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Abstract

Deflection routing, which can be used in networks with multiply connected stations and
limited packet buffers, works by randomly diverting packets from their intended routes when two
or more packets simultaneously contend for a common output port. The potentially unbounded
number of routes that a given packet can take makes performance analysis of such networks
difficult. In this paper we develop a high-fidelity performance model of deflection routing that
can be applied to a network with any given topology and traffic matrix. The performance model
is used to solve the virtual-topology design problem, which is to select the virtual topology of a
wavelength-agile multichannel network that yields optimum performance under a given traffic
loading. The optimized virtual topologies, found via simulated annealing, achieve significantly
higher performance than unoptimized virtual topologies, such as ShuffleNet or the Manhattan
Street Network.

Nomenclature

Bix service requirement for class-k packets at station ¢ (random variable)

B; service requirement for packets at station ¢ (random variable)

B(z) z-transform of a discrete random variable B

Vst probability that the user at station s generates a packet destined for
station ¢

Vs probability that the user at station s generates a packet

¥ probability that a packet is generated (offered traffic load)

Sijkit probability of deflecting a t-packet away from internal link (%, 7, k)

A7, 1) alternate route from station i to station ¢

1This work was partially supported by the Telecommunication Project of the CNR of Italy, US DARPA contract
MDADS03-87-C-0663, and State of California—Pacific Bell MICRO grant 4-541121-19907 KCT7F.



E[] expectation operator
% rate at which traffic departs from the user output port of station ¢
(7,7, k) internal link from input port j to output port k of station ¢

(i,7,k) — (I,m,n) output port k of station ¢ is tuned to input port m of station [

Lix number of packets in output queue k of station ¢ (random variable)

Aijh:t probability of finding a t-packet on internal link (z, 7, k)

Aijk probability of finding a packet on internal link (7, j, k)

N number of stations in the network

M, number of packets in the user input queue at station ¢ (random variable)

M number of packets in the network (random variable)

Hik service rate for class-k packets at the user input queue of station :

P[] probability of an event occurring

II(z,1) primary route from station # to station s

T end-to-end packet delay (random variable)

Dijie probability of finding a {-packet on the link coming into input port § of
station ¢

dij probability of finding a packet on the link coming into input port j of
station 2

z logical complement of Boolean value z

X random variable for generating the traffic matrix

1 Introduction

Lightwave technology, which continues to provide increasing bandwidth in a single-mode optical
fiber, is the foundation for new network architectures designed to carry a large amount of traffic
between many users. Wavelength-division multiplexing (WDM), which allows us to operate inde-
pendent channels on an optical fiber, is the technological basis for the wavelength-division optical
network (WON), a recently proposed architecture for high-speed networks [BFG89, Ban90, BG90,
BFG90c, BFG90b]. Because WDM has the potential to support as many as 3000 1-gigabit/second
(Gb/s) channels on a single optical fiber [VW89], the WON can concurrently transmit many mes-
sages to achieve high throughput.

With the introduction of a new network architecture—such as the WON—there arise novel



problems in the analysis, design, and operation of this type of network. Our objectives are to
develop techniques to evaluate analytically the performance of the WON and then to apply these
techniques to design optimum topologies for the WON.

The design and analysis of the WON has been addressed in previous research. The first work
on topological design of the WON was reported in [Ban90, BG90, BFG90c¢, BFG90b] where the
problem of choosing a topology that minimizes delay is studied. That work, assuming ample packet
buffers at each station and shortest-path routing, formulated a simple queueing-network model of
the WON and derived a closed-form expression for delay; the expression was then used as the
objective function of the topological-design problem. In [GG86, Aya89, ZA90, TB90, BC90a] the
analyses of the WON under the assumption of limited packet buffers and deflection routing were
undertaken, but these analyses were restricted to the case of uniform traffic and specific topologies.
The analytical model presented in this paper goes beyond previous work by providing a method to
evaluate the performance of the WON under an arbitrary traffic matrix. Also, our method is not
restricted to certain classes of topologies, as are other approaches. The recent work reported in
[BCY0D] also attacks the problem of analyzing the performance of the Manhattan Street Network
(MSN) with limited packet buffers and deflection routing under nonuniform traffic. Their work
uses a different approach than the one that we offer in this paper.

This paper is organized as follows. In Section 2 we describe the architecture of the WON and the
use of deflection routing in the WON. In Section 3 we develop an analytical model of the WON and
use it for evaluating the WON’s performance when deflection routing is used and stations possess
only single output buffers. The model is then applied in Section 4 to the topological design of the
WON; the optimization is done using simulated annealing with a cost function that incorporates the
analytical model developed in the previous section. We also illustrate the techniques of topological
design on two example 64-station WONs in Section 4. In Section 5 we conclude the paper by

reviewing our results and discussing important research topics in this area.

2 Description of the Network

In this section we provide an overview of the architecture of the WON. We also describe the use of
deflection routing in the WON and discuss the role of admission control in maintaining satisfactory

levels of packet loss in the WON.



2.1 The Architecture of the Wavelength-Division Optical Network

The WON is a high-speed, multichannel, multihop network for use as a metropolitan area network
or geographically dispersed local area network. The WON’s point of attachment for its users
is the station, which is an electronic store-and-forward packet switch with two optical receivers
and transmitters, each of which can be independently tuned to a separate WDM channel. By
appropriately tuning all stations’ transceivers, a source station can send a packet to any destination
station in a multihop manner via a sequence of intermediate WDM channels and stations.

The WON is similar to other multichannel networks that have been proposed in the past,
e.g., Sytek’s LocalNet [Bib81], but its implementation using lightwave technology distinguishes it
from these earlier proposals, which were typically based on cable-television technology. Whereas
cable-television systems can multiplex only tens of low-speed (e.g., 10 megabits/second) channels,
lightwave systems can muliiplex thousands of high-speed (e.g., 1 Gb/s) channels. Such a large
collection of high-speed WDM channels can be used to interconnect many electronic stations via
a shared optical medium. This type of network, first proposed by Acampora [Aca87, AKH87] and
variously called the Multichannel Multihop Lightwave Network or ShuffleNet, uses a specific station
tuning based on the perfect-shuffle directed graph. This network architecture, which can intercon-
nect N dual-transceiver stations via 2¥ WDM channels, has since been extended and developed
in several areas, especially by considering wavelength-agile transceivers that admit many different
station interconnection patterns [Ban90, BG80, BFG%0c, BFG90b, LA90). In this paper we concern
ourselves with WONs that have wavelength-agile transceivers. This wavelength agility permits the
network administrator to specify a particular tuning, which results in a station interconnection
pattern called the wvirtual topology of the WON. We mention that the virtual topology of the WON
does not change dynamically, but rather remains fixed for an extended period of time, and changes
only when the network administrator decides that a new virtual topology is required to better meet
the needs of the users, e.g., because of changing traffic conditions.

To illustrate, we show in Figure 1 an example of an N-station, dual-transceiver WON imple-
mented as a physical bus. As WON performance is extremely sensitive to the virtual topology
used, the selection of the virtual topology is an important design decision. The virtual topology
of the WON is established by tuning all stations’ transmitters and receivers to effect a specific
station interconnection pattern. The WDM channels can be shared by several stations or dedi-
cated to a single pair of transmitting and receiving stations. In this paper we focus exclusively

on dedicated-channel networks. An example of a virtual topology for a 16-station WON that is
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Figure 1: An Eight-Station WON Realized as a Tree.

based on the two-dimensional torus is shown in Figure 2. With the virtual topology of Figure 2,
a packet that originates from station 2 would be delivered to station 6 by traversing the shortest

route 2 —- 5 — 3 — 6.

2.2 Deflection Routing

To reduce the cost and complexity of the station, we may configure each transmitter with as few
as one packet buffer. Given that packets have a fixed size and that time is slotted so that a packet
may be transmitted during a time slot, if two packets simultaneously arrive to the station, and both
need to be transmitted via the same transmitter, then one packet can be rerouted via the other
transmitter. Thus, both packets can be transmitted in the next time slot. We assume that each
packet has a primary route to get to its destination, but if the packet is deflected from the primary
route, the rerouted packet has an alternate path for reaching its destination; how this could be
implemented will be discussed later. All routes are shortest paths with respect to the output port
being used, and each packet has a single primary and alternate route from any given station to
its destination, even if the station is a “don’t care” node with equally short paths emitting from

every output port. For example, in Figure 2 the primary route from station 0 to station 7is 0 —
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Figure 2: The Two-Dimensional Toroidal Virtual Topology.

4 — 7, and an alternate routeis 0 - 1 — 2 — 6 — 10 — 11 — 7. This routing scheme, called
deflection (or hot-potato) routing, has been proposed for the Manhattan Street Network (MSN)
[Max85], which has a topology based on the two-dimensional torus shown in Figure 2. The MSN
has the advantage that a deflected packet can simply make four additional hops to get back to
its deflecting station, whence it can reattempt to continue along its intended path. Since packets
are not normally queued within the network, they might have to be queued or possibly discarded
(upon buffer overflow) at the entrance to the network if no free slots are available.

In a high-speed network such as the WON, mechanisms for routing should ideally be imple-
mented in hardware so that these functions are performed in real time at rates comparable to the
link speed. Upon arrival at a station the packet’s header is quickly analyzed and switched to the
output port that goes to the packet’s next hop. The packet’s next hop is specified by a prefer-
ence vector, which lists for each possible destination the primary and alternate output ports for
the packet. Unlike lower-speed packet-switch networks that rely on software to look up the next
hop in a program-maintained routing table, switching in the WON would be performed entirely
in hardware. Instead, the WON could provide hardware support for fast deflection routing with
a small amount of additional circuitry. For example, each station could use a 16-kilobit by 3-bit
random-access memory to store an encoding of the next hop of the primary and the alternate route
(viz., output port 0, 1, or 2) for every possible destination (assuming that the network address

space can be specified in 14 or fewer bits). Then, using the destination’s network address to ad-



dress the random-access memory, the station could rapidly read the output port number for both
the primary and alternate routes. Since static random-access memories are built with access times
as low as a few nanoseconds, the time to look up the next hop would be less than a few bit times
on a 1-Gb/s channel. The decision logic for resolving contention and determining which of the
contending packets to deflect could also be implemented easily in hardware. If packet switching
were to require any more than a the equivalent of few bit-transmission times, the station would
become a performance bottleneck.

Although originally proposed for the MSN, deflection routing can be used in the WON with
any virtual topology, so long as every station is provided with two receivers and two transmitters.
It is clear that deflection routing applies equally well when there are more than one buffer per
transmitter. In that case deflection will occur only when there are more packets in need of service
than there are buffers available. It is straightforward—though tedious—to extend the results of
this paper to WONs with stations having an arbitrary number of transceivers, but we assume
throughout the remainder of the paper that every station has two transceivers.

It should also be noted that deflection routing requires facilities for synchronizing the WON, so
that time is divided into discrete slots, and this introduces additional complexity into the network.
Normally, the arriving packets would be synchronized by means of an alignment function at the
receivers of the station.

Although propagation delay in a high-speed lightwave metropolitan area network would com-
prise a significant component of the total packet delay, we choose to simplify our analysis by ignoring
all propagation effects. Our analysis could be extended to account for propagation delay without
difficulty, but the analytical results acquire a more complicated appearance. Equivalently, ignoring
propagation effects can be viewed as using a network in which the propagation delays on all links

are equal.

2.3 Admission Control

A price to be paid for deflection routing is that packets may be discarded at the user input port
hefore they are ever admitted into the network. Thus, the problem of admission control alse plays
an important role. Several admission policies have been identified and studied in [BT89], including
prerouting and postrouting access, in which the user’s packets are admitted into the network before
or after routing decisions are made. In postrouting access it is possible that a packet just admitted

into the network can suffer an immediate deflection, whereas prerouting never deflects a packet



until after it leaves its station of origin. We adopt here two simple policies that are similar in spirit
to the prerouting access method, viz., fully queued access and independently queued access. In
fully queued access there is one user input queue at which packets queue up in order of arrival, and
during a time slot at most one packet is taken from the head of the queue when its transmitter
is free. In independently queued access there are two independent user input queues, one for each
output link. Packets queue up at a user input queue, depending on which output link is needed,
and at most one packet is taken from the head of the queue when its transmitter is free. Our model
could also accommodate WONSs using the postrouting access method; we could utilize the analysis
of [TB90], which is based on a bulk-service queueing model of the user input port. In this paper we
assume that the user input port provides sufficient packet buffers to minimize the loss of packets
entering the network. This assumption is not essential, and our models could he easily modified to
accommodate limited user-input buffering.

As with admission policies, there are different options for routing and switching. Although
in the MSN there are several shortest paths from a source to a destination, it has been claimed
that specific types of shortest paths are desirable. For example, shortest paths that minimize the
number of right-angle turns [GG86] or that follow the diagonal [BC87) have been proposed for the
MSN. Since we do not restrict ourselves to any specific virtual topology, we do not require anything
of a route other than it be a shortest path. When two packets arrive simultaneously to the station
and contend for the same output port, the switching policy decides which packet will be deflected.
Again, we do not consider policies based on topology-specific rules, such as the straight-through
policy of [GG86, BC90a). Nor do we consider policies that give preference to the packet with the
greatest age or least distance from its destination, such as those discussed in [BC90a]. We assume
that the decision of which of two contending packets to deflect is determined by a fair coin toss.

This last assumption can also be relaxed, as we shall discuss in the concluding section.

3 A Performance Model of the Single-Buffer Deflection-Routing
Network

In this section we formulate a queueing model of the WON intended to estimate the mean packet
delay when deflection routing is used. We then propose a procedure for solving the model and
demonstrate the fidelity and efficiency of the procedure.

Although simulation is a very accurate method to evaluate the performance of the WON, it is



too expensive to be used in some applications. For example, the cost of simulation is prohibitive
when we need to evaluate the performance of many different networks, as in the topological design
problem to be presented in the next section. In such situations we need a fast algorithm to determine
the performance of a given network. Because the use of simulation to evaluate the performance
of the WON is relatively expensive, in this section we develop an analytical performance maodel of
the WON that can be applied more efficiently than simulation. In the next section we employ the

model to design optimum topologies for the WON.

3.1 Assumptions of the Model

Our mathematical model is derived for an N-station dedicated-channel WON in which every station
has two input ports from the network and two output ports to the network, as shown in Figure 3.
Each output port has a single packet buffer; thus, deflection routing is used to cope with packet
contention. There are also a user input port, which is assumed to have sufficient packet buffers
to accommodate the station’s exogenous traffic, and a user output port, which has a single packet
buffer. Time is assumed to be slotted and all transmissions are synchronized. A station is able to
switch and transmit its incoming packets to the next station within a single time slot. When two
packets simultaneously contend for the same output port, the priority arbiter decides to deflect one
of the packets at random. A primary route is a shortest path from the source to the destination,
and an alternate route is a shortest path from the port used by the deflected packet to its final
destination. We do not address explicitly how the routing table is maintained, but postulate a
route-updating algorithm that instantaneously discovers the shortest possible primary and alternate
routes for all destinations. Immediately after packets from the input links have been switched to
their appropriate output ports, the packet at the head of the user input buffer is examined by the
priority arbiter and switched to the appropriate output port, if it is free. If the required output
port is busy, then no packet from the user input port receives service in the current time slot and
must reattempt access in the subsequent time slot. We assume that the packet at the head of the
queue will wait until the output port on its primary route has a free slot. Consequently, even if
the packet’s primary output port is busy and its alternate output port is free, the packet will wait
until its primary port becomes free. We show in Figure 3 the structural attributes of the station;
in the following we assume that ¢ = 1 and L = oo.

The performance of the WON is clearly influenced by the traffic offered to the network. In an
N-station WON we denote by the N x N matrix (v;;) the average rate (in packets per time slot)
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Figure 3: Structural Attributes of the Station.

at which traflic originating from source station i is sent to destination station j. During any time
slot the user at station ¢ may submit no more than one packet to the network, and the probability
that this user submits a packet destined for station j is 4;;. Hence, the probability that the user
generates a packet is given by v, & 2.; Vij- We assume that streams of packets between source-
destination pairs are generated by users independently of each other and that the intervals between
successively generated packets are independent of each other.

An internal link is a triple (4,7, k) that represents the logical channel from input port j to
output port & within station i. Assuming that each station has exactly two input ports from the
network and two output ports to the network,? we can list station ¢’s internal links as (7,0,0),
(¢,0,1),(4,0,2), (4,1,0), (¢,1, 1), (4,1,2), (¢,2,0), (1,2,1). [Note that we do not consider (i, 2, 2) to
be an internal link.] We define A;;r to be the rate (in packets per time slot) at which traffic flows
over internal link (%, , k) and ¢;; to be the rate (in packets per time slot) at which traffic flows into
port j of station i. [We make the convention that A;z2 = 0 for all i.]) These flows are illustrated in

Figure 4. Since all traffic flowing into station ¢ from the network must use one of the internal links,

2We use the convention that the (input and output) network ports are labeled 0 and 1, and the (input and cutput)

user port is labeled 2.
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we see immediately that \
$ii = D Nk (1)
k=0
where 1 <i< Nand0<£j <1,

Routes can be represented by the internal links that comprise the route. For a given virtual
topology a path is completely specified by listing the internal links on the path, since each output
port is connected to a unique input port. Formally, we define a path from station s to station ¢ as a
set of internal links {(%y, j1, k1), (42,72, k2), - - -, (ins Jn, kn)} such that 4y = s, j1 = 2,4, = £, ky, = 2,
and for each m, (3m, im, km) = (#m+1, Fm+1, km+1), 1.€., output port k,, of station i, is tuned to
input port jn,41 of station ¢,,41. A primary route from source station s to destination station £ is the
shortest path from s to { and can be formally described as the set—denoted II{s, t)—of all internal
links that comprise this shortest path. This set has the form II(s,t) = {(s,2,1),...,(¢,7,2)}, where
t and j are equal to 0 or 1, i.e., the path begins at s’s user input port and ends at t’s user output
port. For the special case of s = t, we define T(s,t) = .

When a t-packet (i.e., one destined for station t) has been deflected at station r, it departs
from its primary route and uses an alternate route, which is the shortest path from station r
to destination ¢ that does not use the same output port of station r as the primary path. If
(r,2,4) € II(r,1), then we represent the alternate route from r to t by A(r,t), the set of internal
links {(r,2,%), ..., (t,k,2)} that forms the shortest path from output port i’ of station r to station
t such that ¢ # 7.

The performance metrics of interest to us are delay and maximum throughput. Delay is a
function of the number of hops that the typical packet makes and accounts for the queueing,
transmission, propagation, and nodal-processing times of the packet. Maximum throughput is the
total amount of traffic that the WON can handle without unbounded growth in delay. Given a
traffic matrix (7,;), we figure maximum throughput by scaling up the matrix as much as possible:
if the WON just saturates with offered traffic matrix (avy;;) for some scale factor «, then the
maximum throughput is equal to }; - av;;. In this paper we focus on the mean end-to-end packet
delay, which is defined as the average time (in slots) that elapses from when a packet is generated
by the user until it exits the WON. Since the virtual topology of the wavelength-agile WON can
be reconfigured if it can not handle the offered traffic load, we conclude that the virtual topology
should be optimized with respect to mean end-to-end packet delay, i.e., the chosen virtual topology
should provide the lowest possible delay for the given traffic matrix and still be able to accommodate

modest growth or fluctuation in the traffic.
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We are therefore interested in determining analytically the value of IE[T] for a given offered
traffic load (7;;) and virtual topology A, where the random variable T' is the end-to-end packet
delay. Since T depends upon the network’s virtual topology A" and the offered load (v;;), we
sometimes write Ty (. .

We have chosen to concentrate on end-to-end delay in our study of the WON, but we could
also have used transport delay as the metric of interest, as in [BFG90a, BC90b). Transport delay,
defined as the elapsed time from a packet’s admission into the network until its departure from
the network, is included as a component of end-to-end delay. A complication of using transport
delay would be that we must then take packet loss into account, because packets generated by a
user can be discarded unless buffered by the user. Thus, as we scale up the traffic matrix, the
throughput of the transport network increases steadily until a point is reached when all buffers of
the transport network are continually occupied, at which point congestion sets in and throughput
actually begins to decrease. With this model, however, mean packet transport delay is always
bounded, because there is a finite number of buffers in the transport network. For this reason
it is perhaps conceptually simplest to include unlimited user buffers in our model and consider
end-to-end packet delay. Because of the unlimited packet buffering at the user input queues,
throughput increases steadily as the traffic matrix is scaled up until a point of saturation is reached
and throughput remains flat. At the point of saturation, however, mean end-to-end packet delay
grows without bound. Since there are ample buffers in the network, no packets are ever discarded.
It should be clear from the sequel that our model can be used to analyze transport as well as
end-to-end performance.

To analyze the deflection-routing WON, we represent the WON as a network of queueing centers
of the type depicted in Figure 4. The queueing network operates synchronously, so that all arrivals
and departures occur only at the start of time slots. To analyze this quening network we must be
able to solve analytically for the rates of flow on all links and the mean numbers of packets in the

various queues of the network. We address these tasks in the next two subsections.

3.2 The User Input Queue

Figure 4 also represents the queueing model of the station. At each of the three output ports
there is a queue with space for exactly one packet and a server that can handle exactly one packet
per time slot. At the user input port is a queue with unlimited space for buffering packets. A

packet entering the user input quene will be switched to either output port 0 or 1, depending on
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its ultimate destination. (Notice that the packet enters the network only if it can use its primary
route—the entering packet will never be placed on an alternate route.) Thus, we view the user
input queue as a two-class queue in which the service rate depends on the class of the packet.
Calling a packet to be submitted from the user input queue to output port & a class-k packet,
we observe that the service rate for a class-k packet will be p;; 49_ Aok — As1k, Since a packet will
only be switched from the user input port to output port & when there is no other packet waiting
to be transmitted at output port k. In other words, during a given time slot the class-k packet in
service will be placed on output link k£ with probability p,r. If we assume that the event that output
port k£ will be free during a given time slot is independent of its being free during any other time
slot, then this gives rise to a service time for class-k packets that is geometrically distributed with
mean {1 — p;x ) /itik, i-€., the number of time slots that the packet must wait before being transferred
to its output link is geometrically distributed. Therefore, the discrete random variable B;;, which
we define to be the amount of service (in time slots) required by a class-k packet, is characterized
by the probability distribution
P[Bip = n) = pir (1 — pir)" (2)

for n > 0. The 2-transform of the sequence specified by Equation (2) is

B (2)

oo
> hak (L= pag )™ 2"
n=0

_ Hik
I ik (3)

H Ajop > i then the user input queue can not adequately serve the user, and the queue will be
unstable, so we assume henceforth that A < k.

In our analysis we consider two network-access strategies for the user input queue. The first
access method to be considered is called fully queued access and the second is called independently
queued access. In the fully queued access method, all packets from the user—regardless of their
class—line up on the user input gueue in first-come—first-served order. At the onset of each time
slot, the server attempts to place the packet from the head of the queue onto its appropriate output
link. If the output port is free (i.e., there is no other packet for it to transmit), then the server
immediately places the packet on the output link and remains inactive until the next time slot. If
the output port is busy (i.e., there is another packet for it to transmit), then the server becomes
inactive until the next time slot, at which point it will again try to place the packet from the head
of the quene onto the output link. In the independently queued access method, all packets from

the user line up on the user input queue in first-come-first-served order, but there are two separate
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Figure 5: Two Access Methods for the User Input Queue: Fully Queued Access and Independently

Queued Access.

servers, one for each packet class. At the onset of a time slot, server & removes the oldest class-k
packet from the queue and attempts to place it onto output link k. Thus, there can be up to two
packets in service, which increases the throughput of this queue, compared to one using the fully
queued access method. We show in Figure 5 the structure of the user input queue employing both
the fully and independently queued access disciplines,

An expression for the mean number of packets in the user input queue of station 7 depends on
the access method used at the user input port. Regardless of the access method, we model the
user input queue as a discrete-time queueing system in which packets arrive at the initiation of
time slots. The probability that a packet is generated at station ¢ is y;, and at most one packet
is generated per user during any time slot. All transitions in the queueing system occur at the
boundaries of time slots; hence, all arrivals and departures occur at the beginning of the time slot.
The service-time requirement for a class-k packet, B;g, is given by the probability mass function
of Equation (2). We define the random variable M; to denote the number of packets in the user

input queue. The first moment of 3M; is given by the Pollaczek—Khinchin mean-value formula for
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the Geom/G/1 discrete-time queue [Mei58):

72 IE[B(B; — 1)]

where B; is the service time requirement of all packets in the user input queue.

Under the fully queued access discipline, the user input queue can be modeled as a Geom/H,/f1
queueing system, where I, represents the “hypergeometric” probability distribution. There are
two classes of packets, and a clos-k packet has geometrically distributed service-time requirement
Bjr. Thus the z-transform of all packets’ service-time requirement is simply the weighted sum of

B;o{2) and B;1(z). Using Equation (3) we calculate the z-transform of the service-time requirement

B;:

Ai2o Bio(2) + Ai21 Bi(2)
Ui
Ai20 Mo Ai21 Hin
Yi(l =z + pioz)  vi(l— 24 paz)

Bi(z) =

(5)

i.e., all class-k packets (which constitute A;2x/7v; percent of the total flow from the user) entering
the user input queue have their service times drawn from a geometric probability distribution with
mean (1— pix )}/ pix. Taking the first and second derivatives of Equation (5) and evaluating at z = 1,
we obtain the first two factorial moments
Aizo IE{Bio] + Ainy JE[By]
i

Aigo (1 — pio) 4 Aia1 (1 = pa )

Ti Hio Ti a1

IE[B]

(6)
and

Aizo IE[Bio( Bio — 1)) 4 Ai21 FE[Bi(Biy — 1)]
Yi
2hi00(1 — pio)? 2 X1 (1 — par)?

= + 7
Vi #?g Vi M?l @)

IE[B(B; - 1)]

We substitute Equations (6) and (7) into Equation (4) to obtain an expression for the mean number

of packets in the user input queue operating under the fully queued access discipline:

Aizo (1 — pio) ¥i Aigo (1 — ptio)?
(] Hio B [1+ Aizo + Aiz1 — Aizo/ phio — Aiza/pi1]
Aig1 (1 — paa) ¥i Aig1 (1 — pir)?
; + — . . — (8)
Hil p4 [1+ Aizo + Ai21 — Aizo/ o — Xizn/ pinl

Referring back to Figure 5, we see that the user input queue operating under the independently

queued access discipline behaves as two distinct Geom/Geom/1 queues, the first with an input
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of intensity A;2p and the second with A;51. Thus, for each of these queues we have geometrically
distributed service times with z-transforms given by Equation (3). Again, taking the first and

second derivatives of Equation (3) at 2 = 1, we obtain the following service-time factorial moments:

E[By| = : ;:ik (9)
E[Bi(Bu — 1)) = L(lia;%ﬁ (10)

Substituting Equations (9) and (10) back into Equation (4) for each k, we find that the combined
mean number of packets in the user input queue operating under the independently queued access

discipline is given by the following formula:

Ai20 — Ai20 Hio Aiz1 — a1 i
E[Mi]: . A. - A. . . A A_ . (11)
Hio — A0+ Adzo fio a1 — szt + Ao i

3.3 Derivation of the Internal-Link Flows

In [BFG89, Ban90] a queueing-network model was used to evaluate analytically the performance
of the WON under the assumption of unlimited packet buffers at each station. Unfortunately, this
approach does not extend easily to WONSs that have limited packet buffers (and therefore must use
deflection routing). The difficulty in calculating the mean end-to-end packet delay or throughput in
WONSs that use deflection routing derives from the fact that we can not easily compute the packet
flow into each station, because the routing of a packet changes dynamically whenever deflections
occur. This differs from models for infinite-buffer networks with static routing in which there exists
a simple linear relationship between the traffic matrix and link flows.

We now present a model that can be used to approximate performance when deflection routing
is used in the WON with single-buffer stations. The model is intended to estimate the internal-link
flows A;jx, which we have defined to be the fraction of time slots in which there is a packet at input
port j of station ¢ being switched to output port k; restricting ourselves to two-transceiver stations,
wesee that 1 <1< N,0< j <2,and 0 <k € 2, where input and output ports number 2 are
for the user. The quantity 3~ A;jx corresponds to the flow through output port k of station i, and
therefore this sum must be less than 1, since each transmitter can transmit no more than a single
packet per time slot.

The probability that a packet is found waiting at output port k is 37; Ajjx (where 0 < 5 < 2).
Define L;x to be the number of packets in output queue & of station ¢ (where 0 < k < 2). Since each

output queue has only one buffer, we can express the mean number of packets waiting a output
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queue k of station 7 as }°; A, ie.,
2
Lit = Aijn (12)
—

Having derived expressions for the mean number of packets in the various queues of the network,
we can now compute the total number of packets in the network. Defining the random variable M
to be the number of packets in the WON and applying Equation (12), we find the mean number

of packets in the WON by summing up the mean number of packets at each queue of each station:

N 2 N
E[M] = ZZLik+ZE[Mi]

i=1 k=
N1 20 2 N

= 220D M+ ) E[M] (13)
i=1 =0 k=0 =1

where the terms of the second summation are given by Equation {8) or (11), depending on the
access method used at the user input queue. Assuming that the traffic load of v 2 2. Yi; packets
per time slot can be offered to the WON without saturation, we apply Little’s Result to derive the
relationship

M)

E[T)|= __‘—)’—_ (14)

Therefore, to compute the mean end-to-end packet delay in Equation (14), it is sufficient to calculate
the value of IE[M}, which is completely determined by Equation (13) once all values of A;; are
known. If we further define A;jx to be the fraction of slots during which internal link (i,4,k) is
occupied by a t-packet, then it is obvious that A;j;p = 3, Aijr. The remaining analysis will be
aimed at determining the values of A;jg., given the virtual topology and offered traffic matrix (y4).

A simple formulation involves assuming that a packet attempts to queue at a station’s output
port independently of other events occurring at the station. We define ¢;;.4 to be the component
of ¢;; that is destined for station #; thus, ¢;; = 3, b;;.. The deflection of a f-packet that is coming

through input port j is dependent on the simultaneous occurrence of the following two events:
1. A t-packet arrives at input port j ready to be switched to output port k.

2. A packet arrives at input port 7 ready to be switched to output port &, where 7 represents

the logical complement of j7,ie.,0=1and 1= 0.

The first event occurs with probability ¢;;., and the second event occurs with probability

Qf’l'j:s

(4,2,k)€l(i,s)
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Figure 6: Deflection of t-Flow on Internal Links.

which is the sum total of all s-flows intended to use internal link (4,7, k). Given that these events
are independent and that the ¢-packet will be randomly chosen for deflection, the probability of
deflection is equal to one half the product of the probability of the two events described above.
Now we can express the probability &;;..: that a f-packet will be deflected away from internal link
(%, 7, k) because another packet simultancously attempts to use output port k:
ijn = | ) | ¢ij:a2¢ij:s (15)
(7,2,k)€ll(3,5)
where 1 <7< N,0<j<1,and 0 <% < 2. We note that since internal link (¢,2, k) can buffer the
user’s packets before they enter the network, they suffer no deflections (where would the packets
be deflected to?).
Obviously, é;;z.; represents the fraction of #-packets that must be diverted away from internal
link (¢,7, %) and toward internal link (¢, 7,&"), where (3,2,%) € II(¢,t) and (¢,2,k") € A(4,¢). This
relationship between the link flow ¢;;.;, the internal-link flow A;;, and the deflected flow 6;;1.¢, is

graphically illustrated in Figure 6, and given by the following formulas:
Aijkit = @ijit — Oijhu (16)

and

Aijkrit = Oigkat (17)
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where 1 <1< N,0<j<1,1<t<N,(4,2,k) € TI{s,t), and (4,2, k') € A(z,1).
It must also be true that the amount of traffic flowing into a station equals the amount flowing
out. Thus,for 1 <i< N,1 <t < N, (4,2,0) = {I,m,2),and (i,2,1) — (g,7,2), the conservation-

of-flow conditions for the network are

Yit + ¢’i0:t + ¢’i1:t = él'm:t + qsqr:t (18)

if t # ¢, and
dio:t + Girt = M + Pimet + Pyrut (19)
ift=1.
Finally, we can use a variant of Equation (1) to express the relationship between link flows and

internal-link flows:
2
Gizit = 3 Nijhat (20)
k=0
where 1 <i< Nand0<j< 1.

Together, Equations (16)—(20) form a collection of nonlinear equations, the solution of which is
the values of A;jz.;. Although the variables ¢;;; appear as unknowns in these equations, they are
merely linear combinations of A;jz.¢, as seen from Equation (20). Solving these equations for Aj;x.
permits us to evaluate JE[T'] using Equations (13) and (14). We display in Figure 7 the complete
collection of equations that determine A;;g.:. To this collection we must add the conditions

2
0<d M <1
=0
for 1<i< Nand0<k<2;and
0 < ik S pir <1

for 1 <1< N and 0 < & < 1. The violation of either of these conditions signifies that the network
is not capable of carrying the offered traffic load. Such a situation arises whenever the rate of traffic
flow at an output queue exceeds one packet per time slot, or the arrival rate of packets to a user
input queue exceeds the probability that the queue “sees” a free slot.

The internal-link—flow algorithm of Figure 8 permits us to compute the internal-link flows A,
given the network’s virtual topology and offered traffic load. The algorithm begins by computing
the routing tables for the given virtual topology, resulting in the creation of sets of primary and
alternate routes, II(s,?} and A(s,t), for each source—destination pair in the network. We can

execute step 1 using an all-pairs shortest-path algorithm such as the well-known Bellman-Tord,
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For1<i<N,0<j<1,0<k<2,1<t<N

61'jk:t — ¢£j:t ¢i3‘:s

(4,2,k)€I1(3,s)
For1<i<N,0<7<1,1<t<N,(3,2,k) e II(3,t)
Aijiit = Gigit — Ok
For1<i<N,0<j5<1,1<t<N,(i,2,k) € (3,1), (i,2,k") €

A, 1)
Aijirat = bijk

For1 <:< N,(4,2,0)— (I,m,2),(4,2,0) — (¢,7,2),1 <t < N,t #1
Yit + Give + Girit = Dimu + Pgrut

For1<:i< N, (3,2,0) -~ (I,m,2),(i,2,0) — (g,7,2),t =i
dio:t + Dir:t = i + Dt + Pgrut

For1<i< N,0<j;<L,1<t<N

2
Gijt = 3 Nijhat

k=0

Figure 7: A Collection of Nonlinear Equations that Determine A;jx..
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. Setup of Routing Tables. For all s, t create primary and alternate routes,
II(s,t) and A(s,t), respectively.

. Initialization of t-Flows. Select a set of initial ¢-flows A;;x.; based only on
the primary routes, i.e., for all i, j, k, t assign

Aijht = Z Vst

(i,7,k)€II{s,t)

. Propagation of t-Flows. For all i, 7, t such that ({,2,n) — (4, ,2), assign
2
¢ij:t = Z Almn:t
m=0

. Calculation of Deflection Probabilities. For all 4, j, k, t assign

bijnt = Z bijit Diys

(i,2,k)€TI(i,s)

. Deflection of t-Flows. For all ¢, j, t assign

Aijkit = Pijie — Sijin M (4,2, k) € TI(4, t)
Njkrt = Ok 1 (2,2, K7) € A(4,1)

. Aggregation of t-Flows. For all i, j, k assign

Aijk = 3 Nijkat
:
. Calculation of Service Rate. For all ¢, k assign
ik = 1= Aok — Atk
. Calculation of End-to-End Delay. Assign Toq = T and

T:%%{

i=1

1

2 1
303 Aije 4+ Y min( Az, #ik)] + E}
k=0

7=0 k=0

. Convergence Test. If “?f— Toa

‘ is small enough then halt, else go to 3.

Figure 8: The Internal-Link-Flow Algorithm.

22




Floyd-Warshall, or Dijkstra algorithm. The initial ¢-flows are assigned in step 1 by routing all
traffic from source station s to destination station ¢ along the shortest path from s to ¢, without
taking into account the deflections that would have occurred. The core of the internal-link-flow
algorithm is steps 3-5, which route the t-flows Apnn.: from station I’s internal links to its outgoing
links, resulting in the updating of the ¢-flows ¢;;.;. Then the internal-link—t-flows A;;x.: are updated
according to the current deflection probabilities. The sequence of computations in steps 3-5 is as
follows: update the ¢;;,; based on the A;x, update the é;;;.; based on the ¢;;,, update the A
based on the ¢;;; and ;.. Steps 6-8 compute the mean end-to-end delay T, and step 9 tests
whether to reiterate or halt, based on the rate at which T is converging. In step 8 the calculation
of M; depends on the access method in use: we would invoke Equation (8) in the case of the fully
queued access method and Equation (11) in the case of the independently queued access method.
We apply Equation (14) to obtain the mean end-to-end packet delay for a given virtual topology
and offered traffic load.

The use of the min(.) function in step 8 is necessary because the resulting flow might be
infeasible, i.e., the network might not be capable of handling the offered traffic load without one or
more user input queues becoming unstable. A user input queue becomes unstable when the traffic
rate from the user exceeds the rate at which the transport network can admit packets. In this case
the mean end-to-end packet delay is unbounded.

The set of nonlinear equations in Figure 7 consists of O( N2) equations in 8N(N — 1) unknowns.
We compare this to the approach of [BC90b], which requires the solution of O(N?) equations in
at least O(N?/N) unknowns. Thus, we expect our approach to yield solutions more efficiently.
Although we could solve the system of nonlinear equations displayed in Figure 7 using one of
the well-known algorithms for solving sets of nonlinear equations, the internal-link—flow algorithm
of Figure 8 is a more efficient method for solving this system. The algorithm does not have to
concern itself with the conservation-of-flow condition in Equations (18) and {19), because we start
in step 2 of the algorithm with a conservative flow and maintain conservative flows throughout
each of steps 3-5. This saves computation steps and accelerates convergence in the internal-link-
flow algorithm. In fact, each traversal of the main loop of the internal-link-flow algorithm uses
O(N?) computation steps. The number of times that the main loop is traversed depends on several
problem factors, including the tolerance used in the convergence test, the traffic load, and the

virtual topology under evaluation.
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Figure 9: Comparison of Analytical and Simulation Models of a 64-Station WON with the Shuf-
fleNet Virtual Topology under Uniform Traffic Loading. (a) Fully Queued Access Method. (b)
Independently Queued Access Method.

3.4 An Assessment of the Internal-Link—Flow Algorithm

The internal-link—flow algorithm of Figure 8 allows us to determine the mean end-to-end packet
time of a given WON in much less time than it would take to simulate the WON. Moreover, the
accuracy of the algorithm is good, as we can see by comparing the analytically derived values of
IE[T] with those derived from simulating the WON. In the graph of Figure 9 we compare the
performance predicted by the internal-link—flow algorithm with simulations of a 64-station WON
that employs the ShuffleNet virtual topology defined in [AcaB87]. The results are for a uniform

traffic load, i.e.,
at = X ifs#t (1)
0 ifas=t
where the random variable X has a constant probability distribution, i.e., IP[X = a] = 1. Parts (a)
and (b) of Figure 9 correspond to performance under the fully and independently queued access
methods, respectively.
The second graph, shown in Figure 10, uses the 8 x 8 MSN virtual topology similar to the one

shown in Figure 2. The curves of Figure 10 correspond to WON performance under nonuniform

traffic load; in this case the traffic matrix is generated by choosing X in Equation (21) to he
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Figure 10: Comparison of Analytical and Simulation Models of a 64-Station WON with the MSN
Virtual Topology under Nonuniform Traffic Loading. (a) Fully Queued Access Method. (b) Inde-
pendently Queued Access Method.

uniformly distributed on the interval (0, 2¢e), i.e. IP[X < z] = z/2a for 0 < z < 2a. Figure 10 also
displays in parts (a) and (b) the performance to be expected when the fully and independently
queued access methods, respectively, are used.

For both Figures 9 and 10 we note the slight performance advantage that the independently
queued access method has over the fully queued access method. Although the low-load delays are
essentially equal, the independently queued access method ultimately accommodates a heavier load
than the fully queued access method before saturating. This advantage is, of course, intuitively
obvious because the independently queued access method allows up to two packets to be simultane-
ously served from the user input queue during a time slot, whereas the fully queued access method
can serve no more than one packet per time slot.

We also compare the analytical and simulation results for larger WONs. The graph of Figure 11
shows the predicted performance of a 196-station WON with the 14 x 14 MSN virtual topology.
These results are also for nonuniform traffic, and the traffic matrix is generated by choosing the
random variable X in Equation (21) to have the exponential probability distribution with mean «,

i.e., IP[X < 2z} =1—e%/23 The graph is only for networks using the fully queued access method.

3We actually truncate the tail of the exponential probability density function so that it does not generate a traffic
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Figure 11: Comparison of Analytical and Simulation Models of a 196-Station WON with the MSN
Virtual Topology Using the Fully Queued Access Method under Nonuniform Traffic Loading.
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Table 1: Comparison of the Running Times of Simulation and the Internal-Link-Flow Algorithm.

Network Size Traffic Simulation Running Algorithm Running
and Type Loading Time (10000 Slots) | Time (99-Percent Convergence)
64-Node 0.4 packets/s 3276 s 36s
Optimized 4.0 packets/s 329.0 s 51s
Toplogy 10.1 packets/s 333.7s 8.6s
100-Node 1.0 packets/s 792.3 s 12.9 s
MSN 5.0 packets/s 793.1s 1445
Toplogy 10.0 packets/s 7890.8 5 18.2 s
160-Node 2.5 packets/s 2869.3 s 48.0 s
ShuffleNet 7.6 packets/s 2870.5 s 59.7 s
Toplogy 10.2 packets/s 2863.7 s 69.9 s

As one can see, the agreement between the analytical and simulation models is quite close in all
three cases considered. The analytical model tends to underestimate slightly the actual end-to-end
packet delay. One explanation is that the independence assumptions required in the analysis tend
to produce optimistic predictions. The first independence assumption is that the stream of free
slots seen by the user input queue is a (discrete) memoryless process. This leads to our adoption
of geometrically distributed service times at the user input queue. If, in fact, the free-slot arrival
process is not memoryless, we could observe service times that have a higher degree of variation
than the memoryless process, and this would cause the users’ packets to have longer waiting times.
A second source of inaccuracy might be the assumption that simultaneous contention for an output
port is the outcome of two independent events. If the joint arrivals of contending packets are
correlated, then the actual deflection probabilities could be higher than predicted. However, since
the fidelity of the analysis appears to be extremely good, we should not be overly concerned about
the inaccuracy of our independence assumptions.

Although the fidelity of the internal-link-flow algorithm is good, we should also examine the
efliciency of the algorithm. We compare in Table 1 the running times of the internal-link-flow algo-
rithm and a discrete-event simulation of the deflection-routing WON for several problem instances.
The programs were run on a SPARC-based workstation with a 33-megahertz clock. The table shows
data for three different WONSs, i.e., a 64-station WON with a virtual topology optimized by the
procedure to be described in the next section, a 10 x 10 MSN virtual topology, and a 160-station

ShuffleNet virtual topology. For each type of network the table displays three different traffic load-

matrix in which a t-flow is greater than 1.
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ings, and the traffic pattern is uniform in all cases. The algorithm was run until the estimated delay
reached 99 percent of its actual value, and the simulation was run for 10000 time slots. It is clear
from Table 1 that the algorithm executes much more quickly than the simulation—the algorithm
runs from 41 to 91 times faster than the simulator.

Although the internal-link-flow algorithm is much faster than simulation of the WON, the
sequential algorithm presented in Figure 8 could still benefit from speedup. The need for speeding
up the algorithm is especially acute when we wish to evaluate the performance of a large number
of WONSs, as in the topological design problem to be presented in the next section. The algorithm
can be parallelized in a straightforward way: steps 3-7, even though they must be evaluated in
sequence, all consist of loops that can be individually parallelized. We parallelize each step by
executing values of the loop index 7 concurrently, since there is no dependence between successive
iterations of the loop. We must, however, provide a synchronizing barrier at the end of each of the
steps 3-7, since a step uses the results of its preceding step. We note that we can also parallelize the
computation in the initialization steps 1 and 2. The algorithm was parallelized in this way and run
on the Sequent Symmetry shared-memory multiprocessor using the machine’s parallel programming
C-language library.

In general, the internal-link-flow algorithm of Figure 8 converges rapidly, but the rate of conver-
gence is higher for lower traffic Joads. Intuitively, the time that a deflection-routing network needs
to reach a state of equilibrium after startup is dependent upon the likelihood of packet deflection.
The more likely that packets are to be deflected, the longer an observer would have to wait to see
the network flows stabilize to a steady state. We show in Figure 12 the convergence histories for
a 64-station WON with the MSN virtual topology. The three curves of the figure are for three
different traffic loads, but all three traffic matrices are uniform. The curves trace the estimated
value of IE[T] in the internal-link—flow algorithm, showing its value for each iteration of the loop
in steps 3-8. The point at which the algorithm’s estimate of IE[T] reaches 99 percent of its actual
value is also shown on each curve. Clearly, the number of iterations needed to reach the 99-percent

point of convergence increases steadily as the total offered load is increased.

4 Topological Design

In this section we outline the virtual-topology design problem and discuss how to integrate the
simulated-annealing and internal-link—flow algorithms to design optimum virtual topologies for the

WON. We illustrate these techniques on two example 64-station WONs.
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Figure 12: Convergence of the Internal-Link-Flow Algorithm for a 64-Station WON with the MSN

Virtual Topology under Three Uniform Traffic Loadings.
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4.1 The Virtual-Topology Design Problem

The virtual-topology design problem is to arrange the virtual topology of the WON in a such a way
that the routing procedures—which incorporate both primary and alternate routes—can deliver
packets in the least amount of time. The virtual-topology design problem requires us to choose the
virtual topology and the set of primary and alternate routes that minimize the mean end-to-end
packet delay JE{T] for a given offered traffic load (7i;).

Given the use of deflection routing in the WON, the problem to be ultimately addressed in this
paper is how to design a virtual topology that achieves superior performance. The toroidal virtual
topology of the MSN is often advocated because no deflection incurs a penalty of more than four
additional hops. Thus, alternate routes in the MSN have lengths comparable to primary routes.
Intuitively, a virtual topology that does not permit short alternate routes for blocked packets will
suffer from bad performance caused by excessive hopping. The key to designing a good virtual
topology for deflection routing is to find a directed graph that combines small mean internode
distance with short alternate routes.

A packet attempts to reach its source station via a primary route, which is the shortest path
from the source station to the destination station. It is important to keep primary routes short,
since deflections only add hops to the primary route. As the traffic load increases, so does the
probability of deflecting a packet. The final route that a frequently deflected packet ultimately uses
can differ radically from its intended primary route. Therefore, it is also crucial to keep alternate
routes short.

To find the virtual topology that affords the best performance, we apply the simulated-annealing
algorithm [KGV83], which is shown in Figure 13. We have previously obtained excellent results
using the simulated-annealing algorithm to optimize the virtual topology of the unlimited-buffer
WON (in which deflection routing is unnecessary) [BG90, BFG90c, BFG90b). Obviously, the
calculation of the cost function IF[T] in step 3 of Figure 13 requires us to compute the primary and
alternate routes for the given virtual topology, which involves the computation of shortest paths
between all pairs of stations. We must also execute the internal-link—flow algorithm each time.
Thus the evaluation of the cost function can be expensive.

In implementing the simulated-annealing algorithm, we represent the state of the system as a
virtual topology. The virtual topology, which corresponds to a directed graph in which all nodes
have two incoming and two outgoing arcs, is perturbed to generate a new virtual topology (step 3

of Figure 13} by swapping the targets of two randomly chosen arcs. This produces a new directed
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1. Initialization. Select an initial temperature ¢ and an initial virtual
topology A.

2. Epoch Initiation. Start a new epoch.

3. Perturbation. Randomly choose a virtual topology ¥ that is a nearest
neighbor of X. Assign A = [E[Ty] — E[Ty).

4. Acceptance/Rejection. Assign X = Y with probability min(e—2/¢, 1).

5. Temperature Reduction. If the epoch has reached steady state then
assign ¢ = rt, else go to 3.

6. Convergence Test. If no improvement has been observed for the last
several epochs then halt, else go to 2.

Figure 13: The Simulated-Annealing Algorithm.

graph in which all nodes have exactly two incoming and two outgoing arcs, i.e., a legal virtual
topology. The new directed graph can be viewed as a nearest neighbor of the original directed
graph under the arc-swapping operation.

To ensure that we find a near-optimum solution, we perform a careful annealing, allowing each
epoch to complete only when equilibrium is reached, and reducing the temperature by a small
amount at the conclusion of the epoch. This is a computation-intensive algorithm, so we have
chosen to speed up the algorithm by parallelizing the computation of the cost function [E[T], as
discussed previously in Section 3. Compared to the sequential version of the algorithm, the parallel
algorithm has noticeably lower run time.

In evaluating the cost function IE[T] the internal-link-flow algorithm must determine conver-
gence by comparing whether the difference between two successive estimates is within a given
tolerance. Therefore, the rate of converge depends upon the choice of the tolerance—the greater
the tolerance, the faster the rate of convergence. When invoking the simulated-annealing algorithm,
we can afford to relax the convergence test by using a tolerance that is somewhat larger than usual.
Furthermore, the simulated-annealing algorithm only needs to rank the relative costs of the differ-
ent virtual topologies, so the fidelity of the cost function is not critical. Thus, by specifying in the

convergence test (step 9) of Figure 8 a tolerance that ensures rapid convergence, we can further
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trim valuable computation time from the simulated-annealing algorithm.

4.2 Examples: The Design of a 64-Station Network

This section describes experiments conducted to evaluate and compare the performance of deflection
routing with various virtual topologies. In these experiments we compare the performance of WONs
with optimized virtual topologies against that of the MSN and ShuffleNet.

The WON is optimized by simulated annealing using a traffic matrix that exerts a moderate
traffic load on the network. The user input queue employs the independently queued access method.
As its cost function the simulated-annealing algorithm uses Equations (11) and (14), which are
evaluated by the internal-link—flow algorithm of Figure 8. The MSN’s toroidal interconnection is
used as the initial virtual topology in the optimizations.

We show in Figure 14 a comparison of mean end-to-end packet delay for the 64-station WON
with the ShuffleNet, MSN, and optimized virtual topologies. The curves, which were produced using
the internal-link—flow algorithm of Figure 8, depict performance under uniform traffic as the offered
load is scaled up. Although the optimized virtual topology achieves lower delay than both the MSN
and ShuffleNet, the improvement is small. The 30-percent improvement in maximum throughput,
however, is significant, and this clearly justifies the use of virtual-topology optimization in the
design of the WON.

Figure 15 also compares mean end-to-end packet delay for the 64-station WON with the Shuf-
fleNet, MSN, and optimized virtual topologies. The curves, which were produced using the internal-
link—flow algorithm of Figure 8, depict performance under nonuniform traffic as the offered load is
scaled up. The traffic matrix was generated by choosing X in Equation (21) to have a Bernoulli
distribution, i.e., /P[X = 0] = 3/4 and IP[X = 1] = 1/4, which corresponds to a scenario in which
a given station exchanges traffic with about 1/4 of the other stations in the network. As in the
uniform-traffic example, we observe the improved performance of the optimized virtual topology,
compared to that of the MSN and ShuffleNet, and the improvement with nonuniform traffic is even
more dramatic than in the uniform-traffic case. In addition to the modest reduction in delay, the
optimized virtual topology provides at least 60 percent more throughput than either of the other

two virtual topologies.
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Figure 14: Comparison of Delays in 64-Station WONs with the MSN, ShuffleNet, and Optimized

Virtual Topologies under Uniform Traffic.
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Figure 15: Comparison of Delays in the 64-Station WONs with the MSN, ShuffleNet, and Optimized

Virtual Topologies under Nonuniform Traffic.
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5 Conclusion

Deflection routing is made possible by the unique structure of virtual topologies that provide each
station with exactly p dedicated input and p dedicated output links. It has several attractive
features, including a straightforward implementation in hardware and a reduced requirement for
packet buffers. Yet deflection routing has the obvious inefficiency of increasing the hop count of
packets during periods of congestion. A good understanding of deflection routing is also hampered
by the lack of flexible, general-purpose models for evaluating its performance.

Using a newly developed analytical model of link flows, we have proposed a method for designing
the virtual topology of the WON so that performance is optimized when deflection routing is used.
The simulated-annealing algorithm has provided good results by discovering virtual topologies that
provide low delay and high maximum throughput for the specified traffic matrix. Compared to well-
structured virtual topologies such as the MSN and ShuffleNet, the optimized virtual topologies excel
in both delay and maximum throughput.

In the course of our research, many problems have been left unsolved. Our model has not
incorporated the effects of propagation delay, which can be a significant component of overall
delay. To model propagation delay between stations we can introduce additional infinite-server,
fixed-delay queueing centers between connected output and input queues. Therefore, if 7k mn is
the propagation delay (in time slots) on link (¢, 7,k} — (I, m, n), then we would add to Equation (13)
the term Yim PimTijk—tmn. Hence the mean end-to-end delay can be computed using Equation (14).
Nor does our model consider postrouting network access. As noted earlier, we could enlist the results
of [TB90] to handle this type of access. Finally, we have used a very simple model for resolving
contention when two packets try simultaneously to access the same output port, i.e., the decision
is made by a fair coin toss. However, more-sophisticated and better-performing schemes can be
imagined, e.g., granting priority to packets from a given class of traffic, or to packets that are closest
to their destinations, or to packets with the greatest age. Of these, our model could be adapted to
deal with all but age-based priorities, since—unlike the formulation of [BC90b]—we maintain no
information about the packet’s age. For instance, to model a switching policy that gives priority to
the packet with the closest destination, we could modify Equation (15) to reflect the fact that &4
is influenced only by s-flows in which station s is closer to station 7 than is station ¢. Although
superficially plausible, all of these extensions to the basic model would have to be validated by

simulation.
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Moreover, in light of the recent studies of Maxemchuk [Max90], we should keep in mind that

switching and routing mechanisms that perform well in a statistical sense might still have problems

with lockout, livelock, and congestion spreading. Although these problems occur only in patholog-

ical cases, they do remind us that the network must be designed in such a way as to operate fairly

for all customers.
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