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ABSTRACT OF THE THESIS

High-Level Inferencing in a Localist Network

by

Trent Eliot Lange
Master of Science in Computer Science
University of California, Los Angeles, 1990

Professor Michael G. Dyer, Chair

Connectionist models have had problems representing and applying
general knowledge rules that specifically require variables. This
variable binding problem has barred them from performing the high-
level inferencing necessary for planning, reasoning, and natural
language understanding. This thesis describes RoBIN, a local con-
nectionist model capable of high-level inferencing requiring vari-
able bindings and rule application. Variable bindings are handled
by signatures - activation patterns which uniquely identify the
concept bound to a role. Signatures allow multiple role-bindings
to be propagated across the network in parallel for rule applica-
tion and dynamic inference path instantiation. Signatures are in-
tegrated within a connectionist semantic network structure whose
constraint-relaxation process selects between those newly-instan-
tiated inferences. This allows ROBIN to handle an area of high-
level inferencing difficult even for symbolic models, that of re-
solving multiple constraints from context to select the best in-
terpretation from among several alternative and possibly ambiguous
inference paths.
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1. INTRODUCTION

Critical to cognitive abilities such as natural language understanding and planning is the need to
perform high-level inferencing to make explanations and predictions from what is known about the
world. Connectionist models have been unable to perform high-level inferencing because of their
difficulties with representing and applying general knowledge rules. They have so far been unable
to solve this variable binding probiem, i.e. the ability to maintain multiple variable bindings and
modify them by rule application. It has recently been argued that these deficits strictly limit the

usefulness of connectionist networks for modelling high-level cognitive tasks [Fodor & Pylyshyn,
1988].

This thesis describes a structured connectionist model capable of variable binding and rule applica-
tion. ROBIN (ROle Binding and Inferencing Network) [Lange & Dyer, 1988, 1989a,b] performs
high-level inferencing over structured connections of nodes that encode world knowledge in se-
mantic networks similar to those of other models. However, ROBIN has additional node-pathway
structure to handle variables and dynamic role-binding. With this structure, the model is able to
maintain multiple role-bindings and propagate them along paths defined by the knowledge base’s
general knowledge rules, thus performing inferencing.

Although the ability to maintain variables and apply general knowledge rules is necessary for high-
level inferencing, it alone is not sufficient. This is because one of the most difficult parts of the
high-level inferencing problem is that of selecting the best interpretation from among multiple alter-
native and potentially ambiguous inference paths. The connectionist semantic network within
which ROBIN’s variable binding network structure is integrated allows a solution to this disam.-
biguation problem, since its smooth constraint satisfaction process allows automatic selection of
the most-highly activated path as the network’s interpretation.

1.1. High-Level Inferencing

High-level inferencing is the ability to use previous knowledge and rules about the world to build
new beliefs about what is true. In natural language uhderstanding, for example, a reader must of-
ten make multiple inferences to understand the motives of actors and to causally connect actions
that are unrelated on the basis of surface semantics alone. Complicating the inference process is
the fact that language is often ambiguous on both the lexical and conceptual levels. Consider the
phrase:

Pl: “John put the pot inside the dishwasher”

Most people will conclude that John wransferred a Cooking-Pot inside of a dishwasher in an at-
tempt to get it clean. This conclusion is an example of a high-level inference. However, suppose
P1 is followed by:

P2: “because the police were coming.”

Suddenly, the interpretation selected for the word “pot” in P1 changes to Marijuana, and John’s
Transfer-Inside action becomes a plan for hiding the Marijuana from the police. This reinter-
pretation requires the inferences shown in Table 1 to understand the most probable causal relation-
ship between the actions of phrase P1 and P2 (collectively called the Hiding Pot episode).

To understand episodes such as Hiding Pot, a system must minimally be able to dynamically
make such chains of inferences (by applying general knowledge rules) and temporarily maintain
them (with a variable-binding mechanism). For example, a system must know about the general
concept (or frame) of an actor transferring himself to a location (“coming™). To represent the initial
knowledge given by phrase P2 of Hiding Pot, the system must be able to temporarily maintain a



[1: If the police see John’s marijuana, then they will know that he possesses an illegal
object (since marijuana is an illegal substance).

12: If the police know that John is in possession of an illegal object, then they will arrest
him, since possessing an illegal object is a crime.

[3: John does not want to get arrested.

14: John has the goal of stopping the police from seeing his marijuana.

15: The police coming results in them being in the proximity of John and his marijuana.

I6: The police being in the proximity of John's marijuana enables them to see it.

[7: John's putting the marijuana inside the dishwasher results in the marijuana being in-
side the dishwasher,.

I18: The marijuana is inside an opaque object (the dishwasher).

19: Since the marijuana is inside an opaque object, the police cannot see it, thus satisfy-
ing John's goal.

Table 1: Inferences needed to understand the sentence “John put the pot inside the
dishwasher because the police were coming.” (Hiding Pot)

particular instantiation of this Transfer-Self frame in which the Actor role (a variable) is bound to
Police and the Location role is bound to the location of John. The system must also have the
general knowledge that when an actor transfers himself to a location, he ends up in the proximity
of that location, which might be represented as the rule:

Rl: [Actor X Transfer-Self Location Y]
== results-in == [Actor X Proximity-Of object. Y]

Applying this rule to the instantiation of the police Transfer-Self would allow the system to make
inference I5 in Table 1, that the police will be in the proximity of John and his marijuana. Another
piece of knowledge that the system must have is that an actor must be in the proximity of an object
in order to see it, which might be represented as the rule:

R2: [Actor X Proximity-Of Object Y]
== precondition-for ==> [Actor X See-Object Object Y]

If this rule is applied to the new piece of knowledge that the Police will be in the proximity of
John, then the system would be able to infer that there is the potential for them to see John and his
marijuana (I6). The rest of the inferences in Table 1 to understand Hiding Pot are the result of
the application of similar rules and knowledge about the world.

Unfortunately, even the ability to maintain variable bindings and apply general knowledge rules of
the above sort is often insufficient for language understanding and other high-level cognitive tasks.
This is because language is often ambiguous, as Hiding Pot illustrates, with several possible in-
terpretations that must be chosen between. One of the fundamental problems in high-level infer-
encing is thus that of frame selection. When should a system make inferences from a given frame
instantiation? And when conflicting rules apply to a given frame instantiation, which should be
selected? Only a system that can handle these problems will be able to address the following criti-
cal tasks:



Word-Sense Disambiguation: Choosing the meaning of a word in a given piece of text. In
P1, the word “pot” refers to a Cooking-Pot, but when P2 is presented, the evidence is
that the interpretation should change to Marijuana.

Inferencing: Applying causal knowledge to understand the results of actions and the motives
of actors. There is nothing in Hiding Pot that explicitly states that the police might see
the pot (I6), or even that the police will be in proximity of it and John (I5). Nor is it
explicitly stated what the police will do if they see he possesses Marijuana (11, 12).
Each of these assumptions must be inferred from phrases P1 and P2.

Concept Refinement: Instantiating an applicable specific frame from a more general one. In
P1, the fact that the pot was inside a dishwasher tells us more than the simple knowledge
that it was inside a container. In contrast, the salient point in Hiding Pot is that it is in-
side of an opaque object (I8), which allows us to infer that the police will not be able to
see it (I9).

Plan/Goal Analysis: Recognizing the plan an actor is using to fulfill his goals. In P1, it ap-
pears that John put the pot into the dishwasher as part of the $Dishwasher-Cleaning
script to satisfy his goal of getting it clean. In Hiding Pot, however, it appears that it is
part of his plan to satisfy his sub-goal of hiding it from the police (I4), which is part of
his overall goal to avoid arrest (I3).

Frame selection is complicated by the effect of additional context, which often causes reinterpreta-
tion to competing frames. The contextual evidence in Hiding Pot can conflict even more, and the
explanation change again, if, for example, the next phrase is:

P3: “They were coming over for dinner.”

As a result of P3, the word “pot” might be reinterpreted back to Cooking-Pot. These examples
clearly point out two sub-problems of frame selection, those of frame commitment and reinterpre-
tation. When should a system commit to one interpretation over another? And if it does commit to
one interpretation, how does new context cause that interpretation to change?

1.2. Previous Approaches

Symbolic artificial intelligence (AI) systems have so far been the only types of models capable of
performing high-level inferencing. A good example is BORIS [Dyer, 1983], a natural language
understanding program for modelling in-depth understanding of relatively long and complex sto-
ries. BORIS had a symbolic knowledge base containing knowledge structures representing various
actions, plans, goals, emotional affects, and methods for avoiding planning failures. When read-
ing in a story, BORIS would fire rules from its knowledge base to perform inferencing and form an
internal representation of the story, about which it could then answer questions. Other models that
have successfully approached complex parts of the language understanding process have all had
similar types of knowledge representation and rule-firing capabilities.

Connectionist networks, however, have significant potential advantages over traditional symbolic
approaches to the interpretation process. Their conceptual knowledge is stored entirely in an inter-
connected network of simple nodes whose activations are calculated based on their previous acti-
vation and that of the nodes to which they are connected. As a resuit, a major portion of the un-
derstanding process is controlled by a simple spreading-activation mechanism, instead of by large
collections of brittle and sometimes ad-hoc rules.



1.2.1. Distributed Connectionist Networks

Distributed connectionist models have had a great deal of success modelling low-level natural lan-
guage understanding tasks, especially those requiring similarity-based learning. A number of re-
searchers have argued that this new subsymbolic paradigm will completely subsume the symbolic
paradigm, as the explicit rules used in symbolic models are replaced by the more robust interac-
tions of distributed representations and the connection weights learned from experience [Rumelhart
& McClelland, 1986]. Although some of the severest criticisms of this stand ([Fodor & Pylyshyn,
1988], [Pinker & Prince, 1988]) have been partially rebutted by recent models showing that dis-
tributed models can represent some variable bindings and constituent structure, current distributed
models are still quite limited in comparison to symbolic models in their abilities to perform high-
level processing such as natural language understanding.

A good example of how distributed connectionist models have been used to approach language un-
derstanding is provided by the case-role assignment model of McClelland & Kawamoto [1986).
The main task of their model is to learn to assign the proper semantic case roles for sentences. For
example, given the syntactic surface form of the sentence “the boy broke the window” , their net-
work is trained to place the semantic microfeature representation of BOy in the units representing
the Agent role on the output layer, whereas given “the rock broke the window” , it is trained to place
the representation of Rock in the Instrument role. Their network is also trained to perform lexical
disambiguation, e.g. mapping the pattern for the word “bar” 1o a Baseball-Bat for sentences such
as “the boy hit the ball with the bat”, and to a Flying-Bat for sentences such as “the bat flew”.
Once the input/output pairs have been learned, the network exhibits a certain amount of generaliza-
tion by mapping the case roles and performing lexical disambiguation for novel inputs similar to
the training sentences.

One of the main limitations of McClelland & Kawamoto’s model for language understanding is that
its output can only handle direct, one-step mappings from the input to the output, thus limiting it to
sentences that can be understood and disambiguated based upon the surface semantics of the input.
Two distributed connectionist models that get around this limitation are the models of Miikkulainen
& Dyer [1989] and St. John [1990]. Both models use recurrent networks with a hidden layer of
units whose activation pattern essentially stores the state {or “gestalt”) of the stories being under-
stood. This allows them to learn to process more complex language based on scripts (such as go-
ing to a restaurant) and other script-like stories [Schank & Abelson, 1977). Both models have the
lexical disambiguation abilities of McClelland & Kawamoto’s model, but, more importantly, are
able to infer unmentioned story events and role-fillers from the script that has been “recognized” by
the hidden layer.

Unfortunately, there may be significant problems in scaling such pattern-transformation distributed
connectionist models to handle more complex language. Both Miikkulainen & Dyer and St. John's
models work by resolving constraints from input context to recognize one of their trained scripts
and instantiate it with the bindings of the particular input story. However, much of language un-
derstanding involves the inference of causal relationships between events for completely novel sto-
ries in which no script or previously-trained input/output pair can be recognized. This requires dy-
namic inferencing — a process of constructing chains of inferences over simple known rules, with
each inference resulting in a potentially novel intermediate state [Touretzky, 1990]. It remains to
be seen whether a single blended activation pattern on the bank of hidden units in recurrent net-
works can simultaneously hold and make dynamic inferences from multiple, never-before encoun-
tered interpretation chains.

Other distributed models explicitly encode variables and rules, such as the models of Touretzky &
Hinton [1988] and Dolan & Smolensky [1989]). Because of this, such rule-implementing dis-
tributed models are able to perform some of the dynamic inferencing necessary for language un-
derstanding. Unfortunately, however, the types of rules they can currently encode are generally
limited. More importantly, they are serial at the knowledge level because they can fire only one



rule at a time. This is a serious drawback for natural language understanding, particularly for am-
biguous text, in which the combinatorially explosive number of multiple alternative interpretations
often requires that the inference paths be explored in paratlel {Lange, in press].

1.2.2. Structured Connectionist Networks

Structured connectionist models represent knowledge in semantic networks in which concepts are
represented by individual nodes and relations between concepts are encoded by weighted connec-
tions between nodes. The numeric activation level on each conceptual node generally represents
the amount of evidence available for its concept in a given context. Because knowledge is spread
across the network (as opposed to the concentration of knowledge in the weights between the sin-
gle input and output layer of most distributed models), structured models have the potential to pur-
sue multiple candidate interpretations of a story in parallel as each interpretation is represented by
activation in different local areas of the network. This makes them ideally suited to the disam-
biguation portion of the language understanding process, because it is achieved automatically as re-
lated concepts under consideration provide graded activation evidence and feedback to one another
in a form of analog constraint relaxation.

As an example of how structured connectionist models process language and perform disambigua-
tion, consider the sentence:

“The astronomer married the star.” (Star-Marriage)

The word “szar” could be easily disambiguated to Movie-Star by a symbolic rule-based system
having selectional restrictions (even astronomers cannot marry celestial bodies, except perhaps
metaphorically). However, many readers report this and similar sentences as “cognitive double-
takes” because “astronomer” initially primes the Celestial-Body interpretation. Figure 1 shows
an extended version of the semantic portion of the structured network Waltz & Pollack [1985] built
to process Star-Marriage and illustrate this effect. After the input nodes for Star-Marriage are
clamped to a high level of activation, the Celestial-Body interpretation of “star” initially acquires
more activation than the Movie-Star interpretation because of priming from Astronomer through
Astronomy (Figure 2). However, Movie-Star eventually wins out because activation feedback
over the semantic connections from the Marry node to Movie-Star outweighs that spreading from
the Astronomer node to Ceiestial-Body.

Unfortunately, the applicability of structured connectionist models to natural language understand-
ing has been severely hampered because of their difficulties representing dynamic role-bindings
and performing inferencing!. Their lack of variable binding abilities leaves them prone to crosstalk
even for simple sentences. For example, the network of Figure 1 has no way to distinguish be-
tween the sentences “The astronomer saw the star” and “The star saw the astronomer” , despite the
crucial difference that the role-bindings make in their interpretation. More importantly, without a
mechanism to represent such dynamic bindings, they cannot propagate them to make the chains of
inferences necessary for understanding more complex language. This has so far stopped them
from going beyond simple language processing that can be resolved solely based on the surface se-
mantics of the input.

1Ajjanagadde & Shastri [1989), Barnden [1990], and Holldobler [1990] describe structured
models that can perform some variable-binding and inferencing, but which do not have the
disambiguation abilities of normal structured spreading-activation models.
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1.2.3. Marker-Passing Networks

Marker-passing models operate by spreading symbolic markers in parallel across labelled semantic
networks similar to those of structured connectionist networks. Interpretation of the input is
achieved when propagation of markers finds a path of nodes connecting words and concepts from
the input text. Because of the symbolic information held in their markers and networks, they are
able to represent dynamic role-bindings, and so have been able to perform high-level inferencing
for natural language understanding (cf. [Charniak, 1986], [Riesbeck & Martin, 1986], [Granger e:
al., 1986], [Eiselt, 1987], and [Norvig, 1989]).

As an example of how marker-passing networks process language and perform disambiguation,
consider the following text (from [Eiselt, 1987]):

“Fred asked Wilma to marry him. Wilma began to cry.” (Marriage)

Interpretating this text requires that a causal relationship be inferred between Fred's proposal and
Wilma’s crying. One possible reason for her crying was that she was happy about his proposal



Figure 3. Marker-passing network from [Eiselt, 1987].

and crying “tears of joy”. To understand this sentence and resolve the ambiguity, ATLAST [Eiselt,
1987] uses the network shown in Figure 3 by passing markers starting from the nodes for Cry-
Tears and Propose-Marriage. This propagation of markers finds the path Cry-Tears
Happy-State & Happy-Event & Propose-Marriage, returning the “tears of joy” interpreta-
tion. Besides finding the inference path representing the interpretation of the story, the symbolic
pointers held in the markers also keep track of the role-bindings, so that the model can clearly re-
solve that it was Fred who did the Propose-Marriage and Wilma who did the Cry-Tears, and
not the other way around.

Much text, of course, is ambiguous, and Marriage is no exception. Another possible reason that
Mary began to cry was that she was saddened or upset by Fred’s proposal. The same propagation
of markers that found the above “tears of joy™ path will therefore find a second path, Cry-Tears
< Sad-State < Sad-Event « Propose-Marriage. To resolve such ambiguities, marker-
passing systems generally use a serial heuristic path evaluator separate from the marker-passing
process to select the most relevant path from the many paths generated. Such path evaluators
usually include rules that select shorter paths over longer ones, reject paths that do not include as
much of the input as competing ones, and so forth. For example, to disambiguate between the
“tears of joy” and “saddened” paths, ATLAST applies an evaluation metric between two competing
paths of equal length that selects the oldest path. The Happy-State path was discovered first, and
thus remains as the interpretation of the input.

As their use of heuristic path-evaluators indicate, marker-passing systems generally permit them-
selves the luxury of using traditional symbolic buffers and programs to complement the spreading-
activation process of the network. This allows them to build up complex symbolic representations
of stories outside the network (as done by Norvig [1989]) or hold rejected inference paths to allow
reinterpretation if a path is rediscovered (as done by ATLAST when Marriage is followed by
“Wilma was saddened by the proposal.”).

The best feature of marker-passing systems is that their parallel instantiation of inference paths
makes them extremely efficient at generating different possible interpretations of the input. Unfor-
tunately, the bottleneck for marker-passing systems is the separate path evaluation mechanisms
used to select between generated interpretations (the heart of the disambiguation problem). The
main problem is the extremely large number of spurious (i.e. non-important or logically-impossi-
ble) paths that the marker-passing process generates which the path evaluators must separately
weed out. For even very small networks, these spurious paths often represent over 90 percent of
the paths generated [Charniak, 1986]. More importantly, as the size of the networks increase to
represent more world knowledge, there is a corresponding explosion in the number of paths gener-
ated. Because these paths must be evaluated serially by a path evaluator, it negates marker-passing
systems’ main efficiency advantage.



1.3. Overview of the Thesis

This thesis describes ROBIN [Lange & Dyer, 1989], a purely-structured connectionist model that
has many of the variable binding inferencing abilities of marker-passing networks. Because ROBIN
also retains the disambiguation abilities of normal structured networks, it is able to perform high-
level inferencing that requires disambiguation and other aspects of frame selecton.

The thesis is organized as follows: Chapter 2 gives a discussion of the type of frame-based
knowledge and rules that define the hand-built knowledge bases used to construct ROBIN’s net-
works. Chapter 3 describes the structure of the networks in detail and how they perform high-
level inferencing, including how variable and role-bindings are represented, how rules are “fired”,
how disambiguation and frame selection are performed, and how crosstalk is kept under control.
Chapter 4 provides two detailed examples of the network performing high-level inferencing. And
finally, Chapter 5 is a general discussion of the model, future directions for research, how it com-
pares to related connectionist models, and conclusions. The appendix includes a complete listing
of the main knowledge base used to test ROBIN’s abilities.



2. OVERVIEW OF ROBIN’S KNOWLEDGE

ROBIN’s networks consist entirely of connectionist nodes [Feldman & Ballard, 1982] that perform
simple computations on their inputs: summation, summation with thresholding and decay, or
maximization. Connections between nodes are weighted, and either excitatory or inhibitory.
ROBIN uses structured connections of nodes to encode a semantic knowledge base of related
frames [Minsky, 1975]. Each frame has one or more roles, with each role having expectations and
logical constraints on its fillers. Every frame can be related to one or more other frames, with
pathways between corresponding roles (representing general knowledge rules) for inferencing,.
There is no information in the knowledge base about the specific episodes (such as Hiding Pot)
that the networks will be used to understand.

As in nearly all structured models, ROBIN's knowledge base is hand-built. The knowledge base,
made up of the conceptual frames and rules needed for a given domain, is used to construct the
actual networks’ structure before any processing begins. After the network has been constructed,
nodes in the network are clamped to represent the surface role-bindings from an episode (such as
from phrases P1 and P2 of Hiding Pot). Activation representing role-bindings and evidence for
individual concepts then spreads from the nodes representing one frame to the nodes representing
related frames, thus automatically instantiating other frames and performing the processes of infer-
encing and frame selection.

An example of how concepts are statically defined in ROBIN’s general semantic knowledge bases is
shown in Figure 4. The figure shows a simplified definition of the state frame Inside-Of, which
represents the knowledge that an object is inside of a container. Inside-Of has three roles: an
Object that is inside of something, a Location that the object is inside of, and a Planner that caused
the state to be reached. The lexical phrase <Subject “is inside of” Direct-Object> directly
accesses Inside-Of, as in “the roast is inside of the stove.”

2.1, Selectional Restrictions on Roles

Every role has selectional restrictions (or logical binding constraints) that tell which types of con-
cepts may be bound to it. For instance, only a Stove or something that is-a Stove can be bound
to the Location role of Inside-Of-Stove. This constraint is needed because Inside-Of-Stove is
by definition a refinement of Inside-Of which allows the possible inference that the Object is being
cooked. Similarly, Inside-Of-Dishwasher and Inside-Of-Opaque each have the binding con-
straints that their Location be something that is-a Dishwasher or Opaque-Object, respectively.
The binding constraints defined in Figure 4 for state Inside-Of are that the Object must be some
kind of Physical-Object, that the Location must be some sort of Container-Object, and that the
Planner (if any) must be a Human. A role’s binding constraint also serves as its prototypical
filler, i.e. the concept that serves as the role’s default binding.

2.2. Rules as Relations Between Frames

The relations that each frame has to other frames define the network’s general knowledge rules and
alternative inference paths. For example, in Figure 4, Inside-Of is related to four other frames.
The first frame that it is related to is the action Transfer-Inside, which it is a result-of, since
transferring an object inside of something results in that thing being inside of it. The Figure 4 also
displays the links between corresponding roles; showing, for example, that the Object of Inside-
Of can be inferred to be the same as the Object of Transfer-Inside. Defining Inside-Of’s relation
to Transfer-Inside in this way is equivalent to defining it in the form of a rule such as:

R3: [Actor X Transfer-Inside Object Y Location 2]
== results-in ==> [Object Y Inside-Of Location 2]



(FRAME Inside-0Of

State (Roles (Object (Physical-Object 0.05))
{Location (Container-Obiect 0.50))
{(Planner (Human 6.05)))

(Phrase

(<5_"is inside of” DO> 1.0 (Object Subject)
{Location Direct-Object))

(Result-0Of
{(Transfer-Inside 1.0 (Object Object)
{Location Location)
(Planner Actor)})
{(Refinements
(Inside-0f-Stove 1.0 (Object Object)

{Location Location)
{Planner Planner))
(Inside-Of-Dishwasher 1.0 (Object Object)
{(Location Location)
(Planner Planner))
{Inside-0Of-Opaque 1.0 (Cbject Chject)
{Location Location)
({Planner Planner})))

Figure 4. Simplified definition of the frame representing the state Inside-Of The
weights (numbers) from each of the concepts correspond to how much evidence there ex-
ists for Inside-Of given that the concept is active.

Finally, Figure 4 specifies that there are three potential refinement frames (Inside-Of-Stove,
Inside-Of-Dishwasher, and Inside-Of-Opaque) which compete for selection as the refine-
ment interpretation of a given instantiation of Inside-Of. These refinements are themselves re-
lated to the frames representing the probable reasons for the object being inside of the location.
For example, in Hiding Pot, it initially appears that it is important that the pot is inside of a dish-
washer (Inside-Of-Dishwasher), so that it could be cleaned. However, the final inference is that
the salient property is that it is inside of something that is opaque (Inside-Of-Opaque), so that it
will be hidden from sight. They are thus mutually exclusive parts of any one interpretation.

2.3. Connection Weights

Whenever a frame or concept is activated in a given context or episode, it provides a certain amount
of evidence that the frames it is related to are activated. For example, if somebody has performed a

Transter-Inside into a container, then there is quite strong evidence that something is now In-
side-Of that container. The relative levels of these amounts of evidence are built into the connec-
tion weights of the networks constructed from the knowledge base.

In general, weights are chosen on the basis of how much evidence the activity of the related frame
(Fy) provides for the activity of frame being defined (Fg). Specifically, the connection weight from
F: to Fg4 is equal to the probability that F4 is active given the knowledge that Fy is active, or:

Werskd = P (Fg 1| Fp)

This method of selecting connection weights between concepts is similar to that used in the struc-
tured evidential reasoning networks of {Shasuri, 1988]. Unfortunately, it is usually impossible to
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calculate a precise probability of one action or fact given another in the uncertain domains of natural
language understanding and planning. The above weight “formula” is therefore used as a rule of
thumb when creating the connection weights.

The numbers in Figure 4 specify the basic connection weights from related frames to inside-Of
and its roles. For example, if something is inside of a stove (Inside-Of-Stove), then the network
can definitely infer that it is Inside-Of something, so the connection weight from Inside-Of-
Stove to Inside-Of is set at a maximum (1.0 in Figure 4). If a Container-Object is active, on
the other hand, there would be substantial, though not definite, evidence that something is Inside-
Of something else (since there are often things inside of mentioned containers, but not always).
The weight from it to Inside-Of reflects this (0.50). Finally, the fact that a Physical-Object is
active in an episode provides only limited evidence for it being Inside-Of something, so a very
small weight is given (0.05). The actual weight values chosen are clearly arbitrary. What is im-
portant is that they be in a range reflecting the amount of evidence the concepts provide for their
related concepts in a certain knowledge base.

2.4. Overall Knowledge Bases

Individual frame definitions combine to describe ROBIN’s knowledge base of concepts and rules
for inferencing. Figure 5 shows an overview of a relevant portion of a knowledge base consisting
of the causal dependencies relating actions, plans, goals, and scripts [Schank & Abelson, 1977}.
As can be seen, rules R1-R3 are encoded by the relations between frames shown in the figure, as
are a number of the other general knowledge rules necessary to understand Hiding Pot and re-
lated episodes.

As Figure S shows, every relation from one frame to another has an inverse relation. Just as a
state of Inside-Of can be inferred to be a result-of a given Transfer-Inside action, one can infer
that a Transfer-Inside action results-in a given state of Inside-Of. The connection weights may
be different, however: if there is a Stove active inan episode, then there is definitely an Appli-
ance (so a weight to Appliance of 1.0), but if there is an Appliance active, then it is not neces-
sarily a Stove (so a smallish weight to Stove of ~0.2). The complete definition of the knowledge
base used to understand Hiding Pot and related episodes is shown in Appendix A.
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Figure 5. Overview of a relevant portion of a knowledge-base defined in ROBIN.
Bracketed objects to the right of a frame’s role (e.g. [Container-Obj] in the Location role
of inside-Of) represent its selectional restrictions. The symbolic frames and their relations
(links) defined in the knowledge base are not actual nodes and links in the network. They
are instead used to initially construct a portion of the network which represents them, and
in which the node and link names do not affect the actual spread of activation in any way.
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3. ROBIN

ROBIN’s knowledge bases of frames and their relations are used to initially construct the purely
connectionist networks over which inferencing is performed. Once the network is constructed, in-
put for sentences such as Hiding Pot are presented to the network, with all inferencing, disam-
biguation, and reinterpretation happening within the network solely by activation changes. The
structure of ROBIN’s networks must therefore support role-binding, propagation of role-bindings
according to the general knowledge rules of the knowledge base for inferencing, and weighing of
contextual evidence to select the most-likely interpretation in a given context,

3.1. Role-Binding and Inferencing With Signatures

As in most other structured connectionist models, there is a single node in the network for each
frame or role concept. Relations between concepts are represented by weighted connections be-
tween the nodes. Activation on a conceptual node is evidential, corresponding to the amount of
evidence available for the concept and the likelihood that it is selected in the current context.

Simply representing the amount of evidence available for a concept, however, is not sufficient for
complex inferencing tasks. A solution to the variable binding problem requires that some means
exist for identifying a concept that is being dynamically bound to a role. Furthermore, the net-
work’s structure must allow these role-bindings to propagate across node pathways that encode the
knowledge base’s rules, thus dynamically instantiating inference paths representing the input.

3.1.1. Variable Binding With Signatures

The variable and role-binding problem is handled in ROBIN by network structure holding signa-
tures — activation patterns which uniquely identify the concept bound to a role [Lange & Dyer,
1988]. Every concept in the network has a signamre node that outputs its signature, a constant ac-
tivation value different from all other signatures. A dynamic binding exists when a role or variable
node’s binding node has an activation matching the activation of the bound concept’s signature.

In Figure 6a, the virtual binding of the Actor role node (of action Transfer-Inside) to John is
represented by the fact that its binding node (the solid black circle) has the same activation (3.1) as
John’s signature node. The same binding node could, at another time, hold a different virtual
binding, simply by having the activation of another concept’s signature (as in Figure 6b, where it
is bound to Police). The complete Transfer-Inside frame is represented in the network by the
group of nodes that include the conceptual node Transfer-Inside, a conceptual node for each of
its roles (only the Actor role shown), and the binding nodes for each of its roles.

3.1.2. Structure of the Network

The most important feature of signature activation is that it propagates across paths of binding
nodes to generate candidate inferences. Figure 7 illustrates the structure of the network that auto-
matically accomplishes this.

The conceptual nodes and connections on the bottom plane of Figure 7 (i.e. Transfer-Inside and
its Object role) are part of the normal semantic network constructed from the knowledge base of
Figure 5. Nodes and connections for the Actor, Planner, and Location roles are not shown. The
connections between nodes on this bottom plane are specified by the frame definitions of the
knowledge base. For example, the weighted connection from node Transfer-Inside to node In-
side-Of represents the result-of relation defined in Figure 4. As in other structured models, acti-
vation propagating across this structure of the network is evidential.

The top plane of Figure 7, on the other hand, consists of the network’s binding and signature
nodes, over which signature activation (representing dynamic role-bindings) spreads. Each role
has several binding nodes (two of which are shown). There are no connections from signature
nodes to binding nodes, but there are unir-weighted connections between corresponding binding
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Figure 6b. The same binding node holding a different virtual binding, this time to
Police.

nodes over which inferences can be made. For example, the filler of Inside-Of’s Object role can
be inferred to be the same as the filler of Transfer-Inside’s Object (as defined in Figure 4).
There is therefore a connection from the left binding node of Transfer-inside’s Object to the left
binding node of Inside-Of’s Object. A similar link goes between the right binding nodes, as well
as one-to-one connections from the (unseen) binding nodes of Transfer-inside’s other roles
(Actor and Location) to the binding nodes of Inside-Of’s corresponding roles (Planner and Loca-
tion, respectively).

3.1.3. Activation Functions
There are different activation functions for the conceptual nodes of the bottom evidential layer and
the binding nodes of the top signature layer.

3.1.3.1. Activation of Concept Nodes

The activation function of the network’s conceptual nodes is equal to the weighted sum of their in-
puts plus their previous activation times a decay rate, or:

ac(t+l) = 2, wicoilt) + ac(t) (1-6)
i



where a.(1) is the activation of conceptual node c at cycle ¢, wic is the incoming weight from node

to node ¢, 04(f) is the output of node i at cycle 1, and @ is the activation decay rate of conceptual
nodes when they are receiving no input. The output function of the conceptual nodes is a simple
linear threshold:

dac(t) ac(t)y 2 @
oclt) =

0 Ootherwise

where € is the output threshold of all of the conceptual nodes. Generally, the activation values of
the conceptual nodes in the network range from 0 to about 1, The output threshold € is set quite
low (usually around 0.05), and so is not much of a factor in the spread of activation. The net ef-
fect of the activation and output functions of the conceptual nodes is to aliow them to “weigh” evi-
dence from their related concepts, with nodes in paths between multiple sources of activation (i.e.
in part of an inference chain between two phrases) tending to reinforce each other.

3.1.3.2. Activation of Binding Nodes

The activation and output functions of the binding nodes are equal to the maximum of their unit-
weighted inputs, or:

ap(t+l) = MAX (w1po3 (L) ,wapoz(t),...wppon(t)), op(t) = ap{t)

where a,(2) is the activation of binding node b at cycle ¢, and o;...0, are the outputs of all binding
nodes that have incoming links to binding node b. Since all of the wy, to binding nodes have unit
weight, this causes the activation of a binding node to take on the activation of any of its active in-
coming binding nodes — and therefore allows signatures to be propagated without alteration.

3.1.4. Propagation of Signatures for Inferencing

Initially there is no activation on any of the conceptual or binding nodes in the network. To initiate
the inferencing process, a phrase and its role-bindings are presented to the network by hand-
clamping the proper roles’ binding nodes to the signatures of the concepts bound in the phrasel.
Thus, for phrase P1 (“John put the pot inside the dishwasher™), the binding nodes of Transfer-
Inside’s Actor, Object, and Location roles are clamped to the signatures of the concepts meant by
the words “John”, “pot”, and “dishwasher” , respectively. For example, the binding nodes of
Transfer-Inside’s Object are clamped to the activations 6.8 and 9.2, which are the signatures for
objects Marijuana and Cooking-Pot, respectively, representing the candidate bindings from the

word “pot” (Figure 7)2.

At the same time, the lexical concept nodes for each of the words in the phrase are clamped to a
high level of evidential activation. In the case of phrase P1, this clamping directly ends up provid-
ing evidential activation for concepts John (from lexical node “John™), Transfer-Inside (from
phrase <S “put” DO “in" 10>), Cooking-Pot and Marijuana (from lexical node “pot”), and
Dishwasher (from lexical node “dishwasher”).

'ROBIN does not currently address the problem of performing the original syntactic role-
binding assignments, i.e. that “por” is bound to the Object role of the phrase. Rather, ROBIN’s
networks are given these initial bindings and use them for high-level inferencing.

2An alternative input, such as “George put the cake inside the oven” , would be done simply by
clamping the signatures of its bindings (i.e. George, Cake, and Oven) instead. A completely
different set of inferences would then ensue.
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Figure 7. Simplified ROBIN network segment showing the parallel paths over which
evidential activation (bottom plane) and signature activation (top plane) are spread for
inferencing. For simplicity, the nodes and connections representing {nside-Of-Stove and
the rest of the semantic network not shown. The figure shows the initial activation and
clamping for the phrase “John put the pot inside the dishwasher” (P1). Signature nodes
(outlined rectangles) and binding nodes (solid black circles) are in the top planes.
Thickness of conceptual node boundaries (ovals) in the bottom plane represents their levels
of evidential activation. (Node names do not affect the spread of activation in any way.
They are simply used to initially set up the network’s structure and to aid in analysis.)

With the original role-bindings thus input to the network, activation starts to spread from the initial
clamped activation values. In Figure 8, Inside-Of receives evidential activation from Transfer-
Inside, representing the strong evidence that something is now inside of something else. Concur-
rently, the signature activations on the binding nodes of Transfer-Inside’s Object propagate to the
corresponding binding nodes of Inside-Of’s Object (Figure 8), since each of the binding nodes
calculates its activation as the maximum of its inputs.

For example, Inside-Of’s left Object binding node has only one input connection, that from the
corresponding left Object binding node of Transfer-inside. Since the connection has a unit
weight and the left Object binding node of Transfer-Inside has an activation of 6.8, the activation
of Inside-Of's left Object binding node also becomes 6.8 (Marijuana’s signature). The potential
binding of Cooking-Pot (signature 9.2) 1o Inside-Of's right Object binding node propagates at
the same time, as do the bindings of Inside-Of's Planner role to the signature of John and its Lo-
cation role to the signature of Dishwasher.

By propagating signature activations from the binding nodes of Transfer-Inside to the binding
nodes of Inside-Of, the network has thus made its first inference. Because of the signatures now
on inside-Of’s binding nodes, the network not only represents that something is inside of some-
thing else, but also represents the inference of exactly which thing is inside the other (I7 in
Table 1).
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Figure 8. Evidential and signature activations in Hiding Pot after reaching Inside-Of.

From the activations of this newly inferred piece of knowledge, the network continues to make
subsequent inferences. Evidential activation next spreads from Inside-Of to its refinements In-
- side-Of-Dishwasher and Inside-Of-Opaque. At the same time, the signatures on the binding
nodes of Inside-Of’s roles propagate to inside-Of-Dishwasher and Inside-Of-Opaque’s cor-
responding binding nodes, instantiating them (Figure 9). The network thus makes the inference
that the reason for the Marijuana or a Cooking-Pot being inside of the Dishwasher was either
because it is a dishwasher, or because it is opaque. From there, the signature and evidential activa-
tions continue to propagate through other parts of the network structure constructed from the def-
initions of Figure 5, instantiating the chains of related concepts down to the Clean goal, with
some activation reaching goal Avoid-Detection, state Block-See, and so on.

Signatures thus propagate without change over the inference binding paths of the network con-
structed by the definitions of the knowledge base. As a result, ROBIN is able to dynamically in-
stantiate inference paths and distinguish each of their inferred role-bindings.

3.1.5. Discussion of Signatures

There are a couple of points that is important to make about signatures. The first is that their actual
or relative activation values do not affect the network’s processing. The signatures of Marijuana
and Cooking-Pot were arbitrarily chosen to be 6.8 and 9.2 when the network was constructed.
However, they could just as easily have been chosen to be any other (even the reverse) values. It
is only necessary that each signature be different from all others — and thus uniquely identify the
concept bound to a role.

The second point is that a signature can happen to have the same activation value as the evidential
activation on a conceptual node. The reason for this is that the paths over which evidential and
signature activation spread are parallel to and completely separate from each other (i.e. along the
bottom and top planes in Figure 9). It is therefore irrelevant whether or not a conceptual node co-
incidentally has an activation that is the same as some concept’s signature. The activation on a
conceptual node is always interpreted as the amount of evidence for that concept in the current
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Figure 9. Activation after quiescence has been reached in processing for phrase P1.
Cooking-Pot and Inside-Of-Dishwasher have higher (evidential) activations than
Marijuana and Inside-Of-Opaque, as is illustrated by their thicker ovals.

context, while the activation on a binding node is always interpreted as a signature representing a
role-binding.

3.2. Frame Selection With Evidential Activation

The ability to maintain variable bindings and propagate them throughout the network is critical for
high-level inferencing. However, being able to dynamically generate inference paths alone is not
sufficient for cognitive tasks such as natural language understanding and planning. The problem is
that there are generally multiple alternative inference paths possible, only one of which best ex-
plains the input. Choosing the single most-plausible interpretation in a given context is one of the
most difficult problems in high-level inferencing, that of frame selection {Lytinen, 1984] [Lange &
Dyer, 198%9a].

An example of the need for frame selection can be seen in Figure 9, where both Inside-Of-Dish-
washer and Inside-Of-Opaque have been instantiated with signatures inferred from phrase P1
(“John put the pot inside the dishwasher”). The inference path representing P1 has therefore al-
ready split into two alternatives: one candidate path that includes Inside-Of-Dishwasher, which
is part of the interpretation that John is trying to clean the pot, and another candidate path including
Inside-Of-Opaque, which is part of the interpretation that he is trying to hide it.

The network must somehow be able to weigh the evidence for each of these two alternative re-
finements of frame Inside-Of so that the most plausible of the two inference paths can be se-
lected. With only phrase P1, the evidence appears to be that Inside-Of-Distwasher is the best
interpretation, but when P2 (“because the police were coming™) is presented, it appears that the
Inside-Of-Opaque path is the most likely.
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Besides the problem of selecting the concept refinement of frame Inside-Of, Hiding Pot also re-
quires word-sense disambiguation to select the appropriate meaning of the word “por”. The same
contextual evidence that causes Inside-Of-Dishwasher to be selected in P1 should cause
Cooking-Pot interpretation of “pot” to become chosen, while the switch to Inside-Of-Opaque
with evidence from P2 should cause a reinterpretation to Marijuana.

3.2.1. Selection by the Evidential Semantic Network

Deciding between the competing inference paths instantiated by signature activation is the function
of the evidential portions of ROBIN’s networks (such as the conceptual nodes on the bottom layer
of Figure 9). The activations of the conceptual frame nodes are always approximately propor-
tional to the amount of evidence available for them from their bindings and their related frames.
The inference path selected as the interpretation in any given context is therefore simply the most
highly-activated path of frame nodes and their bindings!.

Thus, if the conceptual node for Inside-Of-Dishwasher has a higher level of (evidential) activa-
tion at stability than the node for Inside-Of-Opaque, then it will be selected as the refinement of
Inside-Of and become part of the winning inference path. On the other hand, if Inside-Of-
Opaque has the higher level of activation, then it will be selected.

3.2.2. Selection of Ambiguous Role-Bindings

Besides being able to select the most-highly activated inference path, the network must be also able
to decide between ambiguous role-bindings. All meanings of an ambiguous word are bound to a
role with signature activation, as was shown in Figure 7. Each role has several binding nodes, so
that multiple candidate bindings for a given role may be propagated through the network at once.
In general, this requires that there be as many binding nodes per role as there are possible mean-
ings of the most ambiguous word in the network. In the network used to process Hiding Pot
and other similar inputs, for example, there are actually three (though Figures 7 through 9 show
only two) — since “potr” can mean Marijuana, Cooking-Pot or Planting-Pot. When a word
bound to a role is unambiguous (like “dishwasher”), the extra binding nodes simply remain inac-
tive.

Though having enough binding nodes per role to allow simultaneous propagation of ambiguous
bindings increases the size of the network by a small constant factor, it is crucial for resolving am-
biguities in context. The network’s interpretation of which binding is selected at any given time is
the one whose conceptual node has greater evidential activation. Because all candidate bindings
propagate at once, with none being discarded until processing is completed, ROBIN is able ro han-
dle meaning reinterpretations without resorting to backtracking.

3.2.3. Structure of the Evidential Network

The structure of the conceptual layer and the activation function of the conceptual nodes is con-
structed so that the activation of each conceptual node is always approximately proportional to the
amount of evidence available for it. For example, when only P1 (“John put the pot inside the
dishwasher”) is presented, there is more evidence and evidential activation for Cooking-Pot and
Inside-Of-Dishwasher than for Marijuana and Inside-Of-Opaque. When the rest of Hiding
Pot is presented, however, the balance of evidence — and thus evidential activation — shifts to
Marijuana and Inside-Of-Opaque.

In general, a candidate frame is likely to be active if one or more of its instantiating frames are ac-
tive. For example, if there was a Transfer-Inside of an object to a location, then there is strong

1The network’s “decision” or “selection” is actually simply the interpretation that the human
modeler gives to the levels of activation present in it, as in all connectionist models.
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evidence that the object is Inside-Of that location. The higher the activation of the instantiating
frame, and the stronger the connection weight from it to the candidate frame, the more likely that
the candidate frame is active. Similarly, a candidate frame can receive evidential activation from all
of atlhe fra.mcs that are directly related to it, and from the evidential activation of each of its concep-
tual roles.

Simply having frames receive evidential activation through direct connections from their related
frames, however, would cause serious problems. Candidate frames that have potential relations to
a large number of frames would always win out over candidates that have a smaller number of re-
lated frames. The activation of Inside-Of, for example, would always dominate Transfer-In-
side, simply because Inside-Of has a very large number of potential refinement frames. In real-
ity, however, those refinements are mutually exclusive, and only one will be chosen as the re-
finement of a given instantiation of Inside-Of. Thus, the only refinement relation that actually
provides evidence for inside-Of at a given cycle is the one that is most active.

Because of this, connections from related frames pass through an input branch node for their rela-
tion before they are received by the candidate frame. This is shown in Figure 10, which displays
the connections between nodes on a portion of the evidential network centering around frame In-
side-Of. For example, the weighted connections from tnside-Of-Dishwasher, Inside-Of-
Opaque, and Inside-Of-Stove go into Inside-Of's refinements branch rather than directly into
Inside-Of. Relation input branches calculate their activation as the maximum of their inputs — so
that only the currently selected (i.e. maximally activated) interpretation provides evidence for the
framel.

Similarly, connections providing evidence from the activation of a frame’s roles pass through its
Roles input branch (as do the Location, Object, and Planner roles of Inside-Of in Figure 10).
If none of the roles of a given frame are active, then that frame should receive no evidence from its
roles. If all of them are active, then the frame should get maximum role evidence. Ratios in be-
tween should provide proportionate evidence. The amount of this evidence should not vary with
the number of roles that a frame has: a frame with only a single role should receive just as much
activation evidence if its one role is active as a frame with many roles that are all active. Hence the
frame’s Roles input branch calculates its activation as the average of its inputs.

Role nodes, like frame nodes, have several input branches. A role, however, gets evidence only
from its competing prototypical fillers (the Prototypes branch) and from the frames that it is used
in (the Used-in branch). Each branch calculates its activation as the maximum of its inputs, like
the relation input branch for frames. With these evidential connections, the Location role of In-
side-Of-Dishwasher, for example, will become activated if either its frame (Inside-Of-Dish-
washaer) or its prototypical filler (Dishwasher) is activated (Figure 10).

3.2.4. Activation Control

A major issue for all structured connectionist networks is controlling the spread of activation.
Other spreading-activation models have usually addressed this problem by using direct inhibitory
connections between competing concepts (e.g. [Waltz & Pollack, 1985]). For inferencing tasks,
however, the inhibitory connections that these networks use are usually semantically unjustifiable
and combinatorially explosive. The biggest problem, however, is that they are winner-take-ail net-
works, acting to kill the activations of input interpretations that do not win the competition. This
becomes a problem when a new context arises that makes an alternative interpretation more plausi-

Input branches are analogous to the input sites on [Cottrell & Small, 1982]’s “case” units,
which were used to make sure that the each case unit only received activation from its maximally
activated prototypical filler and predicate.
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Figure 10. Detailed view of the evidential portion of the network for frame Inside-
Of and part of frames Transfer-Inside and Inside-Of-Dishwasher. As usual, the node
names are used only for initial construction of the network, and do not affect the spread of
activation.

ble. With the activations of the alternative interpretations killed by the inhibition from the false
winner, it is exceedingly difficult for the activation from the new context to revive the correct one.
The automatic backtracking capabilities of the networks are thus sabotaged.

ROBIN, on the other hand, has no inhibitory links between competing concepts. It instead uses a
group of nodes which act as a global inhibition mechanism. These global inhibition nodes
(Figure 11) serve to inhibit by equal proportions (short-circuit) all concepts in the network when
their average activation becomes too high. The concepts in the network are thus free to keep an ac-
tivation level relative to the amount of evidence in their favor, Global inhibition nodes are similar
to the “regulator units” of [Touretzky & Hinton, 1988], except that their regulator units are sub-
tractive inhibitory, subtracting a constant amount of activation from all nodes and implementing a
winner-take-all network, while ROBIN’s global inhibition nodes are short-circuiting inhibitory,
controlling the spread of activation, but leaving relative values of evidential activation unchanged.

The acuvation function of conceptual nodes shown in chapter 3.1.3.1 is incomplete, having left out
the short-circuiting inhibition term. The actual activation function for the conceptual nodes in the
network is:

Z wicoi(t) + ap(t) (1-6)

1

ac(t+l) = ag(£)
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Figure 11. A ROBIN global inhibition node. Inputs to global inhibitor nodes from
concept nodes are unit weighted, while outputs to concept nodes are “short-circuiting”
inhibitory. The higher the total incoming activation to the global inhibitor, the greater the
activation that all the concepts are divided by.

where the other terms are as before, and a,(r) is the activation at cycle ¢ of the conceptual global in-
hibitor node.

Because ROBIN's short-circuiting global inhibition mechanism allows all concepts in the network to
hold a level of evidential activation relative to the amount of evidence in their favor (as opposed to
driving the “losers” down to 0 using a winner-take-all network), ROBIN is able to easily perform
reinterpretation. When new context that favors an alternative interpretation over a previous one
enters the network, it boosts the new interpretation’s relative level of evidential activation — often
being enough to cause the new interpretation to become most highly-activated. This occurs in
Hiding Pot, in which the evidence from P1 (“John put the pot inside the dishwasher”) initially
favors Cooking-Pot, but in which later evidence from the context of P2 (“the police were com-
ing”) causes a reinterpretation to Marijuana.

3.2.5. Disambiguation Example

With the basic structure of signature propagation and the evidential network described, we can now
explain what occurs as activation spreads during processing of input for “John put the pot inside
the dishwasher” (P1). The full knowledge base needed to understand this and related sentences is
embedded in the network using the signature structure of Figure 7 integrated with the evidential
network structure of Figure 10.

Processing of P1 proceeds as described in 3.1.4 after the network’s inputs have been clamped to
represent it. Figure 12 shows an overview of the levels of activation and inferences made in a
portion of the network after the network’s activation has settled for P1. As in Figure 9, the role-
bindings of Inside-Of-Dishwasher and Inside-Of-Opaque have been inferred by propagation
of signatures. Those activations and evidential activation on the conceptual nodes continued to
propagate along the chain of related concepts down to instantiate the Clean goal, and along the
other path to goal Avoid-Detection, state Block-See, and finally action See-Object and its re-
finement Police-Sese-lllegal, where the level of evidential activation drops below threshold and
SO Stops propagating.

There are two different possible interpretations of P1 in the network: the chain running through
Inside-Of-Dishwasher to Clean (representing that John was trying to clean a Cooking-Pot),
and the chain running through Inside-Of-Opaque to Avoid-Detection, Block-See, and See-
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Figure 12. Overview of a small portion of a ROBIN semantic network (actually em-
bedded in network structure such as in Figures 7-9) showing inferences dynamically made
after clamping of the inputs for phrase P1. Thickness of frame boundaries shows the
amount of evidenrial activation on the frames’ conceptual nodes. Role fillers shown are the
ones dynamically instantiated by propagation of signamure activation over the role’s binding
nodes. Darkly shaded area indicates the most highly-activated path of frames representing
the most probable plan/goal analysis of the input. Dashed area shows the losing hiding
interpretation. Frames outside of both areas show a very small portion of the rest of the
network. These frames received no evidential or signature activation from the phrase.
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Figure 13. Evidential activations of meanings of word “pot” and competing refine-
ments of Inside-Of after clamping for “John put the pot inside the dishwasher” (P1).

Object (representing that John was trying to hide either a Cooking-Pot, Marijuana, or a
Planting-Pot)!.

However, after the spread of activation, Inside-Of-Dishwasher has more evidential activation
than Inside-Of-Opaque because of feedback between it and Cooking-Pot and Dishwasher,
which have strong connections because of their highly stereotypical usage in $Dishwasher-
Cleaning (see plot of activations in Figure 13). The Inside-Of-Dishwasher path is thus se-
lected as the refinement of Inside-Of, so it and the rest of the frames along the Clean path are
chosen as the interpretation of the phrase (represented by the darkly shaded area in Figure 12).
Also, because of reinforcement and feedback from the Inside-Of-Dishwasher path, Cooking-
Pot ended up with more evidential activation than either Marijuana or Planting-Pot (Figure 13).
Cooking-Pot is thus selected over the Marijuana and Planting-Pot bindings throughout the
network.

3.2.6. Evidential vs Signature Activation

It is important to emphasize the differences between ROBIN's evidential and signature forms of ac-
tivation. Both are simply activation from a computational point of view, but they propagate across
separate pathways and fulfill different functions.

IIn this network, Avoid-Detection and Block-See are complementary parts of the same
chain, since Inside-Of-Opaque is a Plan-For Avoid-Detection and it Results-In Block-See.
However, Inside-Of-Dishwasher and Inside-Of-Opaque form different chains, since they
are mutually exclusive refinements of Inside-Of.
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Evidential Activation:
1) Previous work — Similar to the activation of other structured models.

2) Function — Activation on a conceptual node represents the amount of evidence available
for a node and the likelihood that its concept is selected in the current context.

3) Node pathways — Evidential activation spreads along weighted link pathways between
related frames.

4) Dynamic structure — Evidential activation decides among candidate structures; i.e.
Cooking-Pot is more highly-activated than Marijuana at the end of P1, so is selected
as the currently most plausible role-binding throughout the inference path in Figure 12.

i o
1) Previous work — First introduced in ROBIN.

2) Function — Signature activation on a binding node is part of a unique pattem of activa-
ton representing a dynamic, virtual binding to the signature’s concept.

3) Node pathways — Signature activation spreads along role-binding paths (having unit-
valued weights that preserve their activation) between corresponding roles of related
frames.

4) Dynamic structure — Signature activation represents a potential (candidate) dynamically
instantiated structure; i.e., that either Marijuana or Cooking-Pot is Inside-Of a Dish-
washer.

3.3. Selectional Restrictions

Although the propagation of signatures allows ROBIN to dynamically generate inferences and evi-
dential activation allows the one with the most evidence in a given context to be selected, there is
still the potential problem of crosstalk from logically unrelated inferences. An example of this is
the following sentence:

“John ate some rice before he went to church.” (Church Service)

The most probable interpretation of Church Service is that John had rice for breakfast before he
went to attend services at his church ($Church-Service). Without considering selectional re-
strictions, however, the node for the $Wedding script would likely become the most highly-acti-
vated, because of the combined activity of Church and Rice. The $Church-Service script
would lose out, because it would only receive evidence from Church.

Clearly there is a need to inhibit the spread of activation for inferencing when frames’ selectional
restrictions are violated. In Church Service, Rice should not provide any evidence for
$Wedding, because it was being eaten and not thrown.

Returning to the processing of Hiding Pot and examining the possible refinements of Inside-
Of (Figure 14), we find that Inside-Of-Stove would not have received enough evidental activa-
tion to compete with Inside-Of-Dishwasher or Inside-Of-Opaque. They both receive strong
activation from their Locations’ fillers, Dishwasher and Opaque-Object, and so easily outstrip
it. This is as it should be, since John could have been either trying to clean the pot or hide it, but
(assuming he is rational) there is no way that John was trying to cook it by putting it into the dish-
washer.
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Frame Binding Constraints Used In
Inside-Of-Stove A Cooking-Pot is inside of a Stove $Stove-Cooking
Inside-Of-Dishwasher | A Utensil is inside of a Dishwasher $Dishwasher-Cleaning
Inside-Of-Opague A Physical-Object is inside of an Opaque-Object Avoid-Detection

Figure 14. Three of the competing refinements of state Inside-Of.

But what if Stove or $Stove-Cooking happened to be strongly activated from previous process-
ing? If Stove or $Stove-Cooking is highly activated, then it is quite conceivable that Inside-
Ot-Stove could end up with more activation than Inside-Of-Dishwasher and Inside-Of-
Opaque. It would thus be chosen as the refinement of Inside-Of, and the network would ar-
rive at the ludicrous decision that John was trying to cook something in the pot when he put it into
the dishwasher.

These examples illustrate the necessity to have selectional restrictions control the spread of activa-
tion. Frames whose binding constraints (as defined by the knowledge base, as in Figure 4) are
violated, and hence cannot possibly be part of the inference path, should not receive either eviden-
tnal or signature activation.

3.3.1. Overview of the Frame Selection Process

To solve the problem of crosstalk from unrelated inferences, the structure of the network insures
that a frame competing for selection is ruled out completely when its selectional restrictions are vio-
lated. ROBIN instantiates, with signature and evidential activation, only those candidate frames
whose binding constraints are met.

Gating and constraint-matching built into the network’s structure assure that only legal interpreta-
tions receive evidence for selection, thus avoiding crosstalk from logically unrelated inferences
(such as eating the Rice in Church Service, or priming of Stove in Hiding Pot). The accu-
mulation of evidential activation solely from applicable context allows one of the legal candidates to
be selected as the most likely interpretation.

Though all inferencing is accomplished solely by the spread of activation through the structure of
the network, the complete frame selection process performed by this propagation can be viewed as
a four-part process:

1) Choosing candidate frames: When the role bindings of a frame match the selectional re-
strictions on the roles of a related frame, then that related frame becomes a candidate
frame for instantiation. Related frames are rejected when their selectional restrictions are
violated.

2) Propagating signature bindings to candidate frames: Candidate frames receive signature
activation (representing role-bindings) from their instantiating frame. New candidate in-
ferences can then propagate from each of the candidate frames to explore their respective
inference paths.

3) Propagating evidential activation to candidate frames: Candidate frames receive wei ghted
evidential activation from their instantiating frame. Candidates whose binding constraints
are only partially matched receive proportionately less evidential activation than if their
constraints were matched perfectly.

4) Selection between candidate instantiation frames: At any given time, the candidate frame
with the most evidential activation represents the preferred interpretation. Commitments
may change if new context gives more evidence to a competing frame.
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state Inside-Of
Plannar: John
Ohject: Cooking-Pot
Marijuana. or
Planting-Pot
Location: Dishwasher

Refinements

Etar.c mside-()f-s:uﬂ state [nside-Of-Dishwasher state Inside-Of-Opaque

Planner: Planner: opannar:
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Locatien: Lecaticon: Lecation:

Figure 15a. An example of the frame selection problem — overview of bindings in-
stantiated with signature activation (Figure 8).

state Inside-Of
Planner: John
oniwct : Cooking-Pot
Marijuana, or
Planting-Pot
Location: Dishwasher

Refinements
Refinament -Of Refinerniom-Of Refinement-Of

Etate Inside-Of—Stovj state Inside-Of-Dishwasher J state [nside-Of-Opaque
Planner: Planner: John

Planner: John
Object: Qbject: Cooking-Pot

Object: Cooking-Pot
Locatian: Location: Dishwasher Mariduana. or

Planting-fot
Dishwasher

Lecation:

Figure 15b. Overview after Inside-Of-Dishwasher and Inside-Of-Opaque become
candidate refinements of Inside-Of (Figure 9).

As an example of how the frame selection process proceeds in ROBIN, consider Figure 15a, which
shows frame Inside-Of and its three refinements (from Figure 14) during processing for phrase
P1. At this point, evidential activation and signature role-bindings have reached Inside-Of (as in
Figure 8), so the candidates for its concept refinement must now be chosen. Inside-Of-Stove
is rejected since a Dishwasher does not match the Stove constraint on its Location role. It there-
fore receives no signature or evidential activation. Inside-Of-Dishwasher, however, is chosen
as a candidate refinement frame, since its constraints are matched. Inside-Of-Opaque is also
chosen as a candidate, since a Dishwasher is-a Opagque-Object.

The result can be seen in Figure 15b, where both candidates have been instantiated. Marijuana
and Planting-Pot violate the constraints on the Object of Inside-Of-Dishwasher (neither of
them is cleaned in a dishwasher), so only Cooking-Pot is allowed through. The chosen candidate
will be the frame with the greatest evidential activation. After activation has settled for P1 of
Hiding Pot, Inside-Of-Dishwasher has the greater evidential activation (thicker oval), and is
selected as the refinement-of Inside-Of, serving as the plan for cleaning his Cooking-Pot.
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Figure 16. Paths from binding nodes of Inside-Of’s Object to the corresponding
binding nodes of its refinement frames are gated by connections from their frame
candidacy nodes (outlined triangles on bottom plane). The weighted links allowing
evidential activation to pass from Inside-Of to its refinement frames are also gated by
their candidacy nodes. Individual binding paths are also gated by connections from their
binding constraint nodes (solid triangles on top level). All connections to gated links must
be active for activation to pass through.

3.3.2. Gating of Signatures and Evidential Activation

The previously described frame selection process of the network is performed by inhibitory gating
on those links which allow propagation of signature and evidential activation from one frame to an-
other. Activation is only allowed to pass from a frame to one of its related frames when its role-
bindings match the candidate frame’s selectional restrictions.

The nodes and connections providing this inhibitory gating are shown in Figure 16. Each frame
has a separate candidacy node (outlined mangles on bottom plane) for every frame that it is related
to. This node will be active (with an activation of 1.0) if the related frame is a candidate for inter-
pretation, i.¢. if each of the frame’s role-bindings match the candidate’s binding constraints.
However, if any of the frame’s binding constraints are violated, then its candidacy node will be in-
active (activation of 0.0). A description of the structure of the network performing these con-
straint-matching calculations appears in the next section.

Figure 16 shows the separate candidacy node for each of Inside-Of’s refinement frames. When
the activation of the network reaches the state of Figure 15a, with Inside-Of’s Object bound both
to Marijuana (signature 6.8) and Cooking-Pot (signature 9.2), the associated candidacy nodes
of Inside-Of-Dishwasher and Inside-Of-Opaque become active (activation 1.0 in Figure 16)
to choose them as candidate refinement frames. Inside-Of-Stove’s candidacy node, however,
remains inactive, since Inside-Of’s Location violates its Stove constraint (a Dishwasher is not a
Stove).
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A further constraint on the propagation of each individual signature is that the binding it represents
must match the role’s logical constraints. Therefore, each separate binding path has a binding con-
straint (BC) node (solid black triangle) which calculates whether the object bound to the binding
node matches the candidate’s constraints.

For a signature to pass to the corresponding binding unit on a related frame, borh the frame’s can-
didacy node and the binding constraint node on the individual signature path must be active. As
shown in Figure 16, each binding propagation link is gated by both its BC node and its frame’s
cltz;récg]dacy node. The link is conjunctive, as in the sigma-pi units described in [Rumelhart ez al.,

The weighted link that allows evidential activation to pass through to the frame’s conceptual node
from the related frame’s conceptual node is also gated by its candidacy node (Figure 16). Because
of this, a related frame whose role-bindings do not match the frame’s selectional restrictions will
not provide evidence for it.

In Figure 16, both Marijuana and Cooking-Pot match the Physical-Object constraint on In-
side-Of-Opaque’s Object role, so both of its BC nodes are active (1.0). Since their candidacy
and BC gates have an activation of 1.0, the signatures pass through the conjunctive link to instan-
tiate Inside-Of-Opaque’s Object binding nodes, as shown. Evidential activation is allowed to
pass through.

The same is true of the signature representing Cooking-Pot (9.2) for Inside-Of-Dishwasher
(on its right signature path). Marijuana (signature 6.8), however, is not cleaned in a dishwasher,
so its BC node (on the left signature path) stays inactive (0.0). The gate on that path therefore re-
mains closed, and Marijuana is not inferred as a possible Object to be cleaned in Inside-Of-
Dishwasher. Inside-Of-Dishwasher’s overall binding constraints are matched, however (since
Gooking-Pot matched the constraints), so its candidacy node is active and evidential activation is
allowed to pass through.

Finally, because Inside-Of-Stove’s binding constraints were violated (a Dishwasher is not a
Stove, the constraint on its Location), its candidacy node has an activation of 0.0. It therefore re-
ceives none of Inside-Of’s evidential activation or signature bindings, and so it remains uninstan-
tiated — without possibility of being considered as the current refinement of Inside-Of.

3.3.3. Binding Constraint Structure

The binding constraint nodes calculate whether or not a signature matches the selectional restric-
tions on & role. The original knowledge base definitions that construct the network (i.c. Figure 4)
define a type (or types) of concept(s) that may be bound to each individual role. Examples are that
Inside-Of-Dishwasher’s Location role can only be filled with something that is-a Dishwasher,
and that its Object role must be a Cooking-Utensil or something that is-a Cooking-Untensil,
such as a Skillet or a Cooking-Pot (since they are the things that are cleaned in dishwashers).

In order for the network to decide whether a signature matches the binding constraints on a role, it
must be compared to each of the signatures that form the role’s legal bindings. Figure 17 shows
how this is done for the BC node on the path from binding node B1 (bound to Cooking-Pot, sig-
nature 9.2) of Inside-Of’s Object role to the corresponding binding node of Inside-Of-Dish-
washer’s Object.

In Figure 17, there are three concepts that Inside-Of-Dishwasher’s Object can be bound to: (1)
Cooking-Utensil, (2) Cooking-Pot, and (3) Skillet (because both Cooking-Pot and Skillet
is-a Cooking-Utensil). To calculate whether B1 is bound to one of these three, there are three
comparator nodes, C1, C2, and C3 (squares with an ‘=* inside). Each comparator node has two
inputs to match: one candidate signature from the binding node, and one signature from the logical

29



Figure 17. Figure illustrating how the binding constraint node (solid black triangle)
for the path from one of the binding nodes of Inside-Of’s Object role to the corresponding
binding node of Inside-Of-Dishwasher’s Object calculates its activation. The rectangular
nodes with an “=" inside (C1, C2, and C3 on the top plane) are comparator nodes, which
have an activation of 1.0 iff the signature activations from both incoming links are equal,
0.0 otherwise.

constraint. A comparator node will be active (activation 1.0) if the two input activations
(signatures) are the same, inactive (activation 0.0) otherwise. Comparator nodes are actually made
up of three nodes having small thresholds and binary outputs of 0.0 or 1.1. The first detects if ac-
tivation A is greater than activation B (by having a weight of 1.0 from A and -1.0 from B). The
second detects if activation B is greater than activation A (by having a weight of -1.0 from A and
1.0 from B). The third node is the actual comparator output node, and is active as long as neither A
is greater than B nor B is greater than A (by having a self bias of 0.5 and weights of -1.0 from
both the first and second nodes). Because of this, there is actually some leeway on the comparator
nodes allowing matches even with a small amount of noise, since the two activations will match as
long as the activations are within the thresholds on the comparator nodes.

Comparator node C1 has an input from binding node B1 and the signature node of Cooking-
Utensil, so directly calculates whether or not B1’s signature matches that of Cooking-Utensil. It
does not in Figure 17, so C1 is inactive (activation 0.0). Comparator C3 also fails in this case,
since it compares B1 to the signature of Skillet. Comparator C2, on the other hand, compares
B1’s activation to the signature of Cooking-Pot. Cooking-Pot is indeed the concept that is
bound to binding node B1, so both of C2’s inputs have the same activation (9.2), and C2 produces
an activation of 1.0. This activation propagates to the BC node that gates the path from B1 to B2.
With this BC node active (and Inside-Of-Dishwasher’s candidacy node also active), the signa-
ture of binding node B1 is clear to propagate past the BC gate to B2.

An equivalent structure (of comparator nodes) calculates the activation of the BC node for the other
binding node of Inside-Of-Dishwasher’s Object. However, since Marijuana is the signaturc
on the corresponding binding node (Figure 16), none of its comresponding (C1-C3) comparator:
will find that it maiches Cooking-Utensil, Cooking-Pot, or Skillet, and so will all remain inac-
tive. The path’s BC node will have an activation of 0.0, thus blocking the (logically impossible)
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signature of Marijuana from propagating to Inside-Of-Dishwasher’s Object. Consequently,
Cooking-Pot is inferred as an object that might be cleaned, but Marijuana is not.

Besides calculating when individual bindings match the constraints on a role and should be allowed
to propagate on through, the network must also be able to calculate when the role-bindings of a re-
lated frame match all of a frame’s selectional restrictions. Even though a Cooking-Pot matches
the selectional restriction on the Object of Inside-Of-Stove, Inside-Of-Stove’s overall selec-
tional restrictions are violated because a Dishwasher is not a Stove, as expected on its Location
role. As Figure 16 suggests, the individual BC nodes drive this calculation by having inputs into
the frame’s overall candidacy node. Though not shown in Figure 16, a simplie intervening struc-
ture of nodes and inhibitory links for each candidacy node calculates this and causes it to be active
(with activation 1.0) if all of the selectional restrictions are matched, or inactive (activation 0.0) if
any of them are violated.

3.3.4. Virtual Evidential Structure From Signature Bindings

The connectivity of ROBIN’s conceptual layer (e.g. Figure 10) and that of previous structured dis-
ambiguation models encodes static relations between frames and their roles’ prototypical fillers
without making any assumptions about the acrual role-bindings being processed at any given time.
This structure causes each frame node to accumulate an amount of evidential activation that is ap-
propriate if the actual role-bindings are not known,

However, in ROBIN, the actual role-bindings usually are known (as signatures). Inferences and
evidence from actual frame instantiations can be quite different than those from unfilled frame in-
stantiations. For example, if the network knows that somebody is smoking something, then the
network can “guess” that the actual object being smoked is either Cigarette or Marijuana by
providing evidential activation to its prototypical fillers. However, if John is smoking a
Cigarette, then he is not smoking Marijuana. It doesn’t matter that Marijuana is something
that can be smoked — if Cigarette is the actual filler, then it, and not Marijuana, should receive
evidence from that smoking. To take this into account and limit each conceptual node to evidence
accumulation from the actual instances in the network, connections between concepts in ROBIN are
also gated to control the flow of activation based on their signature bindings. Thus, the actual
bindings in a given context cause the network to have a virtual structure that combines evidence as
if the network was hand-built for those particular instances, without modifying the hard-wired
“default” structure of the network.

As seen in Figure 16, the candidacy nodes that gate the spread of evidential activation between
frames are part of this virtual evidential network structure, since they stop evidential activation
from being received by frames whose selectional restrictions have been violated (such as Inside-
Of-Stove in Hiding Pot). Because of this, the network acts as if it had been hand-wired without
any connections from the frame whose role-bindings violate the selectional restrictions of a
(normally) related frame.

The second part of virtual structure in ROBIN channels evidential activation from bound concepts to
the roles that they fill, and vise versa. As described previously, when the filler of a role is un-
known, the role receives activation from its prototypical filler or fillers through its Prototypes
branch (Figure 10). At the same time, the unbound role provides evidential activation for its pro-
totypical fillers. However, when a role’s binding unit is instantiated with signature activation rep-
resenting a binding, its Prototypes branch is inhibited so that the role does not receive any activa-
tion from or provide any activation to its prototypical fillers. Instead, the role receives activation
from the actual concept (or concepts) bound to the role, as represented by the signature binding.
To complete the feedback loop, the role provides activation to the concept bound to the role (rather
than the prototypical filler). This insures, for example, that Marijuana receives no evidence from
the smoking frame when somebody is smoking a Cigarette. The network structure that gates the
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spread of evidential activation based on the actual signature instantiations is al] part of the network
of connectionist units, and is similar to the structure enforcing selection restrictions.
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4. DETAILED EXAMPLES

ROBIN has been implemented in the DESCARTES connectionist simulator, which allows the flexible
simulation of structured heterogeneous networks [Lange et al., 1989] [Lange, 1990]. In this
chapter we give a detailed description of the spreading-activation process for disambiguation and
reinterpretation of the Hiding Pot example and show an example of how the structure enforcing
selection restrictions within the network controls crosstalk.

4.1. Processing of Hiding Pot

As a detailed example of how evidence is combined to perform disambiguation and reinterpreta-
tion, consider the processing of input for the sentence “John put the pot inside the dishwasher be-
cause the police were coming” (Hiding Pot). As described in chapter 3.1.4, a phrase is pre-
sented to the network by clamping the lexical concept nodes for each of its words to a high activa-
tion value (1.0) and by clamping the appropriate binding nodes to the signatures given by the
phrase’s syntactic bindings. To roughly simulate the sequentiality of reading, the network is al-
lowed to iterate for 10 cycles between the presentation of each word/role-binding. The clamping
for the first phrase of Hiding Pot is thus the same as that described for Figure 7, except that the
lexical node for “John” is clamped on cycle 1, the lexical node for phrase <S *put” DO “inside”
10> is clamped on cycle 11, and so on.

Figure 18 shows the levels of evidential activation through time for most of the relevant frames
during the spreading-activation process for Hiding Pot. The first thing that happens is that
Transfer-inside and Inside-Of become activated, in order, as they are inferred from the phrase
(Figure 18a). Note that it takes approximately 19 cycles for activation to propagate from one
frame to another through the input branch nodes and the nodes that enforce selectional restrictions.
During this time, the three ambiguous meanings of “pot” are differentiated only by the strength of
their weights from the “pot” node, since theyall can be put inside of things. In this particular

network, Planting-Pot has the strongest weight from “pot”, so it is winning up until about cycle
60 (Figure 18e).

At about cycle 50, activation and signatures from Inside-Of reach its refinements (Figure 18b).
As described earlier, the selectional restrictions in the network stop Inside-Of-Stove and most of
Inside-Of’s other refinements from receiving either evidential or signature activation, since a pot
inside a Dishwasher does not match their roles’ binding constraints. Just as important is that the
signature for Cooking-Pot is the only one that reaches Inside-Of-Dishwasher’s Object
(Figure 16). Because of this, as Inside-Of-Dishwasher increases in activation, Cooking-Pot
receives evidence from it (that Marijuana and Planting-Pot do not), causing Cooking-Pot’s ac-
tivation to start rising around cycle 65. Because Inside-Of-Dishwasher in turn receives activa-
tion from the virtual binding of Cooking-Pot, a small feedback loop is created between the two
that pushes both higher, including the newly instantiated $Dishwasher-Cleaning frame
(Figure 18c). By cycle 100, Cooking-Pot is clearly dominant over the other interpretations of
“pot”, and would be chosen as the binding throughout the network were the simulation to be halted
at this point.
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Figure 18. Evidential activations in network after presenting input for Hiding Pot.
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Inside-Of-Dishwasher also becomes more highly-activated than its competitor Inside-Ot-
Opaque during these cycles, but its advantage is much smaller. The reason for this can be ob-
served in Figure 19, which details the activations of the input branches through whichthe frames
receive their inputl. Cooking-Pot quickly becomes more active than Marijuana and Planting-
Pot because of the unique role that it fills in the highly-specific dishwasher cleaning frames, so that
its Fills input branch provides it with much more activation than theirs do in cycles 60 to well over
100 (Figures 19¢c-e). On the other hand, the added boost that the ascension of Cooking-Pot pro-
vides to Inside-Of-Dishwasher is averaged with the activation from its other role fillers. The
advantage of Inside-Of-Dishwasher’s Role input branch over Inside-Of-Opaque’s between
cycles 65 and 100 is thus relatively small (Figures 19a & b), since Inside-Of-Dishwasher and
Inside-Of-Opaque share most of the same role-bindings (both were planned by John, have the
Location of a Dishwasher, and have Cooking-Pot as a potential Object).

While this is occurring, input for Hiding Pot continues to be presented to the network. At cycle
50, the lexical node “police” is clamped, as is its signature binding and the evidential node for
phrase <S “were coming™> at cycle 60. Inferences are made by propagation of signature and ev-
idential activation through Transfer-Self, Proximity-Of, and See-Object, until two things hap-
pen. First, Police-See-lllegal gets instantiated from See-Object (which has itself received evi-
dential activation through inferences from both phrases of the sentence). Police-See-lllegal ac-
cepts only objects that are lllegal-Objects, so the network’s selectional restrictions allow only
Marijuana through, giving it an opportunity to receive unshared activation from Police-See-lI-
legal and eventually Police-Capture. Thus the activation of Marijuana’s Fills input branch in-
creases at about cycle 90 (Figure 19d), with the activation of Marijuana itself following closely
behind. The second important thing to happen is that the inferences from the second phrase reach
Inside-Of-Opaque. This allows Inside-Of-Opaque to start receiving activation from Block-
See (Figure 18¢c) through its results-in branch, causing an immediate leap in Inside-Of-
Opaque’s incoming activation at cycle 93 (Figure 19b)2.

As time goes on, feedback through the virtual structure between the Police-Capture frames and
their Marijuana filler enables Marijuana to overtake Cooking-Pot (cycle 160), thus lexically
reinterpreting the meaning of the word “pot”. Similarly, the new evidence from the Transfer-Seif
> Proximity-Of <> See-Object < Block-See path causes Inside-Of-Opaque to accumulate
more evidential activation than inside-Of-Dishwasher, thus making a pragmatic reinterpretation
of John’s reason for putting the pot inside the Dishwasher. The final interpretation of Hiding
Pot is the most highly-activated path of frames in the network (Figure 20), which at stability in-

'Recall that each conceptual node’s activation function includes part of their previous
activation, while being short-circuited (normalized) by the global inhibition nodes. Because of
this normalization, the activation of each conceptual node is generally less than the sum of its net
inputs, as can be seen by comparing nodes’ activations in Figures 18b and 18e with their net
inputs in Figure 19.

2In addition to propagating signatures representing role-bindings, ROBIN propagates the
signature of the frame the bindings originally came from, i.e. the original sentence’s phrase.
Structure similar to that enforcing selectional restrictions ensures that each frame only receives
evidential activation from at most one frame with the same phrase origination, preventing
potentially ruinous effects from circular self-feedback loops. Here, for instance, Inside-Of-
Opaque initially receives no evidential activation from Block-See, since the sole evidence for
Block-See came through Inside-Of-Opaque itself (from P2). By cycle 93, however, Block-
See has evidence in its own right from P2 (through See-Object ), so its evidential activation
can start reinforcing Inside-Of-Opaque.
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Figure 20. Overview of a small portion of a ROBIN semantic network showing infer-
ences dynamically made after network settles after presentation of input for phrases P1 and
P2 of Hiding Pot. Darkly shaded area indicates the most highly-activated path of frames

representing the most probable plan/goal analysis of the input. Dashed area shows the dis-
carded dishwasher-cleaning interpretation.

cludes the Inside-Of-Opaque path and the Police-Capture frames, representing the interpreta-

tion that John was trying to avoid the detection of his Marijuana from the police by hiding it in an
opaque dishwasher.
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4.2. The Effect of Selectional Restrictions

ROBIN’s network structure that controls the spread of activation based on selectional restrictions is
crucial to controlling crosstalk from logically unrelated inferences. As an example, consider the
sentence:

“After Bill put the omelette on the stove, he put the bowl inside the dishwasher.”
(Cook-and-Clean)

The most likely interpretation of Cook-and-Clean is that Bill put the bowl in the dishwasher so
that he could eventually clean it after cooking his omelette. In the network, the instance of Inside-
Of-Dishwasher with Bill as the Actor and Bowl as the Object should thus be the winning re-
finemant of Inside-Of. However, if Inside-Of-Stove is allowed to receive activation from In-
side-Of even though its binding constraints are violated, there is a good chance that it could be-
come more activated than Inside-Of-Dishwasher, due to the combined activation from Inside-Of
and Stove. As can be seen in Figure 21a, this in fact happens in a network without the structure
enforcing selectional restrictions. This “dumb” network has arrived at the decision that Bill was
trying to cook something in the bowl when he put it in the dishwasher.

Of course, ROBIN could use the solution of marker-passing systems and evaluate the paths returned
by the propagation of signatures. This evaluation would reveal that Inside-Of-Stove’s selectional

restrictions had been violated (since the Location was actually a Dishwasher). ROBIN could then
reject that path and choose the next most-highly activated one, which in this case is the correct In-

side-Of-Dishwasher path.
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However, one of ROBIN’s main goals is to avoid the use of a separate path evaluation mechanism
by returning a single, logically-possible inference path. And as can be seen in Figure 21b, this is
exactly what happens for Cook-and-Clean in a normal ROBIN network with the structure enforc-
ing selectional restrictions. With the selectional restrictions, Inside-Of-Stove still becomes par-
tally activated because of evidence from its prototypical fillers (particularly Stove). But since it
does not receive any signatures or evidential activation from inside-Of, its activation does not

come close to competing with Inside-Of-Dishwasher. The network thus settles on the correct
interpretation of the sentence.
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5. DISCUSSION AND CONCLUSIONS

ROBIN’s inferencing, plan/goal analysis, schema instantiation, disambiguation, and reinterpretation
abilities have been successfully tested on Hiding Pot and a number of other episodes, in two do-
mains, using syntactically preprocessed inputs of one and two sentences in length. Tabie 2 lists
some of the other episodes that ROBIN is able to disambiguate and analyze in terms of their
plan/goal structure.

The Hiding Pot example’s knowledge base currently has 121 conceptual frames defined (18 of
which are shown in Figure 5), with a total of 133 different roles (see Appendix A). The average
number of roles per frame is less than that of Figure 5 because 33 object frames (e.g. Physical-
Object, Cooking-Pot, John, etc.) and 20 simple lexical entries (e.g. “pot” and “poiice”) have
no roles defined other than their relations to other frames. The network encodes 208 rules in the
form of corresponding roles over which inferences can be made by propagation of signatures.

The network that is constructed from the Hiding Pot’s knowledge base (Appendix A) has a total
of approximately 20,000 nodes, the vast majority of which are used to calculate selectional restric-
tions (see discussion in chapter 5.1.1). Each role in the network has three binding nodes. Be-
cause of this, there are the equivalent of 399 variables in the network (3 binding nodes per role x
133 roles) and 624 binding path “rules” (3 x 208 rules) over which inferences can be made.

The network typically takes between about 100 and 250 cycles to generate all candidate inference
paths and settle into a stable state in which a single inference path is most highly-activated (e.g.
Figure 19). The number of cycles generally required for reaching quiescence has remained in ap-
proximately that range for all sizes of the network tested. This is primarily true because the gating
and selectional restrictions within the network’s structure stop activation from spreading to the
(sometimes) large areas of the network that are logically unrelated to the input.

5.1. Future Work

In the future, there are six main areas that we would-like to explore: (1) signatures as distributed
patterns of activation, (2) realization of signatures as temporal frequencies, (3) the ability to handle
embedded role-bindings, (4) increasing the network’s capacity, (5) formation of long-term
episodic memory, and (6) the addition of lexical information to the networks.

5.1.1. Signatures Using Distributed Representations

Currently, each signature is a single arbitrary activation value that uniquely identifies its concept.
Large models could conceivably have thousands or hundreds of thousands of separate concepts
that they could recognize (such as Marijuana, Cooking-Pot, Catfish, Guppy, John, John-
Wayne, John-Kennedy, etc). It is untenable to expect a single binding node to have enough
precision to accurately distinguish between such a large number of signatures!.

A better solution is that each signature be a distribured pattern of activation which uniquely-identi-
fies its concept, as proposed in [Lange & Dyer, 1989]. As shown in Figure 22, distributed signa-
tures would be propagated for inferencing over paths of binding barks in exactly the same way as
ROBIN’s current single-valued signatures. Similar concepts would have similar distributed patterns
of constant values as their signatures, so that each signature would carry some semantic meaning.
A first pass at this might entail the use of microfeature-like patterns, as in the distributed model of
[McClelland & Kawamoto, 1986], but it would be preferable to have the signature patterns learned
over time, as done by the model of [Miikkulainen & Dyer, 1988,1989).

1The normal coding capacity of connectionist elements is usually in the range of 1-5 bits.
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“John smoked the pot.” “pot” = Marijuana,

“smoke” = $Burn-And-Inhale
“Bill smoked the meat.” “smoke” = $Smoke-Food
“Jerry put the pot on the stove.” “pot” = Cooking-Pot

“Ron put the pot on the stove. He picked it up and smoked it.” “pot” = Cooking-Pot,

“put” = $Stove-Cooking —

“pot” = Manjuana
“put” = $Light-Object
“John put the flower in the pot, and then watered it.” “pot” = Planting-Pot,

“put” = $Grow-Potted-Plant
“Cheech watered the pot, but the police saw him, so he was | “pot” = Planting-Pot —

arrested.” "pot” = Marijuana-Plant
“Jerry grew the pot.” “pot” = Marijuana-Plant
“The CIA searched for bugs.” [Granger et al., 1986) “bugs” = Microphone,
goal =
Remove-Listening-Device
“Safeway searched for bugs.” [Granger et al., 1986] “bugs” = Insects,
goal =

Remove-Health-Hazard
“Fred proposed to Wilma. Wilma began to cry. Wilma was | cry-tears = Happy-Event —
saddened by the proposal” [Eiselt, 1987] cry-tears = Sad-Event

Table 2. Examples ROBIN handles using activation clamping from syntactically pre-
processed input.

One of the most important results of using distributed signatures would be a vast simplification of
the network structure calculating whether individual signature bindings match a role’s selectional
restrictions. Because signatures currently carry no semantic meaning, the binding constraint nodes
must have a separate signature comparator node for each @ - 1 every one of the concept’s signatures
that are legal role-bindings. The number of comparator nox.  required to calculate a single binding
constraint can vary from one (a Dishwasher constraint on  needs to check whether the signature
matches Dishwasher) to extremely many (any person known to the system can match a Human
constraint on a role, so there must be a separate comparator node for each).

This is clearly not an acceptable solution for large networks. However, if signatures are dis-
tributed patterns of activation that are similar for similar concepts and that themselves carry seman-
tic information, then the entire structure of comparator nodes for a role could be replaced with a
bank of nodes that does a simple similarity threshold between the signature binding and the dis-
tributed signature of the logical binding constraint. Another possibility is that the binding con-
straint nodes could be a small distributed ensemble of nodes trained to recognize the constraints
that a role has on its filler.

5.1.2. Signatures as Temporal Fregquencies

Another realization of signatures that we are currently exploring utilizes the time dimension, in
which signatures are uniquely-identifying frequencies of output spikes generated by arificial neural
oscillators. We have already illustrated how signarure frequencies representing bindings can be
propagated across a network for inferencing by phase-locking of relaxation oscillators [Lange er
al., in press). Linkage of distant oscillators through common output frequencies represents shared
role-bindings and inferences. [Tomabechi & Kitano, 1989] have also suggested the use of fre-
quency modulation of oscillator pulses for this task.
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Figure 22. Possible future use of distributed signatures, where each signature is a
unique pattern distributed over a bank of nodes. Here each signature or binding bank is
made up of six nodes, with increasing levels of activation represented by increasing
darkness of shading (ranging from white = 0 to black = 1). Shown is the (desired) state of
the network after Bill’s distributed signature has propagated from the binding bank of
Transfer-inside’s Actor to the binding bank of Inside-Of’s Planner, but before reaching
the Planner banks of Inside-Of-Dishwasher and Inside-Of-Opaque.

5.1.3. Embedded Role-Bindings

Using signatures of pre-existing concepts, ROBIN can create and infer novel network instances.
However, ROBIN currently cannot dynamically generate and propagate new signatures for one of
these instances. This ability is crucial for recursive structures, such as in: “John told Bill that Fred
told Mary that...” Here each Object of the telling is itself a novel frame instance not having a pre-
existing signature. We are currently exploring a solution in which the signatures of the newly-in-
stantiated frames themselves are propagated, a solution that is analogous to that of [Ajjanagadde,
1990]. Until a solution for embedded signatures is found, ROBIN’s inferencing capabilities will be
somewhat limited in comparison to symbolic rule-based systems!.

5.1.4. Network Capacity

ROBIN currently only has the capacity to understand examples of from one to three sentences in
length, such as Hiding Pot and Marriage. A major limitation of the model as described is that
each frame can only have one instance at any given time, since binding units can only hold a single
signature activation at once. Because of this, ROBIN cannot represent or interpret any stories in-
volving two different seeing or eating events, for instance. We are currently exploring a solution
in which each frame will have more than one set of conceptual and binding units, each capable of
holding a separate dynamic instantiation.

However, even with the capacity to hold multiple instances of each frame, the network’s capacity
will still be limited by the fact that stories’ interpretations are represented as activation across a fi-

IBut not limited in comparison to other structured connectionist models of disambiguation,
which cannot handle even simple role-bindings.
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nite network. The evidential activation of original parts of a story that are not bolstered by new
context will decay away and be lost as time progresses. This is not a problem in marker-passing
networks, since they can simply store the generated inference paths incrementally in a separate
symbolic bufferl. Of course, we could use such a solution for ROBIN, but we would prefer to find
a purely connectionist solution. Part of the question will be exploring how much of a story can or
should be held by the short-term memory of activation in the network before it decays away. A

ﬁouplg of sentences? A couple of paragraphs? On the order of psychological seconds, minutes, or
ours?

5.1.5. Formation of Long-Term Episodic Memory

Signatures allow ROBIN to create novel network instances over its pre-existing structure, but the
activation of these instances is transient. Over time, repeated instangations should cause modifica-
tion of weights and recruitment of underutilized nodes [Diederich, 1990] to alter network structure.
Possible methods of storing the inferred instances in long-term episodic memory by some kind of
distributed learning mechanism must also be explored, likely in conjunction with the use of dis-
tributed signatures.

5.1.6. Lexical Information

ROBIN does not currently address the problem of deciding upon the original syntactic bindings, i.e.
that “por” is bound to the Object role of the phrase. Rather, ROBIN's networks are given these ini-
tial bindings and use them for high-level inferencing. To handle natural language input entered as
text, the network must somehow contain and use syntactic and phrasal information to create the
initial role-bindings that ROBIN is currently given by hand.

5.2, Comparison to Related Connectionist Models of Variable Binding and Infer-
encing

There are currently a very limited number of connectionist models besides ROBIN that have at-
tempted to emulate the symbolic abilities of variable binding and rule firing.

5.2.1. Distributed Connectionist Models

Distributed connectionist models represent knowledge as patterns of activation across nodes, rather
than the single unit representation of individual concepts used in structured networks such as
ROBIN. Each of the distributed connectionist models described below uses the energy minimiza-
tion metaphor to “settle” into individual variable bindings or rule firings.

DCPS is a distributed connectionist production system described by {Touretzky & Hinton, 1988]
that uses coarse codings to represent variable bindings. Each node in DCPS’s working memory
has associated with it a receptive field that can represent many possible Frame-Slot-Filler “triple”
combinations. When a variable binding exists in the memory, all of the nodes with a receptive
field that contains that binding triple (approximately 28 out of their working memory of 2000
nodes) are activated. Multiple triple bindings are represented by superimposing their receptive
fields.

DCPS also uses coarse-coding to represent rules of the form:
(=x A B) (=x C D) ==> +(G =x P) -(=x R =x)

where the capital letters are constants and =x is a variable. When the left-hand side of a rule is
matched, the triples on the right-hand side of the rule are either added (+) or deleted (-) from

1Though they still face the problem of determining when to remove individual markers from the
network.



working memory. The rules in DCPS are limited to two clauses on the left-hand side of the rule,
with every rule having only a single variable that must appear as the first element of both clauses.
Another restriction is that there can never be more than one rule with one variable binding that
matches the contents of working memory at any given time.

To execute the rule firing cycle, DCPS first performs energy minimization to find a rule whose left-
hand side matches two of the triples in the working memory. Once a rule is settled upon, gated
connections from the rule space add and remove receptive fields from the working memory to
“fire” the right-hand side of the rule. The cycle is then repeated and another production is matched,
just as in a serial computer,

Another distributed connectionist approach is CRAM [Dolan, 1989], a hybrid natural language pro-
cessing system in which the parsing modules are symbolic, but in which the memory and binding
modules use conjuctive coding. In this distributed representation scheme, a cube of nodes is allo-
cated to encode Frame-Slot-Filler triples by superimposing the binary patiern of each triple element
across a dimension of the cube. This method has been generalized to scalar values by representing
the superimposition as the outer product of two or more tensors (Derthick, 1988] and [Dolan &
Smolensky, 1989].

Each of these models has successfully demonstrated that distributed connectionist models have the
ability to represent and use explicit rules. Furthermore, their use of distributed representations al-
lows their models to be damage-resistant and use far fewer units then needed in traditional localist
networks that represent each potential fact with a single unit.

The primary problem with each of these distributed connectionist models is that although they se-
lect their rules through massively-parallel constraint satisfaction, they actually behave serially at the
knowledge level, since they can select and fire only one rule at a time. This becomes 2 major
problem when the tasks are complex and involve high-level inferencing. In natural language un-
derstanding and planning tasks it is generally necessary to explore many possible inference paths.
Making conceptual connections between two or more facts effectively amounts to an intersection
search which can quickly involve a very large number of rules. This has proven to be a debilitating
problem to serial symbolic rule-based systems, and has in fact motivated a large amount of re-
search in marker-passing models that are better able to approach these problems due to their mas-
sively-paralle] symbolic mechanisms.

Because current rule-handling distributed models are serial at the knowledge level, they will con-
tinue to be plagued with many of the same problems that traditional symbolic rule-based systems
face. ROBIN’s structured networks, on the other hand, are able to fire many rules at once, dramati-
cally decreasing the time required to “search” through the rule space to find inference paths con-
necting the inputs. Equally important is that with the propagation of signatures, ROBIN has no
need to use (relatively slow) constraint satisfaction to select and fire its rules. ROBIN instead uses
the network’s smooth constraint satisfaction abilities to perform an even more difficult part of high-
level inferencing: selecting the most plausible of alternative inference paths and allowing for rein-
terpretation if contexts change.

5.2.2. Ajjanagadde and Shastri’s Structured Connectionist Model

The connectionist model which is most closely related to ROBIN [Lange & Dyer, 1988] is that pro-
posed recently in [Ajjanagadde & Shastri, 1989]. Their model also solves the knowledge-level
parallelism problem by being able to maintain and propagate multiple variable bindings in a struc-
tured network, but does so instead by using a multi-phase clock.

Their networks encode predicates and rules of the sort:

forall (x,y,z) (orderhit (x,y,z) => hit (y,z))
(If X orders Y to hit Z, then Y hits Z{
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bob

ORDERHIT dick

dave

mike

[~=— from mike

~=—from dave

HIT from bob

Knowledge Encoded

forall (x,y .z} (orderhit (x,y,2) -> hit (y,2))
forall (x,y) (hit (xy) -> hurt (y))
forall (x) (felldown (x) -> hurt (x))

orderhit (bob,mike dave)
hit (mike,dave)
hit (dave dick)
felldown (bob)

Figure 23. Example network from [Ajjanagadde & Shastri, 1989]. Diamonds a, thru
aj are arg-nodes, while circles for bob, dick, dave, and mike are const-nodes.

The networks also store long-term facts with individual instance nodes, such as a order-
hit(dave,mike,bob). They then pose queries to the network which can only be answered by in-
ferencing over rules like the above, such as the query ?hit{mike,bob).

In their model, each network cycle is broken up into a fixed number of phases. A variable binding
is represented when an arg-node (analogous to ROBIN’s binding nodes) is active on the same phase
of the clock as the const-node (analogous to ROBIN’s concept nodes) bound to it. As in ROBIN,
there are connections between corresponding arg-nodes as defined by rules in the knowledge base.
Figure 23 shows an example network illustrated in [Ajjanagadde & Shastri, 1989].

To provide the initial bindings to the network and pose a query, they allocate (by hand) a phase of
the clock for each binding in the query. For example, to pose the query ?hit(mike,bob) to the
network of Figure 23, they activate the first arg-node of hit (a4) and the const-node mike in the
first clock phase, and activate the second arg-node of hit (as) and the const-node bob in the second
clock phase. Because arg and const-nodes always become active on the phase of the clock that
they were originally activated in, these bindings will hold indefinitely.



Once the bindings are set, they propagate over the paths between arg-nodes. In the first phase of
the second cycle, for example, the activation of arg-node a4 causes arg-node a; to become active.
Az will then continue to become activated on every first phase. Because const-node mike is stll
active in the first phase, a; (the second argument of orderhit) is now also bound to mike, and the
inference has been made. Similarly, in the second phase of the second cycle, arg-node as causes

a3 to become active, so that both are bound to bob. They are thus able to propagate bindings
across the nerwork for inferencing.

Ajjanagadde and Shastri’s model succeeds in illustrating an alternative mechanism for maintaining
variable bindings in a structured connectionist network. Like ROBIN, their model can match and
fire multiple rules in parallel, as opposed to the serial limitations (one rule at a time) of current dis-
tributed connectionist models.

The basic kinds of inferences that can be performed by ROBIN's propagation of signatures and by
Ajjanagadde and Shastri’s multi-phase clock seem to be about equivalent. Both mechanisms allow
the binding of any previously known concept to any role in the network, and cause those bindings
to be propagated along arbitrarily long inference paths defined by their knowledge base’s rules.

One of the clearest advantages that Ajjanagadde and Shastri’s model has over both distributed con-
nectionist and traditional symbolic systems is its ability to perform deductive inference with ex-
treme efficiency. Their model is in fact able to draw conclusions in time proportional to the length
of the proof [Ajjanagadde & Shastri, 1989]. ROBIN does not aim for such optimal efficiency, in-
stead using the constraint satisfaction process of the evidential portion of its networks to resolve
ambiguities. However, if signatures were to be applied solely to the task of deductive retrieval that
Ajjanagadde and Shastri’s model handles, ROBIN could be stripped of its constraint-relaxation evi-
dential network. In this case, propagation of signatures could also perform deductive retrieval in
time proportional to the length of the proof. In fact, because a single cycle in ROBIN is functionally
equivalent 1o a single phase of the clock in Ajjanagadde and Shastri’s model!, signature propaga-
tion would complete the proof a factor of p times faster than their model, where p equals the num-
ber of phases in their clock cycle.

One potential problem with using a phase-clock mechanism for variable binding (as opposed to
signatures) lies in selecting the number of clock phases when there is sequential input. For exam-
ple, in natural language processing systems new bindings are constantly being created as every
word is read in. This fact will force Ajjanagadde and Shastri’s system to continually modify the
number of phases in their clock cycle. For example, consider the following story:

"“The short and fat man boughs a red Corvette. He called the police when a thief stole it
from his mother’s garage in Fresno.”

In the first sentence short and fat must be propagated and bound to the Height and Weight roles of
Human, followed by the propagation of Man to the Actor of Buy, Red to the Color of Auto-
mobile, and Corvette to the Object of Buy. At some point, Ajjanagadde and Shastri's system
must decide upon the system’s number phases per clock cycle in order to represent those bindings.
The number of phases per clock will have to be changed, however, to handle the new bindings that
sequentially arise from the second sentence and any subsequent sentences. The only apparent way
to avoid having to continually modify the phase clock to accommodate new bindings in such cases
is to constantly operate the clock at a high enough number of phases per cycle to maintain the

1As in most connectionist models, activation can propagate from one node to its neighbor in a
single ROBIN cycle. Ajjanagadde and Shastri’s model defines that a single phase of their clock
cycle possesses this same ability, and so require that each phase have the same computational
complexity as a normal connectionist cycle.
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maximum number of bindings the system will ever require. This solution, however, would de-
crease efficiency when there are only a small number of bindings. This kind of problem does not

occur with signatures in ROBIN, since new signatures are simply added to the network and propa-
gated along with the old ones.

Looking beyond explicit comparisons between signature and phase-clock binding mechanisms, a
primary functional ability that Ajjanagadde and Shastri’s model possesses that ROBIN does not is a
pre-existing storage of instances. Facts are hardwired into their networks with instance nodes,
using a single instance node per fact (such as orderhit(dave,mike,bob)). Instance nodes could
be duplicated in ROBIN and accessed with signatures, but they are not likely a good final solution to
the problem of modelling long-term episodic memory, because of the huge number of instances
(and thus instance nodes) involved. One possible future advantage of using distributed signatures
instead of Ajjanagadde and Shastri’s phase-clock is that once signatures are propagated, the dis-
tributed representations of the bindings would be imm iately available for use by a connectionist
learning mechanism to form long-term distributed memories. Such a mechanism is needed to solve
the multiple instance problem [Sumida & Dyer, 1989).

While both models seem to have nearly equivalent variable binding and rule-firing abilities, ROBIN
goes beyond Ajjanagadde and Shastri’s model in three major ways: (a) integration of its variable
binding mechanism within a connectionist semantic network, (b) multiple binding sites per role,
and (c) gating and selectional restrictions. The most important difference is that ROBIN’s signature
role-binding structure is integrated within an evidential connectionist semantic network that per-
forms smooth constraint satisfaction to select a most plausible interpretation from several generated
inference paths!. Nearly as important is that having multiple binding sites per role allows ROBIN to
evaluate ambiguous role-bindings in parallel, which is key to handling disambiguation and mean-
ing reinterpretations without backtracking. And finally, gating and selectional restrictions within
ROBIN’s network structure control the spread of activation and eliminate crosstalk between logi-
cally unrelated inferences. These capabilities allow ROBIN to perform much of the high-level infer-
encing required for natural language understanding; where not only must inference paths be dy-
namically instantiated, but in which alternative paths must be evaluated and selected among in
changing contexts.

5.3. Comparison to Related Connectionist Models of Disambiguation and Rein-
terpretation

5.3.1. Structured Spreading-Activation Models

ROBIN’s disambiguation performance is similar to that of Cottrel! & Small [1982] and Waltz &
Pollack’s [19835] structured spreading-activation models on the simple examples that they handle
successfully. Of course, signatures allow ROBIN to perform disambiguation on more complex text
that requires inferencing, and so is not limited to performing disambiguation based upon the sur-
face semantics of the input.

To compare ROBIN’s disambiguation abilities to that of other spreading-activation models and
show how important its virtual role-filler structure is for even simpie examples that do not require
inferencing, consider what happens in the extended Waltz & Pollack network of Figure 1 when it
is presented with input for the sentences “The astronomer saw the star” and “The star saw the as-
tronomer.” As shown in Figure 24a, the network disambiguates “srar” to mean a Celestial-
Body in the sentence “The astronomer saw the star” because of activation flowing over the path
Astronomer « Astronomy « Celestial-Body. This is a reasonable disambiguation, since it is

l[Ajjanagadde & Shastri, 1989] mentions integration with connectionist semantic networks as
an area of their own future research,
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Figure 24. Activations of Celestial-Body and Movie-Star in the network of
Figure 1 based on [Waltz & Pollack, 1985] after presentation of input for a) “The
astronomer saw the star.” , and b) “The star saw the astronomer.”

the job of astronomers to study celestial bodies. However, when presented with input for “The
siar saw the astronomer”, the network again disambiguates “star” to Celestial-Body
(Figure 24b)l. This s quite unfortunate, since celestial bodies lack eyes and so cannot see. The
problem is that the network of Figure 1 has no way to recognize the difference between the two
sentences, and so provides activation evidence to Celestiai-Body through See’s Object role,
even though it is the Astronomer that is (or should be) bound to it.

This is a simple example where the combination of ROBIN's signatures, selectional restrictions, and
virtual role-filler structure are crucial for successful interpretation. As seen in Figure 25a, ROBIN
also disambiguates “star” to Celestial-Body for “The astronomer saw the star.” However, when
input for “The star saw the astronomer” is clamped, only the signature of Movie-Star propagates
to the Actor role of frame See, since Celestial-Body violates its selectional restrictions. Because
of this, only Movie-Star receives activation feedback from See, thus becoming the clear winner
and disambiguating the sentence correctly (Figure 25b).

Another difference between ROBIN and other spreading-activation models is the final levels of acti-
vation when the network settles. As can be seen in Figures 3 and 24, the direct inhibitory connec-
tions of Waltz & Pollack’s model drive the non-winner’s activations down to zero. This makes it
nearly impossible for new context to overcome the inhibition from the winning concept and allow
reinterpretation. ROBIN’s global inhibition mechanism, on the other hand, serves only to control
the spread of activation by normalizing the evidential activations of each concept, leaving their final
levels of activation at a value relative to the amount of evidence available for them in that context
(e.g. Figure 25).

1t takes slightly longer since “star” is clamped first and thus provides early evidence to Movie-
Star.
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Figure 25. Evidential activations of Celestial-Body and Movie-Star in ROBIN net-
work after presentation of input for a) “The astronomer saw the star”, and b) “The star
saw the astronomer.”

In the case of Hiding Pot, the global inhibitory normalization is what allowed the word “pot” to
eventually be reinterpreted to Marijuana, despite Cooking-Pot’s early dominance. We did not
€ven attempt to run the network with direct inhibitory connections between those competing con-
cepts, because it was clear from the activation plots of Figures 19¢c and 19d that the new context
from “because the police were coming” served only to eventually push Marijuana’s net input
above that of Cooking-Pot, and would never have been able to overcome the large amount of in-
hibition that would have been emanating from Cooking-Pot with direct inhibitory connections.

5.3.2. Marker-Passing Models

One way to look at ROBIN’s signatures is as a connectionist implementation of a restricted class of
symbeolic markers, since both signatures and markers allow variable-bindings to be represented and
propagated in parallel across semantic networks. Markers, however, can be much more complex
than signatures, since they are true symbolic pointers often holding structured information and
which can be operated on by symbolic functions on marker-passing nodes. Marker-passing sys-
tems also often use multiple types of markers in different stages of the spreading process (e.g.
“activation” and “prediction” markers in [Riesbeck & Martin, 1986]) and use named links which
may act differently depending upon the type of marker. The converse is that although signatures
are less powerful than symbolic markers, they allow ROBIN to perform inferencing using simpler,
activation-based connectionist units that implement a single domain and knowledge-independent
mechanism.

Propagation of markers and signatures allow both marker-passing systems and ROBIN to generate
candidate interpretations of input text in parallel, a crucial advantage over symbolic rule-based
models that do so serially. The most important difference between ROBIN and marker-passing
systems in terms of disambiguation and reinterpretation is that ROBIN does not need to use a sepa-
rate path evaluator to select the most plausible interpretation of the many paths generated. As an
example of how ROBIN performs the disambiguation and reinterpretation of a marker-passing sys-
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Figure 26. Activations of Happy-State and Sad-State in ROBIN network encoding
network of Figure 3 from [Eiselt, 1987], after presentation of input for “Fred asked Wilma
to marry him. Wilma began to cry. She was saddened by the proposal.” a) network
biased towards marriage proposals being happy events (weight from Propose-Marriage
to Happy-Event = 0.7 and to Sad-Event = 0.3). b) network in which marriage
proposals are equally likely to be sad events (weight from Propose-Marriage to Happy-
Event and Sad-Event = 0.5).

-

tem, consider how a ROBIN network built from Eiselt’s {1987] knowledge base of Figure 1 pro-
cesses input for the text:

“Fred proposed to Wilma. Wilma began to cry. Wilma was saddened by the proposal.”
(Marriage)

After activation is spread, both major inference chains between Propose-Marriage and Cry-
Tears are instantiated with signatures, just as they are with Eiselt’s markers. Of course, each in-
stantiated frame in ROBIN’s network also has a level of evidential activation. The levels of activa-
tion for the linchpin frames Happy-Event and Sad-Event are shown in Figure 26a. As can be
seen, Happy-Event initally is the winning interpretation. However, after the “Wilma was sad-
dened” phrase is input to the network at about cycle 120, Sad-Event gets more evidence and thus
becomes the more highly-activated of the two, reinterpreting the text. No resort to separate evalua-
tion metrics or symbolic buffers to store discarded paths is necessary. '

Another advantage of ROBIN's connectionist networks over marker-passing networks is that its
weighted links and graded activation levels allow the most predictive connections to bias the inter-
pretation more than others. For example, the result shown in Figure 26a was in a network biased
to consider marriage proposals as happy events (by having a stronger weight from Propose-
Marriage to Happy-Event than to Sad-Event). A more “cynical” network can be modelled
simply with modified weights that provide different amounts of evidence, thus leading to a differ-
ent interpretation without changing the actual knowledge or structure of the network.
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Typical Marker Propagation Rules Propagation of Signatures
Only propagate markers across a certain distance Evidential activation diminishes the further

of nodes. away it gets from an input source. Once it goes be-
low threshold, it and signatures stop propagat-
ing.

Typical Path Evaluation Rules Evidential Activation Effect

Reject paths whose frames’ binding constraints Selectional restriction structure stops signatures

have been violated. and evidential activation from spreading to
frames whose binding constraints would be vio-
lated.

Select paths that include most of the input. Each clamped input is a maximal source of evi-

dential activation — so paths that include more
of the input generally have more activation.

For paths explaining the same inputs, select the | Shorter paths have less distance tr activation to
shortest path. propagate away and diminish, sc generally have
more activation.

Table 3. Typical marker-passing rules for propagation of markers and evaluation of
inference paths contrasted with a similar gross effect from the spread of activation in
ROBIN.

For example, the result shown in Figure 26b is from a network in which marriage proposals are
equally as likely to be sad as happy. On hearing of the proposal, it cannot “decide” between
Happy-Event and Sad-Event, so their two activations increase at the same rate. However,
when the network is presented with the information that Wilma cried (cycle 60), there is more evi-
dence that she was sad (because of a slight weight bias towards Sad-State from Cry-Tears).
The final information that “Wilma was saddened” at cycle 120 only confirms the conclusion.
Thus, in ROBIN (as in all structured spreading-activation networks), the same network can return
different interpretations to the same input when its weights are biased towards different concepts
— as opposed to the binary nature of most marker-passing networks’ paths.

One interesting thing to note is the gross similarities between the evaluation rules used by marker-
passing systems and the kinds of inference paths favored by ROBIN’s spread of evidential activa-
tion. For example, most marker-passing systems have a rule that selects paths that include more of
the input than others. This naturally tends to occur in ROBIN, because each clamped input is a
maximal source of evidential activation — so paths that include more of the input will generally
have more activation. Other typical marker-passing path evaluation rules and how they seem to
correspond to the properties of spreading activation in ROBIN are shown in Tabile 3.

Of course, while marker-passing evaluation heuristics are hard and fast rules, the corresponding
tendencies in ROBIN are soft constraints that emerge from the spreading-activation process. These
emergent constraints can be and often are “overruled” by other activation tendencies and biases
from connection strengths and priming. Most important of all is that ROBIN's disambiguation and
reinterpretation happens within the network at the same time as inference paths are generated. In
marker-passing systems, on the other hand, path evaluators are a symbolic mechanism separate
from the spreading-activation process that operates in serial after paths have been generated, a huge
disadvantage as the size of the networks increase and the number of generated inference paths to be
evaluated explodes.
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5.4, Conclusions

High-level inferencing is a fundamental problem in cognitive tasks such as natural language under-
standing and planning. Symbolic, rule-based models can make high-level inferences necessary for
understanding text, but handle ambiguity poorly, especially when later context requires a reinter-
pretation of the input. Distributed connectionist models, on the other hand, are able to learn to per-
form disambiguation, but only for simple sentences that can be understood based on one-step in-
ferences from the surface semantics of the input or on script-based stories that they have been pre-
viously trained to recognize.

Marker-passing networks and structured spreading-activation networks seem to understanding
stories that require high-level inferencing. Marker-passing systems use their built-in symbolic
abilities to perform inferencing and generate possible interpretations of the text in parallel. How-
ever, they must empioy separate path evaluation mechanisms to disambiguate between the multiple
paths generated by propagation of markers. Worse yet, the number of inference paths generated
explodes as the size of knowledge-bases increase, slowing them down dramatically. Structured
spreading-activation networks, on the other hand, use their weighted connections and graded levels
of activation to select a single most-plausible interpretation in a given context through the spread-
ing-activation process. Unfortunately, because of their inability to represent variable bindings and
perform inferencing, they have been unable to go beyond disambiguation based on the surface se-
mantics of the input.

We have described a structured spreading-activation model, ROBIN, that is able to perform much of
the massively-parallel inferencing of marker-passing systems by propagating activation patterns
serving as concepts’ signatures. Using structure that holds signature activations, ROBIN is able to
dynamically create novel frame instances by binding roles with any previously known concepts in
the network. Since signatures are simply activation patterns that uniquely identify the concept
bound to roles, they can be propagated in parallel across separate paths of binding nodes that pre-
serve their activation, thus performing inferencing.

Just as importantly, the ambiguous candidate interpretations generated by the propagation of signa-
tures are selected between by the spread of activation along ROBIN's evidential semantic network
structure, which is similar to that of normal structured spreading-activation networks. The net-
work thus combines evidence from context for each inference path and settles upon a single most-
highly activated path by constraint satisfaction. Furthermore, because each concept in the network
retains a level of activation that corresponds to the amount of evidence in its favor, reinterpretation
occurs automatically if new context causes another inference path to become more highly-activated
than the original winner,

Once structured spreading-activation networks are extended to handle inferencing, potential prob-
lems from crosstalk make it vital for their static evidential structure to interact with the dynamic
structure represented by the current variable bindings of the network. We have identified two rea-
sons why this is especially important: to assure that activation feedback is between frames and
their actual (rather than prototypical) role-fillers, and to stop activation from spreading to frames
whose selectional restrictions have been violated. ROBIN assures this virrual structure by connec-
tions of nodes and links between the signature and evidential portions of the network, thus elimi-
nating large sources of potential crosstalk.

ROBIN is thus able to handle many of the high-level inferencing tasks not addressed by other con-
nectionist models, while at the same time perform disambiguation and semantic reinterpretation of-
ten difficult for symbolic systems.
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APPENDIX A

The complete knowledge base definitions used to construct the network that processes inputs for
episodes such as Hiding Pot and others in its domain (some shown in Table 2) are listed below.
An overview of part of this knowledge base was shown in Figure 5. The networks built to pro-
cess episodes from other models (e.g. Star Marriage from [Waltz & Pollack, 1985] and Mar-
riage from [Eiselt, 1987]) were defined in separate knowledge bases that encode knowledge simi-
lar to that in their networks.

;tittttita—r*tttttttttittit1:*xttt*tt*tllitt**t**tt1rwtttttttwtttttttwttttwttttrtt

A Simple phrase entries, i.e. words defining kinds of Physical=-Objects, =
r- ttttl‘t!’tttli’tt**tl’ll"t**tl’!l—t**tt!l‘tt**tttkttR**l’tl‘ﬁttttttl‘t**tttttlti’*tttl‘tl‘i

(Frame <animal> Phrase :Phrase-For (Animal 1.00}))
(Frame <cigarette> Phrase :Phrase-For {Cigarette 1.00}})
{Frame <dishwasher> Phrase :Phrase-For {Dishwasher 1.00)
(Frame <flower> Phrase :Phrase-For (Flower 1.00
(Frame <fork> Phrase :Phrase-For (Eating-Utensil 1.00))
(Frame <gun> Phrase :Phrase-For (Firearm 0.5})
{(Frame <human>» Phrase :Phrase-For (Human 0.5})
{Frame <Jchn> Phrase :Phrase-For {Jochn 1.00})
(Frame <man> Phrase :Phrase-For ({Human 6.3%))
(Frame <marijuana> Phrase ;Phrase-For (Marijuana 0.4))
(Frame <Mary> Phrase ;Phrase-For (Mary 1.00))
{(Frame <meat> Phrase :Phrase-For (Meat 1.00}))
{Frame <plant> Phrase :Phrase-For (Plant 1.00))
{(Frame <police> Phrase :Phrase-For (Police 1.00))
(Frame <pot> Phrase :Phrase-For (Marijuana 0.8)
(Cooking-Pot 1.00)
(Planting-Pot 1.000)
(Frame <skillet>» Phrase :Phrase-For (Skillet 1.00))
(Frame <stove> Phrase :Phrase-Fcr (Stove 1.00})
{Frame <thing> Phrase :Phrase-For {Phys-Obj 1.00))
(Frame <tocilet> Phrase :Phrase-For {(Toilet 1.00))
(Frame <water> Phrase :Phrase-For (Water 1.00))
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’-**t"ll’*Q*1’tt*t*it*tt*‘l’l’ﬁ*t*l‘ttt***tti‘it‘l"'?f"*'ttttl\’*rt*i!tltxttti’l‘litltt*'t

Hd Action verb phrase entries representing actions.
;*t'it****ttl‘tl‘**!’**ti"tt*lttt***ttttlt*ttttt'ﬂ*!tI'tt*tttt"twtl‘*ttt**t'tt*ttttn

;I oe.q.
(Frame

P e.qg.
{Frame

; e.qg.,
(Frame

; e.q.
{Frame

; e.g.
[Frame

;] e.qg.
(Frame

"The police arrested John."
<arrest> Phrase

:Reles {Actor (Police 0.50))
(Object {Human 0.050
:Phrase-For (Peclice-Arrest 1.000)

"John c¢leaned the pot inside the dishwasher.®
<clean> Phrase
;Roles (Actor (Human 0.05)1)
(Object {Pnys-Cb3 6.05))
{Location (Phys-0Obi 0.05))
:Phrase-For ($Dishwasher-Cleanin g 1.0 (Actor Actor)
{Cbiect Object)
(Locaticon Location})}
"John cooked the meat in the dishwasher"
<cook> Phrase
tReles (Actor {Human 0.05))
{(Object {Edible-0Cbj 0.20))
(Location (Phys-0Obj 0.05))
:Phrase-For ($Stove-Cooking 1,00}
{$Baking 1.0})

*John came to the store."
<come> Phrase

:Roles (Actor (Human 0.05%5))
{Lecation (Phys~Obi 0.05))
:Phrase-For (Transfer-Self 1.0 {(Actor Actor)

{Lo@aticn Locaticn)))

"John grew the flower in the pot.®
<grow> Phrase
iRoles {Actor (Human 0.05))
{OCbject (Animate 0.09))
(Location (Phys-0Obj 0.05))
:Phrase-For (SGrow-Potted-Plant 1.00}))

"John hide the marijuana in the toilet."

<hide> Phrase
:Roles {Actor (Human 0.035)}
(Object {(Phys-Cbj 0.05)}
(Locatlion (Container-Obi 0.05))
:Phrase-For (Avoid-Detection 1.0 (Actor Actor)

(Cbject Cbhbiect)
{Location Location)))

"John 1lit the cigarette."

<lit> Phrase
:Roles (Actor (Human 0.05))
{Object (Flammable-Cbj 0.20))
(Location {Phys-Qbj 0.,05))

:Phrase-For {(On-Top-Of-Heat-Source 1.00}))

58

x



;/ e.g. "John put the pot inside the dishwasher."
(Frame <put_inside> Phrase

:Roles {Actor {Human C.05))
{(Cbiect {Phys-Cbi 0.05)
{(Location ({Container-obi 0.05))

:Phrase-For (Transfer-Inside 1.0 (Actor Actor)

(Ob ject Ob ject)
{Location Location)}))

; e.g, "John planted the flower in the pot.,™
(Frame <planted> Phrase
:Roles (Actor {Human 0,05))
(Object (Phys-0Obj 0.09))
(Lecation (Phys-Obj 0.0%)
:Phrase-For ($GP-Plant 1.0)

; e.g. "John put the pot on top of the stove."
(Frame <put_on_top_of> Phrase

:Roles {Actor (Human 0.05))
{Cb ject (Phys—0Obj 0.0%5))
{Location (Phys-0Obj 0.0%))
:Phrase-For (Transfer-On-Top 1.00))

; e.g. "The police saw the pot on the stove."

({Frame <see> Phrase
:Roles (Actor (Human 0.05))
(Object (Phys-0b3 0,05))
{Location (Phys=Obj 0,05))
iPhrase-For ({(See-Obiject 1.009)

; e.g. "John shot the Mary with a gun."™

(Frame <shoot> Phrase
:Roles (Actor {Human 0.05))
{Cbject {Phys-0Obi 0,05))
{Inst {(Weapon 0.05))
:Phrase-For ($Shoct-Person 1.00))
;! e.g, "John smoked the pot."
{Frame <smoke> Phrase
iRoles (Actor {Human 0.05))

(Ob ject (Phys-Chkj 0.095))
:Phrase-For (S$Burn-And-Inhale 1.00)

({SSmoke-Food 1.00))
; &.9. "John watered the pot.”
(Frame <watered> Phrase
:Roles {Actor (Human 0.03)}
{Object {Phys-Cbi 0.05))
{Inst {Phys=-Cbj 0.05))

:Phrase-For ($GP-Water-Plant 1.0))

59



r

;

’

e.g: "The cigarette is lit."
(Frame <is_lit> Phrase
:Roles (Object {Phys-0b]j
;Phrase-For {Burning
e.g. "The pclice are next to John."

’

;ﬂt*i*!***ttt'l'*i*'t*itﬁﬁii*ttt'tiwttt't*i*t.q**'tt't*tttt*t't*gtg**tﬁttxtit'*

. x
:

State verb phrase entries representing actions.

-

;**t't'it****ti't!*tttttfltt**rtt*t!ii**t'ittQt'l't*t*i**"t'tt'tt!rn!tt!tttwIQ

/ e.q, "John has a gqun."
(Frame <has> Phrase
:Roles (Actor (Human
(Ob ject (Phys-0bj
:Phrase~For (Possess-Obj
; .g9. "John has cancer."

{Frame <has_cancer>» Phrase

; e.g.

:Roles (Object {Human
:Phrase-For (Lung-Carcer

“The pot is clean.™

(Frame <is_clean> Phrase

:Roles (Object (Phys-0Obj
:Phrase~-For {(Clean

e.g. "John is dying."

(Frame <is_dying> Phrase

:Roles {Obiect (Animate
:Phrase-For (Dving

e.q. "John is in jail.,"

(Frame <is_in_jail» Phrase

:Roles (Object {Human
:Phrase~-Fer (In-Jail

2.9. "The pot is inside of the dishwasher."

(Frame <is_inside_of> Phrase

:Roles [Actor (Human

{Object (Phys-Cbj
{Location (Phys-Cbj

:Phrase-fFer (Inside-Of

(Frame <is_next_to> Phrase

’

e.g.

tRoles {Object {Human

{Lecation (Phys-Cbj

:Phrase~For (Proximity-Of

"The pot is on top of the stove."

(Frame <is_on_top_of> Phrase

’

e.qg.

:Roles {Object {Human

{Location (Phys=-Obj

:Phrase-For (On-Top-0Of

"The meat is ready."

{(Frame <is_ready> Phrase

:Roles {Cbject (Human
:Phrase-For {Food-Prepared

0.05))
0.05))
1.00))

0.05))
1.000)

0.05))
1.00}))

0.05))
1.00))

0.051)
1.00)})

0.05})
0.05}))
0.05})
1.000)

0.05n
1.00))

0.03))
0,05))
1.00})}

0.05))
Q0.035))
1.00))

.05
1.00))



;Kltt!lti**********itQl!l'ﬂtt**ff't*tlil"’***t!ﬁtt"lI'ittf’l***w'*'wttt**iwlt

i Frames representing objects in the world in an is-a heirarchy.

®

;*tttt«ﬂ#t**t*tttt*tttr!trtti'litttt:tttttttttntttttttttttﬂt*tttuatc::!ttttt*t'

{Frame

(Frame

{Frame

{Frame

(Frame

(Frame

(Frame

(Frame

{Frame

(Frame

(Frame

{Frame

Phys-0b] Cbiject
:Phrase {<thing> 1.00)
:Refinements {Animate 1.00)
{Inanimate 1.00))
Animate Ob ject
:Refinement-Of (Phys-Obj 0.3)
:Refinements (Human 1.00)
(Animal 1.00)
(Plant 1.00))
Inanimate Object
:Refinement-0f {Phys=-0bj 0.7
:Refinements {(Edible-Cbj 1.00)
(Man-Made-0bi 1,00)}
Human Cbiject
:Phrase {<human> 1.00)
(<man> 1.00)
:Refinement-Cf (Animate 0.7)
:Refinements (Police 1.00)
(John 1.00)
(Mary 1.00))
Animal Object
:Phrase (<animal> 1,00)
:Refinement-0f (Animate 0.2))
Plant Object
:Phrase {<plant> 0.5)
iRefinement-0f (Animate 0.1)
;Refinements {Flower 1.00) *
(Marijuana 1.00)
:Uses {$Grow-Potted=-Flant“Plant 1.00})
Edible-Obj Cbjiect
sRefinement-0f (Inanimate
iRefinements (Meat
(Water
Man-Made-Cbj Obiject
:Refinement-0f {Inanimate
:Refinements (Household-Item
{Weapon
{Drug
Police Object
:Phrase (<police> 1.00)
:Refinement-Of (Human 0.05)
:Uses
John Object
:Phrase {<John> 1,00}
:Refinement-Of {(Human 0.05)}
Mary Object
:Phrase (<Mary> 1.00)
‘:Refinement-0f (Human 0.05})
Flower Object
:Phrase (<flower> 1.00)

:Refinement-0Of

{Police-Capture~Police 1.00)}

{Plant 0.1}1)
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1.00)
1.000)
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{Frame

(Frame

{(Frame

{(Frame

(Frame

{Frame

(Frame

(Frame

{(Frame

(Frame

(Frame

{Frame

Meat

Water

Heusehold=Item

Weapon

Drug

Cooking-Utensil

Eating-Utensil

Cooking=-Pot

Skillet

Dishwasher

Stove

Planting-Pot

Object

:Phrase
‘Refinement~Of
:Uses

Object

:Phrase
:Refinement-Of

Cbiject
:Refinement-0f
:Refinements

Object
:Refinement-0f
:Refinements
:Uses

Chiject
:Refinement=0f
:Refinements

Cbject
:Refinement-0f
:Refinements

Object
:Phrase
:Refinement-0Of

Chiect
:Phrase
:Refinement—Of

Object
:Phrase
:Refinement-0f

Object
:Phrase
:Refinement-0Of

;Uses

Object

:Phrase
:Refinement-0f

tUses
Object

:Phrase
:Refinement-0Of

:Uses

(<meat> 1.00)
(Edible-Cbj C.5)

($Smeke-Food Cbiect 1.00))

{(<water> 0.8)
(Edible-0bi 0.1)

(Man~Made-0bj
(Ccocking-Utensil

{Cishwasher

{Eating-Utensil
(Stove
(Planting-Pot
(Toilet

(Man-Made-0bj

{Firearm
{Police-Capture*Evidencer 0.5))

{Man-Made=0Dbj
{(Cigarette
(Marijuana

)

.1
.00}
.Q0)
.00)
.Q0)
.00)
.00))

HH =0

0.1)
1.00)

a.n
1.00)
1.00))

{Household-Item 0.1)

{Cooking-Pot 1,0}

(Skillet

(<fork> 1.00)
(Household-Item

(<pot> 0.3)

1.0))

¢.1))

{Coocking-Utensil 0.3)

{Container=-0bj
{Opaque-0bj

{<skillet> 1.0}

0.1)
0,1}}

(Cooking-Utensil 0.3)

(Container-Cbj

(<dishwasher>
{Household-Item
{Container-0Obj
(Opaque=-0bj

($Dishwasher-Cleaning~Cleaner 1.00)}

{<stove>
(Household-Item
{Container-0Cbj
(Opaque-0b
{Heat~Source

0.1)})

1.00)
0.1}
0.1)
0.1)

1.00)
0.1)
0.1y
0.1)
0.1y

{$Stove-Cooking~Stove 1,00)

{($Baking~Stove

{<pot> 0.4)
{Household-Item
{Container-obi
(Opaque-0bj

{SGrow-Potted-Plant"“Pot 1.00))
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(Frame Tollet Obiject
:Phrase (<tollet> 1.00)
:Refinement~0f (Household-Item 0.1)
(Contairer-Obj 0,1)

(Opaque-Qbi 0.1))
(Frame Firearm Cbiect
:Phrase {<gun> 1,00)
:Refinement~Of {(Weapon .l
:Uses {$Shoot-Person”fFirearm 1.20C)
{Frame Cigarette Ob ject
:Phrase {(<cigarette> 1.00)
:Refinement-Cf (Drug 0.1}
(Flammable-0Obj 9.0
1Uses {$Burn-And-Inhale”Drug 0.6))
(Frame Marijuana Obiject
tPhrase t<marijuana> 1.00}
(<pot> 0.3}
:Refinement-Cf (Drug 0.1
(Plant 0.1)
(Illegal-Possess=0Cbj 6.3)
(Flammable-0Obj 0.1)
:Uses {$Burn-And-Inhale*Drug 0.4))

(Frame Illegal-Fossess-Obj Object
:Refinements (Marijuana 1.00)
:Uses (Possess-Illegal~-Obiji“Object 1.00)
(Police-Capture~Evidencer 0.50))

(Frame Opaque-Ob]j Object
:Refinements {Cooking-Pot 1.00}
{Dishwasher 1.00)
{Planting-Pot 1.00})
{Stove 1,00)
(Teilet 1.00)
:Uses {Inside-0f-Opaque~Cbject 1.00})
{(Frame Container-Cbj Object
:Refinements (Cooking-Pot 1.00}
(Dishwasher 1.00}
(Planting=-Pet 1.00}
(Skillet 1.00}
(Stove 1.00})
{Toilet 1.00)
:Uses {Inside=-0f*Object 1.00))
(Frame Flammable-Obj Ob ject

:Refinements (Marijuana 1.00)
(Cigarette 1.00))
(Frame Heat-Source Obiect
:Refinements (Stove 1.00))
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;** Script SDishwasher—Cleaninq ("clean"):

P A person {(Planner) uses a dishwasher (Cleaner) to make his

#** disnhes(Dishes) clean (Clean-Dishes) .

HA Precondition: The Dishes are inside ¢f the Cleaner

i (Inside-Of-Dishwasher) .

HA Results-~-In: The Dishes are clean (Clean-Dishes) .

;/** Roles for Script SDishwasher—CLeaninq. The roles are:

o Planner: The person planning and doing the $bishwasher-Cleaning,

H [Human]

R Dishes: The things belng cleaned.

; [Cooking-Pect or Eating-Utensil]
;o Cleaner: The thing doing the c¢leaning,

; [Dishwasher]

(Role SDishwasher-Cleaning"Planner iPrototypes
iUses

(Role SDishwasher-Cleaning~Dishes :Prototypes
:Uses

(Role SDishwasher—Cleaninq‘cleaner iPrototypes

{Human 0,053
(SDishwashe:-Cleaninq Actor)
(Inside-Of-Dishwasher Planner))
(Cooking-Utensil 0.2)
{Eating-Utensil 0.2
($Dishwasher-Cleaning Obiject})
{Inside-Cf-Dishwasher Cbiect))
(Dishwasher 0.9)

:Uses {$Dishwasher-Cleaning Location)
(Inside-Of-Dishwasher Location))
(Frame $Dishwasher-Cleaning Script
iReles {Actar $Dishwasher-Cleaning"Planner)
(Ob ject $Dishwasher-Cleaning~Dishes)
(Location $Dishwasher-Cleaning~Cleaner)
:Phrase (<clean> ) 1.0 (Actor Actor)
{Chiect Chbiject)
{Location Location})
:Precond (Inside-Of-Dishwasher 1.00)

:Results~In (Clean-Dishes 1.0 (Actor Planner)

(Frame Inside-Qf-Dishwasher State

(Object Object)))

:Roles (Planner SDishwasher-Cleaning~Planner)
(Cbject $Dishwasher-Cleaning“Dishes}
{Locatlion $Dishwasher-Cleaning~Cleaner)

:Refinement-0f (Inside-Of 1.0 (Planner Planner)

{Cbject Object)
{(Location Location))

:Precond-For (SDishwasher-Cleaning 1.00))
(Frame Clean-Dishes State
:Roles (Planner {Human ¢.051
(Object (Cooking-Utensil 0.2)

{Eating-Utensil 0.2))

:Refinement-0f {Clean 1.0

{Planner Planner)
(Object Object))

:Results-0Of ($Dishwasher-Cleaning 1.0

(Planner Actor)
{(Object Obiect)})



’-t*x**ttttl’*ttili’*wt't'i’i'llit*rt"ttIIittt'*‘*'.‘-‘-‘-t'tlttt'tt-‘.***’*tt**ttrﬁtt

;** Script $Stove~-Cooking ("cocok"):

a W
’

HA A person {Planner) cooks his food (Food) on top of a stove (Steovel in

;** a cooking-pot (Pot),

row o
’

pE Preconditions: The Pot is on top of the Stove (On-Top~Cf-Stove) .

P The Food is inside of the Pot (Inside-0f-Cooking-Pot) .
B Results-In: The Food 1s cooked (Food-Prepared).,
s The Pot is dirty (Dirty-Dishes).

Hahd Planrer: The person (Human) planning and doing the $Stove-Cooking.

B Stove: The steve (Stove) being used,
P Pot: The pot (Cocking-Pot) the food is being cooked in.
P Food: The food (Edible~Obj) being coocked.
{Role $Stove-Cooking”Planner :Prototypes (Human 0,0S)
:Uses (55tove-Cooking Actor)
(On-Tep-0Of-Stove Planner))
(Role $3tove-Cocking~Stove :Prototypes [Stove 0.9}
:Uses ($Stove-Cooking Locatiocon)
{On-Top-0f-Stove Location))
{Role SS5tove-Cooking"Pot iPrototypes {Cooking-Pot 0.5)
{Skillet 0.5}
:Uses {SS5tove-Cooking Inst)
(On-Top-Cf-Stove Object))
(Role $Stove-Cooking“Food :Prototypes (Edible-0Obj 0.4)
:Uses ($Stove~-Cooking Obiject))

(Frame $3tove-Cooking Script
:Roles {Actor 5Stove~Cooking~Planner}
(Object $Stove-Cooking~Food)
{Location $Stove-Cooking*Stovel
{Inst 55tove-~-Coocking~Pot)
:Phrase {<cook> 1.00 {Actor Actor)
{Object Cbject}
{Location Location)}
:Precond {On-Top-0f-Stove 1,00)
:Results-In (Food-Prepared 1.0 {(Actor Planner)
{Object Obiject))
(Dirty-Dishes 1.9 (Actor Planner)
{Object Cbiject)))

(Frame On-Top-Of-Stove State
iRoles (Planner $Stove-Cooking~Planner)
(Cbject $Stove-Coocking"Pot}
{Location $Stove-Cocking*Stove)
:Refinement~0f (Cn-Top-Of 1.0 {(Planner Planner)
{Cbiect Object)
{Location Location))
:Precond-For ($Stove=Cooking 1.00)
:Precond {Inside-Cf-Cooking-Pot 1.00}}
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;** Script $Baking:

'-*1'

*x

A person (Planner) bakes his
a2 cooklng-pot or skillet (Pot)

The Pot is in
The Food is i
The Food is ¢

Preconditions:

Resulcs-In:

tUses

E The Pot is di
H Planner: The person (Human)
P Stove: The stove {(Stove)
Hiid Pot: The pot (Cooking-P
s Food: The food (Edible-0
(Role $Baking*Planner

(Role $Baking~Stove

(Role $Baking"Pot

(Role S$SBaking~Food

(Frame $Baking Script
:Roles

:Phrase
iPrecond

:Results-In

State
:Roles

{(Frame Inside-0Of-Stove

:Refinement

:Precond~-For

:Precond

:Prototypes
tUses

:Prototypes
iUses

:Prototypes

:Prototypes
:Uses

food (Food) inside of a stove (Stove) in

slde of the stove (Inside-0f-Stove) .
nside of the Pot {Inside-0f-Cooking-Pot) .
coked (Focd-Prepared) .

Ity (Dirty-Cishes).

planning and deing the $Baking.
being used.

ot) the feoed is being cooked in.
bj) being cooked.

(Human 0.0%5)

($Baking Actor)
{Inside-Of-5tove Planner))
{Stove 0.9)

{$Baking Location)
(Inside-0f-Stove Location))
(Cocking-Pot 0.5}

{Skillet 0.5)

{$Baking Inst)
(Inside-Cf~Stove Object))
(Edible-0bj 0.4)

($Baking Object))

{Actor
{Object
(Location
{Inst
(<cook>

SBaking~Planner)
$Baking*Food)
$Baking~Stove)
$Baking~Pot)

1.00 {Actor Acteor)
(Object Cbject}
{Location Location)}
{Inside-0f-Stove 1.00)

(Food~Prepared 1.0 {Actor Planner)
(Object Obiject))
(Dirty-Dishes 1.0 (Actor Planner)
{Cbiect Obiject)})
(Planner $Baking~Planner)
{Object $Baking~Pot)
(Location $Baking~Stove)
-0f {(Inside~Of 1.0 (Planner Planner)
{Object Cbject)

(Location Location)}
($Baking 1.00)
{Inside-0f-Cooking-Pot 1.00))



{(Frame Inside-Cf-Cooking-Pot

State
:Roles (Planner (Human 0.1))
(Cbhiect (Edible~0b ] 0.2))
(Location (Cocking-Utensil 0,3))
:Refinement-0f {Insice-0Of 1.0 (Planner Planner}
(Object Object)
(Location Location})
:Precond-For (On-Top-Qf-Stove 1.0 (Planner Planner:
(Object Obiect)
(Location Location})
{Inside-Of-Stove 1.0 (Planner Planner)
(Object Object)
(Location Location)))
(Frame Dirty-Dishes State
‘Roles (Planner (Human 0.05))
(Object (Cooking-Utensil 0,2)

(Eating-Utensil
{(Planner Planner)

:Refinement-0f (Dirty 1.0

0.2))

{(Object Cbject))

:Results-0Of

($Baking
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'-t*!'ﬁ‘tl*tttt***'l‘ltttttttttlttwt‘ttt!!!tl’*lttxtttl‘tt"*tltwtwt**xl‘i‘*tt*twttt‘l"
i** Script $Burn-And-Inhale ("smoke"):
o oW

e A person (Smoker) smokes a cigarette or marijuana (Drug) to give himself

;** lung cancer (S-Lung-Cancer),

o w

A Preconditiens The Drug is lit {$BAI-Burning) .

Hl Results-In: The Smoker has lung cancer (Lung-Cancer} .

x* Smcker: The person (REuman) doing the smoking.

prx Drug: The drug (Cigarette or Marijuana} that the Smoker is smoking.
(Role $SBurn-And-Inhale~Smoker iPrototypes {(Human 0.05)
:Uses (SBurn-And-Inhale Actor)
(SBAI-Burning Planner))
(Role SBurn-And-Inhale~Drug iPrototypes (Cigarette 0.5)
{Marijuana 0.5)
:Uses {($Burn-And-Inhale Obiject)

(3BAI-Burning Object} )

(Frame $Burn-And-Inhale Script
:Roles (Actor S$Burn-And-Inhale*Smoker)
(Object 3$Burn-And-Inhale*Drug)
:Phrase (<smoke> 0.5)
:Precond ($BAI-Burning 0.8}
:Results-In (Lung-Cancer 0.5 (Actor Chiject)))

(Frame $BAI-Burning State
:Roles (Planner $Burn-And-Inhale“Smoker)
(Cbject S$Burn-And-Inhale”Drugq)
:Refinement-0f (Burning 0.9 (Planner Planner)
. {Object Object))
:Precend-For {SBurn-And-Inhale 1.00))



rvt::#t*tt**tttttttttttt!*gt:ttttit't**gwit*ttotr**tttftttwtttwttwtttttt'tttt"--

;** Script SGrow-Potted-Plant ("grow"):

s o
’

HLA A perscn (Planner) grows a plant (Plant) in a planting-pot (Pot}.

.o
r

g Precondition: The Plant is inside the Pot (Inside-Of-$GP-Plant}.
;T Plan: The Planner waters the Plant (3GP-Water-Plant).

* X

;** Action SGP-Plant ("plant™}:

F As part of $Grow-Potted-Plant, the Planner puts rhe Plant inside of
;** the Pot, Results-In: Inside~Qf-$GEF-Plant.

;** State Inside-0f-$GP-Water:
e Watering the Plant (SGP-Water-Plant) requires that the Plant be inside of
;** the Pot. Geal-For: $GP-Water-Plant,

A Planner: The person planning and deing the $Grow-Potted-Plant.

) Plant: The plant being grown,.
Hk Pot: The pot the plant is being grown in.
Pxx WaterR: The water the plant is watered with,

(Role 5Grow-Potted-Plant~Planner :Prototypes {Human 0.05)

1Uses {SGrow-Potted-Plant Actor)
{SGP-Plant Actor)
{SGP-Water-Plant Actor)

{Inside~Qf-5GP-Plant Planner)
{Inside-QOf-$%GP-Water Planner)}

(Role $Greow-Potted-Plant”Plant iProtetypes (Plant 0.%)
:Uses {$Grow-Potted=Plant Object}
(SGP-Plant Object)
{Inside-0Of-5GP-Plant Object)
{SGP-Water-Plant Object))
{Role S$Grow-Potted-Plant“Pot :Prototypes (Planting-Pot 0.9)
:Uses {$Grow-Potted-Plant Location)
{$GP-Plant Locaticn)

{Inside~0f-5GP-Plant Location)
{Inside-Of-3GP~Water Location))
(Role SGrow-Potted-Plant“Waterr :Prototypes {(Water 0.05})
:Uses {5Grow-Potted-Plant Water)
{SGP-Water-Plant Inst)
(Inside-Qf-SGP-Water Object))

(Frame $Grow-Potted-Plant Script
:Roles (Actor $Grow~Potted-Plant*Planner)
(Object $Grow-Potted-Plant*Plant)
(Location S5Grow-Potted-Plant~Pot}
(Water $Grow-Potted-Plant "Waterr)
:Phrase (<grow> 1.00 (Actor Actor)
{Cbject Object)
{Location Location))
:Precond (Inside-0f-$GP-Plant 1.00)
iPlan {SGP-Water-Plant 1.00}))

{Frame $GP-Plant Action
:Roles {Actor SGrow-Potted-Plant“Planner)
{Chiect $Grow-Potted-Plant”Plant)
{Location $Grow-Potted-Plant*Pot)
:Phrase (<planted> C,6}
:Refinement-0f (Transfer-Inside 1.0 {(Actor Actor)
{Object Ob ject)
(Location Location))
:Results-In (Inside-Qf-%GP-Plant 1.00}))
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{(Frame $GP-Water-FPlant Plan

tRoles

:Phrase
‘Plan-For
1Goal

(Frame Inside-Qf-5GP-Plant State
‘Roles

(Flanner
{Object

[Actor scrow—Pot:ed—Plant‘Planner]
{(Chiect $Grow-Potted-Piant*Plant)
{Inst $Grow-Potted-Plant Waterr)
{<watered> 0,4)

($SGrow-Potted-Plant 1.00)

{Inside~Of-$GP-Water 1.00))

SGrcw—Potted—Plant“Planner)
SGrcw—Potted-Plant”Plant)

(Location $Grow-Potted-Plant~Pot)

:Refinement-0f

:Results-Of

{Inside-Of 1.0 (Planner Planner!
(Cbject Cbiject}
(Location Location))

{5GP-Plant 1.00)

:Precond-ror

(Frame Inside-Of-5GP-Water State

:Roles (Planner
{Object

(3Crow-Potted-Plant 1.00))

$Grow-Potted-Plant*Planner)
SGrow~Potted-Plant “Waterr)

(Location $Grow-Potted-Plant”Pot)

:Refinement-0f

:Goal-For

:Precond-For

{Inside-Cf 1.0 (Planner Planner)
{Cbject Object)
(Location Location})

(SGP-Water-Plant 1.00%
($Grow-Potted-Plant 1,00} )
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;t*t*ttl-lt'*i’*ltt*rtt'**xt'ﬂrttt*lltttt!gt:I“l“l***t!ttwt*t*ittw*tl*tx*tw'vt*lﬁry't

i** N-MOP Police-Capture:

* *x

H The police (Pclice) capture a criminal (Criminal}, based on the

;** evidence (EvidenceR}. If they are successful, then he will be in jail.

%

Hl Precondition: The Police know about the crime that the Criminal has

$Rx committed {(Police-Know-Crime}.
o Pilan: The Police arrest the Criminal (Police-Arrest),
pEw Results=In: The Criminal is in Jail (S=In-Jail}.

;** Action Police~Know-Crime:
A The Police know about the crime that the Criminal has committed.

Hill Precondition: Criminal committed a crime (Crime-Committed).

P Plan: The Pclice see the EvidenceR {Police-See-Evidence),
I 3

;** Action Police=-Arrest ({("arrest"):

Fiid The Police arrest the Criminal,

;** Action Police-See-Evidence:

Fild The Police see the EvidenceR of the crime that the Criminal committed,
x

;** Action Crime-Committed:

;**  The Criminal commits a crime using the EvidenceR.

-

HEA Instances: The Criminal possesses something illegal (Possess-Illegal-Obj)

i The Criminal shoots somebody ($Shoot-~Person).
Hald Police: The police trying to do the capturing.
Hald Criminal: The criminal the police are trying to catch.

g EvidenceR: The evidence (Weapon, Illegal-Possess-Obj} the police use to
PE nail the Criminal.

{Role Police-Capture-Police :Prototypes (Pelice 0.7}
:Uses {Police-Capture Actor}
(Police-Know-Crime Actor)
{Police-Arrest Actor}

{Police-See-Illegal Actortl}
{Role Police-Capture~Criminal :Prototypes {Human 0,05)

:Uses {Police-Capture Object)
{Police~Know-Crime Obiject)
{Police-Arrest Object)
{Crime-Committed Actor))
(Role Peolice-Capture“Evidencer :Prototypes {(Illegal-Possess-Obj 0.1)
{Weapon 0.1
;Uses {Police-Capture Evidence)

{Police-Kncw-Crime Evidence)
{Police-See-Illegal Evidence)

{Crime-Committed Evidence))
{Frame Pclice-Capture N-MOP
:Roles {Actor Police-Capture~Police)
{Object Police-~Capture~Criminal}
(Evidence Police-Capture~Evidencer)
:Precond (Police-Know-Crime 1.00)
:Plan {Police-Arrest 1.¢00)

:Results-In (In-Jail 1.0 (Actor Planner)
(Object Object))}
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{(Frame Police-Know-Crime Action
tReles (Actor Police~Capture~Police)
(Object Police-Capture~Criminal)
{Evidence Police-Capture~Evidencer)

tPrecond-For (Police-Capture 1.0G)
:Precond (Crime-Committed 0.350)
;Plan (Police-See-Illegal 1.00))
(Frame Police-Arrest Action
:Roles (Actor Police-Capture~Peclice)
(Ob ject Police-Capture~Criminal)
:Phrase (<arrest> 1,00)

:Plan-For {Police-Capture 0.75))

(Frame Pclice-See-Illegal Action

tRoles (Actor Police-Capture“Police)
(Evidence Police-Capture“Evidencer)
:Refinement-Of (See-Cbject 1.0 (Actor Actor)
(Evidence Cbiject))
tPlan~-For {Police-Know-Crime 0.5)}

(Frame Crime-Committed Acticn
iRecles {Actor Police-Capture~Criminal)

{Evidence Police-Capture~Evidencer)
:Precond-For (Police-Know-Crime 1.00)

:Instances (Possess-Illegal-Obj 1.0 {Actor Actor)
(Evidence Object})
{$Shoot-Person 1.0 (Actor Actor)

{Evidence Inst})))

(Frame Possess-Illegal-Obj State
:Reles (Actor (Human 0.05))
{Object (Illegal-Possess-Obj 0.5))
‘Refinement-0Of (Possess-Obj 1.0 (Actor Actor)
{(Object Obiject})
tIs-A (Crime-Committed 0.5 (Actor Actor}
{Cbject Evidence}})
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;ttttt*ttt*"!tI‘!'i*t***'Nt**tti*tt'&t*“'**Xttttwtttttti’lttxt&tttiittt“'ttty'tt't

i** Script $Shoot=-Person ("shoot"}:

s *
’

Bl A person (S8hooter) shoots another person (Shootee) with a gun (Firearm
;*% £o kill him.

. x®
;

H Results-In: The Shootee is dying (S-Dying).

{Frame S5%hoot-Person Script

‘Roles (Actor {Human 0.5))
(Obiect {Human G.05)
{Inst {(Firearm ©.2))
:Phrase {<shocot> 1.00}
1Is-A (Crime-Committed 0.5 (Actor Actor)
{Inst Evidence))
:Results-In (Dying 0.05 (Actor Planner)

(Cbject Obiject)))

;irttt*ttt*t*xttttt\titﬁt*i****i**t‘l!ttttt**tttt!!li’tt*****t*tt!t**t*****tti*‘l‘t*tt

;** Script $Smoke=-Food ("smoke"):

S
‘

Hd A person (Actor) smokes meat (Object) to prepare it.

. &k
Hld Results-TIn: The meat Object is cooked (S-Food-Prepared).
{Frame $Smoke-Food Action
tReles {Actor (Human 0.05}}
{Object {(Meat 0.33)}
:Phrase {<smoke>» 0.5}

:Results-In (Food-Prepared 0.5 (Actor Planner)
{Cbject Object)))
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;t*t**tti'**ttt*t!tit*!ttﬂ*itil*?**t't#***t't*ttttttttt'ttttt‘!t'*w'tttt't*tt't

*

“ M i
; General Action and Plan Frames i
;rtt'tttt*ttttlw***ttttttttvrt’tt*tttt*tttttgxt*tt&t**:‘tttttt*ttttrrfﬁtttttttt

;tt*wti*tt**xtttt**t*tttttttttttt*tttwttttt*w**gtttltt**rtt*tttttttit-ttttﬁtrxt

fAction Do-Action-To-Object: A person (Actor) does some kind of action to an
H object (Cbject). This implies that the perscn possesses that object.

(Frame Do-Action-To~-Object Action
‘Roles (Actor (Human 0,05}
{Cbject (Phys-Obj 0.05))
iRefinements (Transfer-Inside 1.0 (Actor Actor)
(Object Object)}
(Transfer-On-Top 1.0 (Actor Actor)
(Object Chiject)}
iImplies (Possess-0Obhj 0.1 (Acter Actor}
{Object Cbiject})))

;t‘ti‘*'ﬁ***t*ttt******!*t***ti"'ii**ttt!!tt**ttti‘lt‘t*tttt!t******iit**ti*lit‘*ti‘lﬁ

;Plan Avoid-Detecticn ("hide™): A human (Actor) wants tc hide an object
; (Object), He thus has the goal of the Object being blocked from
H sight (Block-See).

(Frame Avoid-Detection Plan

‘Roles (Actor (Human .05
{Object (Phys—-Qbj 0.05))
:Phrase {(<hide>» 1.0 (Actor Actor)
{Cbject Obilect))
:Goal (Block-See 0.2 (Actor Planner)

(Object Object)))

rvI‘*Qt****tttiit***tt*ii’t**‘ktt***t**ttt*!!tt***til‘llt**I‘*tt!"it*t*t*tl‘*****t*!#i
;Action Transfer-Inside ("put_inside"): A person ({(Actor) puts an object

; {Cbject) into a container (Location). Results in the cbject being

; inside of the container (Inside-0Of).

(Frame Transfer-Inside

Action
1Roles (Actor (Human 0.05))
{Cbject (Phys=-0bj 0.05))
(Location (Container-0bj 0.05}))
:Phrase {<put_inside> 1.0 {Actor Actor)
(Object  Obiect)
{Location Location))
:Refinement-0Of (Do-Action-To-Cbiject 0.1 {(Actor Actor)
{Object Object))
iRefinements {SGP-Plant 1.0 (Actor Actor)

{Ob ject Object)
(Location Location))
:Results-In (Inside-0Of 0.6 (Actor Planner}
{Object Cbject)
{Location Location)}}

74



R R R K K A Ak K RN NN N W R KK K N T kK X XN K kR KR T NN N X T T R N A R N T R AN AT TN RN E R ok

;Action Transfer-On-Top ("put_on_top of"): A person (Actor) puts an cbject
; {Cbject) on top of another c¢bject (Location), Results in -he object being
; on tep of the container ($-0On-Top-0Of}.

(Frame Transfer-On-~Top

Actiaon
:Phrase (<put_on_top_of> 1.00)
:Roles {Actor (Human 0.09))

(Ob ject {(Phys-0Obi 0,05))

{Location (Container-0bj 0.05))
:Refinement-0Of (Do-Action-To-Object 0.1 {Actor Actor)

{Object Object))

:Results-In (On~Top-0Of 0.6 {(Actocr Blanner)

{Object Cbiject)
{Location Locaticn)))

;tttttti**t**tt!**t*t*t*****ttttttttii“ltttitt********titit'ttttiﬁ*t*t*ttttti’*

;Action Transfer-3elf ("come"): A person (Actor) transfers himself to Location.
H Results in the person being at the location (S-Prox).

(Frame Transfer-Self Action

:Roles (Actor (Human 0.0Q3))
(Location (Phys-Obj 0.05}1}
:Phrase (<come> 1.0 {Actor Actor)
(Location Location})
:Results-In (Proximity-0f 0.5 {Actor Object)

(Location Location}))

'I**“********ttt!t!i"iIi’l'll‘!tl!!**l'ii'***it***t*t***w***i‘*itt***tt**‘iitii**i*t**

iActicn See-Object ("see"): An animate (Actor) sees an object (Object}.
H Precondition: The animate is near the object {Proximity-Of).
; Disabled=-By: Disabled if the cbject cannot be seen {Block-See}.
{(Frame See-Object Action

:Phrase {<see> 1.00)

:Roles {Actor (Animate 0.05))

{Object (Phys~Obj 0.05))
:Precond (Proximity-Of 1.0 (Actor Object)

(Object Location))
:Disabled-By {(Block-See 1.0 (Obiect Obiject))
:Refinements {(Police-See~Illegal 1.0 (Actor Actor)

(Object Evidencel}})
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;tt*itt*tﬁ*fi**t!ll***ttfttttt'i'tt*!tt*titt‘t*ttﬂ'tttttt**'tt!x

.ok
’

Gereral State Frames

;it*txw!ttt'*tl‘it‘*'ltt*tt"‘ﬁtttfiﬁttt'tt!tﬂt'ttt't'ttt"'iti*tt"tt"itltt

AEXRCXRET &% T oo

-

* %

;*xtrttt*trttttrt*ttttttttatttwtitttx-tt*wtt*ttttttt*ttttt*xtttt*iitt-wrtttwtrt

;State Proximity-Of ("is_next to™"):
; {Leccation) .,
{Frame Proximity-0f 3tate
iRoles {Object {Human 0.05))
(Location (Phys-Cbj 0.05))
:Phrase (<is_next_to> 1.00)

iPrecond-For

‘Results-0Of

{See-Cbhbiject 1.0

{Cbject

A person {Actor) is near an object

Actor)

(Location Object))

(Transfer-Self 1.0

(Object

Actor)

{Locaticn Lecaticn)))

.t*itt**trtt*tttlﬂ*t*ttt!*tt*xttttt*tttti*tttt*t**tttt*tttttlttt*tt!tt*ttlttttt
’

istate Inside-Of ("is_inside cf"):
A human Planner caused this.

H (Locationt,

{Frame Inside-Of State
:Roles

:Phrase

:Refinements

‘Results-Of

An cobject {Object)
{Planner (Human 0.05))
(Cbhiject (Phys-0bj 0.05))
(Location {Container-0bj 0.5})
(<is_inside of> 1.0 (Object
(Location
(Inside-0f-Dishwasher 1.0 (Planner
{Ob ject
{Location
{Inside-0f-Stove 1.0 (Planner
(Cbject
(Locatieon
{Inside-0f~-$GP-Plant 1.0 {Planner
{Object
(Location
(Inside-0f-SGP-Water 1.0 (Planner
(Object
[Location
{Inside-0f-Opaque 1.0 (Planner
(Cbject
{Location
{Transfer-Inside 1.C (Planner
{Object
{Location
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Lecaticn))
Planner)
Object)
Location})
Planner)
Obiect)
Location))
Planner)
Cbhiject)
Location))
Planner)
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Lecation))
Planner)
Cbiject)
Location))
Actor)
Object)
Location))}
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;tttt!l!ﬁitt***t***t'tt***!lﬂtti*t****t!t**t*tt!ti"t*t'itti't'tt‘tr***'i**'ttw

;State Cn-Top-0f ("is_on_top of"™): An object (Cbiect) is on top of an obiect
H {Location). A human Planner caused this.

(Frame On-Top-Of State

tRoles (Planner {(Human Q.05
{Object {Phys-0bj 0.0%5))
{Location (Phys-Obj 0.0%))
:Phrase (<is_on_top_of> 1.0 (Object Object)
(Location Location))
:Refinements (On-Top-0f-Stove 1.0 (Planner Planner)

{Object Cbiject)

{Location Location))
(On-Top-Of-Heat~Source 1.0 (Planner Planner)

(Object Object)

{Location Location}}
:Results-Cf (Transfer-On-Top 1.0 (Planner Actor}

{Object Obiject)
{Location Location)))

;ttittttt**t*tttt*ttlt***t*wxrtttt*ttttttw:xtttl:fit*t*t*t*ttttttttwﬂtwttttttt*

/State On-Top-Of-Heat-Source: An flammable object {Object) is on top of a
; heat source (Location). A human Planner caused this.
; Results-TIn: The flammable cbject burning {Burning}.

(Frame On-Top-Of-Heat-Source State

:Roles (Planner (Human 0.03))
Qb ject (Flammable-Obj 0.5))
{Location (Heat-Source 0.5
:Phrase {<lit> 1.0 (Planner Actor)

(Ob ject Object)
(Lecation Location))
tRefinement-0f (On-Top-Of 1.0 (Planner Planner)

(Object Object)
(Lecation Lecation))
;Results~In (Burning 0.7 (Planner Planner)

(Object Object)))

'-*ttt*t***tt!‘l'l‘l’!*ti******t‘ti’i‘l*"i*******tiitl’Iil’li'it**wt*ttt*!’*tl’*****t*tttt

/State Burning (™is_lit"): An flammable object (Object) is burning. A human
; Planner caused this,
{Frame Burning State
tRoles (Planner (Human 0.05))
(Object (Flammable-Ob3i 0.5))
:Phrase (<is_lit> 0.6 (OCbject Obiject))
:Refinements (SBAI-Burning 1.0 (Planner Planner)

{Cbject Object))
:Results-0f (On-Top-Of-~Heat-Source 1,0 (Planner Planner)
(Object OCbiect))}
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. *
; *ttit*"*it'?tt't(tti!tttttt*wttltﬁ't'tt'tlttt*t!ttt***&t'ttw*tll'it!ttrttttt

fState Pcssess-Obj ("has"): A human {Actor) is in possession of an
; coject (Object}

(Frame Possess-Obj State

tRoles (Acter  (Human 0.05))
{Object (Phys-Obj 0.05))
:Phrase {<has> 1.,00)

:Refinements (Possess-Illegal-Cbj 1.0 (Actor Actor)

{Object Obiect))
:Implied-By (Do-Action-To-Object 0.8 (Actor Actor)

(Object Object)))

;t*ttiitttt'#it***t*#*t**t*t*t**t*ttttt***it**ttt**tttt***t*t‘it*tt'tr*ttt'tt't

;5tate Clean ("ls_clean™): An obiject (Cbject) is clean.
; A human Planner caused this.
(Frame Clean State
‘Roles (Planner {Human c.cs))
(Object (Phys-0Obj 0.05))
:Phrase {<is_clean> 1.0 (Object Object))

iRefinements (Clean-Dishes 1.0 (Planner Planner)
{(Cbject Objecr))
:Geal-For (Dirty 1.0 (Planner Planner)
{Object Object)))

;t!*****tl&**n*ttti*t*ttttttt**tttlttt*tttttqttttttt***ttItttttttrtt*wtttttt**t

;/State Dirty {("is dirty"}): An object (Object) is dirty.
H A human Planner caused this.

(Frame Dirty State -
:Reles (Planner (Human 0.05))
{Object (Phys-Obj 0.05})
:Phrase (<is_clean> 1.0 {Object Object))

tRefinements (Dirty-Dishes 1.0 (Planner Planner)
(Object Object))
:Goal {Clean 1.0 (Planner Planner)
{Object Object)})

. *ttl!t*l'tii’l"l‘****'*tﬂ't***t*tIittt*tl'll****ttt**ﬂtt**Xt!I‘***t**i“i***ii*l*t*
r

;State Food-Prepared ("is_ready"): Some food (Object) is ready to be eatan.
H A human Planner caused this.

(Frame Fcod-Prepared State

iRoles (Planner (Human 0.05)}
{Cbject (Edible-0bj 0.05))
:Phrase {(<is_ready> 0.8 (Object Object))

‘Results-Of ($5tove-Cooking 1.0 {Planner Actor)
(Object Object))

{$Baking 1.0 (Planner Actor)
(Cbject Object))
{$Smoke-Food 1.0 (Planner Actor)

(Object Object)))
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;**t‘ktlt**‘lﬂtt*!‘titt"t****t'i*l*l‘ﬁ*lf*t**ttttttﬁi!‘lti’*ttttdttttwl’*l’tt*l"it*wt

;5tate Lung-Cancer {"has_cancer”): An animate (Obiject) has lung cancer.
H Results-In: The animate is dying (S-Dying)

(Frame Lung-Cancer State
:Roles (Cbiect (Animate 0.03))
:Phrase {<has_cancer» 1.00 (Obiect Object))
‘Resulcs-0f (SBurn-And-Inhale 0.70 (Object Actor)
iResults-In {Dying 0.05 (Object Object)))

;*t*rx******xxttil*I"t!“t"it*t“f*t*ktttI“fﬂiif**tt'ttt*"*tlﬂt***twt*'*ttttttt'**
;3tate In-Jail ("is_in_jail"™): An human (Qbiject) is in jail.
; A human {(Planner) planned this.

{Frame In=Jail State
:Reles (Planner (Human 0.05))
{Object (Human 0.05))
:Phrase (<is_in_jail> 1.0 {Object OCbject)}

:Results-0f {Police-Capture C.8 (Planner Actor)
{Object Object)))

'-*tt*ttt*t*t*!td*’td*tfi***t****tt*****ttit*itttttﬁ*itt**t***t**tiitt!ll#tttttt
;State Dying ("is_dying"): An animate (Object) is dying.
H A human (Planner) may or may not have planned this.

(Frame Dying State
:Roles (Planner (Human 0.05))
(OCbject (Animate 0,05))
:Phrase (<is_dying> 1.0 (Cbject Object))

:Results-0f ($Shoot-Person 0.9 (Planner Actor}
(Object Object))

{Lung-Cancer 0.9 (Planner Object)
(Cbiject Object)))

rv)rttt*i’**tttt*tltl!i*ﬂl‘i*l'********i**t*'ttt*ti’*‘!tttttiiil't*tttti**t*t*f'ttttt*

;State Inside-Cf-Opaque: An object (Object) is inside of an opaque container
; cbject (Location). A human (Planner) planned this.
; Results-In: Nobody can see the object (Block-See).

(Frame Inside-0Of-Opaque State
:Roles (Planner (Human 0.05))
{Cbject (Phys~-0bj 0.05))
{Location (Opaque-0Obj 0.05))
:Refinement-0f (Inside-0f 0.9 (Planner Planner}
{Object Chbject}
(Location Location))
:Results~In (Block-See 0.7 (Planner Plarner)
{Object Chiect)))
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i3tate Block=See: Aan object (Object) cannot be seen. A human (Planner)
H planned this,
; Disables: Anybody from seeing the obiect (See-Object) .

(Frame Block-See State
‘Reles (Planner {Human 0.059))
(Object (Phys-0Obj 0.05))

:Results-0Of (Tnside-Cf-Opaque 1.9 (Planner Planner)

(Object Object))

:Disables (See-Object 0.2 (Object Ob ject})

:Goal-For (Avoid-Detecticn 1.0 (Planner Actor)
(Object Obiect)))



