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ABSTRACT OF THE DISSERTATION

Resource and Job Management Concepts

in Distributed Systems

by
Yigal Sadgat
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1990

Professor Mario Gerla, Chair

Many existing office automation systems support a large number of users
taking advantage of a multitude of shared services like archiving, printing,
mailing, scanning, and computing. Further techneclogy advancements will
lead to offering additional-services and features including voice, music, still or
moving video, and images addressing multi format issues. Jobs submitted by
the users will be more complex and may require the cooperation of several

services to complete: printing voice messages is one simple example.

With the ever increasing number of resources and users, resource and job
management protocols are needed in order to optimize resource utilization
and job assignments in the network while maintaining or increasing
transparency, improving response times, and relieving the users from the

need of being familiar with the network services.



In concert with the above, this work proposes a flexible approach supported
by an entity called the Task Manager (TM). It receives service requests from
the users and based on its own network knowledge, partitions the job into
tasks and optimally assigns them to servers while minimizing response time
and network traffic. The TM may manage any job mixture, a set of one type
servers, or a balanced set of different servers. The TM may dynamically
change its domain by releasing or acquiring servers. [t transparently handles
resource failures, removal or addition of network services and depending
upon the particular system, the TM may be distributed or centralized. The TM
abstract belongs in the Applfcation layer and is capable of accommodating

many communication networks.

Simulation was used to measure the performance improvement achieved by
implementing a distributed TM in a local area network. Given job size and
complexity, the effect of changing arrival rates and workstation count on
response times, utilization and queuing times have been studied and possible
bottlenecks identified. Response time sensitivity to changing workstation and
server processing speeds as well as load balancing algorithms have also been

analyzed.
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1.0 Introduction

In the past several years local area networks (LANS) [Met76] {Bog80] and
distributed systems have gained popularity and drawn the attention of
researchers as well as network and distributed system developers. Early
networks offered limited functionality and relatively low communication
speeds. They allowed for resource sharing, bettered their utilizafcion and
improved total system reliability. Today LANS support larger and faster
distributed systems offering advanced and more complicated services
coupled with improved diversification at a much lower cost. The number of

users supported hasrisen and additional environments have been addressed.

The concept of networking and distributed systems has proliferated to many
areas and is not limited to the scientific or academic environments [Pop81]
[Wal83] [Nel84] [Lis83] [Lis85]. Many existing office automation LANS
support a very large number of users taking advantage of a multitude of
shared services like archiving, printing, mailing, scanning, formatting, and
computing which are readily available in the office environment. The
factories followed with automation standards (MAP etc.) which help

integrate a multitude of devices together to support manufacturing tasks.



These devices include control computers, robots, component storage

systems, graphic CAD workstations, plotters etc.

Further research in networking and communication coupled with
standardization [Z2im80] led to wider acceptance of ETHERNET [Met76] based
LANS. Distributed system algorithms facilitated further enhancement of
applications like process control and distributed data bases {DDBMS) as well
as others relying on the cooperation of multiple sites. One of many
important requirements from the user's point of view was that distributed
and non-distributed systems do not differ from each other with regard to
their interfacing with them. Nevertheless the number of different and
conflicting user interfaces stands in direct relation to the number of systems

offered.

Figure 1.1 depicts a typical LAN and its elements supporting engineering and
academic environments. Workstations perform a multitude of tasks
including engineering development, office related document creation and
editing, electronic mail, accounting, process controi and remote network
management. The more advanced workstations may support CAD/CAM and
other graphically oriented tasks and may contain peripheral units like disks
or tape drives. Another service offered is filing and archiving. Each user may
have a dedicated file space or access to public files. Its size and location is
transparent to the users. Those files not frequently needed may be archived
and retrieved when needed. Computation bound tasks may be directed to

the departmental processor or alternatively, through the communication
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Figure 1.1: Office automation network configuration

server to the remote mainframe shared with other networks as well. The
users requiring hard copies may select any of the print servers based on their
location and features. in case a printer is unavailable, another one may be
selected. A service which is transparent to the casual user is the

clearinghouse, also called a name server. Last but not least, all of the above

are connected by a LAN at transmission speed of 10MBPS.




Jobs and servers are managed by the users and to some extent by the
network administrator. Users decide on job’s functional flow thus they need
to know the exact steps to be performed as described in this section. They
may assign a task to server S3, upon completion transmit it to server Sy and
then to S¢ . Servers freely accept requests from users and are not being
“managed” by anyone. Authentication is the only function some of them
perform. For example, file servers may use an authentication protocol before
responding to “read” or "write” requests from users to ascertain that they
are who they claim they are and that they are permitted to have the
requested access. The management questions become more acute
considering new technologies and user sophistication. Users should not be
asked to perform system management functions since (a) they are not in a
position to do that, (b} it should be transparent to them, and {c) a better
candidate may be identified. As the systems grow more complex, more
servers become available, and there is a need to address different formats
which are not normally addressed by the users and different media which
the user may have no control or knowledge of. There is also a need to
respond to dynamic changes occurring due to different loads and system

faults. These functions become too complex and time consuming.



1.1 The Need for This Work

Some terms used in this work should be defined:

A job is a bounded set of tasks {ts, tb, tc, . . . th} to be performed on an
object.
td
13 —“‘tb —1 —1e -t ..., —= tn
tf

The tasks may be inter-related with some precedence relationships like t;
and t, while others may take place in parallel: tg, te, tf. For instance, printing
is a job. It may include an object residing somewhere in the distributed
system which has to be transmitted to a server capable of performing the

needed operation - print. Performing multiple computations is another job.

Job Management defines the process employed in executing a job
including partitioning, task assignment, load balancing and exception
handling.
Said differently, job management is the step by step process a job undergoes
from its reception till successful completion. Job management and System

Management are related.

System Management is a set of protocols by which the system
components are controlled.
Given servers and clients, system management includes task assignment,
load balancing, feature matching, utilization optimization and fault
tolerance. In order to further clarify the terms above, the following office

automation example is provided. A user wishes to print a document he



received from a colleague. He has to know its format and encoding and then
select a printer by considering its physical location and features. Nowadays,
the job management function is done by the user: he submits the job to the
selected printer. There is no system management done in this case - there is
no knowledge of how loaded the printer is, its status (active or out of

service) nor action taken upon successful or unsuccessful job completion.

Servers provide services and no distinction is made between these two terms.
Users and clients are also used interchangeably. This work addresses the

distributed scientific, engineering and office environments.

All of the distributed systems in the office and engineering environments
offer the individual users with the necessary tools to create, manage and
exchange textual information without the need to understand how these
operations are being executed on their behalf. Once the network logical
name of the intended document recipient is known, all the user needs to do
is mail the message without, for instance, worrying about routing,
fragmentation or transmission errors. Similarly, filing is transparent to them.
Physical location and electrical characteristics of the server are issues that the
users do not need to consider. Additional tools are also available to them to

assist in their day-to-day operation.

The need to share information, perform group activities and use common
resources may necessitate knowledge of multi media and format devices if

current systems do not improve. Limiting sharing to the immediate



environment does not support efficient sharing but relieves the users from
considering multi media and format issues. This limitation is unacceptable
and ignoring the subject means that users will have to contend with it
themselves thus requiring them to get involved with format and media
issues which they might have no interest in nor knowledge of. A simplistic
approach requires the resource and destination formats and media to be
identical. For example, if a text only document is sent, the recipient must be
able to: (a) interpret the document format, (b) understand its encoding and
character sets, and (c) have the necessary character generators/fonts to
either display or print it. Failure to support any of the above will prohibit
processing the document. On the other hand, the destination system may
use different formats and media leading to the need to translate the format
and consider the different media, issues that may not be trivial. Not all
formats can be translated. Also, if the original media requires a bit mapped
screen at a certain resolution, the destination must support that, otherwise
another conversion may be needed. Note that the commercially available
systems offer services relying on existing technology in the areas of I/0,
processing and communication. Future technologies will offer yet additional

capabilities and features at much better price/performance.

With the vast number of applications and system configurations currently
available there is a need to provide system and job management functians
which will not rely on the user's past knowledge of the network. In XNS
[XerQ1], for instance, the users have to select a server and monitor its status.

Frequently, if the server is busy, they have to wait despite the fact that there



might be another server available. In more demanding environments, there
is 3 need to know in advance the server status, capabilities, location, and
performance. Furthermore, multi format systems require the users to
perform intermediate steps which may be routinely performed by a service

on their behalf.

The problem may be compounded if we consider future systems supporting
additional features. For instance, mailing text messages to a recipient who
has the capability of processing text only is acceptable but messages
containing text and graphics will pose a problem. Issues like printing text
and graphics can be resolved but printing animation is not as simple and so is

the case with printing voice messages.

Current and future systems require additional functionality to reduce the
amount of human guidance in:

(a) the process of job submission and

(b) job management following submission.
Very often users rely on their familiarity with the system thus expecting it to
perform a routine job the same way over and over again. Possible random
system faults have to be addressed by them and corrective measures taken.
Adding, removing or performing back-up on file servers interfere with

normal operation and should be transparent to them.



Most systems do not provide adequate system and job management
functions leading to congestions and possible bottlenecks. In several systems
{XNS, DECNET) [Xer01]} load balancing and resource selection, in case of more
than a single instance of a server, is either non existent or left to the user.
The user has to
(a) know about the availability of the particular service and its
capabilities, (b) select a server,
(<) inquire the resource’s state and status; e.q. is it alive and how long its
input queue is,
(d) possibly repeat the sequence for other services in case he is unsatisfied
with the outcome of step (¢),
(e) decide which one to use, and
(f) submit.
The process may get more complicated considering possible intermediate

processing needs like pre or post processing.

Steps (a) to (f) inclusive partially describe the Job Submission Process. Once
the job has been submitted to the selected server there might be a need to
report its interim and final status. The submitted job may complete with or
without errors. Server failures due to a multitude of reasons may lead to
unnecessarily repeating intermediate steps that could have been saved
otherwise. Intermediate steps like task partitioning, status reporting, and
scheduling should be handled by a service based on a pre-defined set of rules
thus requiring job management protocols. There is a need to specify it

considering: load balancing, feature matching, utilization optimization,



transparency, fault tolerance, increasing overall system performance, and

cost optimization.

This work will provide resource and job management protocols and concepts
for the office, engineering, and scientific environments while improving
response times. Improving response time will be verified by simulating
implementation in the XNS environment. The simulation will also provide for

a performance tradeoff discussion.

1.2 Related Research

The protocols and concepts researched in this work may support the Digital
Library System (DLS) as proposed in [Kah88]. One of the functional
componentsin the DLS is the Knowbot which is similar to the TM as proposed
here. The MP in [Gai87] is a distributed process manager for engineering
workstations dealing with concurrent processes and process migration with
some conceptual similarities with the Task Manager in my work. The RM
[Sum87] deals with resource sharing for personal computers in LANs. Andrew
is the name given to a distributed personal computing environment [Mor86]
in Carnegie-Mellon. This research addresses personal computing and
communication systems. As with XNS [Xer01] which has influenced its design,

it does not provide for job management.

10



Digital Library System

The Digital Library System (DLS) [Kah88] is a set of concepts for managing a
vast collection of current or transient information that may be available in
libraries or archives in the form of video and audio tapes, books, magazines,
disks and even newspapers (which are mainly of transient interest). It is
viewed as a collection of information and knowledge made up of many DLS's
that are geographically distributed and managed by different organizations,
Convenient access to local and remote information, regardless of location, is

an essential goal of the DLS.

The DLS proposes to deal with the large amount of information already
available in computer based form but might not be easily accessed therefore

of little use.

A Personal Library System (PLS) which is uniquely tailored to the user’s
individual needs will perform tasks on his behalf. If local requests for
information are not satisfied by the PLS, perhaps a more global source of
information should be searched thus leading to spawning multiple inquiries
dealing with possibly thousands of DLSs. This search is mediated by an active
intelligent program called Knowbot. One possible Knowhot is a document
editing Knowbot. The Knowbots are constructed on behalf of the users to
accommodate their requests and operate in their Knowbot Operating
Environment (KNOE). They communicate with each other by sending
messages and may even be used to transport other Knowbots. Depending on

whether Knowbots directly serve users, they may be classified as user or

11



system Knowbots. User Knowbots accept instructions from the user and
determine how best to meet the stated requirements, perhaps by interacting
with other Knowbots. "Certain Knowbots have a permanent status within
each user’s system and are known as resident Knowbots” [Kah88]. Another
kind of knowbots may be spawned dynamically to complete a task and then

deleted.

One of the principal concepts in the DLS is the ability to access any document
within the entire DLS. Using the PLS, the user can modify a document,
combine it with another document, search for phrases in it, mail and then
print it. “Two important components of the DLS ... are the Import / Export
servers and the Representation Transformation servers. The former
components are responsible for accepting new documents into the DLS and
for dispatching documents out of the system. The latter components convert
documents from one internal representation to another. Depending on the
nature of the output required, the obtained results may be passed through a
Representation Transformation server for conversion before being
delivered” [Kah88]. The results may be destined back to the originating PLS
or a target PLS designation outside the particular DLS thus passing through
the import export server. The principal components of the DLS include
import/export server, registration server, statistics and billing, representation

transformation servers and others.

Issues like standards, scanning, digital representation of recorded or

synthesized voice, and conversions from old to new formats are being

12



addressed. One of the DLS enabiers is standardization to facilitate

information sharing between DLSs controlled by different organizations.

The initial application of the DLS will allow users to retrieve documents for
which they may be able to supply only an imprecise description. It will also be

tailored for the domain of printable documents.

The DLS and the TM are similar in some respects but different in others. The
TM allows users to tailor their domain to support individual needs. If a user
service request cannot be performed by the TM, due to a transient or
permanent ioss of capability, the TM will request other TM's help. As with
the Knowbots sending messages to each other, the TMs can interrogate and
assign tasks to each other. Knowbots and TMs alike accept requests from
users and act on their behalf in executing the requests. However, a major
difference between them is that TMs do not spawn ancestors and do not
generate remote TMs. A TM is statically assigned to a site and can only assign
tasks to other TMs with the expectation that the TMs will perform the tasks
rather then reassign them to other TMs. The TM local data base is the

enabler upon which this expectation is based.

The TM and DLS access the same type of servers. In fact, the initial DLS
implementation deals with printable documents. The TM concept also deals
with printers and print related activities. The protocols developed in chapter

3 of this work may also help in the DLS research program.

13



Another related work is the Distributed Process Manager (MP) [Gai87] which
is a distributed process manager for an Ethernet connection of engineering
workstations with the functions of invoking concurrent process sets,
downline loading of programs to processing sites and transparent process
migration. It manages execution of several processes in parallel on
cooperating workstations taking advantage of the multiplicity of
workstations. The MP is insensitive to the number of workstations in the
network but is limited to the subnet: workstations connected through
bridges and gateways are not included in the process management.
Workstations in the network compete among themselves to respond to
requests for processing since the MP does not assign jobs to them but rather
waits for them to respond to a multicast message thus implementing
receiver initiated load sharing. To the entities using its services, the MP
appears as a single pro;ess despite having being replicated in every
workstation as a shadow MP. [t manages process migration and load sharing

transparent to the users.

The MP and TM share several properties, one of which is providing faiture
and location transparency. As with TM failures (without history files) that
may lead to the loss of jobs already executing in the system servers, the MP
may lose context when a parent process station fails. As with the TM fault
tolerant protocols, if the principal MP fails, one of the shadows takes over

and deals with orphan processes. MPs exchange information in form of

14



status, commands and argument lists as well as data.The MP and the TM are

both application level oriented.

The RM system, described in [Sum87] [Sum89], is an experimental prototype
that supports the use of distributed services offered by personal computers
connected to a local area network. Using a service request model, RM allows
any PC on the LAN to offer and use services. Once RM is initiated, the users
are provided with local and remote actions: the Disk Operating System (DOS)
commands are executed locally and the RM actions executed remotely on
other PCs offering remote services. To invoke a service offered by any
machine, users issue a SendRequest call. If the request is successful, a
requestiD is returned from the remote server. This is done by the server
sending a Receive Request message with the ID. Although the user (or a
program on his behalf) may request service, the user himself is responsible
for selecting the server, receiving results and if needed, resubmitting the
task to another server for further processing. No load balancing is performed
and transparency (i.e. users should not need to submit their jobs to more
than one server regardless of job complexity as described in the next two

chapters} is not supported.

The Cipon mode! [Wag86], like the RM, concentrated on how a set of local
systems can be transformed into a distributed system. A set of one type of
local resources is combined to form a distributed resource of the same type.
These clusters of resources are managed by a resource manager. One of the

requirements was that the interface to local resources should not differ from

15



remote resources therefore maintaining transparency. A communication
model is developed to provide for weakly coupled processes the capability of
master/slave status. It has been implemented for personal workstations and
uses the ISO transport layer with remote procedure calls. The Cipon system
supports functions needed in the office environment: printing, filing, mail,
time-of-day and others. It is used to build a transparent, distributed and
network-wide file system from local files on each station. Like the RM, it

doesn’t provide system and job management.

Andrew is a distributed personal computing environment [Mor86]. It is based
on four key components: high bandwidth network, personal computers,
raster graphics and time sharing file systems. Andrew, which is strongly
influenced by Xerox Network Systems [XerQ1], uses workstations called
Virtue, Ethernet and fiber optic LANs supporting a file system called VICE.
The basic architecture of VICE has only simplified support for services such as
mail and printing. Printing is merely a file transfer to the print server.
Mailing consists of storing a file in the mailbox subdirectory. If users require
multiple step processing in order to complete a job, they need to submit
multiple service requests until all needed services are completed and the job

isdone.

Telesophy. Telesophy’s [Sch85] purpose is somewhat similar to the DLS:
creating a system providing transparent knowledge manipulation for
different types of data stored in different physical locations. A universa!

library may be connected by a network called WorldNet: all of the world’s

16



information may be available through this network regardless of media type
and location. Telesophy or “wisdom at a distance” should be available to
anyone without the need to possess the knowledge of where to search for
the information. The system components included in this work are multi
format databases and the worldwide network. Navigation through the
databases (“information space”) requires a continuous interactive series of
fetches from information distributed throughout the network. Once the
information is retrieved, it is manipulated by the user and stored as
Information Units (IU). Thus in a Telesophy system, the user sees a single
large collection of nodes: the IUs. In the current prototype, since the
WorldNet is unavailable, a set of 20 databases are incorporated and all
database search queries repetitively interrogate them. File type, format and
location transparency is required in order to support “fast transparent

worldwide access to information” [Sch 87al.

Telesophy and the TM share some concepts: transparency, and unified
information (or service) space. However, Telesophy is brought here as an
example of how the TM concept may be incorporated in it: users may assign

their tasks to the TM rather than perform them themselves.
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2.0 Functional Requirements

The previous section discussed the need for system and job management in
distributed systems. This section discusses the functional requirements from
the user’s point of viewed as well as added globai requirements in order to
tailor the research model to suit these needs. The users who interface with
the system may view it as a “black box”. Nevertheless, there are very
demanding requirements which are not easy to quantify (how can
transparency be quantified?). The requirements are categorized based on

their effect on the user or the “system”. Some requirements fit both.

2.1 The Environment and Its Characteristics
The environment is qualitatively discussed in order to provide the context
for the functional requirements. Three entities make the environment:
(a) the users,
(b) the services provided, and

(c) the interconnection network.
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2.1.1 The Users

Several user types may be identified. The layman is characterized by
repetitive use of a small set of services. His system/global demands are
minimal and so is his inner-working knowledge of it. Aithough the
number of services needed by one individual is small, not ali laymen use
the same set of services. Therefore there is a need to- {a) provide him with
enough on-line information to facilitate his use of the system, and (b)
protect the users and the system and recover from possible mistakes.
Supporting laymen does not reduce the complexity of the issues. User

requirements may change in time.

In contrast with the layman is the expert user. System developers,
engineers, scientists and researchers belong in this category. They may be
intimately familiar with the system operation and demand a multitude of
services to be provided in addition to low response time. They also err
thus needing the tools to recover without affecting other users. The
experts also tend to belong in the group of frequent users. Regardless of
how frequent users access the services, their fevel of expertise and service

needs may change in time.

Although the user interface is outside the scope of this work, the
equipment used has to be considered. Input devices include the following
traditional as well as advanced means: keyboards are used for text:
pointing devices like mouse etc. are becoming available especially in

graphic oriented applications; scanners at different speed and resolution
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provide bit mapped images; magnetic and optical disks and tapes have
been used for mass storage and backup, voice input as well as video
(digitized and possibly compressed) is being offered. Qutput devices
include the populfar CRT for text and graphic images either in
monochrome or color; various printers and plotters as well as laser
printers supporting paqe description languages; various disks and tapes
for filing and archiving; voice and video signals in digital form may be

recorded and/or transmitted over the communication lines.

2.1.2 The Services

The intent of this section is to point to the various categories of services,
not to list them or discuss their technology. Each server is managed by
control messages and receives and/or generates data. Servers like printers
receive data only thus they belong in the input-only category [Wag86].
Scanners convert printed material into electronic images therefore they
belong in the output-only category. Computing services, for example,
receive and produce data, thus belonging in both categories. They all will
be included in the protocol sets proposed in this work regardless of their
function or performance. These services include filing, name servers,
printing, mailing, format converters, voice, and video servers. Computing
services may be available to all users but disk filing space may be
restricted. These servers are not controlled: tasks assigned to them are
random based on a first come first serve basis and in fact their logical

location in the network is of no interest to the users. Some servers are
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transparent to the casual users: name servers, for example. It is

anticipated that the number and variety of services will always grow.

2.1.3 The Interconnection

The third element in the environment is the intercoannection mechanism
which may be a LAN, WAN, FOLAN etc. The network is being viewed
generically and characterized by several parameters including
transmission speeds ranging from 2M bps in twisted pairs to over 100M
bps in FOLANS. Different standards (e.g. 802.2, 802.3, ISO, ODA,
XNS[Xer01]) coupled with transmission protocols (e.g. TCP/IP, XNS) may
be used. The communication system implementing different standards
and protocols provides for the necessary point to point connectivity. A
basic assumption is that the underlying network provides for cohnectivity
while maintaining error free transmission between the sender and
recipient. The network should operate reliably but there is no
requirement that (internally to the network) errors should never occur.
Messages are transmitted in sequence. Routing, duplicate suppression

and other related topics are transparent to us.
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2.2 User Needs

This section describes the needs from the point of view of the user.

2.2.1 Transparency. It is believed that the most important need is that the
users will not be expected to know the inner-working of the system nor the
various steps needed to accomplish their tasks [Wal83] [Sch85] [Kah88]
[Orr88]. Hence there is a strong requirement to provide for type and format
transparency [Sch85]. Users need to manage all of their jobs the same way
regardless of their type: text, graphics, voice, video, etc. [Ter87]. The second
requirement is to provide for format transparency meaning that the
different jobs should not be handled based on their format. Both type and
format transparency relieve the users from the need to (a) know and track
these parameters, (b) know how to process them and what can be employed
to do it, and (c) know the system dynamic status to optimize these
operations. Type and format transparency is also needed to support the
various media comprising the network. It is anticipated that even with the
same media type, file formats will be different due to the integration of
different standards in the operating environment. The third requirement is
focation transparency [Sch85] which may be further broken into two parts:
(a) name transparency and (b) response time. The first is not addressed in this

work while the second is covered in 2.2.3
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2.2.2 Job Partitioning and Task Assignment. Job partitioning and task
assignments have been discussed in several papers [Chu80]. Users should not
be asked to perform either one. Not all servers are created equal. Features
and performance offered by them are not identical. In addition, not all tasks
submitted require the same processing. Users should not be forced to decide
on task assignments since they do not have the knowledge nor the tools to
optimize the selection. For example not all print servers support the same
page description language. In case a task needs stapling, it should be

assigned to a printer capable of stapling.

2.2.3 Response Time. Users, naturally, would not like to wait for their jobs
regardless of how complex they are. Transparency, as described in 2.2.1,
offloads tasks from the users but may increase server load thus creating a
potential problem: users may need to wait.for the system to complete jobs
that used to take their own time. In addition, the response time may not be
uniform due to the physical partitioning of the network. Assume a file server
S1and a user U, are connected to the same network segment as depicted in
figure 2.1. This network is made of several Ethernets and inter network
routers. User U _, who is connected to a different segment may need to
access S through the network router. User U, does not need to pass th rough
the network router. Since routers are slower than the Ethernet, the response

times will be different thus affecting location transparency.

2.2.4 Availability. Availability includes fault tolerance and transmission

error recovery. Since in this work the interest is in the higher levels of the
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communication protocols (Application) it is required that the communication
protocols provide error free transmission. It is not required that the servers
will never fail. The protocols should provide recovery from server failures.
Furthermore, it is required that failures should not affect the users, i.e. users
should not have to re-submit their tasks due to a system failure. “Done”
notifications may be sent back to the users once their jobs are complete. The
addition of the protocols proposed in this work should increase the overall

system availability by, for instance, directing jobs to functioning servers and
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even redirection upon unsuccessful termination. The system should be able
to automatically detect and recover from failures without prolonged effect
on performance. This may require servers to communicate and exchange
“are you alive” packets [An85]. Server failures shouid be detected and
corrective action must be taken to recover from them. Users may be required
to re-submit their jobs. If a task cannot be completed because of a server
failure, other servers should be selected. Another alternative is to partition

the job differently and select a different assignment.

2.2.5 Statistics collection. There might be a need to collect statistics
regarding material and time usage per user and server as well as statistics
like utilization rates. The information is useful for better network planning

and biiling.

2.2.7 Job Manipulation Following Submission. Users should be able to delete

their jobs or inquire about their status.

2.3 System Needs

The user requirements strongly reflect on the system. There are additional
requirements that may be transparent to the users and are covered in this

section. These requirements do not restrict the users.

25



2.3.1 Load Balancing. Tasks should be aliocated to servers in such a way that
they will all be busy: there will not be a situation where a server is idle when
it can perform the same job directed to another busy server [Arv89] [dSe84].

The intent is to reduce average system response times.

2.3.2 Server Utilization Optimization, Cost. The servers should be supported
in identifying potential job related problems, and in resolving them prior to
job execution. Servers may abort jobs containing “Include” files which are
not local since they may not be able to "remote fetch" them. In some cases,
jobs may need to be aborted due to lack of data or attributes. Servers should
always be busy and prevented from waiting for dependencies. In case server
51 possesses capabilities {a,b,c} and server S possesses {a} only, a task
requiring {a} may be performed by Sy and S5. In a simple case in which both
servers are idle, it is preferred to assign the task to S; in anticipation of
incoming tasks that may require {b, c}. In commercial systems, cost should
also be considered. For instance, if storage costs are different between two
sets of file servers, everything else being equal, the least expensive server

may be used.

2.3.3 Feature Matching. The jobs submitted to the system may have
different requirements. Print tasks may need different types of finishing or
be represented by different presentation versions. The system should direct
the tasks to the servers which are capable of executing them. Furthermo re, if

there is no such server available, the task should be partitioned into sub-
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tasks that can be executed by the servers or alternatively "export” it to other

servers for help.
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3.0 The Solution Approach

The previous sections described the environment, requirements and problem
definition. This section details the research solution. Sections 3.1 and 3.2
describe object attributes, job submission and management leading to the

proposed solution detailed in the rest of this chapter.

3.1 Objects and Object Attributes

Throughout the description a distinction is made between the "attributes”

and the "objects” [Wag86] therefore these terms should be described.

The "object” is the detailed task description: a program to be executed,
the data file that describes the "marks on paper" in a page description
language or any other form if the task is print related, encoded video
signals describing the picture if dealing with still or moving pictures,

electronic voice messages, etc.

The object may take any format. it can be created by programmers in any

programming language or be generated by other objects as well as system
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servers like scan-cut-paste. Objects are static thus do not depend on the

current execution request, i.e. they represent permanent information.

The "attributes” are the task requirements: number of copies to make,
disk space needed, services needed to successfully accomplish the task,
encoding standard used, language description ('C’, fortran, etc), include

files, type, length, external routines, etc.

There are two attribute types: static and dynamic. The static attributes are
those which do not change_in time nor depend on the execution instance.
The encoding standard of an object is static, its interface requirements and
file type are static. If there is an attribute denoting the programming
language used in this source code, it would also be static. Dynamic attributes
directly relate to the current execution request. In case of printing: number
of copies to make, material needed, execution start time, which entity
should receive its output etc. In summary: some of the attributes are object
related and are static while some are current request related and are
dynamic. Although objects and attributes are distinct entities, they may be
manipulated simultaneously. All objects should have associated attributes
but in case they are missing, some attributes may be constructed with
information obtained from the object itself. For instance, assume that
“include” file names have to be specified in the attributes, but the object
containing these include names has been submitted without attributes. In
this case, the needed attributes may be constructed by scanning the object. It

is permitted to have objects solely made of file names.
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3.2 Job Submission and Management

In distributed (and centralized) systems several routine steps are being
performed:

(a) job submission by the users and

(b} job manipulation within the system once submitted.

A distinction is made between the job submission and its management once

submitted.

3.2.1 Job Submission

Definition: Job Submission is the set of protocols governing data and

control transfers between the user and a predefined object in the system.

It addresses the submission process and may be composed of the following
steps:

(a) The user identifies the processing step to be taken knowing the

capability and availability of several servers.

The user decides on the next step to be performed: print, mail,
archive, file etc. There is a need to know which servers are available
and furthermore, their capabilities have to be known: disk space, the
ability to handle multi format files, vector processing capability,
stapling capability, etc. Storing classified information in a private file
server, for example, may not need encription, but storing it in a public

server may need the extra step to prevent unauthorized reading. Note
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that not all 'available’ servers are available to everyone on the
network at all times due to failures etc.

{(b) The user pre-seiects a server.
Based on the above, only one server is picked to perform the task,

(c) The userinquires about the server's status.
The server may be out of service and/or its input queue - very long.
Additional information received by the user may include free disk
space, paper type and amount (for printers), statistics, capabilities, etc.
In case the useris unfamiliar with the server's capabilities, this step will
provide the needed information.

(d) The user may possibly repeat the above steps.
Unsatisfactory results may necessitate selecting a replacement server.

(e) The user selects a server.
Based on the previous steps, he has the necessary and sufficient
information to make the ‘right’ selection.

(f) The user submits the job.

He may possibly follow up as well.

The environment in which the above steps may be taken is depicted in figure
3.1 which includes users - also referred to as clients, file servers, printers,
compute servers - also referred to as departmental processors, conversion
servers, and the communication netwark. This does not preclude other

servers like electronic and voice mail and scanning.
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The six step process described above should also address the following
issues:

(a} Load balancing: all the tasks in the network should be ‘equally’
divided between the servers to reduce system response times, a task
not easily performed by end users.

(b) Server utilization optimization and feature matching as described in
2.3.2.

(c) Multi media and format. These considerations are critical. Mailing a
document adhering to a certain format not understood by the
recipient is useless. Requiring certain media not available to the
recipientis yet another problem.

Note that these issues should be transparent to the users and not be

performed by them.

3.2.2 Job Management -

Definition: Job Management is the set of protocols governing data and

control transfers between all network servers.

It is assumed that jobs submitted to the system may be processed locally or
submitted to a server after which they may need additional processing thus
be re-submitted to other servers until they leave the system or terminate.
Partitioning the job into tasks, task assignment, and follow up as well as
other possible functions covered in section 3.3 compose job management.
The set of job management protocols deals with internal data and control

transfers between network servers while the submission protocol deals with
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the way users interact with the network. The previous section described the
steps taken by the user to submit his tasks. The management protocols
relieve the users from performing those tasks and yet provide additional

services.

3.3 The Task Manager

The requirements listed in chapter 2 (increased functionality, transparency,
job and resource management, etc.) can be met by assigning the tasks
described in section 3.2 to a proxy: the Task Manager (TM). The goal of
relieving the user from the responsibility of performing these tasks may be
achieved immediately. The TM receives the object, its attributes and general
information unique for each user, as described later in this section, in order
to be independent. Being a dedicated function it may perform the tasks on
behalf of the users, dynamically collect network information to better
facilitate its job management, address additional functions which cannot be
performed by the users and even increase availability, as discussed later. It
will be logically placed between the users and the needed services thus all

service requests will be directed to it as depicted in figure 3.2

3.3.1 The TM Concept

The TM may manage a unique set of tasks: print only, file only, mail only, etc.
The tasks assigned to it will only require the processing of the servers

available to it; exception handling is discussed later. Example: print tasks
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I'g.3.2.a: No Task Manager Fig. 3.2.b: With Task Manager

may be assigned to the print Task Manager, filing - to the filing Task
Manager etc. Thus the TM may be viewed as a front end to the servers
managed by it and called Front End Task Manager or FETM. All requests
must be handled by it prior to submission to the servers. The users supply it
with the object and attributes. The FETM may be viewed as an autonomous
service but users view it as an enhanced server. The FETM is shown in figure

3.3.
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The FETM concentrates on a unique set of tasks. However, another possibility
Is 1o manage a set of heterogeneous servers: a combination of scanners, file
servers and printers, for example. Furthermore, this combination may be
expanded to include archiving and other servers leading to generalizing the
FETM concept to create the General Purpose Tasks Manager, or GPTM as
depicted in figure 3.4. Note that the GPTM may be viewed as a collection of
several FETMs. “TM" is used when no distinction between the FETM and the

GPTM is needed.
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The TM controls the resources assigned to it. The introduction of the TM and
its control over the servers raises the question of the availability of servers to
direct user requests. Without the TMs, users transmit their requests to the
“uncontrolled” servers who in turn execute them. With the TM, servers are
not allowed to accept requests from any sender - in fact servers need to
ascertain that all the requests come from their own TM. All other

unauthorized requests should be ignored. Servers respond to their TM only.

The servers controlled by a TM are called controlled while the others - public.
The mechanism enabling this feature is described later in this chapter.
Controlled and public servers may be available in the same network. Thus, it
is expected that servers should be able to be controlled by a TM and if

needed, be directly available to the users.

In order to execute a job, the TM is provided with the object and attributes.
However, the users may further direct the TM by providing it with user
unique information. This information is provided in the User Definition File
(UDF) which is similar to the mechanism avaiiable in Unix {.login, .cshrc etc.),

Xerox Network System (.user) {Xer01] and in other systems.

The TM's domain is defined as the set of services available to and controlled
by it. These services may or may not be local. The initial number and
composition of the services assigned to a TM is referred to as the initial set or

tnitial domain.
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The initial set may be arbitrary and can be dynamically corrected by the TM.
The TM may acquire and release servers on its own thus supporting growth
and shrinkage phases. Hence the initial assignment may be small. The
shrinkage and growth algorithms may be similar to existing algorithms like
the Page Frequency Fault proposed by W. W. Chu and others, or merely
consider server utilization. The algorithm may be selected based on its
performance in a simulated environment. However, the TM may enter the
growth phase once realizing it (a) cannot execute 3 pre-defined number of
jobs per time unit, or {b) cannot provide a timely service. Once the ‘grow’
decision has been made, the next decision the TM needs to make is which
server to add to its domain. It is not assumed that the system offers a pool of
servers, one of which the TM may take thus the only option the TM has is to
acquire a public server. A problem occurs when the TM cannot fulfifl a very
small number of service requests, a situation in which acquiring another
server is unjustified. In this case, it may submit the service requests to a public
server or to another TM which will, upon completion of the service, return
the results back to the original TM. TMs submit jobs to other TMs as if the
receiving TM was a server. In general, TMs communicate with each other as if
the initiator is a TM and the recipient is a server. The TM receiving the job

request from another TM is “exporting a service”.

The shrinkage phase requires less decision making since once entering this
phase, all is needed is to release a server which will be availabie to the public.
Note that the shrinkage phase may be entered based on the server'’s

utilization only. A different approach is not to allow the TM the capability of
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changing its domain but instead, to measure the servers utilization rate and
rely on the System Administrator (SA), a human, to perform domain

adjustments.

The TMs are capable of handling exceptions. Exceptions may be divided into
two categories: (a) users assign wrong jobs to the FETM, and (b) TMs do not
possess the capabilities needed to perform the job. Case (a) is trivial - the job
will be rejected and the sender should be notified. In case (b), not
performing the job is unacceptable thus the TM may submit it to a public
server or to another TM as described earlier. Another possible solution is to
re-partition the job into different tasks and execute them again (the original

partitioning is no longer applicable due to a server failure, for instance).

Design and performance issues related to the TM are discussed later in this
chapter. However, the topic of overlapping domains should be discussed
here. The TM function may be centralized (referred to as CTM ) or distributed
(DTM). In the centralized case, several TMs may be available in the system
each of which with its own domain. If necessary, TMs will exchange tasks as
described earlier thus there is no need to share domains. In this case servers

belong to one TM only.

Nevertheless, if the TM function is distributed, i.e. a TM per workstation, the
TM domains must be shared. In this case, servers will belong in more than
one domain and should only respond to the TMs controlling these domains.

The shrinkage and growth algorithms are common to the CTM and DTM. But
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although the DTM offers many advantages, it poses a problem as well.
Assume the TM's load balancing algorithm is dynamic i.e. it sends status
messages to all of the servers, waits for them to respond with their queue
length, and only then makes the task assignment. There might be a case in
which the queue length at the task arrival time may not be the same as the
queue length at the time the server responded to the status message not
because there was a departure but because there were several arrivals from
another TM. In short, how should several TMs concurrently balance loads
between the controlled servers? The answers may be several:

(1) Restrict the load balancing algorithms to be static only.

(2) The optimistic solution: éssume that arrival rates at the servers are low so
that the problem wiil be minimal. And,

(3) The pessimistic solution: use locking.

The appropriate method to select one of the proposed soiutions js by

simulation.

The TM should not be mistakenly viewed as a centralized solution to the
problem. Although all requests pass through it and it controls the servers, it
is not the only ane available and does not control all the servers. A set of
fault recovery protocols is available to recover from a TM failure. In fact with
the TM the overall system avaifability may increase due to the TM following
up to verify successful completion of its tasks. Upon unsuccessful completion

due to a failing server, it may redirect the job to a substitute.
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3.3.2 TM’s Resource Management Algorithms

TM resource management procedures are discussed in this section. In order
to facilitate this discussion, figure 3.5 depicts some of the TM’s logical steps.
The valid step assures error free transmission and that the request is valid, i.e.

a filing FETM received a filing request etc.

Receive
procedure

Error
recovery

Partition into
tasks .

Locai DB
and UDF

— |

Nexttask |, .~
assignment

Errors | Error handling,
repartitioning,

etc.

Task done
status

Done,
no errors

Fig.3.5: TM's operation sequencing
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The next step is partitioning. Job partitioning and task allocation have been
discussed in many papers including [Chu85]. It is believed that some tasks will
require remote file fetching to fetch include files (also referred to as external
references), a function which may not be supported by ali servers. Therefore,
prior to partitioning, remote files should be fetched. The attributes help task
partitioning by revealing the steps needed e.g. printing a voice file
necessitates an intermediate step of converting it into text before
transmitting to the printer. Partitioning jobs into tasks considers the
available servers and parallelism. Partitioning into tasks which cannot be

performed by the available servers may prove useless.

In partitioning, the TM considers multi format issues. The object attributes
describe the format and if necessary, the TM will need the help of a
conversion service. Although most formats lend themselves nicely to
conversion, some are difficult. Almost all user operations may be viewed as
transfers: filing is a transfer from the source to the file server; retrieve -
transfer from the file server to the home directory, etc. Since user
transparency is required, the TM may have to deal with many new transfers:
voice to file servers as well as printers, text documents to an audio server for
listening, sections of moving video (images) may be rasterized and sefectively
printed, etc. It is assumed in this work that the T™M has no control over the
message routing or the communication network thus the transmission time

becomes a function of the supporting network / system.
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In some cases feature matching should be considered. As the system grows,
servers with different features and capabilities may be added. To decrease
waiting times and in anticipation for newly arriving jobs that might need a
unique feature, f;, the server offering it should primarity be handling jobs

requiring this feature. The following strategy is implied:

If a job 1 does not require feature f, and can be equally assigned to
servers Sy, 5z, ... Spand only St possesses f5 then Jy should not be assigned
to Si. If not assigning 11 to S1 reduces the system utilization, the
assignment should take place.
Feature matching and load balancing may create a conflict without the
second sentence in the rule above which has been added to cover for cases in

which not assigning J1 to Sy may substantially disrupt load balancing.

Task assignment. The most important feature provided by the TM is the
ability to perform load balancing satisfying a variety of constraints some of
which are listed later in this section. In this work, though, the desire is to
employ an algorithm that minimizes response time. This topic has been
discussed in many papers and publications [dSe84] [Arv89] [Kle76]. Load
balancing algorithms, also referred to as load sharing, are divided into
centralized and distributed categories each of which may be dynamic or
static as described in [Arv89]. Furthermore, load sharing may be sender
initiated or receiver initiated as in [Eag86]. Centralized algorithms share the

inherent characteristic of having a central focal point for determining the
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assignment of the next arrival to a server while in the distributed aigorithms
there is no single decision making node. The static algorithms perform load
balancing based on a statically predefined procedure that does not consider
the server’s dynamic load at the time of assignment. On the other hand,
dynamic algorithms consider server time sensitive parameters like calculated
expected deiay times based on its current queue length before deciding on
the assignment [Arv89]. Sender versus receiver initiated algorithms deal with
the topic of which entity should initiate Joad balancing. An extreme receiver
initiated load sharing example is: whenever the receiver’s input queue

length equals zero, it will ask for a task.

All algerithms may implement fixed or variable thresholds for balancing.
Fixed threshold implies that regardless of the servers load, the criterion upon
which the decision will be made does not change in time. Finally, it is
assumed that the algorithms are implemented at the user level which is

consistent with the TM proposed implementation.

As described later, the TM itself may be centralized or distributed thus
affecting the selection of the optimal load sharing algorithm. Nonetheless,

there are no limitations in the TM restricting the selection.
In this work, though, a major network related assumption is made:

transmission time from node to node is identical for all nodes. Thus the load

balancing algorithm will not consider network transmission times in its
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decision making process. In addition, the TM may assign tasks to the

workstation or servers back and forth many times until the jobisdone.

The following paragraphs describe five load balancing algorithms to be

simulated in this work. However, this doesn’t preclude the use of other

algorithms. All of the algorithms are sender initiated and fixed threshold.

(1).

(2).

Random or No Load Balancing.

Without the TM, it is assumed that the load is equally distributed
among the servers. Each user will randomly pick one of many servers
and assign the task to it. Therefore, this algorithm assigns tasks to
servers with equal probabilities and regardless of their processing
power or queue length. This algorithm is static. The advantage of this
algorithm is its simplicity but its drawback is poor resultant response

time relative to other ones.

Server Capacity Relative.

This algorithm assigns tasks to servers based on knowing their
processing pawer only, therefore it is static. It should perform equally
well in centralized or distributed implementations and is easy to

implement. it doesn’t require additional communication overhead.

Given: a job to be assigned to the servers has arrived,

There are nservers, m=n
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(3).

Cmisserver Sm's processing capacity in jobs/second.
Optimize: Response time

By: Static job allocation

Upon arrival of job Ji
Assign Jk to Sy with probability of Py =Crmpy / ( ICp for all n) and

stop.

Server Capacity Threshold
This algorithm assigns tasks to servers based on knowing their
processing power and dynamically querying their queue length size

therefore it is dynamic.

Given: a Job to be assigned to the servers has arrived,
There are n servers, m=n
C,,‘1 Is server Sm's processing capacity in jobs/second.
Optimize: Response time

By: Dynamicjob allocation

Upon arrival of job Ji
1. Foreach queue: get total queue length Iy
2. Foreach queue: calculate server load Lm
lm=1Im/Cny
3. Find Sy, satisfying min{Lyy,) for all n
4. if only one queue found in step 3, assign Jx to this queue and

stop, otherwise skip this step.

47



(4).

5. If no one single queue found in step (3}, assign Jy to S, with

probability of Py =Cm/ ( £Cp for all n) and stop.

A distributed version of this algorithm should consider the problem
mentioned earlier: Assume source A is busy performing steps 2 and 3
above. Possible arrivals from another source may nullify the queue
length sizes transmitted to A in step 1. In our simulation the optimistic
solution has been implemented. The capacity t/h algorithm shouid
provide better response times but is more complicated to implement
and imposes communication overhead compared with algorithm

number 2. Note that step Sis identical to algorithm #2.

Server Queue Overflow.
This algorithm assigns tasks to servers without knowing their
processing power but based on their queue length size therefore it is

dynamic.

Given: ajob to be assigned to the servers has arrived,
There are nservers, m=n
Cm is server Sm's processing capacity in jobs/second.
Optimize: Response time

By: Dynamic job allocation

Randomily select a server, call it $1. Randomiy select a maximum
queue length threshold TOR. Upon arrival of job J
1. Setm=1.
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2. GetSm'stotal queue length Iy
3. flyy < TOR then assign Jk to Sm and stop. Otherwise go to step
4.
4. Setm=m+1.1f M>n assign Ji randomly and stop. Otherwise
go to step 2.
This algorithm offers the advantage of not having to know the servers
capacity. It also requires less communication than algorithm 3. A
potential problem with it occurs when the selection of S1 happens to be
the slowest server and the last one, Sy, is the fastest. Therefore algorithm
5is proposed. The effect of various maximum queue sizes, TOR, should be

addressed.

(5). Optimized Server Queue Overflow.
This algorithm is identical to algorithm 4 with the following exception: $4
will be the fastest server, S5 is the second fast . .. Spis the slowest. The
advantage of this algorithm over the previous one is obvious. The penalty
Is the need to know the server's processing speed which, in our opinion, is

not a serious penalty for the potentiai response time improvement.
Load balancing is not the only criterion upon which the tasks are assigned to
servers. As mentioned before, feature matching and the UDF are considered

as well. The UDF takes the highest priority in the decision making.

A local database supports the TM's decision making. To perform task

assignments, the TM should have information about the servers in its
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domain. Since this information is needed repeatedly, once the TM inquires
the servers, it should store the server attributes locally. The TM is responsible
for database updates and is the only network entity with access to it. As

domains expand or shrink, the TM will update this database.

The procedure in figure 3.5 will be performed repeatedly until the job
terminates at which point a Done message may be transmitted to the user. In
each step the TM may collect statistics to facilitate optimizing its operation
and to report it to the SA. For instance, if the TM detects that a remote file is
repeatedly needed, it may store a copy of it locally rather than spend time

retrieving it over and over.

The TM will need to include additional real life considerations as described in

the following examples:

Minimum waiting time per job. The TM may disregard additional overhead
and inefficient use of resourcesin order to get a job executed in minimum
time. Example: a high priority job which needs yellow paper will be
submitted knowing that it will require the operator to change paper
from white to yellow and most probably from yellow to white later. The
job will be finished fast but it imposes overhead and thus affects other

jobs in the system.

Maximum resource utilization. Keeps the servers busy even if it delays some
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jobs which need attention. Example: a job which needs yellow paper will
be delayed until there are no more jobs waiting or until there are enough

jobs that need yeilow paper.

Minimum cost per job. A job may be executed at the manager's discretion in
order to save money. The manager has the authority to executed it at the
time and location leading to minimum cost based on information

provided in the job attributes.
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3.4 Queries and Responses

The queries and responses can be divided into two groups: those between
the user and the manager and those between the manager and the services.

Users interact with the TM only.

The TM can interrogate the servers in its domain as well as interrogating
other TMs as if they were servers. It can inquire about their current load, free
disk space (if any), their capabilities and options. The TM will have to
dynamically update its database in order to make resource allocation

decisions.

3.4.1 Queries Between the TM and the Users:

Queries between the TM and the clients may include:

1. Capabilities and capability sets. The manager needs to report its
capabilities as if it were a 'super server'. It will report the capabilities
of its controlled servers (including dynamic attributes) in sets of which
only one may be selected. If there are additional capabilities due to
the existence of private services, they will be added to each set. The
sets are independent of each other thus allowing series or parallel task
assignments.

2. Status_ ID. The manager needs to report the status of the specific
jobID: it's location in the server's queue (if still active) or its done
status (done, done with errors, aborted).

The query "Status_ID" must be responded to with up to date
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information since the manager can delete jobs from a server's queue
and immediately ask for StatuslD.

3. Cancel__ID. Delete the job identified by its ID. Users may delete their
own jobs only.

4. Prioritize_ID. The job should be assigned the new priority, if priorities

implemented.

3.4.2 Queries Between the TM and the Services:

Queries between the manager and the services may include the ones listed in

section 3.4.1 and the following:

1. l-am-your-mgr. The service will respond with a positive or negative
acknowledgment. See figure 3.12.

2. I-am-not-your—manager:anymore. The manager informs the service that it
will not be controlled any more. The service responds with positive
acknowledge. The TM may not send this instruction until after it has
received acknowledges that ali of the jobs submitted to that service have

been processed. The System Administrator can also issue this instruction.

3. Generai poll ("how busy”). This poll will be responded to with total
queue length and possibly amount of free disk space.

4. Listall jobs. The System Administrator will be able to get the list.

5. List all services. The System Administrator will be able to list all the

services the TM controls.
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6. Add-a-service. Each service needs to know whether the jobs it receives has
been authorized by the manager. Only services within the manager’s
domain may transfer jobs to other services in that domain. They do so
after being told by the manager. This instruction notifies the controlled
services that they may get jobs from a newly added service. All other jobs
should be rejected.

7. Remove-a-service. The compliment of add-a-service.

8. List manager. This is equivalentto “who is your manager”.
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3.5 Protocols

Systems similar to XNS, as described in [Xer01][Xer03], require the users to
‘manually’ direct their tasks. In case a user receives a document represented
in a foreign standard or format he will be required to convert it before
reviewing. He will need to follow the sequence of events as depicted in Fig.
3.6. In this example, the document is sent to the converter and back to the

user. Once ithas been read, the user may store it on the file server.

User Converter File server

/

onverted

Done  _fjo=—"
-
Convert File
subtask subtask
- | .
O —+9
Start Time End

Figure 3.6: A transaction without a TM.

In general, all jobs may be divided into tasks, some have to be performed

locally and others may be performed better on a designated server.
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Depending upon the specific case, the server may or may not need to
transmit the results to the sender (the TM or the user). Its output may be
temporarily stored locally and then sent to the next destination. Some
servers do not generate electronic output: printers. A client who wants to
submit a job will interact with the TM. The TM will be supplied with the
object and attributes, if available, in order to make decisions regarding the
processes to be run during the job’s life, their order and final disposition or
output. Figure 3.7 represents control and data flow. It shows a general
activity sequence as a function of services needed and time. The basic
operation of the manager is depicted and that pattern holds for additional

service-request/service-done procedures.

A major architectural decision has been to view the TM as responsiblé for all
actions following receipt of a job. It acts on behalf of the users if a need
arises to redirect jobs or resolve conflicts or make any needed decision. A
second decision has been that the TM should not prepare a list of processes
to invoke immediately following the reception of a job but rather partition
it, select the first process to be invoked and decide on the next step once the
previous one has been completed. The advantage of this approach isthat the
task assignments will be done in real time thus taking advantage of the most
up-to-date information (how-busy) received from the servers. Another
decision was that users may submit jobs even if they do not possess all of the
job attributes. The TM will have to try and resolve this problem by extracting
the attributes from the object itself, assign default values or even send the

job to a server better equipped to perform this task.
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Fig. 3.7 Data and control sequences
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Fig. 3.7 step 1: The client transmits the service request to the TM.

The user’s request should supply the manager with the object and attributes.
Both are necessary in order to facilitate its decision making with minimum
overhead. The attributes, if available, will be transmitted in this "service
request" phase. Attributes submitted may be insufficient. The object itself
may be attached or, alternatively, may reside in the network and the request
should have a pointer to it (filename plus pathname). The TM will always
expect to get information about the task itself like “include” files, file type,
length and external routines in the "attributes" section so that it will not
have to re-scan the object. This information is needed in order to perform
feature matching, load balancing and assure that the include files are local
or that they can be retrieved prior to job execution. It should also supply the
direct job reiated attributes (in the case of printing like number of copies,

media, and finishing; in case of voice: compression algorithms etc.)

The user may not have the above information at hand. In this case he will
send the direct task refated attributes plus the [object] or [object name] and
the manager will have to get the attributes needed by itself, a process that
will require one more step. Only one object is associated with a request, but

the object itself may solely be made of include files.

There are several related issues regarding the above:
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1.1

1.2

1.3

The object creator, who knows everything about the file should

provide the necessary attributes.

Where should the attributes be stored? The object-reiated
attributes may be stored in the object itself. Dynamic, or direct job
related, attributes do not need to be stored anywhere. Attributes
may be missing or specified in a contradictory way. This leads to the
need to comply with some sort of attribute priorities, i.e. (highest
to lowest): System Administrator, job submitted, taken from the

object, server defauit.

For the cases where the user does not provide the necessary
information to the TM, the TM should have a service that can do
that. This information will be transmitted back to the manager. If
the manager has this service, it should be available to the clients
too, so that theyu will be able to provide the information to the
manager with the next request related to that object. This means
that the service may be public and the manager as well as the
clients will be able to use it. Note that in the ideal case the

manager will not need to use it since the users will.

Fig. 3.7 step 2: Task Manager acknowledges reception.

This optional acknowledgment includes an ID and indicates that the request
has been accepted. Note that the user expects to receive this "ACK" within a

pre defined time frame for fault tolerance as discussed in the following
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section. Upon ACK he knows that the manager is up and running and that he

(the user) may proceed as follows:

2.1 If he submitted the attributes and the [object OR a pointer to the
object, which points to a file server!] and did not indicate that he
wants to be notified when the task isdone, then he will proceed to

his next task which may be unrelated to this request.

2.2 If he submitted the attributes and the [object OR a pointer to the
object, which points to a file server! | and indicated that he wants
to be notified when the task is done, then he may proceed to his

next task but expect to be notified.

Design issues outside the scope of this work include: The pointer may point
to file servers only. Clients may not point to themselves or other clients.
Should ACK be restricted to “the job has been received with no checksum

errors”?

Fig. 3.7 step 3: TM polls the selected services {("how busy").

At this point, the TM has acknowledged reception of the job. Next is job

execution by:

(a) partitioning the job to tasks in such a way that the tasks can be assigned
to serversin the TM’s domain, see section 3.3 and

(b) assign the tasks.
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The manager processes the information transmitted to it via the BusyX
message. If it doesn’t have the needed information to manage the job {print
servers may need fonts, for example), it will need to use a service to supply it

with the information prior to any other activity.

The local database and the UDF will be used in selecting the next service. The
local data base is composed of data collected in the recent past from
previous inquiries about server capabilities. There might be two or more
server candidates. (The task may also be assigned back to the originating
site). In order to identify one of them, the manager issues a "how busy/ENQ"
poll to the services and waits for their response. The type of poil (general or
specific) will affect the traffic on the network but has no importance here.

The polling sequence is of no importance either.

"How-busy/ENQ" denotes the number of jobs in the input queue and is
needed only for dynamicjload balancing algorithms. Ideally, the response
should be in time units [Arv89], however, this cannot easily and accurately be
done. It is impractical to estimate execution time of submitted jobs without
probing into them first, a step which will add extra load. In addition, the
reported data may be incorrect due to the possibility of queue changes due
to arrivals of higher priority jobs in case priorities are used. There is no
unique "how-busy" poll. There is a general poll by the manager, which will
be replied to by units of "how-busy” and units of free disk spooling space.

See "Queries and Responses”.
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Fig. 3.7 steps 4 and 5: Services respond to the TM.

The response denotes how busy the services are and also implies that they

are "alive”. It may also include free disk space.

Note that there should be no pending jobs to be transmitted to these
services. This assumption must hold in order to ascertain that the service will
be in the same state {or better) by the time it actually receives the message
from the source. This means that the input queue to the service, sampled at
the time of "how busy"”, already includes all the jobs destined to the service

from all other sources in the manager’s domain.

Fig. 3.7 step 6: TM sends attributes plus object to service #2.

The TM uses the procedures described in section 3.3, Resource Management,
and decides to use service #2 (load balancing and other considerations). It

sends the object plus needed information to the destination.

Fig. 3.7 step 7: Service #2 to TM: acknowledge.

Service #2 optionally acknowledges receipt by sending a message (with the
ID) to the manager who in turn clears its "receipt pending” switch. This
procedure assures that there are no cases where the manager interrogates
the service before the service received all the files destined to it (possibly
from another party). Responding to "how-busy/ACK" queries before
receiving ail the jobs from the various sources may yield incorrect reporting

and thus should be responded to by “pending”.
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Fig. 3.7 step 8: Service #2 to TM: done.

Service #2 notifies the manager that the job is done by providing the
following information: error free or problems detected; output filename
and size. The file may or may not reside on the server's disk. In this work it is

assumed the file is resident, otherwise, a pathname should also be provided.

Fig. 3.7 step 9: TM polls server#3 and server#4 (how-busy).

The manager decides on the next type of service. It identifies two servers
that can do it equally well and wants to find out which one is less busy. If

needed, the above procedure will be repeated recursively.

Fig. 3.7 steps 10 and 11: Servers respond with units of "how busy”.

The servers respond as described earlier.

Fig. 3.7 step 12: TM instructs service #2 to transmit its output to server#3.

It does so since server#3 is less busy. It expects an acknowledge from it.

Fig. 3.7 step 13: Service #2 transmits the attributes and object to server#3.

Upon transmission, service #2 deletes the input and output files from its
disk. At this layer of the protocols it is assumed that the destination has a
correct copy of the transmitted data i.e. the output of service #2 will not be
needed again due to transmission errors. Further, it is required that if the
selected server cannot fetch remote files, these files will be filed on its disk

prior to this transaction.
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Fig. 3.7 step 14: Server#3 to TM: acknowledge.
Server#3 acknowledges the TM that it has received the job. The manager

clears its corresponding switch,

Fig. 3.7 step 15: Server#2 to TM: done.

Server#2 notifies the manager that the task has been accomplished with or
without errors. Qutput disposition is done based on the attributes. It deletes
the job from its local memory only upon successful completion and only if it

was not instructed to store it.

Fig. 3.7 step 16: Optional: TM notifies user that the task has been
completed.
This option should be selected/not-selected by the user. It is very useful in

assuring faultless operation. It will default to no message.

The procedure described above assumes servers do not need to remote fetch.
In case there is a need to remotely fetch but the servers aren’t able to, the
TM should pre-fetch the files prior to submission to the servers. The include
file names appear in the attribute part thus assisting the TM. If the servers
can remote fetch then the sequence described in figure 3.8 should be
employed. Step 1 (the request) specifies where the object resides. The
manager acknowledges the client {(step 2) and submits the request (object
and attributes) to server 1 in step 3. Server 1 acknowledges reception and

proceeds to fetch the needed file (from outside). It notifies the manager that
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User ™ Server 1 Server2?2  Server3

Task
\)_
/ Xfer

ACK 2 .\3)‘

ACK
4

e
Remote
fetch

-

done 5
e

-W‘
.w‘

Done

y

Figure 3.8: Remote fetch

it's done in step 5 and from this point on, the sequence is identical to the one

described in Figure 3.7,
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Figure 3.9 describes the case of a simple print request. The client requests
service and gets acknowledged. The manager does not poll the printer and
in the XFER message sends the attributes and object to the printer. Since the
client did not request to be notified, the manager does not take any further

action following the done message from the printer.

User ™ Printer Server Server

T&Sk‘
/ Xfer
ACKINACK |

ACK

Done

Figure 3.9: Simple Xfer, no poll, no notification
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Figure 3.10 depicts the protocol sequence in case execution errors occur.
Once the TM receives the task it poils the available servers and XFERs the task
to the selected server, in this case server 1 which starts processing leading to
detecting an application oriented error (out of disk space, a vector processor
in the compute server is malfunctioning, stack overflow etc). Upon receiving
the Error message, the TM submits the task to the second best server capable

of performing the task which is server 2.

User ™ Server1 Server 2 Server 3

.T*SR*
ACK —

BuzyX

Xfer\

Error

-\xm

Done —

y

Figure 3.10: The case of execution errors
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Figure 3.11 depicts handling user inquiries. It is clear that all inquiries pass
through the TM: users are unaware of the servers supporting the TM nor do

they have the knowledge where the job is being executed.

User ™ Server Server Server

%‘

ENQ-ID

—

kﬁt:s‘//

y

Figure 3.11: Handling a userinquiry

In figure 3.12 cases A and B depict manager initiated requests, one of which
is I-am-your-manager. The server, granted it may be controlled, proceeds to
validate the request since it has no knowledge who may control it and there
is also a need to authenticate the request. Based on the authentication
results, the server responds with either ACK or NACK. Case B is simpler since
the server is not programmed to be controlled by a TM, i.e. it is available to

the general publiconly.
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User ™ Server Server

l-am-your-mgr

\

[ ———
ﬂ

Case A

-
Authenticate

ACK/NACK / by an outside

sarvice

l-am-your-mgr

CaseB ’
kN‘AI’C—Kf'"//

Figure 3.12: Server control requests (A and B)

3.6 FaultTolerance Considerations.

TM as well as server failures should be considered. Some imp!/=mentations
may elect to rely on the fault detection and recovery procedures provided by

the lower level protocols thus in fact leaving TM failures to be resolved by
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the users. Operative TMs will resolve server failures as discussed in the
previous section {as with server errors) thu only TM failures will be

discussed.

3.6.1 User Detected Failures

In systems not providing TM failure detection the users have to detect TM
failures and notify the pre-selected secondary TM. No “are you alive”
messages are exchanged between the users and TMs. No TM history files are
being backed up either. Upon failure detection, users notify the secondary
TM which has been statically defined; the secondary TM verifies failure and
becomes primary. All other users will follow this procedure and experience

delay till they communicate with the secondary TM.

User ™ Server Secondary TM
SReq
™ :\
T1 \
T
T2
I-\. 2nd manager
h I
Time out
Verify _L
ACK lllllllllllllllllllllllllllllll
- e
Done
—

Figure 3.13: TM fails before submission
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Figure 3.13 depicts the event sequence when the TM fails before a user
requests service. Users may send Service Request (SReq) messages to the TM
till they suspect a TM failure. It takes T2 seconds to prepare the SReq
message destined to the secondary TM. Once the secondary TM receives the
request, it verifies that the primary TM is down, executes the requests and
responds with ACK. The verification step, however, is needed only following
the first SReq message transmitted to the 2nd TM. if a TM fails at any other
time the user has to verify job completion. If incomplete or unknown, users
have to resubmit. It's their responsibility to prevent duplication, if any and
an optional ACK from the secondary TM may be sent to the user
acknowledging receipt of thel job. The ACK may in fact be substituted by

"busy” units, if desired.

The procedure described above is unattractive. Users must keep a copy of
each task submitted to the TM and follow up once the task has been
completed. In addition they will have to take the necessary steps to recover
from TM malfunctions which in fact burden them with an extra task
considered overhead. This approach is inefficient since the users will have to
restart a job from its first processing step and not take advantage of possible
processing that may have been done prior to the TM failing (assuming TM
failed after the job has been submitted). Furthermore, temporary files may
reside on various disks without the users being aware of them: the orphan
problem. There is also a need to “release” servers who have been managed
by the TM. (Note that this last problem could be resolved by implementing

"are you alive” messages between the servers and the TM. Upon failure, the
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TM would not respond to” the server initiated message thus indicating a
failure prompting unilateral server action to be rejeased from the TM).
Another drawback of this scheme is the possibility of overloading the TM
with status messages processing. These drawbacks overpower the advantage

of simplicity.

3.6.2 Aided Detected Failures

As noted, the procedure described above is deficient in several key points:
lack of transparency; users need to detect the failure and notify a statically
designated secondary TM; the TM may create a bottleneck; multiple
simultaneous failures are not supported unless more than one secondary TM
are statically assigned; each user has to independently detect the. failure.
Some of these drawbacks may be alleviated by relying on a “safe and
secure” server. This server already exists in most networks: a name server or
clearinghouse [Pet88] [Op;?:83]. The name server will always supply the users
with the address of the currently assigned TM which may be changed

dynamically.

There is no need for the name server to detect failures. If the TM fails or even
if it has been decided to shift the TM function from one node to another the
old TM will not respond thus the users detecting it will enquire the name
server for the correct TM address. If it has been changed, the name server
will respond with the new address but if it fails, an “are you alive” message
will be sent to ascertain failure, then an assignment message will be sent by

the name server to the newly selected TM and the user will be provided with
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the new TM name. The "are you alive” sequence will be performed only once

to verify failure. This protocol is depicted in figure 3.14 below.

User ™ Server 2nd TM  Name Server
4 SReq
T
Fy
2 SReq
v
ENQ-S

Are you alive

e T3
- A4
TM-ASS <€ '
New-TM
-
SReq
——
Done |

Figure 3.14: TM failure recovery.

This approach can tolerate multiple TM failures. Users aren’t aware of TM
failures and the overhead imposed is low. There is no need for any control
messages to detect problems. The secondary TM assignment can be done in

real time. A drawback of this procedure is the need for the safe and secure

73



server. Its failure may prove very problematic to the network. Even if history
files are available, they are not backed up thus a TM failure will result in
losing these files as well. The name server performing this function should
not overload it since failure rates are very low and the overhead imposed is
minimal. However, as with the approach described in 3.6.1 the old TM
domain may be lost. This may be resolved by keeping redundant domain and

history files.

3.6.3 Transparent Failure Detection

This approach requires an initial assignment of secondary TM. ‘'l am alive’

messages are transmitted by the primary TM to the 2nd TM as has been

proposed in [An85] However, this algorithm can be improved as follows:

® Nosecondary TM is statically identified.

® “Are you alive” messal_;es will be transmitted by the TM to the name
server not to a secondary TM.

® Upon TM failure, the name server will time out.

From this point the algorithm is similar to 3.6.2.

Note thatin the protocols, if a TM fails and there is no history file identifying
the failing domain and its controlled servers, the servers, upon timeout, may
send ‘are you alive’ messages to the TM. If it does not reply, then they will
change status from “controlled” to “public”. If primary/secondary TM
approach is adopted, the secondary TM (now primary) will have to select a

new secondary TM.
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3.7 Design and Performance Considerations

At this pointin the research data and control transfers, the TM concepts and
the need for resource management algorithms have been discussed. In this
section the discussion is centered around two TM cases and a set of design
and performance criteria to be considered leading to a specific and detailed
XNS study/simulation. The two cases are: (1) the distributed T™M (DTM) as
depicted in figure 3.15 and (2) the centralized TM (CTM) as depicted in figure

3.16 . In case 1, each workstation is assigned a TM whereas in case 2 the TM is

Workstation/TM | | Workstation/TM | | Workstation/TM Waorkstation/TM

Workstation/TM

Fig. 3.15: Distributed TMs

centralized and supports multiple workstations. Each distributed TM
supports its domain which is initially specified by the individual users or the
System Administrator based on their knowledge of the network but the

domain may change to accommodate dynamic needs for resources as
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described in section 3.3. The network servers do not belong to a specific TM
therefore no TMs “own"” services. Contrasted with case 2,the TMin case 1 is
less prone to creating a bottleneck since it shares the processor with other
tasks and may be allotted larger time slices if needed. As discussed in section
3, the TM will recover from server failures thus increasing reliability. DTM

failures imply that the workstation has failed thus affecting one user only.

Workstation

AERERSEE
[ 3 Loa0000n Y

L R |

Domain Dy

Fig.3.16: Centralized TM

In case 2 - the CTM function has been moved to a dedicated server common
to a set of users - the first design consideration is how many TMs should a
network possess. This is coupled with another question: how many users
should be allocated to a TM so that it will not create a bottleneck. Assuming
that the network utilization is very low, less than 5%, the major parameter

to consider is the TM server’s throughput. For the entire user population in
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the network, the number of TMs should provide for "adequate” TM
response time which may be obtained by simulation. The initial TM domain is
set by the System Administrator and may be changed by the TM itself as
needed. The domain is specified in accordance with the type and number of
users: a researcher domain may include several computing méchines while
draftsmen may need more plotters. Nevertheless, the CTM is a potential
bottleneck if its throughput is not high enough and furthermore, a failing
CTM should be replaced expeditiously (see Fault Tolerant protocolsin section
3.6). A potential probiem with the centralized TM is the need to rapidly
access the UDFs. Since each UDF is controiled by its user, it would be logical to
store UDFs at the workstations. This situation will necessitate the CTM to
remotely access these files thus increasing the network traffic, increasing
network load and yielding higher delays. A potential solution is to store
UDFs at the CTM site while maintaining user rights to modify them. As
mentioned earlier, in both cases the TM will handle server failures and
depending upon the principal design, TMs may also keep copies of jobs

submitted by the users thus relieving them from fault tolerant issues.

In addition to the design considerations discussed above, two more topics
should be addressed: (a) statistics collection and (b) relation to the ISO 7
layer architecture. Regarding issue (a), the CTM supports better statistics
coltection since all transactions pass through a single point - the CTM.
Although the distributed TM also collects statistics, it lacks the advantage of
accessing a common location for statistics retrieval. For issue (b) it is assumed

that the TM is Application level oriented and belongs in level 7 of the 1SO
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architecture. The advantages of this approach are: network independence -
the TM does not rely on a particular network feature, it does not require or
impose any standard additions/changes, and it may be customized for
specificrequirements. Considering it as a lower level feature, possibly level 4,
has the advantages of faster performance since there is no need to pass data
through the entire 7 levels and due to lower implementation overhead

(number of procedure calls).

The impact of adding the TM on the system performance shouid be
evaluated. The single most important performance parameter the users are
sensitive to is the job response time, also referred to as the open loop

response time since jobs arrive to the network, get processed, and terminate.

The following parameters / tradeoffs and their cumulative effects are

evaluated in chapter 4:

(1) Arrival rates.
It is expected that arrival rates will vary: start at an inter arrival time of
100 seconds and increase to over 400 seconds. The effect of different

arrival rates on the response time should be studied.

(2} TM load.
Adding the TM functionality will (a) require additional processing
capacity from the resource on which the TM is running, or (b) the TM will
contend for the existing capacity. Assuming case (b), the effect of various

TM loads on the response time should be understood.
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(3) Number of workstations.
Given a TM implementation, the effect of varying the number of

workstations on the response time should be addressed.

(4) Workstation processing power.
The response time sensitivity to workstation processing power variances
should be studied. This is especially important in case the TM is allowed to
assign tasks to the originating workstations {referred to as cooperative
workstations). This parameter will be varied assuming that workstation

processing power may only increase.

(5) Load balancing variants.
Adding load balancing has the advantage of improved response times
due to improving resource utilization but dynamic algorithms {(compared
with static) also impose extra communication overhead. An issue to be
addressed is whether .lthe extra overhead associated with a selected
dynamic algorithm does not nullify its potential response time
improvement compared with a selected static algorithm. Load balancing

algorithms are discussed in chapter 3.

(6) Server processing power.
Many different servers with different processing speeds may be available.
The server’s processing speeds should be changed to ascertain that the

TM can effectively handle arange of server speeds.
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(7) Job size and its processing time.
Various job sizes as well as their processing time requirements are
indicative of job complexity and their effect on response times should be

studied.

(8) User think times.
Tasks performed by the users will be done by the TM. Performance
improvements depend on how long the users need to think at the
workstation therefore this parameter should be varied and effect on the

response time recorded.

(9) Centralized versus Decentralized TM.
As described earlier, the TM may be centralized or distributed. Each
configuration offers its advantages but the effect of centralizing the TM

on response time should be simulated.

Some of these variables can be fully controlled: server and workstation
processing power, load balancing aigorithms, etc. while others’ have to be
considered: user think times, IATs etc. Nevertheless, they all affect server
utilization and communication overhead and may create bottienecks. See

chapter 4.

Understanding these topics will enable a meaningful performance tradeoffs

discussion as done in chapter 4. The effect of varying these parameters

should be quantified. Otherwise, the discussion may only be intuitive and

lack needed support, therefore, simulation will be used to make conclusions.
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Finally, an observation follows: the CTM is more susceptible to creating a
bottleneck at the CTM site. If the workstations are cooperative, i.e. the TM is
allowed to assign jobs back to them, the amount of network traffic may
increase substantially thus creating another potential bottleneck - the
network. In this case, assigning the TM to the individual workstations may
yield less traffic since DTMs may assign tasks locally thus eliminating the
need to transfer files. In addition, assuming (a) the TM's requirement for
processing power is low, and (b) the workstations are not loaded, a TM per
station may get more CPU time and perform faster than a dedicated station
for a centralized TM serving several users. Nevertheless, in both cases the ™,
a machine, will perform the fasks currently done by the users faster than
them. The simulation in this research will try to quantify the performance

improvement.

3.8 Related Topics

(a) To support third party data transfers, services will need to verify that
the jobs they get from other servers have been authorized by their
manager. The add-a-service and remove-a-service procedure will be

used as described earlier.

(b) Services know whether they are controlled by a manager. If they are,
they know who their manager is and respond only to him (the who-is-
your-manager query should be excluded). They should obey the |-am-

your-manager instruction only after verifying that the requestor can
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be a manager. The authentication protocol (or similar if not XNS) will
be able to support this requirement. This is done in order to prevent

clients from monopolizing printers.

(c) Secondary storage space. The manager will be able to stare files for

future usage. This may be done using existing protocols (Filing).

(d} Statistics. Since the manager controls the system it can gather valuable
statistics regarding frequency of usage, average load, down time and
billing information. System planners may need to monitor overall

system utilization, a function that can be performed by the TM.
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4.0 Case Study

This section studies the TM performance in a real life Xerox Network System
(XNS or NS) environment. The purpose of the study is to assess the possible
performance improvement offered by the TM if implemented as an
application layer feature. As discussed earlier, the TM should offer many
advantages including shorter response times due to its associated resource
management -and other- procedures. However, the addition of any utility
contending for processing power or generating extra network traffic may
lead to increasing quet;mg defays thus nullifying any performance
improvements. This concern has to be addressed and resolved. Therefore a
decision to use simulation was made. The simulation helps to quantify
parameters like network response times and resource utilization but cannot

show improved transparency, for example.

One of the objectives was to develop a simulator suitable for any
environment facilitating the distinction of the TM from the communication
network and the workstations. In this specific research, XNS parameters like
network speed and workstation processing power have been used. This

approach allows us to assess performance with and without the TM enabling
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an objective comparison and assessment of the performance improvement
attributed to the TM. Therefore, the XNS network has been simulated
separately and resuits from this simulation are used in the TM application
level simulation. The set of issues investigated in the XNS as well as the TM

simulations is described later in this chapter.

This chapter also provides a very short description of the Xerox Network
System as needed to support this work. Detailed description may be found in
[XerQ1] [Xer02] {Xer03] [Xer04] [Xer05]. The protocols specified in XNS are an
open ended set of packet transport protocols used uniformly across a variety
of communication media, p‘rocessors/servers and office applications all of
which vary from installation to installation and from time to time. Higher
level protocols built on top of the internet Transport Protocols provide the

necessary mechanism to transfer data and identify data type.

The intent of this chapter is to verify, substantiate and quantify the response
time improvements achieved by impiementing the TM. Furthermore, an
important aspect of this work is the fact that the TM concept is being
simulated based on a real life network in a real life environment rather than
an abstract theoretical scenario. It evaluates the effects of changing network
and workstation parameters on response time to which users are very
sensitive. It also tests load balancing algorithms in a real life environment.
Section 4.4 covers the TM simulation results, analysis and conclusions

revealing the effectiveness of the TM.
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4.1 XNS QOverview

XNS is a packet oriented network architecture with four layers, the first three
of which are called Internet. A packet contains control and data where the
data may range from 0 to 540 bytes as explained later. Internet packets are
routed through the internetwork as datagrams via store and forward
elements called Internetwork Routing System. The source and destination
addresses are encapsulated in the datagram packets leading to treating each
one of the packets independently. The internet gives its best effort to deliver
an internet packet but it cannot guarantee duplication free transmission nor

sequencing.

As with other networks, XNS also employs a layered architecture as depicted
in figure 4.1. Each layer defines a type field thatis interpreted by the next
higher layer, providing a bridge between the two layers. The layers are

defined as follows:

Level zero. There is a need to physically transmit data from one point to
another. This level is highly dependent on the particular transmission
medium involved. There may be different level zero protocols and some of
them may contain internal levels. Although XNS allows for a set of physical
level implementations, XNS as implemented today is heavily dependent

upon the Ethernet as defined in the "Blue Book” |EEE 802.3 (Eth82].
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Figure 4.1: XNS layers
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Level one. This level is primarily responsible for routing and is called Internet
Datagram Protocol. There is only ane level one protocol and it defines the
internet packet and rules for its delivery as a datagram (addressing and

routing).

Level two. This level contains transport protocols. This involves
retransmission, sequencing, duplicate suppression, and flow control. The set
of protocols specified in this level provide for a multitude of requirements
from higher level pratocols such as high priority transmission, error control,
routing information etc. Alternate implementations are allowed. XNS
provides Echo, Error, Sequenced Packet, Packet Exchange and Routing

protocols.

Levei three. This level has less to do with communication and more with the
content of data and the control of resources thus leading to naming it the
control protocols. it includes the Courier and Bulk Data Transfer protocols
[Xer05] as well as Printing [Xer04] , Filing [Xer03], Clearinghouse and Time of

Day protocols and others.

Courier: The Courier protocol specifies the manner in which an active system
element (workstation, the TM, etc.) invokes aperations provided by a server
or a passive element. Courier itself is a layered protocol using remote
procedure calls to initiate connectivity and exchange data. “Layer one of
Courier, the lowest layer, defines a block stream which can carry blocks of

arbitrary binary data between system elements. Block streams are defined in
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terms of the connection abstraction of the Sequenced Packet Protocol. Layer
two defines an abject stream capable of carrying structured data between
system elements. Object streams are defined in terms of the block stream
abstraction of layer one. Layer three defines a message stream capable of
carrying service requests (call messages) and replies {for example, return or
abort messages) between system elements. Message streams are defined in

terms of the object stream abstraction of layer two” [Xer05].

Printing: The Printing protocol is a set of procedures to set the printer state
to the desired one (media type} and transmit the object file to the print

server. It also supports status requests [Xer04].

Filing: The filing protocol specifies file contents formats, attributes, handles
and controls (concurrency controls), directories, creating, accessing and
deleting files. It uses Courier and Bulk Data Transfer to transfer data, if a

transferis requested [Xer03].

4.2  Current XNS Submission and Management
As described earlier in section 1, the submission process may require several

steps. Once the job has been submitted, there may be a need to follow up in

order to report status, redirect or cancel the job.
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XNS supports a set of protocols at the application layer including the Printing
Protocol and the Filing Protocol. The printing protocol allows submission of a
selected file to a pre-selected printer. In addition, it also allows status
reporting back from the printer to the user upon request. Nonetheless, none
of the other submission or management requirements as listed earlier are
being addressed. With some enhancements, this protocol may serve a key

component in the overall solution.

The filing protocol [Xer03] may be viewed more as a set of remote procedure
calls supporting fite transfers. It has the needed support for file attributes
and allows for the standard file manipulation procedures. In comparison, the
printing protocol is more task oriented and may be modified to address a

multitude of tasks including voice, still and moving images.

The submission process is merely the user submitting his task to a server he
selected. There is no load balancing done. Feature matching is static: users
have to gather system knowledge ahead of time in order to facilitate it,
there is no capability to redirect a task nor cancel it from the user’s terminal
or workstation {once it has been submitted). in summary, only step {f} in the
submission process (actual submission by file transfer) is supported thus
requiring the users to have system knowledge hence reducing transparency.
Job management, as defined in chapter 3, is limited to status reporting: no

load balancing and no resource management done.
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4.3 Delay, Parameter and Terms Definitions

This section defines the parameters and terms used. It covers delays as

depicted in figure 4.3 and variables used in the simulation.

Figure 4.2 simplistically depicts the sequence of transfers in order to print a
document residing on the user’s workstation. It shows that only one step
(submit) is needed for printing. The job is done asynchronously and at any
time, the user may request status. We would like to develop an expression
describing the elements contributing to the average response time Rym with
and without the TM. Without the TM this expression may be very
straightforward. Comparing it with the expression developed for the TM
may prove meaningiess unless user thinking times (and others) are
introduced. Therefore, Fig. 3.7 which is been duplicated here as figure 4.3

will be used for comparison with appropriate values used in both cases.

User Print server

Print Request

Status Request

Fig. 4.2: Basic print request
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tex1

Service request transmission time: client to the TM. This is the total
time it takes the network to transmit the request, handle transmission
errors, suppress duplicates and and handle Ethernet collisions. Note
that user thinking time precedes this time and is not a part of it.

Time for the TM to validate the request and prepare for the ACK
message. It does not include any process time needed to parse or
partition the job.

ACK transmission time.

=  tix1 + te1 + texs. Thisis the total ACK wait time.

Processing, parsing, partitioning time plus local database inquiry times
at the TM site.

TM waiting time for both inquiries to be transmitted, processed at the
servers and received through the communication network.

time to validate request type and completeness before sending ACK.
Processing time at the TM site for both BusyX messages. It aiso
includes the time needed to prepare the service request message.

= Service request transmission time.

Similar to t¢q

Execution time at server 2 including the Done message prepare time.
"Done” transmission time.

service turn-around time at server2 = ty,o +tc2 + tp2 + tix3

Decision making time at the TM needed to select next step(s).

similar to tw

Time to process steps 10 and 11 and prepare the Service Instructions
message. Similar to tp

= Service instructions transmit time.

Time to process the service instructions message and prepare for the
XFER in step 13. ’

Similar to t¢2

Processing time at server 3 and time needed to prepare the Done
message.

The sum of processing time at the TM and transmission time.

Time between last ACK received and the DONE message.

® Rm [seconds]: Response time (also referred to as open loop response
time) is defined as the average life time of a job in the system and equals

Rtm =tack1 + tws.

IAT {seconds]: Inter arrival time is defined as the reciprocal of inter arrival
rate.

Utilization is defined as the time the resource is busy divided by the total
busy and idle times.

Network delay [seconds]: is defined as the time a packet spends in the
network. The packet may be transmitted over the network more than
once.
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Throughput [jobs/sec]: is defined as the average number of departures
per time unit.

Load balancing names are defined in 3.3.

think [seconds]: is defined as the time NS users spend thinking at the
workstation prior to submitting the job. See 4.4.1(d).

thinkz {[seconds]: in NS, once the job has been submitted, it is directed to
a server. When done, the user may have to think for thinkz seconds about
possible subsequent processing.

mess [seconds]: is defined as the job processing time at the workstation.
If the distributed TM is implemented, mess includes its processing time
requirements as well.

con [seconds]: control/status processing time at the workstation.

XNS and NS are synonymous.

“Servers” are distinct from workstations.

tix1 +ter +tpo +twy +tor +tw2 +ip3 +tw3+tpa +txa +twa + tg

In a more generalized form the total time may be expressed as follows:

Rimlwith TM] =

{Submittime =ty } +
{Total TM enquiry times: % [tw1, tw3...] } +
{ Total server process times: X [twz, twa .. .] } +

{ Total TM process and transmit times: [tpo. tp1. tp3. tpa . . ., tixa, ... 1}

Thus Rym may take the form:

{Submit} + (thisisstep 1in fig. 4.3)
Nix {TM enquiry} + (these are steps 3, 4 and 5 etc.)
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N7 x {transmit and server process} + (these are steps 6,7, 8 or 12, 13, 14)
N2 x {transmit and local TM process}
Where: Nj= average number of tasks per job processed remotely,

N2 = average number of tasks perjob processed locally.

And for the case without the TM:
Rim{without TM] =
{user think times} +
M x {transmit and server process} +
M2 x {transmit and local process}
Where: M;j= average number of tasks perjob processed remotely,

Mz = average number of tasks per job processed locally.

Qur conjecture is:

Rtm[with TM] < Rtm[without TM]

This is due to the TM, a machine instead of a human, doing the thinking,
better load balancing and server utilization as well as feature matching. The
extra messages sent by the TM for load balancing are not expected to
increase the delay times noticeably. We will verify this conjecture through a

series of simulation experiments.
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4.4 Application Level Simulation

This section describes the TM simulation in the XNS (also referred to as NS)
environment. The underlaying XNS network is a well defined component
represented by parameters obtained from the XNS simulation (section 4.5).
Our hypothesis (a system with the distributed TM implemented in the
application layer improves average response times compared with the
current system) will be tested. Both cases, with and without the TM, will be
contrasted. It has been qualitatively argued that the proposed solution will
improve the response time, however our intent is to provide quantitative
results. There are several features that lend themselves nicely to simuiation
but on the other hand, simulating issues like transparency are difficult at

best.

The simulation results are plotted to provide a graphic presentation. In order
to simulate reai life jobs, data about NS print servers, file servers and
archiving have been collected. Workstation parameters reflect the
capabilities of the Xerox 6085. Since the simulation includes anticipated
future capabilities like speech and image processing, additional assumptions

have been made regarding file sizes.
The simulation is done in RESQ2 V02.1986.09.22 as described in [Sau86] and

available on VM/CMS. The simulation objective was to compare the TM with

the NS system based on the parameters and variables specified earlier. Once
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the basic NS and TM simulators have been completed (with default
parameters specified in 4.4.2), the simulation process was to modify the
simulator to reflect the specific test case under study and simulate it with the

needed parameters by using a pre-defined data file (RQ2RPLY).

4.4.1 Simulation Description

This section describes the simulation assumptions and components common
to all of the simuiation runs. in assessing server and workstation processing
speeds the following options have been evaluated: (1) Pick hypothetical
numbers. This approach has been rejected since it would not represent real
life XNS servers. (2) Refer to formal product specifications to get the needed
figures. The problem with this approach has been that most specifications
provided lower level spé‘cifications (i.,e. machine cycles per instruction,
memory size...) not processing speeds as needed for the application level
simulation. This is true with the exception of the printer in section 4.4.1(g2)
in which its processing speed was available. (3) The last approach, which we
followed in most cases, was to measure processing speeds by using available
tools and user application packages. The disadvantage of this method is the
lack of accuracy but it provided actual processing speed figures as close as

possible to ‘real life’.

(8. The communication network. The platform upon which the TM is

simulated is XNS as described in section 4.5. Packet size remains 576
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(b).
{c).

(d).

bytes thus the XNS throughput at 75 KBytes/sec will remain insensitive
to the number of workstations. 75KB/sec includes retransmission and
error recovery procedures. The effective throughput remains constant
even at network utilization of 90% (note that based on statistics
gathered for this work in XNS networks 0-116, 0-117, 0-118, (close to
300 drop cables per network, 70% of which are personal workstations)
the network utilization is between 2% and 4%). The file lifetime
variances are low thus the users can expect uniform response times.
Therefore, XNS is represented as a single server FCFS queue processing
75KBytes per second with exponential distribution. To understand the
effect of various network speeds, though, the 75KB/sec was mulitiplied
by x2, x5, x10 and x100.
Queue types. All of the resources implement FCFS with single server.
Error handling. Since the XNS model accounts for retransmissions and
error recovery, we will assume error free transmission.
Users.
® |tisassumed that each user has his/her own workstation.
® Without the TM, users need to perform the steps described in
chapter 1 (plan processing steps, select servers...) therefore they
will spend time thinking which is represented by the think
parameter in the simulation (see 4.3). It is assumed that they will
need at least 3 seconds but not more than 30 sec leading to the
following test vailues: 3, 6, 15, and 30 seconds, exponentially
distributed. Subsequent think times are represented by the thinkz

parameter as defined in 4.3.
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{e).

{f).

® With the TM it is assumed that ‘thinking' is done by the TM.
However, the users will still need 1 second (exponentially
distributed) to type a ‘send’ command or move an icon on the
screen.

Inter arrival times {IAT). 1ATs (service requests) are exponentially

distributed with the same exponential parameter throughout the

simulation period despite the fact that it has been observed that

arrivals, although random, may slightly change rates throughout the

day. Worst case IAT, when all users simultaneously access the network,

is defined as 100seconds.

TM site and processing needs.

® We concentrated on simulating the distributed TM: a TM per
workstation as described in chapter 3, case 1. Howe\)er, the
centralized TM will also be simulated. We will plot its response
time versus |AT for the default values described in the next section
with the purpose of understanding whether the centralized case is
substantially better or worse than the distributed case. The TM
implementation is done at the Application level rather than any of
the lower levels (Transport).

® Adding the TM functionality will (a) require additional processing
capacity from the resource on which the TM is running, or (b) the
TM will contend for the existing capacity. Assuming case (b), the
effect of various TM processing needs on the response time should
be understood. A very conservative estimate is made to arrive at

the processing time needed for the TM: the workstation message
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{g).

processing time, which is discussed in (h) below, is 5 seconds for a
100KByte message. Assuming that the TM will process 30KBytes
yields 1.5 seconds of TM processing time (which is 30% of the
message processing time). Since the confidence level in this
assumption is relatively tow, it has been varied between 10% and
40%. For comparison, note that the user best case think time has
been set to 3 seconds. For the centralized TM, its processing power
reflect the sum of all 32 workstations: 1.5 second divided by 32
~0.05seconds processing time.

Server characterization. We made the assumption that servers are

always available and proceeded to evaluate their actual processing

speeds.

{g1). The available file servers are made of the aging Century 300 disks
and the proprietary-hardware called DLion running filing software as
described in {Xer03]. Processing figures are non-existent therefore the
only choice left was to measure it. It has been difficult to accurately
measure since this figure is tightly coupled with the transmitting
station and the communication network's throughput. Nevertheless,
using the SPY tool (see below) we ascertained that only one
workstation was active on the network. The workstation was fully
dedicated to transmitting various size files to the file server. We
observed the transmission of over 20 MByte of data in over 70 files,
yielding file server average speed of 52KBytes/sec. (The SPY tool is a

utility running on a workstation and monitoring network activity. For
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each transaction, it displays the originating and destination addresses
and indicates when collisions occur. File sizes were known thus we
measured the transmit/receive time for short (2KBytes) and long

(280KBytes) files).

(g2). For print servers the Xerox 4050 machine was considered. Its
processing speed is 50 pages a minute for a page containing text and
images. 30KB is requires to represent a complex page therefore the
processing speed used is 25KB/sec (50pages a minute x 30Kbytes a page/60).
The difficulty in rating any graphic imager in absolute numbers is

acknowledged.

(g3). We proceeded to characterize the compute servers which are
VAXs: 8200, 8350, and a cluster of two 8800s running VAX/VMS. Hence
processing speed assumptions are made based on the available VAXs.
Other servers may also be available thus specifying processing speeds
may be a matter of choice. Therefore, we will assume processing
speeds of 200KBytes/sec based on using the 8800 cluster. This figure
was obtained by running a conversion program that converted raster

images from 75 dots per inch to 300 dpi.

The simulation includes 5 servers which have been divided into two
groups: {sery, sery, and ser3} and {sers and sers}. Sera and sers are
designated as the compute servers. Their processing power differ from

each other in order to simulate an asymmetrical system. Sery, sery,

100



(h).

and ser3 represent filing, filing/archiving, scanning and printing.
Several printers are available to support the user population in the
networks mentioned earlier hence we could require that all of these
servers wiil represent printers, However, we will assume that no more
than one server is a printer and the rest are filing, archiving, or
scanning servers. The servers are insensitive to the job source. In
summary, the server processing capacities are: sery = 2x10-5 sec/KBytes
(based on 50KB/sec as explained earlier); ser3= 4x10-5 sec/KBytes
(based on 25KB/sec as explained earlier); sers= 5x10-6 sec/KBytes
(based on 200KB/sec as explained earlier); sery= 1x10-5 sec/KBytes
(twice as fast as ser3); sers = 1x10-6 sec/KBytes (5 times faster than sersg
to provide for an asymmetrical system). Note that these figures were
varied to study the effect of server processing speeds on the résponse

time.

Workstations.

The workstations are Xerox 6085s- proprietary 32 bit Mesa processor,
80MBytes hard disk 30% full, 2.2MB RAM, running ViewPoint {VP) and
Xerox Development Environments which are the user environments.
Workstation processing speed has to be determined. Quoting MIPS or
MFLOPS are usefess and would not suffice, therefore rea| life
experiments with available utilities have been performed. Several files
have been paginated, converted from VP format to ASCII and then
from ASCIi to VP (see table below). Note that not all of the document

features could be converted e.g. vectors, font information, etc.
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Therefore following the first conversion, the files have been converted
back and forth twice and average times have been recorded. Also note
that the original file sizes changed by a factor of up to 3, i.e. <file 2>
changed from 40KBytes to 16KBytes, <file 10>, from 2KBytes to
1.5KBytes. With the exception of file size changes, the results have

been tabulated below. Pagination rate is in seconds per KByte.

FILE TIZT PAGINATE CONVERT TIME
NAME KB TIME RATE VP->ASCII ASCII->vP

<FILel> 40k 30sec .75 30sEcC 20sEC
<FILEZ> 40k  30sec .75 30SEC 23SEC
<FILE3> 120kB ©5sec .55 4lsec 40sEeC
<FILE4> 104kB 75sec .72 39sEC 3lsec
<FILES> 57«8 2Isec .37 |
<FILED>  32kB  35sec 1,1

<FILE7> 34k ~ 30sec .88

<FILE8>  U49ks 45sec .92 35sEC 29SEC
<FILEY> J7kB 40sec .52
<FILElQ> 2B 3SEC 1.5 15sec 158EC

With the exception of <file10> the conversion times are smaller or
equal to the pagination times. The pagination rate ranges from
-37sec/KBytes upto 1.5sec/KBytes with the average around
0.8sec/KBytes. The average convert time of the first 4 files is
0.4sec/KBytes (risking the inaccuracy of calculating conversion rates

based on the original file size, not the actual one as discussed above),
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The spelling check rate test, not included in the table, yielded
0.5sec/KBytes. Another set of measurements indicated that disk access
and driving software to prepare for transmission takes 2 seconds
(measured manually) regardless of file size. This is the amount of time
from initiating the filing request at the keyboard till first packet

appears on the Ethernet.

The workstations generate message and control packets to be
transmitted over the Ethernet. The XNS control packet length is ~500
bytes. The message length (job size) is 100KBytes as stated later.
Therefore the simufated workstation includes two classes with
exponential distribution parameters: one for control packets and one

for data packets.

The average proceésing time for control packets is calculates as
follows: All of the measurements taken include heavy disk access
which is slower than CPU or memory speeds. Disk access will not
always be needed for control messages. Therefore
t'control = [(0.8 + 0.4 + 0.5)/3]x0.5 = 0.28sec may be an order of
magnitude bigger than reality thus we will use tcontrol = 0.05sec. Note
that (0.8 +0.4+0.5)/3 is the average of all three figures discussed
earlier. The message processing time is compaosed of: 2 seconds for
disk access time as described earlier plus {(0.8 + 0.4 + 0.5)/3]x5 = 2.8sec
assuming 5KB worth of processing needed prior to file transmission.

Thus tmessage =2 + 2.8 = 4.8sec > 5sec.
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(i)

The response time sensitivity to workstation processing power
variances has been studied. This is especially important in case the TM
is allowed to assign tasks to the originating workstations, referred to
as cooperative workstations. This parameter was varied assuming that
workstation processing power may only increase. The number of

workstations is varied from 8 to 32.

A feature in RESQ, called Job Vectors (JVs), is associated with each
simulated job arrival and may be treated by the simulation
programmer as needed. The workstation module inciudes a SET node
which assigns source numbers to the jobs generated at the particular
source by using JV(1). RESQ initials all JV's to zero at the beginning of
every run. The job sources are S for WS, S; for WS, . . . S32 for WSs;

with variable arrival rates.

Load balancing. Load balancing techniques have been described in
chapter 3 and include the following:

& Random (static),

® Server capacity thresheld (dynamic),

® Server capacity relative (static),

® Server overflow (dynamic), and

® Server overflow, optimized (dynamic).
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(i).

(k).

Job size and its processing time. The next parameter which needed
attention was job size. The average file size in the tabie above is 55KB.
Knowing that incorporating scanners, voice and video digitizers wil!
imply larger files, we have selected 100KB per file. This is done based
on knowing that one 8.5x11 inch page scanned at 300 dots per inch
and compressed 10:1 will result in 100KB and that telephone voice
digitizers convert at 600KBytes per minute which yields 100KB a
minute compressed only 6:1. This parameter is changed for sensitivity
checks as described in section 4.4.2. For constant job sizes, their
processing times may vary thus this parameter is also changed as

described in4.4.2.

Simulator components. The simulator is composed of the folllowing
components and modules:

® Upto 32 user and workstation modules.

user workstation

[m>.., SET1 |..n @, @_,

Figure 4.3.1a: User and workstation module

Arrivals, as described earlier, are represented by Source nodes.
Each workstation receives jobs from its associated source as
depicted in figure 4.3.1a. The Set nodes assign workstation ID to
each workstation. User actions are represented by one FCFS queue
called Human which includes two classes: (1) initial user think time

and (2) subsequent think times as described earlier. The
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{1).

workstation is represented by the workstation queue with two
classes: one for status processing and one for data files processing,
each with its processing times described earlier.

® The network.
The network is represented by the Net queue (see figure 4.3.1)
with classes for status and data files. Several status and data file
classes are needed for routing purposes ail sharing the same
processing rates: status processing rate is 1/150 second per status
file (0.5KB at 75KB/sec), and 4/3 seconds for data files (100KB at
75KB/sec).

® And the five servers.discussed earlier. The SETX node is needed to
distinguish packets which have been processed at least once from

newly arriving ones.

Job routing. Job routing is accurately described in the CHAIN section
of the RESQ code in the appendix. However, to demonstrate it, a brief
description for the NS case with one active workstation follows {figure
4.3.1): s1 to SET1 (which assigns WS number to each job) to usery
(thinking) to ws1 (STATUS-CLASS, prepare and send a status message) to
Net (STATUS CLASS, netwoark transmission time for status packets) to Net
(STATUS CLASS, network transmission time for status packets) to dum3
to USERT (thinking) to ws-MESSAGE-CLASS (workstation partial message
processing) to Net (MESSAGE CLASS, network transmission time for
messages). An assumption that servers response times to the status

query is negligible is made. At this point ‘new’ jobs are routed to the
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Figure 4.3.1: Basic RESQ modules

compute servers with probability 1 and each server receives 50% of
the jobs. ‘Old’ jobs are assigned to dum1 with probability 0.4 and to

dum2 with probability of 0.6. Servers 1, 2, and 3 receive 1/3 of the jobs
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each. Jobs leaving SER3 are terminated. All other jobs are routed to
setx (setx marks jobs as ‘old’ for routing) and terminate with
probability of 0.7. The rest, 30%, are routed back to the network and
the user for further processing and repeat the same routing. A final
note: with the TM, routing was essentially similar with a major
exception: load balancing affected routing to the resources.

{m). Forsimplicity, the optional Done messages are turned off.

(n). Third party data transfer is not available.

The result of varying the simulation parameters will affect the following:

(1) Server utilization.

The effect of the above on server utilization should be understood.

(2) Bottlenecks.
The introduction of the TM and its management procedures should not
create bottlenecks which severely affect response times thus any
potential bottleneck should be identified. Further studies should
ascertain and quantify the improvement in response time due to the

removal of a bottleneck.

(3) Communication overhead.
The TM generates extra status packets for load balancing. These packets
are considered overhead traffic and the resultant effect on the response
time should be understood. This can be performed by analyzing the

communication network delays obtained from the simulator.
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(4) Relative cost.
Although it has not been our objective, the simulation results will enable

a cost tradeoffs discussion.
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4.4.2 Results, Analysis and Conclusions

The following sections show the simulation results contrasting the TM with
the current implementation referred to as XNS (or NS). The simulation
process, described earlier, was as follows: A model was run using EVAL and
RQ2RPLY files. Then the parameters under study were changed to produce
the next simulation. Regarding notation: Ryn[TM] means response time for
the TM case. If additional information is needed, it will also be included in

the brackets.

All simulations use the following default values unless specified otherwise:

(for further description refer to section 4.3):

PARAMETER NS ™
Number of workstations 32 32
Network speed 75K8/S 75KB/S
Load balancing random dynamic, server
’ capacity threshold
Jobsize 100KB 100KB
think time 3sec 1sec
thinkz time 3sec Tmsec
workstation message processing time
@100KB/file Ssec S5sec
Status processing time (workstation) 0.05sec 0.05sec
TM processing time with any
dynamic load balancing algorithm n/a 1.5sec

TM processing time with any
static load balancing aigorithm n/a 1.0sec

The following sections describe each simulation’s objectives, procedure,

results, analysis and conclusions relative to the particular simulation.
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4.4.2.1 Conceptviability

Objective:

Procedure:

Results:

Obtain Rym for NS and TM (with default values) to demonstrate
whether the TM concept is viable at all in the given

environment described in 4.4.1.

(1) Simulate NS for 32, 24 and 8 users with the default
parameters.
(2) Repeat step (1) with the distributed TM implementing

dynamic capacity threshold load balancing, described in 3.3.

Figure 4.3.2 shows Rym as a function of inter arrival times (IAT)
for 32, 24 and 8 users for NS. With the exception of 8 users, and
maintaining IAT<100 seconds, Rym drops sharply as AT
increases. For 24 users, Rym =230sec @IAT =40sec dropping to
Rim = 25sec @IAT = 100sec. The drop is similar for 32 users:
Rim = 182sec @IAT =50sec and 32sec @I{AT =100sec. For IATs
between 100sec and 1000sec Rim drops from the values
mentioned earlier much more moderately. For IAT = 1000 sec
and higher Rym stabilizes at 19 sec. In the case of 8 users, Rym

drops very slowly (<5%) as AT increases from 70sec to 1000sec.

Figure 4.3.3 shows Rym as a function of tAT for 32, 24 and 8 users
with the TM introduced. As with the NS, the curves show a
sharp drop in Rym for 32 and 24 users in the range of IAT = 50sec
to 80sec after which Rym[24users] stabilizes at 14seconds.

Rim[32users] stabilizes at the same value only at IAT = 120sec. It
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is also observed that for 8 users Rym is virtually constant at 14sec

for IAT = 70 seconds and higher.

Figures 4.3.4, 4.3.4a, 4.3.5 and 4.3.6 contrast the NS with the TM
curves and are analyzed in the following section. Figure 4.3.7
includes several plots. Rym is given for reference. The network
utifization is over 99% for IAT= 70sec, drops to 80%
@IAT = 100sec and further drops to ~40% @IAT = 200sec. The
network and system throughputs are depicted as well. The
network throughput is higher than the total system

throughput.

The simulation also provides server utilization rates and
network mean queuing times. The server utilization rates are
very low at ali IATs for both cases - TM and NS. For example, NS
figures are: average of all five servers is less than 5% at the
high IAT of IAT = 60sec with maximum of 14.6% (server 5) and
minimum of 2.3% (server2). At IAT = 1000sec the average is
0.4%(!). Mean network queuing time is 0.7sec at IAT = 1000sec,
2sec @IAT = 120sec, 5sec @IAT =90sec. Mean network queuing
time indicates the amount of time a job spends in the network.
Note that a job may be transmitted over the network more
than once. For NS and the TM, the workstation utilization is
very low at all |1ATs: highest is 0.26 at IAT =80 sec in the entire

simulation for this test.
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Analysis:

Figure 4.3.4 contrasts the NS case with the TM for 32 users. We
observe that for IAT<60sec, adding the TM substantially
increases the response time. The reason for this increase, as
supported by figure 4.3.7, is the very high (0.99) network
utilization which introduces a bottleneck. Even a minimal
increase in the network traffic due to the needed status
messages for load balancing causes a large increment in
response time. The load balancing algorithm does not
compensate for the added network delays. The NS versus TM
break even point is at IAT = 60 seconds above which the TM's
load balancing feature significantly reduces Ry compared with
NS. At [AT = 80sec the TM response time is 60% of the NS time:
30sec compared with 50sec - a difference of 20 seconds. At
AT = 150sec the TM’s response time is lower than the NS by 6
seconds vyielding 75% of Rim[NS], and for high [ATs, 500
seconds and higher, the TM still improves performance: 14sec
versus 19sec, a difference of 5 seconds yielding 74% of Rym[NS] .
This is depicted in figure 4.3.4(a). Note that for IAT <60sec the
curve in figure 4.3.4a would yield negative numbers since the
TM increases the response time. Again, we notice that the load
balancing algorithm is effective the most when there is a large
number of arrivals (65sec<IAT < 85sec) facilitating a substantial

delay reduction, higher than 15 seconds.
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The same analysis is applicable to figure 4.3.5 which contrasts
the case with 24 users. Both curves drop sharply as IAT increases
from 60 seconds. We observe that the break even point (NS
versus TM) is between 45sec and 55sec inter arrival times. The
break even point for Rym[32] is at |1AT = 60 seconds. The reason
for the shift is: for a given network utilization, a reduced
number of users will need to generate a higher number of

arrivals.

Figure 4.3.6 is different than the previous two figures since it
shows that the TM improves Riym for all 1ATs tested. The break
even point (TM versus NS) for 32 users is at IAT = 60 seconds, for
24 users - at IAT~50sec, thus it is assumed that the break even
point for 8 users is at IAT<40 seconds ( by calculation at
IAT = 15sec). -Reducing the number of users for a given IAT
means reducing the network traffic thus preventing a
bottleneck. We also observe that regardless of the number of
users, Rim is reduced from 19 to 14 seconds due to the
introduction of the TM. The curves are flat since (a) the network
doesn’t create a bottleneck and (b) all the servers operate at
low utilization as indicated before. Note that as expected and
regardless of the number of the workstations, Rim[TM] for high
IATs converges at the same final figure. The same observation is

correct for Rym[NS].
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The system throughput (TP) curve shows throughput dropping
as IAT increases. Knowing that each arrival created a departure
-no jobs are being discarded- this curve should follow

TP=32/IAT, which it does.

An important note, though, is that in this network IATs of 100
or lower are unrealistic. Users cannot sustain this rate of job
submission. Therefore the TM will be effective in real life.
Although the interest is in understanding the real life situation,

IATs of less than 100 seconds will be analyzed.

The NS simulation assumes perfect “random” job allocations as
described in 3.3 where this may not be the case thus in reality

the NS numeric results may be slightly worse.

Conclusions:(a) It is evident that the TM, although increasing network
tratfic, reduces the parameter that users are most sensitive
to: response time. It is reduced from 19 to 14 seconds for the
expected real life low arrival rates of IAT>500sec. The
communication overhead does not nullify the TM's response
time improvements.

(b} If AT drops below 100 seconds, the network becomes a
bottleneck. {Therefore the next simulation will address this

issue.}
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() The network servers in the simulated system are
underutilized. There is a possibility to reduce system cost ($)
by using less powerful servers without substantially
increasing response times. However, this conclusion will be

tested later as weil.
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4.4.2.2 Effect of network speed changes

Objective:

Procedure:

Results:

Understand the effect of increasing network speed on Rym and

mean network queuing times (QT) for NS and TM.

Simulate NS and the TM at warst case of 32 users for network
speeds of up to 100 times faster than the current
implementation of 75KBytes/sec.

Based on the simulation model developed for 4.4.2.1, the
network speed has been increased while keeping the rest of the
parameters unchanged. The simulation was run for relative
network speeds of x2, x5, x10 and x100 (normalized at 75KB/sec
as x1). Rym and QT obtained for relative network speeds of
x100, x10 and x5 reveal that the results for x100 and x10 do not
substantially differ from each other and furthermore, as
depicted in figure 4.3.8, Rym[NS] for x10 and x5 are quite similar
(within £5%) for IAT>70sec. Rem{TM] follows the same
pattern. Therefore to provide a meaningful discussion, the
results covered here include relative network speeds of x1, x2,

and x5.

Figure 4.3.8 plots Ryn[NS] as a function of IAT for network
speeds of x1, x2, x5, and x10. We observe that for ail network
speeds greater than x1, Rym @IAT = 1000seconds decreases from
19 to 16 seconds. For IAT>70sec the x5 curve is constant at

16sec while the x2 curve gradually drops from 22sec
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@IAT =70sec to 16sec @IAT = 1000sec. The results obtained for
the TM case reveal the same trend and are plotted in figure
4.3.9. Note that this figure does not include network speeds of
x5 nor x10. The x5 plot is drawn in figure 4.3.10 which is
effective in comparing all four combinations of TM, NS at
network speeds of x2 and x5. Tabie 4.1 lists the mean queuing
times for the TM at relative network speeds of x1, x2, and x5. It
clearly shows the large drop in queuing times even if the
network speed is increased from x1 to x2. Workstation and

server utilization remained low as described in4.4.2 1.

Table4.1:  Queuing times for network
speeds of x1, x2, x5.

[AT NeTwork Queue Time[sec]
[sec] | x1 X2 X5
50 | 35 1.5 0.23
60 20 1.2 0.19
70 g 0.9 0.18
80 b 0.7 0.18
90 5 0.7 0.17
100 4 0.7 0.17
120 2 0.5 0.16
150 1.6 0.5 0.15
200 1.5 0.4 0.1
300 0.9 0.4 0.1
500 Q.7 0.4 0.1
1000 0.6 0.3 0.1
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Analysis: From figures 4.3.8 and 4.3.9 it is clear that regardless of
whether the TM is introduced or not, doubling the network
speed will greatly affect Riy at IAT = 80seconds. For the NS case
at IAT =80sec, Rym[NS, x1]~50seconds while R¢m[NS, x2]
~20seconds and Rym[NS, x5]~ 16seconds. This trend is similar for
the TM and points again to the high network utilization rates

and queuing times as described in the previous table.
A major advantage of the TM is revealed in figure 4.3.10;
Rim[TM, x2] <R¢mINS, x5] for IAT = SOseconds

This is due to the effect of load balancing which is more
pronounced as the network delays get reduced. But, again, for
IAT = 50sec; RymINS, x5]<Rim[TM, x2] due to the reasons

explained before.

Another observation: decreasing inter arrival times from 60
seconds to 40 seconds increases Rym[TM, x2] by ~8seconds while
Rtm[NS, x2} increases by ~17 seconds. This is again, due to the

load balancing feature of the TM.
Conclusions: (a) Increasing the network speed by 100 or even 10 is not

justified since increasing it by x5 will eliminate the

bottieneck anyway.
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(b) Considering response time, it is better to increase the
network speed x2 and add the TM than increase the
network speed x5 without adding the TM. It may also be
more economical. Said differently, introducing the TM will
allow the network speed to be doubled rather than
multiplied by 5 and yet achieve better response time.
Increasing XNS speed by 2 is feasible (changing packet size
to 1500bytes, see section 4.5).

(c) Mean network queuing time is greatly reduced merely by
doubling the network transmission speed.

(d) At network speed of x1 and low IAT (<70sec) the network

becomes a bottleneck, as concluded in 4.4.2.1.
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4.42.3 Effect of load balancing algorithms

Objective:

Procedure:

Results (1):

Define Rym improvements as a function of the load balancing

algorithms under investigation.

Simulate the algorithms described in 3.3 to obtain Rim versus
|IAT curves for the default values defined in section 4.4.1.

Figures4.3.11,4.3.12 and 4.3.13 plot Rym as a function of IAT for
the given algorithms. Due to the network being a bottleneck at
high arrival rates of IAT < 100seconds, several simulations have
been performe_d at a network speed of 10 times the default

value of 75KB/sec.

Figure 4.3.11 shows the "no load balancing” curve. It is assumed
that NS users will randomly submit jobs to servers without any
network entity directing their submission. Therefore, each
server, regardless of its processing capacity, will be assigned the
same number of arrivals. The dynamic server capacity threshold
and the static server capacity relative algorithms are also
plotted in order to provide a comparison. Note that the static
algorithm requires less processing time since it does not require
status message processing. For IAT= 120 seconds, the static
algorithm provided better response times. For 60<IAT< 120
seconds the dynamic capacity threshold algorithm provided the
best results but for IAT<60 seconds, the static algorithm was

slightly better. Server utilization has been discussed in 4.4.2.1
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for random and server capacity threshold algorithms. Server

utilization for the capacity relative algorithm has been identical

to the dynamic algorithm. Mean queue lengths for all servers

(network excepted) were between 0.15 and 0.7.

Analysis(1). e

Conclusions(1):

The static algorithm performs better @IAT > 120 seconds
because:

(1) The TM requires less processing time: there are no status

messages to send, receive and process,

(2) There aren’t enough jobs to perform load balancing.

The static algorithm performs better @IAT<60 due to the
network bottleneck severely impacting the dynamic load
balancing algorithm which relies on the status messages to
perform.

The dynamic algorithm performs better at 60<IAT< 120
seconds since the network does not create a bottleneck, and

there are more arrivals than for tAT> 120 seconds.

‘No load balancing’ provides the worst Rym at all IAT ranges
under study. The capacity relative algorithm is superior in

the (real life) range of IAT > 100seconds.

Results(2): Figure 4.3.12 compares the static capacity relative, dynamic

capacity threshold (t/h) and the dynamic optimized queue

overflow algorithms. The dynamic optimized queue overflow
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algorithm is tested with 2 maximum queue lengths: 1 and 3. We

observe that this algorithm performed equally well regardless

of its max. queue length. For the range of |AT roughly between

60 and 100 seconds, the capacity t/h algorithm performed the

best. For IAT<60 seconds, both dynamic algorithms performed

the same.

Analysis(2): o

Conclusions(2):

For IAT > 120 sec the static algorithm performed the best as
discusses above.

For 60<IAT<120sec the differences between all dynamic
algorithms were too little to judge but the simulation results
slightly favored the capacity t/h. Nevertheless, the servers
are not busy to a degree facilitating fine comparison. Note
that extreme queue lengths varied between 0 and 3 with
average (at IAT = 80 seconds) of 0.5.

For IAT<60 sec the static algorithm performed the best as

discusses above.

'No load balancing’ provides the worst Ry at all IAT ranges
under study.

When the communication network may create a bottleneck,
or for low arrival rates (IAT>120sec) the static algorithm is
preferred. Since it's assumed that real life IAT will be greater

than 100sec, the static algorithm should be selected.
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Results(3):

Analysis(3):

Due to the two results discussed above the network speed was
increased by a factor of 10. The results are plotted in figure
4.3.13. Note that the simulation accuracy did not allow to
accurately draw the static and dynamic curves. See later note on
simulation results. As previously shown, even with increased
network speeds, random load balancing {'no toad balancing’)
performed the worst.

This analysis is divided into two parts based on whether AT is
lower or higher than 130 seconds. For IAT> 130 sec, the reasons
discussed above for IAT>120sec apply. For IAT<130 sec, the
dynamic load balancing algorithm is slightly better (in terms of
Rim) since the network does not create a bottleneck thus
facilitating the passage of status messages needed by the

dynamic algorithm.

Conclusion(3): ‘No load balancing’ provides the worst Rim at all IAT ranges

Results(4):

under study.
With the network not being a bottleneck, the dynamic
capacity t/h load balancing algorithm should be selected for
IAT < 130sec.
The server overflow load baiancing algorithm was tested. its
results were worse than the random algorithm therefore it is

not included in this work.

Additional conclusions: These experiments help analyze the effect of the

extra communication overhead generated by the dynamic load balancing
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algorithms. Aside from the aigorithm itself, a difference between simulating
any dynamic and static algorithms (with the exception of no TM) is; with the
static algorithm no status messages are sent thus the TM execution time is
reduced by 0.5 second. The status message transmission time is 0.5% of the
data message (1/150 versus 0.75). The extra status messages should affect the
response time when the network is utilized the most, at IAT<60 seconds.
However, analyzing the plots (figure 4.3.11) reveals that the difference
between the static and dynamic Ryms is unnoticeable. This difference is due
to both the communication overhead and the difference in TM execution
times, therefore, we conclude that the communication overhead is

negligible.
The conclusion is also supported by the following calculation:

Problem formulation: calculate communication overhead in terms of delay
time (T) due to the transmission of the extra status messages needed by
dynamic algorithms.
Given: e Network is m/m/1 with 4/3 sec average processing time per data
message and 1/150 sec for status.
¢ Each data message will terminate with probability 0.7 and sent
back to the servers with probability 0.3.
® Each data message requires average of two status messages.
® 32 workstations generating jobs randomly (Poisson arrivals).
o Tmim) =1/~ [Kie76]

M . :
where | is the server processing power and A the arrival rate.
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¢ Overhead is defined as the time difference between Ta(time
delay with status messages) and Ti{time deiay, no status
messages).
Solution: Average number of times a message is transmitted over the

networkisk =% (2n-1}x0.7x0.3n-1 forall n. Thus k~1.8.
A A
T1=1(0.75-32x1.8x )thus Ty~ 1/(0.75-57 x 1).

}J.
With overhead: 1/ = 4/3 + 2 x (1/150)

£ 150/202

N
T2 =1/{(150/202)-57 x" }

Thus: T2-T1 (@IAT = 100} < 1second.
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4.4.2.4 Effectof changing TM processing time requirements

Objective:

Procedure:

Results:

Analysis:

Conclusions:

Assess impact of varying TM processing times on Rem.

Run the TM simulator for varying TM processing times as
defined in 4.4.1. Assume network speed is doubied to prevent it
from being a bottieneck.

As discussed in 4.4.1, the TM “processing penalty” or “load” has
been simulated at +10%, +30% (the default load) and +40%
with the results plotted in figure 4.3.14. At IAT = 100sec,
Rim[10%] = 13sec, Rym{30%] = 15sec and Rym[40%] = 16sec. The
workstation utilization did not meaningfully change as the TM
processing requirements increased to 40%: it increased from
max. 0f 0.26 at 30% to max. of 0.28 at 40%.

As expected, the lowest Ry, is supported by TM load of 10%
and the worst Rym is associated with the 40% load. For I1ATs of
100 seconds and higher the response time reduction is directly
related to the TM load therefore it should be implemented as
efficiently as possible. Reducing the TM load from 30% to 10%
will yield 2 seconds improvement (which is 12%). Since the
workstation utilization is low, changing this parameter did not
drastically affect Rym.

The TM should be implemented efficiently but if 30% is
unachievable, 40% will add only 1 second to the Rim at

IAT>100sec, i.e. Rym is not very sensitive to TM load changes.
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Figure 4.3.14: Response time sensitivity to TM processing requirements
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4.4.2.5 Effectof changing workstation processing power

Objective:

Procedure:

Results:

Analysis:

Conclusions:

Assess impact of varying workstation processing power on Rym.

Repeat the simulations increasing workstation processing
power by x2 and x5 for the TM and NS cases to provide for a
comparison.
The results are plotted in figure 4.3.15. Workstation utilizations
which were very low have been lowered thus keeping the
workstation utilization at less than 25% for all IATs simulated.
As expected, Riy is directly related to the workstation
processing power at all ranges of |IAT. We observe that Rim[TM,
workstation speed at x1]>Rim[TM, workstation speed at
x2]>Rtm{TM, workstation speed at x5] and similarly for the NS
case.
However, -

Rtm[TM, x1] <Rym[NS, x2] and

Rim[TM, x2] < R¢m[NS, x5].

(a) Due to Rym[TM, x1]1<RimINS, x2], it will be better to add the
TM rather than spend money on doubling workstation
processing speeds.

(b) Due to Rim[TM, x2] <Rymn[NS, x5] doubling the workstation
speed and adding the TM may prove more cost effective

than just increasing the workstation processing power by x5.
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4.4.2.6  Effect of changing system servers’ processing power

Objective:

Procedure:

Results:

Analysis:

Conclusions;

Assess impact of varying servers’ processing power on Rym,.

since the servers’ utilization rate is very low (as discussed in
4.4.2.1), repeat the simulations for reduced servers’ processing
power by a factor of 10 with and without the TM to provide for

a comparison.

The resuits are plotted in figure 4.3.16. Rym[NS] increased

substantially, especially at IAT < 90sec.

At |AT =100sec, Rim[NS] increases from ~30seconds to
~50seconds (20 sec which is 66%) while Rym[TM] increases from
~21secondsto~295econds(85ecwhichisBS%).CIearIy,thisisdue
to the load balancing algorithm better utilizing the servers. The
pattern repeats itself for higher 1ATs: at IAT = 150sec, Rem[TM]

increases by ~3seconds while Rim[NS] increases by ~10 seconds .

in the system simulated, reducing the servers’ processing speeds
by a factor of 10 will increase the response times but reduce the
system cost. If the TM is implemented and the addition of 3
seconds (@IAT = 150sec) is not meaningful, system costs could

be reduced.
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4.4.2.7 Effect of changing job size on R¢n
Job size and job execution times are indicative of job "complexity”.

Objective:

Procedure:

Results:

Analysis:

Assess impact of varying job size on Rim.

Repeat the simulations for job sizes of 100KB + 50% for the TM
and NS.

The results are plotted in figures 4.3.17 and 4.3.18. Figure 4.3.17
shows Rym as a function of IAT while 4.3.18 plots the network
utilization for the TM and NS cases @50K8/job and 150KB/job.
Note that some curves show a sharp drops in the range of
200 <IAT <300 seconds due to the x-axis scale change. Network
utilization for the TM case at 150KB/job is similar to the NS case
except in the IAT range of 80<IAT< 150 seconds where the

dotted line represents the TM curve.

Rtm increéses as job size increases. It has also been observed
that workstation and server utilization factors, which were very
low as discussed before, remained very low. For example: in the
TM case, job size = 150KBytes, at IAT =90seconds the server
utilization factors were: ser1: 1%, ser2: 3.8%, ser3: 0.9%, ser4:

4.3% and ser5: 4.7%.

Rimljob size = 150KB] increases steeply as IAT drops below
~150secondsduetothebottleneckalreadyidentified before: the
network. Due to the large transmission times, the network

starts affecting Rym at lower arrival rates {higher IATs)
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Conclusions;

-

compared with Rim for 100 and 50KBytes. This analysis is
supported by the utilization versus IAT curves plotted in figure
4.3.18. At 50KBytes the network does not create a bottleneck
thus the TM's response times are better than NS's (attributed to

load balancing).

By decreasing job size to 50% of the default, the TM yields
better response times at all IAT ranges. If |AT is increased by
50%, the TM response time superiority over the NS starts at
IAT = 150 seconds rather than 60 sec, i.e. 50% increase in job
size changes the TM / NS break even point by 250%. Therefore,
a decision whether to follow the TM concept depends upon the

expected real life IAT and job size.
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4.4.2.8 Effect of changing job processing time
Job size and job execution times are indicative of job “complexity”.

Objective:

Procedure:

Results:

Analysis:

Assess impact of varying job processing time on the system

response times.

Repeat the simulations for the default job processing times
+50% for the TM and NS. Plot R¢q versus IAT.

The NS and TM results are plotted in figures 4.3.19 and 4.3.20
respectively. We observe that, as expected, with and without
the TM, R increases as processing time requirements increase.
At |AT = 100sec, for the TM, increasing job processing time by
50% adds ~ 10 sec delay; decreasing it by 50% decreases Ri¢m by
Ssec. As in 4.4.2.7, server utilization (uT), although slightly
increased due to the increase in processing time, remained low
at less than an average of 4% (calculated as follows: (UTmaxlSer1 for

all IATs] + ... + UTqac[Sers for ali IATs]) / 5).

Notice that (1) the Rym (TM versus NS) break even points for the
defaultand +50% processing timesoccur atiAT~60seconds and
(2) Rtm{NS, default processing times] = Rym[TM, processing time

increased 50%].

The reason for (1) above is: changing processing time affects all
of the system servers with the exception of the network since
the network is sensitive to message length only. Thus the

bottleneck will appear at the same IAT. However, as the job
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Concdlusions:

processing time increases, Ry increases as well for all curves.
Therefore, these curves do not provide additiona! information
to support a tradeoff discussion of TM versus NS IAT crossover
point. The curves become steep as IAT decreases due to the

network creating a bottieneck.

Due to Rim[NS, default processing times] = Rim[TM, processing
time increased 50%] a conclusion is made that adding the TM
will facilitate increasing job processing time by up to 50% while
preventing a response time increase. In fact the response time

will improve as depicted by figures 4.3.19 and 4.3.20.
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4.4.2.9 Effect of changing user think time

Objective:

Procedure:

Results:

Conclusions:

Provide a measure to assess impact of varying user think times
on the NS response times. This figure will help quantify

response times improvement based on various user “speeds”.

Repeat the NS simulation used in 4.4.2.1 for the following user
think times: 3, 6, 15 and 30 seconds.

The results are plotted in figure 4.3.21. Note that the 6 seconds
curve merges with the 3 second curve at IAT =90sec. Server’s
utilization remained low. At IAT =60 sec, and think time of 30
seconds, server 1 through server 5 utilizations were: 2%, 2.5%,
7.8%,3%, and 13% respectively.

If user think times are greater than the 3 second default time
(which very likely is the real life case) than the TM response time
improven{ents are greater than previously discussed. The

improvement can be quantitatively sized using figure 4.3.21.
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4.4.2.10 Centralized TM

In this case, there is a server which is fully dedicated to performing the TM

function. It does not perform any other processing.

Objective:

Procedure:

Results:

Analysis:

Provide an answer to the following question: for the default
parameters, how does the centralized TM compare against the

distributed TM.

simulate a centralized TM assuming it is fully dedicated to the
TM functions. its processing power is equivalent to the sum of
the 32 workstations’ processing power dedicated to the TM.
Since the TM function -or TM transaction- has been executed in
1.5 seconds per workstation, and knowing that there are 32
workstations, the TM's processing power has been fixed at
0.05seconds per TM transaction (1.5 seconds divided by 32). See
441 and 4.4.2.4. The TM processing power has also been
increased 10 times to 0.005 seconds per TM transaction
processing.

Rtm versus IAT and network utilization are plotted in figure
4.3.22. The centralized TM response times for 0.05 and 0.005
seconds per TM transaction are less desirable than the
distributed TM. TM utilization was less than 4.8% at all times.
Since the waorkstations in the simulation are cooperative, the
TM assigns tasks back to them with the same probability

function as in the distributed case. Due to job transmission from
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the TM to the servers and to the workstations, the network
Ccreates a severe bottleneck as shown in figure 4.3.22.
Conclusions: ® With the default parameters, the distributed TM provides
better response times. Note that the centralized TM has
many drawbacks as described in 4.3, one of them is the need
to a dedicated site which increases cost. Fault tolerance has
to be considered as well.

® The TMdid not introduce a bottleneck.
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Simulation notes

RESQ was run until a confidence level of at least 94% was achieved. Then
min., max., and average values have been obtained. All curves have been
plotted on or between the minimum and maximum data points. In some
cases, 4.4.2.3 for example, the results’ resolution did not facilitate a clear

distinction between two adjacent curves.

At some high arrival rates ('high’ depends on the actual simulation but in
most cases 'high’ roughly means IAT<70 seconds) the number of arrivals
exceeded the number of departures. The spread between the min. and max.
values given by RESQ led to a quoted confidence level of less than 85%. It
was impossible to increase the simulation time since RESQ run out of virtual
memory space. Nevertheless, RESQ, using Little's resuit, estimated the
response time for the simulation duration. The fower confidence level in this
IAT range has been accepted since our assumption, as noted in 4.4.2.1, has
been that real life IATs will not be this stressful and in fact be greater than
100 seconds inter arrival time. The theoretical network overhead calculation
performed in 4.4.2.3 supports the simulation and shows that arrivals exceed

departures at IAT of roughly 70sec.
Lastly, the simulation has a deficiency since an assumption was made

regarding the workstations: local user processing does not affect the

workstation utilization, which may not be always true.
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In summary: The most important conclusion is that the TM concept has
proved useful for the real life range of job arrival rates. It cuts response
times, as seen by the user, considerably (by up to 50 percent). The assumption
that network utilization will be low has been proved wrong. The network,
based on the stated assumption, will be a bottleneck, unless its speed

increased at least by 2.
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4.5 XNS Simulation

This section describes the Ethernet physical and link levels simutation
followed by the higher iayers in the XNS model. The simulation was done in
SLAM and run on a VAX 11/750 (VAX is a Digital Equipment trade mark). The
purpose of this simulation was to supply throughput parameters to the
Application simulation described in the previous section and answer
questions (a) through (c) stated below. For no extra efforts, the simulator

provided other information like Ethernet collision rates.

Since we are studying the XNS environment with the idea of using it as a
basis for further enhancements, we were interested in understanding the
throughput versus utilization and collision rate, and the effect of changing
packet size on throughput. If with current servers and users the network is
“fully utilized”, adding the TM with extra servers may create problems: low
throughput, high collision rate, limited expandability and loss of
interactivity. In this system, individua! workstations (or nodes) acquire,
process, and dispense files around the network, seizing and releasing
communication bandwidth on the Ethernet in an equal access, random

manner.

Major differences between the TM approach and traditional office systems

are.

Network Traffic: The TM may manage voice mailboxes, scanners, printers,

workstations, optical filing systems, magnetic filing systems, voice servers as
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well as other image manipulation servers for still or moving video dealing
with raster images. In many cases, these images will be routed automatically

from node to node at machine decision rates (milliseconds) rather than user

rates (seconds) thus creating large bursts of file transfers.

File Size: Due to the above, files can only be expected to get larger as
indicated in section 4.4. It is expected that most files will reach 100KBytes in

length.

As a result the offered network load will increase while only slightly

increasing the number of Ethernet drops per network. Nevertheless, office

systems with or without the TM as described in this work share a common

feature: Ethernet and XNS. Therefore, the questions asked are:

(a).  Will packet collisions increase to such a point that virtually all packets
are destroyed and nobody can gain access?

(b).  Will throughput fall off badly so that users lose interactivity?. Is the
Ethernet a bottleneck? Should fiber optic LANS be recommended?

(). How sensitive is throughput to the number of workstations and
packet size?

To answer these questions we started with the Ethernet simulation and

continued with the higher level protocols in XNS.
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4.5.1 EthernetSimulation Model

The Ethernet model is shown in figure 4.4. The model is limited to the Data
Link and Physical layers of the XNS Ethernet protocol as defined in [Eth82].
No attempt was made to include workstation parameters. Packets attempt
to acquire the network or follow standard back-off procedures for collisions,
and are destroyed after they have seized the net. Two or more packets trying
to size the Ethernet at the same time signal a collision. This is a simulation of
a single send-receive pair of nodes. Window size (number of packets per
acknowledge) is ignored since it js irrelevant at this level. The model is an
exact representation of what happens when a packet is communicated from
one node to another from the point of view of the Ethernet. Network
utilization can be controlled directly by altering the inter-arrival time of
packets. We used an existing model, fed it with our updated parameters, and
ran multiple trials. Simulated were 576 byte packets, and “Blue Book”

[Eth82] values for all oth‘er parameters. Figure 4.5 charts the resyits.
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Figure 4.5: ENET model results at 576 byte packets
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Several conclusions were achieved: The network remains stable (meaning
throughput doesn't drop sharply) even under heavy utilization. The collision
rate increases dramatically only above 70% network utilization. Throughput
falls about 100 kBytes/sec for every 10% increase in utilization. This
relationship held constant even above the 70% limit. Based an these results
and knowing that current network utilization is less than 5% we concluded
that the Ethernet may not be a bottleneck and may be adequate to support

additional traffic.

4.5.2 The XNS Model

The following model has been developed based on existing simulation
packages in order to simulate the higher layers of XNS. It includes two
components: the Ethernet model discussed before (XNS level 0) and
empirical processing overhead imposed by XNS layers 1, 2, and 3 (Courier
only) as measured on the Xerox 6085 work station. Packet transmission error
rate of 107 has been included. There was a need to simulate the effect of
varying the number of workstations contending for the Ethernet as well as
the effect of a multi file transfer including inter-frame and inter-file delays
as imposed by the 6085. This XNS model is depicted in figure 4.6. The dotted
lines in the figure do not mean closed loop population but rather Courier
remote procedure calls to prompt transmission of the next frame and file.

Inter arrival times due to the XNS protocols are also indicated.
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Before proceeding with the model, we clarify the following: Offered Load is
defined as the average aggregate number of packets/sec offered to the
network. Each workstation freely generates a certain number of packets per
second given file size, file IAT, and data packet size regardless of the
network capacity. it is important to note that destroyed packets are also

included.

The model was defined by a combination of fixed and variable parameters.
The fixed parameters were: File size - a typical data file in this system:
100KBytes. Maximum number of workstations - the maximum number of
sending nodes in the simulation: 32. Inter packet spacing - the hardware
recovery time before the next packet could be sent: not less than 9.6 usecs.
Slot time - the unit of retransmission time used in the backoff algorithm:
51.2 usecs. Minimum & maximum collision round trip time - the time
required for a round trip on the Ethernet which is the time required to
ascertain there was no collision on the network: 3 to 13 usecs. Network
bandwidth: 10 MHz. The variable parameters were: packet length in bytes,
number of sending nodes, number of packets in frame (packets per ack), IAT
between packets in frame, number of frames in a file, IAT between frames,

and |AT between files.
The simulation provided the following packet information: creation time,

collision count, originating node ID, packet sequence in frame, frame

sequence in file, and file creation time & ID as well as:
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IAT of packet creation. The distribution of times between packets on each
workstation. This gave us a clear indication of network fairness.

Histogram of packet collisions. A large number indicates that each node is
spending much time deferring; a low number indicates good throughput.
Packet lifetime. The backoff algorithm itself enforces a binary exponential
waiting distribution. Packet lifetimes will show this wait and we concluded
that variations in individual lifetimes were not significant.

IAT of frames and network utilization.

File lifetime. A clear indication of throughput (the min. and max. numbers

amplify the network equality issue).

4.5.2.1 XNS Simulation Results and Analysis

The simulation objective was to measure effective throughput and network
utilization as a function of packet size, offered load, and number of
workstations. As mentioned earlier, we also wanted to watch access fairness.
For each run, a specific packet size, number of workstations, and offered
load were selected. Each run was repeated 10 times changing only the

random number seed in the SLAM processor.

Three packet sizes: 576, 1500, and 4096 bytes per packet were studied. The
first size corresponds to the current and only maximum packet length used.
The second size is the XNS maximum atlowed in the XNS protocols. The last

size is used as a reference point to possible performance gains. The number
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of workstations was selected from 1,2,4,8,12,16,20,24,28, or 32. File |AT

ranged from 4 seconds per file to 0 seconds which is the highest possible.

Figure 4.7 depicts the network utilization for each of the three packet sizes
as a function of offered load. The ideal case (network utilization equal to
offered load) is shown by the dotted line. For all three packet sizes, the ideal
case is closely approximated untit 50% offered load has been reached. At
that point, the curves begin to diverge from the ideal case and from each
other until the network utilization is virtually flat. Nowhere did we observe
a collapse in network communication indicated by a falling network

utilization.

Figures 4.8 through 4.12 show effective throughput rates as a function of
number of workstations for ranges of offered loads and packet sizes. Not all
graphs have “complete” curves: some network loadings were impossible to
achieve with too many or too few waorkstations and the file |AT distribution
selected. Several observations were made. For 576 byte packets, the number
of workstations is not a critical parameter. The effective throughput ranged
from 70,000 bytes per second down to 48,000. Additionally, offered load
changes make no real difference on the throughput. For 1500 byte packets
there is a moderate impact from node count but throughput is slightly
affected by offered load. Large packet sizes appear to be most affected by

node count and offered load.
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4.5.2.2 XNS Simulation Conclusions

Earlier in this section we raised 3 questions. The first was: “will packet
collisions increase to such a point that virtually all packets are destroyed and
nobody can gain access?” Provided that we do not exceed 50% network
utilization, the results of the Ethernet the XNS simulation gave an indication
that the network is 'stable’ under heavy loads and the collision count is very

low as indicated in figure 4.5.

The second question {“will throughput fall off badly so that users lose
interactivity? Is the Ethernet a bottleneck? Should fiber optic LANS be
recommended?”) has been answered as well. Throughput will not
deteriorate badly as depicted in figures 4.8 through 4.12 and interactivity
will be maintained provided we use the smaller packet size of 576 bytes per
packet. (We must also accept the fact that larger packet sizes imply
significantly better throughput but throughput will fall sharply as network
loading exceeds 50%. At the same time, itis also clear that throughput falls

off considerably as node count increases).

The third question (“How sensitive is throughput to the number of
workstations and packet size?") is also answered. For packet sizes of 576 and
1500 bytes, the sensitivity is low, as depicted in figures 4.8 through 4.12.

Using 4KBytes/packet changes the answer dramatically.
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5.0 Conclusions and Future Research

A major conclusion supported by the simulation results shown in fig. 4.3.4 is
the fact that the introduction of the TM improves response times by at least
25%. It is evident that the TM, although slightly increasing network traffic,
reduces the parameter that users are most sensitive to: response time. The
response time is reduced from 19 to 14 seconds for typical arrival rates of
inter arrivai times (IAT) greater than 500sec. The communication overhead
introduced by the dynamic load balancing algorithm does not nullify the
TM's response time improvements. The experiments have also shown that
the TM improves the response time even with static load balancing. Note
that the hypothesis to be tested in this work was that the addition of the TM,
despite its inherent processing and possible communication overhead, would

improve the response time.

A series of ten experiment sets has been conducted to investigate the TM
behavior in the specified simulation environment. The effect of changing the
following features/parameters has been investigated: communication

network transmission speed, various load balancing algorithms, TM
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processing time requirements, workstation processing power, system servers’
processing power, job size and processing requirements, user think times,

and centralized versus distributed TM.

For the specific parameters chosen in our simulation environment, the
communication network turns out to be a bottleneck. Multiplying the
network speed by 100 or even 10 is not justified since multiplying it by 5
eliminates the bottleneck anyway. In small systems (8 users) the network
does not create a bottleneck therefore the TM is effective in increasing
performance for any arrival rate. Considering response time, it has been
shown that just adding the TM provides better response times than doubling
the network speed. Furthermore, it is better to double the network speed
and add the TM than muitiply the network speed by 5 without a"dding the

TM. It may also be more cost effective.

If load balancing is removed, response time consistently degrades in the
entire IAT range. The server overflow algorithm performs even worse.
Provided the network is not a bottleneck, the server capacity threshold load
balancing algorithm is the scheme of choice for IAT<130sec and will
perform very well at IAT>130 sec. As also confirmed by the analytic model,
the communication overhead imposed by dynamic load balancing is minimal
(at IAT>100sec). However, in the simulation, dynamic load balancing does
not perform well at IAT<70sec since the network is fully utilized and
imposes high delays due to the required status packets. The static server

capacity algorithm provided the same response time as the dynamic server
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capacity threshold at IAT>200 seconds. Since implementing the static
algorithm is simpler than the dynamic one, the static algorithm is

recommended.

It has also been shown that the addition of the TM yields better response
times than doubling the workstation processing speed. Furthermore, a
combination of doubled workstation speed and the TM provides better
response times than increasing the workstation processing power by x5. It
may also prove more cost effective. Studying the effect of varying job
complexity provided the following: If job size is increased by 50%, the TM
response time superiority over the existing system starts at IAT = 150 seconds
rather than 60 sec. If job size is decreased by 50%, the TM improves response
times at all IAT ranges. Adding the TM will facilitate increasing job
processing time by up to 50% while preventing a response time increase. In

fact the response time will improve as depicted in figures 4.3.19 and 4.3.20.

The TM should be implemented efficiently. However, response time is not
very sensitive to TM |load changes (section 4.4.2.4). In the system simulated,
reducing the servers’ processing speeds by a factor of 10 will increase the
response times but reduce the system cost. !f the TM is implemented,
response time will increase by 3 seconds (@IAT = 150sec) compared with 12
seconds without it. Therefore the TM facilitates better system utilization and
enables cost cutting. Yet an additional conclusion is that if the network
designers had a fixed amount of money to spend, it would have been wiser

to spend less on servers and more on the communication network and
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workstations. Last but not feast, the distributed TM provides better response

times than the centralized TM.

Further research:

This dissertation addresses the office, engineering, and scientific
environment with its set of servers, workstations and users. However, the
environment may reflect a more heterogeneous set of servers, e.qg.
workstations represented by IBM PCs as well as SUNs, computing servers
represented by the traditional departmental processors (e.g. VAXs) as well as
super computers like CRAY etc. With this range of processing speeds, should
TMs be tailored as front ends only? Can a general purpose TM perform well
in this network as well or should it be restricted to a class of servers? A totally
different environment is the factory with intelligent robots, laths, testing
machines etc. In factories, the ‘jobs’ require several processing steps
performed at different sites (e.g. raw material inspection robot, assembly
machine, and final test) that may be managed by the TM. This environment,
in fact, imposes the use of third party data transfers, where the 'data’ is

actually the physical product. How well is the TM suited for this type of jobs?

Another topic which also supports the environment mentioned above is
researching the TM fault tolerance characteristics and developing reliability
models. The TM is capable of detecting server failures and reassigning the
tasks to alternative servers which are capabie of performing the tasks. In
addition, the TM itself may fail thus requiring TM failure detection and

reassignment as proposed in chapter 3. These procedures including TM
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failure detection and assignment algorithms need to be further studied. In
the office and scientific environments server (and TM) failure rates are
relatively low and the effect of failures, in most cases, is not catastrophic. The
failure rates of mechanical equipment (or servers) in the factories may be
different and a single node failure may lead to stopping the entire
production line. Other systems may also require high reliability in addition to

performing the TM functions in real time and under time constraints.

In very large systems, there might be a need to implement several TMs. The
TMs support a multitude of servers and users, perhaps in a mixture of
homogeneous and heterogeneous environments. This case raises several
questions: should the TMs be implemented in some type of hierarchy or
should they all be at the same level, is it appropriate to mix front end TMs
and general purpose TMs, should TMs be controlled by other TMs. Some
design and performance issues may be further investigated: the number of
TMs per system, number and type of users per TM etc. TMs may need to
communicate with each other. Should the proposed communication
proposal be modified? Resource management over large distances may
imply relatively iong delay times between the TM and servers. The TM
adaptation to this and possibly other wide area network constraints may be

studied.
The TM concepts may be expanded to include features required by large

information systems. It may address distributed data bases which are

composed of muiti media as well as multi format components. In these
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systems, a query may be submitted to the TM; the TM, using its local data
base and the UDF (user define file) may optimize the query by searching the
databases which are the most likely ones to provide the needed information,
sort and filter the information before responding to the user while
supporting transparency. If needed, concurrency control algorithms should

be incorporated in the T\,

Other research topics include the following: In this work a major assumption
has been that the workstations are cooperative: the TM may assign tasks to
network servers and to the originating workstation. Therefore, the effect of
non-cooperating workstations -when the TM should assign tasks only to its
servers- may be studied. A different topic is associated with the TM domain
increase and decrease rules which affect the domain size. Increase and
decrease rules may be further developed to support a more heterogeneous
environment. Inter TM communication needs as well as security issues may
be studied. The existing TM mechanisms described here provide support for

these incremental needs.

There is also opportunity for further research by actually implementing this
model in a local area network. It may provide a test bed for further
investigation of the TM’s properties and in fact may complement the
simulation results by providing actual real life measurements. The effect of
static and dynamic load sharing algorithms as well as TM failures may be
studied. In my work, an assumption was made that servers do not fail thus an

important TM property has not been simulated. TM domain management
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algorithms may be tested to address the effectiveness of increase and

decrease rules.
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6.0 Appendix: Application Level Simulation Code

/'k
This model was used for the TM simulation. The XNS simulator was
similar but with severai changes.

*/

MODEL: tm0O6NOV
METHOD:simulation
DISTRIBUTION PARAMETERS: arv
DISTRIBUTION IDENTIFIERS  think thinkz mess con
THINK exponential{1)
THINKZ:exponential(0.001)
MESS:exponential(6.5)
CON:0.05
MAX IV:2
QUEUE:ser1
TYPE :fcfs
CLASS LIST:cser1
SERVICE TIMES: 1
QUEUE:ser2
TYPE:fcfs
CLASS LIST:¢cser2
SERVICE TIMES:2
QUEUE:ser3
TYPE: fcfs
CLASS LIST:¢ser3
SERVICE TIMES: 4
QUEUE:ser4
TYPE: fcfs
CLASS LIST:cserd4
SERVICE TIMES:0.1
QUEUE:ser5
TYPE :fcfs
CLASS LiIST:cserb
SERVICE TIMES: Q.5
QUEUE:net
TYPE:fcfs
CLASS LIST:cnetdnet  messx snet
SERVICE TIMES:4/3 4/3  4/600 4/600

QUEUE:human1
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TYPE:fcfs
CLASS LIST:cthink 1 athink1
SERVICE TIMES:think thinkz
QUEUE:ws1
TYPE:fcfs
CLASS LIST:mess1 conl
SERVICE TIMES:mess con

QUEUE:human?2
TYPE:fcfs
CLASS LIST:cthink2 athink?2
SERVICE TIMES:think thinkz
QUEUE:ws2
TYPE :fcfs
CLASS LIST:mess2 con?2
SERVICE TIMES:mess con

QUEUE: human3
TYPE:fcfs
CLASS LIST:cthink3 athink3
SERVICE TIMES:think thinkz
QUEUE: ws3
TYPE:fcfs
CLASS LIST:mess3 con3
SERVICE TIMES:mess con

QUEUE:human4a
TYPE:fcfs
CLASS LIST:cthink4 athink4
SERVICE TIMES:think thinkz
QUEUE:ws4
TYPE:fcfs
CLASS LIST:mess4 con4d
SERVICE TIMES:mess con

QUEUE:humans
TYPE: fcfs
CLASS LIST:cthink5 athink5
SERVICE TIMES:think thinkz
QUEUE:ws5
TYPE:fcfs
CLASS LIST:mess5 cons
SERVICE TIMES:mess con

QUEUE:humanb
TYPE:fcfs
CLASS LiST:cthink6 athinks
SERVICE TIMES:think thinkz
QUEUE:ws6
TYPE: fcis
CLASS LIST:mess6 conb
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SERVICE TIMES: mess con

QUEUE:human?7
TYPE:fcfs
CLASS LIST:cthink7 athink7
SERVICE TIMES:think thinkz
QUEUE:ws7
TYPE:fcfs
CLASS LiIST:mess7 con?
SERVICE TIMES:mess con

QUEUE:human30
TYPE :fcfs _
CLASS LIST:cthink30 athink30
SERVICE TIMES:think thinkz
QUEUE:ws30
TYPE:fcfs
CLASS LIST:mess30 con30
SERVICE TIMES:mess con

QUEUE:human31
TYPE :fcfs
CLASS LiST:cthink31 athink31
SERVICE TIMES:think thinkz
QUEUE:ws31
TYPE:fcfs
CLASS LIST:mess31 con31
SERVICE TIMES: mess con

QUEUE:human3?
TYPE:fcfs
CLASS LIST:cthink32 athink32
SERVICE TIMES:think thinkz
QUEUE:ws32
TYPE:fcfs
CLASS LIST:mess32 con32
SERVICE TIMES:mess con

SET NODES:set1
ASSIGNMENT LIST:jv(1) =1

SET NODES set2
ASSIGNMENT LIST:jv(1) =2

SET NODES:set3
ASSIGNMENT LIST:jv(1) =3
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SET NODES setd
ASSIGNMENT LIST:jv(1) =4
SET NODES set5
ASSIGNMENT LIST:jv(1) =5
SET NODES:setb
ASSIGNMENT LIST:jv(1) =6
SET NODES:set?
ASSIGNMENT LIST:jv(1) =7
SET NODES:set8
ASSIGNMENT LIST:jv(1) =8
SET NODES:set9
ASSIGNMENT LIST:jv(1) =9
SET NODES:set10
ASSIGNMENT LIST:jv(1} =10
SET NODES:set11
ASSIGNMENT LIST:jv(1) = 11
SET NODES:set12
ASSIGNMENT LIST:jv(1) =12
SET NODES:set13
ASSIGNMENT LIST:jv(1) =13
SET NODES:set14
ASSIGNMENT LIST:jv(1) =14
SET NODES:set15
ASSIGNMENT LIST:jv(1) = 15
SET NODES:set16
ASSIGNMENT LIST:jv(1) =16
SET NODES:set17
ASSIGNMENT LIST:jv(1) =17
SET NODES:set18
ASSIGNMENT LIST:jv(1) =18
SET NODES:set19
ASSIGNMENT LIST:jv(1) =19
SET NODES set20
ASSIGNMENT LIST:jv(1) =20
SET NODES:set21
ASSIGNMENT LIST:jv(1) =21
SET NODES:set22
ASSIGNMENT LIST:jv(1) =22
SET NODES:set23
ASSIGNMENT LIST:jv(1) = 23
SET NODES:set24
ASSIGNMENT LIST:jv(1) =24
SET NODES:set25
ASSIGNMENT LIST:jv(1) = 25
SET NODES:set26
ASSIGNMENT LIST:jv(1) = 26
SET NODES: set27
ASSIGNMENT LIST:jv(1) =27
SET NODES:set28
ASSIGNMENT LIST:jv(1) =28
SET NODES:set29
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ASSIGNMENT LIST:jv(1) = 29
SET NODES:set30
ASSIGNMENT LIST:jv(1) =30
SET NODES set31
ASSIGNMENT LIST:jv(1) = 31
SET NODES:set32
ASSIGNMENT LIST:jv{1) = 32
SET NODES:setx
ASSIGNMENT LIST:jv(2) =1
DUMMY NODES:dum?dum2 dum3
CHAIN:int
TYPE:open
SOURCE LIST:51525354555657s859510s11512513 s14 515
ARRIVAL TIMES:arv
SOURCE LIST:s1651751851952021522523524 525526527
ARRIVAL TIMES:arv
SOURCE LIST:528 529530531532
ARRIVALTIMES: arv

s1->set1->cthink1->con 1- > messx
:athink1- >mess1
:82->set2->cthink2->con2->messx
:athink2->mess2
:$3->set3->cthink3->con3- > messx
:athink3->mess3

:84->setd->cthink4- >cond- >messx
athink4->mess4

:85->set5- >cthink5- > con5->messx
:athink5->mess5

:$6->setb6- >cthink6- > conb6->messx
:athink6->mess6
's7->set7->cthink7->con7->messx
rathink7->mess?
:$8->5et8->cthink8->con8- > messx
:athink8- >mess8

:89->set9- >cthink9- >con9- >messx
:athink9->mess9
:$10->5et10->cthink10- > con 10-> messx
:athink10->mess10
$11->set11->cthink11->con11->messx
;athink11->mess11
:812->set12->cthink12->con12- >messx
‘athink12->mess12
:$13->set13->cthink13->con 13- >messx
:athink13->mess13
:814->set14->cthink14- >con14- > messx
;athink14- >mess14
:$15->set15->cthink15->con15->messx
:athink 15->mess15
:$16->set16->cthink16->con16->messx
:athink16->mess16
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:$17->set17->cthink17->con17- > messx
:athink17->mess17
:$18->5et18->cthink18->con 18- >messx
:athink 18- >mess18
:$19->5et19->cthink 19- >con 19- > messx
athink19- >mess19

:520->set20- >cthink20- >¢on20->messx
athink20->mess20
'$21->set21->cthink21->con21- >messx
‘athink21->mess21
1$22->set22->cthink22->con22->messx
:athink22->mess2?
:823->s5et23->cthink23->con23->messx
:athink23->mess23
:s24->set24->cthink24->con24->messx
‘athink24->mess24
:825->set25->cthink25->con25- >messx
rathink25- >mess25

:826->set26- >cthink26->con26->messx
rathink26->mess26 )
:827->set27->cthink27->con27- >messx
;athink27->mess27
:§28->set28->cthink28- >con28- >messx
:athink28->mess28
:$29->set29->cthink29->¢con29->messx
:athink29- >mess29

:$30->set30- >cthink30- >con30->messx
:athink30->mess30
:831->set31->cthink31->con31->messx
;athink31->mess31
:$32->set32->cthink32->con32->messx
rathink32->mess32

‘messx->snet->dums3

:mess1 mess2 mess3 messd mess5 messb->cnet
:mess7 mess8 mess9 mess10->cnet

:mess11 mess12 messi3 mess1d mess15 mess16->cnet
'messt7 mess18 mess19 mess20 mess2 1 mess22->cnet
‘mess23 mess24 mess25 mess26 mess27 mess28- >cnet
:mess29 mess30 mess3 1 mess32->cnet

:cnet->dum2;if(jv(2) = 0)
:cnet->dum2 dum1;0.6 0.4

:dumi->cser1;if((.25*tq(ser1) <0.5*tq(ser2))and( + +
0.25*tq(ser1) <tq(ser3)))

rdum1->cser2;if((0.5*tq{ser2) <0.25*tq(ser1))and + +
(0.5*tq(ser2)<tq(ser3)))

:dumi->cser3;if((tg(ser3) <0.25*tq(ser1))and + +
(ta(ser3)<0.5*tq(ser2)))

:dum?t->cserl cser2 cser3;4/7 2/7 1/7
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:dum2~>cser4;if(0.2*tq(ser4)<tq(ser5))
:dum2->cser5;if(tq(serS)<0.2*tq(ser4))
. :dum2->cserd cser5;5/6 1/6
/
:dum1->cser1 cser2 cser3; 1/3 1/3 1/3
:dum2->cserd cser5;.5.5
*/
.cser1 cser2  cserd cser5->setx
.cser3->sink
r* setx->dum3sink cnet;0.100.7 0.20 */
setx->sink dnet;0.7 0.3
:dnet->dum3
:dum3->athink1;if(jv(1)
:dum3->athink2;if(jv(1)
:dum3->athink3;if(jv(1)
:dum3->athinkd4;if(jv(1)
:dum3->athink5;if(jv(1)
:dum3->athink6;if(jv({1)
:dum3->athink7;if(jv(1)
:dum3->athink8;if(jv(1)
:dum3->athink9;if(jv(1)
:dum3->athink10;if(jv(1
:dum3->athink11;if(jv(1
:dum3->athink12;if(jv(1
:dum3->athink13;if(jv(1
:dum3->athink14;if(jv(1
:dum3->athink15;if(jv(1
:dum3->athink16;if(jv(1
:dum3->athink17;if(jv(1
:dum3->athink18;if(jv(1
:dum3->athink19;if(jv(1
:dum3->athink20;if(jv(1 0)
:dum3->athink21;if(jv(1) = 21)
:dum3->athink22;if(jv(1) = 22)
:dum3->athink23;if(jv(1) = 23)
:dum3->athink24,if(jv(1) = 24)
:dum3->athink25;if{jv(1) = 25)
:dum3->athink26;if(jv(1) = 26)
:dum3->athink27;if(jv(1) = 27)
:dum3->athink28;if(jv(1) = 28)
:dum3->athink29;if(jv(1) = 29)
:dum3->athink30;if(jv(1) = 30)
:dum3->athink31;if(jv(1) =31)
:dum3->athink32;if(jv(1) = 32)
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