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Abstract

A common criticism of SIMD computers such as the Connection Machine is that
the data parallel programming style is only appropriate for a small class of problems.
The parallelism in data parallel algorithms comes from the simultaneous application
of the same operation to each datum in a large set of data, rather than from multiple
threads of control. Many data parallel programs require slightly different sequences
of operations on different data items, and thus contain where statements, describing
one or more statement sequences, and where in the data set each statement is to be
executed.

On the Connection Machine, where statements are usually implemented by is-
suing all of the embedded statements, turning on the appropriate processors before
executing each sequence. Given this usual implementation, the execution time for a
where statement is the sum of the execution times for each of the where’s statement
sequences. :

This thesis describes an alternative implementation for where statements, which
interprets all of the statement sequences in parallel on an emulated MIMD com-
puter. The MIMD emulation implementation executes a where statement in time
proportional to its longest alternative sequence. We discuss MIMD emulation in de-
tail, including paradoxical results that techniques used to speed processors for real
MIMD machines do not work for SIMD-emulated MIMD machines, and that global
throughput can be enhanced by selectively slowing down local computations. Emu-
lated MIMD throughput of 50-350 MIPS is typical for small MIMD instruction sets
(on 64K Connection Machine processors). We also describe a number of source code
optimizations that can be automatically performed to where statements to improve
run-times when MIMD emulation is used.



Chapter 1

Introduction

Two major classes of highly parall:! architectures are Multiple Instruction Multiple
Data (MIMD) and Single Instruc: 1 Multiple Data (SIMD). A MIMD machine 1s
a collection of connected serial computers, each of which can be thought of as ex-
ecuting its own sequential program on its own data (control parallelism). MIMD
architectures are generally designed around either shared memory or message passing
communication. A SIMD machine is a collection of processing elements, each exe-
cuting the same sequential program on its own data (data parallelism). Each SIMD
processor independently either executes or ignores each instruction. Processors that
are executing instructions on any given cycle are said to be selected for that cycle.

The Connection Machine system is a hybrid computer, consisting of a standard
serial front end (e.g. Sun4/330) and the SIMD back end [4]. The front end oper-
ating system supports program development, networking, and I/O operations. The
Counection Machine itself consists of up to 65,536 1-bit processing elements, an in-
terconnection network called the router, and connections to the front end. Each
processing element has 65,536 bits of local memory.

The execution of Connection Machine programs occurs both on the front end
and on the Connection Machine. The front end executes the sequential portions of
the program, and sends parallel instructions to the Connection Machine in a buffered
stream. Sequential execution on the front end can occur in parallel with the execution
of previously issued Connection Machine instructions.

Several Connection Machine programming languages are available. The high level
languages are C* [8, 12] and *LISP [13], which are extensions of C [7] and Common
LISP [9] respectively. A C++ (10, 3] interface is provided by CM++ [2]. The “as-
sembly” language of the Connection Machine is called PARIS (PARallel Instruction

"Set) [11], which can be called from any of C, C++, Common LISP, C*, or *LISP.

The Connection Machine languages present a data parallel computing model 6,
5, 13|, in which there are a large number of small processors that are all driven si-
multaneously by a shared instruction stream. A typical decomposition strategy is to
map one element or datum of the problem to each processing element. For exam-
ple, in a VLSI logic simulation, each transistor in the circuit might be assigned to
a different Connection Machine processor. This allows all of the processors to apply
the transformations that are specified by the single instruction stream to their as-
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signed transistors in parallel. On the Connection Machine, when more processors are
logically required than are physically present, the Connection Machine can transpar-
ently operate in “virtual processor mode.” Each physical processor emulates several
virtual Connection Machine processors, with the local memory shared by the virtual
processors (not to be confused with the virtual MIMD processors that we study in
this thesis).

Given an additional layer of software, both MIMD and SIMD machines can run
programs written for the other, with only a constant overhead per emulated instruc-
tion [4]. Whether MIMD or SIMD hardware is better depends on the application:

“For well-structured problems with regular patterns of control, SIMD
machines have the edge, because more hardware is devoted to operations
on the data. This is because the SIMD machine, with only one instruction
stream, can share most of its control hardware among all processors. In
applications in which the control flow required of each processing element
is complex and data dependent, MIMD architecture has the advantage.
The shared instruction stream can follow only one branch of code at a
time, so each possible branch must be executed in sequence, whereas the
uninterested processor is idle. The result is that processors in a SIMD
machine may sit idle much of the time {4, pg. 25].”

A common criticism of SIMD computers is that they are appropriate for only a small
class of problems. This criticism is becoming less true as we gain more experience
in developing data parallel algorithms [6, 1]. However, many applications require
non-trivial amounts of data-dependent control flow, resulting in reduced parallel
execution {due to idle processors). We refer to the statements that specify data-
dependent control flow as where statements (as does C*, version 6.0).

In this thesis, we will show that the current loss of parallel execution in where
statements is a feature of the Connection Machine language implementation (which
we refer to as the selection implementation). We introduce an alternative imple-
mentation (called MIMD emulation), based on emulating a von Neumann processor
on each SIMD processor, that can maintain a greater degree of parallel execution in
many applications. The two implementation styles are not mutually exclusive: the
standard implementation is faster when there are few different paths of control flow,
and the MIMD emulation implementation is faster when there are many. We also
describe a number of automatic source code transformations that can be performed
to improve run-time performance. In addition, we describe the technique of MIMD
emulation in detail, illustrated with empirical performance data from Connection Ma-
chine implementations, and we report some paradoxical results: (1) many techniques
used to speed processors for real MIMD machines do not work for SIMD-emulated
MIMD machines, and (2) global emulated throughput can be enhanced by selectively
slowing down certain local computations.



1.1 Where Statements: The Selection Implemen-
tation

In current Connection Machine language implementations, where statements are
a structured way for the programmer to turn processors on and off for particular
instruction sequences. Consider the where statement S:

S: where (Ezpr) 5
i)
else 53

where Ezpr evaluates to a parallel Boolean value and S; and S, are arbitrarily complex
statements, possibly including scalar (front end) code and nested where statements.
(Note that the else clause is optional.) Informally, the C* (version 6.0) semantics
for S are (1) to evaluate Ezpr, (2) execute S| on processors where Ezpr is true
(non-zero), (3) execute S, on all other processors (that were selected when S began
execution), and (4) select the processors that were selected when § began execution.
Note that S, always executes before S;, and that side effects from S) can affect the
execution of 9.

The selection implementation of the where statemnent § is straightforward and is
the method used by all of the Connection Machine languages:

1. Evaluate Ezpr on the original selected set of processors.

2. Select the subset of the original selected set of processors that evaluated Ezpr
to true (non-zero).

3. Execute 9;.

4. Select the subset of the original selected set of processors that evaluated Ezpr
to false (zero).

5. Execute 5;.
6. Select the original selected set of processors.

The selection implementation of where statements executes every case—and every
combination of nested cases—sequentially, selecting (turning on) the appropriate com-
bination of processors for each case, so the time to execute the where statement §
1s always

Tsecection(S) = Tserection(Expr) + TseLection(S1) + TseLection(S2).  (1.1)

This implementation leads to reduced parallel execution, due to idle processors. For
statement S, Ezpr evaluates to true on some fraction p of the selected processors,
so while S; and S, are ‘executing, only a fraction of the processors (p and (1 — p),
respectively) are selected. If both branches take equal time, the fraction lost is 50%.
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1.2 Where Statements: The MIMD Emulation
Implementation

The combinatorial execution of where statements with the selection implementation
(Equation 1.1) can have a major impact on the performance of applications, even
those that are otherwise well suited for SIMD execution. This section briefly intro-
duces the MIMD emulation implementation method for where statements, which
can sometimes take better advantage of the available parallelism in such code.

Many Connection Machine applications require data dependent control flow, which
is expressed in where statements. The where statement provides the illusion of the
control parallelism of MIMD-style programming, but the performance properties of
the selection implementation (Equation 1.1) ruin the illusion. The MIMD emulation
implementation of where statements produces the effect of control parallelism by
providing the expected performance properties.

Consider again the where statement S in Section 1.1. We redefine the informal
semantics of § to simply be that statement S; is executed on the processors where
Ezpr evaluates to true and statement S, is executed on the processors where Ezpr
evaluates to false. The order of execution of Sy and S is not defined, and in fact
they can be executed in either order or arbitrarily interleaved. This definition is
superior to that used by the Connection Machine languages because (1) it is typical
of control-parallel languages, and (2) it treats $; and S, symmetrically.

When discussing the emulation of a MIMD multiprocessor on the Connection
Machine, we use the terms “virtual processor,” “virtual instruction,” “virtual mem-
ory,” etc. to refer to the components of the emulated MIMD machine, and the terms
“Connection Machine processor,” “Connection Machine instruction,” “Connection
Machine memory,” etc. to refer to components of the Connection Machine.

The MIMD emulation of the where statement S (Section 1.1) implementation
consists of 3 steps:

1. At compile time, generate semantically equivalent virtual MIMD machine code
for §. This code is loaded as data into Connection Machine memory at run
time.

2. When S is encountered at run time, evaluate Ezpr in normal SIMD mode and
then invoke an interpreter for the virtual MIMD machine. The interpreter
emulates one processor of the virtual machine on each Connection Machine
Processor.

3. When all of the virtual threads of control reach the end of S, the interpreter
exits and normal SIMD execution continues at the statement following 5.

The MIMD emulation implementation executes every path of control flow in parallel,
so the time to execute the where statement S is

Temurate(S) = Tsimp( Ezpr) + MAX(Temurate(S1), Temurate(Sz))- (1.2)
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The overhead associated with the emulation of each virtual instruction is constant
([4] and Chapter 2), so Temurate(S) differs from Tmimp(S) (the time to execute §
on real MIMD hardware corresponding to the virtual MIMD machine) by at most a
multiplicative constant.



Chapter 2
MIMD Emulation

In this chapter, we describe how to emulate a MIMD multiprocessor on the Connection
Machine, with at most a constant slowdown of execution per MIMD instruction {as
compared to execution on MIMD hardware). The focus of this discussion is not only
how to minimize the slowdown for a given virtual MIMD machine, but also the design
of virtual MIMD machines that allow efficient emulation on SIMD hardware.

2.1 The Interpreter

In this study, a virtual MIMD computer consists of thousands of virtual von Neumann
processors, each running its own sequential program, where each virtual processor exe-
cutes asynchronously {at the virtual instruction level) with respect to the others. The
virtual MIMD computer is implemented by an interpreter (a data parallel program)
that emulates one virtual processor on each Connection Machine processor, executing
virtual instructions on every virtual processor in parallel.

Figure 2.1 demonstrates the basic form of an interpreter for a virtual MIMD
computer. This virtual machine uses 2-operand virtual instructions, and no virtual
general registers. The virtual internal registers (e.g. the program counter, etc.) are
represented as Connection Machine parallel variables, and the virtual memory of each
virtual processor as a per-processor Connection Machine array. During initialization
(omitted for clarity), the virtual program for each virtual process is loaded into the
virtual memories, the virtual program counters are set to point to the first virtual
instruction, the virtual stack pointer is initialized, etc. The basic interpreter cycle is

1. Fetch the next virtual instruction on each virtual processor.
2. Update the virtual program counters.

3. Decode the virtual instructions and perform virtual to Connection Machine
address translation {in this example, address translation is a no—op).

4. Fetch the virtual operands.

5. Execute the virtual instructions.



shape [64 * 1024] procs;

int:procs pc; /* program counter */

int:procs cc; /* condition codes */

int:procs instr; /* current instruction */

int:procs opcode; /* opcode */

int:procs src, dst; /* operand addresses */

int:procs s, d; /* source and destination operands */
int:procs sp; /* stack pointer =/

int:procs mem[2048]; /* virtual memory */

/* the opcodes */
enum opcodes { add, subtract, multiply, divide, move /* etc. */ };

main()
{
with (proes) {
while (1) {
instr = mem[pc]; /* fetch the next instruction */
pet++; /* update program counter */

opcode = (0xF00000000 & instr) >> 28; /* decode */
src = {OxOFFFCO00 & instr) >> 14;

dst = OxQ0003FFF & instr;

3 = mem[srcl; d = mem[dst]; /* fetch operands */
/* execute the current instruction =*/

where (opcode == add) d += s;

where {(opcode subtract) d -= s;

where (opcode multiply) d *= s;

where (opcode divide) d /= s;

where (opcode move) d = s8;

/* etc. */

mem[dst] = d; /* store result =*/

a n
nn

%
n

}

Figure 2.1: A partial interpreter for a virtual MIMD machine, written in C* (version
6.0). This virtual machine uses 2-operand virtual instructions, and no virtual gen-
eral registers. The virtual internal registers are implemented as normal C* parallel
variables, and memory of each virtual processor as a C* parallel array. During initial-
ization, the - ‘tual code is loaded into the virtual memory and the virtual pc is set
to point to t. first virtual instruction. The initialization and cleanup code has been
omitted in this example. This example is written in C* for clarity, but in practice
such interpreters are written in Paris, so that the virtual condition codes can be set
correctly.



6. Store the virtual results.

A virtual processor can execute any virtual instruction in the virtual instruction set
on any interpreter cycle. The execution of the virtual instructions (step 5 above) is
implemented by a number of where statements, so each Connection Machine pro-
cessor executes only the Connection Machine instructions that are needed to emulate
the particular virtual instruction that it must execute. This example is written in
C* for clarity, but in practice such interpreters must be written in Paris so that vir-
tual condition codes can be set correctly (condition codes have been ignored in this
example).

When we design a virtual MIMD computer, we must make decisions about the
underlying method of virtual interprocessor communication and synchronization (not
addressed in Figure 2.1). The three basic options are no communication, communi-
cation via message passing, and communication via shared memory.

2.1.1 Independent Virtual Processors

Some applications simply require many thousands of independent virtual machines.
When it is sufficient to emulate independent virtual machines, no virtual commu-
nication or synchronization primitives are needed. The result is a fast interpreter
with high virtual throughput, because the interpreter does not have to emulate as
many virtual instructions, and it does not need to perform any (Connection Machine)
interprocessor communication operations (which are relatively slow).

For example, this type of virtual machine can be used in developing a simulator
for a new piece of hardware, along with a diagnostic test suite. The simulator is
implemented as the interpreter, and a different diagnostic test can be run on each
virtual copy of the (simulated) hardware. This allows many thousands of tests to be
run in parallel, rather than one after another on a sequential computer.

Another application that requires no interprocessor communication is a set of
sequential discrete event simulations. Typically, a large number of simulations must
be performed, differing only in the initial conditions and input. Emulation of many
independent sequential machines allows all of the different simulations to execute
concurrently.

2.1.2 Loosely Coupled Virtual Processors

All communication and synchronization among the various processors in loosely cou-
pled MIMD architectures occurs through messages. One of the simplest virtual mes-
sage passing protocols uses a rendezvous between processes. The rendezvous consists
of the synchronization of the two communicating processes, followed by the passing of
a message. We will describe the implementation of rendezvous with one-way naming
(1.e. sender specifies the destination).

The virtual send primitive is send sdst src, where sdst is the virtual processor
address of the destination and src is the virtual memory address of the message in the
virtual processor executing the virtual send. The virtual receive primitive is receive
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rdst, where rdst is a virtual memory address. When a virtual message is received,
it is placed in the virtual memory of the receiving virtual processor, and the virtual
address of the message is placed in rdst.

Rendezvous communication requires that both the sending and receiving virtual
processors be ready to communicate. This means that when a virtual processor ex-
ecutes a send, it will remain blocked until the receiver executes a receive, and the
receiver will block until some virtual processor executes a send to it. It is possible
that many virtual processors will simultaneously send messages to the same destina-
tion. When this occurs, the interpreter selects one of the contending virtual messages
and attempts delivery, blocking all others (as if the destination were not executing
receive). The interpreter uses three temporary variables to perform the synchro-
nization and arbitration:

¢ receiver-ready indicates whether the virtual processor is executing a virtual
receive instruction

¢ message-received indicates whether a message has been received by this vir-
tual processor

e arbitratoris used to determine which sending virtual process may attempt to
deliver its message

In addition, each virtual processor requires a unique processor identifier (PID). Since
we have assumed the emulation of one virtual processor on each Connection Machine
processor, we let the virtual PID be the Connection Machine PID.

During the phase of the interpreter cycle that actually emulates the virtual instruc-
tions, the following pseudo code is executed (where procs[sdst] [x] means variable
X on processor sdst):

receiver-ready = 0;

where (opcode == receive) {
receiver-ready = 1;
message-received = 0;

s
where (opcode == send) {
where (procs[sdst][receiver-ready]) {
/* sender and receiver ready */
send-with-overwrite my-PID to procs[sdst] [arbitrator];
where (procs(sdst]{arbitrator] == my-PID) {
/* deliver message at procs[sdst][mem[ADDR]] */
procs[sdst] [mem[rdst]] = ADDR;
procs[sdst] (message-received] = 1;
} else pc--; /* lost in arbitration--retry */
} else pc--; /* receiver not ready--retry */
s
where (opcode == receive && !message-received)
pc--; /* no sender--retry */
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Figure 2.2: Translation of virtual MIMD shared memory addresses to Connection
Machine addresses. Both (a) non-interleaved and (b) interleaved virtual memory
layouts are shown. In either case, the address translation is trivial.

Send-with-overwrite is a Connection Machine communication primitive that en-
sures that exactly one of the (potentially) many contending values is delivered. In
this interpreter, blocking is implemented using busy loops, so we do not have to
directly emulate the interrupts of hardware MIMD machines.

On any interpreter cycle, if a virtual processor executes receive and one or more
virtual processors execute a send to that virtual processor, a rendezvous will occur
between one of the senders and the receiver on that cycle. Because the communica-
tion in the Connection Machine is deterministic, for a given set of virtual processors
contending for a virtual destination, the same virtual process will always be given the
opportunity to attempt message delivery. This means that under extreme conditions,
starvation is possible (which is typical for rendezvous message passing with one-way
naming).

2.1.3 Tightly Coupled Virtual Processors

In a tightly coupled architecture, all communication among the virtual processors
occurs through virtual shared memory. To emulate a global shared address space
the interpreter translates virtual shared memory addresses into Connection Machine
memory addresses. The virtual shared memory is physically distributed across all
Connection Machine processors.

The virtual shared memory in each Connection Machine processor is treated as an
array (in terms of Connection Machine addressing) consisting of 2'° virtual machine
(32-bit) words associated with each of the 2'® processors. The result is 2% words of
virtual shared memory and 26-bit virtual shared memory addresses. Figure 2.2 shows
how the address translation is performed, for both non-interleaved and interleaved
virtual memory layouts.

The simplest synchronization primitive for implementing mutual exclusion is a
test—and-set—lock instruction in shared memory. When the lock tests clear, the pro-
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cess may safely operate on the shared data that is protected by the lock. When the
process completes the operation on the shared data, it clears the lock.

There is no built-in atomic test-and-set—lock instruction that operates on Con-
nection Machine memory. Therefore, it is necessary to synthesize a test-and-set-lock
nstruction from the communication primitives of the Connection Machine. Again,
the PARIS send-with-overwrite instruction is used, along with unique virtual pro-
cessor numbers for arbitration among the processors contending for the lock.

A lock consists of two components: the 1-bit state of the lock and an arbitrator.
The test-and-set lock virtual instruction, where lock refers to a virtual shared
memory address, is emulated by the following pseudo code in the interpreter:

where (opcode == test-and-set) {
send-with-overwrite my-PID to shared-mem[lock.arbitrator];
where (shared-mem[lock.arbitrator] == my-PID) {
/* test and set the lock */
lock-condition-code = shared-mem[lock.state];
shared-mem[lock.state] = 1;
} else {
/* lost arbitration--don’t get to test lock
(it is or will be set) */
lock-condition-code = 1;

)

If a lock is free, and at least one virtual processor attempts to set the lock, the lock will
be set by exactly one of the contending virtual processors. Because communication
in the Connection Machine is deterministic, for a given set of virtual processes con-
tending for a lock, the same process will always be given the opportunity to perform
the test-and-set. This means that under extreme conditions, starvation is possible
(typical for shared memory multiprocessors).

2.2 Performance

In this section, we explore the design tradeoffs and implementation methods that af-
fect the virtual throughput of the MIMD machine. To achieve high virtual throughput
from an emulated MIMD machine, the most important aspects of the system are the
regularity of virtual instruction encoding, the number of instruction types, and the
“details of the virtual instruction interpreter implementation.

2.2.1 Regularity in the Virtual Instruction Encoding

Regularity in the encoding of the virtual instructions minimizes interpreter overhead
for virtual instruction decoding. If all of the virtual instructions are encoded in
the same format, the interpreter can fetch and decode virtual instructions in all
processors simultaneously. Otherwise, the different formats must be handled with
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where statements. All of the virtual instructions should be the same length (so that
a single fetch is sufficient) and the opcode and operands should be the same lengths
and in the same positions in each of the different virtual instruction types.

2.2.2 Size of the Virtual Instruction Set

The execution time of the interpreter cycle grows linearly with the size of the virtual
instruction set (for simplicity, we assume that each virtual instruction type takes
approximately the same amount of time to emulate—all subsequent analyses make
the more realistic assumption that instruction types may take different amounts of
time to emulate). We measure the size of the virtual instruction set as the number
of different virtual instruction types, where each virtual addressing mode and virtual
instruction is a different instruction type. Figure 2.3 describes the throughput of
virtual MIMD machines as a function of the size of the instruction set. Due to the
linear slowdown of the interpreter with increasing virtual instruction set size, we
achieve the best virtual throughput when we limit the virtual instruction set to a
small number of simple (fast) instructions.

What criteria should be used for deciding which instruction types to include? We
can model the effect of adding an additional instruction type to the virtual instruction
set as follows. Let I be an instruction set, and let I’ = TU {i} be the same instruction
set except for the addition of a new instruction type i. Let k be the number of virtual
instructions needed to implement instruction ¢ using only instructions in I. Let p be
the run-time fraction of 7 in the program coded over I', let ¢ be the interpreter cycle
time over I, and let ¢ be the the increase in interpreter cycle execution time due to
the addition of 7 (cycle time over I is t +¢). Consider a virtual instruction stream $’
of length n over I', and a semantically equivalent virtual instruction stream § over
I. The mean length of S is

(1 — p)n + pkn.

The execution time for S’ is
(t + c)n,

while the execution time for § is
(1 = p)n + phn)t.
5’ is executed faster than S whenever
(t +c)n < ((1 - p)n + pkn)t,

which simplifies to .

Intuitively, the left hand side is the fraction the interpreter slows down due to virtual
instruction type i and the right hand side is the fraction of the interpreter cycles
that are no longer needed, due to using fewer virtual instructions to execute the same
program (|8} < |S]). When Inequality 2.1 holds, the addition of instruction ¢ to the
virtual instruction set will decrease the execution time of the program.

12



L
400— O —
3500 O 1 Address Virtual Instructions ]
— o @ 2 Address Virtual Instructions
g @ 3 Address Virtual Instructions
2 L ]
Cg 00 g O
-
S o ©
‘g 2501 —
& o ®0C
=
3 ®0°
- e © O
s e 6 O
2 L
S 150~ ° ogoo —
b= %260
E 'o::g
£ 10— ggg —
[=T1]
§ ¥kuge
50— gmg —
0— —
l | | I 1
0 10 20 30 40

Number of Virtual Instruction Types

Figure 2.3: Virtual throughput as a function of the size of the virtual instruction set
and number of non-immediate operands per virtual instruction. This is empirical
data gathered on the Connection Machine, where every virtual instruction type takes
as long to emulate as a 32-bit signed addition. The throughput values are scaled for
a 64K processor Connection Machine.
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2.2.3 Delayed Execution of Virtual Instructions

Virtual instruction types that are slow to emulate can sometimes be included in
the virtual instruction set without causing performance degradation (as measured
by Inequality 2.1). We can avoid performance degradation by not executing the slow
virtual instruction type every time through the interpreter loop (Figure 2.4), reducing
the impact of the slow virtual instruction type on the average interpreter cycle time
(¢ in Inequality 2.1). In addition, on the cycles when the interpreter emulates the
delayed virtual instruction type, greater utilization of this portion of the interpreter
is achieved.

Which virtual instruction types should be delayed, and for how long? Assuming
that the slow virtual instruction type appears in the virtual instruction stream at
random with constant probability, and independently on all virtual processors, then
the relevant factors are the probability of the appearance of the virtual instruction
type in the virtual instruction stream, and the ratio of the time required to emulate
the slow virtual instruction type to that of all the other virtual instruction types. The
more often the virtual instruction type is used, the more often is should be executed
by the interpreter, while the longer it takes to execute, the less often it should be
executed. :

We can model the effect of delaying the execution of a virtual instruction type
as follows. Let I be the set of virtual instruction types that are not delayed, and
let I’ = 7 Ui be the whole virtual instruction set, where i is the delayed virtual
instruction type. Let ¢ be the execution time of the interpreter cycle over I, and ¢ be
the execution time of ¢ (so the interpreter cycle time over I’ is t+¢). For this analysis,
we model the execution of the interpreter as a sequence of virtual instruction slots.
There are two types of slots: a short slot can execute any of I, and a long slot can
execute only i. The sequence of slots is a repeating pattern of n short slots followed
by exactly one long slot. The cost of a short slot is ¢ and the cost of a long slot is ¢,
so the period of the slot sequence is w = nt + ¢. Let g be the probability that the
next virtual instruction type in the virtual instruction stream is :, and let p=1—g¢
be the probability that it is one of I. We will assume that ¢ > 0, in order to simplify
the calculations.

The expected number of the n short slots that will be filled per w time units is

n—1
E(short slots used) = Z zp°q + np"
r=0
— pntl
= PZF (2.2)
q
and the probability that a long instruction slot is utilized is

P(long instruction slot utilized) = 1 — p™**. (2.3)

Combining Equations 2.2 and 2.3, the utilization (U) of the interpreter slots is

t%z-:l- +e (1 _ pn+1)
U =

w

14



. shape [64 * 1024] procs;

int:procs pc; /* program counter */

int:procs cc; /* condition codes */

int:procs instr; /* current instruction */

int:procs opcode; /* opcode */

int:procs src, dst; /* operand addresses */

int:procs s, d; /* source and destination operands */
int:procs sp; /* stack pointer */

int:procs memf2048]; /* virtual memory #*/

/* the opcodes */
enum opcodes { add, subtract, multiply, divide, move,
power /* etc. */ };

main()
{
with (procs) {
while (1) {
instr = mem[pc]; /% fetch the next instruction */
pc++; /* update program counter */

/* decode */

/* fatch operands */

/* execute the current instruction */
where (opcode == add) d += s;

where (opcode == subtract) d -= s;

where (opcode == multiply) d *= s;

where (opcode == divide) d /= s;

where (opcode == move) d = s;

where (opcode == power) {
if (execute_now(power)}) d = pow(d, s);
else pc--; /* ‘‘block’’ */

+

/* etc. */

/* store result %/

)

Figure 2.4: The interpreter of Figure 2.1 plus pover, a virtual instruction type that is
not emulated every interpreter cycle. The function executenow() determines when
the delayed virtual instruction type should be executed. During cycles when power
is not to be executed, all virtual processors waiting to execute power become blocked
(busy wait for power to execute). When power finally is executed, all waiting virtual
processors execute in parallel.
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We find the appropriate delay for a given virtual instruction type by maximizing
the utilization U in Equation 2.4, based on the particular £ and ¢ associated with
the virtual instruction type. The delay value can be determined either statically
or dynamically. A static delay makes assumptions about ¢, while a dynamic delay
requires run-time estimation of q. Figures 2.5 and 2.6 plot the effects of the delayed
execution of a long virtual instruction on U for various combinations of p and {.
The delay of a slow and rarely used virtual instruction type increases throughput of
the virtual MIMD computer up to a point, but further delay decreases throughput:
throughput increases with delay until too many virtual processors become blocked
between the long slots. The global increase in the system throughput as a result of
delayed execution of virtual instructions is surprising, because this global increase in
virtual throughput is the result of local decreases in virtual throughput.

(2.4)

2.2.4 Virtual Communication and Synchronization

The performance of an emulated MIMD machine is greatly influenced by the method
of virtual interprocessor communication. On the Connection Machine, non-local
memory accesses are significantly slower than local references. The difference is usu-
ally between a factor of 12 to 1000, depending on the reference pattern. The inde-
pendent virtual processor interpreter never makes non-local memory references. The
message passing virtual machine interpreter only accesses non-local memory when
sending messages, which probably should be a delayed virtual operation (see Sec-
tion 2.2.3). A shared memory virtual machine interpreter might access non-local
memory several times each interpreter cycle.

For a shared memory virtual machine to obtain performance similar to that of
a message passing virtual machine, certain restrictions must be observed. First, the
virtual code, stack, and local data must be stored in local virtual memory. In addition,
the number of virtual instructions types that access shared virtual memory must be
small, since these are much slower to emulate than those that access local virtual
memory. For instance, the only instruction types that access shared memory might
be test-and-set-lock and only one or two addressing modes. All other operations
should require only register and/or local memory accesses.

2.2.5 Other Impleméntation Tricks

The interpreter contains a large number of where statements (see Section 2.1), and
thus contains many Connection Machine processor selection operations (see Sec-
tion 1.1). A faster interpreter, and thus an increase in virtual throughput, could
result if we were able to remove these selection operations. With no Connection Ma-
chine processor selection statements, the virtual results and updated virtual condition
codes from all virtual instructions types are generated by each Connection Machine
processor on every interpreter cycle, but only the desired virtual result/condition code
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Figure 2.5: The utilization of the system as a function the delay for a long, rarely
used instruction. This is a plot of Equation 2.4, with ¢ = 0.01 (p = 0.99), for three
values of €. In Figure 2.6, the same equation is plotted, with ¢ held constant and
various values of p. Note that the center curve in both figures is the same.
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Figure 2.6: The utilization of the system as a function the delay for a long, rarely
used instruction. This is a plot of Equation 2.4, with £ = 1, for three values of p. In
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2. Note that the center curve in both figures is the same.
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pair is retained. A virtual instruction set of size N requires N copies of the virtual
processor state. That this could result in a speedup is quite surprising, because ev-
ery Connection Machine processor will then emulate every virtual instruction in the
virtual instruction set on every cycle—a dramatic increase in Connection Machine
computation may result in increased global virtual throughput.

We performed experiments to test this observation, but we did not observe im-
proved performance from this optimization, because the implementation requires ad-
ditional overhead to allow fast indirect addressing into the multiple virtual states,
negating the improvements due to the elimination of the Connection Machine pro-
cessor selection operations. The removal of the processor selection steps will result in
a speedup if and only if

T(I) < T(D) + T(S5), (2.5)

where I is an indirect addressing operation, D is a direct addressing operation, and
S is a processor selection operation.

2.3 Emulation of Additional Hardware

In this section, we consider the emulation of additional hardware techniques that are
used to speed up processors for real MIMD machires, such as pipelines, caches, etc.
It turns out that all of these techniques fail to increase the virtual throughput, unless
the interpreter uses modified algorithms to emulate the hardware. Paradoxically, we
again must slow down certain virtual processors, in order to get global speedup.

2.3.1 Pipelined Virtual Processors

In the simplest case, a pipelined processor consists of two stages. The first stage
fetches and decodes the next instruction while the second stage executes the current
instruction (in parallel). This type of pipeline need only be restarted when a condi-
tional branch is taken (in typical code, every five to ten instructions). In the best
case, the effective instruction time of the processor approaches Maxz(F, E), where
F is the time to fetch an instruction and E is the time to execute an instruction,
compared to F' + E when pipelining is not used.

Surprisingly, although pipelining is a standard technique on real processors, in
a virtual MIMD system emulated on the Connection Machine, standard pipelining
cannot enhance throughput. The improvements that are achieved in the real processor
are a result of two or more different operations occurring at the same time. In
the interpreter, this type of parallelism cannot improve performance because the
Connection Machine has only a single instruction stream. The cycle time of the
emulated pipelined processor is at best F + E. Second, the pipeline typically will
have to be restarted on ten to twenty percent of the virtual machine cycles. In
the emulation, this means that the pipeline would be restarted on ten to twenty
percent of the virtual processors on each cycle. The worst-case costs of a broken pipe
(in this case, an additional instruction fetch/decode) would be paid on nearly every
interpreter cycle.
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2.3.2 Emulated Cache Memory

Another method that is often used to improve the throughput of a von Neumann
processor is cache memory. Typically, about ninety—five percent of the memory refer-
ences will hit the cache. Nevertheless, emulation of a standard cache cannot improve
the performance of a virtual MIMD machine. On virtually every interpreter cycle,
some virtual processors will experience cache misses, so all processors will have the
effective memory access time of a cache miss.

This observation, along with the one above about the ineffectiveness of pipelining
lead to a surprising conclusion. Hardware that employs probabilistic methods (e.g. a
pipeline or cache) to improve performance on a von Neumann processor almost never
results in speedup when emulated on the Connection Machine, unless the standard
algorithms are modified. A speedup can only be realized if the resolution of the rare,
but slow, worst case situation (e.g. a cache miss) is not performed immediately. For
instance, if we emulate a virtual cache, virtual processors that experience a cache hit
proceed, but the virtual processors that suffer a cache miss block for some number of
interpreter cycles, until a time when all pending cache misses are handled. In this way,
the cost of a cache miss is incurred on only a fraction of the interpreter cycles. This
technique is the same as the delayed execution of slow, rarely used virtual instructions
(Section 2.2.3).

Caches in a shared memory computer give rise to the additional problem of main-
taining coherence. Although many solutions to the cache coherency problem have
been published, all involve significant overhead and interprocessor communication.
This overhead will almost certainly negate the payoff of an emulated cache for a
virtual shared memory MIMD machine.

If the virtual instructions are read-only, then emulated instruction caches do not
suffer from coherency problems. Consider an emulated system with the following
parameters: cache memory access requires three time units, shared memory access
requires an average of fifty time units, and the execution phase of the interpreter cycle
requires eighty time units. The analysis is shown in Figure 2.7. When we satisfy
virtual cache misses immediately, the interpreter cycle is slower than with no cache
at all (since on every cycle, some processor out of the many thousands will experience
a miss). The interpreter with an emulated cache that satisfies misses every sixteenth
cycle is faster than the interpreter with no virtual cache. In order to determine the
optimal frequency at which cache misses are serviced, use Equation 2.4, where the
satisfaction of a cache miss is treated as a slow virtual instruction.

Virtual caches and other virtual hardware that rely on probabilistic methods can
be used to improve the performance of a the virtual MIMD machine, but only if
the interpreter uses modified algorithms. The virtual instruction caches result in a
speedup only because we deliberately slow down virtual processors with cache misses.
Again, global speedup is produced by local slowdown.
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OPERATION COST

fetch instruction 50
fetch operand, 50
fetch operand; 50
execute virtual instructions 80
store result 50
Total 280
(a)
OPERATION COST
fetch instruction from cache 3
satisfy cache misses 50
fetch operand; 50
fetch operands 50
execute virtual instructions 80
store result 50
Total 283
(b)
OPERATICN COST
fetch instruction from cache 3
satisfy cache misses 50 + 16
fetch operand, 50
fetch operand,; 50
execute virtual instructions 80
store result 50
Total 236.125

(c)

Figure 2.7: Emulation of virtual instruction caches. In this analysis, we assume that
cache memory access requires three time units, shared memory access requires an

average of fifty time units, and the execution phase of the interpreter cycle requires
" eighty time units. (a) No instruction cache. (b) Typical instruction cache, satisfying
cache misses immediately. (c) Instruction cache that satisfies cache misses every
sixteenth interpreter cycle.
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Chapter 3

MIMD Emulation of Where
Statements

The combinatorial execution of where statements with the selection implementation
that is used by the Connection Machine languages (Equation 1.1) can have a major
impact on the performance of SIMD applications, even those that are otherwise well
suited for SIMD execution. We briefly introduced an alternative where implemen-
tation method based on MIMD emulation in Section 1.2, including improved where
statement semantics that treat the two cases symmetrically, allowing the implemen-
tation to interleave them arbitrarily.

In this chapter, we describe how to incorporate the MIMD emulation of where
statements into a compiler for a high level language. MIMD emulation is used to
complement, rather than replace, the selection implementation of where statements.
The circumstances where MIMD emulation becomes beneficial depend on the number
of cases which must be handled, the code for each case, and the characteristics of the
virtual MIMD machine that is emulated.

3.1 Applying MIMD Emulation to Where State-
ments

The technique we want to explore is the replacement of a where statement by a
call to an interpreter for a special purpose virtual MIMD machine. The code for
the where statement is compiled for the virtual MIMD machine (as a sequential
conditional statement), and placed in the memory of the Connection Machine. Then,
during execution of the program, all of the different cases of the where statement are
interpreted in parallel. The selective use of MIMD emulation for where statements
can be automated, and implemented in a compiler for a SIMD language.

Consider an N-way where statement (Figure 3.1) with fifty branches in which
each branch calculates a different product and assigns it to a different destination.
Using standard SIMD execution, this statement requires time for fifty multiplications
and assignments, plus processor selection overhead. If this statement is compiled
into virtual MIMD code and interpreted, a single multiplication and assignment, plus
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S: where (Euzpr) {
case Consty: So
case Consty: 5
case Consty: 5,

case Consty_1: Sn-1

}

Figure 3.1: An N-way where statement 5. Statement S; is executed where Ezpr =
Const;.

the overhead of a virtual instruction fetch, virtual instruction decode, and virtual
operand fetch and store suffices. When using the selection implementation, the critical
path for a where statement includes all of the code contained in the statement,
but MIMD emulation reduces the critical path to the longest branch used by some
virtual processor (see Equations 1.1 and 1.2). The MIMD emulation clearly results
in speedup in this case, but note that the selection implementation might win if the
where statement had only one or two branches.

3.2 The SIMD Compiler and Virtual MIMD Tar-
gets

The construction of a compiler for a SIMD language L that uses MIMD emulation
to optimize the execution time of where statements is complex but straightforward.
The compiler is a combination of (1) a compiler for L for the SIMD machine, (2) a
policy for deciding when to use MIMD emulation, (3) an algorithm for designing an
appropriate virtual MIMD machine M, (4) a MIMD interpreter for M at run time,
and (5) a compiler for L targeted to virtual von Neumann machine M.

3.2.1 A Single Virtual MIMD Target

The simplest compiler that uses MIMD emulation for where statements would use a
predefined virtual MIMD instruction set. Since the virtual instruction set is statically
defined, it will not be well suited for all programs. For instance, if a where statement
never needs to do virtual multiplications, a multiply virtual instruction is extraneous.
On the other hand, if no virtual multiply instruction is provided, muitiplication-
intensive statements will take much longer to execute.

3.2.2 Compiler-Designed Virtual MIMD Targets

It is clear that no particular virtual MIMD machine will be well suited for all where
statements. A better method is for the compiler to design a special purpose virtual
instruction set and interpreter for each where statement that is to be translated to
virtual MIMD code; only the virtual instructions that are actually present in the
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{cycle 0) add ¢, b
(cycle 1) delay

(cycle 2) delay

{cycle 8) mul @, ¢
(cycle 4) add d, b
f{cycle 5) add d, ¢
{eycle 6) add e, d

Figure 3.2: A sample of intermediate code with delayed execution of mul. The in-
structions are in the form op destination, source.

{cycle 0) add c,
{cycle 1) add d,
(cycle 2) add d,
(eycle 8) mul a,
(cycle 4|) add a,

aao o oo

Figure 3.3: The reordered intermediate code, optimizing for delayed execution. The
instructions are in the form op destination, source.

virtual code will be emulated by the interpreter. It is feasible to have hundreds, or
even thousands of virtual instructions from which the compiler may pick and choose a
small subset. The compiler will decide which virtual instructions to use based on the
relative costs and benefits of adding additional instructions to the virtual instruction
set (Section 2.2.2), and will generate an interpreter to implement exactly the virtual
instructions that it has generated. The compiler-designed virtual machine will gen-
erally perform better than a statically-designed virtual machine for any particular
where statement.

3.2.3 Additional Optimizations

We can achieve faster MIMD emulation by adding more complexity to the compiler.
The compiler may be able to reduce the average interpreter cycle time by creating an
interpreter that delays execution for certain virtual instruction types (Section 2.2.3).
The compiler will deduce appropriate delays, based on the heuristically estimated
dynamic execution frequency and expected emulation time of the various virtual
instruction types.

When the compiler knows the delay for each virtual instruction type, it is possible
for instructions to be reordered to fill “delay” cycles. For example, consider the virtual
intermediate code in Figure 3.2. If the calculated delays are such that the add virtual
instruction is not delayed, and the mul virtual instruction is delayed up to two cycles
(i.e. will be executed only on cycles zero, three, six, etc.), then a virtual processor
executing this section of code will be blocked from cycle one to cycle three, waiting
for mul to be executed. Since there are no data dependencies between the cycle 3
virtual instruction and the cycle 4 and cycle 5 virtual instructions, the sequence can
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int a, b, c¢;

float x, ¥, 2;

where (Ezpr) {
case O0: a *= b; /* int */
case 1: c *= a; /* int */

case K: b #*= ¢; /* int */
case K + 1: x *= y; /* float =/
case K + 2: z *= x; /* float */

case N - 1: y *= z; /* float */
}

Figure 3.4: A where statement with two different classes of operations. Cases 0
through K perform integer multiplication, while cases K + 1 through N — 1 perform
floating point multiplication.

be reordered to yield the sequence in Figure 3.3, saving two interpreter cycles.

The compiler is likely to encounter where statements for which reduction to
two or more simpler statements results in better performance. For instance, half of
the branches of the where statement might require only floating point arithmetic,
while the other half require only integer arithmetic (Figure 3.4). This statement
can be emulated faster if it is broken into a statement that performs only floating
point arithmetic and a statement that performs only integer arithmetic (Figure 3.5).
The two where statements are emulated sequentially, each with a different, faster
interpreter.

Another example is a where statement in which many of the branches perform
one class of operations, followed by a very different class of operations. For instance,
each branch might update some floating point variables, then update some integer
variables (Figure 3.6). The compiler would break this where statement into two
staternents. Each of the two statements would have the same number of branches as
the original statement, but only half of the code (Figure 3.7). Again, the two where
statements are emulated sequentially, each by a faster interpreter.

Another example is a where statement that contains one or two branches that are
very different from all the other branches (Figure 3.10). The differences might be in
terms of the required operations or in the number of virtual instructions that would
need to be executed. The compiler can generate a selection where for the “odd”
branch, and use MIMD emulation for the rest of the where statement, resulting in
better overall performance (Figure 3.11).
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int a, b, c;

float x, y, 2;

tmp = Ezrpr;

where (tmp) { /* integer where statement */
case 0: a *= b; /% int */
case 1: ¢ *= a; /* int */

case K: b *= ¢; /* int */

where (tmp) { /* floating point where statement */
case K + 1: x *= y; /* float */
case K + 2: z *= x; /* float */

case N = 1: y *= z; /* float */
}

Figure 3.5: A where statement with two different classes of operations (Figure 3.4),
optimized into two statements. One statement contains only integer multiplications,
while the other contains only floating point multiplications.

int a, b, ¢c;
float x, v, Z;
where (Ezpr) {
case 0:
x *= y; /* float */
*= b; [* int */

a
case 1:
z *= y; /% float */
c *= a; /* int */
case N - 1:
y *= z; /* float */
b *= ¢; /% int */

}

Figure 3.6: A where statement in which each case has two different classes of oper-
ations, a floating point multiplication followed by an integer multiplication.
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int a, b, ¢;

float x, y, z;

tmp = Ezrpr;

where (tmp) { /* floating point */
case 0: x y; /* float =/
case 1: z *= y; /* float */

*
"

case N - 1: y *= z; /% float */
}
where (tmp) { /* integer */

case 0: a *= b; /* int */

case 1: c *= a; /* int =/

.

case N - 1: b *= ¢c; /* int */
}

Figure 3.7: A where statement in which each case has two different classes of op-
erations (Figure 3.6), optimized into two where statements. The first handles the
floating point multiplications, while the second handles the integer multiplications.

3.3 Speedup Using MIMD Emulation of Where
Statements

We have gathered empirical performance data for a variety of where statements,
comparing MIMD emulation to C* The intent is to provide some understanding of

when MIMD emulation can resul:  peedup of a SIMD where statement.
I performed all of the testson s -sun.think.com, a Sun 4/280 front end, running
SunOS 4.0 and a Connection Ma: . .= 2 (8192 processing elements), running version

5.0.1 of the Connection Machine sottware {courtesy of the CMNS Pilot Facility, sup-
ported under terms of DARPA contract DACA76-88-C-0012). In each case, a C*
version is compared to a MIMD emulation version. The C* versions were compiled
with the C* translator version 5.0.21 and the Sun C compiler. The MIMD emulation
versions consist of a hand-optimized virtual instruction sets and hand-optimized in-
terpreters written in C/Paris and compiled with the Sun C compiler. All compilations
were performed with the ‘-0’ switch, to turn on optimizations. All tests were run
with one virtual MIMD processor per physical Connection Machine processor. The
test results are described below and summarized in Table 3.1.

In the first example, each branch of the where statement computes one product
(Figure 3.8). The execution time of the MIMD emulation is constant, no matter how
many branches in the statement, while the C* execution time increases linearly. The
MIMD emulation runs faster than the corresponding C* version when there is more
than one branch of control in the where statement. This example is a very good
candidate for MIMD emulation, because all of the arms of the where are the same
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where (Ezpr) {
case 0: a *= b;
case 1: ¢ *= a;
case 2: b *= ¢;

cage N - 1: d *= k;
}

Figure 3.8: A where statement with one multiplication per case.

Number of Branches Before
Example MIMD Emulation is Faster
Than C*
Example 1 2
Example 2 6
Example 3 37
(naive)
Example 3 6
(optimized)

Table 3.1: An empirical comparison of selection {C*) and MIMD emulation imple-
mentations of where statements. For each example (described in the text), the
crossover point where MIMD emulation results in faster execution is shown. Despite
the empirical nature of these experiments, the curves were very linear, so only the
intersections are reported.

length and perform only one type of operation (multiplication).

The second example contains a greater variety of instructions. Each branch of the
where contains five statements using five different instructions (Figure 3.9). This is
still a good case for MIMD emulation. MIMD emulation results in faster execution
when the where is more than six branches wide.

The third example demonstrates a where statement for which naive use of MIMD
emulation does not yield good performance. The where statement is exactly the same
as in the previous example, except for the first branch, which consists of twenty-five
statements rather than five (Figure 3.10). MIMD emulation only begins to result in
faster execution when this statement is more than thirty-seven branches wide.

The reason for the dramatic difference between the second and third examples is
the fact the branches in the third example contain very different amounts of code.
This is a case where the compiler should split the single where statement into two
(Figure 3.11). The first statement consists of all but five of the operations (the length
of the other arms of the where) from the long arm of the original statement. The
second where statement consists of the remaining five instructions from the long
branch, along with the rest of the cases. The first where is executed in the usual
SIMD manner, while the second uses MIMD emulation. When these optimizations
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where (Ezpr) {
case 0: a *=b; b += a; ¢ -= d; 4; b /= 3;
case l: ¢ *= a; c += 3; ¢ /= 4; z; a &= 32;
case 2: b *=¢; c /= 54; b&=c; b +=Db; k -= 1;

a &
c

case N - 1: d /=k; 2 &=8; k *=7; 4 += k; a -= 2;
t

Figure 3.9: A where statement with five statements per case. The five operations
include addition, subtraction, multiplication, division, and logical and.

where Ezpr

case 0: a *= b; b += a; c -=d; a &= 4; b /= 3;

a *=b; b +=a; c -=d; a &= 4; b /= 3;

a *=b; b+=a; c -=d; a &= 4; b /= 3;

a *= b; b += a; c -=d; a &= 4; b /= 3;

a *=b; b +=a; ¢ ~=d; a &= 4; b /= 3;
cage 1;: ¢ *= a; c +=3; ¢c /=d; ¢ == z; a &= 32;
case 2: b *=c¢; ¢ /=54; b &= ¢; b += b; k -= 1;

case N - 1: d /=k; z &= 8; k *=7; d +=k; a -= 2;
}
Figure 3.10: A where statement. The first branch performs twenty-five operations
and each other branch performs only five operations chosen from addition, subtrac-
tion, multiplication, division, and logical and.

are made, MIMD emulation is faster when the where is more than six branches wide
{the same as the second example).

An additional optimization that might be used in such a case is reordering of the
virtual instructions in the long case in order to put the most expensive instructions
inside the where statement that will be executed with MIMD emulation. The ex-
pensive operations will be performed by the interpreter anyway, and this will reduce
the execution time of the first statement.
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the effective size of the virtual instruction set must be kept as small as possible. The
effective size of the virtual instruction set can be smaller than the actual size, if one or
more rarely used virtual instruction types are not emulated during every interpreter
cycle. Paradoxically, this optimization results in global speedup by occasionally caus-
ing those virtual processors that need to execute a delayed instruction to block for
one or more interpreter cycles, and thus reducing the number of Connection Machine
processors that are executing.

Another surprising result is that the emulation of hardware that employs proba-
bilistic methods {(e.g. a pipeline or cache memory) that improve performance of real
MIMD processing elements almost never result in speedup of the virtual MIMD ma-
chine, unless the standard algorithms are modified. A speedup can only be realized if
the resolution of the rare, but slow, worst case situation (e.g. a cache miss) is not per-
formed immediately. Again, global speedup is achieve by stopping the computation
of some of the Connection Machine processors for one or more interpreter cycles.

The use of MIMD emulation to implement where statements can be automated
and incorporated into compilers for SIMD languages. The compiler can design and
optimize both the virtual MIMD machine, and the interpreter for each particular
where statement. In addition, a number of optimizations can be performed to the
virtual MIMD code (the translated where statement) to dramatically improve the run
time performance of the where statement. These optimized interpreters will often
attain emulated throughput in the range of 200 to 350 million virtual instructions
per second (on 64K Connection Machine processors), delivering about 20 percent
of the available Connection Machine cycles to the virtual MIMD machine (typical
Connection Machine applications achieve on the order of 1000 MIPS [14}). This
performance could almost certainly be significantly increased by providing microcode
or perhaps even hardware support for MIMD emulation.
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Chapter 4

Conclusions

A common criticism of SIMD computers such as the Connection Machine is that the
data parallel programming style is only appropriate for a small class of problems.
The parallelism in data parallel algorithms comes from the simultaneous application
of the same operation to each datum in a large set of data, rather than from multiple
threads of control (control parallelism). Many data parallel programs require slightly
different sequences of operations on different data items, and thus contain where
statements, describing one or more statement sequences and where in the data set
each 1s to be executed (control parallelism).

On the Connection Machine, where statements are usually implemented by 1ssu-
ing all of the embedded statements, turning on (selecting) the appropriate processors
before executing each sequence. Given this usual implementation, the execution time
for a where statement is the sum of the execution times for each of the where’s em-
bedded statement sequences. Such selection implementations result in a significant
decrease in parallel execution.

This lack of parallel execution is a feature of the selection implementation of the
where statement in the Connection Machine languages, not an inherent feature of
the where statement. In this thesis, we have described an implementation based
on MIMD emulation that executes a where statement in time proportional to its
longest alternative statement sequence (control parallel critical path). In this imple-
mentation, we use an interpreter to emulate a massively parallel MIMD computer on
the Connection Machine, allowing the execution of control-parallel code with only a
constant slowdown per emulated instruction. The interpreter maintains the state of
an emulated von Neumann processor in each Connection Machine processing element,
and treats the other parallel data on the Connection Machine as virtual MIMD ma-
" chine instructions and data. MIMD emulation empirically results in speedups even
for where statements with relatively few (less than 10) branches of control.

The heart of the interpreter is a series of where statements that emulates each of
the virtual instruction types on the appropriate Connection Machine processors. The
combinatorial nature of the selection where implementation has a major influence
on the design of the virtual MIMD instruction set and the implementation of the
interpreter. In order to minimize the virtual instruction fetch/decode overhead, all
virtual instruction types should be encoded in exactly the same format. In addition,
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tmp = Ezpr;

where (tmp ==
a *= bh; b +=
a *= b; b +=
a *= b; b +=
a *= b; b +=

}

a; ¢ -=
a; ¢ -=
a; ¢ -

a; ¢ -=

= d
=d,
d

0) { /* normal

d;

SIMD execution */

a &=
a &=
a &=
a &=

4; b /= 3;
b /= 3;
b /= 3;
b /= 3;

where (tmp) { /* emulated MIMD execution */
a; ¢ —=d; a &= 4; b /= 3;

case 0:

a
case 1: ¢ *
case 2: b *

H

case N - 1: d /=k; z &= 8; k »=7; d += k; a

}

b; b +=
a; ¢ +=
c; ¢ [=

3; c /=d; ¢ -=z; a &=

32;

54; b &= c; b += b; k -= 1;

- 2;

Figure 3.11: An optimized version of Figure 3.10. Twenty of the twenty-five opera-
tions of the first case have been moved out of the where statement. Only the second
where statement will be transformed for MIMD emulation.

30



