Computer Science Department Technical Report
University of California

Los Angeles, CA 90024-1596

A LAYERED APPROACH TO FILE SYSTEM DEVELOPMENT

John S. Heidemann March 1991

Gerald J. Popek CSD-910007

A Layered Approach to File System Development*

John S. Heidemann

Gerald J. Popek

Department of Computer Science
University of California, Los Angeles

March 5, 1991

Abstract

This paper discusses the stackable layers approach to
file system design. With this approach, a file system
is constructed from several layers, each implement-
ing one portion of the file system well. Each layer
is bounded above and below by an identical interface
framework. The symmetry of the interface, coupled
with run-time stack definition, make layer configura-
tion flexible and facilitate experimentation and new
file system development.

Addition of new file system functionality to exist-
ing environments often requires changes to current
interfaces. To address this issue, stackable layers are
Joined by an extensible interface. Any layer can add
to such an interface; existing layers continue to func-
tion without modification.

Stackable architectures benefit from new develop-
ment techniques. This paper examines development
methods unique to stackable systems, and concludes
with an analysis of the performance of layered file
systems.

1 Introduction

The utility of modular structures in systems software
is widely recognized. There are the numerous soft-
ware development advantages, including ease of de-
velopment, testing, and maintenance. Here we wish
to concentrate on one important aspect of modular
development, namely the ability of independent par-

*This work is sponsored by the Defense Advanced Research
Projects Agency under contract number F29601-87-C-0072.
John Heidemann is also sponsored by a USENIX scholarship
for the 1990-91 academic year, and Gerald Popek is affiliated
with Locus Computing Clorporation.

The authors can be reached at 3804 Boelter Hall,
UCLA, Los Angeles, CA, 90024, or by electronic mail to
johnh@cs.ucla.edu or popek@cs.ucla. edu.

ties to contribute function and innovation when inter-
faces are wisely chosen, generally available and com-
patibly maintained. Commonly used operating sys-
tems especially benefit from this practice, since im-
provements may be so widely leveraged. If indepen-
dent parties can work together effectively, then surely
sub-groups within a development group are also well
served.

Micro-kernels and protocol stacks are two impor-
tant illustrative examples of efforts to develop suit-
able interfaces in UNIX. A micro-kernel such as
Mach [1] or Chorus [11] divides the operating sys-
tem into two parts: a core, typically responsible for
providing a virtual memory; and processing service,
and the remainder of the operating system services
that run within the framework provided by the core.
In the case of Mach and UNIx, as a figure of merit,
the core is of the order of 15% of the total of the
operating system kernel. This intra-kernel boundary
1s an important structuring tool, and may become
widely available enough that third parties can build
on it. A Mach-style interface however does not set
the structure for the remaining 85%, although better
practices appear generally encouraged.

The formal framework for protocol stacks provided
in UNIX System V Streams [9] goes a step further by
providing a structure within the network communi-
cations software and portions of the device support
of the operating system. The interface among proto-
col layers is fixed; the syntax is the same at all layer
boundaries. As a result, third parties have success-
fully built commercial quality layers that integrate
well with other protocol modules. It is not uncom-
mon for the communications software in the operat-
ing system to represent another 15% of the kernel,
but in this case with a structure that allows multiple,
independent groups to contribute to the communica-
tions functions. We believe that this ability is one of

the reasons why UNIX is a preferred base for network-
ing and distributed systems software in engineering
and commercial usel.

The value of micro-kernels and protocol stacks is
encouraging enough to motivate one to consider anal-
ogous efforts for other parts of the system software.
As one examines the services typically provided in an
operating system, the file system is an obvious can-
didate in which to introduce a firm structure. Today,
the entire file system can be substituted via the Vir-
tual File System (VFS) interface, but it is not easy to
replace or enhance separate portions of the file Sys-
tem, keeping the physical disk management and in-
stalling a new directory layer, for example. Since the
file system can easily compose 25% of the opetating
system code, and arguably critical and highly visible
code at that, an internal structure that enables third
parties to add their value and services could make
a major difference in the success of the host operat-
ing system, and allow rapid evolution in the services
available to users.

However, an internal file system interface is subject
to a number of serious requirements if they are to be
successful. Most of all, the interface must be very well
defined so that independent groups can build their
services without cross group coordination. Certainly
such an interface must be extensible, in the sense of
allowing new functions to be added even though old
layers do not recognize the functions and cannot ex-
plicitly handle them. New layers must be easy to
add. Rich flow of control is needed among modules
to support sophisticated caching strategies. Last, but
perhaps most important, the interface must be highly
efficient, as the file system is often in the “tight loop”
of users’ computations. A ten percent slow-down in
the file system due to its composition as a half dozen
layers of software can easily translate to a ten percent
slowdown in the system overall, making the approach
unacceptable.

The research reported in this paper set out to pro-
vide a interface within file system software suitable
for wide and heavy use in demanding situations, but
still maintaining the characteristics mentioned above.
We envisioned a situation where a filing service could
be composed from a number of independent layers,
each provided by developers working separately. Ex-
amples include physical disk directory management,
directory service, selectively replicated files, file ver-
slons, encryption for secure storage on servers, sin-

1In fact, commercial systems such as Netware-386 have
adopted the Streams framework, presumably for similar rea-
sons.

gle system image synchronization among a group of
workstations, a compression layer, and a long term
caching service. Each of these examples have been
or are being built as stackable layers using the frame-
work described below. One of those cases, replication,
1s discussed further in a companion paper [7].

The body of this paper describes the stackable
filing layers framework; the properties we tried to
achieve and why, performance results, remaining
work, and our conclusions from the experience gained
thus far.

2 Requirements of a Layered
Interface

The success of a file system interface depends on its
ability to promote the growth of future filing envi-
ronments. Based on the experiences of existing file
system interfaces and our work with stackable layer-
ing, we consider several features critical to a layered
interface.

Extensibility. An interface must be extensi-
ble, allowing addition of new operations as needed.
Nearly all interfaces must adapt to meet future re-
quirements. As an example, the continuous evolu-
tion of Sun’s vnode interface is described by Rosen-
thal [10].

Current kernel interfaces discourage evolution. Ad-
dition of a new operation often requires entire kernel
source code availability and modifications to the im-
plementation of existing file systems. These charac-
teristics make it difficult for third parties to offer new
file systern services, or for several new file systems to
function concurrently. Ideally, new file system func-
tions could be added as easily as new device drivers
are today.

Stackablity. File systems frequently implement
very similar abstractions. Most file systems must co-
ordinate disk access or file and directory allocation,
for example.

File system module stacking is an effective method
of code reuse, employing existing implementations for
well known abstractions. Rather than each file sys-
tem providing all user services with a monolithic im-
plementation, separable services are placed in indi-
vidual layers. These layers then serve as powerful
building blocks for future work. Because layers are
bounded by symmetric interfaces, combining layers is
easy. Often new functionality can be achieved sim-
ply by slipping a new layer into currently available
stacks.

P TV
0s

3

directory
layer
]

file
layer
4

disk
layer

=

Figure 1: A simple file system stack and the com-
mands to create it.

For example, a conventional disk file system might
be provided by a stack of three layers. A base layer
implements raw disk access. A middle layer provides
inode-level file support, and the top layer provides
hierarchical directory services. Figure 1 illustrates
such a stack. With stackable layering, a comprehen-
sive user-centered naming service might replace the
hierarchical directory layer while still making use of
the low-overhead file access layer, or a compression
layer might be inserted between the directory and
file layers to provide twice the apparent storage.

Support for stacking is an important consideration
when designing an interface. Although stacking alone
is not difficult to provide, stacking with an extensi-
ble interface requires more care. Consider Figure 1
again. If the interface supported by the file layer
were extended to provide atomic commit, for exam-
ple, this interface should be available above the di-
rectory layer, even though that layer was completed
before the commit service was even designed.

Well defined. Most kernel interfaces are de-
scribed only by paper documnentation, relying on pro-
grammer vigilance about the types and contents of
arguments. For effective use of stackable layers, this
approach is insufficient. Meta-data about each oper-
ation is very important to allow stackable layers to
deal with operations in a generic way. Enough infor-
mation should be present to allow a layer to pack-
age operations to execute in another address space.
All relevant information about an interface should be

available for layer use at run time.

Efficiency. Reuse of layers is enhanced when each
layer encompasses few abstractions. I layer crossing
overhead is at all significant, modular filing environ-
ments will either suffer serious performance penalties
(relative to non-layered environments), or layers will
be combined, making layer reuse more difficult. The
layering strategy must be very efficient so that it does
not otherwise impact the file system design.

Rich flow of control. File systems are for the
most part passive, responding to user actions. In a
stackable file system, user actions can be imagined as
passing down through each layer of the stack for pro-
cessing. Occasionally, however, a user’s action needs
to pass up the stack, or even “sideways” to another
stack. For example, cache invalidation in a multi-
layer system can be viewed as a lower layer calling an
upper layer to purge its cached data, and failure re-
covery in a distributed system typically requires con-
sulting peers of the same logical layer. These actions
do not proceed naturally down a stack of layers, but
instead naturally progress up and sideways between
layers. Providing this kind of interaction within the
framework of a file system interface minimizes the
number of separate constructs required in develop-
ment.

Opaqueness. For a file system interface to be ef-
fective, it must have complete control over the status
of the file system. The remainder of the kernel should
not intrude on the private contents of file system data
structures, but should restrict all interaction to pro-
vided operations.

Also, the kernel should try not to second guess the
file system. Many optimizations make assumptions
about the status of the file system. These optimiza-
tions break when confronted with radically new file
systems.

3 A New Interface

Our original stackable file system efforts were built
using a standard file system interface. As our work
progressed, we were frustrated by its lack of extensi-
bility and its limited support for file system stacking.
To address these issues, we have adopted a new in-
terface for our future work.

We begin by discussing the vnode interface, a com-
mon UNIX file system interface. After reviewing its
structure, we discuss our modifications of this inter-
face to provide stacking and extensibility. Finally,
we examime the new interface in light of the goals of
Section 2.

3.1 The existing interface

To meet the demand for several file systems within
the same kernel, the file system switch was developed.
Sun’s vnode interface [5] is a good example of this ap-
proach, separating file systems from the remainder of
the kernel with an object-oriented interface. Versions
of the vnode interface are provided in several variants
of UNIX, including SunOS, System V Release 4, and
4.3-Reno BSD. The interface has been successful in
supporting a number of file systems, including the
Berkeley Fast File System, the System V file system,
NFS, and a variety of other file system services.

The vnode interface consists of two primary data
structures. A vis structure identifies a “file system”,
or subtree of files, to the operating system. Vnode
structures represent individual files within each file
system. To provide data abstraction, access to these
data types is restricted to a set of operations?. By
convention, all file systems provide the same set of
operations,

The vnode interface supports multiple file system
implementations. Although all file systems provide
the same set of operations, each may implement them
in different ways. To insure that the correct imple-
mentation is invoked for a given vnode, each vnode
type has associated with it an operafions vector. This
vector lists each vnode operation, associating an op-
eration with the code which implements it. Oper-
ations on a vnode are then invoked by an indirect
function call through this vector. Arguments to the
operation are simply parameters to this function call.

File systems with this interface are configured with
the UNIX mount mechanism. Mounting is the process
of connecting several independent file system subtrees
into the global file system name space. Each subtree
represents a group of files with similar characteristics,
such as files from a given disk partition or remote
host.

Subtrees are made available with the mount sys-
tem call. To allow configuration of different kinds
of file systern subtrees, a collection of “private data”
specific to the involved file system is included with
each mount system call. For example, a local file sys-
tem would list the disk partition in this private data,
and a remote file system would list the host and path
name of the remote subtree.

This mount mechanism has been used to provide
some file system stacking with the standard vnaode in-
terface. Sun Microsystems’ NFS [12], loopback, and

2 Actually, some public data, such as a type and a reference
count, is directly available for efficiency. Significant actions are
provided by vnode operations.

translucent [2] file systems take this approach. The
private data of the mount command identifies the
lower layer of the stack, the mount command cre-
ates the new upper layer and connects it into the file
system name space.

3.2 The new interface

Our concern with the existing vnode interface is that
1t is not extensible and it does little to facilitate stack-
ing. To meet these needs, our new interface incorpo-
rates several improvements over the standard inter-
face.

To provide extensibility, we construct operations
vectors dynamically. In the standard vnode interface,
the operations vector is defined by convention. All
file systems assume, for example, that the open oper-
ation is the first, the close operation the second, and
so on. The new interface instead constructs opera-
tions vectors dynamically when the operating system
is configured. To do this the union of all supported
operations is taken, and each operation is assigned
a position in the vector. Then a custom operations
vector is built for each vnode type.

With an extensible interface, the complete set of
operations is not necessarily known when a file sys-
tem is implemented. A file system must therefore be
prepared to handle general operations it does not ex-
plicitly implement. In the new interface, each layer
provides a default routine to handle this case. Lay-
ers at the base of the stack may log the unknown
operation and return an error as a default. We ex-
pect intermediate file system layers to provide a by-
pass rouline which will pass unknown operations to
a lower layer by default.

The default routine must be able to handie many
different operations. The new interface supports this
in two ways. First, rather than passing operation ar-
guments as parameters of the subroutine implement-
ing the operation, they are grouped into a structure,
and a pointer to this structure is passed. This method
allows arguments to be collectively identified by a
generic pointer, and it avoids repeatedly copying ar-
guments when passing through several layers of a file
system stack.

Second, a new parameter is added to each op-
eration, This argument contains meta-information
about the operation: what operation it is, the number
and types of its arguments, and so on. This descrip-
tion information and the arguments structure extend
the object-oriented style provided by the vnode inter-
face to the implementation of the interface itself. The

PV W N

S

directory
layer

A

mirroring
layer

N

file file
layer
A |

disk
layer

=

Figure 2: A tree of file system layers.

original interface gave the user the ability to perform
operations on a vnode without regard to its type:
this modification allows a bypass routine to forward
an operation to a lower level without regard to the
operation involved.

Like the standard vnode interface, the new vnode
interface constructs file system stacks at the file sys-
tem granularity. A complete file system stack is built
by creating each layer with a mount command. Each
new layer is given a name in the file system name
space, allowing potential user access at that level of
the stack. This name also serves to identify the layer
when another layer is mounted above it.

File system stacks are not necessarily linear. Trees
are also possible, with one file system presiding over
several lower layers. Figure 2 shows how a tree of
file systems might be used to provide disk mirroring.
Stack creation proceeds as before, except that to cre-
ate the mirroring layer, the names of both of its lower
level layers must be provided to the mount call.

As an example, Figure 3 shows the use of the
get-attributes vnode operation in the fstat system
call. The operation is invoked with the VOP_GETATTR
macro. This macro expands to encode the opera-
tion’s arguments in a structure and invoke the op-
eration indirectly through the operations vector. As-
suming the operation is performed on a local disk, the

ufs. getattr routine will be called which performs
the operation and returns the results to the user,

3.3 Flow of Control

As observed earlier, file systems are usually passive,
responding only to operations from the user. Control
typically flows from the user down through layers of
the file system.

There are several important applications of file 8ys-
tems which require a richer flow of control. Cache
consistency algorithms in distributed systems make
use of callbacks, operations invoked on the client by
the server, to inform the client of modified data, Sim-
ilarly, consider a consistency layer connecting several
machines providing single system image semantics for
the shared file system. Such a layer needs to commu-
nicate with the consistency layers of other machines.

An RPC protocol is one approach to providing this
kind of non-linear flow of control. However, rather
than add another interface to a file system, it would
be attractive to generalize the vnode interface to sup-
port non-linear flow of control. We have considered
different approaches to providing this functionality.
Our current method focuses on providing richer flow
of control with an NFS-like protocol; we are not en-
tirely satisfied with the degree of transparency this
approach offers.

4 Comparison to Other Layer-
ing Methods

Ritchie introduced the concept of stackable proto-
cols with the Streams I/O subsystem [9]. His work
demonstrated the flexibility a symmetric interface
provides in protocol configuration, and has been
widely adopted in commercial UNIX systems.

Since that work, the concept of stackable protocols
has been applied more widely to kernel interfaces. In-
dependently, Rosenthal has developed a prototype of
the vnode interface with Streams-like stacking. The
z-kernel has applied the concepts of layered design
and late binding to a variety of kernel interfaces. Here
we compare these layered design approaches and the
standard vnode interface to the work described in this

paper.

4.1 The standard vnode interface

The new interface differs from the standard vnode in-
terface both in support for extensibility, and facilities

struct vnode {
int (#**xv_ops)();

};

int vop_getattr_offset;/*set at configuration#/

struct vnodeop_desc vop_getattr_desc;

struct vop_getattr_args {
struct vnodeop_desc *a_desc;
struct vnode *a_vp;
struct vattr *a_vap;
struct ucred *a_cred;

};

#define USES_VOP_GETATTR int getattr_a

#define VOP_GETATTR(VP,VA,() \
(getattr_a.a_desc=kvop_getattr_desc, \
getattr_a.a_vp=(VP), \
getattr_a.a_vap=(VA), \
getattr_a.a_cred=(C), \
(*(VP)->v_ops[vop_getattr_offset]) (VP,VA,C))

fatat{uap)
struct a { int fd; struct stat *buf; } *uap;
{
USES_VOP_GETATTR;
gtruct vattr va;
vp = FDTOVP (uap->fd);
VOP_GETATTR(vp,&va,un.u_cred);
vattr_to_stat (va, uap->buf);
}

ufs_getattr (ap)
struct vop_getattr_args sap;

{
struct inode #ip = VTOI(ap->vp);
inode_to_vattr{ip, ap->va); /* get stats »/

}

Figure 3: Declarations for the get-attributes vnode
operation, and its use in the fstat system call (without
error handling code),

for stacking.

Most existing vnode interfaces provide no support
for extensibility. Workstation vendors change the in-
terface between releases of the operating system to
provide new filing facilities; this ability is not avail-
able to third parties. The System V Release 4 vnode
mnterface acknowledges the need for extension by re-
serving extra space in the operations vector. This
space is not of general use, however, because no mech-
anism is provided to coordinate its use among multi-
ple independent software vendors.

Support for creating new stacks in the old and new
interfaces is very similar. Both operate on a file sys-
tem granularity with the mount mechanism. The
support the new interface offers for handling oper-
ations in a general way allows the creation of by-
pass routines, making long-term stackable develop-
ment much easier,

4.2 Rosenthal’s stackable vnode inter-
face

Rosenthal {10] has also developed a prototype file sys-
tem supporting vnode stacking. While we share many
of the same goals, our approaches differ significantly
on several points. Stacking occurs at different gran-
ularities, and support for dynamic change of stacks
and methods of extensibility differ.

Rosenthal proposes to stack at the vnode granu-
larity, rather than the file system granularity. His
design allows vnodes within the same file system
to have completely different stacks. Our design in-
stead restricts stack composition to a file system ba-
sis where vnodes within the same file system have
similar stacks.

An ability to configure the filing environment at
a fine granularity is, in principle, desirable. One
can imagine several files within the same directory,
one compressed, the other encrypted and compressed,
and so on. While this flexibility is desirable, it re-
quires an underlying filing system with typed files
to allow each file to identify its stack separately.
Currently, no such filing system is widely available.
Whether the additional complexity which results can
be managed in practice is not yet clear. This area is
an important one for future research.

Another important difference between our work
and Rosenthal’s concerns when stacks can be manip-
ulated. Rosenthal allows new layers to be pushed
on an active vnode. User operations are always for-
warded to the current top of stack, seeing this new
layer. With our approach, the new layer would be

given a new name in the file system name space; to
see the new layer, user requests must be directed at
this new name.

Rosenthal’s approach has the advantage that the
user will see new layers as they are created and added
to the stack, since operations are automatically redi-
rected to the stack top. But operations should not
always be redirected. A file system layer may imple-
ment some operations by performing them directly
on the lower layer. These operations cannot be redi-
rected. Therefore, two methods to invoke vnode op-
erations must be provided: one always going to the
stack top, and another without redirection.

Like stacks of communications protocols, it is nec-
essary to have the “right” collection of file stack layers
in order to successfully manipulate the filing environ-
ment. Generally, the stack used to read a file must
have the same semantic interpreters in it as those
which were used to write the file in the first place. If
encryption, compression, and an extended directory
service with encoded attributes were used to write the
bits on the disk, then they should typically be used
to read those bits, by default. It is for this reason
that we chose to use a relatively static configuration
method for building stacks.

There are some other advantages that result from
not pushing and popping stack layers at run time.
Since the top of stack does not change, clients which
have their own pointers to data linked to a vnode at
the top are not disturbed. A good example is the
virtual memory manager of some operating systems,
which accesses data through the file system. Like any
other file system client, it accesses files via vnodes at
the top of the stack; but then retains its own refer-
ences to pages that belong to the file represented by
that vnode and linked in memory to it. If the stack
top were changed, all those pointers would have to
change; alternately, the page cache would have to be
flushed?.

Introducing such dynamic change into an environ-
ment which is typically static should be very care-
fully weighed before it is done; surprises often await.
Furthermore, we question the persuasiveness of the
motivations for dynamic layer manipulation.

Finally, the approaches to extensibility differ signif-
icantly between Rosenthal’s work and ours. Rosen-

3 Consider the sequence where one reader maps the file into
his address space, another module is pushed onto the stack, and
a subsequent open followed by reads are done. Since pages in
the SunQS virtual memory system are indexed by vnode and
file offset, the first pages will be indexed by one vnode and the
later reads by another. This problem was first encountered by
Rosenthal.

thal employs a versioning layer to map between one
version of the vnode interface and another. Such a
layer provides a “compatibility mode” for layers us-
ing old interface versions until they can be updated.
While this method is also possible with our interface,
the more gradual interface evolution permitted by our
extensible design provides a much more flexible alter-
native.

4.3 The z-kernel

The z-kernel [4] is designed around the concept of lay-
ered protocols. Although originally focused on net-
work protocols, recent work has addressed file sys-
tems as well [8].

The scope of the z-kernel work is quite different
from that of this paper. The z-kernel seeks to pro-
vide a complete new kernel environment, while our
work is targeted specifically at the file system por-
tion of existing UNIX systems. Because the z-kernel
provides the entire computing environment, it is able
to provide all kernel services with a homogeneous,
layered interface.

Although the z-kernel provides a number of differ-
ent protocols, it does not address the issue of evolu-
tion of individual protocols.

5 Experiences in Layered De-
sign

Effective use of stackable layering benefits from tech-
niques somewhat different from those used in tradi-
tional file system development. This section outlines
some of the lessons learned in our layer development.

5.1 Layer composition

There are many possible ways to structure a file 8ys-
tem into layers. While there are no all-encompassing
rules for layer selection, layers can be reused most of-
ten if each implements one well-defined abstraction.
Layer design is in this respect similar to design of
filters in the Unix shell.

To illustrate this point, we present two examples
of file system layering. First, consider the standard
UNIX file system. It imnplements three basic abstrac-
tions: a file system (a disk partition}, file level access
with fixed names (inode-level access), and a hierar-
chical directory service. If each of these were sepa-
rated into layers, they would be useful for implement-
ing other file systems. There are many file systems

P T g
\/9.?\/\

logical
layer
/ transport
layer
file
layer
file
1 layer
disk !
layer
disk
= L

-

Figure 4: The Ficus stack of layers. The left stack
provides access to a local replica. The right stack
shows the addition of a transport layer to allow re-
mote replica access.

(databases, AFS, or Ficus for example) which would
enjoy efficient inode-level file access without the over-
head and complication of directories.

The Ficus replicated file system is a second exam-
ple of layered file system design. Figure 4 shows the
construction of the Ficus replicated file service. It is
composed of two cooperating layers, a logical layer
exporting the notion of a highly-available file, and
a physical layer mapping replication to a standard
UNIX file system. Between these layers, a transport
service can be inserted to provide access to remote
replicas. The physical layer is actually composed of
several services: a facility to support additional file
attributes, one to map low level identifiers to files,
and support for replication-specific issues. One might
imagine improving Ficus performance by replacing
the identifier mapping facility with inode-level file ac-
cess, and the extended attribute facilities seem a gen-
erally useful service. For this to be possible, the sep-
arate functions of the physical layer must be isolated
in configurable layers. We are interested in divid-
ing this layer into a file-mapping layer, an extended
attributes layer, and a Ficus-specific layer. Two of
these layers would then be useful in other contexts.

5.2 Cooperating layers

The previous section encouraged the separation of file
systems into small, reusable layers. Sometimes, ser-
vices that could be reusable occur in the middle of an
otherwise special purpose file system. For example,
a distributed file system may consist of a client and
server portion, with an RPC service in between. One
can envision several possible distributed file systems
offering simple stateless service, exact UNIX seman-
tics, or even file replication. All would have need of
the RPC service, but such a service would be buried
in the internals of each specific file system, unavail-
able for reuse.

Cases such as these call for cooperating layers. The
reusable service is built as one layer, and the rest
1s split into two separate, cooperating layers. When
the file system stack is composed, the reusable layer is
placed between the others. Because it is encapsulated
in a separate layer, the reusable layer is available for
use in other stacks. Ficusillustrates this case, placing
an optional transport layer between two cooperating
layers. Further details about the Ficus implementa-
tion and use of cooperating layers can be found in

7.

5.3 Use of meta-data

Meta-data, information about the operation that is
taking place, is an important part of any interface.
One important reason why current file system inter-
faces are unsuitable for use in a stackable environ-
ment is that they lack necessary meta-data.

For a kernel interface, the most important meta-
data is the identity of the operation and the types of
its arguments. With this information, implementing
a bypass routine or a transport layer becomes possi-
ble.

As an optimization, it often helps to have meta-
data present in several forms. For example, an RPC
protocol may prefer a list of argument types, while for
speed, a bypass routine must quickly access particular
arguments. Duplicating this information in different
forms improves performance.

5.4 Network transparency

A fransport layer is a stackable layer which trans-
fers operations from one address space to another.
The object-oriented flavor of this enhanced interface
allows remote access to be netfwork transparent to
the programmer. Because vnodes for both local and
remote file systems accept the same operations, the

programmer may use either at any time. This trans-
parency allows novel approaches to configuring layers,
and high performance in the local case, as described
in Section 5.5.

For this transparency to be preserved with an ex-
tensible interface, it must be possible for transport
layers to forward new operations to other address
spaces, just as bypass routines forward operations to
lower layers in the same address space.

Moving operations between address spaces requires
that the type of each argument be known so that a
network RPC protocol can marshal that operation
and its arguments. This information is part of the
meta-data carried along with each operation, and it
must be described by a formal interface definition
similar to an RPC interface specification. In addition
to the description of arguments and operations, each
operation must be assigned a unique name for uni-
versal identification, similar to RPC protocol num-
bers. Thus a transport layer may be thought of as a
semantics-free RPC protocol with a stylized method
of marshaling and delivering arguments.

NFS provides a good prototype transport layer.
Rather than providing a monolithic networked file
system, it layers on top of existing local file systems.

Internally, NFS uses a vnode-like RPC interface. But
NFS was not designed to serve as a transport layer.
Instead, it was specialized for remote file access. Its
stateless service complicates its use as a semantics-
free transport layer. To address the protocol’s lack of
extensibility, we have modified it and included sup-

port for a bypass routine.

5.5 Uses of transport layers

Transport layers are a powerful component in the
construction of distributed file systems. With the
configuration flexibility of a stackable environment,
transport layers have many additional applications.
In the role of remote access, they provide a bridge
between hardware and software incompatibilities. In
addition, transport layers can be used to gain many
of the advantages of a micro-kernel approach to op-
erating system design,

Transport layers can provide access to resources
which would not otherwise be available. For exam-
ple, a new file system might exist only for a particu-

o

nfs
; {server)
!]
{ |development
H layer
¥ system |]
e calls H
userlevel ~L~F i
ISuBEEEIBSyvENENRRNVENEN OS rrasnnmasvenpaavnunngan Utok weger
kerne! level f tayer
{]
M / lower
Jnfs layer

Figure 5: User-level layer development via transport
layers.

another machine for data storage by placing a trans-
port layer just above the disk-level file system layer.

Stackable layering is a natural complement to a
micro-kernel design. Each layer can be thought of as
a server, and operations are simply RPC messages be-
tween servers. In fact, new layer development usually
takes this form at UCLA. Figure 5 shows this strat-
egy. The NFS-based transport layer serves as the
RPC interface, moving all operations from the kernel
to a user-level file system server. Another transport
service, the utok (user to kernel) layer, allows user-
level calls on lower-level vnodes which exist inside the
kernel. As a result, layers may be developed and exe-
cuted as user code. Although this RPC has real cost,
careful caching can provide good performance for an

out-of-kernel file system [13].

But stackable layering offers a valuable comple-
ment to this approach. Because file system layers
each interact only through the layer interface, the
transport layers can be removed from this configura-
tion without affecting a layer’s implementation. The

lar operating system. By mounting a transport layer file system can then run in the kernel, avoiding all

above that file system, most features of the new ser-

RPC overhead. Thus with stackable layering, the ad-

vice becorne available to all machines supporting the vantages of micro-kernel development are available
transport layer. Similarly, a machine lacking hard- when needed, but the performance overhead of RPC

ware resources such as disk space could make use of may be removed for production use.

6 Performance

The interface described in this paper has been im-
plemented as a modification of Sun0S 4.0.3. Two
implementations have been made, one converting the
entire kernel to use the new interface, another using
the new interface only for new file systems and sup-
porting the old interface throughout the rest of the
kernel.

To examine the performance of the new interface,
we consider several classes of benchmarks. First, we
carefully examine the costs of particular parts of the
new interface with “micro-benchmarks”. We then
consider how the interface modifications affect overall
system performance by comparing a modified kernel
with an unmodified kernel. To determine the cost of
multiple layers with the new interface, we evaluate
the performance of a file system stack composed of
differing numbers of layers. Finally, we compare the
implementation effort of similar file systems under
both the new and the old interfaces.

All timing data was collected on a Sun-3/60 with
8 Mb of RAM and two 70 Mb Maxtor XT-1085 hard
disks. The measurements in Section 6.2 used the new
interface throughout the new kernel, while those in
Section 6.3 used it only within file systems.

6.1 Micro-benchmarks

Parts of the new vnode interface are called at least
once per vnode operation. To minimize the total cost
of an operation, these must be carefully optimized.
Here we discuss two such portions of the interface:
the method for calling an operation, and the bypass
routine.

To evaluate the performance of these portions of
the interface, we consider the number of assembly
language instructions generated in the implementa-
tion. While this statistic is only a very rough indi-
cation of true cost, it provides an order-of-magnitude
comparison®,

We began by considering the cost of invoking an
operation in the old and the new interfaces. Figure 3
shows the C code for calling an operation. On a Sun-3
platform, the original vnode calling sequence trans-
lates into four assembly language instructions, while
the new sequence requires six instructions®. We view

*Factors such as machine architecture and the choice of
compiler have a significant impact on these figures, Many
architectures have instructions which are significantly slower
than others. We claim only a rough comparison from these
statistics.

5We found a similar ratio on SPARC-based architectures,

this overhead as not significant with respect to most
file system operations.

We are also interested in the cost of the bypass
routine. We imagine a number of “filter” file system
layers, each adding characteristics to the file system
stack. File compression or local disk caching are ex-
amples of services such layers might offer. These lay-
ers pass some operations directly to the next layer
down, modifying the user’s actions only to uncom-
press a compressed file, or to bring a remote file into
the local disk cache. For such layers to be practical,
the bypass routine must be inexpensive. A complete
bypass routine in our design amounts to about 54
assembly language instructions®. About one-third of
these instructions are used only for uncommon argu-
ment combinations, reducing the cost of forwarding
sitnple vnode operations to 34 instructions. Although
this cost is significantly more than a simple subrou-
tine call, it is not significant with respect to the cost
of an average file system operation. To further inves-
tigate the effects of file system layering, Section 6.3
examines the overall performance impact of a multi-
layered file system.

6.2 Interface performance

Encouraged by results of the previous section, we an-
ticipated low overhead for our stackable file system.
QOur first goal was to compare a kernel supporting
only the new interface with a standard kernel.

To examine overall performance, we consider two
benchmarks: the modified Andrew benchmark [6, 3]
and recursive copy and remove of large subdirectory
trees. In addition, we examined the effect of adding
multiple layers in the new interface.

The Andrew benchmark has several phases, each of
which examines different file system activities. Unfor-
tunately, we were frustrated by two shortcomings of
this benchmark. The first four phases are very brief,
making accurate evaluation of these phases difficult.
While the final compile phase is relatively long, on
many machines compilation is compute-bound, ob-
scuring the impact of file system performance.

The results from the benchmark can be seen in
Table 1. Overhead for the first four phases averages
slightly more than one percent. The very short run
times for these benchmarks limit their accuracy, due
to timing granularity. The compile phase shows only

where the old sequence required five instructions, the new
eight.

SThese figures were produced by the Free Software Foun-
dation's gec compiler. Sun’s C compiler bundled with
SunOS5 4.0.3 produced 71 instructions.

10

& slight overhead. We attribute this lower overhead
to the fewer number of file system operations done
per unit time by this phase of the benchmark.

To get a more accurate assessment of performance
of the new interface, we examined an additional
benchmark. These benchmark employed two phases,
the first doing a recursive copy and the second a
recursive remove. Both phases operate on large
amounts of data (a 4.8 Mb /usr/include directory
tree) to extend the duration of the benchmark. Be-
cause we knew all overhead occurred in the kernel, we
measured system time alone to exaggerate the impact
of layering. Our first additional phase recursively
copies this data, the second recursively removes it.
As can be seen in Table 2, overhead averages about

1.5%.

6.3 Multiple layer performance

Since the stackable layers design philosophy advo-
cates using several layers to implement what has tra-
ditionally been provided by a monolithic module, the
cost of layer transitions must be minimal if it is to be
used for serious file system implementations, To ex-
amine the overall impact of a multi-layer file system,
we analyze the performance of a file system stack as
the number of layers employed changes.

To perform this experiment, we began with a kernel
modified to support the new interface within all file
systemns and the old interface throughout the rest of
the kernel”. At the base of the stack we placed a
conventional UNIX file system, modified to use the
new interface. Above this layer we mounted from
zero to six null layers, each which merely forwards all
operations to the next layer of the stack. Upon those
file system stacks we ran the benchmarks described in
the last section. This test illustrates the worst case,
since each layer provides full layer overhead without
any additional functionality.

Figure 6 shows the results of this study. As can
be seen, performance varies nearly linearly with the
number of layers used. The modified Andrew bench-
mark shows about 0.3% elapsed time overhead per
layer, Alternate benchmarks such as the recursive
copy and remove phases, also show iess than 0.25%
overhead per layer. To get a better feel for the costs of
layering, we also measured system time, time spent
in the kernel on behalf of the process. Because all
overhead is in the kernel, and the total time spent

"To improve portability, we desired to modify as little of
the kernel as possible. Mapping between interfaces occurres
automatically when the file system is entered.

11

in the kernel is only one-tenth of total time, com-
parisons of system time indicate a higher overhead:
about 2% per layer for recursive copy and remove.
These overheads were computed by least squares fits
to the sample data, yielding good correlations of 0.9
for the system time benchmarks, and 0.7 to 0.9 for
elapsed times, Differences in benchmark overheads
are the result of differences in the ratio between the
number of vnode operations and benchmark length.
Elapsed time results indicate that under normal load
usage, a layered file system architecture will be vir-
tually undetectable. System time costs imply that
during heavy file system use a small overhead will be
incurred when numerous layers are involved.

6.4 Layer implementation effort

The goal of stackable file systems and this interface
1s to ease the job of developing new file systems.
Clearly, importing functionality from existing layers
saves a significant amount of time. Ficus, for ex-
ample, borrows network transport and low-level disk
storage facilities from pre-existing file systems, for
great savings in implementation effort. In addition
to code reuse, we would hope that implementing in a
stackable file system framework is as easy as building
conventional file systems. To address these questions,
we compare two very similar file systems as developed
under each interface.

The loopback file system in SunOS duplicates a
portion of the file system name space. Modifications
to etther copy of the name space appear in the other.
This file system is provided in SunOS 4.0 under the
vnode interface.

Our null layer, implemented under the new inter-
face, provides very similar characteristics. The null
layer forwards all operations to the next layer down
the stack. Since each layer has a name visible in the
file system name space, both the null layer and the
underlying file systemn are accessible to the user.

Table 3 shows the number of lines of code needed
to implement the loopback file system and the null
layer. The amount of support code needed for each
implementation is very similar, as are implementa-
tions of the mount protocol. The null layer imple-
mentation for vnode operations is much shorter, how-
ever, since the loopback file system requires special
case code to pass each operation down. The services
the null layer provides are also more general, since
the same implementation will handle all future added
operations.

For the example of a pass-through layer, the null

Old interface New interface Percent
Phase time %RSD | time %RSD | Overhead
MakeDir 3.3 16.0 3.2 14.8 -2.76
Copy 18.8 4.6 19.1 5.0 1.92
ScanDir 17.2 5.2 17.8 7.9 3.13
ReadAll 28.3 20| 288 2.0 1.70
Make 327.6 041 328.1 0.7 0.15
Overall 395.2 0.4 | 396.9 0.9 0.45

Table 1: Modified Andrew benchmark results running on kernels using the old and new vnode interfaces.
Time values (in seconds, accurate to one second) are the means of elpased time from thirty sample runs;
%RSD indicates the percent relative standard deviation (ox/px); overhead is the percent overhead of the
new interface. High relative standard deviations for MakeDir are a result of poor timer granularity.

Old interface New interface Percent
Phase time %RSD | time %RSD | Overhead
Recursive Copy 51.57 1.28 | 52.54 1.38 1.88
Recursive Remove | 25.26 2.50 | 25.48 2.74 0.89
Overall 76.83 0.87 | 78.02 1.33 1.55

Table 2: Recursive copy and remove benchmark resuits running on kernels using the old and new vnode
interfaces. Time values (in seconds, accurate to one-tenth of a second) are the means of system time
from twenty sample runs; %RSD indicates the percent relative standard deviation; overhead is the percent
overhead of the new interface.

16 , T ' :
¢p sys ©—
14 Heast squares fit - - - - -
12 L Tm sys A
least squares fit - - - - h
10 - MAB elapsed &—
cp elapsed €—
Total 5[rm elapsed =&
Overhead g
ercent
(percent) |
2
04 Dyl
-2
4 L | ! !

Number of layers

Figure 6: Performance of file system stacks with varying numbers of layers under the new interface. Recursive
copy and recursive remove system times and overall modified Andrew benchmark (MAB) times are shown.
Dotted lines indicate linear least squares approximations of the data. Each data point is the mean of four
runs.

12

loopback | null
module file system | layer
node.h 10 12
info.h 25 37
subr.c 200 199
visops.c 135 173
vnodeops.c 373 211
total 743 632

node.h defines the vnode structure for that file system.

info.h provides declarations for mounting.

subr.c implements node management and other utility routines.
vfsops.c implements the file system mount protocol.
vnodeops.c provides all vnode operations.

Table 3: Number of lines of code needed to implement a pass-through layer or file systern.

iile system layer provides better functionality with
fewer lines of code. We expect this trend to be
even more marked in more sophisticated file systems,
where the ability to reuse existing functionality with-
out source code changes offers a clear savings in im-
plementation effort.

7 Future Work

Current file systems suffer from their monolithic ori-
gins. Using stackable layers, a more modular ap-
proach is appropriate. Existing file systems should be
broken into several layers, each of which implements
only one abstraction. The UFS itself could be divided
into several layers, one implementing the concept of
a disk partition, one files, and another directories.

New file systems built on top of others will often
need to extend the data structures of lower levels.
NFS, for example, needed to add a generation num-
ber to the inode, and replication in Ficus requires
additions to the superblock, the inode, and the di-
rectory entry. When a new file system abstraction is
implemented, its corresponding data structure must
be extensible to allow future layers to build on it.
We are currently investigating methods to make file
systemn data structures more extensible.

The vnode interface is a kernel interface for files.
Its counterpart for whole file systems is the VFS in-
terface. Modifications to make the VIS interface ex-
tensible need to be examined. One approach under
consideration is to make the file system vfs data struc-
ture a special type of vnode, thereby taking advan-
tage of the mechanisms for vnode extensibility.

Finally, it is important to note that there are cur-
rently many slightly different versions of the vnode

13

interface. Standardization on some core set of vnode
operations is important to widespread acceptance of
the interface. Extensihility mechanisms described in
this paper can be used to provide features not widely
agreed upon.

8 Conclusions

We have been surprised at how successful stackable
layers seem to be in achieving the goals we set out
for them. Initial experience suggests that they do
represent an interface well enough and extensibly
enough defined that third parties can indeed build
value added layers for new filing services, or replace
services built in this manner by others. Gone for ex-
ample are the problems of coordinating addition of
new operations, or worrying about unimplemented
services.

A wide variety of filing services have been provided
under this interface. That these services have been
built by very small groups or even individuals, some-
times in a very short period of time, demonstrates
the power of this approach to enable the user’s fil-
ing environment to evolve rapidly and see rich im-
provements in functionality. At the same time, much
heavier enhancements employing extensive cross Sys-
tem filing protocols have been equally weil provided,
as discussed in a companion paper [7].

The retrofitting of stackable layers to Unix sys-
tems already equipped with the VFS interface has
been reasonably straightforward. No part of the ker-
nel needed modification other than that directly re-
lated to the file system interface. While this fact may
reveal as much about the quality of the rest of the
system’s modular construction as the definition and

implementation of stackable layers, it is reassuring
nevertheless.

The decision to limit ourselves to stacks that are
not dynamically built, but instead are constructed
at system startup, is somewhat more controversial.
Certainly that is a limitation, as discussed earlier,
but it led to such simplification that on balance we
believe that it is the right choice at this point.

We chose to overload the mount function to con-
struct a file system stack. This choice was made be-
cause it allowed incremental development of concepts
and made use of already existing naming facilities.
However, this use of mount for two concepts com-
plicates the user view. Furthermore, the ability to
customize the filing environment on a file-by-file ba-
sis may be desirable. We intend to re-examine this
decision.

Most of all, the fact that for most benchmarks of
interest, a first implementation can perform as well as
this one does gives promise that wide use of modular
filing structures is indeed feasible, and in light of the
earlier observations, especially desirable.

Acknowledgments

The authors would like to thank Tom Page and Rich-
ard Guy for their contributions to the concept of
stackable file systems. They would also like to ac-
knowledge the contributions of Yu Guang Wu for im-
plementation of a first version of the null layer, and
Dieter Rothmeier and Wai Mak for their contribu-
tions to the Ficus file system.

References

[1] Mike Accetta, Robert Baron, David Golub, Rich-
ard Rashid, Avadis Tevanian, and Michael Young.
Mach: A new kernel foundation for UNIX develop-
ment. In USENIX Conference Proceedings, pages 93-
113. USENIX, June 1986.

David Hendricks. A filesystem for software devel-
opment. In USENIX Conference Proceedings, pages
333-340. USENIX, June 1990.

John Howard, Michael Kazar, Sherri Menees, Da-
vid Nichols, Mahadev Satyanarayanan, Robert Side-
botham, and Michael West. Scale and performance
in a distributed file system. ACM Transactions on
Computer Systems, 6(1):51-81, February 1988.

Norman C. Hutchinson, Larry L. Peterson, Mark B.
Abbott, and Sean O’Malley. RPC in the z-Kernel:
Evaluating new design techniques. In Proceedings of

(2]

(3]

[6]

[7]

(9]

(10]

(11]

[12]

[13]

14

the Twelfth Symposium on Operating Systems Prin-
ciples, pages 91-101. ACM, December 1989.

S. R. Kleiman. Vnodes: An architecture for multiple
file system types in Sun UNIX. In USENIX Con-
ference Proceedings, pages 238-247. USENIX, June
1986.

John K. Qusterhout. Why aren’t operating systems
geting faster as fast as hardware? In USENIX Con-
ference Proceedings, pages 247-256. USENIX, June
1990.

Thomas W. Page, Ir., Richard G. Guy, John 5. Hei-
demann, and Gerald J. Popek. Architecture of the
Ficus very large scale replicated file system. Sub-
mitted concurrently for publication in Proceedings
of the Thirteenth Symposium on Operating Systems
Principles, November 1991.

Larry L. Peterson, Norman C. Hutchinson, Sean W,
O’Malley, and Herman C. Rao. The z-Kernel: A
platform for accessing Internet resources. JI[EEE
Computer, 23(5):23-33, May 1990.

Dennis M. Ritchie. A stream input-output sys-
tem., AT&T Bell Laboratories Technical Journal,
63(8):1897-1910, October 1984,

David S. H. Rosenthal. Evolving the vnode interface.
In USENIX Conference Proceedings, pages 107-118.
USENIX, June 1990,

Marc Rozier, Vadim Abrossimov, Frangcis Armand,
Ivan Boule, Michel Gien, Marc Guillemont, Frédéric
Herrmann, Claude Kaiser, Sylvain Langlois, Pierre
Léonard, and Will Neuhauser. Overview of the cHO-
RUS distributed operating system. Technical Report
CS/TR-90-25, Chorus systémes, April 1990,

Russel Sandberg, David Goldberg, Steve Kleiman,
Dan Walsh, and Bob Lyon. Design and implementa-
tion of the Sun Network File System. In USENIX
Conference Proceedings, pages 119-130. USENIX,
June 1985.

David C, Steere, James . Kistler, and M. Satyanara-
vanan. Efficient user-level file cache management on
the Sun vnode interface. In USENIX Conference
Proceedings, pages 325-332, USENIX, June 1990.

