;i++) {
nat = 0.0;
Tor(j=0; j<agsizei;j++)
net = net + wih_ag[j][il+in_ag[jl;

net = net + hbias_aglil;
hidden_agl[i] = sigmoid(net);
}

/* from hidden to output */
for(i=0;i<agsizeo;i++) {
net = 0.0;

for(j=0; j<agsizeh;j++)
net = net + who_ag[jl[ilshidden_ag[j];

254

net = net + obias_ag[il;
out_agl[i]l = sigmoid(net);
}

/* print net #*/

printf (*\n¥%s\n" ,bankn2_ag);

printf("\n inputi\n");

for(i=0;i<agsizei;i++) printf("%.1f ",in_aglil); printf("\n");
printf(*hidden\n");

for (i=0;i<agsizeh;i++) printf("%.1t " hidden_ag{il); printf("\n");
printf("outputin");

for(i=0;i<agsizeo;i++) printf("¥%.1f ",out_aglil); printf("\n")};

} /+ prop_ag */

/* gp-tree expansion; gp-associator propagation */
Erop_gp()

float net,pesig;
float sigmoid();
int i,j,pos,cycle,flag;

/* load data */
/* input layer */

pos = 0;
for(i=0;i<scsize;i++) in_gp[pos++] = bankl_gpl[il;
for(i=0;i<rsize;i++) in_gplpos++] = bank2_gp{il;

/* prop procedure */
/* torvard prop */
/% from input to hidden forward #*/

tor{i=0; 1<gps1zeh sivs) {
net =
for(j=0; j<gpsizei;j++)

net = net + wih_gp[jl[il*in_ gplid;

net = net + hbias_gp[il;
hidden_gpli] = sigmoid(net);
}

/* from hidden to cutput */

for(i=0; 1<gpslzeo ;ivd) {
net =
for(j=0; j<gpsizeh;j++)

net = net + who_gp[jl[i]l*hidden_gpljl;

net = net + obias_gp(il;
out_gpfi]l = sigmoid(net);
}

/* print net s/

print2("\n¥%s\n",bankn2_gp);

printf("\n input\n");

for(i=0;i<gpsizei;i++) printf("¥%.1f ",in_gplil); printf("\n");
printf("hidden\n");

for (i=0;i<gpsizeh;i++) printf("¥%.1f ", hidden_gp(il); printf("\n");
prlntt("output\n“)

tor(i=0;i<gpsizeo; 1++) printf("¥%.11 ",out_gp{il); printf("\n");

} /% prop_gp */

255

APPENDIX G

DYNASTY analysis code

G.1 Performance statistics

This section lists a group of codes which were used to calculate the performance statistics
tables listed in section 5.2. Each module has separate statistics gathering programs. Most
of the duplicate codes are omitted.

JEEtnnnknkes for global-dictionary hb bbb AL L LS L 2 S T S L P P ey
/* performance statistics for global-dict network module; ascii-to-dsr
training data: global-dict into memory #/

#include <stdio.h>
#include <math.h>

¥define nsize 20 /+ number of characters in name */
#define rgsize 12 /+ representation size */

#define isize_a2d nsize /+ input layer size */
#define hsize_a2d 15 /+ hidden layer size */
define osize_a2d rsize /+ output layer size */

/* max data size #*/
#define nums_obj 150 /* number of object symbol in the dictionary #/

#define sfile "global-dict" /# input training data file */
#define wfile "weight-a2d" /* loaded weight file #/

/* global dictionary -- training data #*/
struct objstore {
char name[nsizel;
float creplrsizel; /* current rep =/
} objstorellnums_obj]l,*symp_obj;

/* main network %/

/* current network holder */

char banknl_a2d(nsize];

float bankl_a2d[nsize],bank2_a2d[rsize]; /+ input rep holder =*/

/* gd main network s/

float in-a2d{i-iz._n2d],out_azd[osize_a2d],hiddon_a2d[hsizo_a2d].
teach_a2d[osize_a2d];

float vih_a2d[isizo_a2d][hsizo_lzd].who_an[hlize_azd][osiza_azd];
float hbias_a2d(hsize_a2d},obias_a2d[osize_a2d];

/% global file pointer =*/
FILE #fopen(),*sfp,+vip;
/* statistics parameter */
int cosym,tosym,nounit;
float correct,toerror,eavg;

/* driver s/
main{)

int total,mtotal;
int i,j;

256

float ran;
read_td(); /* read from initial gd as training data; not listed =/
load_weight()}; /* load previous weight for continuous training; not listed */

/* initialize para =*/

cosym = 0;
tosym = 0;
nounit = 0;

toerror = 0;

/* tor every training pair in the global-dict =/
symp_obj = objstorel;
vhile (symp_obj->name[0] '= \0’) { /% for all the words =/

strcpy(bankni_a2d,symp_obj->name) ;

/#* normalize ascii for a{97) -- z(122) into 0 —— 1
if less than 0; then ? or - or space */

for (i=0;i<nsize;i++)
banki_a2d[i] = (float) (symp_obj->name(i] - 96) / 26.0;

for(i=0;i<rsize;i++)
bank2_a2d[i] = symp_obj->creplil;

prop{total); /# verify -- weight freezed */

symp_obj++;
} /% while =/

/* parformance statistics */

correct = (float) cosym / {(float) tosym;

eavg = toerror / (float) nounit;

printf{"\n cosym: %d tosym: %d correct: ¥.Bf\n",cosym,tosym,correct);
printf{"\n toerror: %.3f nounit: %d eavg: %.7f\n", toerror,nounit,eavg);

} /* main */

/***sx2% propagate while caculating performance statistics #«##+¥/

prop(total)
%nt total;

float net,pesig;
float sigmoid();
int i,j,pos,cycle,flag;

/* load data »/
/* input layer =/
for(i=0;i<nsize;i++) in_a2d[i] = banki_a2d{i];

/* teach layer : hetero-associative network =*/
for(i=0;i<rsize;i++) teach_a2d[i] = bank2_a2d[i]l;

/* torward prop %/
/* from input to hidden forward */
for(i=0;i<hsize_a2d;i++) {
net = 0.0;
for(j=0;j<isize_a2d;j++)
net = net + wih_a2d[jI[il+in_a2d[j];

net = net + hbias_a2d[i];
hidden_a2d[i] = sigmoid(net);
}

/* from hidden to output #/

for(i=0;i<osize_al2d;i++) {

257

net = 0.0;
for(j=0; j<hsize_a2d;j++)
net = net + who_a2d(j)[il+#hidden_a2d[j];

net = net + obias_a2d[i];
out_a2d[i] = sigmoid(net);
}

/* statistics gathering; epsilon is 0.15 %/
flag = 0;
for (i=0;i<omize_a2d;i++) {

if (fabs(teach_a2d[i] - out_a2d[il) > 0.15) flag = 1;
toerxror = toerror + (float) fabs(teach_a2d[i] - out_a2d[il);
nounit++;

if (flag == 0) cosym++;
tosym++;
printf("\n %d %d %f %d\n",cosym,tosym,toerror,nounit);

/* print net =/

printf("\n %d %s \n",total,bankni_a2d);

printf("input layer\n");

for (i=0;i<isize_a2d;i++) priatf("%.1f ",in_a2d[i]);

printf("\nhidden layer\n");

tor (i=0;i<hsize_a2d;i++) printf("%.1f ", hidden_a2d[i]);
printf("\noutput-teach pair\a");

for(i=0;i<osize_a2d;i++) printf("¥.1f ",out_a2d[il]); printf("\n");
for(i=0;i<osize_a2d;i++) printf("%.1f ", teach_a2d[i])); printf("\n");

X

/¥vensaseenenss for triple-encoder s*ssssrsssssssssssns/
/* 3et performance statistics for triple-encoder network module
ata: tdata-te into memory
input symbol dictionary: global-dict, conbol-case
dynatat3r */

#include <stdio.h>
#include <math.h>

#define nsize 20 /+ number of characters in name */
#define rsize 12 /* representaticn size %/

#define 1lsize 12 /* case-rcle size =/

#define iosize lsize+2+rsize

#define idsize 2 /* id bit size */

/* max data size %/
#define nums_obj 100 /+ number of object symbol in the dictionary */

#define nums_c 30 /# number of case-role =/
#define nums_td_te 400 /* number of triples in tdata-te */

#define dfile “tdata-te"
#define sfile "global-dict"
#define 1file “conbol-case"
#define wfile "waight-te”

/* global dictionary =/
struct objstore {
char name[nsize];
float creplrsize}; /+ currenmt rep */
} objstorel[nums_obj]l,*symp_obj;
struct casestore {
char name{nsize];
float repllsize];
} casestorel[nums_c],*casep;

/+ training data store ; each entry is array number in the dictionary */

258

struct tdata_te {
char evnum[nsize];
int case_role;
int object;
char object2[nsizel; /# for embedded event */
} tdata_te_l[nums_td_te],*tdpi;

/% prsvious event rep holder */
char preev[nsize];
float preevr[rsize];

/* ARPDP network acceasory */
char repn[nsize] ,linkn[nsize],noden[nsize]; /* input name holder */
float replrmize] ,link[1size] ,node[rsize]; /% input rep holder =*/

/* event encoder/decoder network */

float in_ev[iosize],out_ev[icsize] ,hidden_ev[rsize],teach_ev[iosize];
float wih_ev[iosizej[raize],whouev[rsize][iosize];

float hbias_ev[rsize],cbias_ev[iosize];

/* global file pointer =*/
FILE *fopen{),*dfp,*sfp,*1fp,*vfp;

/* statistice parameter */
int cosym,tosym,nounit;
float correct,toerror,eavg;

/* driver =/
main()

int max,total,mtotal;

int 1i;

char tempev[nsize];

float ran; /# random number output */

read_to_store(); /+ read from initial gd and case to internal data

structure; not listed */
load_weight(); /* load previcus weight for continucus training; not listed =/

/* print initial weight to the log */
print_waight(); /* not listed &/

/* read traning data intc memory; object hold -1 if embedded */
read_td_te(); /* not listed */

/* initialize para =/
cosym = 0;

tosym = 0;

nounit = 0;

toerroxr = 0;

/% triple encoding through all data; one epoch */
strcpy(tempev,“xxx");

tdpl = tdata_te_1;

vhile{tdpi->evnum[0] != °\0’} { /* while 2 */

strcpy(repn,tdpi->evnum);

strcpy(linkn, casestorel[tdpi->case_role] .name);

if (tdpl->object >= 0) /* object not embedded */
strcpy{noden,objstorel[tdpi->object] .name);

else

strcpy(noden,tdpl->object2); /+ event; embedded */

/* if new evant */

if (strcmp(tempev,repn) != 0) {
strcpy(preev,tempev); /% for embedding */
for (i=0;i<rsize;i++)

preevr{i] = ropti];
for (i=0;i<rsize;i++)

259

;ep[i] = 0.5; /* init ev rep */

for (i=0;i<laize;i++)
link[i] = casestorel[tdpi->case_role].rep[i];

it (tdpi->object >= 0) /* no recursive event +/
for (i=0;i<rsize;i++)
node[i] = objstorelltdpi->object].creplil;
else if (strcmp(tdpl->object2,preev) == 0)
for (i=0;i<rsize;i++)
node[i] = preevr[i];
else printf("\error no ¥%s\n",noden):

prop_ev(total);

for (i=0;i<rsize;i++)
rep[i] = hidden_ev[i];

strcpy(tempev,repn); /+ for event group checking #*/
tdpi++;
} /* while %/

/% performance statistics */

correct = (float) cosym / (float) tosym;

esavg = toerror / (float) nounit;

pPrintf("\n cosym: %d tosym: %d correct: %.5f\n",cosym,tosym, correct);
printf("\n toerror: %.3f nounit: %d eavg: 4.7f\n",toerror,nounit,eavg) ;

} /* main =/

[H%xusensissn 10r Plan-selector *+esksstsasssnsss/

/* performance statistica for Plan-selector network module
data: tdata-ps into memory
input symbol dictionary: global-dict, conbol-case
input weight file: weight-te #/

#include <stdio.h>
#include <math.h>

#define nsize 20 /* number of characters in name */
#define rsize 12 /+ representation size */

¥define lsize 12 /+ case-role size #/

#deline csize 30 /* context size */

#define isize csize+rsize

#define osize rsize+i

#define iosize rsize+lsize+rsize

#define idsize 2 /* id bit =mize »/

/* max data size */

#define nums_obj 150 /+ number of object symbol in the dictionary +/
#define nums_c 30 /# number of case-role */

#define nums_td_ps 1000 /* number of triples in tdata-te #*/
#define nums_td_in 400 /* number of internal data */

#define dfile "tdata-ps"
#define afile “global-dict®
#define 1file "conbol-case"
¥define wfile “"weight-te"
#define wfile2 "weight-ps"

/* global dictionary =*/

struct objstore {
char name[nsize];
float creplrsize]; /+ current rep */
} objstorel[nums_obj],*symp_obj;

struct casestore {
char namefnsize];

260

float repllsize];
} casestorellnums_c],*casep;

/* training data store ; each entry is array number in the dictionary */
struct tdata_ps {

char evnum[nsize];

int case_role;

int object;

char object2[nsize]; /+ for embedded event =/

} tdata_ps_linums_td_ps],*tdp1;

/#* internal training data */
struct tdata_intermal {
char xey_word[nsize];
char svnum[nsize];
float treplrasize];
} tdata_internal_l[nums_td_in],*tdpi,*tdpi2;

/* triple encoder related network */

/# for triple encoder and intput name holder */
char repninsize]l,linkn(nsizel,noden[nsize];
float replrsize],link[laize] ,node{rsizel;

/* eavent encoder/decoder network */

float in_ev[iosize],out_ev[iosize] ,hidden_ev{rsizel,teach_ev[iosize];
float wih_ev[iosize] [rsize],who_ev(rsize][iosize];

float hbias_ev[rsize],obias_ev[iosize];

/* main network */

/* current network holder */

char bankni[nsize],bankn2[nsize],bankn3[nsize],bankn4[nsize];

{loat bankif[csize],bank2[rsize] ,bank3(rsizel,bank4; /* input rep holder */
/* plan-selector main network */

float inlisize],out[osize] ,hidden[csize] ,teach[osize];

float wih[isizel [csize] ,whol[csize] [osize];

float hbiasicsize]l,obias[osize];

/* global file pointer #*/
FILE *fopen(),*dfp,*sfp,*1fp,*wip, *vip2;

/* statistics parameter #/
int cosym,tosym,nounit;
float correct,toerror,eavg;

/* driver =/
main()

int total,mtotal;
int i,j;
float ran;

load_weight_te(); /# triple encoder weight file; not listed =*/

read_to_store(); /% read from initial gd and case to internal data

structure; not listed */ .
load_weight(); /* load previous weight for continuous training; not listed */

/* read training data intc memory; object hold -1 if embedded =/
read_td_ps(); /* not listed =/

triple_encode(total); /+ internal data build up; not listed =/

/* initialize para */
cosym = 0;

tosym = O;

nounit = 0;

toerror = 0;

/* for every tr‘iniii pair in the tdata_internal */
tdpi = tdata_internal_ l;

261

while (tdpi->key_word[0] != '\0’) { /¢ ghile 3 */

tdpi2 = tdpi;

/* then part assign for bank3 and banké +/
while(strcmp(tdpi2->key_vord,"then") !'= Q) tdpi2++;
if (strcmp(tdpi2->key_word,"then") == Q) {

strcpy(bankn3, tdpi2->evnum);
;or (i=0;i<rsize;i++) bank3[i] = tdpi2->trep[i];
else printf("\n no then part");
tdpi2++;
if (strcmp(tdpi2->key_word,"and") == 0) {
strcpy(bankn4,tdpi2->evaum);
bank4 = tdpi2->trep[0];
}

else printf(“\n no then part");

/# it part for banki and bank2 */
while(strcmp(tdpi->key_word,"then")!= 0) { /# while 4 */
it (strcmp(tdpi->key_word,"if") == 0 ||
strcmp(tdpi->key_word,"follows") == 0) {
strcpy(bankn2, tdpi->evnum);
for (i=0;i<raize;i++) bank2[i] = tdpi->trep[il;

else printf("\n no if part");

if (stremp(tdpi->key_word,"if") == 0)
for (i=0;i<csize;i++) banki[il = 0;

prop(total); /+ verify ~- weight freezed */
for (i=0;i<csize;i++) bank1[i) = hidden[i];

tdpit++;
} /*» while 4 =/

while(strcmp(tdpi->key_word,"if") = 0 && tdpi~->key_word[0] != ’\0’') tdpi++;
} /* while 3 =/

/% performance statistics */

correct = (float) cosym / (float) tosym;

eavg = toerror / (float) nounit;

Printf("\n cosym: %d tosym: %d correct: %.5f\n", cosym,tosym,correct);
printf("\n toerror: ¥%.3f nounit: %d eavyg: %.71\n",toerror,nounit,eavg);

} /* main =/

[ekikakehskns for EP-ASB0CiAtOr *kdddkbxnrsasiridbis/

/% performance statistics for gp-associator network module
data: tdata~gp into memory
input sylbolsgictionary: global-dict, conbol-case
input weight file: weight-te »/

#include <stdio.h>
#include <math.h>

#define nsize 20 /* number of characters in name #*/
#define rsize 12 /+ representation size */

#define lsize 12 /% case-role siza =*/

#define hsize 10 /+ hidden size */

#define acsize 2 /#* counter size */

#define isize scsize+rsize

#define osize rsize

#define iosize rsize+lsize+rsize

#define idsize 2 /+ id bit size »/

/* max data size */

262

#define nums_obj 150 /+ number of object symbol in the dictionary =/
#define nums_c 30 /+ number of case-role */

#define nums_td_gp 1000 /* number of triples in tdata-gp */
#define nums_td_in 30 /* number of internal data for ONE gp #*/

#define dfile "tdata-gp"
#define sfile “global-dict"
#define 1lfile “conbol-case"
#define wfile "weight-te"
#define wfile2 "weight-gp"

/* global dictionary =/

struct objstore {
char name[nsize] ;
float crep[rsizej; /* current rep */
} objstorel[nums_objl,*symp_obj;

struct casestore {
char name[nsize];
float repllaizel;
} casestorel(nums_c],*casep;

/* training data store ; each entry is array number in the dictionary */
struct tdata_gp {

char evnum[naize];

int case_role; /* hold counter value O to 3 too */

int object;

char object2[nsize]; /* for embedded event */

} tdata_gp_l{nums_td_gp] ,*tdpi,*tdp2;

/+ internal training data */
struct tdata_internal {
char key_vord[nsize];
char evnum[nsize];
float treplrsizel; /* firat two array elts holds counter value */
} tdata_internal l[numa_td_in],«tdpi,+tdpi2;

/* triple encoder related network */

/* for triple encoder and intput name holder */
char repn[nsize],linkn[nsize],nodenlnsize];
float repl[rsize],link{lsize],node[rsize];

/* event encoder/decoder network */

float in_ev[iosize] ,out_ev[iosize] ,hidden_ev[rsizel,teach_ev[iosize];
float wih_ev[iosize] [rsize] ,who_ev[rsize] [icsize];

float hbias_sv[rsize],obias_ev[iosize];

/* main network */

/* current network holder */

char bankn2[nsize] ,bankn3[nsize];

float banki[scsize] ,bankZ[rsize],bank3{rsizel]; /* input rep holder =*/
/* gp-assoc main network */

float in[isize],out[osize] ,hidden[hsize],teachlosize];

float wih[isizcj[hsize],who[hlizc][osizoi;

float hbias[hsize],obias[osize];

/* global file pointer =/
FILE *fopen(),=dfp,*sip,slip,svip,*wip2;

/* statistics parameter */
int cosym,tosym,nounit;
float correct,toerror,eavg;

/* driver */
main{)

int total,mtotal;
int 1,j;
float ran;

263

/% previous event rep holder for triple-encoder =/
char preev[nsizs];

float preevr[rsizs];

char tempev{nsiza];

load_weight_te(); /* triple encoder weight file; not listed =/

read_to_store(); /* read from initial gd and case to internal data
structure; not listed */
load_weight(); /* load previous weight for continuous training; not listed #/

/* read training data into memory,; object hold -1 if embedded */
read_td_gp(); /* not listed */

/* initialize para =/
cosym = Q;

tosym = O;

nounit = 0;

toerror = 0;

/* for all data in tdata-gp +/
tdpl = tdata_gp_1;

while (tdpi->evnum{0] '= ’\0’) { /% while 100 at the end of data =/
tdpi++; /* skip coment */

/* random id assign for this gp association; assign to only var in if part
clear id in objstore; every var is up front in objstore %/
symp_obj = objstorel;
while{symp_obj->name[0] == ’?’} {
for (i=0;i<idasize;i++) symp_obj->crepl[i] = 0;
symp_obj++;
}

tdp2 = tdpi;
tdp2++;
tdp2++;
while(atrcmp(tdp2->evnum,“then”) !'= 0) { /+ while 22 */
if (tdp2->object !'= -1 &k objstorel [tdp2->object].name[0] == ’7’)
for (i=0;i<idsize;i++) {
ran = rand()/32767.0;
if (ran < 0.51) objatorel[tdp2->cbject].crepli]l = 0.0;
¢lse objatorel(tdp2->object].crepli] = 0.0;
}

tdp2++;
} /* while 22 */

/* start triple encode here */
it (total == 0)
Printf("\n triple-encode verify for epoch O\n");

/* clear tdata_internal */

tdpi = tdata_internal_l;

while (tdpi->key_word[0] != ’\0’) {
tdpi->key_word[0] = *\0’;
tdpi++;

/* get triple representation for this id; store into internal
data file; tdata_internal =/

tdpi = tdata_internal_]l;
vhile (tdpi->evnum[0] != ’;’ && tdpi->evnum[0] '= ’\0’) <{ /* while 101 */
if (strcmp(tdpi->evnum,"if") == 0) {
strcpy(tdpi->key_word, tdpl->evnum);
it (tdpi->case_role == 0) { tdpi->trep[0] = 0; tdpi-—>trep[1] = 0; }

264

else it (tdpl->case_role == 1} { tdpi->trep[0]
else if (tdpi->case_role == 2) { tdpi->trepl[0]
elsa if (tdpl->case_role == 3} { tdpi->trep[0]
else printf("\n invalid counter ");

tdpi++; tdpl++;

0; tdpi->trep[1]
1; tdpi->trepl1]
1; tdpi->trepl1]

I Ho
nnu

else if (strcmp(tdpi->evnum,"and") == 0 |]
strecmp({tdpl->evnum,"then") == 0) { /+ else if 1 =/
strcpy(tdpi->key_word,tdpl->evnum);
tdpl++;

if (atremp(tdpi->evnum,"nil") == 0) {
strcpy(tdpi->evnum,tdpl->evnun);
tdpl++; tdpi++;

else { /% else 10 */ /+ triple encoding */

strcpy(tempev, "xxx");

while (strcmp{tdpil->evinum,"if") != O &k
stremp(tdpl->evnum,“then") != O &&
tdpi->evnum[0] !'= ’;’ k&
tdpi->evoum[0] != *\0’) { /% while 2 */

/* avent encoding until key word */

strcpy(repn,tdpi->evnum);
strcpy(linkn,casestorel(tdpl->case_rolel.name);

it (tdpi->object >= 0) /* object not embedded */
strcpy(noden,objstorel{tdpi->object] .name);

else

strcpy(noden,tdpi->object2); /+ event; embedded */

/* if new event */

if (strcmp(tempav,repn) !'= 0) {
strcpy(preev,tempev); /+ for embedding */
for (i=0;i<rsize;i++)

preevr{i] = rep[i];
for (i=0;i<rsize;i++)

repli]l = 0.5; /#* init ev rep =/

}

for (i=0;i<lsize;i++)
link[i] = casestorel[tdpl->case_role].replil;

if (tdpl->object >= 0) /* no recursive event */
for (i=0;i<rsize;i++)
node[i] = objstorel{tdpi->object].creplil;
else if (strcmp(tdpl->object2,preev) == 0)
for {i=0;i<rsize;i++)
node[i] = preevr[il;
else printf{"\error no %s\n",noden);

prop_ev{total);

for (i=0;i<rasize;i++)
repli] = hidden_ev[il;

strcpy(tempev,repn); /* for event group checking */
tdpl++;
} /* while 2 =/

strcpy(tdpi->evnum,repn);
tor (i=0;i<rsize;i++)
tdpi->trep[i] = repl(il;
tdpi++;
} /* else 10 end triple */

265

nonou
- O

e

} /% else it | »/
else printf("\n input data error: no if and then format");
} /* while 101 #/

/% verify encoding internal data s/
if (total == 0) {
printf("\n tdata_internal");
tdpi = tdata_internal_l;
while (tdpi->key_word[0] !'= '\g') {
printf("\n%s %s ", tdpi->key_vword,tdpi->evnum);
for (j=0;j<rsize;j++)
printf("%.1f ", tdpi-—>trep(jl);
tdpi++;

}
/* do gp-association training */

/* for every trainmin gair in the tdata_internal =/
tdpi = tdata_internal 1;
while (tdpi->key_word[0] != ’\0’) { /* while 3 +/

/* if part for banki and bank2 #/

it (strcmp(tdpi->key_word,"if") == 0) {
for(i=0;i<scsize;i++) bankil[i] = tdpi->trep[il; /+ first two bits */
tdpi++;

else printf ("\n no if part ");

it (strcmp(tdpi->key_word,"and") == 0) {
strcpy(bankn2, tdpi->evnum);
for (i=0;i<rsize;i++) bank2(il] = tdpi->trep(il;
tdpit+;

else printf("\n no if part")};
/* then part for bank3 */

if (strcmp(tdpi->key_word,"then") == 0) {
strcpy(bankn3, tdpi->evnum);
if (strcmp(tdpi->evnum,"nil") == 0)
for (i=Q;i<rsize;i++) bank3[i] = 0;
else for (i=0;i<rsize;i++) bank3[i] = tdpi->trep[i];
tdpit++;

else printf("\n no then part");
prop(total); /+ verify -- weight freezed #/
} /# while 3 »/
} /* while 100 for all data */

/* performance statistics /

correct = (float) cosym / {float) tosynm;

savg = toerror / (float) mounit;

printf("\n cosym: %d tosym: %d correct: %.51\n",cosym, tosym, correct);
printf{"\n toerror: %.3f nounit: %d eavg: %.TI\n“.toorror,nounit,eavg);

} /* main */

/erneranssnxs for action-generator sxsstsssssasanis/

/% pertormance statistics for action-generator network moduls
data: tdata-ag into memory
input synbolagictionary: global-dict, conbol-case
input weight file: weight-te */

266

#include <stdioc.h>
#include <math.h>

#define nsize 20 /+ number of characters in name */
#define rsize 12 /# representation sjize */

#define lsize 12 /% case-role size =/

#define csize 30 /* context size =/

#define isize csizetraize

#define osize rsize

#define iosize rsize+lsize+rasize

#define idsize 2 /+ id bit size */

/* max data size */

#define nums_obj 150 /* number of object symbol in the dicticnary */
#define nums_c 30 /+* number of case-role %/

#define nums_td_ag 1000 /* number of triples in tdata-te */
#define nums_td_in 400 /+ number of internal data */

#define dfile "tdata-ag"”
#define sfile "global-gict"
#define 1file "conbol-case"
#define wfile "weight-te"

#define wfile2 "weight-ag"

/* global dictionary =/

struct objstore {
char name[nsize];
float crep[rsizej; /* current rep */
} objstorellnums_objl,*symp_obj;

struct casestore {
char name{nsize];
float repilsizel;
} casestorel[nums_c]l,*casep;

/* training data store ; each entry is array number in the dictionary */
struct tdata_ag {

char esvnum[nsize];

int case_role;

int object;

char object2[nsize]; /* for embedded event */

} tdata_ag_l{nums_td_ag]},»tdpi;

/* internal training data */
struct tdata_internal {
char key_vord({nsize];
char evnum[nsiza];
float treplrsize];
} tdata_internal_l[nums_td_in],*tdpi,*tdpi2;

/#* triple encoder related network */

/* for triple encoder and intput name holder */
char repn(nsizel],linkn[nsize] ,noden(nsize];
float repl[rsize],link[1size] ,node[rsize];

/* event sncoder/decoder network =/

float in_ev[iosize],cut_ev([icsize] ,hidden_ev[rsize],teach_ev[iosize];
float wih_cv[iosizoj[rsize],who_ovtrsize]tiosize];

float hbias_ev[resize],obias_ev[iosize];

/* main network */

/* current network holder */

char banknl[nsize],bankn2[nsize],bankn3[nsize];

float banki[csize] ,bank2[rsize] ,bank3[rsize]; /* input rep holder */

/* action-gen main network %/

float in[isize] ,out[osize] ,hidden[csize], teach[osize];
float wih[isizej[csize],who[csize][oaize :

float hbias{csize],obias[osize];

267

/* global file pointer =/
FILE *fopen(),*dfp,*sfp,*lfp,swfp, +ufp2;

/* statistics parameter */
int cosym,tosym,nounit;
float correct,tosrror, eavg;

/% driver =/
main()

int total,mtotal;

int i,j;

float ran;

load_weight_te(); /+ triple encoder weight file; not listed =/

read_to_store(); /+* read from initial gd and case to internal data
structure; not listed */
load_weight(); /* load previous weight for continucus training; not listed »/

/* read training data into memory; object hold -1 if embedded »/
read_td_ag(); /* not listed */

triple_encode(total); /+ internal data build up; not listed =/

/% initialize para »/
cosym = 0Q;

toaym = 0;

nounit = 0;

toerror = Q;

/* for every training gair in the tdata_internal */
tdpi = tdata_internal_l;
while (tdpi->key_word[0] != '\0’) { /+ while 3 s/

/* it part assign for bank2 =/

it (strcmp(tdpi->key_word,"if") == 0) {
strcpy(bankn2, tdpi->evnum);
for (i=0;i<rsize;i++) bank2{i] = tdpi->trep[i];
}

else printf("\n no if part");
tdpi++;

/* then part for banki and bank? */
while(strcmp(tdpi->key_word,"if")!= 0 &k tdpi->key_word[0) !'= ’\0*) { /* while & */
it (strcmp(tdpi->key_word,"then") == 0 ||
stremp(tdpi->key_word,"follows") == Q) {
strcpy(bankn3, tdpi->evnum);
for (i=0;i<rsize;i++) bank3[i] = tdpi->trep[i];

else printf("\n no then part”);

if (strcemp(tdpi->key_word,"then") == Q)
for (i=0;i<csize;i++) banki(i] = 0;

prop(total); /+* verify -- wveight freezed */
for (i=0;i<csaize;i++) banki{i] = hidden[i]:

tdpi++;
} /+ while 4 »/

} /% while 3 #/

/% pertormance statistics */
correct = (float) cosym / (float) tosym;
eavg = toerror / (float) nounit;

268

printf{"\n cosym: %d tosym: ¥%d correct: %.5f\n",cosym,tosym,correct);
printf{"\n toerror: %.3f nounit: %d eavg: %.7f\n",toerror,ncunit,eavg);

} /* main =/

G.2 Weight damage resistance

This section lists a group of codes which were used for weight damage resistance ex-
periments described in section 5.4.2. These programs are slight variations of the statistics-
gathering programs, so only two programs are listed here as examples of necessary modifi-
cations.

/esksrksnisx for triple-encoder *¥+ksdthstdbbnissdbhshssstns/
/* weight damage resistance for triple-encoder network module
data: tdata-te into memory
input symbol dictionary: global-dict, conbol-case %/

#include <stdio.h>
#include <math.h>

#define nsize 20 /* number of characters in name */
#define rsize 12 /* representation size %/

#define lsize 12 /* case-role size =/

#define iosize lsize+2*rsize

#define idsize 2 /* id bit size */

/* max data size *x/
#define nums_obj 100 /+ number of object symbol in the dictionary */

#define nums_c 30 /* number of case-role */
#define nums_td_te 400 /+* number of triples in tdata-te =/

#define dfile "tdata-te"
#define sfile “global-dict”
#define 1file "conbol-case"
#define wfile “weight-te"

/* global dictionary #*/

struct objstore {
char name[nsize];
float crepl[rsize]; /* current rep */
} objstorel[nums_objl,*symp_obj;

struct casestore {
char name{nsize];
float rep{lsize];
} casestorel[nums_c],*casep;

/* training data store ; each entry is array number in the dictionary */
struct tdata_te {

char evnum(nsize];

int case_role;

int object;

char object2[nsizel; /* for embedded event */

} tdata_te_l[nums_td_te],*tdpl;

/* previous event rep holder +*/
char preev{nsizel;
float preevr[rasize];

/* ARPDP network accessory */
char repn{nsize],linkn[nsize],noden[nsize]; /* input name holder */
float replrsize],link[1size] ,node[rsizel; /¢ input rep holder */

269

/* event encoder/decoder network */

float in_ev[iosize) ,out_ev[iosize] hidden evirsize], ,teach_ev[iosize];
float wih*ov[iosizej[rsizcl.who_ovtrsize]tio:ize];

Tloat hbias_ev(rsize],obias_ev[iocaize];

/* global file pointer =/
FILE *fopen(),*dfp,*sfp,+1fp,svip;

/* statistics parameter */
int cosym,tosym,nounit;
float correct,toerror,eavg;

/* driver »/
main()

int max,total,mtotal;

int i;

char tempev[nsize];

int maxi,maxo,rani,ran2; /+* random number output */

read_to_store(); /+ read from initial gd and case to internal data

structure; not listed */
load_weight(); /+ load previous weight for continuous training; not listed +/

/* read traning data into memory; object hold -1 if embedded */
read_td_te(); /* not listed */

/* start veight damage here */
/* for all damage cycle */
for (total=0;total<8;total++) { /+ for23 s/

/* initialize para =/
cosym = Q;

tosym = Q;

nounit = 0;

toerrer = 0;

/# 1% random damage to weight %/
it (total != 0) {

maxi = (36%12)/400;

maxo = (12#36)/400;

for (i=0;i<maxi;i++) {

ranl = (rand()/32767.0)*35;

ran2 = (rand()/32767.0)*11;
;ih_ev[ranl][ranz] = 0;

for (i=0;i<maxo;i++) {
ranl = (rand()/32767,.0)*11;
ran2 = (rand()/32767.0)*35;
who_ev[rani] [ran2] = 0;

} /+ if total »/

/* triple encoding through all data; one epoch #/
strcpy(tempev, "xxx");

tdpl = tdata_te_1l;

while(tdpi->evnum{0] != *\0’) { /* while 2 %/

strcpy(repn,tdpl->evnun);
strcpy(linkn,callatorol[tdpi-)case-role].nauo);

if (tdpi1->object >= 0) /+ object not embedded */
strcpy(noden,objstorel[tdpi->object] .name);

else

strcpy{(noden,tdpi->object2); /* event; embedded +/

/* if new event »/

if (strcmp(tempev,repn) i= 0) {
strcpy(preev,tempev); /+ for embedding +/
for (i=0:i<rsize;i++)

preevr[i] = repti];

270

for (i=0;i<rsize;i++)
repl[i]l = 0.5; /% init ev rep */

for (i=0;i<lsize;i++)
1link[i] = casestorel(tdpl->case_role].rep(il;

if (tdpi->object >= ¢) /* no recursive event */
for (i=0;i<rsize;it++)
node{i] = objstorelltdpl->object].creplil;
else it (strcmp{tdpl->object2,preev) == 0)
for (i=0;i<raize;it++)
node[i] = preevr[i];
elsze printf("\error no ¥s\n",noden);

prop_ev{total);

for (i=0;:i<rsize;i++)
rep[ij = hidden_ev[i];

strcpy(tempev,repn); /% for event group checking »/
tdpl++;
} /+ while */

/* performance statistica */

printf{"\n %d percent damage\n",total);

printf{"\n maxi %d maxo %d ranl %d ran2 %d\n",maxi,maxo,ranl,ran2};
correct = (float) cosym / (float) tosym;

eavg = toerror / (float) nounit;

printf("\n cosym: %d tosym: %d correct: %.5f\n",cosym,tosym,correct};
printf("\n toerror: %.3f nounit: %d eavg: %.7f\n", toerror,nounit,eavg);

} /% for23 »/
} /* main */

/ernsnkusiand for plan-aelector *essksxsssasksdbbssstsrs/
/* vweight damage resistance for plan-selector network module
data: tdata-ps into memory
input symbol dictionary: global-dict, conbol-case
input weight file: weight-te */

#include <stdic.h>
#include <math.h>

#define nasize 20 /* number of characters in name */
#define rsize 12 /*+ representation size */

#define 1lsize 12 /* case-role size #+/

#define csize 30 /* context size #*/

#define isize csize+rsize

#define osize rsize+l

#define iogize rsizetlsize+rsize

#define idsize 2 /#* id bit size =/

/* max data size %/
#define nums_obj 150 /# number of object symbol in the dictionary */

#define nums_c 30 /* number of case-role ¥/
#define nums_td_ps 1000 /+ number of triples in tdata-te */

#define nums_td_in 400 /* number of internal data =/

#define dfile "tdata-ps"
#define sfile "global-dict"
#define 1file "conbol-case"
#define wfile "weight-te"
#define wfile2 "welght-ps”

/% global dictionary =/

struct objstore {
char name[nsize];

271

float creplrsize]; /+ current rep +/
} objstorel [nums_obj], *symp_obj;

struct caseatore {
char name{nsize];
float repllsize];
} casestorel[nums_c],=casep;

/% training data store ; each entry is array number in the dictiomary s/
struct tdata_ps {

char evnum{nsizel;

int case_role;

int cbject;

char object2(nsizel; /* for embedded event */

} tdata_ps_1[nums_td_ps],*tdp1;

/* internal training data */

struct tdata_internal {
char key_word[nsize];
char evnum[nsize];
float trep(rsize];
} tdata_internal_l[nunu_td_in].*tdpi,*tdpi2;

/* triple encoder related network */

/* tor triple encoder and intput name holder */
char repn[nsize],linkn[nsize],noden[nsize};
float rep[rsize],link[lsize),node(rsize];

/* event encoder/decoder network */

float in_ev[iosizel,cut_ev[iosize) hidden_ev[rsizel,teach_ev[iosize];
float wih_ev[ioaizaj[rsize],who_evtrsizo][iosize];

float hbias_evirsize],obias_ev[iosize];

/* main network #/

/% current network holder */

char bankni{nsiza],bankn2[nsize],bankn3[nsize],bankn4[nsize];

float banki[csize],bank2[rsize].b;nkS[raize].bank4; /* input rep holder */
/* plan-selector main network */

float in[isize], out[osize),hidden[csize] teach[osize];

float wih[isizej[csize],who[caize][osizo ;

float hbias[csize] ,obias[osize];

/* global file pointer =/
FILE *fopen(),*dfp,*sfp,*1fp,+wfp,sufp2;

/* statistics parameter */
int cosym,tosym,nounit;
float correct,toerror,eavg;

/* driver =/
main()

int total,mtotal;

int i,3,3i;

float ran;

int maxi,maxo,rani,ran2; /+ random number output */

load_weight_te(); /* triple encoder weight file %/

read_to_store(); /+ read from initial gd and cass to internal data
structure =/ .

load_weight(); /+ load previous weight for continuous training */

/* read training data into memory, object hold -1 if embedded */
read_td_ps();

/* for all damage cycle */
for (total=0;total<s;total++) { /+ for23 »/

272

/* 1% random damage to weight +/
if (total = 0) {

maxi = (42+%30)/100;

maxo = (30+%13)/100;

for (i=0;i<maxi;i++) {

ranl = (rand()/32767.0)*41;

ran2 = (rand()/32767.0)#29;
;ih[rani][ran?] = 0;

for (i=0;i<maxo;i++} {

ranl = (rand()/32767.0)%29;
ran? = {rand{)/32767.0)*12;
who[rani] {ran2] = 0;

} /% if total %/

/* initialize para */
cosym = 0;

tosym = 0;

nounit = 0;

toerror = 0;

triple_encode(total); /* internal data build up */

/* for every trainin gair in the tdata_internal #/
tdpi = tdata_internal_i;
while (tdpi->key_word[0] !'= ’\0’) { /* while 3 */

tdpi2 = tdpi;

/* then part assign for bank3 and bank4 3/
wvhile(strcmp(tdpi2->key_word,"then") != 0} tdpil++;
it (strcmp(tdpi2->key_word,"then") == 0) {

strcpy(bankn3, tdpi2->evnum) ;
for (i=0;i<rsize;i++) bank3[i] = tdpi2->treplil;
}
else printf("\n no then part");

tdpi2++;

if (stremp(tdpi2->key_word,"and") == 0) {

strcpy(bankn4, tdpi2->evnum);

bank4 = tdpi2->trepl[0];

else printf{"\n no then part"};

/* if part for bankl and bank2 */
while{strcap(tdpi->key_word,"then")!= 0) { /* while 4 */
it (strcmp(tdpi~>key_word,"it") == 0 ||
strcmp{tdpi->key_word,"tollows") == 0} {
strepy(banknZ, tdpi->evnum);
for (i=0;i<rsize;i++) bank2[i] = tdpi->trepl[il;

slse printf("\n no if part");
if (strcmp(tdpi->key_word,"if") == 0)
for (i=0;i<caize;i++) banki[i] = 0;
prop(total); /+ verify -- weight freezed */
for (i=0;i<ceize;i++) banki[i] = hidden[i];

tdpit+;
} /% while 4 »/

while(strcmp(tdpi->key_word,"if") != O && tdpi->key_word{0] != ’\0’} tdpi++;
} /+ wvhile 3 %/

/* performance statistics */

printf("\n ¥%d percent damage\n",total);
printf("\n maxi %d maxo %d ranl ¥%d ran2 %d\n",maxi,maxo,ranl,ran2);

273

correct = (float) cosym / (float) tosym;

eavg = tosrror / (float) nounit;

printf("\n cosym: %d tosym: %d correct: %.5f\n",cosym,tosym, correct):
printf("\n toerror: %.3f nounit: %d eavg: %.7f\n",toerror,nounit,eavg);

} /+ tor =/

} /+ main s/

G.3 Unit damage resistance

This section lists a group of codes which were used for unit damage resistance experiments
described in section 5.4.1. These programs are also slight variations of the statistics-gathering
programs, so only two programs are listed.

/ekskkrnes for triple-encoder FERRERREERREERR UL R RN R R R gn
/* unit damage resistance for triple-encoder network module
data: tdata-te into memory
input symbol dictionmary: global-dict, conbol-~case */

#include <stdio.h>
#include <math.h>

#define nsize 20 /* number of characters in name */
#define rsize 12 /* representation size */

#define lsize 12 /* case-role size */

#define iosize lsize+2*rsize

#define idsize 2 /* id bit size */

/* max data size */

#define nums_obj 100 /* number of object symbol in the dictionary */
#define nums_c 30 /+ number of case-role */

¥define nums_td_te 400 /* number of triples in tdata-te +/

#define dfile "tdata-te"
#define sfile "global-dict"
#define 1file "conbol-case"
#define wfile "weight-te"

/* global dictionary =/

struct cbjstore {
char name[nsize]:;
float creplrsizel; /+ current rep »/
} objstorel[nums_obj],*symp_obj;

struct casestore {
char name(nsize];
float rep{lsize];
} casestorsl[nums_c],scasep;

/% training data store ; each entry is array number in the dictionary /
struct tdata_te {

char evhum{nsize];

int case_role;

int object;

char object2[nsizel; /# for embedded event */

} tdata_te_l[nums_td_te),*tdpi;

/% previous event rep holder */
char preevinsize];
float preevr([rsize];

/* ARPDP network accessory */

274

char repn[nsize),linkn[nsize] ,nodenlnsize]; /* input name holder */
float repl[rsize],link[lsize) ,node[rsize]; /* input rep holder */

/* event encodsr/decoder network */

float in_ev[iosize],out_ev[iosize) hidden_ev[rsize],teach_av[icsize];
float aih,ev[iosizei[rsizo],who_ovtraize]tioaize];

float hbias_evirsize] ,obias_ev[iosize];

/* global file pointer #*/
FILE #*fopen{(),*dfp,*sfp,*1fp,*wip;

/* statistics parameter */
int cosym,tosym,nounit;
float correct,toerror,eavg;

/% driver */
main()

int max,total,mtotal;

int 1,jj;

char tempev(nsize];

float ran; /* random number output */

read_to_store(); /+* read from initial gd and case to intermal data

structure */
load_weight(); /* load previous weight for continuous training */

/* read traning data into memory; object hold -1 if embedded */
read_td_te():

/* start unit damage here =/
/% for all damage cycle */
for (total=0;total<B;total++) { /+ for23 =/

/% initialize para */
cosym = O;

tosym = Q;

nounit = 0;

toarroxr = 0;

/+ damage one unit */

jj = 12-total;

symp_obj = objstorel;

while(symp_obj->name{0] '= *\0’) {
if (jj <12) symp_obj->crepl[jjl =
aymp_obj++;

0.5;

/* triple encoding through all data; one epoch */
strcpy(tempev, "xxx*);

tdpl = tdata_te_1;

while(tdpi->evnum(0] != ’\0’) { /* while 2 */

strcpy{repn,tdpl->evnum);
strcpy{linkn,casestorel[tdpl->case_role] .name);

i? (tdpi->object >= 0) /* object not embedded */
strcpy(noden,objstorei[tdpi->object] .name);

else

strcpy(nodon,tdp1->object2); /* event; embedded */

/* if new event */

it (strcmp(tempev,repn) != 0) {
strcpy(preev,tempev); /* for embedding */
for (i=0;i<rsize;i++)

preevrli] = repti];
for (i=0;i<rsize;i++)

repli]l = 0.5; /* init ev rep */

}

275

for (i=0;i<laize;it++)
link[i] = casestorel(tdpi->case_role].rep[(i];

if (tdpi->object >= 0) /+ no recursive event #*/
for (i=0;i<rsize;i++)
node[il = objatorel[tdpi->object].crep(il;
else if (strcmp(tdpi->object2,preev) == ()
for (i=0;i<rsize;i++)
node[i] = preevr[i];
else printf("\error nc %s\n",noden);

prop_ev(total);

for (i=0;i<rsize;i++)
rap[ij = hidden_ev[i];

strcpy(tempev,repn); /+ for event group checking =/
tdpi++;
} /* while x/

/* performance statistics *»/

printf("\n %d unit damage\n",total);

correct = (float) cosym / (float) tosym;

eavg = toerror / (float) nounit;

printf("\n cosym: %d tosym: ¥%d correct: %.Et\n“.cosyu,toayn,correct);
printf("\n toerror: ¥.3f nounit: %d eavg: %.Tf\n".toerror,nounic,eavg);

} /+ for23 =/

} /+ main »/

[rkesnsannns for Plan-selector ha b et A S LA S T I TSI T Ly
/* unit damage resistance for plan-selector network module
data: tdata-ps into memory
input symbol dictionary: global-dict, combol-case
input weight file: weight-te =*/

#include <stdio.h>
#include <math.h>

#define nsize 20 /* number of characters in name %/
#define raize 12 /* representation size %/

#define lsize 12 /* case-role size */

#define csize 30 /* context size */

#define isize csize+rsize

#define osize rsize+i

#define iosize rsize+lsize+rsize

#define idsize 2 /* id bit msize »/

/* max data size */

#define nums_obj 150 /* number of object symbol in the dictionary */
¥#define nums_c 30 /* number of case-role */

#define nums_td_ps 1000 /* number of triples in tdata-te +/
#define nums_td_in 400 /* number of internal data */

#define dfile "tdata-ps"
#define sfile "global-dict"
#define 1file "conbol-case"
#define wfile "weight—-te"
#define wfile2 "weight-ps"

/* global dictionary =/

struct objstore {
char name[nsize];
float crep(rsize]; /+ current rep =/
} objstorellnums_objl,*symp_obj;

276

struct casestore {
char name[nsize];
float rep[lsize];
} caseatorel[nums_c],*casep;

/* training data store ; each entry is array number in the dictionary */
struct tdata_ps {

char evnum[nsize];

int case_role;

int object;

char object2[nsize]; /* for embedded event */

} tdata_p=_1[nums_td_ps] ,*tdpi;

/* internal training data */
struct tdata_internal {
char key_word[nsize];
char evnum[nsize];
float treplrsize];
} tdata_internal 1[nums_td_in],*tdpi,*tdpiZ;

/* triple encoder related network */

/* tor triple encoder and intput name holder */
char repn[nsize],linkn[nsize] ,nodenfnsize];
tloat replrsizel],link[lsize] ,node[rsize];

/* event encoder/decoder network %/

float in_ev[iosize] ,out_ev[icsize] hidden_sv[rsize],teach_sv[icsize];
float wih_ev[icsize] [rsize],who_ev[rsize] [icsize];

float hbias_ev[rsize],obias_ev[iosize];

/+ main network =/

/* current network holder */

char bankni[nsize] ,bankn2[nsize],bankn3[nsize] ,bankn4[nsize];

float bankl[csize] ,bank2[rsize] ,bank3[rsize] ,bank4; /* input rep holder =/
/* plan-selector main network */

float in([isize] ,out[csize] ,hiddenfcsize],teach{osize];

float wih[iaizej[caize],who[csize][osize ;

float hbias([csize],obias{osize];

/* global file pointer */
FILE *fopen(), *dfp,*sip,*1l1p,*wip,*wip2;

/* statistics parameter */
int cosym,tosym,nounit;
float correct,toerror,eavg;

/* driver =/
main()

int total,mtotal;
int i,3,33;
float ran;

load_weight_te(); /* triple encoder weight file */

read_to_store(); /+% read from initial gd and case to intermal data

structure */
load_weight(); /# load previous weight for continuocus training */

/* read training data into memory; object hold -1 if embedded */
read_td_ps();

/* start unit damage here */
/* for all damage cycle */
for (total=0;total<6;total++) { /* for23 »/

/* damage one unit */

jj = 12-total;
symp_obj = objstorel;

277

while(symp_obj->name[0] != ’\0’) {
if (jj <12} symp_obj->crep[jjl = 0.5;
BYRp_obj++;

}

/* initialize para =/
cosym = 0;

tosym = Q;

nounit = Q;

toerror = 0;

triple_encode(total); /+ internal data build up =/

/* for every trainini gair in the tdata_internal =/
tdpi = tdata_intermal_l;
while (tdpi->key_word{0] != ’'\0’) { /« while 3 */

tdpi2 = tdpi;

/% then part assign for bank3 and bank4 */
vhile(strcmp(tdpi2->key_word,"then") !=) tdpi2++;
it (strcmp(tdpi2->key_word,"then") == 0) {

strcpy(bankn3, tdpi2->evnun) ;
;or (i=0;i<rsize;i++) bank3[i] = tdpi2->trep[i];

else printf("\n no then part");
tdpi2++;
it (strcmp(tdpi2->key_word,"and") == 0) {
strcpy(bankn4, tdpi2->evnum);
bank4 = tdpi2->trep[0];
}

else printf("\n no then part");

/% if part for banki and bank2 #/
vhile(strcmp(tdpi->key_word,"then")!= 0) { /+ while 4 */
if (strcmp(tdpi->key_word,"if") == ¢ ||
stremp(tdpi->key_vword,"follows") == Q) {
strepy(bankn2,tdpi->evnum);
tor (i=0;i<rsize;i++) bank2[i)

tdpi->trepl[i);
else printf(“\n no if part");

it (strcmp(tdpi~>key_word,"if") == Q)

for (i=0;i<csize;i++) banki[i] 0;

prop(total); /* verify -- weight freezed %/
for (i=0;i<csize;i++) banki[i] = hidden[i];

tdpi++;
} /* while 4 %/

while(strcmp(tdpi->key_word,"it") != 0 && tdpi->key_word[0] != *\0’) tdpi++;
} /* while 3 #/

/* performance statistics +/

printf("\n %d unit damage\n",total);

correct = (float) cosym / (float) toaym;

eavg = toerror / (float) nounit;

printf("\n cosym: %d tosym: %d correct: %4.5f\n", cosym, tosym, correct);
pPrintf("\n toerror: %.3f nounit: %d eavg: %.7f\n",toerror,nounit,eavg);

} /* for =/

} /* main »/

278

